
SHARP ESTIMATES OF THE TRANSMISSION BOUNDARY
VALUE PROBLEM FOR DIRAC OPERATORS

ON NON-SMOOTH DOMAINS

A Dissertation
presented to

the Faculty of the Graduate School
University of Missouri–Columbia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by
QIANG SHI

Dr. Marius Mitrea, Dissertation Supervisor

AUGUST 2006



The undersigned, appointed by the Dean of the Graduate School, have examined
the dissertation entitled

SHARP ESTIMATES OF THE TRANSMISSION BOUNDARY VALUE
PROBLEM FOR DIRAC OPERATORS ON NON-SMOOTH DOMAINS

Presented by Qiang Shi

A candidate for the degree of Doctor of Philosophy

And hereby certify that in their opinion it is worthy of acceptance.

Professor Marius Mitrea

Professor David Retzloff

Professor Steve Hofmann

Professor Yuri Latushkin

Professor Dorina Mitrea



ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my advisor, Professor Marius Mitrea,

for introducing me to the subject and for his continuous advice, support and en-

couragement during this work.

I am also grateful to Professors Dorina Mitrea, Yuri Latushkin, Steve Hofmann

and David Retzloff for their interest and support.

I especially thank Tunde Jakab and Cong Phuc Nguyen for their help on Latex

and their generous proofreading on part of this thesis.

Finally, I am indebted to the Department of Mathematics, University of Mis-

souri at Columbia for its financial support and for facilitating my work.

ii



SHARP ESTIMATES OF THE TRANSMISSION BOUNDARY VALUE
PROBLEM FOR DIRAC OPERATORS ON NON-SMOOTH DOMAINS

Qiang Shi

Dr. Marius Mitrea, Dissertation Supervisor

ABSTRACT

This thesis derives the sharp estimates for the transmission boundary value

problems (TBVP) for Dirac operators in Lipschitz domains in the three dimensional

setting.

Most of the transmission problems considered in the literature fall under several

categories, depending on the nature of the domain and solution. First, there is the

class of problems in domains with sufficiently smooth boundaries. Second, there

is the class of problems in domains with isolated singularities. Weak (variational)

solutions for transmission problems in Lipschitz domains and strong solutions in

Dahlberg’s sense for transmission problems in Lipschitz domains were discussed

in various literatures. Compared to previous work on transmission problems, our

results are the first to establish well-posedness and optimal estimates in arbitrary

Lipschitz domains. Applications to the transmission boundary value problems of

the system of Maxwells equations are also presented in the last chapter of this

thesis.
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Chapter 1

Introduction

The goal of this thesis is to derive sharp estimates for the transmission boundary

value problems (TBVP) for Dirac operators in Lipschitz domains in the three di-

mensional setting. The underlying domain Ω is assumed to have a boundary which

is locally given by graphs of Lipschitz functions considered in some suitable systems

of coordinates (in the sequel, such a domain is simply referred to as being Lipschitz)

and the boundary data are from appropriate Lebesgue and Sobolev spaces. In the

case of the Laplace operator, such problems have been relatively recently solved in

[EM] by relying on the Serrin-Weinberger asymptotic theory (or, De Giorgi-Nash-

Moser theory at infinity). Subsequently, a new approach has been developed in our

paper [MMS] based on the Hölder regularity of the Neumann function associated

with the transmission problem. Here we further extend the scope of these works

by considering systems of equations.

This analysis is particular relevant in the study of electromagnetic scattering by
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domains with a rough boundary. Recall that the propagation of an electromagnetic

wave (E, H) in R3 is governed by the three dimensional Maxwell system

(1.1.1) curl E − ikH = 0 in Ω−, curl H + ikE = 0 in Ω−,

where k ∈ C is the so-called wave number and, given a bounded domain Ω, in

general, we set Ω+ := Ω and Ω− := R3 \ Ω̄. In this regard, let us note that it has

long been understood that there are basic connections between the Maxwell system

on the one hand and the Hodge-Dirac operator D = d + δ (with d, δ, denoting the

exterior derivative and its adjoint, respectively), on the other hand. A classical

observation which underscores this point is that Maxwell’s system (1.1.1) can be

written in the compact form

(1.1.2) Dku = 0,

where

(1.1.3) Dk := D+ k e4, and u := H − ie4E.

Above, the vector fields E = (E1, E2, E3) and H = (H1, H2, H3) are regarded as

Clifford algebra-valued functions, via the identification

(1.1.4) E = E1e1 + E2e2 + E3e3, H = H1e2e3 + H2e3e1 + H3e1e2,

and e1, e2, e3, e4 are the four anti-commuting imaginary units generating the Clifford

algebra A4. Our goal is to further exploit these connections and present a coherent,
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unified approach to transmission problems which relies on the Clifford algebra

formalism. For more background material and further general references on Clifford

algebras and related matters, the interested reader is referred to the monographs

[BDS], [HQW], [GW] and [Mi3]; see also the article [McM] for harmonic and Fourier

analysis methods in the context of Clifford algebras. An excellent survey of progress

in the area of harmonic analysis techniques for nonsmooth elliptic problems until

early 1990’s, can be found in the monograph [Ke1].

The main result of our work is summarized in the theorem below. To state

it, recall that for a (possibly algebra-valued) function u defined in Ω, the non-

tangential maximal function Nu is given by

(1.1.5) Nu(x) := sup {|u(y)| : y ∈ Ω, |x− y| ≤ κ dist (y, ∂Ω)}, x ∈ ∂Ω,

where κ > 1 is some fixed, large constant. We let ‘wedge’ and ‘backward wedge’

denote, respectively, the exterior and interior products (cf. Chapter 3 for a more

detailed exposition), and set utan, unor for the tangential and normal components

of an A4-valued function u defined on ∂Ω. Also, ν will denote the outward unit

normal to ∂Ω.

Theorem 1.1.1. Let Ω be a bounded Lipschitz domain in R3, 1 < p < ∞, and let

k ∈ C be a non-zero complex number. Assume that 0 < µ < 1 is fixed and consider

the following transmission boundary value problem for the perturbed Dirac operator

3



Dk:




u± ∈ C1(Ω±,A4),

Dku
± = 0 in Ω±,

u+
nor − u−nor = f ∈ Lp(∂Ω,A4),

u+
tan − µu−tan = g ∈ Lp(∂Ω,A4),

lim|x|→∞(|x| − ie4x)u−(x) = 0,

N(u±), N(du±) and N(δu±) ∈ Lp(∂Ω).

(1.1.6)

Above, all boundary traces are taken in the pointwise non-tangential limit sense.

Then there exist ε > 0 and a sequence of real numbers {kj}j which depend

exclusively on the boundary ∂Ω and the transmission parameter µ, and which have

the following significance. For every p ∈ (1, 2 + ε) and every k ∈ C \ {kj}j, the

transmission problem (1.1.6) has a solution if and only if

(1.1.7) f ∈ ν ∧ Lp,δ
tan(∂Ω,A4) and g ∈ ν ∨ Lp,d

nor(∂Ω,A4).

Furthermore, the solution (u+, u−) is unique, satisfies the estimate

‖N(u±)‖Lp(∂Ω) + ‖N(du±)‖Lp(∂Ω) + ‖N(δu±)‖Lp(∂Ω)

≤ C
(
‖ν ∨ f‖Lp,δ

tan(∂Ω,A4) + ‖ν ∧ g‖Lp,d
nor(∂Ω,A4)

)
,(1.1.8)

where C > 0 depends only on ∂Ω, µ, k, p, and it can be represented in terms of

integral operators acting on the boundary data.

The above well-posedness result is sharp in the class of Lipschitz domains, but

extends to 1 < p < ∞ if the unit normal to ∂Ω has vanishing mean oscillations.

In particular, this is the case when ∂Ω ∈ C1.
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The spaces appearing in (1.1.7) are defined in Chapter 5, where a detailed

analysis of their properties is carried out. Here we only want to point out that an

equivalent reformulation of (1.1.8) reads as follows: For any Clifford algebra-valued

functions u± defined in Ω±, satisfying Dku
± = 0 in Ω±, N(u±), N(du±), N(δu±) ∈

Lp(∂Ω), and for which u− decays at infinity, there holds,

‖N(u±)‖Lp(∂Ω) + ‖N(du±)‖Lp(∂Ω) + ‖N(δu±)‖Lp(∂Ω)

≤ C‖ν ∨ u+ − ν ∨ u−‖Lp(∂Ω) + C‖ν ∨ δu+ − ν ∨ δu−‖Lp(∂Ω)

+ C‖ν ∧ u+ − µ ν ∧ u−‖Lp(∂Ω) + C‖ν ∧ du+ − µ ν ∧ du−‖Lp(∂Ω)

whenever 1 < p < 2 + ε, where C = C(∂Ω, k, p) > 0 is independent of u±.

Part of the interest in the transmission boundary-value problem for the Dirac

operator Dk in the statement of Theorem 1.1.1 stems from the fact that this is inti-

mately connected with the transmission boundary-value problem for the Helmholtz

equation





(∆ + k2)u± = 0 in Ω±,

N(∇u±), N(u±) ∈ Lp(∂Ω),

u+
∣∣∣
∂Ω
−u−

∣∣∣
∂Ω

= f ∈ Lp
1(∂Ω),

∂νu
+ − µ ∂νu

− = g ∈ Lp(∂Ω),

lim|x|→∞
(
x · ∇u− − iku−

)
= 0,

(1.1.9)
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as well as the transmission boundary-value problem for the Maxwell system

(1.1.10)





curl Ei − ikHi = 0 in Ω+,

curl Hi + ikEi = 0 in Ω+,

curl Ee − ikHe = 0 in Ω−,

curl He + ikEe = 0 in Ω−,

N(Ei), N(Hi), N(Ee), N(He) ∈ Lp(∂Ω),

ν × Ee

∣∣∣
∂Ω
−ν × Ei

∣∣∣
∂Ω

= f ∈ Lp,Div
tan (∂Ω),

ν ×He

∣∣∣
∂Ω
−µ ν ×Hi

∣∣∣
∂Ω

= g ∈ Lp,Div
tan (∂Ω),

x
|x| ×He + Ee = o

(
1
|x|

)
as |x| → ∞.

Here Lp,Div
tan (∂Ω) is a suitable Sobolev-like space of vector fields on ∂Ω (consisting

of Lp tangential fields whose surface divergence is also in Lp); see Chapter 5 for

detailed definitions.

The above problem (1.1.9) models the scattering of acoustic time-harmonic

waves by a penetrable bounded obstacle Ω. In this case, k stands for the wave

number. See, e.g., [CK1], [DL], [GK]. In order to explain the genesis of this

problem, assume for a moment that R3 \ Ω is connected. The incident plane wave

uin(x) = eik〈x,ω〉, x ∈ R3, with ω ∈ S2 the propagation direction, will produce a

(radiating) scattered wave u− in the exterior of Ω and a transmitted wave u+ in

Ω. The waves u± are annihilated by the Helmholtz operator ∆ + k2 and verify the

so-called conductive boundary conditions

(1.1.11) u+ = uin + u− and ∂ν(uin + u−) = µ ∂νu
+ on ∂Ω.

In particular, the scalar transmission problem (1.1.9) corresponds precisely to

6



(1.1.11) for the choice of boundary data

(1.1.12) f := uin

∣∣∣
∂Ω

, g := −∂νuin.

In passing, let us also note from (1.1.12) that the smoothness of ∂Ω affects, via ν,

the smoothness of the boundary data f , g.

Likewise, (1.1.10) models the scattering of electro-magnetic waves by a pen-

etrable bounded obstacle Ω. In this case, k is related to the frequency of the

electromagnetic wave and the physical characteristics of the medium. See, e.g.,

[Mu], [MO], [AK]. Much as before, for each ω ∈ S2, the propagation direction, and

p ∈ R3, the polarization, the incident plane electric wave

Ein(x; ω, p) :=
i

k
curl curl [p eik〈x,ω〉] = ik(ω × p)× ω eik〈x,ω〉, x ∈ R3,

and the incident plane magnetic wave

H in(x; ω, p) := k curl [p eik〈x,ω〉] = ik2ω × p eik〈x,ω〉, x ∈ R3,

will produce (radiating) scattered fields Ee, He in the exterior of Ω and transmitted

fields Ei, Hi inside Ω. The vector fields Ei, Hi on one hand and Ee, He on the other

hand, verify Maxwell’s equations and the transmission boundary conditions

ν × (Ein + Ee) = ν × Ei and ν × (H in + He) = µ ν ×Hi on ∂Ω∞.

The boundary conditions in (1.1.10) are obtained with

f := −ν × Ein and g := −µ ν ×H in on ∂Ω.

7



Once again, in the context of scatterers with Lipschitz boundaries, f and g above

are, generally speaking, discontinuous vector fields.

In Chapter 9 we find necessary and sufficient conditions for the boundary data

which guarantee that problem (1.1.6) decouples into four scalar transmission prob-

lems (9.1.57), (9.1.58), (9.1.59), and (9.1.60) of the type (1.1.9) and two vector

transmission problems of the type (1.1.10). Hence, from this point of view, Theo-

rem 1.1.1 can essentially be regarded as an ‘elliptization’ method for the original

Maxwell system. In broad terms, the Maxwell system is ‘embedded’ into a more

general, elliptic system via a procedure which also identifies the (more specialized)

type of boundary data for which the two systems are actually equivalent. For a

more detailed discussion in this regard, see Chapter 9. Here we only want to point

out that extending the Lp-theory of transmission problems from single equations

to systems of equations presents a whole new set of challenges, as many of the

basic ingredients used in the scalar case (most notably, the local Hölder regularity

of weak solutions) cease to function in this context.

As is implicit in the statement of the above theorem, we shall employ singular

integral operators of Cauchy type, which are defined and systematically treated in

Chapter 6. In this regard, an incisive result pertaining to the proof of Theorem 6.5.1

is the following.

Theorem 1.1.2. Let Ω ⊂ R3 be an arbitrary Lipschitz domain with compact bound-
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ary. Then for each λ ∈ R with |λ| > 1
2
, there exists a sequence of real numbers

{kj}j such that for each 1 < p < 2 + ε and k ∈ C\{kj}j, the operator λI + ν ∧ Ck

is an isomorphism of Lp,d
nor(∂Ω,A4).

Since the difficulties of working with boundary integral operators in the non-

smooth context are well documented (cf., e.g., the discussion in § 1 of [MMP]), this

is a delicate result. We are able to prove it by relying on certain distinguished

algebraic identities relating the Cauchy operators in the Clifford algebra setting to

the scalar layer potential operators associated with the Helmholtz operator ∆ + k2

and the vector layer potentials which are relevant in the study of the Maxwell

system. See Chapter 6 for details.

Most of the transmission problems considered in the literature fall under several

categories, depending on the nature of the domain and solution. First, there is the

class of problems in domains with sufficiently smooth boundaries (so that they

can be flattened and/or pseudo-differential operator techniques – with a limited

amount of smoothness – can be used). See, e.g., [LRU], [KP1], [KM1], for scalar

equations, and [Wi], [Rei], [BD], [AK], [MO], [CK1], [Mu], for Maxwell’s equations.

Second, there is the class of problems in domains with isolated singularities (in

which scenario, Mellin transforms are applicable); cf. [Re2], [Re1], [NS]. Weak

(variational) solutions for transmission problems in Lipschitz domains are discussed

in [Sa], [Ag]. Finally, strong solutions in Dahlberg’s sense ([Da]) for transmission

9



problems in Lipschitz domains are treated in [EFV], [ES], [MM1], [Seo], for single

equations, and [ES], [MM1], for systems (such as Lamé and Maxwell). Compared

to previous work on transmission problems, our results are the first to establish

well-posedness and optimal estimates in arbitrary Lipschitz domains.

Several significant extensions of this body of work which we plan to address in

the near future are as follows.

• Given the flexible nature of our approcah to the problem at hand, it is natural

to suggest that all our main results continue to hold in the context of variable

coefficient Hodge-Dirac operators and, more generally, on Lipschitz subdomains

of three dimensional Riemannian manifolds. We plan to address this by further

refining the techniques developed here and by relying on the results in [MMS].

• When 2− ε < p < 2 + ε, our results should be valid in all space dimensions. For

related developments, see [MMT], [Mi4].

• It is of interest to investigate the case when the underlying domain Ω is not

simply connected. One concrete situation when this case is most relevant is that

of a ray of light going trough a layer of glass that has several air bubbles in it.

• While this thesis is concerned with the study of the direct problem, a particularly

important aspect of the theory is the corresponding inverse problem, aimed at

determining the shape of the obstacle from the far-field patterns of the scattered

10



waves. Problems as such have enjoyed a lot of attention in the literature and

results in this direction are contained in, e.g., [LRU], [MT1], [Is1], [Is2], [He], [GK].

A basic limitation of most of the literature dealing with this subject, however, is

the rather strong smoothness assumption on the boundary of the scatterer, namely

that it belongs to the class C2. One natural goal is to use the advances made

here in order to be able to treat the case when the boundary of the scatterer has

irregularities. Let us note that Lipschitz interfaces have been also considered in

[Is1] but the general framework is different inasmuch as the transmission problem

is understood there in an L2-based variational sense and the concept of solution is

weak.

To formulate a concrete conjecture, recall first that the scattered wave u− has

the asymptotic behavior

(1.1.13) us(x) =
eik|x|

|x|
[
u∞

( x

|x|
)

+O(
1

|x|)
]

, as |x| → ∞,

where u∞ is the so-called far-field pattern of u; see, e.g., [CK2]. Also, for any

bounded domain Ω ⊂ R3 set [Ω] := R3 \ Ω∞, where Ω∞ stands for the unbounded

complement of R3 \Ω. Clearly, if Ω has a connected complement then Ω∞ = R3 \Ω

and, hence, [Ω] = Ω in this case.

Conjecture. Suppose that two conductive scatterers occupy the interiors of two

bounded Lipschitz domains Ω1, Ω2 in R3. We assume that R3 \ Ωj, j = 1, 2, have

the same wave number k. Suppose that the two far-field patterns for Ω1 and Ω2

11



corresponding to all incident plane wave coincide. Then [Ω1] = [Ω2].

12



Chapter 2

Definitions and Review of Some
Basic Results

2.1 The Geometry of Lipschitz Domains

Let U be an open subset of Rm. A function f : U → R is called Lipschitz provided

that there exists a constant M > 0 such that |f(x) − f(y)| ≤ M |x − y| for all

x, y ∈ U . The best constant in the above inequality is called the Lipschitz constant

of f .

The following result of Rademacher (cf. [Wh] p.272) is basic for our entire

work.

Lemma 2.1.1. Let f be a real-valued, Lipschitz function defined in an open set

U of Rm. Then for each 1 ≤ j ≤ m, ∂f
∂xj

exists at almost every point in U and

∂f
∂xj

∈ L∞(U,R). In fact, ‖∇f‖L∞ is the Lipschitz constant of f .

An open set Ω ⊂ Rn is called a graph Lipschitz domain if there exists a Lipschitz

13



function ϕ : Rn−1 → R such that

(2.1.1) Ω = {(x′, ϕ(x′) + t) : x′ ∈ Rn−1, t > 0},

i.e. Ω is the portion of Rn lying above the graph of the real-valued Lipschitz

function ϕ. Fix κ = κ(Ω) > 1 and, at each boundary point x ∈ ∂Ω, define the

(cone-like) non-tangential approach region

(2.1.2) Γ(x) := {y ∈ Ω : |x− y| < κ dist (y, ∂Ω)} , x ∈ ∂Ω,

and define the non-tangential maximal operator N acting on a measurable function

u : Ω → C by

(2.1.3) (Nu)(x) := ‖u‖L∞(Γ(x)), x ∈ ∂Ω.

If we wish to emphasize the dependence of Γ and N on κ, we shall simply write

Γκ and Nκ instead. It is well-known that for each κ1, κ2 > 1 and p ∈ (0,∞) there

exist C1, C2 > 0 such that

(2.1.4) ‖Nκ1u‖Lp(∂Ω) ≤ C1‖Nκ2u‖Lp(∂Ω) ≤ C2‖Nκ1u‖Lp(∂Ω)

for any measurable function u in Ω. See, e.g., [Ke2].

Call an open set Ω ⊂ Rn a bounded Lipschitz domain if there exists a finite open

covering {Oj}1≤j≤N of ∂Ω with the property that, for every j ∈ {1, ..., N}, Oj ∩Ω

coincides with the portion of Oj lying above Rj(graph ϕj) where ϕj : Rn−1 → R is

a Lipschitz function and Rj is a rigid motion of the Euclidean space Rn.
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Call Z ⊂ Rn a coordinate cylinder if Z is an open, right circular doubly trun-

cated cylinder with center at xZ ∈ ∂Ω and which, in addition, has the following

properties:

i) If Rn = Rn−1×R is a rectangular coordinate system such that xZ corresponds

to the origin and the axis of Z is in the direction of en = (0, ..., 0, 1) ∈ Rn,

then there exists a Lipschitz function ϕ : Rn−1 → R such that xZ = (0′, ϕ(0′))

and

(2.1.5)
Ω ∩ Z = {x = (x′, xn) : ϕ(x′) < xn} ∩ Z,

∂Ω ∩ Z = {x = (x′, xn) : ϕi(x
′) = xn} ∩ Z.

ii) If h and R are the height and the radius of Z, then h/R > 5
√

1 + ‖∇ϕ‖2
L∞ .

iii) If tZ denotes the concentric dilation of Z of factor t > 0, then (2.1.5) also

holds with tZ in place of Z for each 1 < t < 10
√

1 + ‖∇ϕ‖2
L∞ .

