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Chapter 1

Introduction

Research in quantitative methods for economics evolved dramatically over the last

few decades. Earlier studies simply applied regression models, while today cutting edge

time series analysis techniques are developed and employed. Parallel with these changes,

econometricians face brand new puzzles: estimating unconstrained multivariate time

series, dealing with heteroscedastic models and estimating latent processes appear to be

crucial ones.

The necessity of estimating unconstrained multivariate time series comes from the

desire to avoid any arbitrary classification between endogenous and exogenous variables.

The question is this: when you have several correlated time series, which variables can

be considered independent and which dependent? Simultaneous Equation (SE) models,

which have been very popular for decades, are based on this distinction. Quoting Sims

(1980):

...models end up with very different sets of variables on the right-side of
these equations, they do so not by invoking economic theory, but (in the
case of demand equations) by invoking an intuitive, econometrician’s version
of psychological and sociological theory.
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Sims overcame this problem by introducing a new generation of models, known as Vector

Autoregressive (VAR) models, in which a priori restrictions are reduced to the minimum:

...it should be feasible to estimate large scale macromodels as unrestricted
reduced forms, treating all variables as endogenous. Of course, restrictions,
if only on the lag length, are essential, so by “unrestricted” here I mean
“without restrictions based on supposed a priori knowledge” (Sims (1980)).

The popularity of VAR models increased dramatically in the 1980s, and today they

represent an almost indispensable tool for any quantitative economist. An overview of

VAR models is presented in Section 2.1

Models for heteroscedastic time series can be dated back to the seminal work of Engle

(1982), who extended traditional time series tools such as autoregressive moving average

(ARMA) models (Box & Jenkins (1976)) for the mean to essentially analogous models

for the variance. Autoregressive Conditional Heteroscedasticity (ARCH) models are

now commonly used to forecast changes in the volatility of financial time series. For his

contribution, Engle was awarded of the Nobel prize for economics in 2003. Since then,

other models for time varying variances have been developed and applied, like General-

ized ARCH (GARCH) models (Bollerslev (1986)), or stochastic volatility models. The

necessity of studying the relations between the volatilities and co-volatilities of several

markets contributed to the development of multivariate versions of these models. After

an initial enthusiasm in the beginning of the 1990s and a period of relative tranquillity

in the second half of the 1990s, Multivariate GARCH models “. . . are now experiencing

again a quick expansion phase (Bauens et al. (2004))”. An overview of time varying

variance models can be found in Section 2.2.

Almost every science field has to deal to a certain extent with the discrepancy between

the variables implied by the theoretical models and the actual quantities available or

measured. Latent structures of time series have been found and analyzed in several fields,
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including signal processing (Andrieu & Doucet (2002)), biology (Leroux & Puterman

(1992)), genetics (Felsenstein & Churchill (1996)), psychology (Ho et al. (2003)) and

sociology (Bollen (1989), Bollen & Long (1993)). Economics (Hamilton (1990), Schneider

(1988)) and finance (Aguilar & West (2000)) are not exceptions. Economic growth is an

example of an hidden process indirectly measured by the GNP expansion (see for example

Hamilton (1990)), and it is not rare in economic literature to read contributions pointing

out difficulties in using statistics for estimating certain theoretical quantities (see Quah

(1993) among others). Related models have several names, according to the restrictions

imposed to them: dynamic models, hidden Markov models, state space models, etc.

ARMA, dynamical, and stochastic volatility models can all be represented in the form

of a state space model, which allows for handling a wide range of time series models.

An overview of state space models can be found in Chapter 4.

All of these models have been analyzed from both a frequentist and a Bayesian per-

spective. Effective model selection techniques can be successfully used here. They

would allow one to start with a very general and unconstrained model and to impose

later restrictions in a data-driven perspective, thereby stimulating an interaction be-

tween theoretical and quantitative research. The problems inherent in model selection

with such frameworks though, have not been studied as much as problems related to

estimation. One reason can be the computational burden imposed by the comparison of

a very large number of possible candidates. This necessitates an efficient way to compare

models and detect possible constraints.

The main object of this study is to propose and evaluate Bayesian algorithms for

estimation and model selection of unrestricted multivariate time series models with time

varying volatilities or latent variables. Classical model selection techniques are simply
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not feasible in such contexts because of the large number of competing models, which

makes them computationally too expensive. The algorithms for nested model compari-

son presented here are based on the stochastic search algorithm first developed by George

& McCulloch (1993), which embeds the variable selection procedure inside the MCMC

estimation algorithm. The aim is to produce procedures which are computationally

efficient and that can be used by the data analyst.

This study is divided in three parts: in the first part (Chapter 2), we analyze a

multivariate regression model with endogenous and exogenous variables, and with time

varying volatilities. VAR, GARCH and stochastic volatility can be reconducted as spe-

cial cases of the model presented, so a brief overview of them is provided. We propose

different MCMC algorithms for Bayesian estimation and selection of nested models.

The parametrization of the time varying covariance matrix is obtained through modified

Cholesky decomposition (Pourahmadi (1999)), while different methods for the estima-

tion of the latent volatilities are used and compared through simulations with artificially

generated data. Simulation studies are also used to show how variable selection can im-

prove the forecasting ability of the model itself. Finally, two examples of macroeconomic

applications are given.

Chapter 3 deals with the selection of non-nested models, for which the technique

described in Chapter 2 is not applicable. We utilize a different modified Cholesky de-

composition to parameterize the covariance matrix of the model in Chapter 2. This

alternative covariance decomposition has a different statistical interpretation and im-

plies different assumptions on the structure of the time varying covariances. We apply

the model selection technique developed in Chapter 2 to this model also, and then we

compare the best models obtained with the two decompositions by estimating the Bayes

4



factor for the two competing models.

In Chapter 4, we focus on estimation and model selection for linear state space models.

After providing an overview about the model and the common Bayesian estimation

techniques, we introduce a model selection algorithm. We then compare the results

of the common conjugate analysis methods with our model selection algorithm using

artificially generated data.

The last chapter is dedicated to conclusions and future research.
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Chapter 2

Multivariate Stochastic Volatility

Models

2.1 Overview: VAR Models

Consider a p-dimensional column variable of interest, yt, determined by

yt = b0 + B10wt +
L∑

j=1

B1jyt−j + et, (2.1)

for t = 1, · · · , T, where yt is a p× 1-vector variable, b0 is a p× 1-vector of unknown pa-

rameters, wt is a q×1-vector of known variables, B10 ≡ (b10,1, · · · , b10,q) is a p×q-matrix

of unknown parameters and, for j = 1, · · · , L, B1j ≡ (b1j,1, · · · , b1j,p) is a p× p-matrix of

unknown parameters, ε1, · · · , εT are independent identically distributed Np(0,Σ) errors,

and Σ is an unknown p×p positive definite matrix. The above model, known as a vector

autoregressive (VAR) model (often in absence of the exogenous variables wt), became

widely used for time series analysis after the seminal work of Sims (1972, 1980).

Since then, scholars working on the development of VAR models have been interested
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in how to put restrictions on the covariance matrix of the errors.

Several authors (e.g., Sims (1986), Blanchard (1989), Gordon & Leeper (1994), and

Sims & Zha (1998)) proposed identification schemes that incorporate restrictions on

the covariance matrix Σ or equivalently on the contemporaneous relationship among

variables without restricting the lag coefficients. This model, called identified VAR, can

be written as

A0yt = A0b0 + A0B10wt +
L∑

j=1

A0B1jyt−j + A0et. (2.2)

The major difference between Identified VAR models and the Simultaneous Equation

(SE) models that had been used in practice by macroeconomists for several decades is

that,

instead of setting the covariance matrix to identity, SE models impose restric-
tions on the matrix A0 and regression coefficients in model (2.2) to eliminate
a large number of parameters. George et al. (2005).

The advantages of the identified VAR approach over the traditional simultaneous equa-

tions approach are illustrated in Leeper et al. (1996).

Ordinary least Squares (OLS) or Maximum Likelihood (ML) methods are often used

in applications to find estimates of Σ and of B = (b0,B10, B11, · · · , B1L) They present

several drawbacks, as illustrated by Ni & Sun (2005):

• frequentist finite sample distributions of OLS or ML estimators for Σ and of B

are unavailable;

• on the other hand, a typical VAR involves a large number of parameters, and

the sample size of data is often not large enough to justify the use of asymptotic

theory;

7



• asymptotic theory for nonlinear functions of the VAR coefficients (such as impulse

response functions) involves approximation of nonlinear functions.

The Bayesian approach represents a valid alternative: Gibbs sampling (Gelfand & Smith

(1990)) provides a feasibly implemented technique to find finite sample posterior esti-

mates of VAR parameters. When a priori information is not available, or difficult to be

parameterized, non-informative priors can be successfully used, as shown by Sun & Ni

(2004), Ni & Sun (2003, 2005) and Ni et al. (2006). Also, Bayesian estimation of VAR

models is available in some of the most popular econometric software, such as RATS.

2.2 Overview: Time varying variance models

Several formulations are available to model heteroscedastic time series. In the next

two subsections, we are going to briefly present the most popular: ARCH, GARCH and

stochastic volatility models.

2.2.1 ARCH and GARCH Models

Conditional on Ft (the information available at time t), a univariate GARCH(g,q)

can be represented as follows:

et | Ft ∼ N(0, σ2
t ), (2.3)

where the conditional variance is

σ2
t = α0 + β1σ

2
t−1 + . . . , +βgσ

2
t−g + α1e

2
t−1 + . . . + αqe

2
t−q. (2.4)

This is usually written in a more compact way using the lag operator L

σ2
t = λ′ϕt = α0 + B(L)σ2

t + A(L)e2
t ,

8



where A(L)σ2
t =

∑g
i=1 σ2

t−i and B(L)e2
t =

∑p
j=1 e2

t−j. Notice that the conditional vari-

ance is defined by an ARMA(g,q) process in the innovations e2
t . The stationarity con-

dition is that the root of the characteristic equation, 1−B(ϕ) = 0 must lie outside the

unit circle. For this reason, the most common assumption is that A(1) + B(1) < 1.

The implication is that the GARCH model is unconditionally covariance stationary. An

ARCH(q) model is a model like (2.4) with β1 = β2 = · · · = βg = 0. The main reason

why the GARCH formulation is preferred to ARCH models is that often a GARCH(1,1)

is able to model the data as well as an ARCH(q), with q >> 1. Several modification

to the basic model have been made, giving birth to formulations known as EGARCH,

IGARCH and DGARCH, among others. An exaustive review of the univariate ARCH

and GARCH literature can be found in Bollerslev et al. (1992).

Extensions to the multivariate case date back to the late 1980s and early 1990s:

Bollerslev (1990) proposed a model in which the covariance matrix is composed of non

constant variances and constant correlations. The advantage of this model is the ease

of estimation, since it can be reconducted to a series of univariate GARCH models.

Financial time series, though, often show time varying correlation as well, so recently

some more general formulations have been presented: Engle (2002), for example, pro-

posed a model for dynamic covariances and a quasi-likelihood (QML) based estimation

procedure. A quite exaustive review about multivariate GARCH models can be found

in Bauens et al. (2004).

One of the keys for the success of these models lies in the ease of evaluating the

ARCH likelihood function. Maximum likelihood techniques have played the dominant

role in GARCH models estimation so far, but starting from the nineties several authors

provided Bayesian estimators for GARCH models. We could repeat here the same reason
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listed in the VAR section to justify an eventual Bayesian choice. Also, we can point that

the asymptotic properties of ML and QML estimators in multivariate GARCH
models are not yet firmly established, and are difficult to derive from low level
assumption (Bauens et al. (2004)).

For a review of Bayesian GARCH models see, among others, Muller & Pole (1998) and

Vrontos et al. (2000). See Vrontos et al. (2003) for an application of both classical and

Bayesian techniques to a full-factor multivariate GARCH model.

2.2.2 Stochastic Volatility Models

Contributions on stochastic volatilities date back to Clark (1973), who proposed an

iid mixture model for the distribution of stock price changes, and can be found in both

mathematical finance and econometric literature. According to Ghysels et al. (1996),

The class of stochastic volatility (SV) models has its roots in both mathe-
matical finance and financial econometrics. In fact, several variations of SV
models originated from research looking at very different issues.

In option pricing literature, the fundamental Black & Scholes (1973) formula assumes

constant volatility, but empirical studies show this assumption to be unrealistic. This

motivated Hull & White (1987) to introduce an option pricing model with stochastic

volatility, contributing to the development of the concept of implied volatility, which was

first introduced by Latane & Rendleman (1976). We are more interested in the discrete

time stochastic volatility models typical of the econometric literature: Tauchen & Pitts

(1983) and Gallant et al. (1991) noted that if the information flows are autocorrelated,

then a stochastic volatility model with time-varying and autocorrelated conditional vari-

ance might be appropriate for price-change series. Jacquier et al. (1994) pointed out the

advantages of the stochastic volatility models compared to the ARCH/GARCH ap-

proaches, in terms of parsimony and performances with high kurtosis time series. In the

10



GARCH formulation, in fact the degree of kurtosis is tied to the roots of the variance

equations, while it is independent from the latter in a SV model (see Ghysels et al. (1996)

for details). Usually, if a series with high kurtosis has to be analyzed using a GARCH

model, the problem is accomodated by using non normal innovation densities (commonly

a t-Student, like in Nelson (1991)). For a review of early SV models literature see Taylor

(1994) and Shephard (1996).

We can describe a stochastic volatility model as follows:

et | Ft ∼ N(0, λt),

where

log λt = α + β log λt−1 + συt, υt ∼ N(0, 1). (2.5)

Here the logarithm of the conditional volatility follows an autoregressive times series

model; unlike in the ARCH and GARCH cases, both mean and log-volatility equations

have separate error terms. Despite the above mentioned advantages, the popularity of

SV models, although increasing, is still small if compared to GARCH. The nature of

latent variable of the volatilities and the consequent difficulty of estimation play a major

role in this situation. Chib et al. (1998) provide a likelihood based framework for the

analysis of SV models. In the nineties different Bayesian techniques have been proposed:

(Jacquier et al. (1994), Uhlig (1997) Jacquier et al. (2002), Aguilar & West (2000), Chib

et al. (2002) and Chib et al. (2002, 2005) among others).

Comparison between the GARCH and SV formulations have been protracted using

Monte Carlo simulations (Chib et al. (1998)) and empirical studies: Boscher et al. (2000)

and Hol & Koopman (2002) show, for example, that SV models have better forecasting

performances when compared with GARCH.
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2.3 The Model

We consider the following p-vector multivariate model:

yt = b0 + B1xt + et, (2.6)

for t = 1, · · · , T, where yt = (y1t, · · · , ypt)
′ is a p × 1-vector of variables, b0 is a p × 1-

vector of unknown parameters, xt is a q × 1-vector of known endogenous or exogenous

variables, B1 ≡ (b1, · · · , bq) is a p×q-matrix of unknown parameters, et are independent

Np(0,Σt) errors, and Σt is an unknown p× p positive definite matrix, which permits a

Cholesky decomposition,

Σt = ΓΛtΓ
′, (2.7)

where Γ is a lower triangular matrix with unit diagonal elements and Λt = diag(λ1t, · · · ,

λpt). Let hjt = log λjt and ht = (h1t, · · · , hpt)
′. We model ht as follows:

ht = a0 + diag(ht−1)β + A1zt + diag(δ)vt, (2.8)

where , vt are iid Np(0, Ip), zt = (zt,1, · · · , zt,r)
′ is a r vector observable exogenous variable

uncorrelated with υt, a0 is a p unknown vector, A1 = {ajk}, j = 1, · · · , p, k = 1, · · · , r is

a matrix of unknown parameters, β = (β1, · · · , βp)
′ is a p-vector of unknown parameters,

and δ = (δ1, · · · , δp)
′ is a vector of unknown nonnegative parameters. If δi = 0 then the

ith variable is driven by a non-stochastic (but possibly time-varying) shock. It should

be noticed that if zt denotes the contemporaneous implied volatility measure, then be

the formulation in (2.8) can be reconduct to SV model with embedded implied volatility

(Hol & Koopman (2000)), while if δi = 0 and zt = e2
t−1, then (2.8) is equivalent to a

GARCH(1,1). Finally, if xt = (wt,yt−1, · · · ,yt−L) and Λ1 = Λ2 = · · · = ΛT , then (2.8)

is equivalent to the VAR(L) in (2.1).
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2.3.1 Interpretation of the Cholesky Decomposition

Following and extending Pourahmadi (1999) and Pourahmadi & Dellaportas (2002),

we consider the following AR structure of the cross section covariances of the covariance

matrix:

ωtj =

j−1∑

k=1

ξjkωtk + etj, (2.9)

where j = 1, · · · , p and t = 1, · · · , T , var(etj) = λjt. Writing (2.9) in matrix form, we

obtain

Ξωt = et, (2.10)

where ωt = (ωt1, · · · , ωtj)
′, et = (et1, · · · , etj)

′ and

Ξ =




1 0 · · · 0

−ξ21 1 · · · 0

...
. . . . . .

...

−ξp1 −ξp2 · · · 1




. (2.11)

From (2.10) it follows that the lower triangular matrix Ξ diagonalizes Σt:

ΞΣtΞ
′ = Λt = diag(λ1t, · · · , λpt). (2.12)

We can find notable differences with the stationary AR case:

(i). The difference equations in (2.9) do not involve initial values;

(ii). The innovation variances λjt are distinct;

(iii). The matrix Ξ is not banded or sparse, and its non-redundant entries are uncon-

strained.
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Now consider the MA structure of the cross section covariances of the covariance

matrix:

ωtj = etj +

j−1∑
i=1

νjketk, (2.13)

where j = 1, · · · , p and t = 1, · · · , T , and var(ejt) = λjt. Explicit expressions for νjk can

be obtained using the innovation algorithm (Brockwell & Davis (1991)). Writing (2.13)

in matrix form we obtain

ωt = Γet, (2.14)

where




1 0 · · · 0

ν21 1 · · · 0

...
. . . . . .

...

νp1 νp2 · · · 1




, (2.15)

from which (2.7) follows. From (2.12) and (2.7) it follows that

Ξ = Γ−1. (2.16)

Thus, once the AR parameters are given, one can compute the MA parameters and vice

versa. It also follows that

Σ−1
t = Ξ′Λ−1

t Ξ = ΨΛ−1
t Ψ′, (2.17)

where Ψ = Ξ′ is an upper triagular matrix whose diagonal elements are 1. Pourahmadi &

Daniels (2002) used a similar decomposition to analyze dynamic models for longitudinal

data. In this study, we decompose the time varying covariances Σt and assign to each λt

the structure described in (2.8). Using (2.7), we then model the conditional variance of
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each variable given the previous, and the marginal variance of variable one. Paying the

price of imposing an order to the variables we can model each single volatility process

as in (2.8) without imposing independence on the volatilities.

2.3.2 Stochastic Search Model Selection

For a given data set and choosing among a given class of models, the researcher

must contemplate the trade off between the number of parameters in the model and the

goodness of fit. If one considers a model space that includes all potential models of inter-

est, then the model choice is equivalent to obtaining restrictions on the model space for

reduction in the number of parameters (i.e., obtaining a submodel). Appropriate restric-

tions (submodels) often give rise to sharper finite sample inference and better forecasts,

since unrestricted models tend to overfit the data. In this paper, we consider a multi-

variate linear regression framework where variables are potentially contemporaneously,

as well as, serially correlated. In addition, some variables may exhibit time-varying,

even stochastic, conditional volatilities. The unrestricted model, in general, consists of

over-parameterized regression and volatility equations.

Even with constant volatilities, there is an intractable number of possible specifica-

tions of the regression model for exhaustive model comparison. The variable selection

problem in a univariate model with m explanatory variables involves comparing 2m num-

ber of competing models. The amount of computation is prohibitive for a moderate size

m. George & McCulloch (1993) propose a Bayesian MCMC stochastic search algorithm

in a univariate regression framework that greatly reduced the amount of computation,

and George et al. (2005) extended the algorithm to VAR models with stationary errors.

We conduct stochastic model selection for time varying variance models. We develop
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an MCMC algorithm for model selection on coefficients of both equations (B1,A1)

as well as on parameters in Σt (Ψ, δ), where Ψ = Γ−1′. There are 2pq competing

models for B1, 2pr competing models for A1, 2
p(p−1)

2 competing models for Ψ and 2p

competing models for δ. The total number of models is 2
p(p−1)

2
+p(r+q+1). Following

George & McCulloch (1993), we index a model by the tightness of a prior vector on

each parameter. To exclude (or include) a variable, we put a tight (or loose) prior with

zero mean on the parameter associated with the variable, which corresponds to an index

of zero (or one). The prior of the parameter is a mixture of the tight and loose priors

weighted by the prior of the indexes. The posterior of the model indexes constitutes the

distribution of selected models.

The stochastic search approach is fundamentally different from other approaches in

the econometrics literature that rely on economic theory to justify parameter restrictions.

Existing studies take the regression and the SV models as given. Such an approach

would be questionable when there is substantial uncertainty regarding the specification

of the model. In particular, the choice between a deterministic volatility process (such as

in GARCH models) or a stochastic one (such as in SV models) is left to the researcher’s

expertise. Our model embeds both possibilities and makes possible the specification

of hybrid models. Using stochastic search on the variance parameter of the volatility

equation (δ), we propose a data driven selection of the time-varying volatilities’ nature.

This gives rise to a new challenge to stochastic search. In the existing stochastic search

literature, the parameters are assumed to have mixed normal priors. Such an approach

is not applicable to the selection of δ. We find the posterior of the model index on δ

to be quite sensitive to the hyperparameters of the mixed inverse gamma prior. We

consider a hierarchal structure for the prior of δ, with a diffuse gamma prior on the
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hyper-parameter of the mixed inverse gamma prior on δ.

2.4 Hierarchical Models

2.4.1 Likelihood Functions

We give several formulas for the likelihood functions. Define etr(A) = exp{tr(A)}.

First we know that the likelihood function of (b0,B1,Σ1, · · · ,ΣT ) based on Y = (y1, · · · ,yT ),

is

[Y | b0, B1,Σ1, · · · ,ΣT ]

∝
T∏

t=1

|Σt|− 1
2 etr

{
−1

2

T∑
t=1

(yt − b0 −B1xt)
′Σ−1

t (yt − b0 −B1xt)
}

. (2.18)

Using (2.7), we write

Σ−1
t = ΨΛ−1

t Ψ′, (2.19)

where Ψ = Γ−1′ is an upper unit triangular matrix. We then have the likelihood function

of (b0,B1,Ψ,Λ1, · · · ,ΛT ),

[Y | b0,B1,Ψ,Λ1, · · · ,ΛT ] ∝ |Ψ|T
T∏

t=1

|Λt|− 1
2 etr

{
−1

2

T∑
t=1

St(B)ΨΛ−1
t Ψ′

}
, (2.20)

where, B = (b0,B1) and

St(B) = (yt − b0 −B1xt)(yt − b0 −B1xt)
′. (2.21)

This formula is useful in updating (Ψ,Λ1, · · · ,ΛT ).

To see the formulas for (b0,B1), we could rewrite (2.6) in the familiar matrix form

Y = BX + E, (2.22)
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where

Y = (y1, · · · , yT ), B = (b0,B1) = (b0, b1, · · · , bq), (2.23)

X =

(
1 1 · · · 1

x1 x2 · · · xT

)
, E = (e1, · · · , eT ). (2.24)

Here Y , E are p×T matrices, X is a (q +1)×T matrix, and B is a p× (q +1) matrix.

It follows from formula (2.10) of Harville (1997) that vec(BX) = (X ′ ⊗ Ip)vec(B).

We define

y = vec(Y ) =




y1

...

yT


 , e = vec(E) =




e1

...

eT


 , b = vec(B) =




b0

b1

...

bq




.

Then

(y | b,Ψ,Λ) ∼ NpT ((X ′ ⊗ Ip)b, Σ), (2.25)

where

Σ = diag(Σ1, · · · ,ΣT ) = (IT ⊗ Γ)Λ(IT ⊗ Γ′), (2.26)

Λ = diag(Λ1, · · · ,ΛT ) = diag(λ11, λ21, · · · , λp1, λ12, · · · , λpT ). (2.27)

Clearly, (2.26) implies that Σ−1 = (IT ⊗Ψ)Λ−1(IT ⊗Ψ′). The likelihood of (b,Ψ,Λ)

is then

L(b,Ψ,Λ) = [y | b,Ψ,Λ]

∝ |Ψ|T |Λ|− 1
2 etr

{
−1

2
[y − (X ′ ⊗ Ip)b]′(IT ⊗Ψ)Λ−1(IT ⊗Ψ′)[y − (X ′ ⊗ Ip)b]

}

= |Ψ|T |Λ|− 1
2 etr

{
−1

2
[(IT ⊗Ψ′)y − (X ′ ⊗Ψ′)b]′Λ−1[(IT ⊗Ψ′)y − (X ′ ⊗Ψ′)b]

}
.

