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ABSTRACT

This thesis derives the sharp estimates for the transmission boundary value
problems (TBVP) for Dirac operators in Lipschitz domains in the three dimensional
setting.

Most of the transmission problems considered in the literature fall under several
categories, depending on the nature of the domain and solution. First, there is the
class of problems in domains with sufficiently smooth boundaries. Second, there
is the class of problems in domains with isolated singularities. Weak (variational)
solutions for transmission problems in Lipschitz domains and strong solutions in
Dahlberg’s sense for transmission problems in Lipschitz domains were discussed
in various literatures. Compared to previous work on transmission problems, our
results are the first to establish well-posedness and optimal estimates in arbitrary
Lipschitz domains. Applications to the transmission boundary value problems of
the system of Maxwells equations are also presented in the last chapter of this

thesis.
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Chapter 1

Introduction

The goal of this thesis is to derive sharp estimates for the transmission boundary
value problems (TBVP) for Dirac operators in Lipschitz domains in the three di-
mensional setting. The underlying domain €2 is assumed to have a boundary which
is locally given by graphs of Lipschitz functions considered in some suitable systems
of coordinates (in the sequel, such a domain is simply referred to as being Lipschitz)
and the boundary data are from appropriate Lebesgue and Sobolev spaces. In the
case of the Laplace operator, such problems have been relatively recently solved in
[EM] by relying on the Serrin-Weinberger asymptotic theory (or, De Giorgi-Nash-
Moser theory at infinity). Subsequently, a new approach has been developed in our
paper [MMS] based on the Hélder regularity of the Neumann function associated
with the transmission problem. Here we further extend the scope of these works
by considering systems of equations.

This analysis is particular relevant in the study of electromagnetic scattering by



domains with a rough boundary. Recall that the propagation of an electromagnetic

wave (E, H) in R3 is governed by the three dimensional Maxwell system
(1.1.1) curl E —ikH =01in Q_, curl H +ikE =01in Q_,

where & € C is the so-called wave number and, given a bounded domain {2, in
general, we set Q, := Q and Q_ := R?\ Q. In this regard, let us note that it has
long been understood that there are basic connections between the Maxwell system
on the one hand and the Hodge-Dirac operator D = d 4 ¢ (with d, §, denoting the
exterior derivative and its adjoint, respectively), on the other hand. A classical
observation which underscores this point is that Maxwell’s system (1.1.1) can be

written in the compact form

(1.1.2) Dyu = 0,
where
(1.1.3) Dy =D+ key, and u := H —ieyE.

Above, the vector fields ' = (Ey, Ey, E3) and H = (H;, Ho, H3) are regarded as

Clifford algebra-valued functions, via the identification

(114) FE = E161 + EQ@Q + Egeg, H = H1€263 -+ H2€3€1 -+ H3€1€2,

and ey, e, €3, e4 are the four anti-commuting imaginary units generating the Clifford

algebra A4. Our goal is to further exploit these connections and present a coherent,
2



unified approach to transmission problems which relies on the Clifford algebra
formalism. For more background material and further general references on Clifford
algebras and related matters, the interested reader is referred to the monographs
[BDS], [HQW], [GW] and [Mi3]; see also the article [McM] for harmonic and Fourier
analysis methods in the context of Clifford algebras. An excellent survey of progress
in the area of harmonic analysis techniques for nonsmooth elliptic problems until
early 1990’s, can be found in the monograph [Kel].

The main result of our work is summarized in the theorem below. To state
it, recall that for a (possibly algebra-valued) function u defined in 2, the non-

tangential maximal function Nu is given by

(1.1.5) Nu(z) :=sup{|u(y)|: y € Q, |x —y| < kdist (y,00)}, =z € 09,

where k > 1 is some fixed, large constant. We let ‘wedge’ and ‘backward wedge’
denote, respectively, the exterior and interior products (cf. Chapter 3 for a more
detailed exposition), and set sqy, Unor for the tangential and normal components
of an Ay-valued function u defined on 9€2. Also, v will denote the outward unit

normal to 0f2.

Theorem 1.1.1. Let Q be a bounded Lipschitz domain in R?, 1 < p < oo, and let
k € C be a non-zero complex number. Assume that 0 < p < 1 is fized and consider

the following transmission boundary value problem for the perturbed Dirac operator
3



Dy :

(ut e CY (O, Ay),

Diu® =0 in Qy,

Unnor = Ungr = [ € LP(0R, Ay,

ul, — iy, =g € LP(0Q, Ay),
limyg| oo (|2| — iesz)u™(z) = 0,

N(u*), N(du*) and N(6u*) € LP(0R).

(1.1.6)

Above, all boundary traces are taken in the pointwise non-tangential limit sense.
Then there exist ¢ > 0 and a sequence of real numbers {k;}; which depend

exclusively on the boundary 0X) and the transmission parameter i, and which have

the following significance. For every p € (1,2 +¢) and every k € C\ {k;};, the

transmission problem (1.1.6) has a solution if and only if

(1.1.7) fevANLP (90, A)) and g€ vV LPL (0, Ay).

tan nor

Furthermore, the solution (u™,u™) is unique, satisfies the estimate
IV (™) [ ooy + [N (du™) || ooy + 1N (60| ooy

(1.1.8) < c(||y V Flps oaan 17 A gl pa (897A4)),

nor

where C' > 0 depends only on 02, u, k, p, and it can be represented in terms of
integral operators acting on the boundary data.

The above well-posedness result is sharp in the class of Lipschitz domains, but
extends to 1 < p < oo if the unit normal to 02 has vanishing mean oscillations.

In particular, this is the case when 0Q € C*.
4



The spaces appearing in (1.1.7) are defined in Chapter 5, where a detailed
analysis of their properties is carried out. Here we only want to point out that an
equivalent reformulation of (1.1.8) reads as follows: For any Clifford algebra-valued
functions u* defined in Q, satisfying Dyu® = 0in Q4, N(u*), N(du®), N(du*) €

LP(092), and for which u~ decays at infinity, there holds,

[N (u*) | ooy + 1N (du®) || ooy + [N (0u®) || o0
< CHV Vut—vvV u_||Lp(3Q) + CHV Vout —vV 5u_||Lp(aQ)

+Cllv Aut — pv Au||wan) + Cllv Adu™ — pv A du™|| oo

whenever 1 < p < 2 + ¢, where C' = C(9, k, p) > 0 is independent of u™*.
Part of the interest in the transmission boundary-value problem for the Dirac
operator Dy, in the statement of Theorem 1.1.1 stems from the fact that this is inti-

mately connected with the transmission boundary-value problem for the Helmholtz

equation
( (A4 E?)ut =0 in Qu,
N(Vu®), N(u*) € LP(09),
N O p
(1.1.9) u ‘m u ‘69 [ e Li(09),

dut —po,u~ =g e LP(ON),

im0 (x -Vu~ — iku‘) =0,
5



as well as the transmission boundary-value problem for the Maxwell system
(curl B; —ikH; =0 in Q,
curl H; + ikE; =0 in .,
curl B, —ikH, =0in Q_,
curl H, + ikE, = 0 in Q_,
(1.1.10) \ N(E), N(H:), N(E.), N(H,) € L(09),
= f € L (09),

90 tan
—uv x H,
o P !

v X FE,

—UV X EZ
[2}9]

v x H,

tan

=g € L (00),
o0

ixHe—FEe:o(ﬁ) as |x| — oc.

\ 2]
Here LPP™(09) is a suitable Sobolev-like space of vector fields on 89 (consisting

tan

of L? tangential fields whose surface divergence is also in LP); see Chapter 5 for
detailed definitions.

The above problem (1.1.9) models the scattering of acoustic time-harmonic
waves by a penetrable bounded obstacle €. In this case, k stands for the wave
number. See, e.g., [CK1], [DL], [GK]. In order to explain the genesis of this
problem, assume for a moment that R3\ © is connected. The incident plane wave

ik(z,w)

upn(z) = e . € R3, with w € S? the propagation direction, will produce a

(radiating) scattered wave u~ in the exterior of 2 and a transmitted wave u* in

+

Q). The waves u™ are annihilated by the Helmholtz operator A + k? and verify the

so-called conductive boundary conditions
(1.1.11) ut =up +u and 9, (uy +u) = pd,ut on O0.

In particular, the scalar transmission problem (1.1.9) corresponds precisely to
6



(1.1.11) for the choice of boundary data
1.1.12 ‘= Ujn 5 = —8,, in -
(1.112) fomu| o= O

In passing, let us also note from (1.1.12) that the smoothness of 92 affects, via v,
the smoothness of the boundary data f, g.

Likewise, (1.1.10) models the scattering of electro-magnetic waves by a pen-
etrable bounded obstacle 2. In this case, k is related to the frequency of the
electromagnetic wave and the physical characteristics of the medium. See, e.g.,
[Mu], [MO], [AK]. Much as before, for each w € S?, the propagation direction, and

p € R3, the polarization, the incident plane electric wave

E™(z;w,p) := %Curl curl [p e = ik(w x p) x w e e R3,
and the incident plane magnetic wave
H™(z;w,p) == kcurl [pe*®9)] = ik%w x pe*@«) 7 e R?,

will produce (radiating) scattered fields F., H, in the exterior of {2 and transmitted
fields F;, H; inside 2. The vector fields F;, H; on one hand and E., H. on the other

hand, verify Maxwell’s equations and the transmission boundary conditions
vx (B +E,)=vxFE and vx (H™+ H,) = pv x H; on 0.
The boundary conditions in (1.1.10) are obtained with

f:=—vxE™ and g:=—puvx H™ on 0.
7



Once again, in the context of scatterers with Lipschitz boundaries, f and g above
are, generally speaking, discontinuous vector fields.

In Chapter 9 we find necessary and sufficient conditions for the boundary data
which guarantee that problem (1.1.6) decouples into four scalar transmission prob-
lems (9.1.57), (9.1.58), (9.1.59), and (9.1.60) of the type (1.1.9) and two vector
transmission problems of the type (1.1.10). Hence, from this point of view, Theo-
rem 1.1.1 can essentially be regarded as an ‘elliptization” method for the original
Maxwell system. In broad terms, the Maxwell system is ‘embedded’ into a more
general, elliptic system via a procedure which also identifies the (more specialized)
type of boundary data for which the two systems are actually equivalent. For a
more detailed discussion in this regard, see Chapter 9. Here we only want to point
out that extending the LP-theory of transmission problems from single equations
to systems of equations presents a whole new set of challenges, as many of the
basic ingredients used in the scalar case (most notably, the local Holder regularity
of weak solutions) cease to function in this context.

As is implicit in the statement of the above theorem, we shall employ singular
integral operators of Cauchy type, which are defined and systematically treated in
Chapter 6. In this regard, an incisive result pertaining to the proof of Theorem 6.5.1

is the following.

Theorem 1.1.2. Let Q C R3 be an arbitrary Lipschitz domain with compact bound-
8



ary. Then for each A € R with |A| > %, there exists a sequence of real numbers
{k;}; such that for each 1 <p <2+ ¢ and k € C\{k;};, the operator \I + v A Cj,
is an isomorphism of LP2 (09, Ay).

Since the difficulties of working with boundary integral operators in the non-
smooth context are well documented (cf., e.g., the discussion in § 1 of [MMP]), this
is a delicate result. We are able to prove it by relying on certain distinguished
algebraic identities relating the Cauchy operators in the Clifford algebra setting to
the scalar layer potential operators associated with the Helmholtz operator A + k2
and the vector layer potentials which are relevant in the study of the Maxwell
system. See Chapter 6 for details.

Most of the transmission problems considered in the literature fall under several
categories, depending on the nature of the domain and solution. First, there is the
class of problems in domains with sufficiently smooth boundaries (so that they
can be flattened and/or pseudo-differential operator techniques —with a limited
amount of smoothness— can be used). See, e.g., [LRU], [KP1], [KM1], for scalar
equations, and [Wi], [Rei], [BD], [AK], [MO], [CK1], [Mu], for Maxwell’s equations.
Second, there is the class of problems in domains with isolated singularities (in
which scenario, Mellin transforms are applicable); cf. [Re2], [Rel], [NS]. Weak
(variational) solutions for transmission problems in Lipschitz domains are discussed

in [Sa], [Ag]. Finally, strong solutions in Dahlberg’s sense ([Dal) for transmission
9



problems in Lipschitz domains are treated in [EFV], [ES], [MM1], [Seo], for single
equations, and [ES], [MM1], for systems (such as Lamé and Maxwell). Compared
to previous work on transmission problems, our results are the first to establish

well-posedness and optimal estimates in arbitrary Lipschitz domains.

Several significant extensions of this body of work which we plan to address in

the near future are as follows.

e Given the flexible nature of our approcah to the problem at hand, it is natural
to suggest that all our main results continue to hold in the context of variable
coefficient Hodge-Dirac operators and, more generally, on Lipschitz subdomains
of three dimensional Riemannian manifolds. We plan to address this by further

refining the techniques developed here and by relying on the results in [MMS].

e When 2 — ¢ < p < 2+ ¢, our results should be valid in all space dimensions. For

related developments, see [MMT], [Mi4].

e It is of interest to investigate the case when the underlying domain 2 is not
simply connected. One concrete situation when this case is most relevant is that

of a ray of light going trough a layer of glass that has several air bubbles in it.

e While this thesis is concerned with the study of the direct problem, a particularly
important aspect of the theory is the corresponding inverse problem, aimed at

determining the shape of the obstacle from the far-field patterns of the scattered

10



waves. Problems as such have enjoyed a lot of attention in the literature and
results in this direction are contained in, e.g., [LRU], [MT1], [Is1], [Is2], [He], [GK].
A basic limitation of most of the literature dealing with this subject, however, is
the rather strong smoothness assumption on the boundary of the scatterer, namely
that it belongs to the class C2. One natural goal is to use the advances made
here in order to be able to treat the case when the boundary of the scatterer has
irregularities. Let us note that Lipschitz interfaces have been also considered in
[Is1] but the general framework is different inasmuch as the transmission problem
is understood there in an L2-based variational sense and the concept of solution is
weak.

To formulate a concrete conjecture, recall first that the scattered wave v~ has

the asymptotic behavior

(1.1.13) u(z) = —— uoo(’%) + O(i) , as |z — oo,

|z

where u, is the so-called far-field pattern of u; see, e.g., [CK2]. Also, for any
bounded domain Q C R? set [Q] := R3\ Q,, where €, stands for the unbounded
complement of R3\ . Clearly, if © has a connected complement then 2, = R3\ Q
and, hence, [2] = Q) in this case.

Conjecture. Suppose that two conductive scatterers occupy the interiors of two
bounded Lipschitz domains Qy, Qy in R®. We assume that R*\ Q;, j = 1,2, have

the same wave number k. Suppose that the two far-field patterns for €y and $2
11



corresponding to all incident plane wave coincide. Then [$21] = [(g].

12



Chapter 2

Definitions and Review of Some
Basic Results

2.1 The Geometry of Lipschitz Domains

Let U be an open subset of R™. A function f: U — R is called Lipschitz provided
that there exists a constant M > 0 such that |f(z) — f(y)|] < M|z — y| for all
x,y € U. The best constant in the above inequality is called the Lipschitz constant
of f.

The following result of Rademacher (cf. [Wh] p.272) is basic for our entire

work.

Lemma 2.1.1. Let f be a real-valued, Lipschitz function defined in an open set

U of R™. Then for each 1 < j < m, 887]; exists at almost every point in U and

aanj € L>®(U,R). In fact, ||V f| L~ is the Lipschitz constant of f.

An open set ) C R" is called a graph Lipschitz domain if there exists a Lipschitz
13



function ¢ : R*! — R such that
(2.1.1) Q={(,o(@)+1t): 2 e R ¢t >0},

i.,e. () is the portion of R" lying above the graph of the real-valued Lipschitz
function ¢. Fix £ = k(2) > 1 and, at each boundary point z € 0%, define the

(cone-like) non-tangential approach region
(2.1.2) I'(z) ={yeQ: |z —y| <rdist(y,00)}, x € 01,

and define the non-tangential maximal operator N acting on a measurable function

u: ) — C by
(2.1.3) (Nu)(x) = HuHLOO(F(J?))7 x € 0f).