In the sequel, we shall write occasionally Z = Z(x, h, R, ϕ) to indicate that the

coordinate cylinder Z is centered at x, has height h, radius R, and that the Lipschitz

function ϕ : Rn−1 → R satisfies (2.1.5).

Given a bounded Lipschitz domain Ω ⊂ Rn, it is then possible to cover its

boundary ∂Ω with a finite number of coordinate cylinders
{

Zi(xZi
, hi, Ri, ϕi)

}
1≤i≤N

.

Call this family an atlas for ∂Ω, and say that a quantity depends on the Lipschitz

character of Ω if its size is controlled in terms of N and the numbers Ri, hi,

‖∇ϕi‖L∞(Rn−1), for 1 ≤ i ≤ N .
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In the context of a bounded Lipschitz domain Ω, we shall retain the defini-

tions (2.1.2)-(2.1.3) of the non-tangential approach regions Γ(x) and of the non-

tangential maximal operator N . In particular, (2.1.4) holds in this case as well.

It is well-known that, given a Lipschitz domain Ω there exists a canonical

surface measure dσ on ∂Ω, with respect to which ν, the outward unit normal to Ω,

is defined almost everywhere on ∂Ω. We shall denote by σ(E) the surface measure

of a measurable set E ⊂ ∂Ω. Also, throughout the thesis, we shall let Lp(∂Ω),

1 ≤ p ≤ ∞, stand for the Lebesgue space of complex-valued, measurable functions

which are p-th power integrable with respect to dσ on ∂Ω.

2.2 Functional Analysis Elements

Let E and F be normed spaces. We denote by L(E, F ) the space of all continuous

linear operators T : E → F equipped with the operator norm and we also set

L(E) := L(E, E). We shall denote the set of compact linear operators from E into

F by K(E, F ) ⊆ L(E, F ), and abbreviate K(E) := K(E, E).

If E is a normed space and F = R or C is the field of scalars of E, the space

L(E, F ) is called the dual of E and is denoted by E∗.

We record two theorems which handle some important properties of compact

operators as below. See [La] for the proof.

16



Theorem 2.2.1. Let E, F , G, H be normed vector spaces and let

f : E → F, u : F → G, g : G → H

be continuous linear maps. If u is compact then u ◦ f and g ◦ u are compact. In

particular, K(E) is a two-sided ideal of L(E).

Theorem 2.2.2. Let E, F be Banach spaces and f : E → F be a compact linear

map. Then f ∗ : F ∗ → E∗ is compact, where f ∗ is the adjoint of f .

For any operator T ∈ L(E, F ) we denote by Im T , Ker T and Coker T the

image, the kernel and the cokernel of T correspondingly:

Im T := {y ∈ F : y = Tx, for some x ∈ E} ⊆ F,

Ker T := {x ∈ E : Tx = 0} ⊆ E,

Coker T := {f ∈ F ∗ : f(Tx) = 0, for any x ∈ E} ⊆ F ∗.

One class of operators that we are going to deal with is the one of Fredholm

operators, which are named for Erik Ivar Fredholm. An operator T ∈ L(E, F ) is

said to be Fredholm if the following three conditions are satisfied:

1) dim (Ker T ) < ∞;

2) Im T is closed in F ;

3) dim (Coker T ) < ∞.
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In this case, ind T := dim (Ker T ) − dim (Coker T ) is called the index of the

operator T. We denote by Fred(E, F ) the set of Fredholm operates from E into F .

Let us now briefly describe some of the basic properties of Fredholm operators.

Theorem 2.2.3. Let E, F be Banach spaces. Then Fred(E, F ) is open in L(E, F ),

and the function T → ind T is continuous on Fred(E, F ), hence constant on con-

nected components.

Theorem 2.2.4. The composite of Fredholm operators is Fredholm. If T is Fred-

holm and R is compact, then T + R is Fredholm.

Corollary 2.2.5. If T is Fredholm and R is compact, then

ind (T + R) = ind T.

Corollary 2.2.6. If T ∈ L(E, F ) is an invertible operator, and R ∈ K(E, F ), then

T + R is a Fredholm operator with index zero.

Theorem 2.2.7. Let E, F, G be Banach spaces, and let

S : E → F and T : F → G

be Fredholm. Then

ind TS = ind T + ind S.

Next, let us turn our attention to the exact sequence, which will be used in

Chapter 6. An exact sequence is a sequence of maps

(2.2.6) Ti : Ei → Ei+1
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between a sequence of spaces Ei, which satisfies

(2.2.7) Im(Ti) = Ker(Ti+1).

An exact sequence may be of either finite or infinite length. The special case

of length five,

(2.2.8) 0 → E1 → E2 → E3 → 0

beginning and ending with zero, meaning the zero space {0}, is called a short exact

sequence.

We are now going to present Analytic Fredholm Alternative Theory, which will

be invoked in Chapter 6 of this thesis.

Theorem 2.2.8. Let X be a Banach space and O be an open subset of C. Let the

operator

A : O → L(X)

be analytic, i.e. ∂
∂z

A(z) = 0 for any z in O. Also, suppose that A(0) = 0 and

A(z) ∈ K(X). Then there exists a subset E of O, which has no accumulation

points, such that the operator

I − A(z) : X → X

is invertible for all z in the set O\E.
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2.3 Calderón-Zygmund Theory

Handling boundary sigular integral operators at the level of generality assumed in

this work, i.e. Lipschitz boundaries and Lp-based function spaces, requires the use

of the rather sophisticated machinery known as Calderón-Zygmund theory. We now

discuss some aspects of the Calderón-Zygmund theory which are most relevant for

our work. The first result below models the behavior of sigular integral operators

best suited for this work.

Theorem 2.3.1. Let A : Rm → Rn be a Lipschitz function and F : Rn → R

be a smooth and odd function. For any x, y ∈ Rm with x 6= y we set the kernel

K(x, y) := 1
|x−y|m F

(
A(x)−A(y)
|x−y|

)
, and for ε > 0, f ∈ Lipcomp(Rm), we define the

truncated operator Tεf(x) :=
∫
|x−y|>ε

K(x, y)f(y)dy. Then for each 1 < p < ∞, the

following assertions hold:

(1) The maximal operator T∗f(x) := sup
ε>0

|Tεf(x)| is bounded on Lp(Rm);

(2) If there exists a dense subspace V in Lp(Rm) such that for any f ∈ V the limit

limε→0 Tεf(x) exists for almost every x ∈ Rm, then this limit exists for any

f ∈ Lp(Rm) at almost any x ∈ Rm and the operator Tf(x) := limε→0 Tεf(x)

is bounded on Lp(Rm).

Our next result models the behavior of layer potential-like operatos mapping

function defined on a Lipschitz surface to functions defined in its complement.
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Theorem 2.3.2. Let A : Rm → Rn, B : Rm → R be two Lipschitz functions and

let F : Rn×R→ R be a smooth and odd function which satisfies the decay condition

(2.3.9) |F (a, b)| ≤ C(1 + |b|)−m

uniformly for a in compact subsets of Rn and arbitrary b ∈ R. For any x, y ∈ Rm

with x 6= y and t > 0 we set

Kt(x, y) :=
1

|x− y|m F

(
A(x)− A(y)

|x− y| ,
B(x)−B(y) + t

|x− y|
)

.

Also, for each t > 0, we introduce the operators T tf(x) :=
∫
Rm Kt(x, y)f(y)dy, for

f ∈ Lipcomp(Rm), and T∗∗f(x) := sup
|x−z|<λt

|T tf(z)|, for some fixed positive λ. Then,

for each 1 < p < ∞, the following assertions are valid:

(1) The non-tangential maximal operator T∗∗ is bounded on Lp(Rm);

(2) If there exists a dense subspace V in Lp(Rm) such that for any f ∈ V the

(non-tangential) limit

T f(x) := lim
z→x,t→0
|x−z|<λt

T tf(z)

exists for almost every x ∈ Rm, then this limit exists for any f ∈ Lp(Rm) at

almost any x ∈ Rm and the operator T is bounded on Lp(Rm).
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Chapter 3

The Clifford Algebra Structure

3.1 Construction of a Clifford Algebra

Fix m ∈ N and let {ei}0≤i≤m be a collection of objects for which we assume that

there exists an associative multiplication such that the following axioms are true:

1. e0 = 1;

2. e2
i = −1 for 1 ≤ i ≤ m;

3. eiej = −ejei for 1 ≤ i 6= j ≤ m.

Define Clifford conjugation of ei, i = 1, 2, . . . , m, as follows:

1. e0 = e0.

2. ei = −ei for 1 ≤ i ≤ m.

Remark 3.1.1. To distinguish between complex conjugation and Clifford conjuga-

tion, we will use (·)c to denote the complex conjugation in this work.

23



We denote by Am the algebra generated by {ei}0≤i≤m. That is, Am consists of

all elements u, which can be represented in the form

(3.1.1) u :=
m∑

l=0

∑

|I|=l

′
uIeI ,

where eI stands for the product ei1ei2 ...eil if I = (i1, i2, ..., il). For each multi-index

I, we call l the length of I and denote it by |I| = i1 + i2 + ... + il. And
∑′

indicates that the sum is performed only over strictly increasing multi-indices, i.e.

I = (i1, i2, ..., il) with 1 ≤ i1 < i2 < ... < il ≤ m.

In the sequel, we shall refer to Am as being Clifford algebra generated by m

imaginary units.

Remark 3.1.2. For each m ≥ 1, the algebra Am exists.

Proof.

Let us prove this remark via a constructive approach.

One can represent the algebra of complex numbers C as a subset of M2×2(R),

the set of all 2 × 2 matrices with coefficients in R. Indeed, if we let I denote the

2× 2 identity matrix

(
1 0
0 1

)
and we denote the matrix

(
0 −1
1 0

)
by i. Then

i2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(−1 0
0 −1

)
= −I.

That is, informally, we have i =
√−I. With this in mind, we can think of C as a

subset of M2×2(R). Specifically, C = span{I, i}, where the span is taken over R.
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There are a few points worth taking notice of at this stage. First of all, we only

need these two matrices to generate C. Also, there are only 2 matrices (i and −i)

that have a square of −I. We can think of C as an associative algebra, with the

usual matrix addition and the usual matrix multiplication as the +, · operations in

this algebra. In this case, the algebra C is commutative. The subsequent algebras

that we generate following a similar pattern will not be commutative, though they

will all be associative.

In order to construct algebra involving more imaginary units, we need to in-

crease the size of the matrices. For the next level, we will consider matrices in

M4×4(R). It can be shown that the size of the matrices needs to be even for the

construction to be feasible. However, in order to construct this new algebra, we

also need to produce more imaginary units.

The standard notation to designate these algebras, which we will use in this

paper, is Am. Notice, we have that A0 = R and A1 = C. In general, Am has m

“imaginary units.” Our current goal is to construct A2. To generate Am, we will

need a simple adaptation of the following recursive algorithm.

As previously stated, we will define A2 as a subset of M22×22(R). First, we need

to define some matrices. Let

e0 := I22×22 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .
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Now, using the matrix i from the 2× 2 case above, we define

e1 :=

(
i 0
0 −i

)
=




(
0 −1
1 0

) (
0 0
0 0

)

(
0 0
0 0

) (
0 1
−1 0

)


 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 .

Similarly, using the matrix I from the 2× 2 case above, we define

e2 :=

(
0 −I
I 0

)
=




(
0 0
0 0

) (−1 0
0 −1

)

(
1 0
0 1

) (
0 0
0 0

)


 =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 .

A simple calculation shows that both e1 and e2 are imaginary units, in the sense

that e2
1 = e2

2 = −I22×22 = −e0.

If we now consider

spanR{e0, e1, e2, e1e2} = {a0e0 + a1e1 + a2e2 + a3e1e2 : ai ∈ R},

then this set will be closed under multiplication. We can verify this fact with the

following multiplication chart. In the chart, the column represents the first factor

in the product, and the row represents the second factor.

· e0 e1 e2 e1e2

e0 e0 e1 e2 e1e2

e1 e1 −e0 e1e2 −e2

e2 e2 e2e1 −e0 e1

e1e2 e1e2 e2 −e1 −e0
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Note that the term e2e1 appears in the above chart, so it may appear that the span

is not stable under multiplication. However, one can show that

e2 · e1 =

(
0 −I
I 0

)
·
(

i 0
0 −i

)
=

(
0 i
i 0

)

=




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 = −e1 · e2.

Having clarified this issue, it is easy see that the span is indeed closed under

multiplication. In particular, spanR{e0, e1, e2, e1e2} is a subalgebra of M22×22(R),

which is not commutative. This is in stark contrast with the case of A0 and A1.

(This non-commutative nature will also appear in the subsequent algebras). With

this in mind, we define

A2 := spanR{e0, e1, e2, e1e2}.

Continuing much in the same way, we can construct other subalgebras by simply

considering more imaginary units. The next subalgebra will be called A3 and will

be a subset of M23×23(R). In A3, we define e0 := I23×23 and, for j = 1 and 2, define

ej :=

(
eold

j 0
0 −eold

j

)
where eold

j is the “old” ej ∈ A2 and 0 is the 0 ∈ A2 (i.e. the

22 × 22 zero matrix). Then, in much the same way as before, we will have that

e2
j = −e0 for j = 1 and 2.

Now, we need to define a “new” imaginary unit. With our previous construction

in mind, we define e3 :=

(
0 −eold

0

eold
0 0

)
where eold

0 is the “old” e0 ∈ A2 and 0 is the

22 × 22 zero matrix.
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We can quickly check that

e2
3 =

(
0 −eold

0

eold
0 0

)
·
(

0 −eold
0

eold
0 0

)

=

(−(eold
0 )2 0
0 −(eold

0 )2

)
=

(−eold
0 0

0 −eold
0

)
= −e0.

Much as before, we will have that e1, e2, and e3 anti-commute with each other.

Also, we need to make the span stable under multiplication. To do this, we need

to include all possible products of e1, e2, and e3 with each other. Hence, we define

A3 := spanR{e0, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}.

Since this span is stable under multiplication, this is, as before, a non-commutative

yet associative algebra.

In particular, one can repeat this procedure for as long as desired. However,

in this work, we shall only need to go up to A4 ⊆ M24×24(R). Once again, this

is obtained by creating a new e0 = I24×24 , recycling the basic imaginary units of

A3 to create some new imaginary units e1, e2, and e3, and then constructing a new

imaginary unit e4 from the e0 ∈ A3 (using the
√−1 recipe). Much as before, when

constructing the span, we need to include all possible products of the ei in order

to ensure that the span is stable under multiplication. Thus, we define

A4 := spanR{e0, e1, e2, e3, e4, e1e2, e1e3, e1e4, e2e3, e2e4, e3e4,

e1e2e3, e1e2e4, e1e3e4, e2e3e4, e1e2e3e4}.
(3.1.2)

It is clear that these elements form a basis of A4, and that the dimension of A4 as

a linear space is 24 = 16. Again, A4 is a non-commutative, associative algebra. 2
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Remark 3.1.3. According to Theorem 1.2 in [Mi3], the representation of u in Am

is unique.

3.2 General Properties of Am

The algebra Am has many properties which we will use throughout this thesis.

First of all, we define the Clifford conjugation of u in Am by setting

(3.2.3) u :=
m∑

l=0

∑

|I|=l

′
uIeI ,

where

(3.2.4) eI := ei1ei2 ...eil = eil . . . ei2ei1 .

provided I = (i1, i2, . . . , im) is a multi-index. Going further, define the norm of u

as

(3.2.5) |u| :=
√√√√

m∑

l=0

∑

|I|=l

′
|uI |2,

so that |u|2 = 〈u, u〉 where, for each u, v ∈ Am, we define the inner product

(3.2.6) 〈u, v〉 :=
m∑

l=0

∑

|I|=l

′
uIvI .

For each l ∈ {0, 1, . . . , m} consider the projection map Πl onto the l-homogeneous

part of u, i.e. by

(3.2.7) Πlu :=
∑

|I|=l

′
uIeI ,
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and denote by Λl the range of Πl : Am → Am. It follows that

(3.2.8) Am = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λm.

We shall refer to the elements in Λ0 as scalars, to the elements in Λ1 as vectors, to

the elements in Λ2 as bi-vectors, to the elements in Λ3 as tri-vectors, etc.

If a ∈ Λ1 and u ∈ Λj, then

a · u ∈ Λj−1 ⊕ Λj+1.

This is because multiplication of a homogeneous Clifford element by a vector will

either increase or decrease the degree of homogeneity by 1. We then define the

wedge product ∧ and the backward wedge product ∨ by

(3.2.9) a ∧ u := Πj+1(a · u) and a ∨ u := −Πj−1(a · u).

As a result, we have

(3.2.10) a · u = a ∧ u− a ∨ u, for any u ∈ Am.

One obvious observation is that both ∧ and ∨ are linear maps. This is due to

the fact that Πl is itself a linear map, for each l ∈ {0, 1, 2, . . . , m}.

The Hodge star operator can be defined as the unique linear mapping

∗ : Λl → Λm−l

such that

(3.2.11) eI(∗eI) = e1e2...em,
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for every multi-index I = (i1, i2, . . . , im).

Remark 3.2.1. Let a be a vector. a∧u = ua if u is a scalar, and a∧u = ∗(a×u)

if u is a vector. Moreover, a ∨ u = 0 if u is a scalar, and a ∨ u = 〈a, u〉 if u is a

vector.

Some properties which are intrinsic to the Clifford structure that are going to

be most relevant for our work in the sequel. Hence we collect some of the most

important properties in the form a lemma.

Lemma 3.2.2. Suppose that a, b ∈ Λ1 and u, v ∈ Λl, for some l ∈ {0, 1, . . . , m}.

Then the following hold:

1. a ∧ (a ∧ u) = 0 and a ∨ (a ∨ u) = 0;

2. ∗ ∗ u = (−1)l(m−l)u;

3. 〈u, ∗v〉 = (−1)l(m−l)〈∗u, v〉;

4. ∗(a ∧ u) = (−1)la ∨ (∗u);

5. ∗(a ∨ u) = (−1)l−1a ∧ (∗u);

6. a ∧ (b ∨ u) + b ∨ (a ∧ u) = 〈a, b〉u;

7. 〈a ∧ u, v〉 = 〈u, a ∨ v〉.
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Corollary 3.2.3. For each a ∈ Λ1 with |a| = 1, and each u ∈ Am,

(3.2.12) u = a ∧ (a ∨ u) + a ∨ (a ∧ u).

Proof.

This follows readily from (6) above. 2

In what follows, if Ω is a Lipschitz domain with unit normal ν and u : Ω̄ → Am,

we set

(3.2.13) unor := ν ∧ (ν ∨ u)

and call it the normal component of u, and set

(3.2.14) utan := ν ∨ (ν ∧ u)

and call it the tangential component of u.

We record a lemma which will be important for further subsequent development.

Lemma 3.2.4. Assume that a ∈ Λ1, and that u ∈ A4. Then

(3.2.15) a ∧ (e4u) = −e4(a ∧ u) and a ∨ (e4u) = −e4(a ∨ u).

Proof.

By linearity, it suffices to treat the cases: u ∈ Λj, 0 ≤ j ≤ 3, and u = e4v, where

v ∈ Λj, 0 ≤ j ≤ 3. Since, in general, Πj+1(e4w) = e4 · Πj(w) if w ∈ Aj, 0 ≤ j ≤ 3,

the desired conclusion follows readily from definitions. 2
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Important Convention. For the remainder of this work, we shall denote by

Λ0, Λ1, Λ2, Λ3, the scalars, vectors, bi-vectors, tri-vectors of A3, which, in turn, is

viewed as a subalgebra of A4. In particular,

(3.2.16) A4 = A3 ⊕ (e4A3)

and, hence,

A4 = Λ0 ⊕ (Λ1 ⊕ e4Λ
0)⊕ (Λ2 ⊕ e4Λ

1)⊕ (Λ3 + e4Λ
2)⊕ e4Λ

3.(3.2.17)
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Chapter 4

Clifford Analysis

4.1 Dirac Operators

Let Ω be an open subset in Rm. We shall work with Am-valued functions defined

in Ω, i.e. functions f : Ω → Am. If f is Am-valued, we can decompose f much as

we have decomposed Clifford elements. Hence, we can write

(4.1.1) f(x) :=
m∑

l=0

∑

|I|=l

′
fI(x)eI ,

where each coefficient fI : Ω → C. Note that algebraic combinations of Am-valued

functions, such as λf , f ± g and f · g, for λ ∈ C and f, g Am-valued, are defined in

a natural fashion.