(2.28)
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2.4.2 Priors

We employ independent priors on the elements of (B,Ψ, a0,β,A1, δ) and indepen-

dent priors on the indexes corresponding to the elements to be selected in (B,Ψ,A1),

(γb, γψ,γa,γδ).

(i) Priors of B.

(ia) Priors of b0 = (b10, · · · , bp0)
′. We assume that the intercept bi0 is always included

in the model. We also assume independent priors for bi0:

bi0
ind∼ N(b0

i0, ξ
0
i0). (2.29)

(ib) Priors of B1={bij}p×q. We associate each element bij with an indicator variable

γb,ij, and we assume that elements of B1 may be included in the model (γb,ij = 1) or may

not (γb,ij = 0). By design, bij has a two stage prior. We assume independent Bernoulli

priors for the index γb,ij: for fixed pb,ij ∈ (0, 1),

P (γb,ij = 1) = 1− P (γb,ij = 0) = pb,ij, i = 1, · · · , p, j = 1, · · · , q. (2.30)

For given γb = (γb,11, γb,12, · · · , γb,pq)
′, assume that

(bij | γb,ij)
ind∼ (1− γb,ij)N(0, κ2

b,ij) + γb,ijN(0, c2
b,ijκ

2
b,ij), (2.31)

for i = 1, · · · , p and j = 1, · · · , q, where κb,ij are small and cb,ij are large constants. If we

write

ηb,ij = c
γb,ij

b,ij =





1, if γb,ij = 0,

cb,ij, if γb,ij = 1.

and Db,j = diag((ηb,1jκb,1j)
2, · · · , (ηb,pjκb,pj)

2), then (2.31) is equivalent to

(bj | γb,j)
ind∼ Np(0, Db,j), for j = 1, · · · , q. (2.32)
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Combining the priors in (ia) and (ib) we can write the prior for b as

(b | γb) ∼ N(b̄, Ξ̄), (2.33)

where

b̄ = (b0
10, · · · , b0

p0, 0, · · · , 0)′,

Ξ̄ = diag(ξ0
10, · · · , ξ0

p0, (ηb,11κb,1)
2, · · · , (ηb,pqκb,pq)

2).

(ii) Priors of Ψ. We propose an approach of imposing priors on components of

Ψ that utilizes the structure of the matrix to ease Bayesian computation. For j =

2, · · · , p, let ψj be a vector containing the non-redundant elements of the jth column

of Ψ, i.e. ψj = (ψ1j, · · · , ψj−1,j)
′. Also, define a vector of indicators of length j − 1,

γψ,j = (γψ,1j, · · · , γψ,j−1,j)
′. We assume that elements of ψj may be included in the model

(γψ,ij = 1) or may not (γψ,ij = 0). Let the model index for ψij, γψ,ij, be independent

Bernoulli (pψ,ij) random variables: for fixed pψ,ij ∈ (0, 1),

P (γψ,ij = 1) = 1− P (γψ,ij = 0) = pψ,ij, i = 1, · · · , j − 1, j = 1, · · · , p. (2.34)

For given γψ,j = (γψ,1j, · · · , γψ,j−1,j)
′, assume that

(ψij | γψ,ij)
ind∼ (1− γψ,ij)N(0, κ2

ψ,ij) + γψ,ijN(0, c2
ψ,ijκ

2
ψ,ij), (2.35)

for i = 1, · · · , j − 1 and j = 2, · · · , p, where κψ,ij are small and cψ,ij are large constants.

If we write

ηψ,ij = c
γψ,ij

ψ,ij =





1, if γψ,ij = 0,

cψ,ij, if γψ,ij = 1,

and Dψ,j = diag((ηψ,1jκψ,1j)
2, · · · , (ηψ,j−1,jκψ,j−1,j)

2), then (2.35) is equivalent to

(ψj | γψ,j)
ind∼ Nj−1(0, Dψ,j), (2.36)
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for j = 2, · · · , p.

(iii) Priors of (a0,β, A1, δ). We assume that a0, β, A1, and δ have mutually

independent priors.

(iiia) Priors of a0 = (a10, · · · , ap0)
′. For fixed (āj0, σa), assume that

(aj0)
ind∼ N

(
āj0, σa

)
. (2.37)

(iiib) Priors of β = (β1, · · · , βp)
′. For fixed (β̄j, σβ), assume that

(βj)
ind∼ N

(
β̄j, σβ

)
. (2.38)

(iiic) Priors of A1. The elements in A1 are of primary interest for model selection.

Let the model index for ajk, γa,jk, be independent Bernoulli (pa,jk) random variables:

for fixed pa,jk ∈ (0, 1),

P (γa,jk = 1) = 1− P (γa,jk = 0) = pa,jk, for j = 1, · · · , p, k = 1, · · · , r. (2.39)

For given γa,j = (γa,j1, γa,j2, · · · , γa,jr)
′, assume that

(ajk | γa,jk)
ind∼ (1− γa,jk)N(0, κ2

a,jk) + γa,jkN(0, c2
a,jkκ

2
a,jk). (2.40)

where κa,jk would be small and ca,jk would be large constants.

Later, it would be convenient to write A1 in terms of its row vectors: A1 = (ã′1, · · · , ã′p)′.

Here ãj = (aj1, · · · , ajr)
′, j = 1, · · · , p. Denote

ηa,jk = c
γa,jk

a,jk =





1, if γa,jk = 0,

ca,ij, if γa,jk = 1.

and Da,j = diag((ηa,j1κa,j1)
2, · · · , (ηa,jrκa,jr)

2). We know that the prior of ãj for given

γa,j = (γa,j1, · · · , γa,jr) is

(ãj | γa,j)
ind∼ Nr(0,Da,j). (2.41)
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Define ã∗j = (aj0, βj, ã
′
j)
′: combining (2.37) and (2.41) we can write

(ã∗j | γa,j)
ind∼ Nr+2(āj,Ωj), (2.42)

where

āj = (āj0, β̄j, 0, · · · , 0)′

Ωj = diag(σ2
a, σ

2
β, (ηa,j1κa,j1)

2, · · · , (ηa,jrκa,jr)
2).

2.4.3 Prior for δ

The elements in δ = (δ1, · · · , δp)
′ are objects of model selection. Selecting which δj

are different than zero makes us learn from the data which volatilities come from a deter-

ministic and which from a stochastic process. So far the choice between a deterministic

process and a probabilistic one (such a stochastic volatility model) has been subjective

and a priori. Also, in case of multivariate time series, all the generating processes for the

volatilities had to be deterministic or stochastic. Using our stochastic search algorithm

for δ, we can estimate a very general model for heteroscedastic time series and make a

data driven selection between a stochastic and a deterministic process for each variable.

Let the model index for δj, γδj, be independent Bernoulli (pδj) random variables: for

fixed pδj ∈ (0, 1),

P (γδj = 1) = 1− P (γδj = 0) = pδj, j = 1, · · · , p. (2.43)

For given γδj (j = 1, · · · , p), we assume that δj is a mixture of independent inverse

gamma, (δ2
j | γδj, qj)∼IG(vjo; qjsj0) with probability γδj and (δ2

j | γδj, qj)∼IG(vjo; sj0)

with probability 1− γδj. In other words, the density of δ2
j has the form

[δ2
j | γδj, qj] ∝ (ηδjsj0)

vjo(δ2
j )
−(vjo+1) exp(−ηδjsj0

δ2
j

), (2.44)
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where

ηδj = q
γδj

j =





1, if γδj = 0,

qj, if γδj = 1.

Here the scale parameter vjo is a given positive constants and is larger than 2, the

shape parameter sj0 is a small positive constant so that the mean and the variance of the

prior with γδj = 1, qjsj0/(vjo − 1) and (qjsj0)
2/{(vjo−1)2(vjo−2)}, are large, while prior

mean and variance corresponding to γδj = 0, sj0/(vjo − 1) and s2
j0/{(vjo− 1)2(vjo− 2)},

are close to zero. The choice of qj needs some further work. The model selection on the

other parameters of the model is a selection of linear coefficients with normal distribution,

like in George & McCulloch (1993) and George et al. (2005), but δ follows an inverse

gamma distribution, so even small changes in the values of its hyperparameters can have

a more serious impact than in the previous cases (see Kim et al. (2002) for a discussion

on normal gamma relations). Also, simulation studies show that no arbitrary value

q = (q1, · · · , qp)
′ seems to be universally effective. We then impose a diffuse prior on q:

qj ∼ Ga(αq, βq), for j = 1, · · · , p. (2.45)

In this way each single δj will have a different data driven posterior value of qj.

2.5 Posterior Computation

The joint posterior of (B,γb,Ψ,γψ, a0,β,A1,γa, δ,γδ, q,Λ) has the form,

[B, γb,Ψ,γψ,a0,β,A1, δ,γa,Λ | y] ∝ [y | B,Ψ,Λ] [Λ | a0,β,A1, δ]

× [b0] [B1 | γb] [γb] [Ψ | γψ] [γψ] [a0,β] [A1 | γa] [γa] [δ|γδ, q][γδ][q],

where [y | B,Ψ,Λ] is the likelihood function, given by (2.28), [Λ | a0,β,A1, δ] is given

by (2.8), [b0] is given by (2.29), [B1 | γb] is given by (2.32), [γb] is given by (2.30),
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[Ψ | γψ] is given by (2.36), [γψ] is given by (2.34), [a0] is given by (2.37) [β] is given by

(2.38), [A1 | γa] is given by (2.41), [γa] is given by (2.39), [δ | γδ, q] is given by (2.44),

[γδ] is given by (2.43) and [q] is given by (2.45). To use an MCMC algorithm, we now

derive the full conditional posteriors for (B,Ψ,Λ,a0,β,A1, δ,γb,γψ, γa,γδ, q).

2.5.1 Conditional Posterior for B and γb

Fact 2.1. (a) The conditional posterior distribution of b given (γb,Ψ,γψ,a0,β,A1, δ,

γa, Λ, q; y) depends only on (Ψ,Λ,γb; y) and has the form,

(b | Ψ,Λ,γb; y) ∼ Nm(b̂, Ξ̂), (2.46)

where

Ξ̂ =
{

(X ⊗Ψ)Λ−1(X ′ ⊗Ψ′) + Ξ̄−1
}−1

, (2.47)

b̂ = Ξ̂
{

(X ⊗Ψ)Λ−1(IT ⊗Ψ′)y + Ξ̄−1b̄
}

. (2.48)

(b) Denote γb,(−ij) = (γb,kl : (k, l) 6= (i, j)). Given prior independence for bij, the con-

ditional posterior distributions of γb for given (B,Ψ,Λ, a0,β, A1, δ,γb,(−ij),γψ, γa, q)

depend only on B1,

(γb,ij | B1) = (γb,ij | bij)
ind∼ Bernoulli

( ub,ij1

ub,ij1 + ub,ij2

)
, (2.49)

where

ub,ij1 =
1

cb,ij

exp
(
− b2

ij

2c2
b,ijκ

2
b,ij

)
pb,ij,

ub,ij2 = exp
(
− b2

ij

2κ2
b,ij

)
(1− pb,ij). (2.50)

Proof. Using the likelihood (2.28) part (a) is obvious. For part (b), recall that γb depends

on data indirectly, then,

ub,ij1 ∝ [b | γb,(−ij), γb,ij = 1]pb,ij,
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ub,ij2 ∝ [b | γb,(−ij), γb,ij = 0](1− pb,ij);

the expression above, given prior independence of bij, gives the formula (2.50).

Remark 2.1. Formula (2.47) involves computing products of matrices of dimensions

proportional to sample size T . We use the following formula to reduce the dimension of

matrices involved for multiplication:

(X ⊗Ψ)Λ−1(X ′ ⊗Ψ′) =
T∑

t=1

(
1

xt

)
(1, x′t)⊗Σ−1

t . (2.51)

Similarly, to avoid multiplication of matrices of large dimensions in the formula for b̂,

we use the formula

(X ⊗Ψ)Λ−1(IT ⊗Ψ′)y =
T∑

t=1

(
1

xt

)
⊗Σ−1

t yt. (2.52)

2.5.2 Conditional Posterior for Ψ and γψ

To derive conditional distributions of Ψ, we use the likelihood function (2.20) of

(B,Ψ,Λ1, · · · ,ΛT ) and we adopt the algorithm derived by George et al. (2005) for

VAR with time invariant covariances and adapt it to be used with a modified Cholesky

decomposition: given B = (b0,B1), we know from (2.21) that St = St(B) represents

the covariance of residuals et. Let St,j be the upper-left j × j submatrix of St(B). So

St = St,p. We write the (i, j)th component of St(B) by st,ij. For j = 2, · · · , p, define

st,j = (st,1j, · · · , st,j−1,j)
′. Define

vt,1 = st,11, vt,j =
|St,j|
|St,j−1| , for j = 2, · · · , p. (2.53)

It is well known that vt,j = st,jj − s′t,jS
−1
t,j−1st,j > 0 for i = 2, · · · , p. We define ψj as

the j − 1 elements of jth column of Ψ above the diagonal element. So for j = 2, · · · , p,
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ψj = (ψ1j, · · · , ψj−1,j)
′. We then have a recursive formula,

tr(Ψ′
pSt,pΨpΛ

−1
t,p ) = tr(Ψ′

p−1St,p−1Ψp−1Λ
−1
t,p−1) + λ−1

t,pvt,p + λ−1
t,pg′tSt,p−1gt,

where gt = ψp−1 + S−1
t,p−1st,p. The likelihood function [y | B,Ψ,Λ1, · · · ,ΛT ] of (2.20)

can then be written as

( T∏
t=1

p∏
j=1

λ
− 1

2
jt

)
exp

{
− 1

2

T∑
t=1

[ p∑
j=1

vt,j

λjt

+

p∑
j=2

1

λjt

(ψj + S−1
t,j−1st,j)

′St,j−1(ψj + S−1
t,j−1st,j)

]}
.

This expression allows us to derive the conditional posterior of Ψ.

Fact 2.2. (a) The conditional posterior distributions of ψ2, · · · ,ψp given (γb,B,γψ,

a0,β, A1, δ,γa,Λ, q; y) are independent and depend only on (B,γψ,Λ; y). They have

the form,

(ψj | B, γψ,Λ; y)
ind∼ Nj−1(µj,∆j), (2.54)

where

∆j = {
T∑

t=1

λ−1
jt St,j−1 + D−1

ψ,j}−1,

µj = −∆j

T∑
t=1

λ−1
jt st,j. (2.55)

(b) For j = 2, · · · , p and i = 1, · · · , j− 1, denote the vector γψ,(−ij) = (γψ,1j, · · · , γψ,i−1,j,

γψ,i+1,j, · · · , γψ,j−1,j)
′. Given prior independence for (ψ1j, · · · , ψj−1,j), the conditional

posterior of γψ,ij given (γb,B,Ψ, γψ,(−ij),a0, β,A1, δ, γa,Λ, q; y) depends only on Ψ

and has the form,

(γψ,ij | Ψ) = (γψ,ij | ψij)
ind∼ Bernoulli

( uψ,ij1

uψ,ij1 + uψ,ij2

)
, (2.56)

where

uψ,ij1 =
1

cψ,ij

exp
(
− ψ2

ij

2c2
ψ,ijκ

2
ψ,ij

)
pψ,ij,

uψ,ij2 = exp
(
− ψ2

ij

2κ2
ψ,ij

)
(1− pψ,ij). (2.57)
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Proof. The conditional posterior of (ψ2, · · · , ψp), given (B,Λ1, · · · ,ΛT , γψ; y) is

[ψ2, · · · , ψp | B,γψ,Λ1, · · · ,ΛT ; y]

∝ exp
{
−1

2

p∑
j=2

T∑
t=1

1

λjt

(ψj + S−1
t,j−1st,j)

′St,j−1(ψj + S−1
t,j−1st,j)− 1

2

p∑
j=2

ψ′
jD

−1
ψ,jψj

}

∝ exp
{
−1

2

p∑
j=2

(ψj − µj)
′∆−1

j (ψj − µj)
}

,

where µj and ∆j are defined in (2.55). Part (a) follows from direct computation. For

part (b), recall the fact that γψ depends on data indirectly, then,

uψ,ij1 ∝ [ψj | γψ,(−ij), γψ,ij = 1]pψ,ij,

uψ,ij2 ∝ [ψj | γψ,(−ij), γψ,ij = 0](1− pψ,ij).

The expression above, under prior independence of ψ1j, · · · , ψj−1,j, gives the formula

(2.57).

2.5.3 Conditional Posterior of (a0, βj), (A1, γa) and (δ, γδ, q)

Recall hjt = log(λjt). Define H = (hjt)p×T and the column vector h̃j = (hj1, · · · ,

hjT )′. Recall that ã′j is the jth row of A1. We define

Wj =




1 h0j z11 · · · z1r

...
...

...
...

...

1 hT−1,j zT1 · · · zTr




. (2.58)

The conditional posterior of a0,β,A1,γa and δ are as follows:

Fact 2.3. (a) The conditional posterior distributions of ã∗j = (aj0, βj, ã
′
j)
′, j = 1, · · · , p

given (γb,B, γψ,Ψ, δ,γa,H , q; y) are independent and depend only on (H , γa, δ).

(ã∗j | H ,γa, δ) = (ã∗j | h̃j, γa,j, δj)
ind∼ Nr+2(νj,Υj), (2.59)
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where

νj = (δ−2
j W ′

jWj + Ω−1
j )−1(δ−2

j W ′
j h̃j + Ω−1

j āj),

Υj = (δ−2
j W ′

jWj + Ω−1
j )−1.

(b) The conditional posterior of (δ1, · · · , δp) given (γδ,γb,B,γψ,Ψ,a0,β,A1,γa, H , q; y)

are mutually independent and depend only on (γδ,H , a0,β, A1, q),

(δ2
j | γδ,H ,a0,β, A1) = (δ2

j | γδj, h̃j, aj0, βj, ãj)

ind∼ IG
(
vj0 +

1

2
(T − 2), η2

δjs
2
j0 +

1

2
(h̃j −Wjã

∗
j)
′(h̃j −Wjã

∗
j)

)
. (2.60)

(c) For j = 1, · · · , p, the conditional posterior of γδj given (γb, B,Ψ,γa,a0,β,A1, δ,

γψ,H , q; y) depends only on (δj, qj), and has the form

(γδj | δj, qj)
ind∼ Bernoulli

( uδj1

uδj1 + uδj2

)
, (2.61)

where

uδj1 = exp
(
−qjsj0

δ2
j

)
pδjqj

vj0 and uδj2 = exp
(
−sj0

δ2
j

)
(1− pδj). (2.62)

(d) For j = 1, · · · , p, denote γa,(−jk) = (γa,j1, · · · , γa,jk−1, γa,jk+1, · · · , γa,jr)
′. Under the

assumption of prior independence for the elements of ãj, the conditional posterior of

γa,jk given (γb,B,Ψ, γa,(−jk),a0, β,A1, δ, γψ,H , q; y) depends only on A1, and has the

form

(γa,jk | A1) = (γa,jk | ajk)
ind∼ Bernoulli

( ua,jk1

ua,jk1 + ua,jk2

)
, (2.63)

where

ua,jk1 =
1

ca,jk

exp
(
− a2

jk

c2
a,jk2κ

2
a,jk

)
pa,jk,

ua,jk2 = exp
(
− a2

jk

2κ2
a,jk

)
(1− pa,jk). (2.64)
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(e) For j = 1, · · · , p, the conditional posterior of qj given (γb, B,Ψ,γa,a0,β,A1, δ,

γψ, H ,γδ; y) depends only on (δj,γδj), and has the form

(qj | δj,γδj) ∼ Ga(vjoγδj + αq,
sj0

δ2
j

γδj + βq). (2.65)

Proof. Parts (a) and (b) can be easily proved using regression theory results. For part

(c), recall that γδ depends on data indirectly, then,

uδj1 ∝ [δ̃j | γδj = 1]pδj and uδj2 ∝ [δ̃j | γa,jk = 0](1− pδj).

Substituting the density of Inverse Gamma to the expressions above gives the formula

(2.62). Note that the scale parameter cancels out and does not affect the conditional

posterior of the model index γδj. For part (d), recall that γa depends on data indirectly,

then,

ua,jk1 ∝ [ãj | γa,(−jk),γa,jk = 1]pa,jk,

ua,jk2 ∝ [ãj | γa,(−jk),γa,jk = 0](1− pa,jk).

The two expressions, together with prior independence of (aj1, · · · , ajr), give the formula

(2.64). Part (e) comes from direct computation.

2.5.4 Sampling Λ

Updating the stochastic volatilities λjt is more complicated, because their full condi-

tional does not have a closed form. Uhlig (1997), using a Beta distribution for the ratio

of the volatilities, found an analytical solution for the full conditional of the volatilities,

but his Gibbs sampler requires numerical integration step. Jacquier et al. (1994) use

a Metropolis-Hasting for their univariate model, but such algorithm has not proven to

be efficient for our model. Other methods have been proposed by the SV literature,
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and here we implement some of them. As a preliminary step, we rewrite the likelihood

function of (B,Ψ,Λ1, · · · ,ΛT ) as

L(B,Ψ,Λ1, · · · ,ΛT ) = [Y | B,Ψ,Λ1, · · · ,ΛT ]

∝
T∏

t=1

p∏
j=1

λ
− 1

2
jt etr

{
−1

2

T∑
t=1

ΨSt(B)Ψ′Λ−1
t

}

=
T∏

t=1

p∏
j=1

λ
− 1

2
jt etr

{
−1

2

T∑
t=1

Qt(B,Ψ)Λ−1
t

}
, (2.66)

where St(B) is given by (2.21) and

Qt(B,Ψ) ≡ ΨSt(B)Ψ′ = (qt,ij)p×p. (2.67)

It is more efficient to simulate the hjt = log(λjt) instead of λjt, and there are several

options to do so. In the next three subsections we discuss three of them: direct sampling

using the Gilks adaptive rejection sampler, filtering and smoothing the volatilities with

a particle filter, and filtering the volatilities using a rejection sampler.

Direct Sampling Using Gilks Adaptive Rejection Sampler

Consider the distribution of ht given ht−1 and parameter vector θ = (b′,ψ′
1, · · · ,

ψ′
p, ã

′
1, · · · , ã′p)′,

(ht | ht−1,θ) ∼ Np

(
a0 + diag(h1,t−1, · · · , hp,t−1)β + A1zt, diag(δ2

1, · · · , δ2
p)

)
. (2.68)

It is evident that this density can be decomposed as a product of univariate densities:

[ht | ht−1,θ] =

p∏
j=1

[hjt | hj,t−1,θ], (2.69)

where

(hjt | hj,t−1,θ) ∼ N
(
ujt, δ

2
j

)
. (2.70)
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Here ujt = ujt(hj,t−1,θ) = a0j +βjhj,t−1 + ãjzt. Using the previous result, we can derive

a sampler for ht.

Fact 2.4. (a) At time t, the posterior distributions of (h1t, · · · , hpt) given (γb,B, γψ,Ψ,

a0,β,A1,γa, H(−j), δ; y) are independent. The conditional density of each hjt depends

only on (B,Ψ, ã∗j , δ, hj,t−1, hj,t+1; y) and is given by

[hjt | B,Ψ, ã∗j , δ, hj,t−1, hj,t+1; y] ∝ exp
{
−1

2

(
hjt + qt,jje

−hjt +
(hjt − ϕjt)

2

τ 2
j

)}
, (2.71)

where

τ 2
j = δ2

j /(1 + β2
j ),

ϕjt =
1

1 + β2
j

[
aj0(1− βj) + βj(hj,t+1 + hj,t−1) +

r∑

k=1

ajk(zt−1,k − βjzt,k)
]
. (2.72)

(b) The conditional density of hjt in (2.71) is log-concave.

Proof. For part (a), we consider the series of univariate conditional densities,

[hjt | hj,t−1, hj,t+1, a0,β,A1, δ,B,Ψ; y]

∝ [y | H ,B,Ψ][hjt | hj,t−1, aj0, βj, ãj, δj][hj,t+1 | hjt, aj0, βj, ãj, δj],

which is proportional to (2.71). For part (b) consider the second derivative of the

logarithm of (2.71):

d2

dh2
jt

log(g(hjt))} = −1

2
qt,jj exp(−ht,j)− 1

τ 2
j

,

which is negative.

The log-concavity of the conditional posterior of hjt permits efficient simulation of

hjt using the adaptive rejection sampling algorithm given by Gilks & Wild (1992). To

assure stationarity, we simulate hj0 and the hj,T+1 from N(aj0/(1 − βj), δ2
j /(1 − β2

j ))
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independently. This method is considerably less computationally intensive than the

Metropolis-Hastings algorithms used in previous literature (Jacquier et al. (1994) among

others).