If we wish to emphasize the dependence of I' and N on k, we shall simply write
[, and N, instead. It is well-known that for each x1,k2 > 1 and p € (0, 00) there

exist C7,Cy > 0 such that
(2.1.4) [Ny ullzro) < Cil| Neyull ey < Col [Ny ul| zrao)

for any measurable function u in 2. See, e.g., [Ke2].

Call an open set 2 C R™ a bounded Lipschitz domain if there exists a finite open
covering {O; }1<j<n of 02 with the property that, for every j € {1,..., N}, O; N Q
coincides with the portion of O; lying above R;(graph ¢;) where ¢; : R"! — R is

a Lipschitz function and R; is a rigid motion of the Euclidean space R".
14



Call Z C R™ a coordinate cylinder if Z is an open, right circular doubly trun-
cated cylinder with center at x; € 0Q2 and which, in addition, has the following

properties:

i) If R® = R"! xR is a rectangular coordinate system such that z; corresponds
to the origin and the axis of Z is in the direction of e, = (0,...,0,1) € R™,
then there exists a Lipschitz function ¢ : R"™! — R such that xz = (0/, p(0'))

and

ONZ={zx= (2,2, : ¢(a') <z,} NZ,

ii) If h and R are the height and the radius of Z, then h/R > 5/1 + ||Vy||? .

iii) If ¢Z denotes the concentric dilation of Z of factor ¢t > 0, then (2.1.5) also

holds with ¢Z in place of Z for each 1 < ¢ < 104/1 + |V¢||? .

In the sequel, we shall write occasionally Z = Z(z, h, R, ¢) to indicate that the
coordinate cylinder Z is centered at x, has height h, radius R, and that the Lipschitz
function ¢ : R"™! — R satisfies (2.1.5).

Given a bounded Lipschitz domain 2 C R", it is then possible to cover its
boundary 0f2 with a finite number of coordinate cylinders {Zl(x 7., hi, Riy ;) } Leien”
Call this family an atlas for 02, and say that a quantity depends on the Lipschitz

character of €2 if its size is controlled in terms of N and the numbers R;, h;,

V@il oo mn—1y, for 1 <@ < N.
15



In the context of a bounded Lipschitz domain €2, we shall retain the defini-
tions (2.1.2)-(2.1.3) of the non-tangential approach regions I'(z) and of the non-
tangential maximal operator N. In particular, (2.1.4) holds in this case as well.

It is well-known that, given a Lipschitz domain () there exists a canonical
surface measure do on 0f2, with respect to which v, the outward unit normal to €2,
is defined almost everywhere on 9f). We shall denote by o(FE) the surface measure
of a measurable set £ C 0. Also, throughout the thesis, we shall let LP(91),
1 < p < o0, stand for the Lebesgue space of complex-valued, measurable functions

which are p-th power integrable with respect to do on 0f).

2.2 Functional Analysis Elements

Let £ and F' be normed spaces. We denote by L(FE, F') the space of all continuous
linear operators T' : £ — F' equipped with the operator norm and we also set
L(E):= L(E, E). We shall denote the set of compact linear operators from E into
F by K(E,F) C L(E,F), and abbreviate K(E) := K(E, E).

If E is a normed space and F' = R or C is the field of scalars of E, the space
L(E, F) is called the dual of E and is denoted by E*.

We record two theorems which handle some important properties of compact

operators as below. See [La] for the proof.

16



Theorem 2.2.1. Let E, F, G, H be normed vector spaces and let

f:E—F, u:F — G, g:G—H

be continuous linear maps. If u is compact then uwo f and g o u are compact. In

particular, K(E) is a two-sided ideal of L(E).

Theorem 2.2.2. Let E, ' be Banach spaces and f : E — F be a compact linear

map. Then f*: F* — E* is compact, where f* is the adjoint of f.

For any operator T' € L(FE,F) we denote by ImT, KerT and CokerT the
image, the kernel and the cokernel of T' correspondingly:
ImT:={yeF:y="Tx, forsome z € E} C F,
KerT :={x € E:Tr =0} C E,
CokerT :={f € F*: f(Tx) =0, for any x € E} C F"*.
One class of operators that we are going to deal with is the one of Fredholm

operators, which are named for Erik Ivar Fredholm. An operator T € L(FE, F) is

said to be Fredholm if the following three conditions are satisfied:

1) dim (KerT) < oo

2) ImT is closed in F

3) dim (CokerT) < .
17



In this case, indT := dim (KerT) — dim (CokerT) is called the index of the
operator T. We denote by Fred(E, F') the set of Fredholm operates from E into F.

Let us now briefly describe some of the basic properties of Fredholm operators.

Theorem 2.2.3. Let E, F' be Banach spaces. Then Fred(E, F) is open in L(E, F),
and the function T'— ind T is continuous on Fred(E, F'), hence constant on con-

nected components.

Theorem 2.2.4. The composite of Fredholm operators is Fredholm. If T is Fred-

holm and R is compact, then T + R is Fredholm.
Corollary 2.2.5. If T is Fredholm and R is compact, then
ind (T + R) = indT.

Corollary 2.2.6. IfT € L(E, F) is an invertible operator, and R € IC(E, F), then

T + R 1s a Fredholm operator with indez zero.

Theorem 2.2.7. Let E, F,G be Banach spaces, and let
S:E—F and T:F—(G

be Fredholm. Then

indTS = indT +ind S.

Next, let us turn our attention to the exact sequence, which will be used in

Chapter 6. An ezact sequence is a sequence of maps

18



between a sequence of spaces F;, which satisfies

(2.2.7) Im(T;) = Ker(Ti41).

An exact sequence may be of either finite or infinite length. The special case

of length five,

beginning and ending with zero, meaning the zero space {0}, is called a short exact
sequence.
We are now going to present Analytic Fredholm Alternative Theory, which will

be invoked in Chapter 6 of this thesis.

Theorem 2.2.8. Let X be a Banach space and O be an open subset of C. Let the
operator

A:0 — L(X)

be analytic, i.e. %A(z) = 0 for any z in O. Also, suppose that A(0) = 0 and

A(z) € K(X). Then there exists a subset E of O, which has no accumulation

points, such that the operator

I-—A(z): X =X

is invertible for all z in the set O\E.
19



2.3 Calderén-Zygmund Theory

Handling boundary sigular integral operators at the level of generality assumed in
this work, i.e. Lipschitz boundaries and LP-based function spaces, requires the use
of the rather sophisticated machinery known as Calderén-Zygmund theory. We now
discuss some aspects of the Calderén-Zygmund theory which are most relevant for
our work. The first result below models the behavior of sigular integral operators

best suited for this work.

Theorem 2.3.1. Let A : R™ — R" be a Lipschitz function and F : R* — R

be a smooth and odd function. For any x,y € R™ with x # y we set the kernel

K(z,y) := |x_1y‘mF (A(Tx):?ﬁ(y)>, and for e > 0, f € Lipeomp(R™), we define the

truncated operator T f(x) := f‘%y|>€ K(x,y)f(y)dy. Then for each 1 < p < oo, the

following assertions hold:

(1) The mazimal operator T, f(x) := sup |T.f(z)| is bounded on LP(R™);

e>0
(2) If there exists a dense subspace V' in LP(R™) such that for any f € V the limit
lim. o T f(x) exists for almost every x € R™, then this limit ezists for any
f € LP(R™) at almost any x € R™ and the operator T'f(z) := lim._o 1. f(x)

is bounded on LP(R™).

Our next result models the behavior of layer potential-like operatos mapping

function defined on a Lipschitz surface to functions defined in its complement.
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Theorem 2.3.2. Let A: R™ — R", B: R™ — R be two Lipschitz functions and

let F: R"xR — R be a smooth and odd function which satisfies the decay condition
(2.3.9) |F(a,b)] < C(1+ b))~

uniformly for a in compact subsets of R™ and arbitrary b € R. For any x,y € R™

with x #y and t > 0 we set

K'(y) = — F(

EEYIR

A@ﬂ—A@)Bwﬂ—B@%H>
lz—y| |z — | '

Also, for each t > 0, we introduce the operators T'f(z) := [p.. K'(z,y) f(y)dy, for
[ € Lipeomp(R™), and T f (x) := sup |T'f(2)|, for some fized positive X. Then,

lx—z| <At

for each 1 < p < 00, the following assertions are valid:
(1) The non-tangential maximal operator T, is bounded on LP(R™);

(2) If there exists a dense subspace V in LP(R™) such that for any f € V the

(non-tangential) limit

Tf(x) = zelaicrglﬂo th(Z)
\xfz7\</\t

exists for almost every x € R™, then this limit exists for any f € LP(R™) at

almost any x € R™ and the operator T is bounded on LP(R™).
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Chapter 3
The Clifford Algebra Structure

3.1 Construction of a Clifford Algebra

Fix m € N and let {e; }o<i<m be a collection of objects for which we assume that

there exists an associative multiplication such that the following axioms are true:
1. eg=1;
2. ef:—lforlgigm;
3. eie; = —eje; for 1 <i# 35 <m.
Define Clifford conjugation of e;, 1 = 1,2, ..., m, as follows:
1. ey = eg.
2. ¢ =—¢; for 1 <i<m.

Remark 3.1.1. To distinguish between complex conjugation and Clifford conjuga-

tion, we will use (-)¢ to denote the complex conjugation in this work.
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We denote by A, the algebra generated by {e;}o<i<m. That is, A, consists of

all elements u, which can be represented in the form

(3.1.1) U= Z urer,

where e; stands for the product e; e;,...e;, if I = (i1, 19, ...,4;). For each multi-index
I, we call [ the length of I and denote it by |[I| = i3 + 2 + ... + 4;. And Z/
indicates that the sum is performed only over strictly increasing multi-indices, i.e.
I = (iy,d9,....,4) with 1 <1y <y < ...<7i <m.

In the sequel, we shall refer to A,, as being Clifford algebra generated by m

imaginary units.
Remark 3.1.2. For each m > 1, the algebra A,, exists.

Proof.
Let us prove this remark via a constructive approach.
One can represent the algebra of complex numbers C as a subset of Msyo(R),

the set of all 2 x 2 matrices with coefficients in R. Indeed, if we let I denote the

O) and we denote the matrix (O -1

2 x 2 identity matrix (1 1 0

01

)00

That is, informally, we have ¢ = /—1. With this in mind, we can think of C as a

) by i. Then

subset of Msyo(R). Specifically, C = span{/,i}, where the span is taken over R.
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There are a few points worth taking notice of at this stage. First of all, we only
need these two matrices to generate C. Also, there are only 2 matrices (i and —7)
that have a square of —I. We can think of C as an associative algebra, with the
usual matrix addition and the usual matrix multiplication as the 4, - operations in
this algebra. In this case, the algebra C is commutative. The subsequent algebras
that we generate following a similar pattern will not be commutative, though they
will all be associative.

In order to construct algebra involving more imaginary units, we need to in-
crease the size of the matrices. For the next level, we will consider matrices in
My4(R). It can be shown that the size of the matrices needs to be even for the
construction to be feasible. However, in order to construct this new algebra, we
also need to produce more imaginary units.

The standard notation to designate these algebras, which we will use in this
paper, is A,,. Notice, we have that 4y = R and A; = C. In general, A,, has m
“imaginary units.” Our current goal is to construct Ay. To generate A,,, we will
need a simple adaptation of the following recursive algorithm.

As previously stated, we will define Ay as a subset of My2,92(R). First, we need

to define some matrices. Let

€y .= [22><22 =

o O O+
o O = O
o= O O
_— o O O



Now, using the matrix ¢ from the 2 x 2 case above, we define

0 —1 0 0 0 -1 0 0
oo (i 0N_ |\t oo 0 0 1 0 0 0
=\ —i) 00 0 1 0 0 0 1
0 0 ~1 0 0 0 —1 0

Similarly, using the matrix I from the 2 x 2 case above, we define
00 -1 0 00 —1 0
(o -1y _[\o o o -1 (o0 0 -1
“2=\r o/)7 /10 00 “l10 0 o0
0 1 00 01 0 0

A simple calculation shows that both e; and ey are imaginary units, in the sense
that €2 = €2 = — Iy 492 = —ey.

If we now consider

spang{eg, €1, €9, €160} = {apeg + ajeq + ages + azeres : a; € R},

then this set will be closed under multiplication. We can verify this fact with the
following multiplication chart. In the chart, the column represents the first factor

in the product, and the row represents the second factor.

€0 €1 €2 €1€2
€0 ) €1 €2 €1€2
€1 €1 —€p | €162 | —€2
€2 €2 €2€1 | —€p | €1
€1€2 | €1€2 | €2 —€1 | —€o
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Note that the term ese; appears in the above chart, so it may appear that the span

is not stable under multiplication. However, one can show that

wa=(0 )60 %) -0

0 0 0 —1
0 0 1 0

“lo 10 of 7 ™
1 0 0 0

Having clarified this issue, it is easy see that the span is indeed closed under
multiplication. In particular, spang{eg, €1, €2, e1e2} is a subalgebra of Maz,02(R),
which is not commutative. This is in stark contrast with the case of Ay and A;.
(This non-commutative nature will also appear in the subsequent algebras). With

this in mind, we define
Ay = spang{eq, €1, €2, €165}

Continuing much in the same way, we can construct other subalgebras by simply
considering more imaginary units. The next subalgebra will be called A3 and will
be a subset of Masy93(R). In A3, we define ey := I53493 and, for j = 1 and 2, define

old
ej = (66 —201‘1) where e?ld is the “old” e; € Ay and 0 is the 0 € A, (i.e. the
J

22 x 22 zero matrix). Then, in much the same way as before, we will have that

€5 = —eg for j =1 and 2.

Now, we need to define a “new” imaginary unit. With our previous construction

L 0 —egd . :
in mind, we define ez := (601d %0 ) where €3 is the “old” ey € Ay and 0 is the
0

22 x 22 zero matrix.
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We can quickly check that
2 0 —egld ' 0 —egld
3 681d 0 681d 0

B _(egld)Q 0 B —681d 0 _ .
- 0 . (egld)Z - 0 _egld - 0-

Much as before, we will have that ey, e5, and ez anti-commute with each other.
Also, we need to make the span stable under multiplication. To do this, we need

to include all possible products of eq, e, and e3 with each other. Hence, we define
A3z := spang{eg, €1, €2, €3, €163, €1€3, €2€3, €1€2€3}.

Since this span is stable under multiplication, this is, as before, a non-commutative
yet associative algebra.

In particular, one can repeat this procedure for as long as desired. However,
in this work, we shall only need to go up to Ay C Mi,21(R). Once again, this
is obtained by creating a new eq = Is1,94, recycling the basic imaginary units of
Aj to create some new imaginary units ey, es, and ez, and then constructing a new
imaginary unit e, from the ey € Aj (using the /—1 recipe). Much as before, when
constructing the span, we need to include all possible products of the e; in order

to ensure that the span is stable under multiplication. Thus, we define

A4 = SpanR{607 €1,€2,€3,€4,€1€2,€1€3, €164, €2€3,€2€4, €3€4,
(3.1.2)

€1€2€3,€1€2€4, €1€3€4, €2€3€4, 61626364}-

It is clear that these elements form a basis of A4, and that the dimension of A, as

a linear space is 2* = 16. Again, A, is a non-commutative, associative algebra. O
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Remark 3.1.3. According to Theorem 1.2 in [Mi3], the representation of u in A,

1S UNLque.
3.2 General Properties of A,,

The algebra A,, has many properties which we will use throughout this thesis.

First of all, we define the Clifford conjugation of u in A,, by setting

(3.2.3) ui=>)_ Zlula,

1=0 |I|=1
where
(324) E] = €4,64,...6 = Eil .. 'Eizéil'
provided I = (iy, s, ...,4y,) is a multi-index. Going further, define the norm of u
as
(3.2.5) lu| :=

so that |u|* = (u,u) where, for each u,v € A,,, we define the inner product
(3.2.6) (u,v) == Z Z urvy.
1=0 |I|=l
Foreachl € {0,1,...,m} consider the projection map II; onto the l-homogeneous
part of u, i.e. by
(327) Hlu = Z urer,

=
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and denote by A! the range of II; : A,, — A,,. It follows that
(3.2.8) Apn =N oA @ -dA™

We shall refer to the elements in A® as scalars, to the elements in A! as vectors, to
the elements in A? as bi-vectors, to the elements in A? as tri-vectors, etc.