Let N be the set of natural numbers, i.e. N = {1, 2, 3, . . . }, and, in addition,

set N0 := N ∪ {0}. Let α = (α1, . . . , αm) ∈ Nm
0 be a multi-index. The length of α

is defined as

|α| :=
m∑

j=1

αj.

35



Define

Ck(Ω) := {f : Ω → C : ∂αf is continuous for any |α| ≤ k}.

We say that f : Ω → Am is of class Ck if each fI ∈ Ck(Ω), and denote the set of

functions of class Ck by

Ck(Ω,Am) := {f : Ω → Am : fI ∈ Ck(Ω) for all |I| ≤ m}.

We now introduce several Dirac-like operators. The classical Dirac operator

(named after P. Dirac) is the first-order, differential operator given by

(4.1.2) D :=
m∑

j=1

ej∂j.

If f(x) =
∑′

|I| fI(x)eI is of class C1, then Df is defined naturally by

(4.1.3) Df :=
m∑

|I|=0

′
m∑

j=1

(∂jfI(x))ejeI .

We can also define fD in a similar way. For k ∈ C, the perturbed Dirac operator

Dk is defined as

(4.1.4) Dk = D+ kem+1,

i.e., if f is an Am+1-valued function, then

(4.1.5) Dkf :=
m∑

j=1

ej∂jf + kem+1f.

We now make some definitions concerning these Dirac operators.
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Let f ∈ C1(Ω,Am). If Df = 0 in Ω, then f is called left-monogenic. If fD = 0

in Ω, then f is called right-monogenic. Similarly, if Dkf = 0 (or fDk = 0) in

Ω, then f is called left-k-monogenic (or right-k-monogenic). Sometimes, the term

Clifford analytic or holomorphic is used in place of monogenic.

Now, we discuss connections that between the operators D and Dk on the one

hand, and Laplace operator

∆ :=
m∑

j=1

∂2
j .

and the Helmholtz operator ∆ + k2, on the other hand. We have the following

standard lemma.

Lemma 4.1.1. There hold

(4.1.6) D2 = −∆

and, if k ∈ C is arbitrary,

(4.1.7) D2
k = −(∆ + k2).

4.2 The Exterior Derivative Operator

In this section, we attempt to define the exterior derivative operator d and its

(formal) adjoint δ as follows:

(4.2.8) du := Πl+1(Du)

(4.2.9) δu := Πl−1(Du)
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whenever u is a Λl-valued function, 0 ≤ l ≤ m.

Remark 4.2.1. The exterior derivative operator d maps any Λ0-valued function

into 0, and its adjoint, δ, maps any Λm-valued function into 0.

Remark 4.2.2. If ϕ is vector-valued, then dϕ = ∇ϕ.

We now comment on the connection between the Dirac operator D and the

operators d and δ.

Lemma 4.2.3. For the exterior derivative operator d and its adjoint δ, the follow-

ing hold:

(4.2.10) D = d + δ, d2 = 0, δ2 = 0, and dδ + δd = −∆.

There are also a number of useful properties of the Hodge star operator and

the operators d and δ which we would like to summarize here.

Lemma 4.2.4. Suppose that u is a Λl-valued function, 0 ≤ l ≤ m. Then the

following hold:

1. ∗δu = (−1)ld(∗u);

2. δ(∗u) = (−1)l+1 ∗ (du);

3. δu = (−1)m(l+1)+1 ∗ (d(∗u)).
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When we restrict our attention to the physically most relevant case, i.e. m = 3,

and work with A3 ↪→ A4, employing standard three-dimensional notation, we have

the following lemma.

Lemma 4.2.5. For any Λ1-valued functions u, v, we have

(4.2.11) div u = −δu, 〈u, v〉 = u ∨ v, curl u = ∗ du, and u× v = ∗ (u ∧ v).

The proof is elementary, hence omitted.

Let us also introduce the following lemma which allows us to interchange the

operators d, δ and the imaginary unit e4.

Lemma 4.2.6. For the exterior derivative opearator d and its adjoint δ, the fol-

lowing hold:

(4.2.12) de4 = −e4d, and δe4 = −e4δ.
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Chapter 5

Smoothness Spaces on the
Boundary of a Lipschitz Domain

5.1 Tangential and Normal Spaces

Let Ω be a bounded Lipschitz domain in Rm, and denote by dσ and ν the surface

measure and outward unit normal to ∂Ω, respectively.

For 1 < p < ∞, Lp(∂Ω) stands for the usual Lebesgue space of functions defined

on ∂Ω which are measurable, and p-th power integrable with respect to the surface

measure dσ. In other words, we have

(5.1.1) Lp(∂Ω) :=
{

f : ∂Ω → C measurable : ‖ f ‖Lp(∂Ω):=
[ ∫

∂Ω

|f |pdσ
] 1

p
< ∞

}
.

Next, define the first-order Sobolev space

(5.1.2) Lp
1(∂Ω) := {f ∈ Lp(∂Ω) : ∇tanf ∈ Lp(∂Ω)},

where

(5.1.3) ∇tanf := ∇f − (∂νf)ν = ∇f − (ν · ∇f)ν
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is the tangential gradient of f on ∂Ω. When m = 3, we also have

(5.1.4) ∇tanf = −ν × (ν ×∇f).

The norm in Lp
1(∂Ω) is defined by

(5.1.5) ‖ f ‖Lp
1(∂Ω):=‖ f ‖Lp(∂Ω) + ‖ ∇tanf ‖Lp(∂Ω) .

Next, we discuss the surface divergence operator. First, for 1 < p < ∞, we set

(5.1.6) Lp
tan(∂Ω) := {f ∈ Lp(∂Ω,R3) : 〈ν, f〉 = 0 a.e. on ∂Ω}

and introduce the surface divergence operator

(5.1.7) Div : Lp
tan(∂Ω) → Lp

−1(∂Ω),

∫

∂Ω

gDivf dσ = −
∫

∂Ω

〈f,∇tang〉 dσ

for each f ∈ Lp
tan(∂Ω), and g ∈ Lp′

1 (∂Ω) = (Lp
−1(∂Ω))∗, where 1

p
+ 1

p′ = 1.

For 1 < p < ∞, another space that is going to be important for us in the sequel

is

(5.1.8) Lp,Div
tan (∂Ω) := {f ∈ Lp

tan(∂Ω) : Divf ∈ Lp(∂Ω)},

equipped with the norm

(5.1.9) ‖ f ‖Lp,Div
tan (∂Ω):=‖ f ‖Lp(∂Ω,R3) + ‖ Divf ‖Lp(∂Ω) .

For Am-valued functions, we define

(5.1.10) Lp(∂Ω,Am) :=
{

f(x) =
m∑

l=0

∑

|I|=l

′
fI(x)eI : fI ∈ Lp(∂Ω)

}
.
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Going further, let us restrict our attention to the physicall most relevant case, i.e.

m = 3, and we introduce a new operator, d∂, by the requirement that

(5.1.11)

∫

∂Ω

〈d∂f, ϕ〉 dσ :=

∫

∂Ω

〈f, δϕ〉 dσ.

for any test function ϕ ∈ C1(R3,A4).

Moreover, we call f ∈ Lp(∂Ω,A4) normal if ν ∧ f = 0 a.e. on ∂Ω and set

(5.1.12) Lp
nor(∂Ω,A4) := {f ∈ Lp(∂Ω,A4) : ν ∧ f = 0 a.e. on ∂Ω},

then define

(5.1.13) Lp,d
nor(∂Ω,A4) := {f ∈ Lp

nor(∂Ω,A4) : d∂f ∈ Lp(∂Ω,A4)},

equipped with the norm

(5.1.14) ‖ f ‖Lp,d
nor(∂Ω,A4):= ‖ f ‖Lp(∂Ω,A4) + ‖ d∂f ‖Lp(∂Ω,A4) .

Similarly, we define another operator, δ∂, by demanding that

(5.1.15)

∫

∂Ω

〈δ∂f, ϕ〉 dσ :=

∫

∂Ω

〈f, dϕ〉 dσ

for any ϕ ∈ C1(R3,A4).

Call f ∈ Lp(∂Ω,A4) tangential if ν ∨ f = 0 a.e. on ∂Ω. Thus, after defining

the related space

(5.1.16) Lp
tan(∂Ω,A4) := {f ∈ Lp(∂Ω,A4) : ν ∨ f = 0 a.e. on ∂Ω},
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we can introduce

(5.1.17) Lp,δ
tan(∂Ω,A4) := {f ∈ Lp

tan(∂Ω,A4) : δ∂f ∈ Lp(∂Ω,A4)}

and equip it with the norm

(5.1.18) ‖ f ‖Lp,δ
tan(∂Ω,A4):= ‖ f ‖Lp(∂Ω,A4) + ‖ δ∂f ‖Lp(∂Ω,A4) .

At this stage, We introduce some important properties of the operators d∂ and δ∂,

which are first proved in the reference [MiD].

Lemma 5.1.1. If F ∈ L1
tan(∂Ω,A4) is such that δ∂F ∈ L1

tan(∂Ω,A4), then

(5.1.19) δ∂(δ∂F ) = 0.

Similarly, if G ∈ L1
nor(∂Ω,A4) is such that d∂G ∈ L1

nor(∂Ω,A4), then

(5.1.20) d∂(d∂G) = 0.

Lemma 5.1.2. Let ν be the outward unit normal to ∂Ω. Let F ∈ C∞(Ω,A4) be

such that F and dF have non-tangential boundary traces at almost any point on

∂Ω and N(F ), N(dF ) ∈ L1(∂Ω). Then d∂(ν ∧ F
∣∣∣
∂Ω

) exists in L1 and in fact

(5.1.21) d∂(ν ∧ F
∣∣∣
∂Ω

) = −ν ∧ (dF )
∣∣∣
∂Ω

.

Similarly, if F and δF have non-tangential boundary traces at almost any point on

∂Ω and N(F ), N(δF ) ∈ L1(∂Ω). Then δ∂(ν ∨ F
∣∣∣
∂Ω

) exists in L1 and

(5.1.22) δ∂(ν ∨ F
∣∣∣
∂Ω

) = −ν ∨ (δF )
∣∣∣
∂Ω

.
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5.2 Decomposition of Lp,d
nor(∂Ω,A3)

Our next result is a decomposition theorem for the space Lp,d
nor(∂Ω,A3).

Theorem 5.2.1. For each 1 < p < ∞, we have

Lp,d
nor(∂Ω,A3) = νLp

1(∂Ω)⊕ ∗Lp,Div
tan (∂Ω)⊕ ∗Lp(∂Ω).

Proof.

Take h ∈ Lp,d
nor(∂Ω,A3) and write h = h0 + h1 + h2 + h3, where hj is Λj-valued

for j = 0, 1, 2, 3. By the definition of Lp,d
nor(∂Ω,A3), we have that hj ∈ Lp(∂Ω,A3),

ν∧h = 0, and d∂h ∈ Lp(∂Ω,A3). It is obvious that ν∧h = 0 implies that ν∧hj = 0

for j = 0, 1, 2, 3.

By corollary 3.2.3, we know that h0 = ν∧(ν∨h0)+ν∨(ν∧h0). Since ν∨h0 = 0

and ν ∧ h0 = 0, then h0 = 0.

Next, ν∧h1 = 0 implies ∗(ν∧h1) = 0. Invoking the identity ∗(ν∧h1) = ν×h1,

we obtain ν × h1 = 0. Therefore, h1 = fν, where f is a scalar-valued function.

Since h1 ∈ Lp(∂Ω,A3), then f ∈ Lp(∂Ω).

For any function ϕ ∈ C∞
0 (∂Ω,A3), we can write

ϕ = ϕ0 + ϕ1 + ∗ϕ′
0 + ∗ϕ′

1,

where ϕ0 and ϕ
′
0 are Λ0-valued functions, and ϕ1 and ϕ

′
1 are Λ1-valued functions.

Applying the operator δ to ϕ, we then get

δϕ = δϕ1 + ∗(dϕ
′
1)− ∗(dϕ

′
0).
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In particular, choose ϕ such that ϕ0 = ϕ1 = ϕ
′
0 = 0, and ϕ

′
1 is arbitrary. In this

scenario, the identity

∫

∂Ω

〈δϕ, h〉 dσ =

∫

∂Ω

〈ϕ, d∂h〉 dσ

becomes

∫

∂Ω

〈∗(dϕ
′
1), fν〉 dσ =

∫

∂Ω

〈ϕ′
1, d∂h〉 dσ.

Redenoting ϕ
′
1 by g, we are led to the conclusion that

∫

∂Ω

〈∗(dg), ν〉f dσ =

∫

∂Ω

〈g, d∂h〉 dσ.

On the other hand,

∫

∂Ω

〈∗(dg), ν〉f dσ =

∫

∂Ω

〈ν, curlg〉f dσ = −
∫

∂Ω

〈ν ×∇f, g〉 dσ.

Hence, ultimately we have −ν ×∇f = d∂h ∈ Lp(∂Ω,A3). Consequently,

∇tanf = −ν × (ν ×∇f) ∈ Lp(∂Ω,A3).

This proves that f ∈ Lp
1(∂Ω) and, thus, h1 ∈ νLp

1(∂Ω).

Next, let us choose ϕ such that ϕ0 = ϕ1 = ϕ
′
1 = 0, and ϕ

′
0 is arbitrary. In this

case, the left-hand side of the identity

∫

∂Ω

〈δϕ, h〉 dσ =

∫

∂Ω

〈ϕ, d∂h〉 dσ

46



reduces to

∫

∂Ω

〈δϕ, h〉 dσ = −
∫

∂Ω

〈∗(dϕ
′
0), h2〉 dσ

= −
∫

∂Ω

〈dϕ
′
0, ∗h2〉 dσ

= −
∫

∂Ω

〈∇ϕ
′
0, ∗h2〉 dσ.

Since ν ∨ (∗h2) = ∗(ν ∧ h2) = 0, then ∗h2 is tangential. Consequnetly,

∫

∂Ω

〈∇ϕ
′
0, ∗h2〉 dσ =

∫

∂Ω

〈∇tanϕ
′
0, ∗h2〉 dσ.

On the other hand, the right-hand side of the identity

∫

∂Ω

〈δϕ, h〉 dσ =

∫

∂Ω

〈ϕ, d∂h〉 dσ

can be written as

∫

∂Ω

〈ϕ, d∂h〉 dσ =

∫

∂Ω

〈∗ϕ′
0, d∂h〉 dσ =

∫

∂Ω

〈ϕ′
0, ∗(d∂h)〉 dσ.

The bottom line is that

∫

∂Ω

〈∇tanϕ
′
0, ∗h2〉 dσ = −

∫

∂Ω

〈ϕ′
0, ∗(d∂h)〉 dσ, ∀ϕ′

0 ∈ C∞
0 (∂Ω,A3),

Since ϕ
′
0 is Λ0-valued, we can replace ∗(d∂h) by Π0(∗(d∂h)), in the equation above.

Then, the equation is now

∫

∂Ω

〈∇tanϕ
′
0, ∗h2〉 dσ = −

∫

∂Ω

〈ϕ′
0, Π0(∗(d∂h))〉 dσ.
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for any nice ϕ
′
0 ∈ C∞

0 (∂Ω,A3). By the definition of Lp,Div
tan (∂Ω,A3), we may therefore

conclude that

Div(∗h) = Π0(∗(d∂h)) ∈ Lp(∂Ω), hence ∗ h2 ∈ Lp,Div
tan (∂Ω).

Finally, since h3 is a Λ3-valued function, the condition ν ∧ h3 = 0 is satisfied

automatically, and we can simply view h3 as an element in ∗Lp(∂Ω). This finishes

the proof of the decomposition theorem. 2
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Chapter 6

The Cauchy Integral and Related
Operators

6.1 Definitions and Basic Properties

For each k ∈ C, let Φk stand for the standard radial fundamental solution for the

Helmholtz operator ∆ + k2 in Rm, that is

(6.1.1) Φk(x) :=
1

4i

( k

2π

)m−2
2 1

|x|m−2
2

H
(1)
m−2

2

(k|x|),

where x ∈ Rm\{0} and H1
α denotes the Hankel function of the first kind and order

α. In particular, in R3,

(6.1.2) Φk(x) := − eik|x|

4π|x| ,

where x ∈ R3\{0}.

Let Ω be a Lipschitz domain of R3. The associated single-layer potential oper-

ator is defined by

(6.1.3) (Skf)(x) :=

∫

∂Ω

Φk(x− y)f(y) dσy, x 6∈ ∂Ω,
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and its boundary version is given by

(S kf)(x) :=

∫

∂Ω

Φk(x− y)f(y) dσy,(6.1.4)

= − 1

4π

∫

∂Ω

eik|x−y|

|x− y|f(y)dσy, x ∈ ∂Ω.

We define the Cauchy operator Ck by

(6.1.5) Ck := DkSk = dSk + δSk + k e4Sk,

or, more explicitly,

(6.1.6) (Ckf)(x) =

∫

∂Ω

DkΦk(x− y)f(y) dσy, x 6∈ ∂Ω.

Its boundary version is given by

(6.1.7) (Ckf)(x) = p.v.

∫

∂Ω

DkΦk(x− y)f(y) dσy, x ∈ ∂Ω.

We also find it useful to work with the double-layer potential operator

Kkf(x) := p.v.

∫

∂Ω

∂νyΦk(x− y)f(y) dσy, x ∈ ∂Ω.(6.1.8)

and its formal transpose Kt
k. Above, p.v. stands for ”principle value”, i.e. the

integral is consider over {y ∈ ∂Ω : |x − y| > ε} and then we pass the limit as

ε → 0+.

Remark 6.1.1. The following identities hold:

(6.1.9) Kkf = −divSk(νf) and Kt
kf = ν · ∇Skf.
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Finally, the principle value magnetic dipole operator is given by

(6.1.10) Mkf(x) := ν(x)×
(

p.v.

∫

∂Ω

curlx{Φk(x− y)f(y)} dσy

)
, x ∈ ∂Ω.

At the end of this section, we introduce some important properties of the op-

erators d∂ and δ∂, which are first proved in the reference [MiD].

Lemma 6.1.2. Let Ω be a bounded Lipschitz domain in Rm, and 1 < p < ∞.

Then for any F ∈ Lp,d
nor(∂Ω,Am) we have

(6.1.11) dSkF = Sk(d∂F ).

Similarly, for any G ∈ Lp,δ
tan(∂Ω,Am) we have

(6.1.12) δSkG = Sk(δ∂G).

Next we present a version of Lemma 6.1.2 which deals with the case when all

integral operators are considered on the boundary.

Corollary 6.1.3. Let Ω be a bounded Lipschitz domain in Rm. For 1 < p < ∞,

we have

(6.1.13) dSkF = Sk(d∂F ) for F ∈ Lp,d
nor(∂Ω,Am),

and

(6.1.14) δSkG = Sk(δ∂G) for G ∈ Lp,δ
tan(∂Ω,Am).
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6.2 Non-tangential Maximal Function Estimates

In this section we shall prove an important result to the effect that functions ex-

pressed in terms of the Cauchy operator when acting on suitable spaces satisfy

natural non-tangential maximal function estimates. Concretely we have the fol-

lowing theorem.

Theorem 6.2.1. For each k ∈ C and 1 < p < ∞, there exists C = C(k, ∂Ω, p) > 0

such that if u := Ckf in Ω, for f ∈ Lp,d
nor(∂Ω,A4), then

(6.2.15) ‖N(u)‖Lp(∂Ω) + ‖N(du)‖Lp(∂Ω) + ‖N(δu)‖Lp(∂Ω) ≤ C‖f‖Lp,d
nor(∂Ω,A4).

Proof.

Based on (6.1.5), write

(6.2.16) u = dSkf + δSkf + ke4Skf.

From Theorem 2.3.1,

(6.2.17) ‖N(u)‖Lp(∂Ω) ≤ C‖f‖Lp,d
nor(∂Ω,A4).

Next, by Lemma 4.2.3 and Lemma 4.2.6, we have

du = d2Skf + dδSkf + kde4Skf(6.2.18)

= dδSkf − ke4dSkf.(6.2.19)

52



Using dδ = −δd−(∆+k2)+k2 and the fact that the Helmholtz operator annihilates

the single-layer Sk, we obtain that

du = −δdSkf + k2Skf − ke4dSkf.(6.2.20)

Recall that dSkf = Sk(d∂f) (see Lemma 6.1.2), we finally arrive at the represen-

tation

du = −δSk(d∂f) + k2Skf − ke4dSkf.(6.2.21)

To this end, the Calderón-Zygmund theory 2.3.1 applies. Since, d∂f ∈ Lp(∂Ω,A4)

given that f ∈ Lp,d
nor(∂Ω,A4), we thus have,

(6.2.22) ‖N(du)‖Lp(∂Ω) ≤ C‖f‖Lp,d
nor(∂Ω,A4).