Filtering and Smoothing Λ

One drawback of using the rejection method based on the log-concavity is that the

generated samples of stochastic volatility Λ exhibit a strong serial correlation and slow

convergence to the stationary distribution. To deal with this problem, several authors

proposed the use of particle filters for sequential importance sampling: see for example

Chib et al. (2002, 2005). This method differs from the Kalman filter because of the

nonlinearity of the model (note that the state equation concerns the logarithm of con-

ditional variance). As noted earlier, conditional on data Yt (available up to time t) and

parameters θ, the density of Λ is

[Λ | Y ,θ] =
T∏

t=1

[Λt | Yt, θ],

and

[Λt | Yt, θ] =

p∏
j=1

λ
− 1

2
jt etr

{
−1

2
Qt(B,Ψ)Λ−1

t

}
=

p∏
j=1

λ
− 1

2
jt exp

{ p∑
j=1

−1

2
qtjj(B,Ψ)λ−1

jt

}
.

Recall that hjt = log(λjt). The particle filter is an algorithm based on the model and

prediction and draws ht given (yt,Yt−1,θ),

[ht | yt, Yt−1,θ] ∝ [yt | ht,θ][ht | Yt−1,θ], for t = 1, · · · , T.

An importance sampling particle filter is as follows.

Algorithm F1

Suppose at Stage t, we have (h1
t−1, · · · ,hM

t−1) drawn from (ht−1 | Yt−1,θ).
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Step 1 . For l = 1, · · · ,M , draw hl
t from

(hl
t | hl

t−1,θ) ∼ Np

(
a0 + diag(hl

1,t−1, · · · , hl
p,t−1)β + A1zt, diag(δ2

1, · · · , δ2
p)

)
.

Step 2 . For l = 1, · · ·M , compute Σl
t = Γdiag(ehl

1t , · · · , ehl
pt)Γ′ and the importance

weight

wl
t =

[yt | Σl
t, θ]∑M

l=1[yt | Σl
t,θ]

.

Step 3 . Sample M draws of ht from (h1
t , · · · ,hM

t ) with replacement and relative weight

wt = (w1
t , · · · , wM

t ).

This completes Stage t. Continue with Stage t + 1 until Stage T .

For t = 1, · · · , T , filtering yields ht conditioning on the current observation yt and

the parameters θ. To update θ given (h, Y ) in an MCMC algorithm, we need the entire

series of stochastic volatility h = (h1, · · · ,hT )′ conditioning on the entire data set Y

and parameter θ. The conditional posterior [h | Y , θ] is obtained through smoothing,

using the Markovian structure of the model

[hT , hT−1, · · ·h1 | yT ,yT−1, · · ·y1, θ] = [hT | yT , θ]
T−1∏
t=1

[ht | ht+1,yt,θ]. (2.73)

Note that treating ht+1 as observation and applying the Bayes rule, we have

[ht | ht+1, yt,θ] = [ht | yt, θ][ht+1 | ht,θ],

where [ht+1 | ht,θ] is the Gaussian model by assumption of the stochastic volatility

equation (2.8), and a numerical draw of [ht | yt,θ] is the result of filtering (see Carter

& Kohn (1994, 1996) for details). Smoothing for (h | Y ,θ) is achieved by utilizing the

recursive structure of (2.73) and implemented using the following algorithm.
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Algorithm S

Step 1 . From the numerical result of filtering, draw hT ∼ (hT | yT ,θ).

Step 2 . For t = T − 1, · · · , 1, given ht+1, draw ht by reweighing the filtered [ht | yt,θ]

by [ht+1 | ht,θ].

Because the above filters involve a multinomial resampling in Algorithm F1 Step 3 ,

additional noise will be added and may produce outliers. Refinements of the particle

filter includes Pitt & Shephard (1999) auxiliary sampling importance resampling filter,

which samples the index of particles jointly with the state variable, then integrate out

the the indices for filtering the state variable. The refined algorithm is less likely to

produce outliers. The Pitt-Shephard algorithm is as follows.

Algorithm F2

Given M draws of hl
t−1 from the posterior [ht−1|Yt−1, θ],

Steps 1 − 2 . The same as Algorithm F1.

Step 3 . Take a random sample of size R from {1, · · · ,M} with relative weight wl
t.

Denote the result of the draws as k1, k2, · · · , kR.

Step 4 . For each value ki draw h∗it from (ht | hki
t−1,θ).

Step 5 . Resample {h∗1t ,h∗2t , · · · ,h∗Rt } M times with probabilities proportional to

[yt | h∗it , θ]

[yt | hki
t ,θ]

.

This completes Stage t. Continue with Stage t + 1 until Stage T .
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Filtering the Volatilities via Rejection Sampling

Chib et al. (1998) criticize the Algorithm F1 to be inefficient, and instead propose a

rejection sampling scheme to filter the volatilities of an univariate SV model. We adapt

their algorithm for our multivariate model. Instead of sampling the vector ht at once,

we developed a method to sample hjt elementwise, using the fact that for j = 1, · · · , p

the conditional distributions of (hjt | hj,t−1, θ) are independent. In this way we reduce

the rejection rate of the sampler. In fact, if we accept each hjt with probability qj, then

the probability to accept the entire vector ht at once is
∏p

j=1 qj, which could be small

and inefficient.

Fact 2.5. Define ξt = (ξ1t, · · · , ξpt)
′ ≡ Ψ′(yt−b0−B1xt) and f(hjt; ξjt) = φ(ξjt; 0, e

hjt).

Here φ(·; µ, σ2) is the density of normal with mean µ and variance σ2. Suppose at Stage t

we have (h1
1t, · · · , hM

1t ) drawn from [hj,t−1 | Yt−1,θ], then

[ht | Yt,θ] ≈ C

p∏
j=1

{
f(hjt, ξjt)

1

M

M∑

l=1

[hjt | hl
j,t−1,θ]

}
, (2.74)

where [hjt | hl
j,t−1,θ] = φ(hjt; u

l
jt, δ

2
j ). Here ul

jt = ujt(h
l
j,t−1,θ) = a0j + βjh

l
j,t−1 + ãjzt.

Proof. From Bayes theorem we know that

[ht | Yt,θ] ∝ [yt | ht,θ][ht | Yt−1,θ]. (2.75)

Note that we can decompose (2.18) as

[yt | ht,θ] =

p∏
j=1

e−
1
2
hjt(2π)−

1
2 exp

(
−1

2
ξ2
jte

−hjt

)
=

p∏
j=1

f(hjt; ξjt). (2.76)

Then, (2.75) can be written as

[ht | Yt,θ] ∝
p∏

j=1

f(hjt, ξjt)[ht | Yt−1,θ]. (2.77)
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Also, using (2.69) and Fact 4 (a), we can write

[ht | Yt−1,θ] =

p∏
j=1

[hjt | Yt−1,θ] =

p∏
j=1

∫
[hjt | hj,t−1,θ][hj,t−1 | Yt−1,θ] dhj,t−1. (2.78)

Each of the above integrals can be approximated by 1
M

∑M
l=1[hjt | hl

j,t−1,θ]. Using (2.77)

and (2.78), the proof is then obvious.

From (2.74), h1t, · · · , hpt given (Yt,θ) are independent. Here is the particle filter

rejection sampler to sample hjt from (2.74). Taking the logarithm of f(hjt, ξjt) we

obtain

log f(hjt, ξjt) = −1

2
log(2π)− 1

2
hjt − 1

2
J, (2.79)

where

J = J(hjt) = ξ2
jte

−hjt . (2.80)

Note that the second derivative of J is always positive. For vjt defined by (2.70), consider

the first order Taylor expansion of J at ujt,

J = ξ2
jte

−ujt − ξ2
jte

−ujt(hjt − ujt). (2.81)

Consequently, we have the following inequality,

f(hjt, ξjt) ≤ (2π)−
1
2 exp

{
−1

2
hjt(1− ξ2

jte
−ujt)− 1

2
e−ujt(1 + ξ2

jtujt)
}

= g(hjt, ujt, ξ
2
jt). (2.82)

Given a sample of draws h1
t−1, · · · , hM

t−1, (2.82) and (2.74) imply that

[hjt | Yt,θ] ≤ 1

M

M∑

l=1

g(hjt, u
l
jt, ξ

2
jt)φ(hjt; u

l
jt, δj). (2.83)
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Now, consider

g(hjt, u
l
jt, ξ

2
jt)φ(hjt; u

l
jt, δj)

=
1

2πδj

exp
{
− 1

2δ2
j

(hjt − cl
jt)

2 +
cl
jt

2δ2
j

− 1

2
eul

jt(1 + ul
jtξ

2
jt)−

(ul
jt)

2

2δ2
j

}

= π̃l
jtφ(hjt; c

l
jt, δj), (2.84)

where

cl
jt = ul

jt −
δ2
j

2
(1− eul

jtξ2
jt) = cl

jt(h
l
j,t−1, θ),

π̃l
jt = exp

{
−ul

jt + (cl
jt)

2

2δj

− 1

2
e−ul

jt(1 + ul
jtξ

2
jt)

}
.

Define

πl
jt =

π̃l
jt∑M

l=1 π̃l
jt

, (2.85)

then (2.84), along with (2.83), allows us to develop the following algorithm:

Algorithm F3

Step 1 : Given h1
t−1, · · · , hM

t−1, for any fixed j = 1, · · · , p, sample l ∈ {1, · · · , M} with

probability πl
jt.

Step 2 : Sample h̃jt ∼ N(cl
jt, δj), and independently ũ ∼ Uniform[0, 1].

Step 3 : If ũ ≤ f(h̃jt, ξ
2
jt)/g(h̃jt, u

l
jt, ξ

2
jt), report hjt = h̃jt.

2.5.5 MCMC Algorithms

From the result of the previous subsections, we define three different Gibbs sam-

pling procedures to produce finite samples from the marginal posterior distributions of

(B,γb,Ψ,γψ, a0,β, A1,γa, δ,γδ, q,Λ).
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Algorithm 1 (Direct Sampling)

Suppose in cycle k we have (Ψ(k−1),B(k−1), a
(k−1)
0 ,β(k−1),A

(k−1)
1 δ(k−1),γ

(k−1)
b ,γ

(k−1)
ψ ,

γ
(k−1)
a ,γ

(k−1)
δ , q(k−1),Λ(k−1)). Then have the following algorithm:

Step 1: Draw (γ
(k)
δ | δ(k−1), q(k−1)) from (2.62);

Step 2: Draw (q(k) | δ(k−1), γ
(k)
δ ) from (2.65);

Step 3: Draw (a
(k)
0 ,β(k), A

(k)
1 ): for j = 1, · · · , p, draw (ã

∗(k)
j | Λ(k−1),γ

(k−1)
a , δ(k−1))

from (2.59).

Step 4: Draw (δ(k) | γ
(k)
δ ,γ

(k−1)
a ,γ

(k−1)
b ,γ

(k−1)
ψ Λ(k−1), a

(k)
0 , β(k),A

(k)
1 , q(k)) from the

distribution (2.60).

Step 5: For j = 1, · · · , p, draw (γ
(k)
a,j | A(k)

1 ) from the Bernoulli distribution (2.64).

Step 6: Use the adaptive rejection method to draw (Λ(k) | a
(k)
0 ,β(k), A

(k)
1 ,B(k−1),

δ(k),Ψ(k−1); y) using the log-concavity of the posterior of [ht | ht+1, ht−1a0,β,A1, δ,B,

Ψ; y] as described in Section 3.4.

Step 7: Draw Ψ(k): for j = 2, · · · , p, draw (ψ
(k)
j | Λ(k),B(k−1),γ

(k−1)
ψ ; y) from the

normal distribution (2.54).

Step 8: Draw (γ
(k)
ψ | Ψ(k)) from the Bernoulli distribution (2.56).

Step 9: Draw (B(k) | Ψ(k),Λ(k),γ
(k−1)
b ; y) from the normal distribution (2.46).

Step 10: Draw (γ
(k)
b | B(k)) from the Bernoulli distribution (2.49).

Algorithm 2 (Filtering and Smoothing)

Same as Algorithm 1 except that in Step 6 Algorithm F1 or Algorithm F2 (in com-

bination with Algorithm S) are used in place of the Gilks adaptive rejection sampler.
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Algorithm 3 (Filtering via rejection Sampling)

Same as Algorithm 1 except that in Step 6 Algorithm F3 is used for simulating the

volatilities λjt.

2.5.6 Choosing the Best Model

Consider, γ = (γ ′δ,γ
′
a,γ

′
ψ,γ ′b). At the end of the MCMC simulation, a sample from

the posterior of γ is produced. Each single draw from γ represents a particular subset

of variables which has been chosen. In order to find the best subset, we can follow

George & McCulloch (1993) and compute the sample posterior mode of γ. The chosen

subset of variables will be the most visited during the MCMC simulation. There are

two practical drawbacks of this method: first, it may be computationally expensive for

very large models, since it requires the storage of all the draws from the posterior of γ

and calculation of their frequencies. George & McCulloch (1993) applied this method

to a number of competing models much smaller than in our setup. For large p, or for

long memory processes, the dimension of γ can be very high. Since each draw of γ

is essentially a string of zeroes and ones, it can be read as a binary number. Thus, it

can be univocally recoded to decimal or hexadecimal notation, which have a much more

compact form. If the string is too long for the computer memory to transform it to

decimal without rounding, the same can be cut in parts, and each of them converted.

The second practical drawback is that, if the researcher wants to use stochastic search for

model calibration, it is not easy to recognize which parameters are very important, which

are somewhat important, and which are not. To find how many time parameters outside

the modal subset have been chosen it is necessary to reconvert the model indicators to

a binary coding and track the single parameter value, which is unfeasible especially for
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big models.

Another solution can consist in computing the posterior mean of each element of γ.

The result would be a number between zero and one which gives the researcher an idea

about the importance of the single parameter. The choice of the best subset can be

made then by choosing a cutoff value for a parameter to be in the model, or simply by

the expertise of the researcher. This method might present problems when the posterior

means of the single indicators do not clearly approximate to zero or one, in which case

the choice of the parameters to be considered in the model is somewhat aleatory. Also,

the best model chosen via posterior mean can be a different model than the one chosen

via posterior mode. In this case, a model which is not the most visited would be chosen.

2.6 Simulation Studies

In this section we report the results of several simulation studies with the aim to eval-

uate and compare the performances of the proposed algorithms. First we use Algorithm

1 and we do not perform selection on δ. Next we compare Algorithms 1, 2 and 3, then

we analyze the problem related to the selection of the variance term of the stochastic

volatility equation. Last, we propose an example using Algorithm 2 and performing

selection on δ.

2.6.1 Numerical Examples using Algorithm 1

We propose four examples of the application of Algorithm 1 over simulated data.

Example 2.1. Consider a p variables VAR(1) model with one exogenous variable and

the following parameters: ψii = 1, ψ1j = .5, γψ,1j = 1, for i = 1, · · · , p, and j = 2, · · · , p;
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b0 = (1′p/2, (2)1′p/2)
′, b1 = (3, 1.5, 1, 0.75, 0.6, 0.5)′, bi+1,i = 0.5, γb,i1 = 1, γb,i+1,i = 1

for i = 1, · · · , p. All the other elements of (Ψ, γψ, B, γb) are zero. The data for the

stochastic volatility is generated based on:

A1 = (.1)1p, β = ((.4)1′p/2, (.6)1′p/2)
′, a0 = (.1)1p and δ = (.05)1p. (2.86)

We generate the exogenous variables x and z as xit = cos(t/2), zit = sin(t2), for i = 1,

and t = 1, · · · , T . The sample size is T = 1, 000. The hyperparameters of the Bernoulli

priors are p = .5. The prior on the intercepts is normal with zero mean and a large

variance of 50. We let vj0 = 6.0 and s2
j0 = 0.001. We set the prior means αj0 and βj0 at

0 and standard deviation σα and σβ at 10 (consequently the priors are not centered at

the true values and are quite flat). Take κij = 0.1, dij = 50, and fix for now the value of

γδ to one, so all the volatilities are considered stochastic.

We randomly generate 120 samples from the model above with p = 6, and for each

sample we compute the posterior mean of all parameters using Algorithm 1. Estimates

are obtained with 50, 000 MCMC draws after 10, 000 burn-ins. The following results are

the average of the posterior means over all samples, while Table 2.1 reports the average

over T of the true and estimated volatilities for a randomly chosen sample.

Ψ̂ =




1 .5328 .5127 .5013 .5062 .5089

0 1 −.0192 −.0101 −.0055 −.0078

0 0 1 −.0091 −.0034 −.0040

0 0 0 1 .0004 −.0004

0 0 0 0 1 −.0025

0 0 0 0 0 1




,
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γ̂ψ =




* .9996 .9985 .9976 .9962 .9968

* * .0221 .0216 .0215 .0217

* * * .0219 .0215 .0215

* * * * .0215 .0217

* * * * * .0212

* * * * * *




,

B̂ =




.9020 3.3394 .4890 .0073 .0048 .0048 0106 .0083

1.0415 1.0666 .0105 .4661 .0063 −.0010 −.0010 0.0004

1.0426 .6593 .0048 .0051 .4639 .0035 .0005 −.0016

2.1374 .4612 .0071 −.0008 .0050 .4646 −.0039 −.0018

2.1297 .3444 .0027 .0047 .0050 −.0005 .4582 .0037

2.1613 .2650 .0030 .0012 .0016 .0014 −.0026 .4581




,

γ̂b =




1.000 .9995 .0206 .0209 .0205 .0209 .0211

1.000 .00204 .9969 .0213 .0212 .0209 .0212

1.000 .0203 .0211 .9959 .0212 .0213 .0214

.9791 .0204 .0208 .0219 .9963 .0213 .0213

.7745 .0202 .0213 .0214 .0214 .9946 .0213

.4506 .0200 .0210 .0210 .0212 .0217 .9948




,

Â1 = (.1132, .1092, .1201, .1103, .1056, .1089)′,

â0 = (.1062, .1066, .1063, .0822, .0814, .0822)′,

β̂ = (.3622, .3618, .3612, .6525, .6552, .6512)′,

δ̂ = (.0407, .0409, .0407, .0392, .0394, .0393)′.

Estimates of (Ψ, α, A1, δ) are very close to the correspondent true values. βj tends

to be underestimated when it is smaller than 0.5 and overestimated otherwise. The
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Table 2.1: Comparison of True and Estimated Stochastic Volatilities for One Randomly
Chosen Sample

variable mean (true h) posterior mean (h) S.d. (true h) posterior s.d (h)

1 0.1697 0.1702 0.0549 0.0535

2 0.1647 0.1655 0.0541 0.0514

3 0.1656 0.1677 0.0523 0.0505

4 0.2553 0.2410 0.0627 0.0685

5 0.2433 0.2320 0.0615 0.0653

6 0.2564 0.2412 0.0591 0.0642

second column of B (b1, relative to the exogenous variable of the model), is generally

underestimated, while the error for the remaining bij elements is minimal. Also, the

posterior mean of the γb elements correspondent to b1 is quite far from either zero

or one. The results are in general very satisfactory though, especially considering the

relatively small number of observations (for such models). The selection of both B and

Ψ elements is very accurate, with the exception of few elements of b1. It would be easy

to choose which parameters constrain to zero to produce a much simpler model.

We are now proposing some more examples of estimation using Algorithm 1. For

every example we slightly change the structure of the true model, in order to see how

this can modify the quality of the estimation and variable selection. The second example

is to study whether the quality of the estimates depends on the variability of the data.

Example 2.2. Consider now a model with same (p, T , X, z) as in Example 2.1,

but with a more complex parameter structure and a stronger random component of the
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volatilities,

Ψ =




1 .5 .5 .6 .6 .3

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, γψ =




* 1 1 1 1 1

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *




, (2.87)

B =




1.00 3.00 0.30 0.00 0.20 0.00 0.20 0.00

1.00 1.50 0.00 0.30 0.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.30 0.00 0.00 0.00

2.00 0.75 0.00 0.00 0.00 0.30 0.00 0.00

2.00 0.60 0.00 0.00 0.00 0.00 0.30 0.00

2.00 0.50 0.00 0.00 0.00 0.00 0.00 0.30




, (2.88)

γb =




1 1 0 1 0 1 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1




. (2.89)

The data generating process for the stochastic volatility is given by

a0 = (.1)16, β = (.3, .5, .3, .5, .3, .5)′, A1 = (.1)16, δ = (.3)16. (2.90)

This model is estimated using the same number of MCMC cycles and the same prior

hyperparameters as in Example 2.1. From the estimates obtained, we can see how the

variability of the latent variable is not incident to the quality of the parameter estimates.
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Here are the results:

Ψ̂ =




1 .5065 .4963 .5887 .5926 .2733

0 1 −.0179 −.0096 −.0060 −.0148

0 0 1 −.0091 −.0055 −.0087

0 0 0 1 −.0003 −.0066

0 0 0 0 1 −.0096

0 0 0 0 0 1




,

γ̂ψ =




* .9982 .9967 .9999 .9999 .4758

* * .0219 .0213 .0211 .0216

* * * .0217 .0212 .0215

* * * * .0213 .0217

* * * * * .0214

* * * * * *




,

B̂ =




.9884 3.1048 .2921 .0102 .1915 .0060 .2010 .0042

1.0003 1.1722 .0064 .2757 .0112 −.0032 .0028 −.0002

1.0099 .7693 .0031 .0005 .2795 .0012 .0042 −.0020

2.0393 .5590 .0043 −.0042 .0122 .2775 .0020 −.0028

2.0378 .4439 .0013 .0007 .0123 −.0019 .2754 .0053

2.0763 .3844 .0027 −.0021 .0040 −.0018 .0022 .2690




,

γ̂b =




1 .5845 .0207 .1341 .0205 .1577 .0212

1 .0204 .4867 .0214 .0212 .0212 .0215

1 .0202 .0210 .5079 .0212 .0216 .0216

.9862 .0203 .0211 .0221 .4983 .0216 .0218

.8606 .0201 .0213 .0215 .0214 .4877 .0214

.8472 .0200 .0208 .0210 .0208 .0215 .4516




,
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â0 = (.1036, .1041, .1028, .1048, .1049, .1024)′,

β̂ = (.2637, .4561, .2666, .4555, .2695, .4564)′,

Â1 = (.1127, .1112, .1221, .1085, .1096, .1111)′,

δ̂ = (.2902, .2914, .2903, .2927, .2891, .2926).′

The major difference between these estimates and those of Example 2.1 lies in γ̂b: the

non-zero elements of the column of B relatives to the autoregressive terms (b2 and

subsequent), have been selected only half of the time than in Example 2.1. The average

of the posterior mean for the correspondent γb,ijs is in fact .9996 in Example 2.1 and

.4136 here. The Average of the posterior mean of γb,ijs relative to the zero elements is

instead similar for both examples and close to .02. Causes for this difference might be

imputed to the higher variability of the latent process, or to the smaller values of the

non-zero elements of B. Also, there is a tendency of the algorithm to overestimate a0

and A1, and underestimate β and δ.

Example 2.3. For this example, (p, T , X, z) remains the same as Examples 2.1

and 2.2. The main difference of this model is that, given the structure of B and A1,

the exogenous variables X and z have respectively a limited and null influence on the

outcomes Y . Also, here the stochastic volatility generating process has quite a simple

structure. Values of B are in between those of the previous examples, except the values

of b0, which are much smaller. Also, the variance of the volatility generating process is
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smaller than in Example 2.2, but still 3 times bigger than in Example 2.1:

Ψ =




1 .5 .5 .6 .6 .4

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, γψ =




* 1 1 1 1 1

* * 0 0 0 0

* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *




, (2.91)

B =




0.60 0.50 0.40 0.00 0.40 0.00 0.00 0.00

0.60 0.00 0.00 0.40 0.00 0.00 0.00 0.00

0.60 0.00 0.00 0.00 0.40 0.00 0.00 0.00

0.30 0.00 0.00 0.00 0.00 0.40 0.00 0.00

0.30 0.00 0.00 0.00 0.00 0.00 0.40 0.00

0.30 0.50 0.00 0.00 0.40 0.00 0.00 0.40




, (2.92)

γb =




1 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 1 0 0 1




. (2.93)

The data generating process for the stochastic volatility is given by:

a0 = (.2)16, β = (.2)16, , A1 = (0)16, δ = (.1)16 (2.94)

This model is estimated using the same number of MCMC cycles and the same prior

47



hyperparameters as in Example 2.1. Estimates obtained are as follows:

Ψ̂ =




1 .4972 .4996 .5954 .6014 .4028

0 1 −.0023 .0023 .0031 −.0023

0 0 1 −.0005 .0009 −.0003

0 0 0 1 .0043 .0026

0 0 0 0 1 −.0003

0 0 0 0 0 1




,

γ̂ψ =




* .9984 .9974 1.0000 .9999 .9161

* * .0218 .0213 .0213 .0215

* * * .0216 .0212 .0214

* * * * .0216 .0217

* * * * * .0213

* * * * * *




,

B̂ =




.6321 .5248 .3782 .0052 .3856 .0033 .0105 .0084

.6182 −.0117 .0017 .3656 .0107 −.0045 −.0043 .0011

.6131 −.0121 .0050 .0017 .3723 .0022 −.0014 .0008

.2950 −.0070 .0050 −.0046 .0142 .3678 −.0050 −.0016

.3121 −.0060 −.0052 −.0002 .0123 −.0042 .3583 .0041

.3181 .4005 .0125 .0039 .3834 .0049 .0028 .3721




,

γ̂b =




.9979 .9243 .0211 .9452 .0207 .0212 .0209

.0268 .0226 .8934 .0217 .0215 .0211 .0211

.0256 .0221 .0218 .9077 .0215 .0217 .0213

.0271 .0221 .0215 .0226 .9002 .0217 .0213

.0261 .0219 .0219 .0218 .0218 .8683 .0211

.9259 .0220 .0215 .9374 .0211 .0219 .9194




,
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â0 = (.2056, .2054, .2046, .2057, .2048, .2046)′,

β̂ = (.1755, .1790, .1790, .1787, .1813, .1801)′,

Â1 = (.0215, −.0460, .0065, −.0322, .0276)′,

δ̂ = (.0956, .0951, .0956, .0956, .0953, .0955)′.