If a € A' and v € A7, then
a-u€ NN

This is because multiplication of a homogeneous Clifford element by a vector will
either increase or decrease the degree of homogeneity by 1. We then define the

wedge product N\ and the backward wedge product V by

(3.2.9) aNu:=1Il1(a-u) and aVu:=-I;_(a-u).
As a result, we have

(3.2.10) a-u=aAu—aVu, forany u € A,,.

One obvious observation is that both A and V are linear maps. This is due to
the fact that II; is itself a linear map, for each [ € {0,1,2,...,m}.

The Hodge star operator can be defined as the unique linear mapping
% : AL — A™!
such that

(3.2.11) er(*xer) = e1ea...epm,
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for every multi-index I = (41,42, ...,%m).

Remark 3.2.1. Let a be a vector. a ANu = ua if u is a scalar, and a Au = *(a X u)
if u is a vector. Moreover, a NV u = 0 if u is a scalar, and a V u = (a,u) if u is a

vector.

Some properties which are intrinsic to the Clifford structure that are going to
be most relevant for our work in the sequel. Hence we collect some of the most

important properties in the form a lemma.

Lemma 3.2.2. Suppose that a,b € A* and u,v € A', for some | € {0,1,...,m}.

Then the following hold:

I.aN(aAu)=0andaV (aVu)=0;

2. % xu = (—1)1m=y;

3. (u, xv) = (=1)0mD (5, v);

4. x(aAu) = (=1)laV (xu);

5. %(aVu)=(=1)"Ta A (xu);

6. aN(bVu)+bV(aAu)=(a,bu;

7. {a ANu,v) = (u,a V v).
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Corollary 3.2.3. For each a € A' with |a] =1, and each u € A,

(3.2.12) u=aA(aVu)+aV(aAu).
Proof.
This follows readily from (6) above. O

In what follows, if €2 is a Lipschitz domain with unit normal v and u : Q — A,,,

we set

(3.2.13) Upor == VN (VV )

and call it the normal component of u, and set

(3.2.14) Utan ==V V (VA u)

and call it the tangential component of wu.

We record a lemma which will be important for further subsequent development.

Lemma 3.2.4. Assume that a € A', and that uw € A,. Then

(3.2.15) a N (equ) = —eq(a Au) and a V (equ) = —eq(a V u).

Proof.
By linearity, it suffices to treat the cases: v € A7, 0 < j < 3, and u = e4v, where
ve AN, 0<j<3. Since, in general, IT; 1 (eqw) = ey - [;(w) if w € A;, 0 < j <3,

the desired conclusion follows readily from definitions. O
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Important Convention. For the remainder of this work, we shall denote by
A° AT A2 A3, the scalars, vectors, bi-vectors, tri-vectors of As, which, in turn, is

viewed as a subalgebra of Ay. In particular,

(3.2.16) Ay = A;s @ (esA3)

and, hence,

(3217) Ay = A" (A' @ esA®) @ (A2 D eyAl) @ (A3 + ey A?) @ ey A>.
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Chapter 4

Clifford Analysis

4.1 Dirac Operators

Let Q be an open subset in R™. We shall work with A,,-valued functions defined
in €2, i.e. functions f:Q — A,,. If f is A,,-valued, we can decompose f much as
we have decomposed Clifford elements. Hence, we can write
(4.1.1) f@) =33 fil@er,
1=0 |I|=l

where each coefficient f; : 2 — C. Note that algebraic combinations of A,,-valued
functions, such as Af, f£¢g and f-g, for A € C and f, g A,,-valued, are defined in
a natural fashion.

Let N be the set of natural numbers, i.e. N = {1,2/3,...}, and, in addition,
set Ng := NU{0}. Let o = (ay,...,ay,) € Ni* be a multi-index. The length of a
is defined as

m
la] = Z aj.
j=1
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Define

CH(Q) :={f : Q2 — C:0"f is continuous for any |a| < k}.

We say that f: Q — A, is of class C* if each f; € C*(Q), and denote the set of

functions of class C* by
CHQ, An) = {f : Q — Ay s fr € CHQ) for all |I] < m}.

We now introduce several Dirac-like operators. The classical Dirac operator

(named after P. Dirac) is the first-order, differential operator given by

(4.1.2) D:=>e;0;.
j=1

If f(x)= ZII‘ fr(z)es is of class C*', then Df is defined naturally by
(4.1.3) Df := Z / Z(ﬁjfj(x))ejel.
We can also define fID in a similar way. For k € C, the perturbed Dirac operator

Dy, is defined as
(414) ]D)k =D+ keerl,

i.e., if f is an A,,1-valued function, then

m

(415) ]Dkf = Z Gjajf + k€m+1f.

J=1

We now make some definitions concerning these Dirac operators.
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Let f € CY(,A,). EDf =0in Q, then f is called left-monogenic. If fD =0
in , then f is called right-monogenic. Similarly, if Dyf = 0 (or fD, = 0) in
Q, then f is called left-k-monogenic (or right-k-monogenic). Sometimes, the term
Clifford analytic or holomorphic is used in place of monogenic.

Now, we discuss connections that between the operators D and D, on the one

hand, and Laplace operator

and the Helmholtz operator A + k?, on the other hand. We have the following

standard lemma.

Lemma 4.1.1. There hold

(4.1.6) D? = -A

and, if k € C s arbitrary,

(4.1.7) D; = —(A +k?).

4.2 The Exterior Derivative Operator

In this section, we attempt to define the exterior derivative operator d and its

(formal) adjoint d as follows:

(4.2.8) du =TI, (Du)

(429) ou = Hlfl(ID)'LL)
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whenever u is a Al-valued function, 0 <[ < m.

Remark 4.2.1. The exterior derivative operator d maps any A°-valued function

into 0, and its adjoint, 0, maps any A" -valued function into 0.

Remark 4.2.2. If ¢ is vector-valued, then dy = V.

We now comment on the connection between the Dirac operator D and the

operators d and 9.

Lemma 4.2.3. For the exterior derivative operator d and its adjoint 0, the follow-

ing hold:

(4.2.10) D=d+6, d>=0, 6>=0, and dé + éd = —A.

There are also a number of useful properties of the Hodge star operator and

the operators d and § which we would like to summarize here.

Lemma 4.2.4. Suppose that u is a A'-valued function, 0 < | < m. Then the

following hold:

1. *%6u = (—=1)ld(*u);

2. 6(xu) = (=) x (du);

3. 6u = (—1)"EHFDH  (d(xu)).
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When we restrict our attention to the physically most relevant case, i.e. m = 3,
and work with A3 — A4, employing standard three-dimensional notation, we have

the following lemma.
Lemma 4.2.5. For any A'-valued functions u, v, we have
(4.2.11)  divu = —ou, (u,v) =u Vv, curlu =% du, and u x v = * (uAv).

The proof is elementary, hence omitted.
Let us also introduce the following lemma which allows us to interchange the

operators d, 6 and the imaginary unit ey.

Lemma 4.2.6. For the exterior derivative opearator d and its adjoint &, the fol-

lowing hold:

(4.2.12) dey = —eyqd, and dey = —eyd.
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Chapter 5

Smoothness Spaces on the
Boundary of a Lipschitz Domain

5.1 Tangential and Normal Spaces

Let €2 be a bounded Lipschitz domain in R™, and denote by do and v the surface
measure and outward unit normal to OS2, respectively.

For 1 < p < oo, LP(01) stands for the usual Lebesgue space of functions defined
on Jf) which are measurable, and p-th power integrable with respect to the surface

measure do. In other words, we have
(5.1.1) LP(0R) := {f : 00 — C measurable : || f ||r@a0):= [/ |f|Pda} s oo}
Gl9)

Next, define the first-order Sobolev space

(5.1.2) LR(09Q) :={f € LP(09Q) : Vignf € LP(00)},
where
(5.1.3) Vinf =Vf—0,flvr=Vf— (v -V v
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is the tangential gradient of f on 0{2. When m = 3, we also have
(5.1.4) Vianf = —v x (v xX V).

The norm in L7 (99) is defined by

(5.1.5) | £ llzeoy=Il f llzr@e) + | Vianf |lzeoa) -

Next, we discuss the surface divergence operator. First, for 1 < p < oo, we set
(5.1.6) LY (09Q) .= {f € LP(9%, R?) : (v, f) = 0 a.e. on 9N}

and introduce the surface divergence operator

(5.1.7)  Div: Il (99) — I, (59), /

ngVf do = _/ <f7 vtang> do
o0

o0

for each f € LP (99Q), and g € L¥ (8Q) = (L”,(99))*, where %—k z% = 1.

tan

For 1 < p < oo, another space that is going to be important for us in the sequel
is
(5.1.8) LPPRQ) = {f e LF,.(89Q) : Divf € LP(dQ)},

tan

equipped with the norm
(5.0.9) 7 Wl o=l £ levonzs) + | DV oo
For A,,-valued functions, we define

(5.1.10) LP(0Q, A,,) = {f(x) =3°% fi@er: fre Lp(asz)}.



Going further, let us restrict our attention to the physicall most relevant case, i.e.

m = 3, and we introduce a new operator, dg, by the requirement that

(5.1.11) /89<d3f, @) do ::/ (f,0p)do.

0
for any test function ¢ € C'(R?, Ay).

Moreover, we call f € LP(9S2, Ay) normal if v A f =0 a.e. on 0N and set

(5.1.12) LP (09, Ay) :={f € LP(OQ, Ay) : v A f =0 a.e. on 00},
then define
(5.1.13) L2 (0Q, Ay) == {f € LP, (000, Ay) : dof € LP(0S2, Ay)},

equipped with the norm

(5.1.14) I f llzze oaan= I [ lr@e.ay + | dof [lLro0.40) -

Similarly, we define another operator, dy, by demanding that

(5.1.15) /89<5af, @) do ::/ (f,dp)do

o0
for any ¢ € C1(R3, Ay).

Call f € LP(09, Ay) tangential if vV f = 0 a.e. on 0J€2. Thus, after defining
the related space

(5.1.16) LY (09, Ay) :={f € LP(0Q, Ay) : vV [ =0 a.e. on 90},
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we can introduce
(5.1.17) LPO (00, Ay) := {f € L2, (09, Ay) : 6of € LP(9, Ay}

and equip it with the norm

(5.1.18) 1S e 00,00 = I f lzr@n.an + [ 0af [lLron.as) -

At this stage, We introduce some important properties of the operators dy and dg,

which are first proved in the reference [MiD].

Lemma 5.1.1. If F € L}, (09, Ay) is such that 65F € L},,(09Q, Ay), then

tan tan

(5.1.19) 85(0F) = 0.

Similarly, if G € L (09, Ay) is such that dyG € L}

nor nor

(082, Ay), then
(5.1.20) do(dpG) = 0.

Lemma 5.1.2. Let v be the outward unit normal to 0. Let F € C*(Q, Ay) be
such that F' and dF have non-tangential boundary traces at almost any point on

IQ and N(F),N(dF) € L'(0Q). Then dy(v A F‘ag) exists in L' and in fact

(5.1.21) dov NF| )= —v (dF)‘BQ.

Similarly, if F' and 0F have non-tangential boundary traces at almost any point on

9Q and N(F),N(6F) € L*(09Q). Then d5(v Vv F’aﬂ) exists in L' and

(5.1.22) So(vVE| )= —vv (6F)‘

0 o0
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5.2 Decomposition of L2 (99, As)

Our next result is a decomposition theorem for the space L (092, As).

nor

Theorem 5.2.1. For each 1 < p < 0o, we have

LPA (90, Ag) = vIP(0Q) & « L2 (9Q) @ LP(99).

nor tan

Proof.
Take h € L24 (09, A3) and write h = hg + hy + ha + h3, where h; is AJ-valued

for j = 0,1,2,3. By the definition of L2 (99, A3), we have that h; € LP(09, Aj3),
vAh =0, and dph € LP(0N2, A3). It is obvious that v Ah = 0 implies that vAh; = 0
for 5 =0,1,2,3.

By corollary 3.2.3, we know that hg = v A (vV ho) +vV (v Ahg). Since vV hy = 0
and v A hg = 0, then hy = 0.

Next, v Ah; = 0 implies *(v Ahy) = 0. Invoking the identity (v Ahy) = v X hq,
we obtain v X h; = 0. Therefore, h;y = fv, where f is a scalar-valued function.

Since hy € LP(05), A3), then f € LP(09Q).

For any function ¢ € C§°(09, A3), we can write

© = @0 + 1+ *py + P,

where g and ¢, are A’-valued functions, and ¢; and | are A'-valued functions.

Applying the operator ¢ to ¢, we then get

Sp = dip1 + x(dpy) — *(dipy).
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In particular, choose ¢ such that ¢y = ¢; = ¢, = 0, and ¢, is arbitrary. In this

scenario, the identity

/8 b do - /6 g dah) do

becomes

|t v = [ gt dah) do

o

Redenoting | by g, we are led to the conclusion that

| tdoy)s iz = [ (g.doh) do

o0

On the other hand,

/89<*(d9),1/)f do = /m(z/, curlg) f do = —/ (v xVf,g)do.

o0

Hence, ultimately we have —v x Vf = dyh € LP(052, A3). Consequently,
Vinf = —v X (v x Vf) € LP(09, A3).

This proves that f € LY(99Q) and, thus, h; € v LY (99).
Next, let us choose ¢ such that ¢y = 1 = ) = 0, and ¢, is arbitrary. In this

case, the left-hand side of the identity

/<5¢,h>d0:/ (p,dyh) do
a0 o0
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reduces to

| enyio - H(digy), ha) d
o0 Q

= / dQOO, *hQ
)

= / Vapo, xho) d
a0

Since v V (xhg) = *(v A hy) = 0, then *hy is tangential. Consequnetly,

o5}

{O

/ (Viy, xhy) do = / (Vian@y, *hs) do.
o0

oN

On the other hand, the right-hand side of the identity

/89<5g0, h)do = /m(cp, dgh) do

can be written as

k@wmmwzéy%@mwszwwwwa

o0

The bottom line is that

/<mm@maw=—/X%xWMMa\w&x?@@mx
o0 o0

Since ¢, is A%-valued, we can replace *(dyh) by Iy(x(dph)), in the equation above.

Then, the equation is now

/%vm%wmmU:—/<%Juﬂ%m»w.
o0 o0
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for any nice @, € C5°(95, As). By the definition of L2 (9, As), we may therefore

tan

conclude that

Div(xh) = Iy(x(dph)) € LP(3Q), hence * hy € LLP™(09).

tan

Finally, since hs is a A%-valued function, the condition v A hs = 0 is satisfied
automatically, and we can simply view h3 as an element in *LP(0€2). This finishes

the proof of the decomposition theorem. O
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Chapter 6

The Cauchy Integral and Related
Operators

6.1 Definitions and Basic Properties

For each k € C, let @, stand for the standard radial fundamental solution for the

Helmholtz operator A + k? in R™, that is

(6.1.1) Bula) = = (2) T L H, (klal)
o k = 42 27‘( ‘x’ B m2—2 3

where z € R™\{0} and H! denotes the Hankel function of the first kind and order

«. In particular, in R3,

ezk|x|

drla|

(6.1.2) O (x) =

where x € R3\{0}.
Let © be a Lipschitz domain of R3. The associated single-layer potential oper-
ator is defined by

(6.1.3) (Sk.f)(z) = /aQ Oy (z —y)fly)doy,, x¢& 09,
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and its boundary version is given by

(6.1.4) (Sef)(z) = / (e~ 0) ) do,

L[ o0
= —— y)ao,, T &€ .
AT Joq |z — y| !

We define the Cauchy operator Cy by

or, more explicitly,

(6.1.6) €)@ = | Dubile =) 1) do, 200

Its boundary version is given by

(6.1.7) (Crf)(x) = po. /aQ D@ (x — y) f(y) doy,, x € OS2

We also find it useful to work with the double-layer potential operator

(6.1.8) Kif(z) = p.v./mﬁyyék(x—y)f(y)day, x € 0N0.

and its formal transpose K[. Above, p.v. stands for ”principle value”, i.e. the
integral is consider over {y € JQ : |x —y| > €} and then we pass the limit as

e—07.
Remark 6.1.1. The following identities hold:

(6.1.9) Ki.f = —divS,(vf) and K, f =v - VS, f.
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Finally, the principle value magnetic dipole operator is given by

(6.1.10)  Myf(z) :==v(z) x (p.v. /89 curl {Px(x — y)f(y)} day> . x € 0.