The case of N(δu) is similar, even simpler. Concretely,

δu = δSk(d∂f)− ke4dSkf,(6.2.23)

and the same analysis applies. 2

6.3 Jump Formulas

We next discuss the jump formulas for the exterior derivative operator and its

adjoint acting on Sk. These formulas are of basic importance for our work in the

sequel.
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Theorem 6.3.1. For any h ∈ Lp(∂Ω,A4), and a.e. x ∈ ∂Ω, we have

(6.3.24) dSkh
∣∣∣
∂Ω±

(x) = ∓1
2
(ν ∧ h)(x) + dSkh(x),

where

(6.3.25) dSkh(x) := p.v.

∫

∂Ω

(∇Φk)(x− y) ∧ h(y) dσy.

and

(6.3.26) δSkh
∣∣∣
∂Ω±

(x) = ±1
2
(ν ∨ h)(x) + δSkh(x),

where

(6.3.27) δSkh(x) := −p.v.

∫

∂Ω

(∇Φk)(x− y) ∨ h(y) dσy.

These formulas are proved in [MiD] p.82.

Base on these, we can now prove the jump formulas for the Cauchy operator

Ck.

Theorem 6.3.2. For any h ∈ Lp(∂Ω,A4), and a.e. x ∈ ∂Ω, we have

(6.3.28) Ckh
∣∣∣
∂Ω±

= (∓1
2
ν ·+ Ck)h.

Proof.

By the definition of Ck, we may write

Ckh
∣∣∣
∂Ω±

= dSkh
∣∣∣
∂Ω±

+ δSkh
∣∣∣
∂Ω±

+ k e4Skh
∣∣∣
∂Ω±

.
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By (6.3.24), we have that

dSkh
∣∣∣
∂Ω±

= ∓1
2
(ν ∧ h)(x) + dSkh(x).

Also the equality (6.3.26) gives us

δSkh
∣∣∣
∂Ω±

= ±1
2
(ν ∨ h) + δSkh.

Since the single layer-operator Sk has less singularity, then

k e4Skh
∣∣∣
∂Ω±

= k e4Skh.

Therefore,

Ckh
∣∣∣
∂Ω±

= ∓1
2
(ν ∧ h) + dSkh +±1

2
(ν ∨ h) + δSkh + k e4Skh

= ∓1
2
[ν ∧ h− ν ∨ h] + Ckh

= ∓1
2
ν · h + Ckh.

This finishes the proof. 2

6.4 Decay at Infinity

We next discuss the decay at infinity in the form of the following lemma.

Lemma 6.4.1. If f ∈ L1(∂Ω,A4), where Ω is a bounded Lipschitz domain, and u

is defined by

u(x) :=

∫

∂Ω

DkΦk(x− y)f(y) dσy, x ∈ Ω−,
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then u satisfies the following decay condition

(6.4.29) lim
|x|→∞

(|x| − ie4x)u(x) = 0.

Proof.

As mentioned in (6.1.2), Φk(x) is the fundament solution of ∆ + k2 in R3. That is,

Φk(x) := − 1

4π|x| eik|x|.

Computing the partial derivative ∂1Φk(x), we have

∂1Φk(x) = ∂1

(
− 1

4π|x| eik|x|
)

= − 1

4π
∂1

(
1

|x| eik|x|
)

= − 1

4π

[
∂1((x

2
1 + x2

2 + x2
3)
−1

2 ) eik|x| +
1

|x| ∂1(e
ik(x2

1+x2
2+x2

3)
1
2 )

]

= − 1

4π

[
− x1

|x|3 eik|x| +
ikx1

|x|2 eik|x|
]

.

Similarly,

∂2Φk(x) = − 1

4π

[
− x2

|x|3 eik|x| +
ikx2

|x|2 eik|x|
]

,

and

∂3Φk(x) = − 1

4π

[
− x3

|x|3 eik|x| +
ikx3

|x|2 eik|x|
]

.
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Considering all these partial derivatives together, we obtain

DkΦk(x− y) = DΦk(x− y) + k e4Φk(x− y)

=
3∑

j=1

(∂jΦk(x− y))ej + k e4Φk(x− y)

= − 1

4π

[
− x− y

|x− y|3 eik|x−y| +
ik(x− y)

|x− y|2 eik|x−y|
]

+ k e4

(
− 1

4π|x− y| eik|x−y|
)

= − 1

4π

[
− x− y

|x− y|3 +
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|.

Once DkΦk(x− y) has been calculated out, we have

(|x| − ie4x)u(x)

=

∫

∂Ω

DkΦk(x− y)f(y) dσy

=

∫

∂Ω

1

4π
(|x| − ie4x)

x− y

|x− y|3 eik|x−y|f(y)dσy

+

∫

∂Ω

− 1

4π
(|x| − ie4x)

[
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|f(y)dσy.

Estimating the first integral above gives

∣∣∣∣
∫

∂Ω

1

4π
(|x| − ie4x)

x− y

|x− y|3 eik|x−y|f(y)dσy

∣∣∣∣

≤ c

∫

∂Ω

|x| 1

|x− y|2 |f(y)|dσy.

Since y ∈ ∂Ω and |x| → ∞ then, as x is large enough, it is not hard to see that

1

|x− y|2 ≤
c

|x|2 .
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Therefore,

∣∣∣∣
∫

∂Ω

1

4π
(|x| − ie4x)

x− y

|x− y|3 eik|x−y|f(y)dσy

∣∣∣∣

≤ c

∫

∂Ω

|x| 1

|x|2 |f(y)|dσy

≤ c
1

|x|
∫

∂Ω

|f(y)|dσy

≤ c
1

|x| ‖ f ‖L1(∂Ω)→ 0 as |x| → ∞.

In order to estimate the second integral, we introduce the function

G(z) :=
ik

|z|2 [z − ie4|z|] = ik
z

|z|2 +
k e4

|z| .

A direct computation of the partial derivatives of G (z) yields the following:

∂1G (z) = ∂1

(
ik

z

|z|2
)

+ ∂1

(
k e4

|z|
)

= ik∂1

(
z

|z|2
)

+ k e4∂1

(
1

|z|
)

= ik

[
(∂1z)

1

|z|2 + z∂1
1

|z|2
]

+ k e4∂1

(
1

|z|
)

= ik

[
e1

|z|2 −
z1z

|z|4
]

+ k e4

(
− z1

|z|4
)

.

Similarly,

∂2G (z) = ik

[
e2

|z|2 −
z2z

|z|4
]

+ k e4

(
− z2

|z|4
)

,

and

∂3G (z) = ik

[
e3

|z|2 −
z3z

|z|4
]

+ k e4

(
− z3

|z|4
)

.
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Therefore,

|∇G (z)| ≤ c
1

|z|2 .

Then we can rewrite

∫

∂Ω

− 1

4π
(|x| − ie4x)

[
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|f(y)dσy

=

∫

∂Ω

− 1

4π
(|x| − ie4x) G(x− y) eik|x−y|f(y)dσy

=

∫

∂Ω

− 1

4π
(|x| − ie4x) [G(x− y)−G(x)] eik|x−y|f(y)dσy

+

∫

∂Ω

− 1

4π
(|x| − ie4x) G(x) eik|x−y|f(y)dσy.

Let us point out that since x · x = −|x|2, we have

(|x| − ie4x) G(x)

=
ik

|x|(|x| − ie4x)(x− ie4|x|)

=
ik

|x|
[|x|x− ie4|x|2 − ie4x · x− |x|x

]

=
ik

|x|
[|x|x− ie4|x|2 + ie4|x|2 − |x|x

]

= 0.

Hence, it follows that

∫

∂Ω

− 1

4π
(|x| − ie4x)

[
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|f(y)dσy

=

∫

∂Ω

− 1

4π
(|x| − ie4x) [G(x− y)−G(x)] eik|x−y|f(y)dσy.
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With the above equality in hands, we estimate

∣∣∣∣
∫

∂Ω

− 1

4π
(|x| − ie4x)

[
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|f(y)dσy

∣∣∣∣

≤
∣∣∣∣
∫

∂Ω

− 1

4π
(|x| − ie4x) [G(x− y)−G(x)] eik|x−y|f(y)dσy

∣∣∣∣

≤ c

∫

∂Ω

∣∣∣|x| − ie4x
∣∣∣ |G(x− y)−G(x)|

∣∣eik|x−y|∣∣ |f(y)| dσy.

At this stage, apply the Mean Value Theorem,

G(x− y)−G(x) = (∇G)(x− ξy) · (−y), for some ξ ∈ (0, 1),

and further estimate

∣∣∣∣
∫

∂Ω

− 1

4π
(|x| − ie4x)

[
ik(x− y)

|x− y|2 +
k e4

|x− y|
]

eik|x−y|f(y)dσy

∣∣∣∣

≤ c

∫

∂Ω

∣∣∣|x| − ie4x
∣∣∣ |∇G(x− ξy)| |y|

∣∣eik|x−y|∣∣ |f(y)| dσy

≤ c

∫

∂Ω

|x| 1

|x− ξy|2 |f(y)| dσy

≤ c
|x|
|x|2

∫

∂Ω

|f(y)| dσy

≤ c
1

|x| ‖ f ‖L1(∂Ω)→ 0 as |x| → ∞.

This concludes the proof. 2

6.5 Invertibility of the Cauchy-type Operator λI+

ν ∧ Ck

We are now ready to show the main result of this chapter.
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Theorem 6.5.1. Let Ω ⊂ R3 be an arbitrary Lipschitz domain with compact bound-

ary. Then for every λ ∈ R with |λ| ≥ 1
2
, there exists a sequence of real numbers

{kj}j such that for each 1 < p < 2 + ε and k ∈ C\{kj}j, the operator λI + ν ∧ Ck

is an isomorphism on Lp,d
nor(∂Ω,A4)

Proof.

For any f ∈ Lp,d
nor(∂Ω,A4), it can be rewritten as f = F + e4F̃ , where both F and

F̃ are in Lp,d
nor(∂Ω,A3). Recall that

CkF = DkSkF

= dSkF + δSkF + k e4SkF

= Sk(d∂F ) + δSkF + k e4SkF.(6.5.30)

Restrict Ck to the boundary, apply the jump formulas for Ck and δSk, and then

apply ν∧ to both sides of the equality (6.5.30), we arrive at

(6.5.31) ν ∧ (−1
2
ν ·F + CkF ) = ν ∧Sk(d∂F ) + ν ∧ (1

2
ν ∨F + δSkF ) + k e4ν ∧SkF.

Moreover, considering that F is in Lp,d
nor(∂Ω,A3), we can further simplify the equal-

ity (6.5.31) and write

(6.5.32) (ν ∧ Ck)F = ν ∧ Sk(d∂F ) + ν ∧ δSkF + k e4ν ∧ SkF.

By Theorem 5.2.1, we can express F as

(6.5.33) F = νf0 + ∗f1 + ∗f ′0,
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where f0 is in Lp
1(∂Ω), f1 is in Lp,Div

tan (∂Ω), and f
′
0 is in Lp(∂Ω). So

(6.5.34) ν ∧ δSkF = ν ∧ δSk(νf0) + ν ∧ δSk(∗f1) + ν ∧ δSk(∗f ′0).

For the first term ν ∧ δSk(νf0) in the equality (6.5.34), we have

ν ∧ δSk(νf0) = −ν ∧ p.v.

∫

∂Ω

〈(∇Φk)(· − y), ν(y)〉f0(y) dσy

= νKkf0.(6.5.35)

For the second term, ν ∧ δSk(∗f1), we write

ν ∧ δSk(∗f1) = ν ∧ (∗dSkf1)

= − ∗ (ν ∨ dSkf1)

= − ∗
(

ν ∨ p.v.

∫

∂Ω

dΦk(· − y) ∧ f1(y) dσy

)

= − ∗
(

ν ∨ ∗ p.v.

∫

∂Ω

∇Φk(· − y)× f1(y) dσy

)

= ν ∧ p.v.

∫

∂Ω

curl(Φk(· − y)f1(y)) dσy

= ∗
(

ν × p.v.

∫

∂Ω

curl(Φk(· − y)f1(y)) dσy

)

= ∗Mkf1.(6.5.36)

Finally, we can rewrite the third term, ν ∧ δSk(∗f ′0), as

ν ∧ δSk(∗f ′0) = − ∗ (ν ∨ dSkf
′
0)

= − ∗ 〈ν,∇Skf
′
0〉

= − ∗ ∂νSkf
′
0

= − ∗Kt
kf

′
0.(6.5.37)
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In summary, from the equalities (6.5.35), (6.5.36) and (6.5.37), the equality (6.5.32)

becomes

(ν ∧ Ck)F = νKkf0 + ∗Mkf1 − ∗Kt
kf

′
0

+ν ∧ Sk(d∂F ) + k e4ν ∧ SkF.

Let I denote the identity operator. For every λ ∈ R, we may write

(λI + ν ∧ Ck)F

= ν[λI + Kk]f0 + ∗[λI + Mk]f1 + ∗[λI −Kt
k]f

′
0

+ ν ∧ Sk(d∂F ) + k e4ν ∧ SkF,(6.5.38)

where F ∈ Lp,d
nor(∂Ω,A3). Similarly, for every λ ∈ R, we have

(−λI + ν ∧ C−k)F

= ν[−λI + K−k]f0 + ∗[−λI + M−k]f1 + ∗[−λI −Kt
−k]f

′
0

+ ν ∧ S−k(d∂F )− k e4ν ∧ S−kF.(6.5.39)

Let us compute (λI + ν ∧ Ck)f . We start with writing

(λI + ν ∧ Ck)f

= (λI + ν ∧ Ck)(F + e4F̃ )

= (λI + ν ∧ Ck)F + (λI + ν ∧ Ck)(e4F̃ ).
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Since (ν ∧ Ck) e4 = −e4 (ν ∧ C−k), we may continue writing

(λI + ν ∧ Ck)f

= (λI + ν ∧ Ck)F − e4(−λI + ν ∧ C−k)F̃ .

By the equalities (6.5.38) and (6.5.39), we may further express (λI + ν ∧ Ck)f as

(λI + ν ∧ Ck)f

= ν[λI + Kk]f0 + ∗[λI + Mk]f1 + ∗[λI −Kt
k]f

′
0

+ν ∧ Sk(d∂F ) + k e4ν ∧ SkF

−e4

{
ν[−λI + K−k]f0 + ∗[−λI + M−k]f1 + ∗[−λI −Kt

−k]f
′
0

+ν ∧ S−k(d∂F )− k e4ν ∧ S−kF
}

.(6.5.40)

Our next goal is to prove that λI + ν ∧ Ck is a Fredholm operator with index

zero on Lp,d
nor(∂Ω,A4).

In order to continue with the proof, let us define a new operator T1, in the

following fashion:

(6.5.41) T1 : Lp,d
nor(∂Ω,A4) → Lp,d

nor(∂Ω,A3)⊕ Lp,d
nor(∂Ω,A3)

is such that for any f = F + e4F̃ ,

(6.5.42) T1(f) := (F, F̃ ).

It is trivial that T1 in (6.5.42) is an isomorphism.
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We shall also need an operator T2

T2 : Lp,d
nor(∂Ω,A3)⊕ Lp,d

nor(∂Ω,A3) → Lp
1(∂Ω)⊕ Lp,Div

tan (∂Ω)⊕ Lp(∂Ω)

⊕Lp
1(∂Ω)⊕ Lp,Div

tan (∂Ω)⊕ Lp(∂Ω)

defined such that for any (F, F̃ ) in Lp,d
nor(∂Ω,A3)⊕ Lp,d

nor(∂Ω,A3), where

(6.5.43) F = νf0 + ∗f1 + ∗f ′0

and

(6.5.44) F̃ = νf̃0 + ∗f̃1 + ∗f̃ ′0,

we have

(6.5.45) T2(F, F̃ ) := (f0, f1, f
′
0, f̃0, f̃1, f̃

′
0).

Once again, the operator T2 is an isomorphism.

Finally, let us consider an operator Q̃ written as a 6× 6 matrix

Q̃ :=




λI + Kk 0 0 0 0 0
0 λI + Mk 0 0 0 0
0 0 λI −Kt

k 0 0 0
0 0 0 −λI + K−k 0 0
0 0 0 0 −λI + M−k 0
0 0 0 0 0 −λI −Kt

−k




.

Our next goal is to show that, when considered between appropriate spaces, the

operator Q̃ is Fredholm with index zero. As a preamble, we record some results in

the paper [MMP].
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Lemma 6.5.2. Let X,Y, Z be Banach spaces and consider the commutative dia-

gram

0 X Y Z 0- - - -

0 X Y Z 0- - - -
? ? ?

where all arrows are linear and bounded and the horizontal sequences are exact.

Then the following hold:

a. If two vertical arrows are isomorphsims, then so is the third one.

b. If two vertical arrows are Fredholm operators, then so is the third. Moreover,

the index of the middle vertical arrow is the sum of the indices of the other

two vertical arrows.

Lemma 6.5.3. Let X0, Y0, X1, Y1 be Banach spaces and assume that the following

diagram is commutative:

X0 Y0
-

v0 v1

h0

h1
X1 Y1

-
? ?

Then if three of the four arrows are Fredholm operators, all arrows are Fredholm

operators. Furthermore, the difference between the indices of the horizontal arrows

is equal to the difference between the indices of the vertical arrows. In other words,

(6.5.46) h0 − h1 = v0 − v1,
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where h0 and h1 are the indices of the first and the second horizontal arrows re-

spectively, and v0 and v1 are the indices of the first and the second vertical arrows

correspondingly.

We are now in a position to state our claim about the operator Q̃ in a more

concrete fashion.

Lemma 6.5.4. The operator Q̃ is Fredholm with index zero when acting on

Lp
1(∂Ω)⊕ Lp,Div

tan (∂Ω)⊕ Lp(∂Ω)

⊕Lp
1(∂Ω)⊕ Lp,Div

tan (∂Ω)⊕ Lp(∂Ω).(6.5.47)

Proof.

We shall proceed in a series of steps, starting with:

Step 1. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + Kt

0 is an isomorphism of

Lp(∂Ω) for any 1 < p < 2 + ε.

Recall that this result was proved in the reference [EM].

Step 2. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + Kt

k is a Fredholm operator

with index zero on Lp(∂Ω) whenever 1 < p < 2 + ε.

Indeed, we write

λI + Kt
k = λI + Kt

0 + (Kt
k −Kt

0)

= (λI + Kt
0)[I − (λI + Kt

0)
−1 ◦ (−Kt

k + Kt
0)].
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The key observation is that −Kt
k + Kt

0 is compact on Lp(∂Ω). Thus,

I − (λI + Kt
0)
−1 ◦ (−Kt

k + Kt
0)

is Fredholm with index zero. By Step 1, λI +Kt
0 is an isomorphism and, therefore,

λI + Kt
k is Fredholm with index zero on Lp(∂Ω). (See the disussion in section 2.2).

Step 3. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + K0 is an isomorphism of

Lp
1(∂Ω) whenever 1 < p < 2 + ε.

Recall that this step was proved in the reference [EM].

Step 4. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + Kk is a Fredholm operator

with index zero on Lp
1(∂Ω) whenever 1 < p < 2 + ε.

To see this, we write

λI + Kk = λI + K0 + (Kk −K0)

= (λI + K0)[I − (λI + K0)
−1 ◦ (−Kk + K0)].

Once again, one can prove that−Kk+K0 is compact on Lp
1(∂Ω) for each 1 < p < ∞.

Consequently,

I − (λI + K0)
−1 ◦ (−Kk + K0)

is Fredholm with index zero on Lp
1(∂Ω). By Step 3, λI + K0 is an isomorphism

and, hence, λI + Kk is Fredholm with index zero on Lp
1(∂Ω).

Step 5. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + M0 is Fredholm with index

zero on Lp,0
tan(∂Ω) whenever 1 < p < 2 + ε.
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The object of this step is to recall some results from [MMP] and [Mi2]. Specif-

ically, as proved in the equation (5.12) of [MMP], we have

(ν ×∇)K0 = M0(ν ×∇),

and ν × ∇ is a Fredholm operator with index zero from Lp
1(∂Ω) to Lp,0

tan(∂Ω) by

Theorem 5.1-(v) in [MMP]. As a consequence, we have the following commutative

diagram:

Lp
1(∂Ω) Lp

1(∂Ω)-

Lp,0
tan(∂Ω) Lp,0

tan(∂Ω)-
? ?

λI + K0

λI + M0

ν ×∇ ν ×∇

where the two vertical arrows are Fredholm with index zero. Since, by Step 3,

the operator λI +K0 is an isomorphism, it follows from Lemma 6.5.3 that λI +M0

is Fredholm with index zero on Lp,0
tan(∂Ω) for λ ∈ R with |λ| > 1

2
, and 1 < p < 2+ε.

Step 6. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + M0 is a Fredholm operator

with index zero on Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω) whenever 1 < p < 2 + ε.