We summarize here the major differences between the results of this example and the

previouses. The Ψ setup in this example and that of Example 2.3 differ only for ψ1,6,

which is .4 here and .3 in the previous case: ψ1,6 has been selected 47 percent of the

time in Example 2.2, and 92 percent of the time here. Selection of the elements of

B1 is quite successful (almost comparable with the results on Example 2.1), since non-

zero elements have been selected on average relative frequency of 91 percent, while zero

elements with one of 2 percent. In the stochastic volatility generation process, a0, A1

are quite accurately estimated, while δ and β are generally underestimated, with errors

on the order of 5 and 11 percent of the true value, respectively.

Example 2.4. We are proposing a fourth example, with (p, T , X, z), as in Examples

2.1−2.3. Here b0 = 0, while Ψ and γψ are as in (2.91), and the parameters of the

stochastic volatility generating process are the same as in (2.94). The other parameters

are:

B =




0.00 0.50 0.40 0.00 0.40 0.00 0.00 0.00

0.00 1.00 0.00 0.40 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.40 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.40 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00

0.00 0.50 0.00 0.00 0.40 0.00 0.00 0.40




, (2.95)
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γb =




1 1 0 1 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 1 0 0 1




. (2.96)

Using the same number of MCMC cycles and the same prior hyperparameters as in

Example 2.1, we get the following estimates:

Ψ̂ =




1 .5164 .5134 .6035 .6010 .4033

0 1 −.0130 −.0081 .0052 −.0073

0 0 1 −.0109 .0031 −.0047

0 0 0 1 .0062 −.0022

0 0 0 0 1 .0005

0 0 0 0 0 1




,

γ̂ψ =




* .9993 .9984 1.0000 .9999 .9172

* * .0220 .0215 .0213 .0216

* * * .0218 .0212 .0214

* * * * .0216 .0217

* * * * * .0213

* * * * * *




,

B̂ =




.0009 .7800 .3845 .0076 .3861 .0058 .0111 .0102

−.0026 .6781 .0040 .3690 .0147 −.0016 −.0049 −.0015

−.0001 .6765 .0071 .0027 .3745 .0034 −.0013 .0001

−.0040 .6628 .0058 −.0017 .0187 .3707 −.0061 −.0049

−.0019 −.1242 −.0073 −.0005 .0128 −.0044 .3580 .0029

−.0017 .3142 .0148 .0054 .3846 .0061 .0028 .3720




,
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γ̂b =




1.00 .9435 .0210 .9471 .0205 .0212 .0210

1.00 .0219 .9056 .0215 .0213 .0213 .0211

1.00 .0216 .0213 .9171 .0213 .0218 .0212

1.00 .0217 .0212 .0225 .9127 .0218 .0215

.0760 .0214 .0216 .0216 .0215 .8681 .0213

.6645 .0215 .0212 .9415 .0209 .0219 .9184




.

This example is very close to Example 2.3. The only differences lie in the first two

columns of the matrix B. Estimates of the stochastic volatility generating process

parameters are not reported since they are essentially the same as in Example 2.3. The

elements of B relative to the autoregressive structure (b2 and subsequent) have been

chosen selected with an accuracy similar to that in Example 2.3 (these columns share

exactly the same structure in the two examples). b1 has only one zero element, which

has been selected 7 percent of the time. All the non-zero elements of b1 have been always

selected to be in the model, except the last one, which has been selected only 66 percent

of the time.

2.6.2 Comparison Between Gilks’Adaptive Sampling and Par-

ticle Filtering

In this section we perform a simulation study to compare the methods adopted in

this study for sampling the stochastic volatilities. We experimented with both filtering

techniques presented in Algorithms F1 and F2. The auxiliary sampling-resampling filter

provided results very similar to the simpler particle filter, and it required longer comput-

ing time. Furthermore, we did not experience weight degeneration problems, and so the

choice to use the simpler filtering method has been made. The rejection sampler showed
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acceptance rates around 80 percent, and running times higher than Algorithms 1 and

2. From Table 2.2, notice that estimation using the Gilks’ adaptive sampler (Algorithm

1) is faster than estimation using filtering (Algorithms 2 and 3)2, even for a moderate

number of particles. All the simulations are obtained on a Pentium 4, 3.20 Ghz Intel

processor with 1 GByte of Ram.

Table 2.2: Running Times for Algorithms 1, 2 and 3 (T = 1, 000, M = 100)

p = 4 p = 10

draws Alg 1 Alg 2 Alg 3 Alg 1 Alg 2 Alg 3

1,100 2’48” 5’22” 6’29” 9’51” 16’12” 19’24”

11,000 21’36” 52’53” 1h2’13” 1h40’44” 2h44’33” 3h20’14”

50,000 1h42’46” 4h05’36” 4h48’18” 7h51’03” 12h49’21” 15h21’42”

The ratio between the running times of Algorithms 1 and 2 is not constant: differences

become smaller as the model becomes more complex. This might be due to the fact that

the particle filter samples vectorwise, while the Gilks’ sampler operates elementwise.

Comparing algorithms just through computing times might be misleading. If an

MCMC algorithm produces very correlated draws, it might require much longer chains

to effectively explore the posterior domain, thus resulting in a larger total cpu time in

spite of a smaller time over iteration ratio. We measure the correlation among MCMC

outcomes through an inefficiency factor, as in Chib et al. (1998) and (2005). These

factors can be estimated as the ratio between the variance of the sample mean obtained

using the actual MCMC scheme and the one obtained with an hypothetical independent

sampling scheme. A more inefficient algorithm will require longer MCMC chains to well

2If auxiliary particle filter is used for Algorithm 2, running times result about 5 times larger.
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explore the posterior sample space. We can evaluate this ratio as

R̂ = 1 +
2Ba

Ba− 1

Ba∑
n=1

K
( n

Ba

)
ρ̂(n), (2.97)

where Ba is known as the bandwidth, K(.) is known as the Parzen kernel and is defined

as

K(x) =





1− 6x2 − 6x3, if x ∈
[
0, 1

2

]

2(1− x)3, if x ∈
[

1
2
, 1

]

0, otherwise.

Also,

ρ̂(n) =
Γ̂(n)

Γ̂(0)
,

where

Γ̂(n) =
1

N

N∑
i=n+1

(
z(i) − z

)(
z(i−n) − z

)
,

where N is the number of MCMC iterations, z(i) is the outcome for the parameter of

interest at iteration i and z is the average over the N iterations. Inefficiency factors

for the element of B are summarized in Table 2.3. The models are parameterized as in

Example 2.1. It is clear that the Gilks’ adaptive sampler leads to much more correlated

draws for B, and thus necessitates longer MCMC chains.

Table 2.3: Inefficiency Factors for Algorithms 1, 2 and 3 (T = 1, 000, M = 100)

p = 4 p = 10

Ba= Alg1 Alg2 Alg3 Alg1 Alg2 Alg3

200 80.3698 1.0673 0.9416 52.5249 0.8907 0.8948

2000 802.7149 0.9468 0.8112 518.9325 1.0292 1.0356
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Possible consequences are shown in the next example. Algorithms 1 and 2 are em-

ployed with starting values which are far away from the true parameters. The two algo-

rithm show similar results only for chains long enough, otherwise Algorithm 1 presents

considerable estimation errors. This minimum length depends on the model. For a

model with four variables, T = 1, 000 and a relatively simple structure of Ψ, we found

10, 000 MCMC cycles after 1, 000 burn-ins to be sufficient for the two algorithms to

produce similar estimates, while 1, 000 MCMC cycles after 100 burn-ins not to (see next

example). For a model with p = 10, T = 1, 000 and M = 100, 10, 000 cycles with 1, 000

burn-ins are still not enough for Algorithm 1 to produce estimates comparable to those

obtained with Algorithm 2 (see Figure 2.1).

Example 2.5. Consider a model with the following Ψ and B parameters:

Ψ =




1 .5 .5 .6

0 1 0 0

0 0 1 0

0 0 0 1




, B =




0 .5 .4 0 .4 0

0 1 .5 .4 0 .4

0 1 0 .5 .4 0

0 1 0 0 0 .4




.

We perform Bayesian estimation of the previous model using both Algorithms 1 and 2,

and starting the MCMC simulation from “bad” starting values. Using 1, 000 MCMC

with 100 burn-ins we obtain the following estimates:

Ψ̂Alg−1 =




1 .1714 .8133 .4115

0 1 −.0136 −.0274

0 0 1 −.0836

0 0 0 1




, Ψ̂Alg−2 =




1 .4431 .5145 .6104

0 1 .0090 .0159

0 0 1 .0175

0 0 0 1




,

B̂Alg−1 =




.2184 .6117 .3005 −.0145 .4488 .0118

.1079 .7602 .6144 .3847 −.1567 .5384

−.0929 .6399 −.1354 .6737 .3373 −.0036

.0455 .2377 −.0361 −.0359 −.0508 .3413




,
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B̂Alg−2 =




−.0335 .7003 .4066 −.0019 .3956 .0349

.1011 .9739 .4596 .3796 .0010 .3430

−.0028 .6923 −.0168 .4852 .4046 −.0406

.1114 .6506 −.0203 −.0144 .0368 .3200




.

It is quite evident that Algorithm 1 underestimates ψ12 and overestimate ψ13. It also

performs poorly in estimating the first 2 columns of B. Algorithm 2 generally performs

much better.

Using 10, 000 MCMC with 1, 000 burn-ins instead, we obtain estimates from the two

algorithm which are very close and generally satisfactory.

Ψ̂Alg−1 =




1 .4703 .5293 .5994

0 1 .0205 .0152

0 0 1 .0241

0 0 0 1




, Ψ̂Alg−2 =




1 .4617 .5200 .6014

0 1 .0230 .0142

0 0 1 .0251

0 0 0 1




.

B̂Alg−1 =




−.0311 .5471 .4185 −.0110 .4054 .0241

.0949 1.0031 .4585 .3956 −.0128 .3649

−.0094 .9880 −.0270 .4838 .4145 −.0458

.1046 .7216 −.0257 −.0114 .0276 .3271




,

B̂Alg−2 =




−.0328 .5476 .4196 −.0105 .4057 .0241

.0963 1.0013 .4596 .3966 −.0142 .3661

−.0072 .9796 −.0256 .4822 .4145 −.0431

.1075 .7212 −.0282 −.0101 .0301 .3249




.

2.6.3 Model Selection via Posterior Mode

In the previous examples, we used the posterior mean of the indicators as an in-

strument for model selection. Here, we use the posterior model of γ instead. Con-

sider the model of Example 2.5. For T = 1, 000, 10, 000 MCMC cycles after 1, 000
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burn-ins, the most visited model (41 percent of the time) is the one with decimal

marker 16161687205. This number, once reconverted to binary, corresponds to γ̂ =

1111000011010011111100011010100101, which happens to be the true γ.

If we estimate γ using the posterior mean, we get

γ̂ = (.9875, .9897, .9925, .9925, .0094, .0213, .0197, .0095, .9977, .9999, .0224, 1,

.0216, .0202, 1, 1, 1, 1, .9753, .9987, .0224, .0198, .0199, .9533, .9993, .0206,

.9726, .0197, .9805, .0206, .0236, .8637, .0249, .7470),

which would lead to the choice of the very same model using any cutting point lower

than .74. Here the number of parameters subject to stochastic search is 34, for a total

number of 234 competing models. The algorithm visited a total of 494 different models.

Results depend on the number of observations available. For T = 500 results are almost

identical, with the best model visited 41 of the time and a total number of 587 visited

models. When T = 300, the best model is visited with a relative frequency of 7.9

percent only, and the number of visited models is 1, 678. If we reduce the number of

observations to 100, we see that the most visited model is visited only 0.9 percent of

the time, and does not correspond to the true one, which has been visited only 0.016

percent of the time. The total number of visited models, in this case, is 4740, meaning

that the algorithm selects the models almost randomly, and so that T = 100 is not a

sufficient sample size for this type of variable selection. For T = 100, if we estimate γ

using the posterior mean we get

γ̂ = (.9032, .8817, .8015, .9112, .0526, .0771, .0929, .0122, .4237, .9992, .0302,

.6014, .0667, .1168, .9233, .9685, .3947, .4949, .3673, .9768, .0619, .0265,

.0435, .6678, .9748, .0378, .9466, .0356, .6988, .0251, .0445, .7974, .0263, .646).
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This leads to the choice of the true model for any cutting point between 0.12 and 0.36

(which are not natural choices). The major difference with the estimate obtained with

T = 1, 000 is that the parameters in the true model (some of them at least) have been

chosen less frequently, while the parameters not in the model continue to have very low

posterior mean. In other words, for smaller sample sizes, the algorithm tends to choose

simpler models. A barplot of the frequencies models have been visited can be found in

Figure 2.2. The plot shows that, with T = 1, 000 the most visited subset has much an

higher frequency than the second most visited one, this making the choice of the best

model very easy. For T = 100 though, the choice is not easy, and we saw that it would

lead to a wrong model. So, when the number of observations is limited, the posterior

mean might be preferable: the researcher can consider some parameters to be almost

surely in or out of the model (those with an estimate very close to zero or one), and

choose the other subjectively. The computation of the posterior mean can also be used

for preliminary runs, in order to later “fix” some parameter and run the selection on a

reduced space.

We repeated the experiment simulating from the same model of Example 2.1, with

p = 6 and using 10, 000 MCMC cycles after 1, 000 burn-ins. The number competing

models is larger, but the model structure relatively simpler, many parameters being

equal to zero. Barplots of the frequencies are reported in Figure 2.3, while Table 2.4

shows a summary of the results.

2.6.4 Model Selection for δ

In Examples 2.1−2.5 we did not select the elements of δ. Unlike model selection for

other parameters in the model, the selection of volatility variances is sensitive to the
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Table 2.4: Summary of Posterior Modes with p=6. The Total Number of Visits is 10, 000

T number of visited models freq. most visited freq. true

T = 100 8516 35 2

T = 300 4835 245 245

T = 500 3265 1274 1274

T = 1000 2698 1924 1924

choice of prior hyperparameters. In Table 2.5 we present simulation results obtained

using a model with p = 10 and the same parameter structure as in Example 2.1, except

for δ. The posterior mean of γδ varies significantly depending on q: big values of qj

Table 2.5: Model Selection of δ, When T = 1, 000, and p = 10

δ .0000 .0200 .0400 .0000 .0600 .0800 .1000 .1200 .1500 .2000

γδ 0 1 1 0 1 1 1 1 1 1

γ̂δ, q=1.1 .0015 .5689 .5585 .0035 .5904 .5273 .4897 .5868 .5987 .5476

γ̂δ, q=1.5 .0012 .4795 .6265 .0024 .7186 .6107 .6562 .7094 .6982 .6883

γ̂δ, q=3 .0007 .0856 .7086 .0014 .9087 .9101 .8678 .9154 .9107 .8655

γ̂δ, q=5 .0003 .0005 .6464 .0003 .9202 .9577 .9203 .9498 .9409 .9415

γ̂δ, q=10 .0000 .0001 .2718 .0000 .9198 .9764 .9499 .9989 .9856 .9745

γ̂δ, q=20 .0000 .0000 .0000 .0000 .7702 .9654 .9719 .9956 .9972 .9902

γ̂δ, q=50 .0000 .0000 .0000 .0000 .0000 .4815 .9177 .9985 .9997 .9967

γ̂δ, q=100 .0000 .0000 .0000 .0000 .0000 .0000 .1703 .9400 .9879 .9996

γ̂δ, q=200 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0623 .8886 .9905

lead to an unreasonable number of zeros in γδj, while small values of qj lead to posterior

means for the γδjs which are never close to one. Fixing qj accordingly to the magnitude

of δj is impossible since δj is unknown. Instead, we specify a prior and estimate its

58



posterior distribution. The prior specification and conditional posterior computation

are discussed in Sections 2.4 and 2.5, respectively, while simulation results are in Table

2.6. These are obtained with the same model that produced the results in Table 2.5.

It is clear that this hierarchical formulation delivers better results than fixing q at a

Table 2.6: Model Selection of δ Under Prior on q

δ .0000 .0200 .0400 .0000 .0600 .0800 .1000 .1200 .1500 .2000

γδ 0 1 1 0 1 1 1 1 1 1

γ̂δ .0000 .9723 .9911 .0000 .937 .9941 .9941 .9944 .9943 .9947

q̂j 3.971 6.711 8.704 3.999 9.486 9.713 9.655 9.845 9.853 9.969

constant value.

2.6.5 Examples Using Algorithm 2 and Selecting δ

The higher efficiency of Algorithm 2 is more advantegeous for larger models, as we

saw previously in the chapter. We present an example with 10 variables, performing

stochastic search on δ as well. Because of the high number of parameters, we present

the results for B and Ψ in graphical form (Figure 2.1).

Example 2.6. We study a VAR(1) with p = 10 and T = 1, 000. The model presents

stochastic volatilities and two exogenous variables, x and z, generated as in Example

2.1. The first two columns of B have all the elements different than zero. The matrix

obtained from the remaining columns (b2, · · · , bq) is relative to the AR coefficients of

the model, and has all the diagonal elements different from zero, as well as some off

diagonal ones. Also, all the non-redundant first row elements of Ψ are different than

zero with values varying from .3 to .6, as well as some sparse non-redundant elements of
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the subsequent rows. The true parameters of the stochastic volatility generating process

are shown below.

a0 = (.2)110, β = ((.7)1′6, .2, .2, .5, .5)′, A1 = (0, 0, .2, 0, 0, (.2)1′4)
′,

δ = (0, .02, .04, 0, .06, .08, .1, 0, .15, .2)′,

γa = (0, 0, 1, 0, 0, 1′4)
′, γδ = (0, 1, 1, 0, 1′3, 0, 1, 1)′.

This model is quite more complex than those previously discussed.

The hyperparameters of the Bernoulli priors are always p = .5. The prior on the

intercepts is normal with zero mean and a large variance of 50. We let vj0 = 6.0 and

s2
j0 = 0.001. We set the prior means αj0 and βj0 at 0 and standard deviation σα and

σβ at 10. We take κij = 0.1, dij = 50 and M = 100. For δ selection, we take vjo = 3

and sj0 = .001 for all js, while we estimate q, having αq = 2 and βq = 0.5. Here

we present the results obtained sampling 10 different samples from the model, and for

each computing the posterior mean of the parameters using 10, 000 cycles after 1, 000

burn-ins.

â0 = (.2038, .2008, .2121, .2000, .2030, .2042, .2013, .2012, .2042, .2027)′,

β̂ = (.6943, .6826, .7000, .6933, .6926, .1974, .1954, .4823, .4966)′,

Â1 = (.0000, .0017, .1895, .0000, .0054, .1898, −.0043, .0000, −.0.25, −.0188)′,

δ̂ = (.0000, .0202, .0402, .0000, .0598, .0809, .1003, .0000, .1499, .1922)′,

γ̂a = (.0185, .0224, .9589, .0208, .0705, .9920, .0182, .0221, .0226, .0209)′,

γ̂δ = (.0000, .9708, .9911, .0000, .9930, .9940, .9942, .0000, .9946, .9944)′,

q̂ = (3.971, 6.711, 8.704, 3.999, 9.486, 9.713, 9.655, 9.845, 9.853, 9.969)′.

Figure 2.4 presents the differences between the true and estimated values of B and Ψ

standardized over the range of the true values. Table 2.7 reports the average estimates
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for the γb,j and γψ,j with a true value of 0 and 1, respectively.

Table 2.7: Estimates of the Indicator Variables

Average estimate when true = 0 Average estimate when true = 1

B 0.02563556 0.93872

Ψ 0.02147241 0.801025

Finally, Table 2.8 shows the average true and estimated values of hjt. Some param-

Table 2.8: Comparison of True and Estimated Stochastic Volatilities for One Randomly
Chosen Sample. T = 1, 000, p = 10.

variable mean (true h) posterior mean (h) S.d. (true h) posterior s.d (h)

1 0.6632 0.6609 0.0707 0.0738

2 0.6642 0.6642 0.0763 0.0738

3 0.6647 0.6661 0.0763 0.0738

4 0.6550 0.6545 0.0704 0.0706

5 0.6636 0.6625 0.0741 0.0768

6 0.6677 0.6694 0.0734 0.0754

7 0.2522 0.2524 0.0489 0.0507

8 0.2492 0.2492 0.0516 0.0510

9 0.4009 0.4004 0.0574 0.0582

10 0.3982 0.3988 0.0597 0.0596

eters of B are still quite far from the true value, but generally the matrix is accurately

estimated. The estimates of a0 and β look respectively positively and negatively biased,

but the dimension of this bias is to be considered paltry, since the largest error is on

the order of 2 percent of the true value for β and 6 percent for a0. It is interesting to

notice that here estimation errors for β are smaller than estimation errors for a0, while
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it has always been the opposite in the previous examples. The estimation of δ and the

relative model selection gives almost perfect results.

2.6.6 Forecasting

So far we discussed about the advantage of the variable selection technique in terms

of the ease of interpreting a simpler model. In Section 2.3, we anticipated about the

possible advantages of a calibrated model over an overparameterized unrestricted model

in terms of prediction and forecasting as well. The unrestricted model might present

problems of over-fitting which adversely affect model forecasts. Variable selection might

be able to overcome this problems.

In this section, we compare the forecasting ability between an unrestricted VAR

model with stochastic volatilities and the correspondent restricted model obtained with

our model selection algorithm.

Consider the simulated data of Example 2.6: we obtain Bayesian estimates of both the

restricted and unrestricted model. To obtain Bayesian estimates of the latter we simply

fix all the model indexes to be one. Restricted model is chosen using the posterior mean

of the model indicators and fixing at .2 the threshold for the correspondent parameters

to be selected. We then use these estimates to make a forecast of hj,T+1 and yj,T+1, for

j = 1, · · · , 10. We compute the mean square prediction error for the true, restricted and

unrestricted models over 50 simulated samples of T = 1, 000. We define MSEmodel to be

the mean of the the squared errors (yj,T+1 − ŷ
(model)
j,T+1 ), and MSE∗

model to be the mean of

the the squared errors (ŷ
(true)
j,T+1 − ŷ

(model)
j,T+1 ). Here are the results for the forecast of yj,T+1:

MSEres

MSEtrue

= (1.056, 1.096, 1.379, 1.121, 1.011, 1.748, 1.327, 1.012, 1.048, 1.152),
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MSE∗
unres

MSE∗
res

= (2.489, 1.181, 2.607, 1.755, 2.179, 1.682, 2.984, 1.830, 2.012, 2.146).

The restricted model provides good forecasts. The highest ratio between true and re-

stricted models’ MSE is 1.74 (variable 6). The unrestricted model performs well for some

variables (e.g., variable 2), but significantly worse than the restricted one for others (e.g.,

variable 7). Here are the results for the forecast of hj,T+1:

MSEres

MSEtrue

= (1.010, 1.828, 3.614, 1.02, 1.249, 3.553, 3.415, 1.012, 1.421, 1.667),

MSE∗
unres

MSE∗
res

= (1.286, 5.10, 5.184, 8.591, 13.941, 1.699, 4.510, 1.175, 1.34, 7.35).

The restricted model works best for the variables with δj = 0. Variables 3 and 5 present

the worst results, while variables 9 and 10 are the best among those with δj > 0. In

general, the restricted model selected by stochastic search algorithm provides better

forecasting than the correspondent unrestricted model, for both y and h.

2.6.7 Numerical Simulations with Smaller Sample Sizes

Previous examples utilize a sample size T = 1, 000. Although this is a reasonably

small sample size for most financial econometrics applications, many macroeconomic

models must be estimated with quite fewer observations. The numerical examples in

this subsection illustrate the performance of the stochastic search algorithm with samples

sizes T < 1, 000. For each example, we simulate one thousand samples and conduct

stochastic search model selection with 10, 000 MCMC cycles of Algorithm 1 (after 1, 000

burn-in runs).
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Example 2.7. Consider a three-variable model with the following parameters,

Ψ =




1 .5 .5

0 1 0

0 0 1


 , γψ =




* 1 1

* * 0

* * *


 , (2.98)

B =




0 .3 .5 .2 .2

0 0 0 .5 0

0 0 0 0 .5


 , γb =




1 1 1 1

0 0 1 0

0 0 0 1


 . (2.99)

The data generating process for the stochastic volatility is given by:

A1 = (.1)13, a0 = (.2)13 β = (.5)13, δ = (.1)13. (2.100)

The sample size is T = 300. The hyperparameters of the Bernoulli priors are all 0.5.