At the end of this section, we introduce some important properties of the op-

erators dy and dy, which are first proved in the reference [MiD].

Lemma 6.1.2. Let Q) be a bounded Lipschitz domain in R™, and 1 < p < oo.

Then for any F € LP2 (09, A,,) we have

(6.1.11) ASLF = Sp(dyF).

Similarly, for any G € L (092, A,,) we have

tan
(6.1.12) 58kG = Si(65G).

Next we present a version of Lemma 6.1.2 which deals with the case when all

integral operators are considered on the boundary.

Corollary 6.1.3. Let €2 be a bounded Lipschitz domain in R™. For 1 < p < o0,

we have

(6.1.13) dSpF = Sp(daF) for F € L2 (09, A,),
and

(6.1.14) 05:G = Si(05G)  for G e LP (09, Ay,).
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6.2 Non-tangential Maximal Function Estimates

In this section we shall prove an important result to the effect that functions ex-
pressed in terms of the Cauchy operator when acting on suitable spaces satisfy
natural non-tangential maximal function estimates. Concretely we have the fol-

lowing theorem.

Theorem 6.2.1. For each k € C and 1 < p < oo, there exists C' = C(k,002,p) > 0

such that if u := Cpf in Q, for f € LP2 (09, Ay), then

nor

(6.2.15) [N (u)l[zron) + N (du)l[ o) + IN (W)l roe) < ClF g 00,40

Proof.

Based on (6.1.5), write
(6.2.16) u = dSkf + (SSkf + ]{?€4Skf.
From Theorem 2.3.1,

(6.2.17) IN(W)|r@0) < Cllfll g 00,40

Next, by Lemma 4.2.3 and Lemma 4.2.6, we have

(6.2.18) du = d*Spf + doSif + kdesSif
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Using dé = —dd— (A+k?)+k? and the fact that the Helmholtz operator annihilates

the single-layer Sk, we obtain that
(6.2.20) du = —0dSf + K>S, f — ke, dSf.

Recall that dSif = Sk(dyf) (see Lemma 6.1.2), we finally arrive at the represen-

tation
(6.2.21) du = —0Sk(ds f) + kQSkf — kesdSyf.

To this end, the Calderén-Zygmund theory 2.3.1 applies. Since, dyf € LP(0%), Ay)

given that f € LP:2 (99, Ay), we thus have,

(6.2.22) IN(du)||ro0) < Cllfl e 00,40

The case of N(du) is similar, even simpler. Concretely,

(6.2.23) du = 0Sk(da f) — kesdSi f,

and the same analysis applies. O

6.3 Jump Formulas

We next discuss the jump formulas for the exterior derivative operator and its
adjoint acting on S,. These formulas are of basic importance for our work in the

sequel.
53



Theorem 6.3.1. For any h € LP(09, Ay), and a.e. x € IR, we have

(6.3.24) dSkh‘aQi(x) = F1(v A h)(z) + dSeh(z),
where

(6.3.25) dSph(z) = p.u. /8 (V&) —y) AR(y) doy,
and

(6.3.26) 5Skh‘mi(x) = £1(w vV B)(2) + 6Skh(x),
where

(6.3.27) 5Sih(x) == —p.uv. /a (V) —y) v hly) doy,

These formulas are proved in [MiD] p.82.
Base on these, we can now prove the jump formulas for the Cauchy operator

Ci.
Theorem 6.3.2. For any h € LP(09, Ay), and a.e. x € IR, we have

(6.3.28) Cch s~ (F3v -+ Ci)h.

Proof.

By the definition of C;, we may write

ckh) _ dSkh‘ n 6Skh‘ ¥ kesSih
o0+ o0+ o0+ o0+
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By (6.3.24), we have that
— i
d&;hkgi-—:¥2(y/\hﬂx)%—d5khcr)
Also the equality (6.3.26) gives us
5&ﬁ’ = 1wV h)+6Sih.
00+

Since the single layer-operator Sy has less singularity, then

k e4Skh’ — keySih.
o0+

Therefore,
Ckh . = :F%(I//\h) +dSkh—|—:|:%(V\/h) +5Skh+ke45'kh
— :F%[V/\h—VVh]+Ckh
= :F%l/ - h + Cih.
This finishes the proof. O

6.4 Decay at Infinity

We next discuss the decay at infinity in the form of the following lemma.

Lemma 6.4.1. If f € L'(09, Ay), where Q is a bounded Lipschitz domain, and u

1s defined by

u(z) = / Dy @y (z —y) f(y) doy, x € Q_,
o0
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then u satisfies the following decay condition

(6.4.29) lim (|z| — iesx)u(x) = 0.

|z|—o0

Proof.

As mentioned in (6.1.2), ®4(x) is the fundament solution of A + £? in R3. That is,

1 ik|z
@k(l’) = —m €k| ‘

Computing the partial derivative 0P (z), we have

81(I>k(x) == 81 (—L e’k|m|)

47 |x|
1 1
= —— 9 =ikl
dr 1(]a:| ‘
1
_ _i 61((33%4-3324-272)_%) 6ik|x\ _{_i al(eik(x%—i-r%—i-x%)i)
4 2008 ||

Similarly,

and



Considering all these partial derivatives together, we obtain

Di®i(z —y) = DOz —y) +kes®p(z — y)
3

= Z((‘)j@k(x —y))ej + kes®p(x —y)

j=1
_ L [_Lyg gitte—l 4. K@ —y) eim—y}
|z =yl |z =yl

1 .
+key | ———— ¢itlevl
Ar|z — y|

_ 1 [_ r—y ik(zx—y) key } sikla—y]
lz—yP e —yl® |z -yl

Once D@y (z — y) has been calculated out, we have

(|| —desz)u(x)
_ /a Dii(z ~ y)f(y) do,

1 . T — ik|x—
- / L (le] — i) 2V el () do
9 —yl

o 4m |
1 ik(z —y) key } o
+/ x—zew{ + e*lT=vl £ (y)do
o a0 T e Y ey W)

Estimating the first integral above gives

1 — )
[ g el = iesa) = e (o
¢}

o 4T [z —y

1
<o [ el lrwdn,

Since y € 02 and |z| — oo then, as x is large enough, it is not hard to see that

1 c
lz =y~ |z*

o7




Therefore,

1 - ‘
/' L (] — iegr) 27U el f(y)do
) —yl

1
<c [ el

&—/!f )lda,

< e llmom— 0 as o] — oo.

]
In order to estimate the second integral, we introduce the function

ik z ke
G(2) = e — deal2]) = k‘ ; +’7’4

A direct computation of the partial derivatives of G (z) yields the following:

ke
G (z) = & (ZkW) + o <|7!4)
1
= 2k31 (| ’2) +k6481 (ﬂ)
z
1 1 1
= ik l(@lz) | |2 +Z&1| | :| + ]{76481 <m>

. €1 yAv4 21
= ¢k|l— — — k .
’LAQ mJ* 4(||J

Similarly,

. 2_222’ z9
%G (2) = mhaz m4+k4<||0

and

. €3 23z z3
05G (2) = ik | ZE | Lpe, (-2 ).
:G (7) ZLdQ m4+ “(|dJ
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Therefore,

Then we can rewrite

1 4 ik(x —vy) ke ikl
/an —E(|a:| — ie4T) [ |$(_ e + e _4y’ ikl ylf(y)da

= /8 L — (|| — ieax) G(x —y) e f(y)do

o) 47

= [ —lel = iea) (GG — ) — Gl )
oN

b x| —ieqx z) eklz=yl o

4 /a (2| ) G(x) f(y)d

Q 47T

Let us point out that since z - z = —|z|?, we have

(|| —iesr) G(x)
= |x|(|x] ieqx)(x — ieq|x])
= ’ ‘ [\x!x —ieg|z|? — ieqr - — |z|2]

— ’ ‘ [|x|x—ze4|x|2+ze4|x| — |a:|x}

= 0.

Hence, it follows that

A‘i(!xl—iew) [ik(x_y)+ N O

|z — y|? [z — |
[ el — ean) (6o )~ Gla)] Mo (o
29



With the above equality in hands, we estimate

1 , k(z —y ke ikla—
[zt [ sy e

1 . ik|lz—y
< /aQ—E<|x|—ze4x> Gz —y) - Ga)] ¥V f(y)do,

< c/ ’|x! — ey
o0

At this stage, apply the Mean Value Theorem,

Gz —y) = G2)]| [e*] |f(y)] do.

Gz —y) = G(z) = (VG)(z = &y) - (—y), for some & € (0, 1),

and further estimate

1 , ik(rz —vy ke iklo—
/89 g1l ) [ \a:(— y\2> T —43/!} T Wy,

=¢ /aﬂ\'QJ'—@'GM\ VG — &) lyl ||| £(y)| do,

1
< / ol =g 1) doy

||

c —— do
< / e,

|z

S Cm H f HLl(aQ)—> O as |ZZ'| — OQ.

This concludes the proof. O

6.5 Invertibility of the Cauchy-type Operator \/+
v Ch

We are now ready to show the main result of this chapter.
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Theorem 6.5.1. Let Q C R3 be an arbitrary Lipschitz domain with compact bound-
ary. Then for every X € R with |A| > %, there exists a sequence of real numbers
{k;}; such that for each 1 < p <2+ ¢ and k € C\{k;};, the operator \I + v A Cj,

is an isomorphism on LP2 (082, Ay)

Proof.

For any f € LP2 (09, Ay), it can be rewritten as f = F + e4ﬁ, where both F' and

nor

F are in LP2 (9, A;). Recall that

nor

Chl' = DpSpF
= dSkF+5SkF+ ]i'648kF

(6.5.30) = Su(doF) + 68, F + k eaSpF.

Restrict Cp to the boundary, apply the jump formulas for C, and 08y, and then

apply VA to both sides of the equality (6.5.30), we arrive at
(6.5.31) vA(—3v-F4+CiF) =vASp(doF) +v A (50 V F+6S,F) + ke A Sy F.

Moreover, considering that F' is in LP4 (92, As3), we can further simplify the equal-

nor

ity (6.5.31) and write
(6.5.32) (l/ A Ck)F =VA Sk(daF) + v ANISLF + ke N\ SiF.
By Theorem 5.2.1, we can express F' as

(6.5.33) F =vfy+xfi +*f,,
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where fo is in L2(9Q), fy is in L2 (09Q), and f, is in LP(9Q). So

tan
(6.5.34) VAGSKE = v ASSK(vfo) + v ASSk(xf1) + v A 6Sk(xf,).

For the first term v A 0Sk(v fo) in the equality (6.5.34), we have

vAOSk(vfy) = —V/\p.v./(m((v(bk)('—y)aV(y»fO(y)de

(6.5.35) = vKyfo.
For the second term, v A §Si(xf1), we write
vAOISL(xf1) = v A (xdSpfi)
= —*(vVdSpf)
- —x (,, V po. / d®y(- —y) A f1(y) day>
o0
= < (vvepe [ Va < n) )
— vApw. /8 curl(@y(- = ) fi(y)) doy
= (v [ @),
(6.5.36) = *Mf1.
Finally, we can rewrite the third term, v A 0S(xf,), as
VASSE(kf)) = —* (1V dSify)
= — (1, VSifo)
= —%0,5.f

(6.5.37) = —xK'f,.



In summary, from the equalities (6.5.35), (6.5.36) and (6.5.37), the equality (6.5.32)

becomes

(vACLF = VkaO"‘*Mkfl_*Klif(;

+v A Sk(doF) + kegqv A SiF.

Let I denote the identity operator. For every A € R, we may write

(AT + v A Cy)F
— VA + Kyl fo + A+ M) fi + +[M — KL,

(6.5.38) +v A Sk(doF) + k ey A SpF,

where F' € LP2 (99, A3). Similarly, for every A € R, we have

nor

(—)\] +v N C_k)F

= V[=A + K] fo+#[=A + M_g] fy + «[=A — KL, fg

(6.5.39) + v AS_(doF) — ke NS_pF.

Let us compute (Al + v A Ck)f. We start with writing

M +vACy)f
= (M +vAC)(F + esF)

= A+ vAC)F + (M + v ACy)(esF).
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Since (v A Cg) ey = —eyq (v A C_y), we may continue writing

()\] + VA Ck)f

= M A4vAC)F —ey(=M +vANC_)F.
By the equalities (6.5.38) and (6.5.39), we may further express (Al + v A Cy)f as

()\I + VA Ck)f
= VM + Kyl fo + #[M + M) fi + «[M — KL]f,

+v A Sk(doF) + ke A S F

!

—64{y[—A1 + K_i)fo + *[=M + M_p] fi + x[-A — K* ] f,

(6.5.40) v A S_(doF) — ke A S_kF}.

Our next goal is to prove that AI + v A C}, is a Fredholm operator with index

zero on P2 (99, Ay).

nor

In order to continue with the proof, let us define a new operator 77, in the

following fashion:

(6.5.41) T, : LPe

nor

(092, Ag) — LP2 (09, As) @ LP2

nor nor

(092, A3)
is such that for any f = F + e4ﬁ,
(6.5.42) Ty(f) == (F, F).

It is trivial that 7} in (6.5.42) is an isomorphism.
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We shall also need an operator T5

Ty : LPY

nor

(8@, Ag) ) Lp’d

nor

(00, A3) — LX(0Q) @ LLD™(09) @ LP(9Q)

tan

@ L2(9Q) @ LD (0Q) @ LP(09Q)

tan

defined such that for any (F, F) in L2% (99, As) & Lrd

nor nor

(092, As), where

(6.5.43) F=vfo+xfi+*fy

and

(6.5.44) F=vfo+xfi++f;,

we have

(6.5.45) To(F, F) := (fo, 1. for Jou F1. 1o).

Once again, the operator T5 is an isomorphism.

Finally, let us consider an operator @ written as a 6 x 6 matrix

(M4 K, 0 0 0 0 0
0  M+M, 0 0 0 0
5 0 0  AM-K! 0 0 0
0 0 0  —A+K_y 0 0
0 0 0 0 A+ My, 0
0 0 0 0 0 A — K, |

Our next goal is to show that, when considered between appropriate spaces, the

operator () is Fredholm with index zero. As a preamble, we record some results in

the paper [MMP].
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Lemma 6.5.2. Let X,Y,Z be Banach spaces and consider the commutative dia-

gram

where all arrows are linear and bounded and the horizontal sequences are ezxact.

Then the following hold:
a. If two vertical arrows are isomorphsims, then so is the third one.

b. If two vertical arrows are Fredholm operators, then so is the third. Moreover,
the index of the middle vertical arrow is the sum of the indices of the other

two vertical arrows.

Lemma 6.5.3. Let Xy, Yy, X1,Y) be Banach spaces and assume that the following

diagram is commutative:

ho

Xo— Y%

Uol l o

ha

X —Y
Then if three of the four arrows are Fredholm operators, all arrows are Fredholm
operators. Furthermore, the difference between the indices of the horizontal arrows

15 equal to the difference between the indices of the vertical arrows. In other words,

(6.5.46) ho — h1 = vg — vy,
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where hg and hy are the indices of the first and the second horizontal arrows re-
spectively, and vy and vy are the indices of the first and the second vertical arrows

correspondingly.

We are now in a position to state our claim about the operator () in a more

concrete fashion.

Lemma 6.5.4. The operator @ is Fredholm with index zero when acting on

LR (09) @ LEP™ (0Q) @ LP(99)

(6.5.47) @ L2 (9Q) @ LD (09) @ LP(09).

Proof.

We shall proceed in a series of steps, starting with:

Step 1. For each k € C, and A € R with || > %, M + Kl is an isomorphism of
LP(OQY) for any 1 <p <2+e.

Recall that this result was proved in the reference [EM].

Step 2. For each k € C, and A € R with |\| > %, M + K}, is a Fredholm operator
with index zero on LP(0SY) whenever 1 <p < 2+ €.

Indeed, we write

M+ K), = M+ K{+ (K, — K{)

= W +KD[I =M+ K)o (=KL + K.
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The key observation is that — K}, + K|, is compact on LP(9). Thus,
I— M+ K)o (—KL+ KY)

is Fredholm with index zero. By Step 1, Al + K/ is an isomorphism and, therefore,

A + K} is Fredholm with index zero on LF(952). (See the disussion in section 2.2).