From Theorem 5.1-(viii) of [MMP], it follows that Div is a Fredholm operator

from the quotient space Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω) to Lp(∂Ω). Making k = 0 in Lemma

4.4 of [MMP] gives the following commutative diagram:
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Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω) Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω)-

-Lp(∂Ω) Lp(∂Ω)

? ?

λI + M0

λI −Kt
0

Div Div

Since the two vertical arrows are Fredholm, and since the operator λI−Kt
0 is Fred-

holm with index zero, it follows from Lemma 6.5.3 that the operator λI + M0 is

Fredholm with index zero when acting from the quotient space Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω)

into itself for λ ∈ R with |λ| > 1
2
, and 1 < p < 2 + ε.

Step 7. For each k ∈ C, and λ ∈ R with |λ| > 1
2
, λI + M0 is a Fredholm operator

with index zero on Lp,Div
tan (∂Ω) whenever 1 < p < 2 + ε .

Denote the natural inclusion operator from Lp,0
tan(∂Ω) into Lp,Div

tan (∂Ω) by

(6.5.48) ι(f) = f for any f ∈ Lp,0
tan(∂Ω).

and denote the projection operator π acting on Lp,Div
tan (∂Ω) into the quotient space

Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω) by

(6.5.49) π(f) := the class of f, modulo Lp,0
tan(∂Ω), where f ∈ Lp,Div

tan (∂Ω).

Going further, define the spaces X, Y and Z by

(6.5.50) X := Lp,0
tan(∂Ω), Y := Lp,Div

tan (∂Ω), and Z := Lp,Div
tan (∂Ω)/Lp,0

tan(∂Ω).

and consider the following commutative diagram:

70



0 X Y Z 0- - - -

0 X Y Z 0- - - -
? ? ?

where, in each exact sequence, the second horizontal arrow is the inclusion operator

ι and the third horizontal arrow is the projection operator π. We can easily check

that the two horizontal sequence in the commutative diagram are exact. Also by

Step 5 and Step 6, the first and the third vertical arrows in the above diagram

are both Fredholm operators with index zero. Consequently, by Lemma 6.5.2, the

second vertical arrow is also Fredholm with index zero, which proves that λI+M0 is

Fredholm with index zero on Lp,Div
tan (∂Ω) for λ ∈ R with |λ| > 1

2
, and 1 < p < 2+ ε.

Step 8. For each k ∈ C and λ ∈ R with |λ| > 1
2
, λI + Mk is a Fredholm operator

with index zero on Lp,Div
tan (∂Ω), whenever 1 < p < 2 + ε.

To see this, we rewrite the operator λI + Mk in the form

λI + Mk = λI + M0 + (Mk −M0).

Due to the weak singularity in the kernel, it is not difficult to prove that the

difference Mk −M0 is a compact operator on Lp,Div
tan (∂Ω). By invoking Step 7, this

further implies that λI + M0 is Fredholm with index zero on Lp,Div
tan (∂Ω). Then

λI + Mk is a Fredholm operator with index zero on Lp,Div
tan (∂Ω) for λ ∈ R with

|λ| > 1
2
, and 1 < p < 2 + ε.

Step 9. For each k ∈ C and λ ∈ R with |λ| > 1
2
, the operator Q̃, which is defined

right before Lemma 6.5.2, is Fredholm with index zero when acting on the space

defined in (6.5.47), whenever 1 < p < 2 + ε .
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The proof of this step follows readily from Step 1 to Step 8.

With the Fredholmness of Q̃ in hands, we define a new operator Q as the

composition

(6.5.51) Q := T−1
1 ◦ T−1

2 ◦ Q̃ ◦ T2 ◦ T1,

where T1 and T2 have been introduced in (6.5.42) and (6.5.45). Since the operators

T1 and T2 are isomorphisms and Q̃ is Fredholm with index zero, then by Theo-

rem 2.2.7, Q is a Fredholm operator with index zero on Lp,d
nor(∂Ω,A4), whenever

k ∈ C, λ ∈ R with |λ| > 1
2
, and 1 < p < 2 + ε .

In order to continue the proof, we consider two projection operators, namely

(6.5.52) π1 : Lp,d
nor(∂Ω,A4) → Lp,d

nor(∂Ω,A3)

and

(6.5.53) π2 : Lp,d
nor(∂Ω,A4) → Lp,d

nor(∂Ω,A3)

define by

(6.5.54) π1(f) := F and π2(f) := F̃ ,

where f = F + e4F̃ with F, F̃ are A3-valued. Moreover, for any F in Lp,d
nor(∂Ω,A3),
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introduce

R1(F ) := ν ∧ Sk(d∂F );

R2(F ) := k ν ∧ Sk(F );

R3(F ) := −ν ∧ S−k(d∂F );

R4(F ) := −k ν ∧ S−k(F ).

(6.5.55)

Remark 6.5.5. The operators Rj, for j = 1, 2, 3, 4, are compact from the space

Lp,d
nor(∂Ω,A3) into itself, for 1 < p < ∞.

In order to prove this remark, we single out a technical result in the following

lemma.

Lemma 6.5.6. Suppose X is a Banach space, T is a linear bounded operator from

X into Lp,d
nor(∂Ω,A3). Then

T : X → Lp,d
nor(∂Ω,A3) is compact

if and only if

T : X → Lp(∂Ω,A3) is compact,

and

d∂T : X → Lp(∂Ω,A3) is compact.

Proof.

Let {xi}j be a bounded sequence in X. Since T : X → Lp(∂Ω,A3) is compact,
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then there exists a convergent subsequence {T (xij)}j in Lp(∂Ω,A3). Let us re-

denote this subsequence by {T (xi)}i. Since the operator d∂T : X → Lp(∂Ω,A3) is

compact, there exists a convergent subsequence {d∂T (xij)}j in Lp(∂Ω,A3).

By its construction, the sequence {xij}j is bounded in X, and both {T (xij)}j

and {d∂T (xij)}j are convergent in Lp(∂Ω,A3). This proves that the operator T is

compact from X into Lp,d
nor(∂Ω,A3), we concluding the proof of the lemma. 2

We are now ready to prove Remark 6.5.5.

Proof.

Since the opeator ν ∧ Sk is compact from Lp(∂Ω,A3) into itself and since the

operator d∂ is bounded from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3), the operator R1 is

compact from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3). (See Theorem 2.2.1).

Moreover, based on Lemma 5.1.1, Lemma 5.1.2 and Corollary 6.1.3, we may

write

d∂(R1F ) = d∂(ν ∧ Sk(d∂F ))

= −ν ∧ d(Sk(d∂F ))

= ν ∧ Sk(d
2
∂F )

= 0.

Hence, obviously, d∂R1 is a compact operator from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3).

Then by Lemma 6.5.6, we may conclude that R1 is compact from Lp,d
nor(∂Ω,A3) into

itself.
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We next consider the operator R2. First, by the compactness of Sk on Lp(∂Ω,A3),

the definition of R2 and Theorem 2.2.1, we conclude that R2 is a compact operator

from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3). On the other hand, we have

d∂(R2F ) = d∂(k ν ∧ Sk(F ))

= −k ν ∧ d(Sk(F ))

= k ν ∧ Sk(d∂F ),

thanks to Lemma 5.1.2 and Corollary 6.1.3. Since ν∧Sk is compact from Lp(∂Ω,A3)

into itself and since the operator d∂ is bounded from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3),

we infer that d∂R2 is a compact operator from Lp,d
nor(∂Ω,A3) into Lp(∂Ω,A3). Once

again, by applying Lemma 6.5.6, we may conclude that R2 is a compact operator

from Lp,d
nor(∂Ω,A3) into itself.

Similarly, we can also prove that the other two operators R3 and R4 are compact,

and this concludes the proof of the remark. 2

Recall the operators Rj, for j = 1, 2, 3, 4, in (6.5.55). We are now in a position

to define the operator

(6.5.56) R := R1 ◦ π1 + e4R2 ◦ π1 + e4R3 ◦ π2 + R4 ◦ π2,

where the projection operators π1 and π2 have been introduced in (6.5.54). Since

π1 and π2 are bounded and since Rj, for j = 1, 2, 3, 4, are compact, it follows that

R is a compact operator itself.
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From that definition of the operator Q in (6.5.51), the definition of operator R

in (6.5.56) and the equality (6.5.40), one can easily check that

λI + ν ∧ Ck = Q + R.

Since Q is a Fredholm operator with index zero on Lp,d
nor(∂Ω,A4) and R is compact,

then by Theorem 2.2.4, the operator λI + ν ∧ Ck is Fredholm with index zero on

Lp,d
nor(∂Ω,A4) for k ∈ C, λ ∈ R with |λ| > 1

2
and 1 < p < 2 + ε.

Our next goal is to prove the following important result.

Theorem 6.5.7. For each k ∈ C\R, and λ ∈ R with |λ| > 1
2
, λI + ν ∧ Ck is an

isomorphism of L2,d
nor(∂Ω,A4).

Proof.

Let f ∈ L2,d
nor(∂Ω,A4) be such that

(6.5.57) λf + ν ∧ Ckf = 0.

Our first objective is to eventually show that f = 0.

Fix λ > 1
2

and set u± := Ckf in Ω±, so that, in particular,

u±
∣∣∣
∂Ω

= ∓1
2
ν · f + Ckf = ±1

2
ν ∨ f + Ckf.

Therefore,

(6.5.58) ν ∨ u+ − ν ∨ u− = 0 on ∂Ω,
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and

ν ∧ u+ − µ ν ∧ u− = 1
2
(µ + 1)f + (1− µ)ν ∧ Ckf

= (1− µ)

[
1

2

1 + µ

1− µ
f + ν ∧ Ckf

]
.(6.5.59)

Choose µ ∈ (0, 1) such that 1
2

1+µ
1−µ

= λ, where λ > 1
2
, then µ := 2λ−1

2λ+1
. For this

choice, it follows from (6.5.57) that

ν ∧ u+ − µ ν ∧ u− = 0 on ∂Ω.(6.5.60)

The key observation now is that u± solve the homogeneous problem




Dku
± = 0 in Ω±,

ν ∨ u+
∣∣∣
∂Ω
− ν ∨ u−

∣∣∣
∂Ω

= 0,

ν ∧ u+
∣∣∣
∂Ω
− µ ν ∧ u−

∣∣∣
∂Ω

= 0,

N(u±), N(du±), N(δu±) ∈ L2(∂Ω).

(6.5.61)

Our long-term goal is to show that

u± = 0 in Ω±.(6.5.62)

For now, we recall that Dk = d + δ + k e4, and note that Dku
± = 0 implies that

d u± + δu± + k e4 u± = 0 in Ω±.(6.5.63)

Applying the opearator δ∂ to both sides of the equality (6.5.58) gives

ν ∨ δu+ = −ν ∨ δu− on ∂Ω.(6.5.64)
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Similarly, by applying the operator to both sides of the equality (6.5.60), we get

ν ∧ du+ = −ν ∧ du− on ∂Ω.(6.5.65)

Recall that ν stands for the outward unit normal to the boundary of Ω = Ω+ and

define

ν+ := ν and ν− := −ν.

The following integration by parts formulas (cf. [MiD]) are going to be useful for

us.

Lemma 6.5.8. Let Ω be a bounded Lipschitz domain in Rm, 0 ≤ l ≤ m, and

u and w ∈ C1(Ω, Λl), which behave well near ∂Ω. Then the following formulas

hold:

∫

Ω+

〈du, w〉 dx =

∫

Ω+

〈u, δw〉 dx +

∫

∂Ω

〈ν+ ∧ u,w〉 dσ;(6.5.66)

∫

Ω−
〈du, w〉 dx =

∫

Ω−
〈u, δw〉 dx +

∫

∂Ω

〈ν− ∧ u,w〉 dσ;(6.5.67)

∫

Ω+

〈δu, w〉 dx =

∫

Ω+

〈u, dw〉 dx−
∫

∂Ω

〈ν+ ∨ u,w〉 dσ;(6.5.68)

∫

Ω−
〈δu, w〉 dx =

∫

Ω−
〈u, dw〉 dx−

∫

∂Ω

〈ν− ∨ u,w〉 dσ.(6.5.69)

Returning to the mainstream discussion, let us now calculate
∫

Ω+
|du+|2 dx and

∫
Ω+
|δu+|2 dx. First, by definition of the inner product, we have

∫

Ω+

|du+|2 dx =

∫

Ω+

〈du+, (du+)c〉 dx.
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Since du+ = −δu+ − k e4u
+, we have

∫

Ω+

|du+|2 dx =

∫

Ω+

〈−δu+ − k e4u
+, (du+)c〉 dx

= −
∫

Ω+

〈δu+, (du+)c〉 dx−
∫

Ω+

〈k e4u
+, (du+)c〉 dx.

An integration by parts, (cf. Lemma 6.5.8), gives

∫

Ω+

〈δu+, (du+)c〉 dx =

∫

Ω+

〈u+, d(du+)c〉 dx−
∫

∂Ω

〈ν+ ∨ u+, (du+)c〉 dσ.

Notice that d2 = 0, we can easily justify

∫

Ω+

〈δu+, (du+)c〉 dx = −
∫

∂Ω

〈ν+ ∨ u+, (du+)c〉.

Then

∫

Ω+

|du+|2 dx =

∫

∂Ω

〈ν+ ∨ u+, (du+)c〉 dσ −
∫

Ω+

〈k e4u
+, (du+)c〉 dx.

Using the property 〈a ∧ u, v〉 = 〈u, a ∨ v〉, we may then write

∫

Ω+

|du+|2 dx

=

∫

∂Ω

〈u+, ν+ ∧ (du+)c〉 dσ −
∫

Ω+

〈k e4u
+, (du+)c〉 dx

=

∫

∂Ω

〈u+, µ ν+ ∧ (du−)c〉 dσ −
∫

Ω+

〈k e4u
+, (du+)c〉 dx

= µ

∫

∂Ω

〈ν+ ∨ u+, (du−)c〉 dσ −
∫

Ω+

〈k e4u
+, (du+)c〉 dx

= µ

∫

∂Ω

〈ν+ ∨ u−, (du−)c〉 dσ −
∫

Ω+

〈k e4u
+, (du+)c〉 dx.(6.5.70)
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This completes our treatment of
∫

Ω+
|du+|2 dx and we now turn our attention to

calculating
∫

Ω+
|δu+|2 dx. To begin with, the equality (6.5.63) gives

∫

Ω+

|δu+|2 dx =

∫

Ω+

〈δu+, (δu+)c〉 dx

=

∫

Ω+

〈−du+ − k e4u
+, (δu+)c〉 dx

= −
∫

Ω+

〈du+, (δu+)c〉 dx−
∫

Ω+

〈k e4u
+, (δu+)c〉 dx.

By repeatedly integrating by parts in the first term above, we obtain

∫

Ω+

〈du+, (δu+)c〉 dx =

∫

Ω+

〈u+, δ(δu+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (δu+)c〉 dσ.(6.5.71)

Since δ2 = 0, the first term above is then zero. Consequently, we can wrtie

∫

Ω+

|δu+|2 dx

= −
∫

∂Ω

〈ν+ ∧ u+, (δu+)c〉 dσ −
∫

Ω+

〈k e4u
+, (δu+)c〉 dx

= −
∫

∂Ω

〈u+, ν+ ∨ (δu+)c〉 dσ −
∫

Ω+

〈k e4u
+, (δu+)c〉 dx

= −
∫

∂Ω

〈u+, ν+ ∨ (δu−)c〉 dσ −
∫

Ω+

〈k e4u
+, (δu+)c〉 dx

= −
∫

∂Ω

〈ν+ ∧ u+, (δu−)c〉 dσ −
∫

Ω+

〈k e4u
+, (δu+)c〉 dx

= −µ

∫

∂Ω

〈ν+ ∧ u−, (du−)c〉 dσ −
∫

Ω+

〈k e4u
+, (δu+)c〉 dx.(6.5.72)

Similarly, we wish to compute µ
∫

Ω−
|du−|2 dx and µ

∫
Ω−
|δu−|2 dx. First we deal

with
∫

Ω−
|du−|2 dx, for which following a familiar pattern, based on Lemma 6.5.8,
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we write

∫

Ω−
|du−|2 dx =

∫

Ω−
〈du−, (du−)c〉 dx

=

∫

Ω−
〈−δu− − k e4u

−, (du−)c〉 dx

= −
∫

Ω−
〈δu−, (du−)c〉 dx−

∫

Ω−
〈k e4u

−, (du−)c〉 dx.

Once again, based on Lemma 6.5.8, we may further write

∫

Ω−
|du−|2 dx = −

[∫

Ω−
〈u−, d(du−)c〉 dx−

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ

]

−
∫

Ω−
〈k e4u

−, (du−)c〉 dx

=

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ −
∫

Ω−
〈k e4u

−, (du−)c〉 dx

= −
∫

∂Ω

〈ν+ ∨ u−, (du−)c〉 dσ −
∫

Ω−
〈k e4u

−, (du−)c〉 dx.

We multiply both sides of the above equality by ν and obtain

µ

∫

Ω−
|du−|2 dx

= −µ

∫

∂Ω

〈ν+ ∨ u−, (du−)c〉 dσ − µ

∫

Ω−
〈k e4u

−, (du−)c〉 dx.(6.5.73)

There remains to handle
∫

Ω−
|δu−|2 dx. Much as before, we write

∫

Ω−
|δu−|2 dx =

∫

Ω−
〈δu−, (δu−)c〉 dx

=

∫

Ω−
〈−du− − k e4u

−, (δu−)c〉 dx

= −
∫

Ω−
〈du−, (δu−)c〉 dx−

∫

Ω−
〈k e4u

−, (δu−)c〉 dx
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An integration by parts, (cf. Lemma 6.5.8), gives

∫

Ω−
|δu−|2 dx = −

[∫

Ω−
〈u−, δ(δu−)c〉 dx +

∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ

]

−
∫

Ω−
〈k e4u

−, (δu−)c〉 dx

= −
∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ −
∫

Ω−
〈k e4u

−, (δu−)c〉 dx

=

∫

∂Ω

〈ν+ ∧ u−, (δu−)c〉 dσ −
∫

Ω−
〈k e4u

−, (δu−)c〉 dx.

Consequently, we have

µ

∫

Ω−
|δu−|2 dx

= µ

∫

∂Ω

〈ν+ ∧ u−, (δu−)c〉 dσ − µ

∫

Ω−
〈k e4u

−, (δu−)c〉 dx.(6.5.74)

Summing up the formulas (6.5.70), (6.5.72), (6.5.73) and (6.5.74), we finally obtain

∫

Ω+

(|du+|2 + |δu+|2) dx + µ

∫

Ω−

(|du−|2 + |δu−|2) dx

= −
∫

Ω+

〈k e4u
+, (du+ + δu+)c〉 dx− µ

∫

Ω−
〈k e4u

−, (du− + δu−)c〉 dx

= −
∫

Ω+

〈k e4u
+,−kce4(u

+)c〉 dx− µ

∫

Ω−
〈k e4u

−,−kce4(u
+)c〉 dx

=

∫

Ω+

|k|2|u+|2 dx + µ

∫

Ω−
|k|2|u−|2 dx.

In summary, so far we have proved that

∫

Ω+

(|du+|2 + |δu+|2) dx + µ

∫

Ω−

(|du−|2 + |δu−|2) dx

=

∫

Ω+

|k|2|u+|2 dx + µ

∫

Ω−
|k|2|u−|2 dx.(6.5.75)
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On the other hand, Lemma 6.5.8 yields

∫

Ω+

|du+|2 dx =

∫

Ω+

〈du+, (du+)c〉 dx

=

∫

Ω+

〈u+, (δdu+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ,

and also

∫

Ω+

|δu+|2 dx =

∫

Ω+

〈δu+, (δu+)c〉 dx

=

∫

Ω+

〈u+, (dδu+)c〉 dx−
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ.

We then observe an identity in Ω+ to the effect that

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx

=

∫

Ω+

〈u+, (δd + dδ − k2)(u+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

−
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ.

Going further, since δd + dδ − k2 = −∆− k2 and (−∆− k2)(u+) = 0, this further

yeilds

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx

=

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ −
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ.(6.5.76)
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Since du+ = −δu+ − k e4u
+, the first term in (6.5.76) turns to be

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

= −
∫

∂Ω

〈ν+ ∧ u+, (δu+)c〉 dσ −
∫

∂Ω

〈ν+ ∧ u+, (k e4u
+)c〉 dσ

= −
∫

∂Ω

〈u+, ν+ ∨ (δu+)c〉 dσ −
∫

∂Ω

〈u+, ν+ ∨ (k e4u
+)c〉 dσ

= −µ

∫

∂Ω

〈ν+ ∧ u−, (δu−)c〉 dσ − µ

∫

∂Ω

〈ν+ ∧ u−, (k e4u
−)c〉 dσ

= µ

∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ + µ

∫

∂Ω

〈ν− ∧ u−, (k e4u
−)c〉 dσ.