The prior on the intercepts is normal with zero mean variance 25. We let vj0 = 1.0,

s2
j0 = 0.001 (meaning the prior for σj is quite diffuse). αj0 and βj0 are 0, while σα and

σβ are 10. Finally, κij = 0.1 and dij = 50. Here we present the estimate obtained for

this model:

B̂ =




.0009 .2610 .4667 .2345 .1864

.0022 −.0008 −.0014 .4840 −.0060

.0030 −.0011 .0013 −.0149 .4777


 , Ψ̂ =




1 .4830 .5384

0 1 .0548

0 0 1


 ,

γ̂b =




.9667 .9889 .9313 .9156

.0444 .0223 .9667 .0556

.0347 .0112 .0123 1.000


 , γ̂ψ =




* .9307 .9920

* * .0791

* * *


 .

Estimates of the latent volatilities generation process parameters are shown in Table 2.9,

while plots with the true and estimated log-volatilities are shown in Figure 2.5.

The model presented here is quite simple. It can be seen that the results are good but

not perfect. The reason might be found in the small sample size. In particular, while
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Table 2.9: Posterior Mean for Stochastic Volatility generation process parameters

Â1 .1201 .1119 .0897

â0 .2188 .2404 .2231

β̂ .4614 .5587 .5337

δ̂ .0961 .1240 .0882

the estimates of the parameters in the main equation and of the correspondent indicator

variables have errors comparable or even smaller than in the previous examples, the

parameters in the stochastic volatility equation show errors up to 20 percent of the true

parameter value.

Example 2.8. In this example we present a more complex model, estimated using a

larger sample size. Consider a four-variable model with the following parameters,

Ψ =




1 .5 .5 .2

0 1 0 0

0 0 1 0

0 0 0 1




, γψ =




* 1 1 1

* * 0 0

* * * 0

* * * *




, (2.101)

B =




0 .3 .5 .2 .2 .4

0 0 0 .5 0 0

0 .1 0 0 .5 0

0 0 0 0 0 .5




, γb =




1 1 1 1 1

0 0 1 0 0

1 0 0 1 0

0 0 0 0 1




. (2.102)

The data generating process for the stochastic volatility is given by:

A1 = (0.1, 0.2, 0.3, 0.4)′, a0 = (.1)14, β = (.8)14, δ = (.1)14. (2.103)

The sample size is T = 600. The prior hyperparameters are as in the previous example.

Here are the estimates obtained with 10, 000 MCMC samples of Algorithm 1 (after 1,000
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burn-ins):

B̂ =




.0128 .2556 .4314 .1671 .1743 .3567

−.0045 −.0017 −.0791 .5670 −.0411 −.0738

−.0049 .0923 −.0044 −.0435 .5420 −.0817

.0028 −.0004 .0140 .0012 .0019 .4820




,

γ̂b =




.9407 .9818 .9807 .8943 .9034

.0731 .0324 .9323 . 0228 .0300

.8775 .0378 .0228 .9264 .0322

.0630 .0218 .0209 .0205 .9332




,

Ψ̂ =




1 .5178 .4800 .2193

0 1 −.0118 −.0490

0 0 1 −.0622

0 0 0 1




, γ̂ψ =




* .9100 .9051 .8341

* * .0427 .0268

* * * .0344

* * * *




.

Estimates of the latent volatilities are shown in Table 2.10, while plots with the true

and estimated log-volatilities are shown in Figure 2.6.

Table 2.10: Posterior mean for stochastic volatility generation process parameters

Â1 .1531 .2519 .3361 .4368

â0 .1374 .1032 .0842 .0749

β̂ .7491 .7830 .7975 .8036

δ̂ .0857 .1321 .1215 .0789

Compared with the previous example, here we have one more variable and T = 600.

Again, we have generally satisfactory estimates for the main equation parameters, while

some of the estimates in the stochastic volatility equation still present big errors, here

even bigger (in percentage) than in the previous example.
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Example 2.9. The last example of the section shows how simply changing the pa-

rameters of the stochastic volatility process can change the quality of the results when

the sample size is not very big. Consider the same model of Example 2.8, just with a

different data generating process:

A1 = (.1, .2, .3, .4)′, a0 = β = δ = (.1)14. (2.104)

The sample size is T = 500, while prior hyperparameter and number of MCMC draws

are the same as in Example 2.8. The estimates obtained are:

B̂ =




.0128 .3141 .5060 .2110 .2147 .4365

−.0045 −.0023 −.0065 .5146 −.0018 −.0266

−.0049 .1117 −.0306 −.0205 .4873 −.0377

.0028 −.0005 .0022 .0137 −.0049 .5330




,

γ̂b =




.9959 .9985 .9793 .8916 .9753

.0630 .0215 .9700 .0207 .0249

.8637 .0225 .0220 .9155 .0258

.0616 .0201 .0207 .0208 .9741




,

Ψ̂ =




1 .5031 .5031 .1915

0 1 −.0010 −.0044

0 0 1 −.0216

0 0 0 1




, γ̂ψ =




* .9984 .9990 .8859

* * .0222 .0220

* * * .0224

* * * *




.

Estimates of the latent volatilities are shown in Table 2.11. Plots of the true and

estimated volatilities can be found in Figure 2.7. Here estimates are still not perfect but

are generally better than in the previous example. It can be seen that just modifying βj

to be 0.1 for all js leads to more precise estimates of (Ψ, a0, δ), even if the number of

observations decreased from T = 600 to T = 500.
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Table 2.11: Posterior Mean for Stochastic Volatility Generation Process Parameters

Â1 .1324 .2449 .3254 .4412

â0 .1216 .1134 .0983 .0935

β̂ .1086 .0899 .0905 .0834

δ̂ .0841 .0840 .0840 .0938

2.7 Macroeconomic Applications

We analyze two real data examples. The first example is on daily exchange rates of

US dollar, and is known to exhibit stochastic volatilities. The other example is about a

set of macroeconomic indicators, measured on a monthly basis. Prior hyperparameters

are chosen as in Example 2.6, except s0 = 10−8, αq = 0.1, and βq = 0.05.

2.7.1 Daily Exchange Rates

Our data consist of daily exchange rates between US dollar and ten major currencies

between January 2001 and November 2005, for a total of 1, 222 observations.

We examine the daily exchange rates of USD with, respectively, EUR, GBP, JPY,

CAD, MXN, BRL, CHF, NOK, SGD and INR3. We transform the data using a function

of the log differences, precisely

yjt = 100×
{

log rjt − log rj,t−1 − 1

T

T∑
i=1

(log rji − log rj,i−1)
}

, (2.105)

where rjt denotes the exchange rate j at time t. Chib et al. (2002) use this transformation

for modeling univariate stochastic volatilities. Their parametrization does not include

exogenous or endogenous variables in the right end side of the data generating equation,

3Currency codes are according to the iso4217 standard.
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which is then composed only by the error.

We apply Model (2.6), with X composed of lag 1 values of yt. Exogenous variables are

not present in the stochastic volatility generating process either. For every parameter

we present the posterior mean obtained simulating 50, 000 MCMC cycles of Algorithm 2

(M = 1, 000) and discarding the first 10, 000 as burn-in. Figure 2.8 gives a scatter plot

of the posterior mean of the non-redundant elements of (Ψ, γψ, B γb). It is noticeable

that the posterior mean of γψ easily allows us to distinguish between the zero and non-

zero elements of the matrix Ψ, being all the elements close to zero or one. Also, all the

elements of the matrix B1 present corresponding indicators in γb very close to zero. This

signifies that the data generating process is not autoregressive, and so that data can be

modeled as in Chib et al. (2002). What they assumed a priori though, we reached via

model selection.

Below are the posterior means of the stochastic volatility generation process param-

eters:

â0 = (−.0012, .0002,−.1103,−.005,−.1247,−.0122,−.9583, .0331,−.055,−.2671)′,

β̂ = (.4581, −.1815, −.5509, .1666, −.1042, .8823, .6137, −.3741, −.1151, .1391)′,

δ̂ = (.0002, .0010, .0147, .0018, .0129, .1693, .0158, .0068, .0141, .0089)′,

γ̂δ = (.8930, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, .9780, 1.0000)′,

q̂ = (28.495, 57.524, 60.4645, 59.414, 60.976, 57.206, 61.010, 60.442, 28.166, 59.862)′.

All δjs are selected to be in the model, no matter how small the actual value is. This

is concordant with well known results about the nature of exchange rates. The value of

the hyperparameter qj changes to adapt to the different magnitude of δj values. Most

of the variables present values of a0,j very close to zero, with the exception of Variables

7 and 8, which show strong negative values. Variables 1, 4, 6, 7, and 10 have positive βj
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coefficient, while the remaining a negative one. Table 2.12 reports the posterior mean

and standard deviation of hjt averaged over t.

Table 2.12: Posterior Mean for h, λ, Posterior SD for h, averaged over t

variable posterior mean (h) posterior mean (λ) posterior s.d. (h)

1 −0.0016 0.9984 0.0008

2 0.0002 1.00022 0.0037

3 −0.0691 0.9335 0.0241

4 −0.0056 0.9944 0.0241

5 −0.0970 0.9083 0.0417

6 −0.3843 0.9521 0.8168

7 −2.2683 0.1400 0.6860

8 0.0232 1.0235 0.0106

9 −0.0443 0.9573 0.0352

10 −0.2690 0.7689 0.1083

2.7.2 Monthly Macroeconomic Indicators

In the second real data example we use a set of monthly measurements of macroeco-

nomic indicators. Unlike the previous case, the nature of the conditional volatilities has

not between thoroughly studied for this type of data. We use our model selection tech-

nique to see whether some or all the variables present a conditional stochastic variability.

The variables are PP index of crude materials, CP index, index of industrial production,

Standard and Poor adjusted close value, federal funds rate, weighted exchange rate of

US dollar against some major foreign currencies. The sample period is from January

1973 to November 2005, for a total of 393 observations. All the variables have been log

transformed with the exception of federal funds rate. The data generating process has
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been modeled as a VAR(12) without exogenous variables, while the volatility generating

process is an AR(1) with no exogenous variables. We perform stochastic search selection

on all the parameters of interest, using 40, 000 MCMC cycles of Algorithm 2 (M=1, 000)

after 10, 000 burn-ins.

First, we report the values of the first column of B (b0), which is not subject to model

selection:

b̂0 = (−4.4490, −0.0849, 4.0647, −2.4985, −2.3704, 8.3390)′.

Then, since B1 has 438 elements, we display it using a plot. Figure 2.9 gives the scatter

plot of the posterior means for B1 and the correspondent values of γb. Since we have

seen, from simulation studies, that for relatively small sample sizes the stochastic search

algorithm tends to oversimplify the model, we have chosen a low cutoff point for γb:

Table 2.13 reports the posterior mean and SD of the B1 elements with relative γb bigger

than 0.2.

Only 14 γbj are larger than 0.2, which leads to a considerable simplification of a

very complex starting model. All the variables show correlation with their own first lag

except Variable 5 (federal funds rate). Variable 4 (S&P index) is also correlated with

its lag 2 term. Some lag 1 relations are also present between Variables 3 and 2, 4 and

2, 4 and 3 and 5 and 2, and some higher order relations between Variables 3 and 2, 4

and 1 and 4 and 6. Variable 4 (S&P close value) shows to be the most influenced by

the other series, being influenced by the index of crude materials, CP index, index of

industrial production and exchange rates. It should be noticed that changes in the CP

index and in the index of industrial production will influence the S&P close value in a

shorter time than changes in the index of crude materials. The variables that shows less

relations is Variable 5 (federal funds rate), while the variable influencing most indicators
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Table 2.13: Posterior Mean and SD of B1 Elements With a Correspondent γ̂bj ≥ 0.2

γ̂bj b̂ij SD of b̂ij Relates

1.000 0.9019 0.0082 y1t and y1,t−1

1.000 0.7980 0.0069 y2t and y2,t−1

0.5470 −0.1489 0.0150 y3t and y2,t−1

0.9662 0.4944 0.0062 y3t and y3,t−1

0.3712 0.0245 0.0053 y3t and y2,t−2

0.6043 0.3143 0.0154 y3t and y3,t−2

0.2435 −0.1768 0.0198 y4t and y2,t−1

0.2742 −0.1823 0.0124 y4t and y3,t−1

1.000 0.8875 0.0108 y4t and y4,t−1

0.5535 −0.2888 0.0296 y4t and y1,t−7

0.2915 −0.2218 0.0382 y4t and y6,t−8

0.2670 0.2742 0.0326 y5t and y2,t−1

1.000 0.8287 0.0086 y6t and y6,t−1
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is Variable 2 (CP index), which influences index of industrial production, S&P close

value and federal funds rate. We also present the posterior mean for the parameters in

the stochastic volatility equation, while a plot of the estimated volatilities os shown in

Figure 2.11:

â0 = (−0.025, 0.002, 0.054, −0.013, 0.057, −0.026)′,

β̂ = (0.0444, −0.3790, −0.0074, 0.1784, −0.6547, −0.6149)′,

δ̂ = (0.0015, 0.0181, 0.0053, 0.0356, 0.0013, 0.0218)′,

γ̂δ = (0.8260, 0.5960, 0.9270, 0.8250, 0.6180, 0.7670)′,

q̂ = (10.0350, 21.5314, 42.1637, 14.2045, 24.0582, 20.4372)′.

Also in this dataset all the variables seem to show stochastic volatility.

We compare the out of sample forecast ability of the model chosen via model selection

with that of an unrestricted model. In order to do so, we divide the data set in two:

a training sample with 357 observations and a predicting (or forecasting) sample with

24 observations. The MSE is calculated over the forecasting period, for each variable.

The ratio for the MSE computed with the unrestricted and the one computed with the

restricted model is:

MSEunres

MSEres

= (1.5423, 1.3526, 2.5489, 1.2256, 0.9632, 0.8772).

Here the result is different than in the simulations, since for two of the variables the

unrestricted model seems to perform better. Results are not really comparable though,

since in the simulation we were comparing a one step ahead forecast over fifty samples,

while here we are performing an out of sample forecasting over a very long period.

It should be anyway noticed the asymmetry in forecast errors between the restricted

and unrestricted models: the smallest ratio is .8772 (Variable 6), while the biggest ratio
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is 2.5489 (Variable 3), so for the variables better forecasted by the unrestricted model

the difference is smaller than for the variables forecasted better by the restricted one.

2.8 Variables’ Order

One of the limitations of the modified Cholesky decomposition is that estimation

results are not invariant to the order of variables. Interpretation of the decomposition

parameters can facilitate the variable ordering: using (2.7), we model the marginal vari-

ance of variable 1, the conditional variance of variable 2 given variable 1, the conditional

variance of variable 3 given variables 1 and 2, and so on. The order of the variables can

be then controlled by the researcher according to theoretical reasoning. For example,

macroeconomic theory has been used to justify the specific variables’ order in the two

real data examples before. Here, we present the data analysis of the same dataset of

monthly macroeconomic indicators analyzed in the previous section, the only difference

consisting in the order of variables which has been reversed. The order is now: weighted

exchange rate of US dollar against some major foreign currencies, federal funds rate,

Standard and Poor 500 stock price adjusted close value, Index of Industrial Production,

Consumer Price Index (CPI), and Producer Price Index (PPI) of crude materials. All

the variables have been log transformed with the exception of federal funds rate. The

data generating process has been modeled as a VAR(12) without exogenous variables,

while the volatility generating process is an AR(1) with no exogenous variables, exactly

as in the previous section. First, we report the values of the first column of B, b0:

b̂0 = (7.5442, −2.6646, −5.3813, 2.9355, 0.7153, −3.6233)′.

74



Then, Figure 2.10 gives the scatter plot of the posterior means for B1 and the corre-

spondent values of γb. The plot shows three clusters of γbj values. One is concentrated

on 0, one from 0.2 to 0.4 and one from 0.6 to 1.0. Table 2.14 shows the posterior mean

and SD of the B1 elements with relative γb bigger than 0.2.

Table 2.14: Posterior Mean and SD of B1 Elements With a Correspondent γ̂bj ≥ 0.2

γ̂bj b̂ij SD of b̂ij Relates

1.000 0.8395 0.0061 y1t and y1,t−1

1.000 0.7233 0.0071 y2t and y2,t−1

0.2730 0.2178 0.0126 y2t and y4,t−1

0.4170 −0.2502 0.0068 y3t and y2,t−1

1.0000 0.8851 0.0009 y3t and y3,t−1

0.2450 0.1586 0.1054 y3t and y5,t−7

0.3430 −0.2448 0.0024 y3t and y6,t−7

0.2640 −0.2173 0.0064 y3t and y3,t−9

0.8850 0.4320 0.0286 y4t and y4,t−1

0.4420 0.2789 0.0296 y4t and y4,t−2

0.9880 0.8758 0.0082 y5t and y5,t−1

0.2670 0.1785 0.0326 y6t and y4,t−1

0.6950 −0.5376 0.2040 y6t and y5,t−1

1.000 0.8529 0.2040 y6t and y6,t−1

Only 15 elements of B1 have a correspondent γbj bigger than 0.2. All the variables

show correlation with their own first lag, Variable 4 (index of industrial production), also

with its lag 2 term, and Variable 3 (S&P index) with its lag 9. Some lag 1 relations are

also present between Variables 2 and 4, 3 and 2, 4 and 6 and 5 and 6, and some higher

order relations between Variables 3 and 5 and 3 and 6. Variables 3 (S&P close value)

and 6 (PP index of crude materials) show to be the most influenced by the other series.
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Variable 2 (federal funds rate) is influenced by the previous month index of industrial

production, while the remaining three variables seem to be influenced only by their past

values. We also present the posterior mean for the parameters in the stochastic volatility

equation:

â0 = (0.0009, −0.0020, 0.0010, 0.0121, −0.0755, 0.0035)′,

β̂ = (−0.1337, −0.4095, −0.2271, −0.8471, 0.8245, −0.3497)′,

δ̂ = (0.0001, 0.0031, 0.0115, 0.0093, 0.0282, 0.0089)′,

γ̂δ = (0.8800, 0.9970, 0.8240, 0.8210, 0.9810, 0.7240)′,

q̂ = (1.5478, 62.0149, 25.5232, 18.3992, 57.9823, 27.5507)′.

Again, all the variables show stochastic volatility. Comparing these estimates with

those of the previous analysis, we can see that even if the results are similar, there are

some substantial differences. For example, the AR(1) coefficient of federal funds rate is

significant only with this variable ordering, and the higher order coefficients are quite

different.

The out of sample forecast ability of the model, compared with an unrestricted model,

provides similar results with both orders:

MSEunres

MSEres

= (0.8217, 0.9562, 1.2652, 2.6513, 1.3367, 1.7726).

A plot of the forecasting errors is provided in Figure 2.12.

2.9 Conclusions

In this chapter we develop and implement algorithms for Bayesian model selection

of multivariate stochastic volatility models. We extend the stochastic search method
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of George & McCulloch (1993) to multivariate regression models with time varying

covariances, providing a computationally feasible method to select among a large number

of competing models.

We presented different algorithms to perform Bayesian estimation and stochastic

search model selection, differing on the technique used to simulate the latent vari-

ables hjt: direct sampling via Gilks adaptive sampler, particle filtering and smooth-

ing, and filtering using a rejection sampler. Simulation studies show that the particle

filter algorithm is preferable in terms of the quality of the estimates and efficiency,

while Gilks adaptive sampler is effective for simple models. Real data examples show

how the stochastic search algorithm can greatly simplify complex models and allows

the researcher to gain insights on the problem he, or she, is analyzing. We compare

forecasting ability using both simulated and real data under unrestricted models and

restricted models obtained through stochastic search. We find that restricted models

generally outperform unrestricted models.

We compare the choice of the best model via posterior mean and posterior mode of

γ, and pointed advantages and disadvantages of both methods. We have seen how for

relatively large sample sizes the choice of the best model is easy using both methods,

while as the number of observations decreases, further attention is necessary in order

not to be mislead.

The model can still be improved, and further developments and generalizations are

possible. Those will be discussed in the chapter relative to further research.
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Figure 2.1: Comparison Between Algorithms 1 and 2. We compare the results obtained
with p = 10, 10, 000 MCMC cycles after 1, 000 burn-ins and using starting values far
from the true ones. Results are presented plotting the standardized differences between
the true parameter value and the correspondent estimate. Differences are standardized
by the range of the true parameter values. Both Ψ and B and their correspondent
estimates have been vectorized before being plotted.
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Figure 2.2: Barplot of the Most Visited Model. p = 4
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Figure 2.3: Barplot of the Most Visited Model. p = 6
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Figure 2.8: (Daily Exchange Rates) Posterior Means for Ψ, γψ, B and γb. The matrices
are vectorized by row

85



•

•
•
••••••••
••
••••••
•
•
•••
•
•••••
••••••••••••••••••••••••

•
•
••
••
••
••••••
•
•••
•

•

••
•
••
•
•••••••••••••••••
•
••••••••••••••••••••••••••••••

•••••••••••••••••
•

•

•••••

•

•••••
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••

•

••••••••
••••••••
•••
•

•
••
•
••••
•
••
•

•

•••••
•••••••
••••

•

•••••••
••••
••
••••••

•

••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•••
••
•
•••••••••••••••••••••••••••••••••••

••••••••••••••••••••
•••••

Vech(B) index

P
o

s
te

ri
o

r 
M

e
a

n

0 100 200 300 400

−0.2
0.0
0.2
0.4
0.6
0.8

Posterior mean of B
•

•••••••••••••••••••••••••••••••••••••••••••••••••••••
•
••••••••••••••••••

•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•

••••

•

•

••••
••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

••

•

•••••••••••••••••••
•••••••••
••••

•

••••••••••••••••

•

•••••••••••••••••••

•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

γ_b Index

P
o

s
te

ri
o

r 
M

e
a

n

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0
Posterior Mean of γ_b

Figure 2.9: (Macroeconomic Indicators) Posterior Means for B and γb. The matrices
are vectorized by row
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Figure 2.10: (Macroeconomic Indicators Inverted) Posterior Means for B and γb. The
matrices are vectorized by row

86



t

100 200 300

0.03465

0.03475

0.03485

h_5

t

100 200 300

−0.0165
−0.0164
−0.0164
−0.0163

h_6

t

100 200 300

0.0522
0.0523
0.0524
0.0525

h_3

t

100 200 300

−0.0164

−0.0164

−0.0163

h_4

t

100 200 300

−0.0260
−0.0260
−0.0260
−0.0260

h_1

t

100 200 300

−0.0013

−0.0013

−0.0013

−0.0012

h_2

Figure 2.11: (Macroeconomic Indicators) Posterior Means of hjt. Plots are centered on
the average of hjt and all have the same range (0.25)
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Figure 2.12: Forecast Error for the Unrestricted and Restricted Model. Solid lines
represent the unrestricted model errors, while dashed lines represent the the restricted’s.
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Chapter 3

An Alternative Cholesky

Decomposition

3.1 Introduction

Following and expanding Pourahmadi (1999), so far we parameterized Σt using (2.7).

Several other options are available though. According to Pourahmadi (2005), we can

divide covariance decompositions in three categories, in increasing order of effectiveness:

variance-correlation (Barnard et al. (2000)), spectral (Chiu et al. (1996)), and Cholesky

(Pinheiro et al. (1996), Pourahmadi (1999), Smith & Kohn (2002), Chen & Dunson

(2003)). In this study, we are concentrating only on Cholesky decompositions. These

have the unique characteristic of “providing unconstrained and statistically meaningful

reparametrization of a covariance matrix at the expense of imposing an order (coordi-

nate) among the variables” (Pourahmadi (2005)). In the previous chapter, we used a

dynamic version of the Pourahmadi (1999) decomposition to parameterize our time vary-

ing covariance matrix. Imposing that particular decomposition is equivalent to modeling
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the conditional variance of each variable j at time t given variables 1 to j − 1 at time t.

Chen & Dunson (2003) instead, proposed a different modified Cholesky decomposition,

which permits to separate the variance and correlation parameters of the covariance ma-

trix. Here we adapt their parametrization to a time varying variance model by imposing

Σt = ΛtΓΓ′Λt, (3.1)

where Λt is a diagonal and Γ a unit lower triangular matrix.