Step 3. For each k € C, and A € R with || > %, M + Ky is an isomorphism of
LY(09) whenever 1 < p < 2+e.

Recall that this step was proved in the reference [EM].

Step 4. For each k € C, and A € R with |\| > %, M + Ky, is a Fredholm operator
with index zero on LY(09) whenever 1 <p <2 +e.

To see this, we write
M+ K, = M+ Ko+ (K, — Ky)
= (AT + Ko)[I — (M + Ko) ™" o (—Kj + Ky)).
Once again, one can prove that — K+ Ky is compact on L] (99) for each 1 < p < 0.

Consequently,
I — (M + Ky) o (=K + Ko)
is Fredholm with index zero on L(99). By Step 3, Al + Kj is an isomorphism

and, hence, A\I + K}, is Fredholm with index zero on L} (09).

Step 5. For each k € C, and A € R with |\| > %, M + My is Fredholm with index

(092) whenever 1 < p < 2+e.
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The object of this step is to recall some results from [MMP] and [Mi2]. Specif-

ically, as proved in the equation (5.12) of [MMP], we have

(v x V)Ky = My(v x V),

and v x V is a Fredholm operator with index zero from L?(9Q) to LV

(992) by
Theorem 5.1-(v) in [MMP]. As a consequence, we have the following commutative

diagram:

M + K,
20Q) ———  L2(59)

vxV vxV
M+ My
i (09) ——— L} (09)

where the two vertical arrows are Fredholm with index zero. Since, by Step 3,
the operator Al + K is an isomorphism, it follows from Lemma 6.5.3 that Al + M,

is Fredholm with index zero on L?° (9Q) for A € R with [\| > s,and 1 <p<2+e.

Step 6. For each k € C, and A € R with |\| > 1, A\l + My is a Fredholm operator

with index zero on LED™(9Q) /LE°

tan tan

(0S2) whenever 1 <p < 2+e¢.
From Theorem 5.1-(viii) of [MMP], it follows that Div is a Fredholm operator
from the quotient space L2 (9Q)/L2° (9Q) to LP(9Q). Making k = 0 in Lemma

tan

4.4 of [MMP] gives the following commutative diagram:
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, M + M |
LR @Q)  LP0 (9Q)  ————  LBPM(00) /120 (09)

tan tan tan tan

Div Div
A — Ké
LP(0Q) - LP(00)

Since the two vertical arrows are Fredholm, and since the operator A\I — K} is Fred-
holm with index zero, it follows from Lemma 6.5.3 that the operator \I + M, is

Fredholm with index zero when acting from the quotient space L:2™(99) /L2° (992)

tan tan

into itself for A\ € R with [A\| > 1, and 1 <p <2+e.

Step 7. For each k € C, and X € R with |A\| > %, M + My is a Fredholm operator

with index zero on LED™(9Q) whenever 1 < p < 2+4¢ .

tan

Denote the natural inclusion operator from L2° (9Q) into L2:27(99Q) by

tan tan

(6.5.48) Wf)=f forany fe LV (0Q).
and denote the projection operator 7 acting on Lf&giv (0Q2) into the quotient space
L (09 L (09) by

(6.5.49)  m(f) := the class of f, modulo LZ2(9Q), where f € LEP™(5Q).

tan tan

Going further, define the spaces X, Y and Z by

(6.5.50) X := LP

tan

(0Q), Y :=LkP"OQ), and Z:= LLP"(0Q)/L (99).

tan tan

and consider the following commutative diagram:
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where, in each exact sequence, the second horizontal arrow is the inclusion operator
¢ and the third horizontal arrow is the projection operator m. We can easily check
that the two horizontal sequence in the commutative diagram are exact. Also by
Step 5 and Step 6, the first and the third vertical arrows in the above diagram
are both Fredholm operators with index zero. Consequently, by Lemma 6.5.2, the
second vertical arrow is also Fredholm with index zero, which proves that \I + M, is

tan

Fredholm with index zero on L2P™(9Q) for A € R with |A| > f,and 1 <p<2+e.

Step 8. For each k € C and X € R with |\| > 1, A\l + M, is a Fredholm operator

with index zero on LE:E™(99Q), whenever 1 < p < 2 +¢.

tan

To see this, we rewrite the operator AI + M), in the form
M + My, = M + My + (M, — My).

Due to the weak singularity in the kernel, it is not difficult to prove that the

difference M), — M, is a compact operator on L ’Dw(aﬁ). By invoking Step 7, this

tan

further implies that AI + M is Fredholm with index zero on L2™(9Q). Then

tan

M + M; is a Fredholm operator with index zero on LE2™(99) for A € R with

tan
Al>1 andl<p<2+e.
Step 9. For each k € C and A € R with |\| > %, the operator é, which is defined

right before Lemma 6.5.2, is Fredholm with index zero when acting on the space

defined in (6.5.47), whenever 1 <p <2+¢ .
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The proof of this step follows readily from Step 1 to Step 8.
With the Fredholmness of @ in hands, we define a new operator () as the

composition

(6.5.51) Q=TT ' 0oQoTyoT,

where T and T, have been introduced in (6.5.42) and (6.5.45). Since the operators
Ty and T, are isomorphisms and @ is Fredholm with index zero, then by Theo-

rem 2.2.7, Q is a Fredholm operator with index zero on LP:2 (09, A,), whenever

keC, AeRwith [A\[ >3, and1<p<2+e.

In order to continue the proof, we consider two projection operators, namely

(6.5.52) m 2 LPd

nor

(09, Ay) — LP% (09, As)

nor

and

(6.5.53) Ty 1 LP2 (09, Ay) — LP2 (09, As)
define by

(6.5.54) m(f) == F and my(f) := F,

where f = F +e,F with F, F are As-valued. Moreover, for any F in Lrd (99, A3),
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introduce
Ry(F) :=v A Sk(daF);
Ry(F) == kv A Sp(F);
(6.5.55)
Rg(F) = —UA S,k(daF>;
Ry(F) = —kv AN S_i(F).

Remark 6.5.5. The operators R;, for j = 1,2,3,4, are compact from the space

LPA (99, A3) into itself, for 1 < p < oo.

nor

In order to prove this remark, we single out a technical result in the following

lemma.

Lemma 6.5.6. Suppose X is a Banach space, T is a linear bounded operator from

X into LR (09, A3). Then

nor

T:X — LP2(09, As) is compact

nor

if and only if

T:X — LP(09, A3) is compact,

and

doT : X — LP(09, A3) is compact.

Proof.

Let {x;},; be a bounded sequence in X. Since T': X — LP(052, A3) is compact,
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then there exists a convergent subsequence {T'(z;;)}; in LP(052, A3). Let us re-
denote this subsequence by {T'(x;)};. Since the operator dyT : X — LP(052, A3) is
compact, there exists a convergent subsequence {dyT'(z;,)}; in LP(09, As).

By its construction, the sequence {w;,}; is bounded in X, and both {T'(z;;)};
and {daT'(v;)}; are convergent in LP(9S2, As3). This proves that the operator T is

compact from X into LP:4 (99, A3), we concluding the proof of the lemma. O

nor

We are now ready to prove Remark 6.5.5.
Proof.
Since the opeator v A Sy is compact from LP(052, A3) into itself and since the

operator dy is bounded from LP4 (99, A3) into LP(9Q, A3), the operator R, is

nor

compact from LP:2 (99, A3) into LP(952, A3). (See Theorem 2.2.1).

nor

Moreover, based on Lemma 5.1.1, Lemma 5.1.2 and Corollary 6.1.3, we may

write
do(RaF) = do(v A Si(doF))
— u A d(Sk(dyF))
= vASLd}F)
= 0.

Hence, obviously, dyR; is a compact operator from LP2 (92, A3) into LP(09, A3).

nor

Then by Lemma 6.5.6, we may conclude that R; is compact from LP2 (99, A3) into

nor

itself.
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We next consider the operator Ry. First, by the compactness of Sy on LP(0%, A3),
the definition of Ry and Theorem 2.2.1, we conclude that Rs is a compact operator

from L24 (99, A3) into LP(9€, A3). On the other hand, we have

nor

da(RgF) = da(/{il//\Sk(F))
= —kvAd(Sp(F))

= kvA Sk<daF),

thanks to Lemma 5.1.2 and Corollary 6.1.3. Since vASy, is compact from LP (052, Aj3)
into itself and since the operator dp is bounded from LP2 (99, A3) into LP(092, As),

nor

we infer that dp Ry is a compact operator from LP:4 (99, A3) into LP(95), A3). Once
again, by applying Lemma 6.5.6, we may conclude that R, is a compact operator
from LP:2 (09, A3) into itself.

Similarly, we can also prove that the other two operators R3 and R, are compact,

and this concludes the proof of the remark. O

Recall the operators R;, for j = 1,2, 3,4, in (6.5.55). We are now in a position

to define the operator

(6556) R = R1O7T1+64R207T1—|—64R307T2+R4O7T2,

where the projection operators m and my have been introduced in (6.5.54). Since
m and 7y are bounded and since R;, for j = 1,2, 3,4, are compact, it follows that

R is a compact operator itself.
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From that definition of the operator @ in (6.5.51), the definition of operator R

in (6.5.56) and the equality (6.5.40), one can easily check that
)\I—i-V/\Ck:Q—FR.

Since Q is a Fredholm operator with index zero on LP4 (99, A,) and R is compact,
then by Theorem 2.2.4, the operator \I 4+ v A C}, is Fredholm with index zero on
Lrd (90, Ay) for k€ C, A € Rwith [A| > 1 and 1 <p<2+e.

nor

Our next goal is to prove the following important result.

Theorem 6.5.7. For each k € C\R, and X\ € R with [\| > 3, A\[ + v A Cj, is an

isomorphism of L>2 (09, Ay).

nor

Proof.

Let f € L22 (99, Ay) be such that

(6.5.57) Af +vACuf =0.

Our first objective is to eventually show that f = 0.

Fix A > % and set u* := C,f in 4, so that, in particular,

ui 89::F%uf—i—0kf:j:%y\/f+0kf

Therefore,

(6.5.58) vVut —vVu =0 ondQ,
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and

vAur —pv AT = S(p+1)f+ (1 —p)vACyf
B 1T+ p
(6.5.59) = (=) |5y SV AG |

Choose 1 € (0,1) such that %% = )\, where A > %, then p = ;:\\—ﬁ For this

choice, it follows from (6.5.57) that
(6.5.60) vAuT —puvAu- = 0 on d0.

The key observation now is that u* solve the homogeneous problem

( ]D)kui =0 in Q:I:;

V\/u+‘ —I/Vu“ =0,

o0 o0N

(6.5.61)
V/\u+‘ —,U,V/\U_‘ =0,

o0 onN

N(u), N(duF), N(5uF) € L2(09).

\

Our long-term goal is to show that

(6.5.62) ut =0 in Q..

For now, we recall that D, = d + § + k ey, and note that Dyu® = 0 implies that
(6.5.63) du® +ou* +kequ™ =0 in Q..

Applying the opearator s to both sides of the equality (6.5.58) gives

(6.5.64) vVéut =—-vVdou~ on .
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Similarly, by applying the operator to both sides of the equality (6.5.60), we get

(6.5.65) vAdut = —v Adu~ on 99.

Recall that v stands for the outward unit normal to the boundary of {2 = €2, and

define

vy :=v and v_:=—u.

The following integration by parts formulas (cf. [MiD]) are going to be useful for

us.

Lemma 6.5.8. Let Q be a bounded Lipschitz domain in R™, 0 < [ < m, and

u and w € CYHQ, AY), which behave well near . Then the following formulas

hold:

(6.5.66) / (du,w) dx :/ u, ow) dx+/ vy Au,w) do;
o Q4 o9

(6.5.67) / (du,w) dz :/ u, ow) dx—l—/ v_ ANu,w) do;
o o o0

(6.5.68) / (Ou,w) dx :/ u, dw) dz —/ vy Vu,w) do;
(o Qy Ge)

(6.5.69) / uw) do - / ) do = /8 V) do

Returning to the mainstream discussion, let us now calculate fQ+ |du*|? dz and

fQ+ |6u™t|? dz. First, by definition of the inner product, we have

/ |du™ | de = / (du™, (du™)°) du.
Q, o
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Since du™ = —du™ — kequ™, we have

/ |du |?dr = / (—=out — kequ™, (du™)®) dx
Q. o

_ /Q o () /Q ea®, (@) d

An integration by parts, (cf. Lemma 6.5.8), gives

oN

/Q +(5u+’(du+)6>daz — /Q +(u+7d(du+)c>dx_ / o vt (dut)) do

Notice that d? = 0, we can easily justify

/Q+<5u+,(du+)c>dx _ —/89<y+vU+,(du+)c>.

Then

/ \duﬂQdaj:/ (V+\/u+,(du+)c)da—/ (kequ™, (du®)®) dx.
o 00

Q4

Using the property (a A u,v) = (u,a V v), we may then write

/ |du™ |* dz

Q4

_ / kv, A (dut)) do — / (kequ®, (du®)7) do
15)9)

(kequ™, (du™)®) dx
+

(kequ™, (du®)®) dx

+

(kequ™, (du™)®) dz.

+

= / (u™ vy A (du™)®) do —
o)

= u/m(l/+ Vut, (du™)) do —

S— 55— 5—7F

(6570) = u/@ﬂm Vs, (du” ) do —
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This completes our treatment of f9+ |du™|? dx and we now turn our attention to

calculating [, |ou™|®dz. To begin with, the equality (6.5.63) gives

/ 6uT|?de = / (ou™, (bu™)) dz
oy Q.
= / (—du® — kequ™, (6u™)®) dx
Q4

_ /Q (o) / (kexu®, (Sut)°) da.

Q4

By repeatedly integrating by parts in the first term above, we obtain

(6.5.71) /Q+<du+,(5u+)c> dx:/

(u™, 6(6u™)¢) dx + / (vy Au™, (du™t)®) do.
Q4

o0

Since 6% = 0, the first term above is then zero. Consequently, we can wrtie

/ |6u™|? dw
Q4

- /aQ<’/+ Aut, (out) ) do — | (kegu™, (5ut)) do

/

— _/aQ<u+,y+v(5u+)c)da—/Q (kequ™, (6u™)°) da

— _/m<u+,y+v(éu—)c)da—/Q (kequ®, (6u™)°) da
/Q (k equ®, (6u™)e) da

— —/ (vy ANut, (u™)") do —
o0N

(6.5.72) = —u /89<V+ Au~, (du™)) do — / (kequ™, (6u™)®) d.

Q4

Similarly, we wish to compute [, |du~|*dz and p [, [du”|*dz. First we deal

with [, |du™|*dz, for which following a familiar pattern, based on Lemma 6.5.8,
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we write

/ |du™|*dz = / (du™, (du™)¢) dx

_ / (—0u™ — kequ™, (du™)%) dx

- / {u” (du)) do / (ke (du”)) do.

Once again, based on Lemma 6.5.8, we may further write

/ du[Pde = —V <u,d(du)c)d:c—/m<l/\/u,(du)c>da

_ / e equ™, (du~)°) da

- /a -V, (duT))do / (kequ™, (du™)%) dx

= — /<99<V+ Vau, (du™)¢) do — / (kequ™, (du™)°) dx.

We multiply both sides of the above equality by v and obtain

,u/ |du™ | dx
0

(6573) = —/L/m(y+\/u,(du)c) dU—,u/ Uk exu™, (du™)) da.

There remains to handle [, [6u~|*dz. Much as before, we write

/ |6u™|* dx

/ (ou™, (0u™)%) dx

— / (—du~ — kequ™, (6u™)°) dz

_ / ™ (G do / ren (6u)) da
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An integration by parts, (cf. Lemma 6.5.8), gives

/ u-2de = —V <u,5(5u)c)dx+/m(l/_/\u,(6u)c)da

- / (k equ™, (5u™)°) dx

=~ [ nw @y o = [ e oy da

_ /8 e A (b)) do - / (e equ™, (5u~)°) dz.

Consequently, we have

,u/ |6u~|? dx
o

(6.5.74) = M/89<V+ Au~, (0u”)%) do — u/ (kequ™, (6u™)) du.