Similarly, the second term in (6.5.76) can be written as

∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ

= −
∫

∂Ω

〈ν+ ∨ u+, (du+)c〉 dσ −
∫

∂Ω

〈ν+ ∨ u+, (k e4u
+)c〉 dσ

= −
∫

∂Ω

〈u+, ν+ ∧ (du+)c〉 dσ −
∫

∂Ω

〈u+, ν+ ∧ (k e4u
+)c〉 dσ

= −µ

∫

∂Ω

〈ν+ ∨ u−, (du−)c〉 dσ − µ

∫

∂Ω

〈ν+ ∨ u−, (k e4u
−)c〉 dσ

= µ

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ + µ

∫

∂Ω

〈ν− ∨ u−, (k e4u
−)c〉 dσ.

Hence, all together, we have

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx

= µ

∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ + µ

∫

∂Ω

〈ν− ∧ u−, (k e4u
−)c〉 dσ

−µ

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ − µ

∫

∂Ω

〈ν− ∨ u−, (k e4u
−)c〉 dσ.(6.5.77)
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A similar analysis can be carried out in Ω−. More specifically, we have

∫

Ω−
|du−|2 dx +

∫

Ω−
|δu−|2 dx−

∫

Ω−
k2|u−|2 dx

=

∫

∂Ω

〈ν− ∧ u−, (du−)c〉 dσ −
∫

∂Ω

〈ν− ∨ u−, (δu−)c〉 dσ

= −
∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ −
∫

∂Ω

〈ν− ∧ u−, (k e4u
−)c〉 dσ

+

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ +

∫

∂Ω

〈ν− ∨ u−, (k e4u
−)c〉 dσ.(6.5.78)

By multiplying both sides of (6.5.78) by µ, we get

µ

∫

Ω−
|du−|2 dx + µ

∫

Ω−
|δu−|2 dx− µ

∫

Ω−
k2|u−|2 dx

= −µ

∫

∂Ω

〈ν− ∧ u−, (δu−)c〉 dσ − µ

∫

∂Ω

〈ν− ∧ u−, (k e4u
−)c〉 dσ

+µ

∫

∂Ω

〈ν− ∨ u−, (du−)c〉 dσ + µ

∫

∂Ω

〈ν− ∨ u−, (k e4u
−)c〉 dσ.(6.5.79)

We now desire to combine (6.5.77) and (6.5.79). If we add (6.5.79) to (6.5.77),

after a number of cancellation, we obtain

∫

Ω+

(|du+|2 + |δu+|2) dx + µ

∫

Ω−

(|du−|2 + |δu−|2) dx

=

∫

Ω+

k2|u+|2 dx + µ

∫

Ω−
k2|u−|2 dx.(6.5.80)

All in all, comparing (6.5.75) and (6.5.80) gives

(k2 − |k|2)
(∫

Ω+

|u+|2 dx + µ

∫

Ω−
|u−|2 dx

)
= 0.

Therefore, for any k ∈ C\R, we may conclude that u+ = 0 and u− = 0, as desired.

In order to continue, we need a simply result.
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Lemma 6.5.9. Let ν be the outward unit normal to the boundary of Ω, then

ν · ν = −1.

Proof.

If ν be the unit normal, then

ν = (ν1, . . . , νm) =
∑

j

νjej,

where
∑

j νj
2 = 1. So we have

ν · ν =
∑

i

νiei

∑
j

νjej

=
∑
i,j

νiνjeiej

=
∑
i<j

νiνjeiej +
∑
i>j

νiνjeiej +
∑
i=j

νiνjeiej.

Since eiej = −ejei, the first term and the second term above will cancel each other.

Also, since eiei = −1, then

ν · ν = −
∑
i=j

νiνj = −1.

This finishes the proof of the lemma. 2

Recall that u± := Ckf in Ω±, and then by the jump formulas for Ck, we have

u+
∣∣∣
∂Ω

= −1
2
ν · f + Ckf,
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and

u−
∣∣∣
∂Ω

= 1
2
ν · f + Ckf.

In particular,

u+ − u− = −ν · f on ∂Ω.

Multiplying both sides of the above equality by ν and then applying Lemma 6.5.9,

we may conclude that f = 0. Therefore, λI+ν∧Ck is one-to-one from L2,d
nor(∂Ω,A4)

into itself for each λ > 1
2

and each k ∈ C\R.

Our next step is to prove a similar conclusion for λ < −1
2
. More concretely, fix

such a λ and consider f ∈ L2,d
nor(∂Ω,A4) such that

(λI + ν ∧ Ck)f = 0.

Our goal is to show that f = 0.

We now choose µ ∈ (0, 1) such that 1
2

µ+1
µ−1

= λ, (i.e. µ := 2λ+1
2λ−1

), and much as

before, let u± := Ckf in Ω±. Similarly to the equality (6.5.59), we have

µ ν ∧ u+ − ν ∧ u−

= 1
2
(µ + 1)f + (µ− 1)ν ∧ Ckf

= (µ− 1)

[
1

2

µ + 1

µ− 1
f + ν ∧ Ckf

]

= (µ− 1)(λI + ν ∧ Ck)f

= 0.
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Also, recall the equality (6.5.58), which gives

(6.5.81) ν ∨ u+ − ν ∨ u− = 0 on ∂Ω,

Thus, for this choice of µ we now make the important observation that u± solve

the following homogeneous problem





Dku
± = 0 in Ω±,

ν ∨ u+
∣∣∣
∂Ω
− ν ∨ u−

∣∣∣
∂Ω

= 0,

µ ν ∧ u+
∣∣∣
∂Ω
− ν ∧ u−

∣∣∣
∂Ω

= 0,

N(u±), N(du±), N(δu±) ∈ L2(∂Ω).

(6.5.82)

Repeat the reasoning in the case λ > 1
2

but change µ to 1
µ
, we arrvie at a similar

identity

(k2 − |k|2)
(∫

Ω+

|u+|2 dx +
1

µ

∫

Ω−
|u−|2 dx

)
= 0.

As before, this implies f = 0. Therefore, λI+ν∧Ck is one-to-one from L2,d
nor(∂Ω,A4)

into itself for each λ < −1
2

and each k ∈ C\R.

As a consequence of the fact that the operator λI + ν ∧ Ck is one-to-one from

L2,d
nor(∂Ω,A4) into itself for |λ| > 1

2
and k ∈ R\C, its kernel is the zero space. If we

now recall that λI + ν ∧ Ck is a Fredholm operator with index zero, we arrive at

the conclusion that the operator λI + ν ∧Ck is onto as well. All together, we may

conclude that λI + ν ∧ Ck is an isomorphism of L2,d
nor(∂Ω,A4) for k ∈ C\R, λ ∈ R

with |λ| > 1
2

and 1 < p < 2 + ε . 2
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With the above piece of information in hands, we are finally able to begin the

proof of Theorem 6.5.1 in the earnest.

Proof.

Fix k0 ∈ C\R and write

λI + ν ∧ Ck = λI + ν ∧ Ck0 + ν ∧ (Ck − Ck0)

= (λI + ν ∧ Ck0) Tk(6.5.83)

where, for each k ∈ C, we set

(6.5.84) Tk := I + (λI + ν ∧ Ck0)
−1 ◦ ν ∧ (Ck − Ck0).

Thus, Theorem 2.2.8 applies and gives that there exists a subset D of C, which

has no accumulation points, such that Tk is invertible on L2,d
nor(∂Ω,A4) for any k in

C\D. From the equality (6.5.83), we know that λI +ν∧Ck is invertible if and only

if Tk is invertible. Therefore, the operator λI +ν ∧Ck is invertible on L2,d
nor(∂Ω,A4)

for any k in C\D. This implies that D is a subset of R. Since it has no accumulation

points, D is a countable set. Hence, we can arrange D in the form of a sequence,

say

D = {kj}j∈N,

where kj are real numbers.

In summary, so far, for any λ real with |λ| > 1
2
, there exists a real sequence

{kj}j such that the operator λI +ν∧Ck is an isomorphism of L2,d
nor(∂Ω,A4) for any

k in C\{kj}j.
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Claim: For any λ ∈ R with |λ| > 1
2
, there exists a real sequence {kj}j such that

λI + ν ∧ Ck is an isomorphism of Lp,d
nor(∂Ω,A4) for any p ∈ (1, 2 + ε) and any

k ∈ C\{kj}j.

Proof.

Recall that the operator λI + ν ∧Ck is Fredholm with index zero on Lp,d
nor(∂Ω,A4)

for k ∈ C, λ ∈ R with |λ| > 1
2

and 1 < p < 2 + ε. Note that in order to justify

the desired conclusion, we need λI + ν ∧ Ck is either one-to-one or onto. We will

consider two cases.

Case I. For 2 ≤ p < 2 + ε, the operator λI + ν ∧ Ck is one-to-one on the space

Lp,d
nor(∂Ω,A4) for every λ ∈ R with |λ| > 1

2
.

First, by Hölder’s inequality and our assumption on p, we have that

(6.5.85) Lp,d
nor(∂Ω,A4) ⊂ L2,d

nor(∂Ω,A4).

Suppose that f is in Lp,d
nor(∂Ω,A4) and that, for some λ ∈ R with |λ| > 1

2
,

(λI + ν ∧ Ck)f = 0.

In particular, f can be viewed as a function in L2,d
nor(∂Ω,A4) due to (6.5.85). By

the invertibility of λI + ν ∧ Ck on L2,d
nor(∂Ω,A4) we have that f = 0. This proves

that the operator λI + ν ∧ Ck is one-to-one on Lp,d
nor(∂Ω,A4). Hence, from the

fact that this operator is Fredholm with index zero on the space Lp,d
nor(∂Ω,A4) for

2 ≤ p < 2 + ε, it then follows that the operator λI + ν ∧ Ck is an isomorphism of

Lp,d
nor(∂Ω,A4) for every 2 ≤ p < 2 + ε.
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Case II. For 1 ≤ p < 2, the operator λI +ν∧Ck is onto on the space Lp,d
nor(∂Ω,A4)

for every λ ∈ R with |λ| > 1
2
.

We first note that the operator λI+ν∧Ck has closed range on Lp,d
nor(∂Ω,A4) since

it is Fredholm on that space. Thus, it suffices to show that the range of λI +ν∧Ck

is dense. Since the space L2,d
nor(∂Ω,A4) is densely included in Lp,d

nor(∂Ω,A4), the

range of the operator λI + ν ∧Ck on L2,d
nor(∂Ω,A4) is densely included in the range

of λI + ν ∧Ck on the space Lp,d
nor(∂Ω,A4). However, since the operator λI + ν ∧Ck

is an isomorphism of L2,d
nor(∂Ω,A4), the range of λI + ν ∧ Ck on L2,d

nor(∂Ω,A4) is

precisely the space L2,d
nor(∂Ω,A4) itself. All together, we may conclude that the

range of λI + ν ∧ Ck on Lp,d
nor(∂Ω,A4) is densely included in Lp,d

nor(∂Ω,A4). This,

together with the closedness of the range, implies that λI + ν ∧ Ck is onto on

Lp,d
nor(∂Ω,A4). Thanks to the fact that this operator is Fredholm with index zero,

the operator λI + ν ∧ Ck is an isomorphism of Lp,d
nor(∂Ω,A4).

This concludes the proof of Theorem 6.5.1. 2

We now discuss a theorem which deals with the invertibility of λI + ν ∨ Ck.

The proof is very similar to the one for the operator λI + ν ∧ Ck and, hence, it is

left to the interested reader.

Theorem 6.5.10. Let Ω ⊂ R3 be an arbitrary Lipschitz domain with compact

boundary. Then for every λ ∈ R with |λ| ≥ 1
2

there exists a sequence of real

numbers {kj}j such that for each 1 < p < 2 + ε and k ∈ C\{kj}j the operator
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λI + ν ∨ Ck is an isomorphism of Lp,δ
tan(∂Ω,A4).

In the last part of this section, we discuss the classical approach for the invert-

ibility of the operator λI +ν ∧Ck, which, nonetheless, yields a weaker result (more

precisely, the set of exceptional values for the wave number k is larger).

First, we state the following lemma.

Lemma 6.5.11. Let Ω ⊂ R3 be an arbitrary Lipschitz domain with compact bound-

ary. Suppose that k ∈ C satisfies |Imk| > |Rek| and λ ∈ R is such that |λ| > 1
2
.

Then the operator λI + ν ∧ Ck is one-to-one on the space L2,d
nor(∂Ω,A4).

Proof.

Fix k and λ as in the statement of the lemma and assume that f ∈ L2,d
nor(∂Ω,A4),

f 6= 0 is such that

(6.5.86) λf + ν ∧ Ckf = 0.

Set u± := Ckf in Ω± so that, in particular,

(6.5.87) u±
∣∣∣
∂Ω

= ∓1
2
ν · f + Ckf = ±1

2
ν ∨ f + Ckf.

Recall that

Dk = d + δ + k e4.

Consequently, Dku
± = 0, which further implies that

(6.5.88) du± + δu± + k e4u
± = 0 in Ω±.
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Recall that ν stands for the outward unit normal to the boundary of Ω+ := Ω and

define

(6.5.89) ν+ := ν and ν− := −ν.

By Lemma 6.5.8, we have

∫

Ω+

|du+|2 dx =

∫

Ω+

〈du+, (du+)c〉 dx

=

∫

Ω+

〈u+, (δdu+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ(6.5.90)

and

∫

Ω+

|δu+|2 dx =

∫

Ω+

〈δu+, (δu+)c〉 dx

=

∫

Ω+

〈u+, (dδu+)c〉 dx−
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ.(6.5.91)

By adding (6.5.90), (6.5.91) and subtracting the term
∫

Ω+
k2|u+|2 dx, we obtain the

following equality in Ω+ :

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx

=

∫

Ω+

〈u+, (δd + dδ − k2)(u+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

−
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ

=

∫

Ω+

〈u+, (−∆− k2)(u+)c〉 dx +

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

−
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ

=

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ −
∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ.(6.5.92)
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In order to continue, let us now observe that

(6.5.93) u+
∣∣∣
∂Ω

= −1
2
ν · f + Ckf = 1

2
ν ∨ f + Ckf.

This implies

(6.5.94) ν+ ∨ u+ = ν+ ∨ Ckf.

Also, from the equality (6.5.93), we have

ν+ ∧ u+
∣∣∣
∂Ω

= ν+ ∧
(

1
2
ν ∨ f

)
+ ν+ ∧ Ckf

= 1
2
f + ν+ ∧ Ckf

= 1
2
f − λf

=
(

1
2
− λ

)
f.(6.5.95)

Now we are ready to compute the second term in the rightmost of (6.5.92).

∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ

=

∫

∂Ω

〈u+, ν+ ∧ (δu+)c〉 dσ

=

∫

∂Ω

〈ν+ ∧ (ν+ ∨ u+), ν+ ∧ (δu+)c〉 dσ

=

∫

∂Ω

〈ν+ ∧ (ν+ ∨ Ckf),−ν+ ∧ (du+ + k e4u
+)c〉 dσ

= −
∫

∂Ω

〈Ckf, ν+ ∧ (du+ + k e4u
+)c〉 dσ

= −
∫

∂Ω

〈Ckf, (ν+ ∧ du+ + ν+ ∧ k e4u
+)c〉 dσ.(6.5.96)
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Based on Lemma 3.2.4, Lemma 5.1.2 and the equality (6.5.95), we may write

ν+ ∧ du+ = −d∂(ν+ ∧ u+)

= −d∂

((
1
2
− λ

)
f
)

= − (
1
2
− λ

)
d∂f(6.5.97)

and

ν+ ∧ k e4u
+ = −k e4ν+ ∧ u+

= −k e4

(
1
2
− λ

)
f

= − (
1
2
− λ

)
k e4f.(6.5.98)

Therefore, the equality (6.5.96) further implies that

∫

∂Ω

〈ν+ ∨ u+, (δu+)c〉 dσ

= −
∫

∂Ω

〈Ckf, (ν+ ∧ du+ + ν+ ∧ k e4u
+)c〉 dσ

=
(

1
2
− λ

) ∫

∂Ω

〈Ckf, (d∂f + k e4f)c〉 dσ.(6.5.99)

Turning our attention to the first term in the rightmost of the equality (6.5.92),

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

=

∫

∂Ω

〈u+, ν+ ∨ (du+)c〉 dσ

= −
∫

∂Ω

〈ν+ ∨ (ν+ ∧ u+), (ν+ ∨ δu+ + ν+ ∨ k e4u
+)c〉 dσ.(6.5.100)
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Using again the equality (6.5.95), we obtain the following:

ν+ ∨ (ν+ ∧ u+) = ν+ ∨
(

1
2
− λ

)
f =

(
1
2
− λ

)
ν+ ∨ f,(6.5.101)

ν+ ∨ δu+ = −δ∂(ν+ ∨ u+) = −δ∂(ν+ ∨ Ckf),(6.5.102)

ν+ ∨ k e4u
+ = −k e4ν+ ∨ Ckf.(6.5.103)

From the equalities (6.5.100)-(6.5.103), it readily follows that

∫

∂Ω

〈ν+ ∧ u+, (du+)c〉 dσ

=
(

1
2
− λ

) ∫

∂Ω

〈ν+ ∨ f, (δ∂(ν+ ∨ Ckf) + k e4ν+ ∨ Ckf)c〉 dσ.(6.5.104)

On account of (6.5.92), (6.5.99) and (6.5.104), we have that

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx

=
(

1
2
− λ

) ∫

∂Ω

〈ν+ ∨ f, (δ∂(ν+ ∨ Ckf) + k e4ν+ ∨ Ckf)c〉 dσ

− (
1
2
− λ

) ∫

∂Ω

〈Ckf, (d∂f + k e4f)c〉 dσ.(6.5.105)

At this stage, we define

A+ :=

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx−
∫

Ω+

k2|u+|2 dx,(6.5.106)

and

B+ :=

∫

∂Ω

〈ν+ ∨ f, (δ∂(ν+ ∨ Ckf) + k e4ν+ ∨ Ckf)c〉 dσ

−
∫

∂Ω

〈Ckf, (d∂f + k e4f)c〉 dσ.(6.5.107)
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Then the equality (6.5.105) can be expressed as

(6.5.108) A+ = (1
2
− λ)B+.

Similarly, we can show that

(6.5.109) A− = (1
2

+ λ)B−,

where

A− :=

∫

Ω−
|du−|2 dx +

∫

Ω−
|δu−|2 dx−

∫

Ω−
k2|u−|2 dx,(6.5.110)

and

B− :=

∫

∂Ω

〈ν+ ∨ f, (δ∂(ν+ ∨ Ckf) + k e4ν+ ∨ Ckf)c〉 dσ

−
∫

∂Ω

〈Ckf, (d∂f + k e4f)c〉 dσ.(6.5.111)

It is obvious that B+ = B−.

For any k ∈ C with k = a+ bi we have k2 = (a2− b2)+2abi. By the assumption

|Imk| > |Rek|, we observe |b| > |a|. We now introduce some notation in order to

simplify the expressions of A± and B±. Let

α+ :=

∫

Ω+

|du+|2 dx +

∫

Ω+

|δu+|2 dx

and

β+ :=

∫

Ω+

|u+|2 dx.
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Similarly, set

α− :=

∫

Ω−
|du−|2 dx +

∫

Ω−
|δu−|2 dx

and

β− :=

∫

Ω−
|u−|2 dx.

Then

A+ = α+ − k2β+ = [α+ + β+(b2 − a2)]− 2abβ+(6.5.112)

and

A− = α− − k2β− = [α− + β−(b2 − a2)]− 2abβ−.(6.5.113)

Assuming B+ = B− = 0, we have A+ = A− = 0 by (6.5.108) and (6.5.109).

Therefore, ReA+ = α+ + β+(b2 − a2) = 0. Since α+ ≥ 0, β+ ≥ 0, and b2 − a2 > 0,

then ReA+ = 0 implies that α+ = β+ = 0. Furthermore, by the definition of β+,

we have u+ = 0. Similarly, we have u− = 0 as well. Consequently, f = 0, which

contradicts the assumption that f 6= 0. Thus, we may conclude that B+ and B−

cannot be zero.

Now using the equalities (6.5.108) and (6.5.109), we can express λ as

λ =
A+ − A−

−2(A+ + A−)
.

Taking absolute values on both sides, we have

|λ| = 1

2

∣∣∣∣
A+ − A−
A+ + A−

∣∣∣∣ .
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In order to analyze the range of |λ|, we involve the following lemma whose proof

is elementary and, hence, omitted.

Lemma 6.5.12. Suppose z1, z2 ∈ C, and z1, z2 are in the same quadrant, then

|z1 − z2| < |z1 + z2|.

By (6.5.112) and (6.5.113) we know that both A+ and A− are either in the first

quadrant or in the fourth quadrant, depending on the signs of the parameters a

and b.