Using either (2.7) or (3.1), we obtain a diagonal matrix Λt whose elements are con-

strained to be positive, and a unit triangular Γ matrix whose below diagonal elements

are unconstrained. The parametrization and interpretation of the two is quite differ-

ent though. We showed in the previous chapter that (2.7) models the variance of yjt

conditional on (y1t, · · · , yj−1,t):

yjt = ejt +

j−1∑

k=1

γjkekt,

where γjk correspond to the non-redundant elements of Γ, while the variance of ejt is

equal to λjt. The covariance between two contemporaneous observations is

cov(yjt, yst) =

s∧j∑

k=1

γjkγskλkt. (3.2)

This implies that the correlation between variable j and variable s depends on the vari-

ance of the innovations λjt and therefore, in our model, is time varying. To interpret the

decomposition in (3.1), we can follow Pourahmadi (2005) and notice that the covariance

matrix of Λ−1
t yt is equal to ΓΓ′, and so

cov(Γ−1Λ−1
t yt) = Ip. (3.3)

Thus, the variance of yjt can be written as

var(yjt) = λ2
jt

j∑

k=1

γjk, (3.4)
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where λjt and γjk are the generic elements of Λt and Γ respectively. Also,

corr(yjt, yst) =

∑s∧j
k=1 γskγjk√∑s

k=1 γ2
sk

∑s
k=1 γ2

jk

, (3.5)

Since the correlation between two different variables is just a function of the elements of

Γ, the decomposition (3.1) implies that the contemporaneous correlations are not time

varying.

Thus, performing model selection between a model parameterized using (2.7) and

another parameterized using (3.1) can be a fast way to test whether the correlation

between several time series are constant or time varying. It should be noticed that

time varying variance models assumed constant correlations at first (Bollerslev (1990)),

but later empirical studies showed this assumption to be unrealistic for many financial

time series. Then, time varying correlation models had been developed. A general

methodology to test correlation invariance still does not exist.

We consider the following p-vector multivariate model:

yt = b0 + B1xt + et, (3.6)

for t = 1, · · · , T, where yt = (y1t, · · · , ypt)
′ is a p×1-vector of variables, b0 is a p×1-vector

of unknown parameters, xt is a q×1-vector of known endogenous or exogenous variables,

B1 ≡ (b1, · · · , bq) is a p×q-matrix of unknown parameters, et are independent Np(0,Σt)

errors, and Σt is an unknown p× p positive definite matrix which allows (3.1). In order

to model the evolution of λjt, it is convenient to consider its logarithm: let hjt = log λjt,

and ht = (h1t, · · · , hpt)
′. We model ht as follows:

ht = a0 + diag(ht−1)β + A1zt + diag(δ)vt, (3.7)

where zt = (zt,1, · · · , zt,r)
′ is an r vector observable exogenous variable uncorrelated with

υt, a0 is a p unknown vector, A1 = {ajk}, j = 1, · · · , p, k = 1, · · · , r is a matrix of
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unknown parameters, β = (β1, · · · , βp)
′ is a vector of unknown parameters, vt are iid

Np(0, Ip), δ = (δ1, · · · , δp)
′ is a vector of unknown nonnegative parameters.

The model here proposed is then exactly the same model proposed in Chapter 2, with

the only difference in the covariance decomposition and parametrization. We are mainly

interested in Bayesian estimation for this model, stochastic search model selection and

comparison between (2.6) and (3.6). This last step cannot be implemented through

stochastic search, so we are proposing a comparison using estimated Bayes factors.

The chapter is organized as follows: Section 3.2 defines the likelihood functions and

the hierarchical priors for the model. Section 3.3 derives the conditional posterior distri-

butions and proposes a MCMC algorithm for Bayesian estimation and variable selection.

Section 3.4 is about comparisons of non-nested multivariate stochastic volatility models

using Bayes factors. Section 3.5 reports simulation results.

3.2 The Hierarchical Model

3.2.1 Likelihood Functions

We give several formulas for the likelihood functions. First we know that the likelihood

function of (b0,B1,Σ1, · · · ,ΣT ) based on Y = (y1, · · · ,yT ), is exactly (2.18). In order

to derive more convenient forms of the likelihood function, we define the decomposition

(3.1) in terms of the precision matrix:

Σ−1
t = Λ−1

t ΨΨ′Λ−1
t , (3.8)
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where Ψ = Γ−1′. Clearly Ψ is a unit upper triangular matrix. Then, we have the

likelihood function of (b0, B1,Ψ,Λ1, · · · ,ΛT ),

[Y | b0,B1,Ψ,Λ1, · · · ,ΛT ] ∝ |Ψ|T
T∏

t=1

|Λt|− 1
2 etr

{
−1

2

T∑
t=1

St(B)Λ−1
t ΨΨ′Λ−1

t

}
, (3.9)

where, B = (b0,B1) and St(B) is defined by (2.21)

In order to derive the posterior distribution for (b0,B1), it is convenient to rewrite

(3.6) as (2.22). Vectorizing Y , we can then write

(y | b,Ψ,Λ) ∼ NpT ((X ′ ⊗ Ip)b, Σ), (3.10)

where

Σ = diag(Σ1, · · · ,ΣT ) = Λ(IT ⊗ Γ)(IT ⊗ Γ′)Λ = Λ(IT ⊗ ΓΓ′)Λ, (3.11)

Λ = diag(Λ1, · · · ,ΛT ) = diag(λ11, λ21, · · · , λp1, λ12, · · · , λpT ). (3.12)

Clearly, (3.11) implies that Σ−1 = Λ−1(IT ⊗ΨΨ′)Λ−1. The likelihood of (b,Ψ,Λ) is

then

[y | b,Ψ,Λ]

∝ |Λ|−1etr
{
−1

2
[y − (X ′ ⊗ Ip)b]′Λ−1(IT ⊗ΨΨ′)Λ−1[y − (X ′ ⊗ Ip)b]

}
. (3.13)

3.2.2 Priors

We employ independent priors on the elements of (B,Ψ, a0,β,A1, δ) and indepen-

dent priors on the indexes corresponding to the elements to be selected in (B,Ψ,A1),

(γb, γψ,γa,γδ).

(i) Priors of B.
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(ia) Priors of b0 = (b10, · · · , bp0)
′. We assume that the intercept bi0 is always included

in the model, and also that priors for bi0 are independent:

bi0
ind∼ N(b0

i0, ξ
0
i0). (3.14)

(ib) Priors of B1={bij}p×q. Each element bij is associated with an indicator variable

γb,ij, and we assume that elements of B1 may be included in the model (γb,ij = 1) or

may not (γb,ij = 0). Independent Bernoulli priors are assumed for the index γb,ij: for

fixed pb,ij ∈ (0, 1),

P (γb,ij = 1) = 1− P (γb,ij = 0) = pb,ij, i = 1, · · · , p, j = 1, · · · , q. (3.15)

For given γb = (γb,11, γb,12, · · · , γb,pq)
′, assume that

(bij | γb,ij)
ind∼ (1− γb,ij)N(0, κ2

b,ij) + γb,ijN(0, c2
b,ijκ

2
b,ij), (3.16)

for i = 1, · · · , p and j = 1, · · · , q, where κb,ij are small and cb,ij are large constants. If we

write

ηb,ij = c
γb,ij

b,ij =





1, if γb,ij = 0,

cb,ij, if γb,ij = 1.

and Db,j = diag((ηb,1jκb,1j)
2, · · · , (ηb,pjκb,pj)

2), then (3.16) is equivalent to

(bj | γb,j)
ind∼ Np(0, Db,j), for j = 1, · · · , q. (3.17)

Combining the priors in (ia) and (ib) we can write the prior for b as

(b | γb) ∼ N(b̄, Ξ̄), (3.18)

where

b̄ = (b0
10, · · · , b0

p0, 0, · · · , 0)′,

Ξ̄ = diag(ξ0
10, · · · , ξ0

p0, (ηb,11κb,1)
2, · · · , (ηb,pqκb,pq)

2).
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(ii) Priors of Ψ. For j = 2, · · · , p, let ψj be a vector containing the non-redundant

elements of the jth column of Ψ, i.e. ψj = (ψ1j, · · · , ψj−1,j)
′. Define also γψ,j = (γψ,1j,

· · · , γψ,j−1,j)
′, a vector of lenght j − 1 containind model indicators for ψj. Let the

model index for ψij, γψ,ij, be independent Bernoulli (pψ,ij) random variables: for fixed

pψ,ij ∈ (0, 1),

P (γψ,ij = 1) = 1− P (γψ,ij = 0) = pψ,ij, i = 1, · · · , j − 1, j = 1, · · · , p. (3.19)

For given γψ,j = (γψ,1j, · · · , γψ,j−1,j)
′, assume that

(ψij | γψ,ij)
ind∼ (1− γψ,ij)N(0, κ2

ψ,ij) + γψ,ijN(0, c2
ψ,ijκ

2
ψ,ij), (3.20)

for i = 1, · · · , j − 1 and j = 2, · · · , p, where κψ,ij are small and cψ,ij are large constants.

If we write

ηψ,ij = c
γψ,ij

ψ,ij =





1, if γψ,ij = 0,

cψ,ij, if γψ,ij = 1,

and Dψ,j = diag((ηψ,1jκψ,1j)
2, · · · , (ηψ,j−1,jκψ,j−1,j)

2), then (3.20) is equivalent to

(ψj | γψ,j)
ind∼ Nj−1(0, Dψ,j), (3.21)

for j = 2, · · · , p.

(iii) Priors of (a0,β,A1).

(iiia) Priors of a0 = (a10, · · · , ap0)
′. For fixed (āj0, σa), assume that

(aj0)
ind∼ N

(
āj0, σa

)
. (3.22)

(iiib) Priors of β = (β1, · · · , βp)
′. For fixed (β̄j, σβ), assume that

(βj)
ind∼ N

(
β̄j, σβ

)
. (3.23)
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(iiic) Priors of A1. Let the model index for ajk, γa,jk, be independent Bernoulli (pa,jk):

for fixed pa,jk ∈ (0, 1), j = 1, · · · , p and k = 1, · · · , r

P (γa,jk = 1) = pa,jk, P (γa,jk = 0) = 1− pa,jk, . (3.24)

For given γa,j = (γa,j1, γa,j2, · · · , γa,jr)
′, assume that

(ajk | γa,jk)
ind∼ (1− γa,jk)N(0, κ2

a,jk) + γa,jkN(0, c2
a,jkκ

2
a,jk). (3.25)

where κa,jk would be small and ca,jk be would large constants.

We write A1 in terms of its row vectors: A1 = (ã′1, · · · , ã′p)′. Here ãj = (aj1, · · · , ajr)
′,

j = 1, · · · , p. Denote

ηa,jk = c
γa,jk

a,jk =





1, if γa,jk = 0,

ca,ij, if γa,jk = 1.

and Da,j = diag((ηa,j1κa,j1)
2, · · · , (ηa,jrκa,jr)

2). We know that the prior of ãj for given

γa,j = (γa,j1, · · · , γa,jr) is

(ãj | γa,j)
ind∼ Nr(0,Da,j). (3.26)

Define ã∗j = (aj0, βj, ã
′
j)
′: combining (3.22) and (3.26) we can write

(ã∗j | γa,j)
ind∼ Nr+2(āj,Ωj), (3.27)

where

āj = (āj0, β̄j, 0, · · · , 0)′

Ωj = diag(σ2
a, σ

2
β, (ηa,j1κa,j1)

2, · · · , (ηa,jrκa,jr)
2).

(iv) Prior for δ Let the model index for δj, γδj, be independent Bernoulli (pδj)

random variables: for fixed pδj ∈ (0, 1),

P (γδj = 1) = pδj, P (γδj = 0) = 1− pδj, j = 1, · · · , p. (3.28)
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For given γδj (j = 1, · · · , p), we assume that δj is a mixture of independent Inverse

Gamma, δ2
j∼IG(vjo; qjsj0) with probability γδj and δ2

j∼IG(vjo; sj0) with probability

1− γδj. In other words,

δ2
j | γδj, qj

ind∼ IG(vjo; ηδjsj0) ∝ (ηδjsj0)
vjo(δ2

j )
−(vjo+1) exp(−ηδjsj0

δ2
j

), (3.29)

where

ηδj = q
γδj

j =





1, if γδj = 0,

qj, if γδj = 1.

where the scale parameter vjo is a given positive constants and is larger than 2, the

shape parameter sj0 is a small positive constant so that the mean and the variance of the

prior with γδj = 1, qjsj0/(vjo − 1) and (qjsj0)
2/(vjo − 1)2(vjo − 2), are large, while prior

mean and variance corresponding to γδj = 0, sj0/(vjo − 1) and s2
j0/(vjo − 1)2(vjo − 2),

are close to zero. We impose a diffuse prior on q:

qj ∼ Ga(αq, βq), (3.30)

for all j′s, so that each single δj will have a different data driven posterior value of qj.

3.3 Posterior Computation

The joint posterior of (B,γb,Ψ,γψ, a0,β,A1,γa, δ,γδ, q,Λ) has the form,

[B, γb,Ψ,γψ,a0,β,A1, δ,γa,Λ | y] ∝ [y | B,Ψ,Λ] [Λ | a0,β,A1, δ]

× [b0] [B1 | γb] [γb] [Ψ | γψ] [γψ] [a0,β] [A1 | γa] [γa] [δ|γδ, q][γδ][q],

where [y | B,Ψ,Λ] is the likelihood function, given by (3.13), [Λ | a0,β,A1, δ] is given

by (3.7), [b0] is given by (3.14), [B1 | γb] is given by (3.17), [γb] is given by (3.15),
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[Ψ | γψ] is given by (3.21), [γψ] is given by (3.19), [a0] is given by (3.22) [β] is given by

(3.23), [A1 | γa] is given by (3.26), [γa] is given by (3.24), [δ | γδ, q] is given by (3.29),

[γδ] is given by (3.28) and [q] is given by (3.30). To use an MCMC algorithm, we now

derive the full conditional posteriors for (B,Ψ,Λ,a0,β,A1, δ,γb,γψ, γa,γδ, q).

3.3.1 Conditional Posterior for B and γb

Fact 3.1. (a) The conditional posterior distribution of b given (γb,Ψ,γψ,a0,β,A1, δ,

γa, Λ, q; y) depends only on (Ψ,Λ,γb; y) and has the form,

(b | Ψ,Λ,γb; y) ∼ Nm(b̂, Ξ̂), (3.31)

where

Ξ̂ =
{

(X ⊗ Ip)Λ
−1(IT ⊗ΨΨ′)Λ−1(X ′ ⊗ Ip) + Ξ̄−1

}−1

, (3.32)

b̂ = Ξ̂
{

(X ⊗ Ip)Λ
−1(IT ⊗ΨΨ′)Λ−1y + Ξ̄−1b̄

}
. (3.33)

(b) Denote γb,(−ij) = (γb,kl : (k, l) 6= (i, j)). Given prior independence for bij, the con-

ditional posterior distribution of γb given (B,Ψ,Λ,a0,β,A1, δ,γb,(−ij),γψ,γa, q; y) de-

pends only on B1,

(γb,ij | B1) = (γb,ij | bij)
ind∼ Bernoulli

( ub,ij1

ub,ij1 + ub,ij2

)
, (3.34)

where

ub,ij1 =
1

cb,ij

exp
(
− b2

ij

2c2
b,ijκ

2
b,ij

)
pb,ij,

ub,ij2 = exp
(
− b2

ij

2κ2
b,ij

)
(1− pb,ij). (3.35)
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Proof. Using the likelihood (3.13) part (a) is obvious. For part (b), recall that γb depends

on data indirectly, then,

ub,ij1 ∝ [b | γb,(−ij), γb,ij = 1]pb,ij,

ub,ij2 ∝ [b | γb,(−ij), γb,ij = 0](1− pb,ij);

the expression above, given prior independence of bij, gives the formula (3.35).

It should be noted that, for computational purposes, we do not adoperate the previous

formulas for MCMC simulations, but we recompose Σt in order not to deal with matrices

of dimension proportional to T , as we did in (2.51) and (2.52).

3.3.2 Conditional Posterior for Ψ and γψ

To derive conditional distributions of Ψ, we use the likelihood function (3.9) of

(B,Ψ,Λ1, · · · ,ΛT ). Given B = (b0,B1), we know from (2.21) that St = St(B) repre-

sents the covariance of residuals et. Following Harville (1997) we write

tr(StΛ
−1
t ΨΨ′Λ−1

t ) = tr(Ψ′Λ−1
t StΛ

−1
t Ψ).

Then, we can write (3.9) as

[Y | b0,B1,Ψ,Λ1, · · · ,ΛT ] =
T∏

t=1

|Λt|etr
{
−1

2

T∑
t=1

Ψ′Rt(B,Λt)Ψ
}

, (3.36)

where Rt(B,Λt) = Λ−1
t StΛ

−1
t . We can now compute the conditional posterior of Ψ

similarly as in George et al. (2005). Let Rt,j be the upper-left j × j submatrix of

Rt(B,Λt). So Rt = Rt,p. We write the (i, j)th component of Rt(B,Λt) by rt,ij. For

j = 2, · · · , p, define rt,j = (rt,1j, · · · , rt,j−1,j)
′. Define

vt,1 = rt,11, vt,j =
|Rt,j|
|Rt,j−1| , for j = 2, · · · , p. (3.37)
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It is well known that vt,j = rt,jj − r′t,jR
−1
t,j−1rt,j > 0 for i = 2, · · · , p. We define ψj as

the j − 1 elements of jth column of Ψ above the diagonal element. So for j = 2, · · · , p,

ψj = (ψ1j, · · · , ψj−1,j)
′. The likelihood function [y | B,Ψ,Λ1, · · · ,ΛT ] of (3.36) can then

be written as

[y | B,Ψ,Λ1, · · · ,ΛT ]

∝
( T∏

t=1

p∏
j=1

1

λjt

)
exp

[
− 1

2

{ T∑
t=1

p∑
j=1

vt,j +
T∑

t=1

p∑
j=2

(ψj + R−1
t,j−1rt,j)

′

× Rt,j−1(ψj + R−1
t,j−1rt,j)

}]
.

This expression allows us to derive the conditional posterior of Ψ.

Fact 3.2. (a) The conditional posteriors of ψ2, · · · ,ψp given (γb, B,γψ,a0,β,A1, δ,γa,

Λ, q; y) are independent and depend only on (B, γψ,Λ; y). They have the form,

(ψj | B, γψ,Λ; y)
ind∼ Nj−1(µj,∆j), (3.38)

where

∆j = {
T∑

t=1

Rt,j−1 + D−1
ψ,j}−1,

µj = −∆j

T∑
t=1

rt,j. (3.39)

(b) For j = 2, · · · , p and i = 1, · · · , j − 1, given prior independence for (ψ1j, · · · , ψj−1,j),

the conditional posterior of γψ,ij given (γb, B,Ψ, γψ,(−ij),a0, β,A1, δ, γa,Λ, q; y) de-

pends only on Ψ and has the form,

(γψ,ij | Ψ) = (γψ,ij | ψij)
ind∼ Bernoulli

( uψ,ij1

uψ,ij1 + uψ,ij2

)
, (3.40)

where

uψ,ij1 =
1

cψ,ij

exp
(
− ψ2

ij

2c2
ψ,ijκ

2
ψ,ij

)
pψ,ij,

uψ,ij2 = exp
(
− ψ2

ij

2κ2
ψ,ij

)
(1− pψ,ij). (3.41)
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Proof. The conditional posterior density of (ψ2, · · · ,ψp), given (B,Λ1, · · · ,ΛT ,γψ; y)

has the form

[ψ2, · · · ,ψp | B,γψ,Λ1, · · · ,ΛT ; y]

∝ exp
{
−1

2

p∑
j=2

T∑
t=1

(ψj + R−1
t,j−1rt,j)

′Rt,j−1(ψj + R−1
t,j−1rt,j)− 1

2

p∑
j=2

ψ′
jD

−1
ψ,jψj

}

∝ exp
{
−1

2

p∑
j=2

(ψj − µj)
′∆−1

j (ψj − µj)
}

,

where µj and ∆j are defined in (3.39). Part (a) follows from direct computation. For

part (b), recall the fact that γψ depends on data indirectly, then,

uψ,ij1 ∝ [ψj | γψ,(−ij), γψ,ij = 1]pψ,ij,

uψ,ij2 ∝ [ψj | γψ,(−ij), γψ,ij = 0](1− pψ,ij).

These expressions, under prior independence of (ψ1j, · · · , ψj−1,j), give the formula (3.41).

3.3.3 Conditional Posterior of (a0, βj), (A1, γa) and (δ, γδ, q)

Recall hjt = log(λjt), H = (hjt)p×T and h̃j = (hj1, · · · , hjT )′. Recall that ã′j is the jth

row of A1 and also Wj as defined by (2.58). The conditional posterior of a0,β, A1,γa

and δ are as follows:

Fact 3.3. (a) The conditional posterior distributions of ã∗j =( aj0, βj, ã
′
j)
′, j = 1, · · · , p

given (γb,B, γψ,Ψ, δ,γa,H , q; y) are independent and depend only on (H , γa, δ),

(ã∗j | H ,γa, δ) = (ã∗j | h̃j, γa,j, δj)
ind∼ Nr+2(νj,Υj), (3.42)

where

νj = {δ−2
j W ′

jWj + Ω−1
j }−1(δ−2

j W ′
j h̃j + Ω−1

j āj),

Υj = {δ−2
j W ′

jWj + Ω−1
j }−1.
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(b) The conditional posteriors of (δ1, · · · , δp) given (γδ,γb,B,γψ,Ψ,a0,β,A1,γa,H , q;

y) are mutually independent and depend only on (γδ,H , a0,β,A1, q),

(δ2
j | γδ,H , a0,β,A1) = (δ2

j | γδj, h̃j, aj0, βj, ãj)

ind∼ IG
(
vj0 +

T − 2

2
, η2

δjs
2
j0 +

(h̃j −Wjã
∗
j)
′(h̃j −Wjã

∗
j)

2

)
; (3.43)

(c) For j = 1, · · · , p, the conditional posterior of γδj given (γb, B,Ψ,γa,a0,β,A1, δ,

γψ,H , q; y) depends only on (δj, qj), and has the form

(γδj | δj, qj)
ind∼ Bernoulli

( uδj1

uδj1 + uδj2

)
, (3.44)

where

uδj1 = exp
(
−qjsj0

δ2
j

)
pδjqj

vj0 ,

uδj2 = exp
(
−sj0

δ2
j

)
(1− pδj). (3.45)

(d) For j = 1, · · · , p, denote γa,(−jk) = (γa,j1, · · · , γa,jk−1, γa,jk+1, · · · , γa,jr)
′. Under the

assumption of prior independence for the elements of ãj, the conditional posterior of

γa,jk given (γb, B,Ψ, γa,(−jk),a0,β,A1, δ,γψ, H , q; y) depends only on A1, and has the

form

(γa,jk | A1) = (γa,jk | ajk)
ind∼ Bernoulli

( ua,jk1

ua,jk1 + ua,jk2

)
, (3.46)

where

ua,jk1 =
1

ca,jk

exp
(
− a2

jk

c2
a,jk2κ

2
a,jk

)
pa,jk,

ua,jk2 = exp
(
− a2

jk

2κ2
a,jk

)
(1− pa,jk). (3.47)

(e) For j = 1, · · · , p, the conditional posterior of qj given (γb, B,Ψ,γa,a0,β,A1, δ,

γψ, H ,γδ; y) depends only on (δj,γδj), and has the form

(qj | δj,γδj) ∼





Ga(αq, βq), if γδj = 0,

Ga(vjo + αq,
sj0

δ2
j

+ βq), if γδj = 1.

(3.48)
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Proof. Parts (a) and (b) can be easily proved using regression theory results. For part

(c), recall that γδ depends on data indirectly, then,

uδj1 ∝ [δ̃j | γδj = 1]pδj,

uδj2 ∝ [δ̃j | γa,jk = 0](1− pδj).

Substituting the density of Inverse Gamma to the expressions above gives the formula

(3.45). Note that the scale parameter cancels out and does not affect the conditional

posterior of the model index γδj.

For part (d), recall that γa depends on data indirectly, then,

ua,jk1 ∝ [ãj | γa,(−jk),γa,jk = 1]pa,jk,

ua,jk2 ∝ [ãj | γa,(−jk),γa,jk = 0](1− pa,jk).

The two expressions, together with prior independence of (aj1, · · · , ajr), give the formula

(3.47). Part (e) comes from direct computation.

3.3.4 MCMC Algorithm

From the result of the previous section, we can define the Gibbs MCMC sampling

procedure as follows. Suppose in cycle k we have (Ψ(k−1), B(k−1),a
(k−1)
0 ,β(k−1), A

(k−1)
1

δ(k−1),Λ(k−1)). Then have the following algorithm:

Step 1: Draw (γ
(k)
δ | δ(k−1), q(k−1)) from (3.45);

Step 2: Draw (q(k) | δ(k−1), γ
(k)
δ ) from (3.48);

Step 3: Draw (a
(k)
0 ,β(k), A

(k)
1 ): for j = 1, · · · , p, draw (ã

∗(k)
j | Λ(k−1),γ

(k−1)
a , δ(k−1))

from (3.42).

Step 4: Draw (δ(k) | γ
(k)
δ ,γ

(k−1)
a ,γ

(k−1)
b ,γ

(k−1)
ψ Λ(k−1), a

(k)
0 , β(k),A

(k)
1 , q(k)) from the

distribution (3.43).