Summing up the formulas (6.5.70), (6.5.72), (6.5.73) and (6.5.74), we finally obtain

/ (|du™* + [6ut]?) dz + u/ (Jdu=* + |6u™|?) da
Q4

= — / (kequ™, (du® + 6u™)®) dx — ,u/ (kequ™, (du™ + ou™)) dx
Q4

= —/ <ke4u+,—kce4(u+)c>dx—u/ (kequ™, —keq(u™)®) dx
Q4

= / k*|utPdz + u/ |k[?|u™|? da.
(o o

In summary, so far we have proved that

/ (Jdu™* + |6ut]?) dz + u/ (|du~|* + |6u”|?) da
Q, 0

(6.5.75) = / |k\2]u+|2d:r; + M/ ]k,Q‘u*‘Zda:.
Qp Q_
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On the other hand, Lemma 6.5.8 yields

/Q+ dut P de = /Q+(du+, (du™)°) da
_ /Q 5 o+ / (e Aut, (dut)°) do,

o0

and also

/Q+ ut2de = /Q+<5u+, (Gu)) da
_ /Q " (s / (v, Vb, (Gut)e) do.

o0N

We then observe an identity in {2, to the effect that

/ |du+|2dx—|—/ |6u+|2dx—/ E?|u™|? dx
= / (ut, (8d + ds — k*)(u™)°) dz + / (vy Aut, (du™)) do
o o0

- /89<V+ Vout, (dut)e) do.

Going further, since dd + dé — k* = —A — k? and (—A — k?)(u™) = 0, this further

yeilds

/|du+|2da:+/ |5u+|2dx—/ E?|u™|? dx

(6.5.76) = /8Q(V+ Aut, (du™)) do — /89<V+ Vout, (6ut)e) do.
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Since du™ = —du™ — kequ™, the first term in (6.5.76) turns to be

/a (v AuT (dut)) do

= — / (vy Aut, (dut)e) do — / (vy ANut) (kequ™)) do
o0N o0

= —/ (uy,vy V (6ut)®) do — / (uy,vy V (kequ™)) do
o0 o0

_ _M/ag(mr/\u,((Su)c) da—u/ (e A, (kequ™)°) do

o0

= #AQ(V_AU_,(éu_)C> da+,u/ (v- Nu™, (kequ™)) do.

o0

Similarly, the second term in (6.5.76) can be written as

/ (vy Vu©, (ut)®) do
)

_ —/m<u+\/u+,(du+)c>da—/ o v, (kequt)e) do

o0
= _/ (uy, vy A (du™)?) dU—/ (up, vy A (kequ™)) do
o0 o0
— [ v @y do - [ v (bew ) do
o0 o0

= ,u/m(V V™, (du”)¢) do + ,u/m<l/ Vu~, (kequ ) do.

Hence, all together, we have

/\duﬂde—l—/ ](5u+\2da:—/ Elu™)? do
Q, Q, Q,

_ u/m<l/_/\u_,(5u_)c) da—l—u/aQ(V_/\u_,(ke4u_)c> do

(6.5.77) — 1 /(99(1/ Vau~, (du™)¢) do — Iu/89<l/ Vu, (kequ )) do.
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A similar analysis can be carried out in 2_. More specifically, we have

/ \du‘]Qdm—l—/ \5u—|2da:—/ E*|u~|? dx
Q_

_ /m@ A, (dun ) da—/ Ve, (5u”)) do

o9
= —/m(l/_ Au~, (0u™)) da—/m(y_ ANu~, (kequ™)) do
(6.5.78) + /BQ<V_ Vu~, (du”)¢) do + /m(V_ Vu~, (kequ™)) do.

By multiplying both sides of (6.5.78) by u, we get

,u/ |du|2d:c—|—u/ |6u|2dx—u/ E|u”|? dx
_ Q_ _

= _M/89<V_/\u_7(6u_)c> dU—M/aQ@_/\u_,(k‘Qu_)C) do

(6.5.79) +p /m(V Vu~, (du”)¢) do + u/aﬂ(u Vu~, (kequ))do.

We now desire to combine (6.5.77) and (6.5.79). If we add (6.5.79) to (6.5.77),

after a number of cancellation, we obtain

/ (Jdu™* + |ou™]?) dz + u/ (|du=|* + |6u~|?) da
Qyp Q

(6.5.80) = / Elut|?dz + u/ k|u™|? dx.
Q4 Q-

All in all, comparing (6.5.75) and (6.5.80) gives

(K* — |k*) (/ ]u*[%lx—i—,u/ \u\zdx) =0.
o Q.

Therefore, for any k € C\R, we may conclude that u* =0 and v~ = 0, as desired.

In order to continue, we need a simply result.
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Lemma 6.5.9. Let v be the outward unit normal to the boundary of 2, then
v-v=-—1.

Proof.

If v be the unit normal, then

v=(V1,...,Vnm) :ZVjej,
J

where 7 ;% = 1. So we have

v-rv = E I/Z'eig V;e;
( J
= E I/Z'I/jeiej
,J
= E IJZ'I/jeiej—f— E Vil/jeifij—l— E Vil/jeiej.

i<j i>j i=j
Since e;e; = —eje;, the first term and the second term above will cancel each other.
Also, since e;e; = —1, then

VeV = — E viv; = —1.
i=j

This finishes the proof of the lemma. O

Recall that u* := Cf in Q, and then by the jump formulas for Cj, we have

u+ BQ:_%V'f+Ckfa
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and

u - aQZ%V'f—i—Okf.

In particular,

ut —u" =—v-f ond.

Multiplying both sides of the above equality by v and then applying Lemma 6.5.9,
we may conclude that f = 0. Therefore, A\ +v AC}, is one-to-one from L2 (982, Ay)
into itself for each A > § and each k € C\R.

Our next step is to prove a similar conclusion for A < —%. More concretely, fix

such a A and consider f € L24 (99, A,) such that
(/\] + v A\ Ck)f = 0.

Our goal is to show that f = 0.

We now choose p € (0,1) such that 2222 = X (i.e. p:= ZE) and much as

=

before, let u* := Cpf in Q4. Similarly to the equality (6.5.59), we have

,uu/\u+—l//\u_

= s+ D+ =1y ACrf
= (=1 |52+ vacy
= (u=1)(M+vACy)f

= 0.
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Also, recall the equality (6.5.58), which gives
(6.5.81) vVut —vVu =0 on 09,

Thus, for this choice of u we now make the important observation that u* solve
the following homogeneous problem

( ]D)kui =0 in Q:I:7

V\/u+‘ —I/Vu“ =0,
o9 80

(6.5.82)

,ul//\u+’ —z/Au“ =0,
o9 o9

N(u), N(duF), N(5uF) € L2(09).

\

Repeat the reasoning in the case A\ > % but change u to i, we arrvie at a similar

1
(k* — |k|?) (/ lut|? dz + ;/ |u_\2dx) = 0.
(o 0

As before, this implies f = 0. Therefore, \I +vAC}, is one-to-one from L24 (02, Ay)

nor

identity

into itself for each A < —3 and each k € C\R.

As a consequence of the fact that the operator A\I + v A C}, is one-to-one from
L2409, Ay) into itself for [A| > 3 and k € R\C, its kernel is the zero space. If we
now recall that A\I + v A C}, is a Fredholm operator with index zero, we arrive at
the conclusion that the operator AI + v A C is onto as well. All together, we may
conclude that A\I + v A Cy is an isomorphism of L22 (99, Ay) for k € C\R, A € R

nor

with [A\| >1and 1 <p<2+e¢. O
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With the above piece of information in hands, we are finally able to begin the
proof of Theorem 6.5.1 in the earnest.
Proof.

Fix ko € C\R and write

M+vANC, = M+vACy+vA(C,—C)

(6.5.83) = M4+vACy) Tk
where, for each k € C, we set
(6.5.84) Ty =1+ M +vACy)  ovA(C,— C).

Thus, Theorem 2.2.8 applies and gives that there exists a subset D of C, which
has no accumulation points, such that T}, is invertible on L%4 (99, A,) for any k in
C\D. From the equality (6.5.83), we know that A\I + v A C}, is invertible if and only
if Ty, is invertible. Therefore, the operator AI +v A Cy, is invertible on L2 (99, Ay)
for any & in C\ D. This implies that D is a subset of R. Since it has no accumulation
points, D is a countable set. Hence, we can arrange D in the form of a sequence,
say

D = {kj}jen,
where k; are real numbers.

In summary, so far, for any A real with [\ > %, there exists a real sequence
{k;}; such that the operator A\I +v A Cj is an isomorphism of L2 (99, A,) for any

nor
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Claim: For any A € R with |A| > 3, there exists a real sequence {k;}; such that

M + v A Cy is an isomorphism of L2 (0, Ay) for any p € (1,2 + €) and any

k € C\{k;};.
Proof.

Recall that the operator Al + v A Cy, is Fredholm with index zero on L2 (92, Ay)

nor

for k € C, X € R with [A] > § and 1 < p < 2+ . Note that in order to justify

the desired conclusion, we need Al + v A C}, is either one-to-one or onto. We will
consider two cases.
Case I. For 2 < p < 2+ ¢, the operator \I + v A C}, is one-to-one on the space

L2 (99, Ay) for every X € R with || > 3.

nor

First, by Holder’s inequality and our assumption on p, we have that

(6.5.85) P4 (09, Ay) C L2

nor nor

(09, Ay).

Suppose that f is in L24(9Q, A;) and that, for some X € R with [A] > 3,

nor

(/\]+V/\Ck)f = 0.

In particular, f can be viewed as a function in L2 (99, A4) due to (6.5.85). By

nor

the invertibility of A\I + v A C}, on L22 (09, A,) we have that f = 0. This proves

nor

that the operator Al + v A O} is one-to-one on LP:% (09, A,). Hence, from the

nor

fact that this operator is Fredholm with index zero on the space LP< (99, Ay) for

nor

2 < p < 2+ ¢, it then follows that the operator AI + v A C} is an isomorphism of

LA (99, Ay) for every 2 <p <2 +e.

nor
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Case I1. For 1 < p < 2, the operator A\l +v A Cy, is onto on the space LP:2 (99, Ay)

for every X € R with [\ > 3.

We first note that the operator A\I +vAC), has closed range on L2:2 (99, A,) since

nor

it is Fredholm on that space. Thus, it suffices to show that the range of A\ +v A C}

is dense. Since the space L24 (09, A4) is densely included in LP:4 (99, Ay), the

nor nor

range of the operator A\l +v A Cy on L2 (99, A4) is densely included in the range

nor

of A\I +v A Cy on the space LP2 (09, A4). However, since the operator Al +v A C,

nor

is an isomorphism of L24 (99, Ay), the range of M + v A Cy on L33 (0Q, Ay) is

nor nor

precisely the space L24 (09, A,) itself. All together, we may conclude that the

nor

range of A + v A Cy on LP2 (99, A,) is densely included in L4 (99, A4). This,

nor nor

together with the closedness of the range, implies that A\l + v A C} is onto on

LPd (99, Ay). Thanks to the fact that this operator is Fredholm with index zero,

nor

the operator A\I + v A Cy is an isomorphism of L4 (99, Ay).

nor

This concludes the proof of Theorem 6.5.1. O

We now discuss a theorem which deals with the invertibility of AI + v V C}.
The proof is very similar to the one for the operator A\I + v A C} and, hence, it is

left to the interested reader.

Theorem 6.5.10. Let Q C R® be an arbitrary Lipschitz domain with compact

boundary. Then for every A € R with |A\| > 5 there exists a sequence of real

numbers {k;}; such that for each 1 < p < 24 ¢ and k € C\{k;}; the operator
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M + vV Cy is an isomorphism of L2 (89, Ay).

In the last part of this section, we discuss the classical approach for the invert-
ibility of the operator AI + v A C}, which, nonetheless, yields a weaker result (more
precisely, the set of exceptional values for the wave number k is larger).

First, we state the following lemma.

Lemma 6.5.11. Let Q C R? be an arbitrary Lipschitz domain with compact bound-
ary. Suppose that k € C satisfies [Imk| > |Rek| and X € R is such that || > 3.

Then the operator A + v A Cy, is one-to-one on the space L>% (09, Ay).

nor

Proof.

Fix k and X as in the statement of the lemma and assume that f € L34 (0Q, A,),

nor

f # 0 is such that

(6.5.86) M +vANCpf =0.

Set u* := C,f in Q4 so that, in particular,

(6.5.87) u* o Fiv- [+ Cuf =0V [+ Cif.

Recall that

Dk:d+5+k€4.

Consequently, D,u® = 0, which further implies that

(6.5.88) du® +ou +kequt =0 in Q..
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Recall that v stands for the outward unit normal to the boundary of {2, := Q and

define
(6.5.89) vy:=v and v_:=-—v.

By Lemma 6.5.8, we have

/Q+ |dut P dx = /Q
(6.5.90) /Q

du ‘) dx

+

, (6du™)®) do + / (vy Au™, (du™)) do
0

+

and

/Q+ but?dr = /Q+<5u+, (6ut)°) da
(6.5.91) - /Q +<u+,(d(5u+)"’)da:— / (v V ut, (6u™)) do.

00
By adding (6.5.90), (6.5.91) and subtracting the term [, &®|u*[*dz, we obtain the

following equality in €2, :

/|du+|2dx—|—/ |5u+|2dx—/ E?|ut|? dx

_ /Q+ (', (5d + d6 — ) (™)) da + /mm At (dut)e) do
- /8 v (bu)) do

_ /Q+ () (—A — K)(uh)e) di + /m@+ At (dut)?) do
_ /8 v (Bu)) do

(6.5.92) = /89(u+ Aut, (du™)) do — /89<I/+ Vut, (6ut)e) do.
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In order to continue, let us now observe that

(6.5.93) ut 0 = —%V - f+CLf = %I/ V f+ Cif.

This implies
(6.5.94) veVut =v, VCLf.
Also, from the equality (6.5.93), we have

VJF/\qu(9Q = v AV V )+ ACKS
= 3f+vy ACif
= 3f=Af

(6.5.95) = 3-)N/

Now we are ready to compute the second term in the rightmost of (6.5.92).

/ (vy Vut, (u™)%) do
o0
— / (ut vy A (6u™)%) do
o0
= / (Vi A (v Vu©), vy A(6u™)) do
o0
- / (Vi Nve VO f), vy A (du™ + kequ™)) do
0N
N _/ (Crfsve A(du™ +kequ™)) do
o0

(6.5.96) = —/ (Crf, (ve Ndu™ + vy ANkegu™)®) do.
o9
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Based on Lemma 3.2.4, Lemma 5.1.2 and the equality (6.5.95), we may write

vi Ndut = —dy(vy Au')

(6.5.97) = —(3-N)dof
and
vi Nkequt™ = —kevy Aut
- ka0
(6.5.98) = — (3 -\ keaf.

Therefore, the equality (6.5.96) further implies that

/ (vy Vut, (ut))do
o9
= —/ (Crf, (vy NduT + v Akegu®)C) do
G

(6.5.99) = (3-2) /89<Ckf7 (dof + kesf))do.

Turning our attention to the first term in the rightmost of the equality (6.5.92),

/ (vy Au™, (du™)) do
o0
= / (um vy V (du™)) do
o0

(6.5.100) = —/ (vy V(vy Aut), (e Vout + vy Vkeut)e) do.
o0
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Using again the equality (6.5.95), we obtain the following:

(6.5.101) v Vg Aut) =, v(E =) =GNV,
(6.5.102) vy Vout = —0s(vy Vu't) = =85(vy V Crf),
(6.5.103) v Vkew" = ke, VCLf.

From the equalities (6.5.100)-(6.5.103), it readily follows that
/ (vy Au™, (du™)) do
o0
(6.5.104) = (3-21) / (vy V f, (0a(ve V Crf) + keqvy V Ci f)°) do.
o0
On account of (6.5.92), (6.5.99) and (6.5.104), we have that
/ |du™|? da +/ |6u't | dw — / E*|u™|? dx
(oN o Qs

= (3 /mm V f, (Bo(ve V O f) + keary V Cif)°) do

(6.5.105) — (=N /m(Ckf, (dof + kesf)?) do.