Applying Lemma (6.5.12) with z1 = A+ and z2 = A−, we obtain the inequality

|A+ − A−| < |A+ + A−|. Hence

|λ| = 1

2

∣∣∣∣
A+ − A−
A+ + A−

∣∣∣∣ <
1

2
,

which contradicts the assumption that |λ| > 1
2
. Therefore, f = 0, and hence the

operator λI + ν ∧ Ck is one-to-one on the space L2,d
nor(∂Ω,A4). This completes the

proof of Lemma 6.5.11. 2
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Chapter 7

Half-Dirichlet Problems for Dirac
Operators

7.1 Well-posedness Results

In this section, we consider the Half-Dirichlet Problem for Dirac Operators. First

we introduce the Hardy space

Hp
k(Ω) := {u ∈ C1(Ω,A4) : Dku = 0 in Ω, N(u), N(du), N(δu) ∈ Lp(∂Ω)}

and the exterior Hardy space

Hp
k(Ω−) := {u ∈ C1(Ω−) : Dku = 0 in Ω−, N(u), N(du), N(δu) ∈ Lp(∂Ω)

and lim
|x|→∞

(|x| − ie4x)u(x) = 0}.

Consider the following boundary value problems:

{
u ∈ Hp

k(Ω),

ν ∨ u
∣∣∣
∂Ω

= f ∈ Lp,δ
tan(∂Ω,A4),

(7.1.1)
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{
u ∈ Hp

k(Ω),

ν ∧ u
∣∣∣
∂Ω

= f ∈ Lp,d
nor(∂Ω,A4),

(7.1.2)

{
u ∈ Hp

k(Ω−),

ν ∨ u
∣∣∣
∂Ω

= f ∈ Lp,δ
tan(∂Ω,A4),

(7.1.3)

{
u ∈ Hp

k(Ω ),

ν ∧ u
∣∣∣
∂Ω

= f ∈ Lp,d
nor(∂Ω,A4).

(7.1.4)

Theorem 7.1.1. Let Ω ⊂ R3 be a Lipschitz domain with compact boundary. Then

there exists a sequence of real numbers {kj}j such that for each 1 < p < 2 + ε and

k ∈ C\{kj}j, the boundary value problems (7.1.1), (7.1.2), (7.1.3) and (7.1.4) are

all well-posed.

Proof.

It follows from Theorem 6.5.1, Theorem 6.5.10 and Lemma 6.4.1 that

(7.1.5) u := Ck

[
(1

2
I + ν ∨ Ck)

−1f
]

in Ω

is the unique solution to the boundary value problem (7.1.1). Similarly, we also

have

(7.1.6) u := Ck

[
(1

2
I + ν ∧ Ck)

−1f
]

in Ω

is the unique solution to the boundary value problem (7.1.2).
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Considering the boundary value problems in Ω−, by a similar reasoning we

conclude that

(7.1.7) u := Ck

[
(1

2
I + ν ∨ Ck)

−1f
]

in Ω−

and

(7.1.8) u := Ck

[
(1

2
I + ν ∧ Ck)

−1f
]

in Ω−

are the unique solutions to the boundary value problems (7.1.3) and (7.1.4), re-

spectively. 2

For any f ∈ Lp,δ
tan(∂Ω,A4), by Theorem 7.1.1, there exists a unique u solving

the problem (7.1.1). In fact, we have pointed out that

u = Ck

[
(1

2
I + ν ∨ Ck)

−1f
]
.

Moreover, ν ∧ u
∣∣∣
∂Ω

∈ Lp,d
nor(∂Ω,A4). The similar conclusion holds for the other

boundary values problems (7.1.2), (7.1.3) and (7.1.4). By the spirit of Theo-

rem 7.1.1 and the above statement, we obtain the following corollary.

Corollary 7.1.2. If u ∈ Hp
k(Ω), then ν ∨ u

∣∣∣
∂Ω
∈ Lp,δ

tan(∂Ω,A4) and

(7.1.9) u := Ck

[
(1

2
I + ν ∨ Ck)

−1(ν ∨ u
∣∣∣
∂Ω

)
]
;

or ν ∧ u
∣∣∣
∂Ω
∈ Lp,d

nor(∂Ω,A4) and

(7.1.10) u := Ck

[
(1

2
I + ν ∧ Ck)

−1(ν ∧ u
∣∣∣
∂Ω

)
]
.
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Similarly, if u ∈ Hp
k(Ω−), then ν ∨ u

∣∣∣
∂Ω
∈ Lp,δ

tan(∂Ω,A4) and

(7.1.11) u := Ck

[
(−1

2
I + ν ∨ Ck)

−1(ν ∨ u
∣∣∣
∂Ω

)
]
;

or ν ∧ u
∣∣∣
∂Ω
∈ Lp,d

nor(∂Ω,A4) and

(7.1.12) u := Ck

[
(−1

2
I + ν ∧ Ck)

−1(ν ∧ u
∣∣∣
∂Ω

)
]
.

7.2 Invertibility of Cauchy-type Operators ν ∧Ck

and ν ∨ Ck

In this section we would like to consider the Invertibility of Cauchy-type operators

ν ∧Ck and ν ∨Ck. We begin with introducing the tangential-normal operator TN

which maps any f in Lp,δ
tan(∂Ω,A4) into Lp,d

nor(∂Ω,A4) in the following sense:

(7.2.13) TN(f) := ν ∧ Ck

[
(1

2
I + ν ∨ Ck)

−1f
]
,

and also define the normal-tangential operator NT which maps any g in Lp,d
nor(∂Ω,A4)

into Lp,δ
tan(∂Ω,A4) by

(7.2.14) NT (g) := ν ∨ Ck

[
(1

2
I + ν ∧ Ck)

−1g
]
.

We intend to develop other expressions of TN and NT in the following lemma.

Lemma 7.2.1. Assume that TN is the tangential-normal operator defined in (7.2.13)

and NT is the normal-tangential operator defined in (7.2.14), then the following

hold:

(7.2.15) TN = (ν ∧ Ck)(
1
2
I + ν ∨ Ck)

−1,
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(7.2.16) NT = (ν ∨ Ck)(
1
2
I + ν ∧ Ck)

−1.

Proof.

For any f ∈ Lp,δ
tan(∂Ω,A4), from (7.2.13), we have

TN(f) = ν ∧ Ck

[
(1

2
I + ν ∨ Ck)

−1f
]
.

Denoting (1
2
I + ν ∨ Ck)

−1f by h, we have h ∈ Lp,δ
tan(∂Ω,A4) and hence v ∨ h = 0.

Next we compute

TN(f) = ν ∧ Ckh
∣∣∣
∂Ω

= ν ∧ (−1
2
ν · h + Ckh)

= ν ∧ [−1
2
(ν ∧ h− ν ∨ h) + Ckh

]

= −1
2
ν ∧ (ν ∧ h) + ν ∧ Ckh

= ν ∧ Ckh

= (ν ∧ Ck)(
1
2
I + ν ∨ Ck)

−1f.

Therefore,

TN = (ν ∧ Ck)(
1
2
I + ν ∨ Ck)

−1.

The second equality in the lemma is proved in a similar way. 2

Theorem 7.2.2. Let Ω be a bounded Lipschitz domain in R3. Then there exists a

sequence of real numbers {kj}j such that for each 1 < p < 2 + ε and k ∈ C\{kj}j,

the operators TN and NT are linear bounded operators and

(7.2.17) TN ◦NT = I on Lp,d
nor(∂Ω,A4),
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(7.2.18) NT ◦ TN = I on Lp,δ
tan(∂Ω,A4),

where I stands for the identity operator.

In particular, the operators

TN : Lp,δ
tan(∂Ω,A4)

∼→Lp,d
nor(∂Ω,A4)

and

NT : Lp,d
nor(∂Ω,A4)

∼→Lp,δ
tan(∂Ω,A4)

are isomorphisms.

Proof.

For each g ∈ Lp,d
nor(∂Ω,A4),

(7.2.19) NT (g) = ν ∨ v
∣∣∣
∂Ω

,

where v is such that

{
v ∈ Hp

k(Ω),

ν ∧ v
∣∣∣
∂Ω

= g.
(7.2.20)

Then, by (7.2.19),

(7.2.21) TN ◦NT (g) = TN(ν ∨ v
∣∣∣
∂Ω

).

The definition of TN yields

(7.2.22) TN(ν ∨ v
∣∣∣
∂Ω

) = ν ∧ u
∣∣∣
∂Ω

,
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where
{

u ∈ Hp
k(Ω),

ν ∨ u
∣∣∣
∂Ω

= ν ∨ v
∣∣∣
∂Ω

.
(7.2.23)

Thus, u = v and therefore

(7.2.24) TN(ν ∨ v
∣∣∣
∂Ω

) = ν ∧ v
∣∣∣
∂Ω

= g.

In conclusion, we have

TN ◦NT = I.

Similarly, we can also prove that NT ◦ TN = I, which concludes the proof of the

theorem. 2

Corollary 7.2.3. Let Ω be a bounded Lipschitz domain in R3. Then there exists a

sequence of real numbers {kj}j such that for each 1 < p < 2 + ε and k ∈ C\{kj}j,

the operators

(7.2.25) ν ∧ Ck : Lp,δ
tan(∂Ω,A4)

∼→ Lp,d
nor(∂Ω,A4)

and

(7.2.26) ν ∨ Ck : Lp,d
nor(∂Ω,A4)

∼→ Lp,δ
tan(∂Ω,A4)

are isomorphisms.

Proof.

On account of the equality (7.2.15), we may write

ν ∧ Ck = TN ◦ (1
2
I + ν ∨ Ck).
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Since the operators TN and 1
2
I + ν ∨ Ck are both isomorphisms, ν ∧ Ck is also an

isomorphism. Similarly, by using the equality (7.2.16), one can prove that ν ∨ Ck

is an isomorphism as well. 2
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Chapter 8

Formulation of the Main
Boundary Value Problem

8.1 Proof of Existence

The current section is going to deal with the existence of the transmission boundary

value problem. To begin with, let Ω be a bounded Lipschitz domain in R3. Assume

that 0 < µ < 1, and 1 < p < ∞. Also, assume that the functions u+ and u− are of

class C1. Consider the following transmission boundary value problem:





Dku
± = 0 in Ω±,

ν ∨ u+
∣∣∣
∂Ω
− ν ∨ u−

∣∣∣
∂Ω

= f ∈ Lp,δ
tan(∂Ω,A4),

ν ∧ u+
∣∣∣
∂Ω
− µ ν ∧ u−

∣∣∣
∂Ω

= g ∈ Lp,d
nor(∂Ω,A4),

lim|x|→∞(|x| − ie4x)u−(x) = 0,

N(u±), N(du±) and N(δu±) ∈ Lp(∂Ω).

(8.1.1)

Theorem 8.1.1. The transmission boundary value problem (8.1.1) is well-posed in

the sense that there exist ε > 0 and a sequence of real numbers {kj}j which depend
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exclusively on the boundary ∂Ω and the transmission parameter µ, and which have

the following significance. For every p ∈ (1, 2 + ε) and every k ∈ C \ {kj}j, the

transmission problem (8.1.1) has a solution if and only if

(8.1.2) f ∈ Lp,δ
tan(∂Ω,A4) and g ∈ Lp,d

nor(∂Ω,A4).

Furthermore, the solution (u+, u−) is unique and satisfies the estimate

‖N(u±)‖Lp(∂Ω) + ‖N(du±)‖Lp(∂Ω) + ‖N(δu±)‖Lp(∂Ω)

≤ C‖ν ∨ u+ − ν ∨ u−‖Lp(∂Ω) + C‖ν ∨ δu+ − ν ∨ δu−‖Lp(∂Ω)

+ C‖ν ∧ u+ − µ ν ∧ u−‖Lp(∂Ω) + C‖ν ∧ du+ − µ ν ∧ du−‖Lp(∂Ω)

whenever 1 < p < 2 + ε, where C = C(∂Ω, k, p) > 0 is independent of u±.

Proof.

In order to solve the above transmission boundary value problem, we consider the

following two auxiliary problems.

First we consider the boundary value problem





Dku = 0 in Ω,

ν ∨ u
∣∣∣
∂Ω

= f ∈ Lp,δ
tan(∂Ω,A4),

N(u), N(du) and N(δu) ∈ Lp(∂Ω,A4).

(8.1.3)

By Theorem 6.3 of [Mi5], this problem is well-posed for 1 < p < 2 + ε.
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We next consider the reduced transmission boundary value problem




Dkv
± = 0 in Ω±,

ν ∨ v+
∣∣∣
∂Ω
− ν ∨ v−

∣∣∣
∂Ω

= 0,

ν ∧ v+
∣∣∣
∂Ω
− µ ν ∧ v−

∣∣∣
∂Ω

= g̃,

lim|x|→∞(|x| − ie4x)v−(x) = 0,

N(v±), N(dv±), N(δv±) ∈ Lp(∂Ω,A4),

(8.1.4)

where g̃ = g − ν ∧ u
∣∣
∂Ω

. In order to proceed, we let

{
u+ = u + v+,
u− = v−.

(8.1.5)

One can observe that if the problem (8.1.4) can be solved, then the transmission

boundary value problem (8.1.1) is also solvable since

ν ∨ u+ − ν ∨ u− = ν ∨ u + ν ∨ v+ − ν ∨ v−

= ν ∨ u

= f

and

ν ∧ u+ − µ ν ∧ u− = ν ∧ u + ν ∧ v+ − µ ν ∧ v−

= ν ∧ u + g̃

= g.

Now, in order to solve (8.1.4), we take v± := Ckh in Ω± , where h ∈ Lp,d
nor(∂Ω,A4).

It has been poved that Dkv
± = 0 for this choice of v±. Moreover, Lemma 6.4.1
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guarantees that v− decays at infinity. Checking the second boundary condition of

(8.1.1), we have

g̃ = ν ∧ v+
∣∣∣
∂Ω
− µ ν ∧ v−

∣∣∣
∂Ω

= ν ∧ (−1
2
ν · h + Ckh)− µ ν ∧ (1

2
ν · h + Ckh)

= ν ∧ [−1
2
(ν ∧ h− ν ∨ h) + Ckh

]

−µ ν ∧ [
1
2
(ν ∧ h− ν ∨ h) + Ckh

]

= 1
2
ν ∧ (ν ∨ h) + ν ∧ Ckh + 1

2
µ ν ∧ (ν ∨ h)− µν ∧ Ckh

= 1
2

hnor + ν ∧ Ckh + 1
2

µhnor − µν ∧ Ckh

= 1
2
h + 1

2
µh + ν ∧ Ckh− µν ∧ Ckh

= 1
2
(µ + 1)h + (1− µ)ν ∧ Ckh.

Dividing both sides of the above equality by 1− µ, we obtain

(8.1.6)
1

2

1 + µ

1− µ
h + ν ∧ Ckh =

1

1− µ
g̃ ∈ Lp,d

nor(∂Ω,A4).

Let λ := 1
2

1+µ
1−µ

. Then 1
2

< λ < ∞, and the equality (8.1.6) can be expressed as

(8.1.7) (λI + ν ∧ Ck) h =
1

1− µ
g̃ ∈ Lp,d

nor(∂Ω,A4).

By Theorem 6.5.1, there exists an h such that the equality (8.1.7) holds. This

concludes the proof of the existence of the solution of the problem (8.1.1).

2
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8.2 Proof of Uniqueness

We next turn our attention to proving the uniqueness of the solution the problem

(8.1.1). We start with considering the following homogeneous problem





u+ ∈ Hp
k(Ω) and u− ∈ Hp

k(Ω−),

ν ∨ u+
∣∣∣
∂Ω

= ν ∨ u−
∣∣∣
∂Ω

,

ν ∧ u+
∣∣∣
∂Ω

= µ ν ∧ u−
∣∣∣
∂Ω

.

(8.2.8)

Our goal is to show that u+ = u− = 0.

Let us denote ν ∨ u+
∣∣∣
∂Ω

by h, which also happens to coincide with ν ∨ u−
∣∣∣
∂Ω

.

Then by Corollary 7.1.2, we have

(8.2.9) u+ = Ck

[
(1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]

and

(8.2.10) u− = Ck

[
(−1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]
.

Applying Theorem 6.3.2, namely the Jump formulas, to (8.2.9) and (8.2.10), the

second boundary condition ν ∧ u+
∣∣∣
∂Ω

= µ ν ∧ u−
∣∣∣
∂Ω

in (6.5.61) becomes

ν ∧
[
−1

2
ν · (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]

= µ ν ∧
[

1
2
ν · (−1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]
.(8.2.11)
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Simplifying the left-hand side of the equality (8.2.11), we get

ν ∧
[
−1

2
ν · (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]

= −1
2
ν ∧

[
ν ∧ (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω
− ν ∨ (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]
.(8.2.12)

Since (1
2
I + ν ∨Ck)

−1h
∣∣∣
∂Ω
∈ Lp,δ

tan(∂Ω,A4), then ν ∨ (1
2
I + ν ∨Ck)

−1h
∣∣∣
∂Ω

= 0. Also,

we note that ν ∧
[
ν ∧ (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]
= 0. Therefore, the equality (8.2.12) is

reduced to

ν ∧
[
−1

2
ν · (1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]

= ν ∧ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

.(8.2.13)

Similarly, the right-hand side of the equality (8.2.11) reduces to

µ ν ∧
[

1
2
ν · (−1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

+ Ck(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

]

= µ ν ∧ Ck(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

.(8.2.14)

Consequently, from the equalities (8.2.13) and (8.2.14), the second boundary con-

dition in (6.5.61) becomes

(8.2.15) ν ∧ Ck(
1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

= µ ν ∧ Ck(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

.

By Corollary 7.2.3, we may further write

(8.2.16) (1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

= µ(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

.
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Moving the right-hand side of (8.2.16) to left and factoring out two inverse opera-

tors, we get

(1
2
I + ν ∨ Ck)

−1
[
(−1

2
I + ν ∨ Ck)− µ(1

2
I + ν ∨ Ck)

]
(−1

2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

= 0.

After some simple algebraic computation, we can rewrite the above equation as

(8.2.17) (1− µ)(1
2
I + ν ∨ Ck)

−1(λI + ν ∨ Ck)(−1
2
I + ν ∨ Ck)

−1h
∣∣∣
∂Ω

= 0,

where λ := −1
2

1+µ
1−µ

∈ (−∞,−1
2
). By Theorem 6.5.10, the operators (1

2
I +ν∨Ck)

−1,

λI + ν ∨ Ck, and (−1
2
I + ν ∨ Ck)

−1 are all isomorphisms. Hence, h = 0 and

furthermore u+ = u− = 0.

Finally, this finishes the proof of the uniqueness of the solution of the transmis-

sion boundary value problem (8.1.1). 2
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Chapter 9

Applications to TBVP for
Maxwell’s Equations

In this chapter we are going to connect the transmission boundary value prob-

lem for Dirac operators with Maxwell’s equations. In section 1 we will decompose

the transmission boundary value problem for Dirac operators into the transmis-

sion boundary value problems for Maxwell’s equations and Helmholtz operator.

In section 2 we give a sufficent and necessary condition which guarantees that

the transmission boundary value problem for Dirac operators is equivalent to two

Maxwell’s systems.
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9.1 Another Point of View on TBVP for Dirac

Operators

We start with recalling the transmission boundary value problem (8.1.1):




Dku
± = 0 in Ω±,

ν ∨ u+
∣∣∣
∂Ω
− ν ∨ u−

∣∣∣
∂Ω

= f ∈ Lp,δ
tan(∂Ω,A4),

ν ∧ u+
∣∣∣
∂Ω
− µ ν ∧ u−

∣∣∣
∂Ω

= g ∈ Lp,d
nor(∂Ω,A4),

lim|x|→∞(|x| − ie4x)u−(x) = 0,

N(u±), N(du±) and N(δu±) ∈ Lp(∂Ω,A4).

(9.1.1)

Assume

(9.1.2) u± = U± − ie4Ũ
±,

where U± and Ũ± are A3-valued functions. Moreover, decompose U± as the fol-

lowing:

(9.1.3) U± = U±
0 + ∗U ′±

0 + U±
1 + ∗U ′±

1 ,

where U±
0 , U

′±
0 are Λ0-valued functions and U±

1 , U
′±
1 are Λ1-valued functions. Sim-

ilarly, we have

(9.1.4) Ũ± = Ũ±
0 + ∗Ũ ′±

0 + Ũ±
1 + ∗Ũ ′±

1 ,

where each function carrying the subscript j is Λj-valued.