103



Step 5: For j = 1, · · · , p, draw (γ
(k)
a,j | A(k)

1 ) from the Bernoulli distribution (3.47).

Step 6: Draw (Λ(k) | a
(k)
0 ,β(k), A

(k)
1 ,B(k−1), δ(k),Ψ(k−1); y) using the particle filter

algorithm F2 and the likelihood (3.9).

Step 7: Draw Ψ(k): for j = 2, · · · , p, draw (ψ
(k)
j | Λ(k),B(k−1),γ

(k−1)
ψ ; y) from the

normal distribution (3.38).

Step 8: Draw (γ
(k)
ψ | Ψ(k)) from the Bernoulli distribution (3.40).

Step 9: Draw (B(k) | Ψ(k),Λ(k),γ
(k−1)
b ; y) from the normal distribution (3.31).

Step 10: Draw (γ
(k)
b | B(k)) from the Bernoulli distribution (3.34).

3.4 Non−Nested Model Selection

Different options are available to parameterize Σt. Following Chen & Dunson (2003),

we use (3.1). We discussed in the chapter’s introduction similarities and differences

between (3.1) and (2.7), which has been used in Chapter 2. In this section we perform

model selection to compare these two different decompositions. Since we are comparing

non-nested models, we cannot use the stochastic search algorithm. Several options are

available, including BIC (Schwarz (1978)), DIC (Spiegelhalter et al. (2002)), and Bayes

factors (Jeffreys (1935, 1961), see Kass & Raftery (1995) for a discussion). We will use

this last technique to compare the two models.

In order to compute a Bayes factor for two competing models, we need to evaluate

their joint posterior distributions, which in our case are of unknown form. Following

Chib (1995), we estimate the log of the Bayes factor for two non-nested models (M1 and

M2) as

log[y | M1]− log[y | M2] = log[y | M1,θ
∗
1] + log[θ∗1 | M1]− log[θ∗1 | M1,y]
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−
{

log[y | M2, θ
∗
2] + log[θ∗2 | M2]− log[θ∗2 | M2,y]

}
, (3.49)

where θ∗1 and θ∗2 are the Bayesian estimates of the parameters of interest of M1 and

M2, respectively. This estimation technique has been already applied to multivariate

stochastic volatility models and resulted quite effective (see Chib et al. (2002)). Note

that [θ∗1 | M1] and [θ∗2 | M2] can be easily obtained from the prior distributions, while

more complex is to efficiently compute the marginal likelihood and the joint posterior

densities. The next two subsections are dedicated to this problem.

3.4.1 Posterior Density

We can decompose the posterior density as

[θ∗ | M, y] = [b∗,Ψ∗,a∗0,β
∗, A∗

1, δ
∗ | M, y]

= [b∗ | M, y] [Ψ∗ | M, b∗,y] [a∗0,β
∗, A∗

1 | M, y]

× [δ∗ | M, a∗0,β
∗,A∗

1,y]. (3.50)

The density function of each of these posteriors is unknown. We are able, though, to

simulate from any of them. Chib & Jeliazkov (2001) suggest a way to estimate the joint

posterior densities using reduced MCMC runs: the Gibbs sampler algorithm in Section

3.3 samples from [b | M, y] and [a0,β,A1 | M, y]. To sample from [Ψ | M, b∗,y]

and [δ | M, a∗0,β
∗,A∗

1,y], fix b = b∗, (a0,β,A1) = (a∗0,β
∗,A∗

1) and run the MCMC

simulation for another G iterations. Each density, then, can be estimated via kernel

smoothing. This method is computationally very intensive. Also, it is affected by the

curse of dimensionality of kernel smoothers, that can only be partially overcome by

dimension reduction techniques such as factor decomposition.

Alternatively, we can rely on the Blackwell theorem to obtain an estimate of [θ∗ |
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M, y]. First, the posterior density of b∗ can be obtained as

[b∗ | M, y] ≈ 1

K

K∑

k=1

[b∗ | Ψk,Λk,M, y] (3.51)

where (Ψk,Λk) is the kth Gibbs cycle draw of (Ψ,Λ). The density in the right side of the

equation is the full conditional density of b evaluated at b∗. Similarly, [Ψ∗,a∗0,β
∗,A∗

1, δ
∗ |

M, y] is approximated by

[Ψ∗,a∗0, β
∗,A∗

1, δ
∗ | M, y]

≈ 1

K

K∑

k=1

[Ψ∗ | b∗,Λk,M, y][a∗0,β
∗,A∗

1 | δ∗,Λk,M, y][δ∗ | a∗0,β∗,A∗
1,Λ

k,M, y].

(3.52)

Combining (3.51) and (3.52) we obtain an estimate of (3.50).

3.4.2 Marginal likelihood

In order to obtain an estimate of the marginal likelihood for given θ∗ we need to

integrate out the volatilities λjt. We can obtain an estimate of the marginal likelihood

via auxiliary particle filter, similarly as in Pitt & Shephard (1999). This method involves

sampling and resampling of particles drawn from a proposal distribution of h. The

algorithm is as follows:

Step f1 . For each hl
t−1, l = 1, · · · ,M , draw hl

t from the proposal distribution

(ht | hl
t−1,θ) ∼ Np

(
a0 + diag(hl

t−1)β + A1zt, diag(δ2
1, · · · , δ2

p)
)
. (3.53)

Step f2 . For l = 1, ..M , Compute Σl
t = ΓΛl

tΓ
′ and the importance weight for the lth

sample

wl
t =

[yt | Σl
t, θ]∑M

l=1[yt | Σl
t,θ]

.
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Step f3 . Sample M draws of ht from (h1
t , · · · , hM

t ) with replacement and relative weight

wt = (w1
t , · · · , wM

t ).

Step f4 . Choose R > M , say R = 5M , and sample R draws of index 1, 2, · · · ,M with

relative weights wl
t. Denote the result of the draws as k1, k2, · · · , kR.

Step f5 . For each r, draw h∗rt from (ht | hkr
t−1,θ).

Step f6 . For q = 1, · · · ,M , sample h̃∗q from {h∗1t ,h∗2t , · · · , h∗Rt } with probabilities pro-

portional to

wr
2,t =

[yt | h∗rt , θ]

[yt | h∗kj

t ,θ]
, r = 1, · · · , R.

This completes Stage t. Continue with Stage t + 1 until Stage T .

Consider the weights wl
t and wr

2,t. It can be shown (see Pitt (2001)) that, given Yt−1

(the data available up to time t− 1), then

f̂(yt | M, Yt−1,θ
∗) =

( 1

M

M∑

l=1

f(yt | Σl
t,θ)

)( 1

R

R∑
r=1

wr
2,t

)
, (3.54)

converges to f(yt | M, Yt−1,θ
∗) in probability as M and R go to infinity. Combining

the estimates for each t, we can obtain an estimate of the likelihood [y | M, θ∗].

3.5 Simulation Studies

In this section, we use simulated data to test the potentialities of the stochastic search

variable selection. Suppose we have a p variables VAR(1) model with one exogenous

variable and the following parameters: ψii = 1, ψ1j = .5, γψ,1j = 1, for i = 1, · · · , p,

and j = 2, · · · , p; b0 = (1, 1, 2, 2)′, b1 = (3, 1.5, 1, .75, .6, .5)′, bi+1,i = .5, γb,i1 = 1,
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γb,i+1,i = 1 for i = 1, · · · , p. All the other elements of Ψ, γψ, B and γb are zero. The

stochastic volatilities are generated based on:

A1 = (.1)1p, β = ((.4)1′p/2, (.6)1′p/2)
′, α = (.1)1p and δ = (.05)1p.

We generate the exogenous variables x and z as xit = cos(t/2), zit = sin(t2), for i = 1,

and t = 1, · · · , T . The sample size is T = 1, 000. The hyperparameters of the Bernoulli

priors are p = .5. The prior on the intercepts is normal with zero mean variance of 50.

We let vj0 = 6.0 and s2
j0 = .001. We set the prior means αj0 and βj0 at 0 and standard

deviation σα and σβ at 10, κij at .1, and dij at 50.

We randomly generate 120 samples from the model above with p = 4 and p = 10

respectively, and for each sample we estimate the posterior mean of all parameters.

Estimates are obtained with 10, 000 MCMC draws after 1, 000 burn-ins. The following

results are the average of the posterior means over all samples. When p = 4, we present

the estimates in matrix form, while when p = 10, due to the high dimensionality of the

matrixes, we rely on graphical representation of the results.

Example 3.1. Consider the results of the Bayesian estimation and model selection

when p = 4, and the value of γδ is fixed to one, so all the volatilities are considered

stochastic. Estimates are the following:

B̂ =




1.035 2.933 0.491 0.019 −0.029 0.031

1.029 1.508 −0.019 0.512 0.003 −0.025

2.012 1.055 0.008 −0.038 0.501 −0.006

2.095 0.704 0.007 0.024 −0.002 0.470




,

Ψ̂ =




1.000 0.429 0.516 0.556

0 1.000 0.040 0.062

0 0 1.000 0.062

0 0 0 1.000




,
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γ̂b =




1.000 1.000 0.020 0.021 0.019

1.000 0.020 1.000 0.020 0.021

1.000 0.021 0.025 1.000 0.020

1.000 0.019 0.022 0.020 0.999




, γ̂ψ =




* .729 .718 .900

* * .053 .083

* * * .078

* * * *




.

â0 = (.098, .106, .093, .100)′, β̂ = (.408, , .376, .638, .602)′,

Â1 = (.121, .082, .119, .092)′, δ̂ = (.051, .048, .047, .048)′.

The most evident result here is that all the non-zero elements of B1 have been always

chosen to be in the model, except one which has been selected 99.9 percent of the time.

The zero elements have been chosen on average 2 percent of the time, in line with the

results of all the simulations in Chapter 2. On the other hand, the posterior mean of

elements of γψ is generally lower than the posterior means obtained in Chapter 2, and the

estimates of Ψ not as accurate. It should be noticed that Ψs are not directly comparable,

since they derive from two different covariance decompositions. The major difference

between the estimates of the stochastic volatility parameters here obtained and those

from the simulation study in Chapter 2 is that while the previous chapter’s algorithm

showed to always underestimate or overestimate the parameters, here the estimates are

both smaller and larger than the true value. Table 3.1 shows the average over T for the

true and estimated values of h, for a randomly chosen sample.

Example 3.2. Consider now a more complex model. The parameters are exactly as

in Example 3.1, but p = 10 and γδ is not fixed. Prior hyperparameters and number

of MCMC draws are the same as in the previous example. Figure 3.1 reports the

standardized errors for vectorized B and Ψ, Table 3.2 shows the average posterior mean

for γb,ij and γψ,ij conditional on the true value of the parameter.

Table 3.3 presents the average over T for the true and estimated h over a randomly
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Table 3.1: Comparison of True and Estimated Stochastic Volatilities for One Randomly
Chosen Sample. T = 1, 000, p = 4.

variable mean (true h) posterior mean (h) S.d. (true h) posterior s.d (h)

1 .1648 .1673 .0572 .0559

2 .1714 .1706 .0539 .0522

3 .1654 .1648 .0541 .0534

4 .2507 .2488 .0633 .0611

Table 3.2: Estimates of the Indicator Variables

Average estimate when true = 0 Average estimate when true = 1

B 0.05235 0.99981

Ψ 0.07428 0.69955

chosen sample, while results for the stochastic volatility generation process parameters

are given below.

â0 = (.0971, .1056, .0923, .1007, .0859, .1053, .1062, .0987, .1012, .1014)′,

β̂ = (.4109, .3727, .4344, .3952, .4601, .5773, .5732, .6078, .5976, .5852)′,

Â1 = (.1020, .1015, .0906, .1053, .1000, .9732, −.1057, .1078, −.1027, −.1250)′,

δ̂ = (.0471, .0506, .0502, .0493, .0491, .0467, .0513, .0508, .0485, .0487)′,

γ̂a = (.9875, .9721, .9663, .9256, .9854, .9721, .9823, .9466, .9774, .9634)′,

γ̂δ = (.9986, .9566, .9952, .9981, .9927, .9886, .9935, .9746, .9813, .9433)′.

Again, the posterior mean of the γb,ijs relative to the non-zero elements of B1 is very

high, while the opposite can be said for the γψ,ij relative to the non-zero elements of Ψ.
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Table 3.3: Comparison of True and Estimated Stochastic Volatilities for One Randomly
Chosen Sample. T = 1, 000, p = 10.

variable mean (true h) posterior mean (h) S.d. (true h) posterior s.d (h)

1 0.163 0.169 0.052 0.052

2 0.169 0.170 0.055 0.054

3 0.164 0.164 0.057 0.055

4 0.248 0.250 0.062 0.061

5 0.250 0.251 0.068 0.067

6 0.248 0.249 0.059 0.058

7 0.247 0.249 0.064 0.063

8 0.248 0.249 0.065 0.064

9 0.248 0.250 0.062 0.060

10 0.242 0.242 0.061 0.060

Also, it is clear from Figure 3.1 how the algorithm overestimates Ψ. The parameters of

the stochastic volatility process show estimates both larger and smaller than the true

values they refer to, and the selection of the elements of both A1 and δ is quite accurate.

3.6 Comparison of Σt Decompositions

In this section we report the result of non-nested model selection over simulated and

real data. Precisely, we compare two different covariance decompositions: (2.7) and

(3.1). First, we sample 50 random samples of size T = 1, 000 according to (3.6) and

(3.1). Then, for each sample we compute the Bayes estimators and perform stochastic

search model selection assuming first (3.1) as true, and then (2.7) as true. Finally, we

compare the selected model under each assumption by estimating the logarithm of the

Bayes factors for the two models as described in Section 3.4. After, we repeat the same
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procedure but with data generated according to (2.6) and (2.7).

Consider the model in Example 2.1, with p = 4. For both decomposition we use the

same structure of Ψ. For each sample, we estimate the model and perform variable

selection using 10, 000 MCMC draws after 1, 000 burn-ins. The hyperparameters of the

Bernoulli priors are p = .5. The prior on the intercepts is normal with mean zero and

variance 50. Also, vj0 = 6 and s2
j0 = .001, αj0 and βj0 are 0, and the prior standard

deviations for σα and σβ are 10. We assume κij = .1 and dij = 50.

Let M1 be the model derived assuming (2.7) and M2 the model derived assuming

(3.1). If the data is generated according to M1, then

[y | M1]/[y | M2] = 236.4918.

If M2 is the model used for data generation, instead,

[y | M1]/[y | M2] = 768.711−1.

The same model, but with p = 6, gave the following results: For data generated by M1

[y | M1]/[y | M2] = 759.2856.

If M2 is true, instead,

[y | M1]/[y | M2] = 1629.187−1.

In addition, we compare the same models when estimated without performing variable

selection. Table 3.4 shows the results for two unconstrained models with p = 4 and

p = 6.

As we can see, the results are very similar for constrained and unconstrained models:

the evidence in favor of the true model is always very strong. More, the evidence in
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Table 3.4: Bayes’ Factors : [y | M1]/[y | M2]

M1 is true Mn2 is true

p = 4 186.7867 709.296−1

p = 6 799.7985 1625.708−1

favor of M2 when M2 is true is always stronger than the evidence in favor of M1 when

M1 is true.

We apply the same comparison to real data. The dataset considered is the same as the

first real data example of Chapter 2, data consisting of log differences of daily exchange

rates of USD with, respectively, EUR, GBP, JPY, CAD, MXN, BRL, CHF, NOK, SGD

and INR. Previous empirical studies show that this kind of data exhibits time varying

correlations, so we should expect evidence in favor of the decomposition (2.7). Models

based on (2.7) and (3.1) are both estimated performing stochastic search. The Bayes

factor obtained is [y | M1]/[y | M2] = 97.567, thus providing strong evidence in favor

of the modified Cholesky decomposition (2.7).4

3.7 Conclusions

We presented in this chapter an alternative modified Cholesky decomposition for time

varying covariances. The decomposition has been first developed by Chen & Dunson

(2003) and applied to time invariant covariances in a mixed model framework. Par-

ticularity of this decomposition is the separation between the correlations, which are

completely defined by the unit triangular matrix Γ, and the scale parameters, defined

4This particular result will need further study, since some MCMC iterations presented inversion of
matrices close to unit.
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by Λ. Modeling the elements of Λ as time varying according to a stochastic volatil-

ity model, we implicitly are imposing time invariance of the correlations. We applied

the stochastic search variable selection algorithm to this model as well, and studied its

performances using artificially simulated data. Results show the algorithm to be quite

effective. If compared with the results obtained with the decomposition of Pourahmadi

(1999), they show a higher accuracy in selecting the non-zero elements of B1, and a posi-

tive bias in the estimation of the non-zero elements of Ψ. We performed Bayesian model

selection between a multivariate stochastic volatility model whose time varying covari-

ance is modeled following Pourahmadi (1999), and a competing model with a covariance

modeled according to Chen & Dunson (2003). Because of the implicit assumption of the

two decompositions, this can be seen as a way to test whether a particular multivariate

time series exhibits time varying correlations. Models are selected using Bayes factor,

which are estimated using the method first proposed by Chib (1995). Previous stud-

ies had shown the accuracy of such Bayes factor estimate (Chib et al. (2002)). Chib’s

method requires the estimation of the marginal likelihood and the posterior ordinate of

the Bayesian estimator, which have been computed using auxiliary particle filter and

the output of the MCMC simulations in combination with the Rao-Blackwell theorem

respectively. Application to artificially simulated data show the Bayes factor to strongly

support the true model used for data generation. Real data applications have been made

using daily exchange rates, resulting in a strong evidence in favor of the time varying

correlations model. Extension of this study will be discussed in the chapter relative to

future research.
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Figure 3.1: Standardized Estimation Errors for B and Ψ. The matrices are vectorized
by row and the errors are standardized by the true value range
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Chapter 4

Dynamic Models

4.1 Overview

Dynamic models have been studied both from a frequentist (Shumway & Stoffer

(2000)) or Bayesian point of view (West & Harrison (1997), Aguilar et al. (1999), Scott

(2002)). Accurate reviews of this kind of model can be found in Harvey (1990), (1993)

and Shumway & Stoffer (2000).

A particular form of dynamic models are the hidden Markov models. They are char-

acterized by a measured process zt whose evolution is described by a latent Markovian

process yt. It is normally represented in graphical form as in Figure 4.1.

In this chapter, we will concentrate on state space model which, in their most general

form, can be written in two stages. The first stage is the so called measurement, or

observation, equation:

zt = Atyt + dt + et, (4.1)

where t = 1, · · · , T , zt, dt and et are p× 1 vectors, yt is a q× 1 vector and At is a p× q
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matrix. The second stage is called the state or transition equation:

yt = Btyt−1 + ct + Ptht, (4.2)

where ht is g × 1, Pt is q × g and Bt is q × q. et and ht are the stochastic terms. In

particular,

et ∼ Np(0,Σe,t), (4.3)

ht ∼ Ng(0,Σh,t), (4.4)

where dt, At, Bt, ct and Pt are non stochastic and are known as system matrices. Also,

zt is the vector of measurements of the process of interest, while yt is a the true latent

process of interest.

If all the system matrices are known, as well as the initial value for the latent variable

(yo) and its covariance (Σh,0), it is possible to update the system via Kalman filtering

(Kalman (1960)). Usually one or several system matrices are unknown, so they need to

be estimated. If all the system matrices of the form given above are unknown, the system

is clearly indeterminate, so it is impossible to be updated. In the common practice some

assumptions are made to restrict the number of unknown quantities, while the remaining

are estimated usually via EM algorithm.

Most of the common time series models can be written in a state space form. For

example, a VAR(1) model can be written as:

zt = µt + et, et ∼ Np(0,Σe), (4.5)

µt = Φµt−1 + ht, ht ∼ Np(0,Σh). (4.6)

The two above equations describe a state space model in which m = t = g and yt = µt

for every t, while for t = 1, · · · , T

At = Pt = Ip×p, Bt = Φ, dt = ct = 0, Σe,t = Σe, Σh,t = Σh.
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More generally, a VAR(L) model

zt = HtYt + et, et ∼ Np(0,Σe), (4.7)

µt = BYt−1 + h∗t , h∗t ∼ NLp(0,Σh∗), (4.8)

can be written as a state space model in which

Yt = (y′t, · · · ,y′t−L), ht = (h′t,0
′, · · · ,0′),

Ht = [At,0, · · · ,0], Σh =




Σh 0

0 0


 .

Usually, in the VAR literature zt = yt. Obviously, also in this case we can write the

model in a state space form by imposing restrictions on At and et. It should also be

noticed that stochastic volatility models are often written as a non linear state space

model:

zt = Ate
yt
2 et, (4.9)

yt = Btyt−1 + ht. (4.10)

The state space framework can be used then as a general unifying notation for the

study of multivariate time series. Also, they incorporate measurement error and latent

variable models. For more details see Harvey (1990) and Shumway & Stoffer (2000)

among others.

The problematic inherent model selection in the state space framework has not been

discussed as much as that regarding estimation. The stochastic search algorithm pro-

posed in Chapter 2 can be easily extended to state space models, as will be shown in this

chapter, which is organized as follows: Section 2 defines the model and Section 3 outlines

the likelihood functions. Section 4 describes a well known way to perform Bayesian esti-

mation on state space models, while Section 5 extends the stochastic search methodology
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of Chapter 2. Finally, Section 6 compares the two analyses using artificially generated

data.

4.2 Model

We consider a latent process of interest and a measured quantity that is stochastically

related. Consider the two stage equation:

zt = Ayt + et, et ∼ Np(0,Σe), (4.11)

yt = Byt−1 + ht, ht ∼ Ng(0,Σh). (4.12)

This is a state space model with Pt = Ig×g, At = A, Bt = B, Σe,t = Σe, Σh,t = Σh, and

ct = dt = 0 for every t. Note that here g = m, so zt is p× 1, yt is g× 1, A is p× g and

B is g × g. The fact that ct is set to zero assumes that zt is an unbiased measurement

of yt. We observe zt for t = 1, · · · , T , while we estimate all the other quantities.

4.2.1 Likelihood Functions

Consider the likelihood function of (A,Σe,B,Σh):

T∏
t=1

[zt | yt,A,Σe] [yt | yt−1B,Σh]

∝ |Σe|−T/2|Σh|−T/2 exp
{
−1

2

T∑
t=1

(zt −Ayt)
′Σ−1

e (zt −Ayt)

− 1

2

T∑
t=1

(yt −Byt−1)
′Σ−1

h (yt −Byt−1)
}

. (4.13)
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This formula is useful for the derivation of the conditional posteriors of y1, · · · ,yT .

Alternatively, we can rewrite (4.11) in a familiar matrix form





Z = AY + E,

Y = BW + H ,

(4.14)

where

Z = (z1, · · · ,zT ), Y = (y1, · · · ,yT ), W = (y0, · · · , yT−1),

E = (e1, · · · , eT ), H = (h1, · · · ,hT ).

Here Z and E are p× T matrices, Y , W and H are g× T matrices, and A and B are

as before. The likelihood function of (A,Σe, B,Σh) is

[Z | Y , A,Σe] [Y | W ,B,Σh] ∝ |Σe|−T/2|Σh|−T/2etr
{
−1

2
(Z −AY )′Σ−1

e (Z −AY )

− 1

2
(Y −BW )′Σ−1

h (Y −BW )
}

. (4.15)

This form is useful in the derivation of the conditional posterior of Σe and Σh. To derive

the conditional posterior of A and B, it is useful instead to write the model (4.14) in

its vector form:




z = (Y ′ ⊗ Ip)a + e,

y = (W ′ ⊗ Ig)b + h,

(4.16)

where

z = vec(Z), y = vec(Y ), a = vec(A), b = vec(B).

Also

e ∼ Npg

(
0, Σ̃e

)
, (4.17)

h ∼ Ng2

(
0, Σ̃h

)
, (4.18)
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where

Σ̃e = IT ⊗Σe, Σ̃h = IT ⊗Σh.

Then, the likelihood function of (A,Σe,B,Σh) is

[z | y, a,Σe] [y | W , b,Σh]

∝ |Σe|−T/2|Σh|−T/2 exp
{
−1

2
(z − (Y ′ ⊗ Ip)a)′Σ̃−1

e (z − (Y ′ ⊗ Ip)a)

− 1

2
(y − (W ′ ⊗ Ig)b)′Σ̃−1

h (y − (W ′ ⊗ Ig)b)
}

. (4.19)

4.3 Conjugate Analysis

Here we present a well-known Bayesian analysis of the state-space model based on

conjugate priors.