At this stage, we define

(6.5.106) A+ = / |du+|2d1’—|—/ |§u+|2dx—/ ]{?2|U+|2dm,
Qy Qy Q,

and

B, = / (v V f, (0a(vy V Crf) + keqvy V Cpf)) do
o)

(6.5.107) - /8 (CL(daf + Keaf)) do.
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Then the equality (6.5.105) can be expressed as
(6.5.108) A, = (= NB,.
Similarly, we can show that

(6.5.109) A_=(3+)NB_,
where

(65110) A_ = / |du_|2 d.f + / |5U_|2 dx _ / k2|u_|2 dl‘,
Q_

and

B_ = / (v V f, (0o(vy V Crf) + keqvy V Crpf)) do
onN

(6.5.111) —/m@f, (dof + K eaf)?) do.

It is obvious that B, = B_.
For any k € C with k = a+bi we have k? = (a® — b?) + 2abi. By the assumption
|Imk| > |Rek|, we observe |b| > |a|. We now introduce some notation in order to

simplify the expressions of A, and Bi. Let

oy ::/ \du+|2dx—l—/ |6u™|? da
Q, Q,

and

By ::/ |ut|? dz.
Q4
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Similarly, set

a_ ::/ |du|2dx+/ |6u™ | dx
Q

and
B = / |2 do.
Then _
(6.5.112) Ay = oy — kKB = [ay + B (b* — a®)] — 2abBs
and
(6.5.113) A =a_ — kB =[a_+B_(b* —a*)] — 2abp_.

Assuming By = B_ = 0, we have Ay = A_ = 0 by (6.5.108) and (6.5.109).
Therefore, ReA, = a; + 34 (b*> — a?) = 0. Since ay >0, B, > 0, and b* — a® > 0,
then ReA, = 0 implies that o, = ;. = 0. Furthermore, by the definition of /3,
we have ut = 0. Similarly, we have u~ = 0 as well. Consequently, f = 0, which
contradicts the assumption that f # 0. Thus, we may conclude that B, and B_
cannot be zero.

Now using the equalities (6.5.108) and (6.5.109), we can express \ as

VoA A
C2(A, + ALY

Taking absolute values on both sides, we have

A= LA A
C2(A AT
98



In order to analyze the range of ||, we involve the following lemma whose proof

is elementary and, hence, omitted.

Lemma 6.5.12. Suppose z1, 20 € C, and 21, 25 are in the same quadrant, then
|21 — 22| < |21 + 22].

By (6.5.112) and (6.5.113) we know that both A, and A_ are either in the first
quadrant or in the fourth quadrant, depending on the signs of the parameters a
and b.

Applying Lemma (6.5.12) with z; = Ay and 2, = A_, we obtain the inequality
|A. —A_| < |A; + A_|. Hence

1A, — A_ 1
N=5| Tl <3

2(|A  +A_ 2
which contradicts the assumption that || > % Therefore, f = 0, and hence the
operator Al + v A Cy is one-to-one on the space L2 (9, A;). This completes the

nor

proof of Lemma 6.5.11. O
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Chapter 7

Half-Dirichlet Problems for Dirac
Operators

7.1 Well-posedness Results

In this section, we consider the Half-Dirichlet Problem for Dirac Operators. First

we introduce the Hardy space
HY(Q) := {u € CY(Q, Ay) : Dyu = 01in Q, N(u), N(du), N(éu) € LP(9Q)}
and the exterior Hardy space

H(Q) = {ue CH Q) : Dyu = 0 in Q_, N(u), N(du), N(6u) € LP(DQ)

and lim (|z| —ieqx)u(x) = 0}.

|z|—o00

Consider the following boundary value problems:

(7.1.1) { u € Hi(Q)

Y, u\m — f € LM (09, Ay),
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L we H®),
(7.1.2) vnul =1 €m0, A,
. we Hy©)
(7.1.3) qu‘m _ e I (00, A)),
. we Hy(O),
(7.1.4) vnul =t e 100, 4.

Theorem 7.1.1. Let Q C R3 be a Lipschitz domain with compact boundary. Then
there exists a sequence of real numbers {k;}; such that for each 1 < p <2+ ¢ and

k € C\{k;};, the boundary value problems (7.1.1), (7.1.2), (7.1.3) and (7.1.4) are

all well-posed.

Proof.

It follows from Theorem 6.5.1, Theorem 6.5.10 and Lemma 6.4.1 that
(7.1.5) w:=C [(3I+vVCr) ' f] nQ

is the unique solution to the boundary value problem (7.1.1). Similarly, we also

have
(7.1.6) u=Cy [T +vACy ' f] nQ

is the unique solution to the boundary value problem (7.1.2).
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Considering the boundary value problems in €2, by a similar reasoning we

conclude that

(7.1.7) w:="Cr [(31+vVCi)™'f] inQ_
and
(7.1.8) u=Cp [ +vACy) " f] inQ

are the unique solutions to the boundary value problems (7.1.3) and (7.1.4), re-

spectively. O

For any f € L2 (99, Ay), by Theorem 7.1.1, there exists a unique u solving

the problem (7.1.1). In fact, we have pointed out that
u=Cy [(%[ +rvV Ck)_lf] .

Moreover, v A u o € Lrd (99, Ay). The similar conclusion holds for the other

boundary values problems (7.1.2), (7.1.3) and (7.1.4). By the spirit of Theo-

rem 7.1.1 and the above statement, we obtain the following corollary.

(092, Ay) and

tan

Corollary 7.1.2. Ifu € H)(Q), then vV u‘m e LP?
(7.1.9) w = Cy {(%fwvck)*l@m‘m)};

orvAu oo L2d (99, Ay) and

o 1 -1
(7.1.10) w:=Cy [(2I+V/\Ck) (l//\u‘m)]
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Similarly, if w € H,(Q_), then vV u‘m e LP° (89, Ay) and

tan
L 1 -1 .
(7.1.11) w:=Ch [( L+ 0V Cy) (V\/u‘aﬂ)]7

orvAu o € 2d (99, Ay) and

nor
1o}

(7.1.12) w:=0 [(—%I+yACk)*1(uAu‘m)].

7.2 Invertibility of Cauchy-type Operators v A C},
and v V C},

In this section we would like to consider the Invertibility of Cauchy-type operators
v A Cy and vV Cy. We begin with introducing the tangential-normal operator TN

which maps any f in LF? (992, A4) into L2 (99, A,) in the following sense:

(7.2.13) TN(f) =vAC, [T +v V) f],

and also define the normal-tangential operator NT which maps any ¢ in L2¢ (99, A,)

nor

into LF?° (89, Ay) by

(7.2.14) NT(g) :==vVCi [(3I+vACy)'g].
We intend to develop other expressions of TN and NT in the following lemma.

Lemma 7.2.1. Assume that TN is the tangential-normal operator defined in (7.2.13)
and NT is the normal-tangential operator defined in (7.2.14), then the following
hold:

(7.2.15) TN =(wACy)EI+vV )™,
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(7.2.16) NT =V Cp)3I +vACy) ™

Proof.

For any f € LP? (99, Ay), from (7.2.13), we have

TN(f)=vACy [AI+v V) f].

Denoting (31 4+ vV Cy)~'f by h, we have h € LP? (89, Ay) and hence vV h = 0.

tan

Next we compute

TN(f) = vA ckh‘m

= I//\(—%V'h—i-Ckh)

= vA[=3(wAh—=vVh)+Cihl

= —%I//\(V/\h)—{—y/\ckh

= vACLh

= WAC)GI+vV Cy) ' f.
Therefore,

TN =(wACy)EI+v V)™

The second equality in the lemma is proved in a similar way. O
Theorem 7.2.2. Let Q) be a bounded Lipschitz domain in R®. Then there exists a
sequence of real numbers {k;}; such that for each 1 < p <2+ ¢ and k € C\{k,};,

the operators TIN and NT are linear bounded operators and

(7.2.17) TNoNT =1 on LP%(09,A,),
105



(7.2.18) NToTN =1 on LP° (09, A),

where I stands for the identity operator.

In particular, the operators

TN : L2 (99, Ay) S LEL (09, Ay)

nor

and

NT : L2489, A)SLEL (992, Ay)

nor

are 1somorphisms.

Proof.

For each g € L4 (09, Ay),

nor

7.2.19 NT(g) = vV ‘ ,
( ) (9)=vVu|
where v is such that
v e HY(Q),
(7.2.20) { UM‘ -,
o9
Then, by (7.2.19),
(7.2.21) TN o NT(g) = TN(v Vv v‘ ).
o9
The definition of T'N yields
(7.2.22) TN(vVwv ):V/\u‘ :
o9 o9
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where

u e HY (),

(7.2.23) svaul —vve

o0 19}
Thus, u = v and therefore
(7.2.24) TN(I/\/'U‘ ) = 1//\"0’ —4.

o0 o0
In conclusion, we have

TNoNT =1.

Similarly, we can also prove that NT o T'N = I, which concludes the proof of the

theorem. O

Corollary 7.2.3. Let Q) be a bounded Lipschitz domain in R3. Then there exists a
sequence of real numbers {k;}; such that for each 1 < p <2+¢ and k € C\{k;};,

the operators

(7.2.25) v A Cy s IR0 (09, Ay) = LPL(09, Ay)
and
(7.2.26) vV Cp: LPL(99Q, Ay) = LP° (09, Ay)

are 1somorphisms.

Proof.

On account of the equality (7.2.15), we may write

vVAC,=TNo (31 +vVCy).
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Since the operators TN and %I + vV (Y} are both isomorphisms, v A (Y is also an
isomorphism. Similarly, by using the equality (7.2.16), one can prove that vV Cj

is an isomorphism as well. O
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Chapter 8

Formulation of the Main
Boundary Value Problem

8.1 Proof of Existence

The current section is going to deal with the existence of the transmission boundary

value problem. To begin with, let Q be a bounded Lipschitz domain in R3. Assume

that 0 < < 1, and 1 < p < co. Also, assume that the functions u™ and u~ are of

class C*. Consider the following transmission boundary value problem:

(8.1.1)

( Dyut =0in Qy,

uvw( —yvm‘mzf € IP0 (99, Ay),

tan

o0

vA u*‘ —pv A u*‘m =g € L2300, Ay),

o0

im oo (|#| — deqx)u™(x) = 0,

N(u*), N(du*) and N(du*) € LP(09Q).

\

Theorem 8.1.1. The transmission boundary value problem (8.1.1) is well-posed in

the sense that there exist € > 0 and a sequence of real numbers {k;}; which depend
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exclusively on the boundary OS2 and the transmission parameter u, and which have
the following significance. For every p € (1,2 +¢) and every k € C\ {k;};, the

transmission problem (8.1.1) has a solution if and only if

(8.1.2) ferr?

tan

(092, Ay) and g € LP:2 (09, Ay).

nor

Furthermore, the solution (u™,u™) is unique and satisfies the estimate

IV ()| e o) + 1N (du) | ooy + 1N (805) | e o0
<Clvvut —vVu|wea + CllvVéu" — vV ou||reon)

+Cllv Aut = pv Au" || o) + Cllv Adu™ — pv A du™ || roe)
whenever 1 < p < 2+ ¢, where C = C(0Q, k, p) > 0 is independent of u™.

Proof.
In order to solve the above transmission boundary value problem, we consider the
following two auxiliary problems.

First we consider the boundary value problem

([ Dju =0 in ©,

(8.1.3) vvul = f o€ Lin (09, Ay,

N(u), N(du) and N(ou) € LP(092, Ay).

\

By Theorem 6.3 of [Mi5], this problem is well-posed for 1 <p <2+ €.
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We next consider the reduced transmission boundary value problem

( Dot =0in Qg

vVt =0,

o

—vVuo
o0

89—97

(814) v A U+

— v ANv-
o0 "

limyg| oo (|2| — desz)v™ (2) = 0,

N(vE), N(dv*), N(6vF) € LP(09Q, Ay),

\

where g =g — v A u}aﬂ. In order to proceed, we let

(8.1.5)

ut =u+ot,
us=v.

One can observe that if the problem (8.1.4) can be solved, then the transmission

boundary value problem (8.1.1) is also solvable since
vVut —vVvu = vVut+vVvoel —vVo
= vVu
= f
and
vAut —pvAuT = vAut+vAvT —prvAvT
= vAu+yg
= q.

Now, in order to solve (8.1.4), we take v™ := Crh in Q , where h € LP:2 (09, Ay).

nor

It has been poved that Djv® = 0 for this choice of v*. Moreover, Lemma 6.4.1
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guarantees that v~ decays at infinity. Checking the second boundary condition of

(8.1.1), we have

g = I//\U+‘ —uvAv

o o0

= vA(—3v-h+Cih) —pv A (3v-h+ Cyph)

= VA[-3(wAh—vVh)+ Cyh]
—pv A (v AR —vVh)+ Cyh]
= WAWVR) +vACh+ipv AWV h) —pv ACyh
= % hpor + VA Crh+ 5 phyoy — v A Ch
— %h+%uh—|—y/\C’kh—w//\C’kh

= L(u+Dh+(1—pvACih.

Dividing both sides of the above equality by 1 — p, we obtain

(8.1.6)

Let A :=

(8.1.7)

11+ p
21 —p

nor

1
h+V/\Ckh: mg GLp’d<89,A4)

%}_—5 Then % < A < 00, and the equality (8.1.6) can be expressed as

1
(>\I+ vA Ck) h = mg S LfoT(ﬁQ,AQ

By Theorem 6.5.1, there exists an h such that the equality (8.1.7) holds. This

concludes the proof of the existence of the solution of the problem (8.1.1).
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8.2 Proof of Uniqueness

We next turn our attention to proving the uniqueness of the solution the problem

(8.1.1). We start with considering the following homogeneous problem

((ut € HY(Q) and u~ € HE(Q),
vl e,
(8.2.8) vvu 59 vvu 59
u/\u*‘ :uuAu_’ .
\ o o0
Our goal is to show that u™ =u~ = 0.

Let us denote v V u*’ by h, which also happens to coincide with vV u™
o9 o0

Then by Corollary 7.1.2, we have

+ 1 ~1
(8.2.9) ut =G {(21+yvc,€) h‘aﬂ}
and
- 1 1
(8.2.10) u =Gy [( U +uvCy)th m] .

Applying Theorem 6.3.2, namely the Jump formulas, to (8.2.9) and (8.2.10), the

=pvA u“ in (6.5.61) becomes

second boundary condition v A u+‘
o0

o0

v A [_%V . (%I +vVv Ck)_lh‘ag * Ck(%[ Ty Ck)Ah’a&J

(8.2.11) = uvA [%V (=3I +vV Ck)_lh‘m + Ch(=31+ vV Cy) 'R
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Simplifying the left-hand side of the equality (8.2.11), we get

vA [—%1/ AT +vVv )

+ Ck(%f +vV Ck)_lh
N

)

= —lun [1//\ (31 +vV ) 'h

—vV(EI+vVC)h

o0 o0

212 31 ! :
(8212)  +GGI+vv )| |

Since (31 4+ vV Cy)~'h = 0. Also,

tan

€ Ly (99, Ay), then vV (3T + vV Cy)~'h
o0 20
we note that v A [1/ ANET+vV Ck)_lh‘a } = 0. Therefore, the equality (8.2.12) is
0

reduced to

vA [—%y (3T +vVC)h

1 -1
50 + Ck(2l +rvV Ok) h‘69:|

(8213) = y/\Ck(%I—i—V\/C’k)_lh‘m.
Similarly, the right-hand side of the equality (8.2.11) reduces to

pv A |- (=31 +v v Cy)'h

+ Ck(—%f +vV Ck>71h
o0

)

(82.14) = pvACu(=iI+vV Ck)‘lh’m.

Consequently, from the equalities (8.2.13) and (8.2.14), the second boundary con-

dition in (6.5.61) becomes

8.2.15 vACy(AT +v Vv C) 7 h =puv ANCy(=I4+vVvCy)'h
2 20 2

o0

By Corollary 7.2.3, we may further write

(8.2.16) (I +vVC)'h

= /L(—%] +vV Ok)_lh
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Moving the right-hand side of (8.2.16) to left and factoring out two inverse opera-

tors, we get

BI+vVC) " [(-3I+vVCy) —pu(EI+v VO] (-3 +v V) 'h o 0.