We next define the vector

U := (U±
0 , U±

1 , U
′±
0 , U

′±
1 , Ũ±

0 , Ũ±
1 , Ũ

′±
0 , Ũ

′±
1 ).(9.1.5)
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Then

(9.1.6) Dku
± = 0 ⇔ PkU = 0

where

Pk :=




0 −div 0 0 ik 0 0 0
∇ 0 0 curl 0 ik 0 0
0 curl −∇ 0 0 0 0 ik
0 0 div 0 0 0 ik 0
−ik 0 0 0 0 −div 0 0
0 −ik 0 0 ∇ 0 0 curl
0 0 0 −ik 0 curl −∇ 0
0 0 −ik 0 0 0 0 div




.(9.1.7)

The equation PkU = 0 implies the following eight equations:

− div U±
1 + ikŨ±

0 = 0;(9.1.8)

∇U±
0 + curl U

′±
1 + ikŨ±

1 = 0;(9.1.9)

curl U±
1 −∇U

′±
0 + ikŨ

′±
1 = 0;(9.1.10)

div U
′±
0 + ikŨ

′±
0 = 0;(9.1.11)

(9.1.12)

−ikU±
0 − div Ũ±

1 = 0;(9.1.13)

−ikU±
1 +∇ Ũ±

0 + curl Ũ
′±
1 = 0;(9.1.14)

−ikU
′±
1 + curl Ũ±

1 +∇ Ũ
′±
0 = 0;(9.1.15)

−ikU
′±
0 + div Ũ

′±
1 = 0.(9.1.16)

Equation (9.1.8) implies

(9.1.17) Ũ±
0 =

1

ik
div U±

1 .
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By equation (9.1.14), we have

(9.1.18) U±
1 =

1

ik
∇ Ũ±

0 +
1

ik
curl Ũ

′±
1 .

Substituting U±
1 in the equality (9.1.17) by (9.1.18), we have

(9.1.19) Ũ±
0 =

1

(ik)2
∆ Ũ±

0 ,

which further yields

(9.1.20) (∆ + k2)Ũ±
0 = 0 in Ω±.

In a very similar fashion, from equalities (9.1.9) and (9.1.13), we obtain that

(9.1.21) (∆ + k2)U±
0 = 0 in Ω±.

Equalities (9.1.10) and (9.1.16) imply

(9.1.22) (∆ + k2)U
′±
0 = 0 in Ω±.

On account of equalities (9.1.11) and (9.1.15), we have

(9.1.23) (∆ + k2)Ũ
′±
0 = 0 in Ω±.

Our next goal is to collect the information from the boundary conditions. Much

as before, we define

(9.1.24) f := F + ie4F̃ ,
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where F and F̃ are A3-valued functions. We next decompose F and F̃ as follows:

(9.1.25) F = F0 + ∗F ′
0 + F1 + ∗F ′

1,

and

(9.1.26) F̃ = F̃0 + ∗F̃ ′
0 + F̃1 + ∗F̃ ′

1,

where each function carrying the subscript j is Λj-valued.

Similarly, write the function g as

(9.1.27) g = G + ie4G̃,

where

(9.1.28) G = G0 + ∗G′
0 + G1 + ∗G′

1,

and

(9.1.29) G̃ = G̃0 + ∗G̃′
0 + G̃1 + ∗G̃′

1.

In order to make use of the first boundary condition, we need to find the components

of ν ∨ u±. We first focus on ν ∨ u+ and note that

ν ∨ u+ = ν ∨ (U+ − ie4Ũ
+)

= ν ∨ U+ − iν ∨ e4(Ũ
+)

= ν ∨ U+ + ie4(ν ∨ Ũ+).
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In the last step above, we use Lemma 3.2.4. Now rewrite ν ∨ U+ as

ν ∨ U+ = ν ∨ (U+
0 + ∗U ′+

0 + U+
1 + ∗U ′+

1 )

= ν ∨ U+
0 + ν ∨ ∗U ′+

0 + ν ∨ U+
1 + ν ∨ ∗U ′+

1 .(9.1.30)

The first term ν ∨ U+
0 , in (9.1.30), is zero since U+

0 is Λ0-valued. Moreover by

Remark 3.2.1 and Property 3.2.2-(4), we have

(9.1.31) ν ∨ ∗U ′+
0 = ∗(ν ∧ U

′+
0 ) = ∗(νU

′+
0 ),

and

(9.1.32) ν ∨ ∗U ′+
1 = − ∗ (ν ∧ U

′+
1 ) = − ∗ (∗(ν × U

′+
1 )) = −ν × U

′+
1 .

Using Remark 3.2.1 again, we obtain

(9.1.33) ν ∨ U+
1 = 〈ν, U+

1 〉.

By the equalities (9.1.31), (9.1.32) and (9.1.33), we observe that the equality

(9.1.30) becomes

(9.1.34) ν ∨ U+ = ∗(νU
′+
0 ) + 〈ν, U+

1 〉 − ν × U
′+
1 .

Then it is easy to see that

ν ∨ u+ = ν ∨ U+ + ie4(ν ∨ Ũ+)

= ∗(νU
′+
0 ) + 〈ν, U+

1 〉 − ν × U
′+
1

+ ie4[∗(νŨ
′+
0 ) + 〈ν, Ũ+

1 〉 − ν × Ũ
′+
1 ].(9.1.35)
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A similar argument shows that

ν ∨ u− = ∗(νU
′−
0 ) + 〈ν, U−

1 〉 − ν × U
′−
1

+ ie4[∗(νŨ
′−
0 ) + 〈ν, Ũ−

1 〉 − ν × Ũ
′−
1 ].(9.1.36)

Comparing the difference between (9.1.35) and (9.1.36) with f componentwisely,

we conclude that the first boundary condition implies the following six equations

on the boundary:

U
′+
0

∣∣∣
∂Ω
− U

′−
0

∣∣∣
∂Ω

= F
′
0;(9.1.37)

〈ν, U+
1 〉

∣∣∣
∂Ω
− 〈ν, U−

1 〉
∣∣∣
∂Ω

= F0;(9.1.38)

−ν × U
′+
1

∣∣∣
∂Ω

+ ν × U
′−
1

∣∣∣
∂Ω

= F1;(9.1.39)

Ũ
′+
0

∣∣∣
∂Ω
− Ũ

′−
0

∣∣∣
∂Ω

= F̃
′
0;(9.1.40)

〈ν, Ũ+
1 〉

∣∣∣
∂Ω
− 〈ν, Ũ−

1 〉
∣∣∣
∂Ω

= F̃0;(9.1.41)

−ν × Ũ
′+
1

∣∣∣
∂Ω

+ ν × Ũ
′−
1

∣∣∣
∂Ω

= F̃1.(9.1.42)

Similarly, it is not hard to check that

ν ∧ u± = νU±
0 + ∗(ν × U±

1 ) + ∗〈ν, U ′±
1 〉

+ ie4[νŨ±
0 + ∗(ν × Ũ±

1 ) + ∗〈ν, Ũ ′±
1 〉].(9.1.43)

Then the second boundary condition implies the other six equations on the bound-
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ary:

U+
0

∣∣∣
∂Ω
− µU−

0

∣∣∣
∂Ω

= G0;(9.1.44)

〈ν, U ′+
1 〉

∣∣∣
∂Ω
− µ〈ν, U ′−

1 〉
∣∣∣
∂Ω

= G
′
0;(9.1.45)

ν × U+
1

∣∣∣
∂Ω
− µ ν × U−

1

∣∣∣
∂Ω

= G1;(9.1.46)

Ũ+
0

∣∣∣
∂Ω
− µŨ−

0

∣∣∣
∂Ω

= G̃0;(9.1.47)

〈ν, Ũ ′+
1 〉

∣∣∣
∂Ω
− µ〈ν, Ũ ′−

1 〉
∣∣∣
∂Ω

= G̃
′
0;(9.1.48)

ν × Ũ+
1

∣∣∣
∂Ω
− µ ν × Ũ−

1

∣∣∣
∂Ω

= G̃1.(9.1.49)

The equations (9.1.9) and (9.1.15) with the boundary conditions (9.1.39) and

(9.1.49) give us the first Maxwell’s equations




curl Ũ±
1 − ikU

′±
1 = −∇Ũ

′±
0 ,

curl U
′±
1 + ikŨ±

1 = −∇U±
0 ,

ν × Ũ+
1

∣∣∣
∂Ω
− µ ν × Ũ−

1

∣∣∣
∂Ω

= G̃1,

ν × U
′+
1

∣∣∣
∂Ω
− ν × U

′−
1

∣∣∣
∂Ω

= −F1.

(9.1.50)

On the other hand, the equations (9.1.10) and (9.1.14) with the boundary condi-

tions (9.1.42) and (9.1.46) form the second Maxwell’s equations




curl Ũ
′±
1 − i k U±

1 = −∇Ũ±
0 ,

curl U±
1 + i k Ũ

′±
1 = ∇U

′±
0 ,

ν × U+
1

∣∣∣
∂Ω
− µ ν × U−

1

∣∣∣
∂Ω

= G1,

ν × Ũ
′+
1

∣∣∣
∂Ω
− ν × Ũ

′−
1

∣∣∣
∂Ω

= −F̃1.

(9.1.51)
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We now turn our attention to finding the transmission boundary value problems

for the Helmholtz operator that are implicitly implied by (9.1.1). We first focus on

solving a boundary condition

∂νU
+
0

∣∣∣
∂Ω
− ∂νU

−
0

∣∣∣
∂Ω

= 〈ν,∇U+
0 〉

∣∣∣
∂Ω
− 〈ν,∇U−

0 〉
∣∣∣
∂Ω

.(9.1.52)

By (9.1.9) we have

∇U+
0 = −ikŨ+

1 − curl U
′+
1 .(9.1.53)

Therefore,

〈ν,∇U+
0 〉

∣∣∣
∂Ω

= −ik〈ν, Ũ+
1 〉

∣∣∣
∂Ω
− 〈ν, curl U

′+
1 〉

∣∣∣
∂Ω

= −ik〈ν, Ũ+
1 〉

∣∣∣
∂Ω
−Div(ν × U

′+
1 )

∣∣∣
∂Ω

.(9.1.54)

Similarly,

〈ν,∇U−
0 〉

∣∣∣
∂Ω

= −ik〈ν, Ũ−
1 〉

∣∣∣
∂Ω
−Div(ν × U

′−
1 )

∣∣∣
∂Ω

.(9.1.55)

Applying the equalities (9.1.54) and (9.1.55) to (9.1.52), we obtain that

∂νU
+
0

∣∣∣
∂Ω
− ∂νU

−
0

∣∣∣
∂Ω

= −ik〈ν, Ũ+
1 〉

∣∣∣
∂Ω
− ik〈ν, Ũ−

1 〉
∣∣∣
∂Ω

−Div(ν × U
′+
1 )

∣∣∣
∂Ω
−Div(ν × U

′−
1 )

∣∣∣
∂Ω

= −ik〈ν, Ũ+
1 − Ũ−

1 〉
∣∣∣
∂Ω
−Div(ν × U

′+
1 − ν × U

′−
1 )

∣∣∣
∂Ω

.
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By the boundary conditions (9.1.39) and (9.1.41), we have

∂νU
+
0

∣∣∣
∂Ω
− ∂νU

−
0

∣∣∣
∂Ω

= −ikF̃0 −DivF1.(9.1.56)

According to the equation (9.1.20) and the boundary conditions (9.1.44) and (9.1.56),

we have the first transmission boundary value problem for the the Helmholtz op-

erator:





(∆ + k2)U±
0 = 0 in Ω±,

U+
0

∣∣∣
∂Ω
− µU−

0

∣∣∣
∂Ω

= G0,

∂νU
+
0

∣∣∣
∂Ω
− ∂νU

−
0

∣∣∣
∂Ω

= −ikF̃0 −DivF1.

(9.1.57)

Similarly, we have the other three transmission boundary value problems for the

the Helmholtz operator as follows:





(∆ + k2)Ũ±
0 = 0 in Ω±,

Ũ+
0

∣∣∣
∂Ω
− µŨ−

0

∣∣∣
∂Ω

= G̃0,

∂νŨ
+
0

∣∣∣
∂Ω
− ∂νŨ

−
0

∣∣∣
∂Ω

= ikF0 −DivF̃1,

(9.1.58)





(∆ + k2)U
′±
0 = 0 in Ω±,

U
′+
0

∣∣∣
∂Ω
− U

′−
0

∣∣∣
∂Ω

= F
′
0,

∂νU
′+
0

∣∣∣
∂Ω
− µ∂νU

′−
0

∣∣∣
∂Ω

= ikG̃
′
0 −DivG1,

(9.1.59)
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



(∆ + k2)Ũ
′±
0 = 0 in Ω±,

Ũ
′+
0

∣∣∣
∂Ω
− Ũ

′−
0

∣∣∣
∂Ω

= F̃
′
0,

∂νŨ
′+
0

∣∣∣
∂Ω
− µ∂νŨ

′−
0

∣∣∣
∂Ω

= ikG
′
0 + DivG̃1.

(9.1.60)

All in all, the problem (9.1.1) implicitly implies four transmission boundary

value problems for the Helmholtz operator and two transmission boundary value

problems for Maxwell’s equations.

9.2 Connections with Maxwell’s Equations

The main result of this section is stated as the following theorem.

Theorem 9.2.1. For each Ω, bounded Lipschitz domain in R3, there exist ε > 0

and a sequence of real numbers {kj}j such that the following is true:

For each 1 < p < 2 + ε, k ∈ C\{kj}j, the boundary problem (8.1.1), with

u± written in (9.1.2),(9.1.3),(9.1.4), f written in (9.1.24), (9.1.25), (9.1.26)

and g written in (9.1.27), (9.1.28), (9.1.29) componentwisely, reduces to two

Maxwell’s systems (with opposite wave numbers), i.e.




curl Ũ±
1 − ikU

′±
1 = 0,

curl U
′±
1 + ikŨ±

1 = 0,

ν × Ũ+
1

∣∣∣
∂Ω
− µ ν × Ũ−

1

∣∣∣
∂Ω

= G̃1,

ν × U
′+
1

∣∣∣
∂Ω
− ν × U

′−
1

∣∣∣
∂Ω

= −F1,

(9.2.61)
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and




curl Ũ
′±
1 − ikU±

1 = 0,

curl U±
1 + ikŨ

′±
1 = 0,

ν × U+
1

∣∣∣
∂Ω
− µ ν × U−

1

∣∣∣
∂Ω

= G1,

ν × Ũ
′+
1

∣∣∣
∂Ω
− ν × Ũ

′−
1

∣∣∣
∂Ω

= −F̃1.

(9.2.62)

with boundary data G1, G̃1 ∈ Lp,d
nor(∂Ω,A4) and F1, F̃1 ∈ Lp,δ

tan(∂Ω,A4), if and

only if

d∂g + k e4g and δ∂f + k e4f are (Λ2 + e4Λ
2)− valued functions.

Proof.

Due to the well-posedness of the BVPs (9.1.57), (9.1.58), (9.1.59) and (9.1.60),

U±
0 , U

′±
0 , Ũ±

0 , Ũ
′±
0 are zero if and only the boundary data of these problems are

zero. Hence it suffices to show that the boundary data of the above BVPs are zero

if and only if d∂g + k e4g and δ∂f + k e4f are (Λ2 + e4Λ
2)-valued functions.

We begin with computing d∂G, where G is given by (9.1.28) and hence G is

A3-valued. By Theorem 5.2.1, we can decompose G as follows:

(9.2.63) G = νG0 + ∗G1 + ∗G′
0,

where νG0 is Λ1-valued, ∗G1 is Λ2-valued and ∗G′
0 is Λ3-valued.

Note that for any function ϕ ∈ C∞
0 (∂Ω,A3), we can write

ϕ = ϕ0 + ϕ1 + ∗ϕ′
0 + ∗ϕ′

1,(9.2.64)
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where ϕ0 and ϕ
′
0 are Λ0-valued, and ϕ1 and ϕ

′
1 are Λ1-valued. Applying the operator

δ to both sides of the equality (9.2.64), we get

(9.2.65) δϕ = δϕ1 + ∗(dϕ
′
1)− ∗(dϕ

′
0).

Then, using the equality (9.2.63), we have

∫

∂Ω

〈G, δϕ〉 dσ =

∫

∂Ω

〈νG0, ∗(dϕ
′
1)〉 dσ −

∫

∂Ω

〈∗G1, ∗(dϕ
′
0)〉 dσ.(9.2.66)

By Lemma 4.2.5, we have ∗(dϕ
′
1) = curl ϕ

′
1, which further implies that

∫

∂Ω

〈νG0, ∗(dϕ
′
1)〉 dσ =

∫

∂Ω

〈ν, curl ϕ
′
1〉G0 dσ

= −
∫

∂Ω

Div(ν × ϕ
′
1)G0 dσ

=

∫

∂Ω

〈ν × ϕ
′
1,∇G0〉 dσ

=

∫

∂Ω

〈∗ϕ′
1, ∗(ν ×∇G0)〉 dσ.(9.2.67)

On the other hand, we note that

∫

∂Ω

〈∗G1, ∗(dϕ
′
0)〉 dσ =

∫

∂Ω

〈G1, dϕ
′
0〉 dσ

=

∫

∂Ω

〈G1,∇ϕ
′
0〉 dσ

= −
∫

∂Ω

〈Div G1, ϕ
′
0〉 dσ

= −
∫

∂Ω

〈∗(Div G1), ∗ϕ′
0〉 dσ.(9.2.68)
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Having the equalities (9.2.66), (9.2.67) and (9.2.68) together, we obtain

∫

∂Ω

〈G, δϕ〉 dσ

=

∫

∂Ω

〈∗ϕ′
1, ∗(ν ×∇G0)〉 dσ +

∫

∂Ω

〈∗ϕ′
0, ∗(Div G1)〉 dσ

=

∫

∂Ω

〈ϕ, ∗(ν ×∇G0) + ∗(Div G1)〉 dσ.(9.2.69)

Recall the definition of d∂ in (5.1.11), we have

(9.2.70)

∫

∂Ω

〈d∂G,ϕ〉 dσ =

∫

∂Ω

〈G, δϕ〉 dσ.

Comparing (9.2.69) with (9.2.70), we conclude that

(9.2.71) d∂G = ∗(ν ×∇G0) + ∗(Div G1),

where ∗(ν ×∇G0) is Λ2-valued and ∗(Div G1) is Λ3-valued.

Similarly, we have the decomposition of G̃.

(9.2.72) G̃ = νG̃0 + ∗G̃1 + ∗G̃′
0,

where νG0 is Λ1-valued, ∗G1 is Λ2-valued and ∗G′
0 is Λ3-valued. Then, by a similar

fashion of proof, we have

(9.2.73) d∂G̃ = ∗(ν ×∇G̃0) + ∗(Div G̃1),

where ∗(ν ×∇G̃0) is Λ2-valued and ∗(Div G̃1) is Λ3-valued. Now we are ready to

compute d∂g + k e4g. First, we have

d∂g = d∂(G + ie4G̃) = d∂G− ie4d∂G̃.(9.2.74)
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Next, we observe

k e4g = k e4(G + ie4G̃) = k e4G− ikG̃.(9.2.75)

On account of the equalities (9.2.74) and (9.2.75), we have

d∂g + k e4g = (d∂G− ikG̃)− ie4(d∂G̃ + ikG),(9.2.76)

where d∂G− ikG̃ and d∂G̃ + ikG are A3-valued.

Now by the decompositions (9.2.71) and (9.2.72), we conclude that the Λ0-

component of d∂G− ikG̃ is zero.

Also the Λ1-component of d∂G − ikG̃ is −ik νG̃0. As a consequence, the Λ1-

component of d∂G− ikG̃ = 0 if and only if G̃0 = 0, where G̃0 is the first boundary

data in problem (9.1.58).

Moreover, the Λ3-component of d∂G − ikG̃ is ∗Div G1 − ik ∗ G̃
′
0. Hence, the

Λ3-component of d∂G − ikG̃ = 0 if and only if ikG̃
′
0 − Div G1 = 0. Note here

ikG̃
′
0 −Div G1 is the second boundary condition in (9.1.59).

Now from the observation of the decompositions (9.2.63) and (9.2.73), we have

that the Λ0-component of d∂G̃ + ikG is zero. The Λ1-component of d∂G̃ + ikG is

ik νG0. This observation further implies that the Λ1-component of d∂G̃ + ikG is

zero if and only if G0 = 0, where G0 is the first boundary condition in (9.1.57). At

last, the Λ3-component of d∂G̃+ikG is ∗(Div G̃1)+ik∗G′
0. Then ∗(Div G̃1)+ik∗G′

0

is zero if and only if ikG
′
0 + Div G̃1 = 0, which is the second boundary condition

in (9.1.60).
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In summary, d∂g + k e4g is (Λ2 + e4Λ
2)-valued if and only if the four boundary

conditions that were mentioned above, i.e. the first boundary conditions of prob-

lems (9.1.57) and (9.1.58), the second boundary conditions of problems (9.1.59)

and (9.1.60), are all zero. In a similar way, by decomposing the boundary data f

in Lp,δ
tan(∂Ω,A4), one can check that δ∂f + k e4f is (Λ2 + e4Λ

2)-valued if and only if

the other four boundary conditions of TBPVs (9.1.57)-(9.1.60) are zero.

Once all the boundary conditions in TBVPs (9.1.57), (9.1.58), (9.1.59) and

(9.1.60) are zero, by the well-posedness of these problems, we can conclude that all

the solutions of these four TBVPs are zero, which is going to give us the reduced

Maxwell’s equations (9.2.61) and (9.2.62).

This concludes the proof of Theorem 9.2.1. 2
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