After some simple algebraic computation, we can rewrite the above equation as

(8.2.17) (=) G +vVC) "N +vVC) (-2 +vVvCy)h

= ()’
o0

where \ := —%}f—” € (—o0, —%) By Theorem 6.5.10, the operators (%I—FV\/C’k)’l,

=

A + vV C, and (=3 + vV Cy)7! are all isomorphisms. Hence, h = 0 and
furthermore v =u~ = 0.
Finally, this finishes the proof of the uniqueness of the solution of the transmis-

sion boundary value problem (8.1.1). O
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Chapter 9

Applications to TBVP for
Maxwell’s Equations

In this chapter we are going to connect the transmission boundary value prob-
lem for Dirac operators with Maxwell’s equations. In section 1 we will decompose
the transmission boundary value problem for Dirac operators into the transmis-
sion boundary value problems for Maxwell’s equations and Helmholtz operator.
In section 2 we give a sufficent and necessary condition which guarantees that
the transmission boundary value problem for Dirac operators is equivalent to two

Maxwell’s systems.
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9.1 Another Point of View on TBVP for Dirac
Operators

We start with recalling the transmission boundary value problem (8.1.1):

]D)kui =01in Qi,
vV u*‘ — qu*‘ = [ €L (09, Ay,
o0 o0
(9.1.1) v nut| _,er]m =g € LEL(09, Ay),

o0

limyg oo (|2| — tesz)u™(z) = 0,

N(u*), N(du*) and N(6u*) € LP(0Q, Ay).

\

Assume

(9.1.2) ut = U* —ie U™,

where UF and U are As-valued functions. Moreover, decompose U* as the fol-
lowing;:

(9.1.3) Ut = U + «UE + UE + U *,

where U, Uyt are A%-valued functions and U, U;* are A'-valued functions. Sim-

ilarly, we have
(9.1.4) U* = ﬁ§+*ﬁ6i+ﬁf+*ﬁii,
where each function carrying the subscript j is A/-valued.

We next define the vector

(915) UCZ (Uoi,Uli,Uéi;Uiiaﬁ[)iaﬁliaﬁéiaﬁii)‘
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Then
(9.1.6)

where

(9.1.7) Py

0
0
0
—1
0
0
0

\Y

k

Dyut =0< PU =0

—div 0 0 & O 0 0
0 0 curl O ik 0 0

curl =V 0 0 0 0 ik
0 div.- 0 0 0 1k 0
0 0 0 0 —div 0 0

—ik 0 0 V 0 0 curl
0 0 —ik 0 cul -V 0
0 —ik 0 0 0 0 div

The equation P,U = 0 implies the following eight equations:

(9.1.8)
(9.1.9)
(9.1.10)
(9.1.11)

(9.1.12)

(9.1.13)
(9.1.14)
(9.1.15)

(9.1.16)

Equation (9.1.8) implies

(9.1.17)

—divUf* + ikU§ = 0;
VUE + curl U + zk(ﬁjli = 0;
curl U — V Ut + ikU,* = 0;

div Up* + ikUy* = 0;

—ikUF — divUj = 0;
—ikUF +V ﬁoi + curl [7# = 0;
—ikU* + curl ﬁli +V ﬁéi = 0;
—ikU, + divU,* = 0.

U = L divUE

1k
119



By equation (9.1.14), we have

1~ 1 ~,
(9.1.18) Ui = =V Uy + —curl UZ.

Substituting U;= in the equality (9.1.17) by (9.1.18), we have

1

9.1.19 Us = AU

( ) 0 (Zk)2 0
which further yields

(9.1.20) (A +E)UF =0 in Q..

In a very similar fashion, from equalities (9.1.9) and (9.1.13), we obtain that
(9.1.21) (A +E)UF =0in Q.

Equalities (9.1.10) and (9.1.16) imply

(9.1.22) (A +EHUF =0in Qs

On account of equalities (9.1.11) and (9.1.15), we have

(9.1.23) (A + kU =0 in Q.

Our next goal is to collect the information from the boundary conditions. Much

as before, we define

(9.1.24) fi=F +iesF,
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where F and F are Ajs-valued functions. We next decompose F' and F as follows:

(9.1.25) F = Fy+ «F, + Fy + *F,,
and
(9.1.26) F = Fy+ «Fy + F| + *F},

where each function carrying the subscript j is A/-valued.

Similarly, write the function g as

(9.1.27) g =G +iesG,
where

(9.1.28) G = Gy + *Gy + Gy + G,
and

(9.1.29) G = Gy + *Gy + Gy + *G,.

In order to make use of the first boundary condition, we need to find the components

of vV ut. We first focus on v V uT and note that

vvVut = vV (Ut —ieU7)
= VU —iv Ve (U")

= vV U +ie (v v UY).
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In the last step above, we use Lemma 3.2.4. Now rewrite vV U™ as

vVUT = vV (Ui +*Us" + U ++U7)

(9.1.30) = vVU +v VU +v VU +v VUt

The first term v V Uy, in (9.1.30), is zero since U, is A%valued. Moreover by

Remark 3.2.1 and Property 3.2.2-(4), we have

(9.1.31) vV Uyt = x(v AUSY) = x(vU;"),
and
(9.1.32) vVaUt = —x (WAUT) = =% (x(v x U;Y)) = —v x U, ™.

Using Remark 3.2.1 again, we obtain
(9.1.33) vV U = (v,U}).

By the equalities (9.1.31), (9.1.32) and (9.1.33), we observe that the equality

(9.1.30) becomes
(9.1.34) vV U =xwUy") + (v, UF) —v x U, T
Then it is easy to see that

vvut = vV Ut +ie(wvU")
= *(U") + (v, UF) —v x UT

(9.1.35) +iea[x(vUs") + (v, UF) — v x U],
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A similar argument shows that

vVu~ = *x(wUy )+ W UT) —vx U~

(9.1.36) tiegx Uy ) + (v, U;) —v x Uy

Comparing the difference between (9.1.35) and (9.1.36) with f componentwisely,
we conclude that the first boundary condition implies the following six equations

on the boundary:

9.1.37 Ut —U7| =F;

( ) 0 0 0 90 0

9.1.38 U ‘ —wUr ’ _ R

( ) WU, — U0 = Fo

(9.1.39) —vxUT| +vxU~| =F;
o0 o0

9.1.40 Ut -0, =Fy;

( ) 0 90 0 90 0

(9.1.41) w, U1+>‘m ~ U{)’m e

(9.1.42) —vxUT| +vxU~| =F.
o0 o0

Similarly, it is not hard to check that

vAuE = vUE +x(v x U) + (v, U)

(9.1.43) +iea[vU +#(v x Uif) + #(v, U;5)].

Then the second boundary condition implies the other six equations on the bound-
123



ary:

(9.1.44) UJ‘@Q - ;LUO"m = Go;
(9.1.45) WU = uln U] =Gy
(9.1.46) vx U g MY X U = Gy;
(9.1.47) (7;‘89 - Nﬁo_’m = Go;
(9.1.48) w09 = nln, 00| =G
(9.1.49) v x U Q—fojf ag_él'

The equations (9.1.9) and (9.1.15) with the boundary conditions (9.1.39) and

(9.1.49) give us the first Maxwell’s equations
(curl U — ikU* = —VU*,

curl U™ + ikUfF = =V U,

(9.1.50) ~
v x U

= xfr‘ =G,
oa ! !

:_Fl-

/_
—-vxU
o9

!
v x U*
\

On the other hand, the equations (9.1.10) and (9.1.14) with the boundary condi-

tions (9.1.42) and (9.1.46) form the second Maxwell’s equations
(curlUF — ik Uf = —VU,
curl Ui + i k U,F = VU,
(9.1.51) .
Ul —nvxur| =a,
VI g THY T g !

= —F}.
o0

~,
—-vxU

v x Ut o
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We now turn our attention to finding the transmission boundary value problems
for the Helmholtz operator that are implicitly implied by (9.1.1). We first focus on

solving a boundary condition

(9.1.52) aVUJ‘m - (%Uo“aQ = (v, VUy) o~ VU

By (9.1.9) we have

(9.1.53) VU = —ikU;" — curl U,
Therefore,

(v, VUY) I —ik({v, (71+>‘m — (v, curl Uﬁ)‘m
(9.1.54) — ik, ﬁm‘m — Div(v x Uﬁ)(m.
Similarly,
(9.1.55) <y,VU(;>(8Q = —ik{v, (7;>‘m — Div(v x U{*)(m.

Applying the equalities (9.1.54) and (9.1.55) to (9.1.52), we obtain that

+ _ —
0.Uq ‘89 % ’89

= —ik<V, [71+>’89 —’l'k<V, (7;>‘8Q

“Div(v x Uﬁ)’m — Div(v x U{—))m

= —ik{v, U}t — [7{)‘89 — Div(y x Ut —v x Ui_)’
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By the boundary conditions (9.1.39) and (9.1.41), we have

(9.1.56) aVUJ‘ - 8,,U0“ — _ikF, — DivF,.
o0 o0

According to the equation (9.1.20) and the boundary conditions (9.1.44) and (9.1.56),
we have the first transmission boundary value problem for the the Helmholtz op-

erator:

(A + KUy =0in Qq,

(9.1.57) Us ‘

aVU;‘ ~ 8,,UO_‘ — _ikF, — DivF,.
\ o0 oN

Similarly, we have the other three transmission boundary value problems for the

the Helmholtz operator as follows:

( (A +E)UF =0in Qy,

[7*’ -~ (7“ = G,
(9.1.58) 0|~ HY0 0

8V(7J‘ — 8,/(70_‘ - 'lk'Fg - Divﬁl,
\ oN oN

( (A + kU =0in Q,

~Uy| -F,

'+
(9.1.59) Uy o0

o2

\ ayU(ﬁ‘aQ - MVU{)"aQ — ikG) — DivG,
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( (A + kU =0in Qy,

i —dr| -R
(9.1.60) 0 U

o0

0,05 | = ud, Uy | = ikGy+ DivGy,
All in all, the problem (9.1.1) implicitly implies four transmission boundary
value problems for the Helmholtz operator and two transmission boundary value

problems for Maxwell’s equations.
9.2 Connections with Maxwell’s Equations

The main result of this section is stated as the following theorem.

Theorem 9.2.1. For each ), bounded Lipschitz domain in R3, there exist ¢ > 0

and a sequence of real numbers {k;}; such that the following is true:

For each 1 < p < 24 ¢, k € C\{k;};, the boundary problem (8.1.1), with
u® written in (9.1.2),(9.1.3),(9.1.4), f written in (9.1.24), (9.1.25), (9.1.26)
and g written in (9.1.27), (9.1.28), (9.1.29) componentwisely, reduces to two

Mazwell’s systems (with opposite wave numbers), i.e.

(curl U — ikU,* =0,

curl U + zkﬁli =0,
(9.2.61)

~, - _
VXU‘ — VXU’ =Gy
L aa H Llaq ’

/
vx U™"
\

/_
—uxU, ‘ — _F,

e} 0
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and

(cwrl U, —ikUf =0,

curl U + ikUF = 0,
(9.2.62)

- Gla

—uv X Uy
1% U lag

v x Ut
o0

:—ﬁl.

=~ ~/_
vx U™ —-vxU
\

o o0

with boundary data Gy, él € Lpd

nor

(0, Ay) and Fy, Fy € LP° (99, Ay), if and

only if

dog + kesg and Spf + keyf are (A* + e4A?) — valued functions.

Proof.
Due to the well-posedness of the BVPs (9.1.57), (9.1.58), (9.1.59) and (9.1.60),
U, U, ﬁg:’ ﬁ(l)i are zero if and only the boundary data of these problems are
zero. Hence it suffices to show that the boundary data of the above BVPs are zero
if and only if dpg + kesg and dyf + keyf are (A? + e4A?)-valued functions.

We begin with computing dsG, where G is given by (9.1.28) and hence G is

Ajs-valued. By Theorem 5.2.1, we can decompose G as follows:
(9.2.63) G = vGy + +Gy + *G,,

where Gy is A'-valued, *G; is A%-valued and *G, is A3-valued.

Note that for any function ¢ € C§°(052, A3), we can write

(9.2.64) = o+ 1+ *pg + %],
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where ¢y and @, are A’-valued, and ¢, and ]| are A'-valued. Applying the operator

J to both sides of the equality (9.2.64), we get
(9.2.65) 0 = 01 + *(dyy) — *(dyy).
Then, using the equality (9.2.63), we have

(9.2.66) /aQ(G,cS@ dazéﬂ(yGo,*(dgoll))da—/ (%G1, *(dipy)) do.

o0N

By Lemma 4.2.5, we have *(dy,) = curl ¢}, which further implies that

| weostagde = [ (cwl)Godo
09 o9
= —/ Div(v x ¢,)Gydo
o0
= /(VX¢;,VG0>dU
o0

(9.2.67) = /mw’l, x(v x VGy)) do.

On the other hand, we note that

/<*G1,*(d¢’0)>do - /(Gl,dgog)da
o0 o0
= / (Gy, Vi) do
o0
= —/ (DiVGl,gog)da
o0

(9.2.68) = —/ ((Div Gy), %) do.
o0
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Having the equalities (9.2.66), (9.2.67) and (9.2.68) together, we obtain

/ (G, dp) do
o0
= / (s, %(v X VG’O)>dU+/ (x¢@y, *(Div Gy)) do
o0 o0

(9.2.69) = / (p,*(r x VGy) + x(Div Gy)) do.
Gl
Recall the definition of dy in (5.1.11), we have
(9.2:70) | tdoGoprdo = [ (G.55)do
G o0
Comparing (9.2.69) with (9.2.70), we conclude that
(9271) daG = *(I/ X VG()) + *(DIV Gl),

where *(v x VGp) is A%-valued and *(Div Gy) is A3-valued.

Similarly, we have the decomposition of G.
(9.2.72) G =vGy+ =Gy + *CN%,

where vGy is A'-valued, *G; is A®-valued and *G} is A%-valued. Then, by a similar

fashion of proof, we have
(9.2.73) dyG = %(v x VGp) + *(Div Gy),

where *(v x VGy) is A2-valued and #(Div G,) is A3-valued. Now we are ready to

compute dopg + k esg. First, we have

(9.2.74) dog = do(G + iesG) = dyG — iesdsyG.
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Next, we observe

(9.2.75) keyg = key(G+iesG) = kesG — ikG.
On account of the equalities (9.2.74) and (9.2.75), we have
(9.2.76) dog + k esg = (dgG — ikG) — ieg(dsG + ikG),

where dyG — ikG and daé + kG are As-valued.

Now by the decompositions (9.2.71) and (9.2.72), we conclude that the A°-
component of dyG — ikG is zero.

Also the Al-component of dpG — ikG is —ik vGyo. As a consequence, the Al-
component of dyG — ikG = 0 if and only if éo = 0, where CNJO is the first boundary
data in problem (9.1.58).

Moreover, the A*-component of dyG — ikG is *Div Gy — ik * é;) Hence, the
A3-component of dyG — ikG = 0 if and only if zkéé — DivGy = 0. Note here
ikGj — Div G, is the second boundary condition in (9.1.59).

Now from the observation of the decompositions (9.2.63) and (9.2.73), we have
that the A%-component of dsG + ikG is zero. The Al-component of dsG + ikG is
ik vGy. This observation further implies that the A!-component of daé + ikG is
zero if and only if Gy = 0, where G| is the first boundary condition in (9.1.57). At
last, the A®-component of dyG+ikG is #(Div Gy ) +ikGj. Then #(Div G, ) +ik+G),
is zero if and only if z'k:Gz) + DivGy = 0, which is the second boundary condition

in (9.1.60).
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In summary, dag + k €49 is (A? + e4A?)-valued if and only if the four boundary
conditions that were mentioned above, i.e. the first boundary conditions of prob-
lems (9.1.57) and (9.1.58), the second boundary conditions of problems (9.1.59)
and (9.1.60), are all zero. In a similar way, by decomposing the boundary data f

3 pvé
in Ly,

(09, Ay), one can check that df + k ey f is (A% + e4A?)-valued if and only if
the other four boundary conditions of TBPVs (9.1.57)-(9.1.60) are zero.

Once all the boundary conditions in TBVPs (9.1.57), (9.1.58), (9.1.59) and
(9.1.60) are zero, by the well-posedness of these problems, we can conclude that all
the solutions of these four TBVPs are zero, which is going to give us the reduced
Maxwell’s equations (9.2.61) and (9.2.62).

This concludes the proof of Theorem 9.2.1. O
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