4.3.1 Priors

(i) Priors of A and B. In practice it convenient to consider a = vec(A) and

b = vec(B), respectively a pg and a g2 vector. We assume

a ∼ Npg(a0,Σa,0), (4.20)

b ∼ Ng2(b0,Σb,0). (4.21)

(ii) Priors of Σe and Σh. We are using common conjugate priors for the covariance

terms:

Σe ∼ IWp(νe,Σe,0), (4.22)

Σh ∼ IWg(νh,Σh,0). (4.23)
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(iii) Prior for y0. We need a prior for the first value of the latent process, y0:

y0 ∼ Np(y
0
0,Σ

0
0). (4.24)

4.3.2 Joint Posterior

The joint posterior of (A,Σe, Y , B,Σh) has the form

[A,Σe, Y , B,Σh | z]

∝
T∏

t=1

[zt | A,yt,Σe]
T∏

t=1

[yt | B,yt−1,Σh] [y0] [A] [Σe] [B] [Σh] , (4.25)

where [zt | A, yt,Σe] is given by (4.11), [yt | B, yt−1,Σh] is given by (4.12), [y0] is given

by (4.24), [A] is given by (4.20), [Σe] is given by (4.22), [B] is given by (4.21) and

[Σh] is given by (4.23). In order to specify an MCMC algorithm, we now derive the full

conditional posteriors for (A,Σe, Y , B,Σh).

4.3.3 Conditional Posterior of Y

It is convenient to consider conditional distribution of each yt separately. For our pur-

pose we also need to assume a distributional value for y0. Define Y(−t) = (y0, y1, · · · ,yt−1,

yt+1, · · · , yT ), t = 0, · · · , T .

Fact 4.1. (a) Given (A,Σe,Y(−t),B,Σh; z), the posterior distribution of y0 depends

only on (y1, B,Σh) and has the form

(y0 | A,Σe,y1,B,Σh) ∼ Ng(γ0,Σ0), (4.26)

where

Σ0 =
{

(Σ0
0)
−1 + B′Σ−1

h B
}−1

,

γ0 = Σ0

{
B′Σ−1

h y1 + (Σ0
0)
−1y0

0

}
.
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(b) Given (A,Σe, Y(−t), B,Σh; z), the posterior distribution of yt (t = 1, · · · , T − 1)

depends only on (A,Σe,yt−1,yt+1,B,Σh; z) and has the form

(yt | A,Σe,yt−1, yt+1, B,Σh) ∼ Ng(γt,Σt), (4.27)

where

Σt =
{
Σ−1

h + B′Σ−1
h B + A′Σ−1

e A
}−1

,

γt = Σt

{
Σ−1

h Byt−1 + B′Σ−1
h yt+1 + A′Σ−1

e zt

}
.

(c) Given (A,Σe,Y(−t),B,Σh; z), the posterior distribution of yT depends only on (A,

Σe,yT−1,B,Σh; z) and has the form

(yT | A,Σe,yT−1,B,Σh) ∼ Ng(γT ,ΣT ), (4.28)

where

ΣT =
{

A′Σ−1
e A + Σ−1

h

}−1

,

γT = ΣT

{
Σ−1

h ByT−1 + A′Σ−1
e zT

}
.

Proof. For t = 1, · · · , T , we can decompose the posterior of yt as

[yt | A,Σe,Y(−t),B,Σh] = [yt | B,yt−1,Σh][yt+1 | B,yt,Σh][zt | A,yt]

∝ exp
{
−1

2
(yt −Byt−1)

′Σ−1
h (yt −Byt−1)

−1

2
(yt+1 −Byt)

′Σ−1
h (yt+1 −Byt)

−1

2
(zt −Azt)

′Σ−1
e (zt −Ayt)

}
.

Part (a) is obvious. Parts (b) and (c) follow from the fact that they are the extreme of

the process, i.e. y−1 and YT+1 do not exist.

Alternatively, yt can be filtered using a Kalman filter. Filtering the latent variable yt

is computationally more expensive than the method proposed in this section but leads
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to less correlated MCMC draws and so to faster mixing MCMC chains. For reference

about filtering inside a Gibbs sampler for state space models see Carter & Kohn (1994).

4.3.4 Conditional Posterior of A and B

We derive the posterior distributions of the vector forms of A and B, namely a =

vec(A) and b = vec(B).

Fact 4.2. (a) The conditional posterior distribution of a given (A,Σe,Y ,Σh; z) de-

pends only on (Y ,Σe,z) and has the form,

(a | Y ,Σe) ∼ Npg(µa,Σa), (4.29)

where

Σa =
{

Y Y ′ ⊗Σ−1
e + (Σa,0)

−1
}−1

,

µa = Σa

{
(Y ⊗Σ−1

e )z + Σ−1
a,0b0

}
.

(b) The conditional posterior distribution of b given (A,Σe,Y ,Σh; z) depends only

on (Y ,Σh) and has the form,

(b | Y ,Σh) ∼ Ng2(µb,Σb), (4.30)

where

Σb =
{

WW ′ ⊗Σ−1
h + (Σb,0)

−1
}−1

,

µb = Σb

{
(W ⊗Σ−1

h )y + Σ−1
b,0b0

}
.

Proof. From direct computation, we can see that

Σa =
{

(Y ′ ⊗ Ip)
′Σ̃−1

e (Y ′ ⊗ Ip) + (Σa,0)
−1

}−1

,
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µa = Σa

{
(Y ′ ⊗ Ip)

′Σ̃−1
e z + Σ−1

a,0a0

}
,

Σb =
{

(W ′ ⊗ Ig)
′Σ̃−1

h (W ′ ⊗ Ig) + (Σb,0)
−1

}−1

,

µb = Σb

{
(W ′ ⊗ Ig)

′Σ̃−1
h y + Σ−1

b,0b0

}
.

The formulas for part (a) and (b) come from basic properties of the Kronecker operator.

4.3.5 Conditional Posterior of Σe and Σh

The posteriors of Σe and Σh can be easily computed from conjugate theory. Write

Sa(A) = (Z − Y A)(Z − Y A)′, (4.31)

Sb(B) = (Y −WB)(Y −WB)′. (4.32)

Fact 4.3. (a) The conditional posterior distribution of Σe given (A, B,Y ,Σh; z) de-

pends only on (Y ,A; z),

(Σe | Y ,A; z) ∼ IWp

(
νe + T, (Σe,0 + Sa(A))−1

)
. (4.33)

(b) The conditional posterior distribution of Σh given (A,B,Y ,Σh; z) depends only on

(Y ,B; z),

(Σh | Y ,B; z) ∼ IWg

(
νh + T, (Σh,0 + Sb(B))−1

)
. (4.34)

Proof. It is easy.

4.3.6 MCMC Algorithm

Based on the above discussions we have the following Gibbs MCMC sampling pro-

cedure. Suppose at the beginning of cycle k, we have (Y (k−1),A(k−1),B(k−1),Σ
(k−1)
e ,

Σ
(k−1)
h ) given. Then we have the following algorithm:
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1. Draw (y
(k)
0 | A(k−1),Σ

(k−1)
e ,y

(k−1)
1 ,B(k−1),Σ

(k−1)
h ) from (4.26).

2. For t = 1, · · · , T − 1, draw (y
(k)
t | y

(k)
t−1,y

k−1
t+1 ,A(k−1),B(k−1),Σ

(k−1)
e ,Σ

(k−1)
h ) from

(4.27).

3. Draw (y
(k)
T | A(k−1),Σ

(k−1)
e ,y

(k)
T−1,B

(k−1),Σ
(k−1)
h ) from (4.28).

4. Draw (A(k) | Σ(k−1)
e ; z) from normal distribution (4.29).

5. Draw (B(k) | y(k),Σ
(k−1)
h ) from normal distribution (4.30).

6. Draw (Σ
(k)
e | y(k); z) from distribution (4.33).

7. Draw (Σ
(k)
h | y(k)) from distribution (4.34).

4.4 Stochastic Search Model Selection for State Space

Models

State space models generally involve a very large number of parameters, making the

imposition of a priori restrictions very common. Here we take a different perspective on

model selection. We do not impose zero restrictions on any coefficient, meaning that we

do not rule out any model a priori. Instead, we use a method that allows comparison

of all possible models. In order to perform a model selection on the covariance matrix,

we decompose the precision matrix in the state space equation (4.12) using a Cholesky

decomposition:

Σ−1
h = ΨΨ′, (4.35)

where Ψ is the g × g upper-triangular matrix with ψij as its (i, j)th entry, so ψij = 0

for i > j. Note that there is no restriction on off-diagonal elements ψij, but ψjj should

never change sign, so we can assume that ψjj > 0. Such a matrix Ψ without restriction
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on ψij is called normalized and just-identified by Sims & Zha (1998).

4.4.1 Model and Prior

Consider again model (4.14). We apply a data driven model selection for the innova-

tion and covariance matrix of the state process, (B,Σh), inserting in the model latent

indicator variables γb and γψ.

(i) Priors of A. In practice it is convenient to consider a = vec(A). We consider

a ∼ Npg(a0,Σa,0). (4.36)

(ii) Priors of Σe. We are using common conjugate priors for the covariance terms

of the measurement process:

Σe ∼ W−1
p (νe,Σe,0). (4.37)

(iii) Priors of B and γb. Consider B = (bij)g×g. We associate each element bij

with an indicator variable γb,ij, and we assume that elements of B may be included in

the model (γb,ij = 1) or may not (γb,ij = 0). Thus, bij has a two stage prior. We assume

independent Bernoulli priors for the index γb,ij: for for fixed pb,ij ∈ (0, 1),

P (γb,ij = 1) = 1− P (γb,ij = 0) = pb,ij, i = 1, · · · , g, j = 1, · · · , g. (4.38)

For given γb = (γb,11, γb,12, · · · , γb,gg)
′, assume that

(bij | γb,ij)
ind∼ (1− γb,ij)N(0, κ2

b,ij) + γb,ijN(0, c2
b,ijκ

2
b,ij), (4.39)

for i = 1, · · · , g and j = 1, · · · , g, where κb,ij are small and cb,ij are large constants. If

we write

ηb,ij = c
γb,ij

b,ij =





1, if γb,ij = 0,

cb,ij, if γb,ij = 1.

127



and Db = diag((ηb,11κb,11)
2, · · · , (ηb,ggκb,gg)

2), then (4.39) is equivalent to

(b | γb)
ind∼ Ng2(0, Db), (4.40)

(iv) Priors of Ψ and γψ. For j = 2, · · · , g, let φj be a vector containing the

upper diagonal elements of the jth column of Ψ, i.e. φj = (ψ1j, · · · , ψj−1,j)
′. Also,

define a vector of indicators of length j − 1, γψ,j = (γψ,1j, · · · , γψ,j−1,j)
′. We assume that

elements of φj may be included in the model (γψ,ij = 1) or may not (γψ,ij = 0). Let the

model index for ψij, γψ,ij, be independent Bernoulli (pψ,ij) random variables: for fixed

pψ,ij ∈ (0, 1),

P (γψ,ij = 1) = 1− P (γψ,ij = 0) = pψ,ij, i = 1, · · · , j − 1, j = 1, · · · , g. (4.41)

For given γψ,j = (γψ,1j, · · · , γψ,j−1,j)
′, assume that

(ψij | γψ,ij)
ind∼ (1− γψ,ij)N(0, κ2

ψ,ij) + γψ,ijN(0, c2
ψ,ijκ

2
ψ,ij), (4.42)

for i = 1, · · · , j − 1 and j = 2, · · · , g, where κψ,ij are small and cψ,ij are large constants.

If we write

ηψ,ij = c
γψ,ij

ψ,ij =





1, if γψ,ij = 0,

cψ,ij, if γψ,ij = 1,

and Dψ,j = diag((ηψ,1jκψ,1j)
2, · · · , (ηψ,j−1,jκψ,j−1,j)

2), then (4.42) is equivalent to

(φj | γψ,j)
ind∼ Nj−1(0, Dψ,j), (4.43)

for j = 2, · · · , g.

(v) Priors of ψ = (ψ11, · · · , ψpp)
′. Assume that ψ2

jj
ind∼ gamma (αj, βj) distributions.

Here (αj, βj) are positive constants. So for j = 1, · · · , g, ψjj has the density

[ψjj] =
2β

αj

j

Γ(αj)
ψ

2(αj−1)
jj exp(−βjψ

2
jj), for ψjj > 0. (4.44)
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(vi) Prior for y0. We need a prior for the initial value of the latent process, y0:

y0 ∼ Np(y
0
0,Σ

0
0). (4.45)

4.4.2 Joint Posterior

The joint posterior of (A,Σe, Y , B,Σh,γb, γψ) has the form,

[A,Σe,Y ,B,Σh,γb,γψ | z]

∝
T∏

t=1

[zt | A,yt,Σe]
T∏

t=1

[yt | B,yt−1,Σh] [y0] [A] [Σe] [B | γb] [γb]

×
g∏

j=2

{[φj | γψ,j] [γψ,j]} [ψ] , (4.46)

where [zt | A, yt,Σe] is given by (4.11), [yt | B, yt−1,Σh] is given by (4.12), [y0] is given

by (4.45), [A] is given by (4.36), [Σe] is given by (4.22), [B | γb] is given by (4.40), [γb]

is given by (4.38), [φj | γψ,j] is given by (4.43), [γψ,j] is given by (4.41) and [ψ] is given

by (4.44). In order to update an MCMC algorithm, we now derive the full conditional

posteriors for (A,Σe,Y ,B,Σh,γb,γψ).

4.4.3 Conditional Posterior of (A, Σe, y)

Fact 4.4. The conditional posterior distribution of Σe given (B,Y ,Σh, δ; z) and yt

(t = 0, · · · , T ) given (Σe,Y(−t),B,Σh, δ; z) have the same form than in section 4.3.

Proof. It is obvious.
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4.4.4 Conditional Posterior for (B, γb)

Fact 4.5. (a) The conditional posterior distribution of b given (A,Σe,Y ,Σh,γb, γψ; z)

depends only on (Σh,γb,y) and has the form,

(b | Y ,Σh) ∼ Ng2(µb,Σb), (4.47)

where

Σb =
{

WW ′ ⊗Σ−1
h + (Db)

−1
}−1

,

µb = Σb

{
(W ⊗Σ−1

h )y
}

.

(b) Denote γb,(−ij) = (γb,kl : (k, l) 6= (i, j)). Given prior independence for bij, the con-

ditional posterior distributions of γb for given (B,Ψ,Λ, a0,β, A1, δ,γb,(−ij),γψ, γa) de-

pends only on B,

(γb,ij | B) = (γb,ij | bij)
ind∼ Bernoulli

( ub,ij1

ub,ij1 + ub,ij2

)
, (4.48)

where




ub,ij1 = 1
cb,ij

exp
(
− b2ij

2c2b,ijκ2
b,ij

)
pb,ij,

ub,ij2 = exp
(
− b2ij

2κ2
b,ij

)
(1− pb,ij).

(4.49)

Proof. Using the likelihood (4.19) part (a) is obvious. For part (b), recall that γb depends

on data indirectly, then,





ub,ij1 ∝ [b | γb,(−ij), γb,ij = 1]pb,ij,

ub,ij2 ∝ [b | γb,(−ij), γb,ij = 0](1− pb,ij);

the expression above, given prior independence of bij, gives the formula (4.49).
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4.4.5 Conditional Posterior for (Ψ, γψ)

To derive the conditional posterior distribution of (Ψ, γψ), we rewrite the likelihood

function (4.15) as

[Z | A,Σe, Y ,B,Σh]

∝ |Σe|−T/2|Ψ|T etr
{
−1

2

(
(Z −AY )′Σ−1

e (Z −AY ) + Ψ′SbΨ
}

. (4.50)

where Sb is given by (4.32). Then, we use the algorithm of George et al. (2005): write

Sb = (sij). For j = 2, · · · , g, define sj = (s1j, · · · , sj−1,j)
′. Let Sj be the upper-left j × j

submatrix of Sb. It derives that Sb = Sg. Define v1 = s11 and vj = |Sj|/|Sj−1| for

j = 2, · · · , g. It is well known that vj = sjj − s′jS
−1
j−1si > 0 for j = 2, · · · , g. Then (4.50)

equals to

[Y | φ,Ψ]

∝
g∏

j=1

ψT
jj exp

[
−1

2

{ g∑
j=1

ψ2
jjvj +

g∑
j=2

(φj + ψjjS
−1
j−1sj)

′Sj−1(φj + ψjjS
−1
j−1sj)

}]
. (4.51)

This expression allows us to derive the conditional posterior of Ψ.

Fact 4.6. (a) For given (A,Σe,Y ,B,γb,γψ,ψ; z), the posterior distributions of φ2

· · · ,φg are independent and depend only on (Y , B,γψ,ψ),

(φj | B,γψ, ψ,Y )
ind∼ Nj−1(µj,∆j), (4.52)

where

µj = −ψjj{Sj−1 + (Dψ,j)
−1}−1sj, (4.53)

∆j = {Sj−1 + (Dψ,j)
−1}−1. (4.54)

(b) For given (A,Σe,Y ,B, γb,γψ,φ1, · · · ,φp; z), the posterior distributions of ψjj,

j = 1, · · · , g are independent and depend only on (Y ,B, γψ),

(ψ2
jj | (Y ,B,γψ))

ind∼ gamma
(
αj +

1

2
T, Hj

)
, (4.55)
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where

Hj =





β1 + 1
2
s11, if j = 1,

βj + 1
2

{
sjj − s′j[Sj−1 + (Dψ,j)

−1]−1sj

}
, if j = 2, · · · , g.

(4.56)

(c) For j = 2, · · · , g and i = 1, · · · , j − 1, denote γψ,(−i),j = (γψ,1j, · · · , γψ,i−1,j, γψ,i+1,j,

· · · , γψ,j−1,j)
′. For given (A,Σe,Y ,B,γb,γψ,(−i),j,φ1, · · · ,φp,ψ; z), γψ,ij depends only

on φj,

(γψ,ij | φj) = (γψ,ij | ψij)
ind∼ Bernoulli

( uij1

uij1 + uij2

)
, (4.57)

where 



uij1 = 1
dij

exp
(
− ψ2

ij

2d2
ijκ2

ij

)
pψ,ij,

uij2 = exp
(
− ψ2

ij

2κ2
ij

)
(1− pψ,ij).

Proof. For j = 2, · · · , g, the conditional posterior density of (ψ2
jj, j = 1, · · · , g; φj, j =

2, · · · , g) given (A,Σe,Y ,B, γb,γψ; z) is given by

[ψ2
jj, j = 1, · · · , g; φj, j = 2, · · · , g | φ,ω; Y ]

∝
{ g∏

j=1

(ψ2
jj)

αj+
T
2
−1

}
exp

[
−

{ g∑
j=1

ψ2
jj(Hj)

}]
exp

{
−1

2

g∑
j=2

φ′
jD

−1
ψ,jφj

}

× exp
{
−1

2

g∑
j=2

(φj + ψjjS
−1
j−1sj)

′Sj−1(ηj + ψjjS
−1
j−1sj)

}

=
{ g∏

j=1

(ψ2
jj)

αj+
T
2
−1

}
exp

{
−

g∑
j=1

ψ2
jjHi − 1

2

g∑
j=2

(φj − µj)
′∆−1

j (φj − µj)
}

,

where µj is defined in (4.53) and ∆j in (4.54). Part (a) is obvious. For part (b), the

case when j = 1 holds clearly; when j = 2, · · · , g the result follows by integrating out

φj. Part (c) is similar to part (b) of fact 5.

4.4.6 MCMC Algorithm

Based on the above discussion we design the following Gibbs MCMC sampling pro-

cedure. Suppose at the beginning of cycle k, we have (Y (k−1),A(k−1),B(k−1),Σ
(k−1)
e ,
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Σh,
(k−1) , γ

(k−1)
b ,γ

(k−1)
ψ ). Then we have the following algorithm:

1. Draw (y
(k)
0 | A(k−1),Σ

(k−1)
e ,y

(k−1)
1 ,B(k−1),Σ

(k−1)
h ) from (4.26).

2. For t = 1, · · · , T − 1, draw (y
(k)
t | y

(k)
t−1,y

(k−1)
t+1 ,A(k−1), B(k−1),Σ

(k−1)
e ,Σ

(k−1)
h ) from

(4.27).

3. Draw (y
(k)
T | A(k−1),Σ

(k−1)
e ,y

(k)
T−1,B

(k−1),Σ
(k−1)
h ) from (4.28).

4. Draw (A(k) | Σ(k−1)
e ; z) from normal distribution (4.29).

5. Draw (B(k) | y(k),Σ
(k−1)
h , γ

(k−1)
b ) from normal distribution (4.47).

6. For j = 2, · · · , g, draw (φ
(k)
j | B(k),γ

(k−1)
ψ ,ψ(k−1),y(k)) from distribution (2.54).

7. Draw (γ
(k)
b | B(k)) from distribution (4.48).

8. For j = 1, · · · , g, draw (ψ2
jj | y(k),B(k),γ

(k−1)
ψ ), from distribution (4.55), then

construct Σ
(k)
h .

9. Draw (γ
(k)
ψ | φ(k)

1 , · · · ,φ(k)
p ) from distribution (4.57).

4.5 Numerical Simulations

In order to study the performances of the stochastic search algorithm, we use arti-

ficially simulated data and compare the results obtained with results from a common

conjugate analysis, as described in Section 4.3. We simulate one thousand samples and

for each we estimate the parameters using 10, 000 cycles (after 1, 000 burn-in runs).

Example 4.1. Consider a four-variable model with the following parameters,

Ψ =




1.5 2.5 2.5 2.0

0 1.5 0 0

0 0 1.5 0

0 0 0 1.5




, Σh =




.444 −.741 −.741 −.593

−.741 1.679 1.235 .988

−.741 1.235 1.679 .988

−.593 .988 .988 1.235




,
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Σe =




.250 −.375 −.750 −.313

−.375 .813 1.125 .469

−.750 1.125 3.250 .938

−.313 .469 .938 .641




,

A =




.1 0 0 0

0 .1 0 0

0 0 .1 0

0 0 0 .1




, B =




.3 .2 −.5 −.1

0 .4 −.2 0

0 0 .8 −.2

0 0 0 .8




.

The sample size T = 200. For the conjugate analysis, we used inverse Wishart with 5

degrees of freedom and identity covariance matrix. The prior mean for A and B are the

true values, with a diagonal covariance matrix whose elements are equal to .1 (so they

are very informative). For the model selection part, the hyper-parameters of the priors

are as follows: pi = .5, qij = .5. κij = .1, dij = 50. We have chosen an unrealistically

good prior for B to use the conjugate results as a benchmark. Here we present the

estimate obtained for this model:

1. Conjugate Analysis

Σ̂h =




.478 −.726 −.773 −.613

−.726 1.647 1.211 .975

−.773 1.211 1.696 .991

−.613 .975 .991 1.254




, Σ̂e =




.256 −.396 −.731 −.299

−.396 .919 1.134 .473

−.731 1.134 3.233 .899

−.299 .473 .899 .617




,

B̂ =




.3031 .2015 −.4980 −.0985

.0002 .4010 −.1987 .0011

.0023 .0025 .7994 −.1995

−.0009 −.0005 .0014 .7984




,

134



Â =




.9962 −.0002 −.0026 −.0010

−.0010 .9970 −.0005 .0002

−.0007 .0014 1.0008 .0011

−.0016 .0035 .0020 1.0023




.

The estimates of the variances are already good but not excellent with such sample size,

the estimates of A and B are very good, thanks also to the highly informative priors.

2. Model selection

Σ̂h =




.470 −.688 −.757 −.589

−.688 1.590 1.158 .931

−.757 1.158 1.689 .961

−.589 .931 .961 1.230




, γ̂ψ =




* 1.000 .990 .912

* * .585 .578

* * * .521

* * * *




,

Σ̂e =




.270 −.425 −.749 −.312

−.425 1.017 1.197 .511

−.749 1.197 3.282 .922

−.312 .511 .922 .646




,

B̂ =




.3111 .1969 −.4895 −.0949

.0084 .3911 −.1945 .0025

.0090 .0146 .7918 −.1994

−.0006 .0073 .0051 .7860




, γ̂b =




1.000 .992 1.000 .884

.358 1.000 .985 .334

.352 .353 1.000 .991

.343 .347 .318 1.000




,

Â =




.9958 .0006 −.0034 −.0015

−.0002 .9971 −.0003 .0004

−.0014 .0007 .9999 .0005

−.0019 .0032 .0016 1.0016




.

Figures 4.2 and 4.3 present a scatterplot of true and estimated values of the latent

process yt for one randomly chosen sample using conjugate priors and for one randomly
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chosen sample using the model selection technique. The parameter estimates obtained

using the model selection technique are overall satisfactory, especially considered the

small sample size, and particularly for B. Although, some parameters are poorly es-

timated. For example, one of the elements in Σe is 37 percent bigger than the true

value.

When compared with the results from the simulation study in Chapter 2, we can

notice a different behaviour of γ̂b and γ̂ψ: the values relative to the non-zero elements of

B and Ψ are all very close to one, but the values relative to the zero elements of the same

matrices are much bigger than zero, around .35 in γ̂b and .5 in γ̂ψ. In other words, the

stochastic search algorithm, when applied to the stochastic volatility model in Chapter

2, tends to choose models simpler than the true, while here tends to choose models

which are more complex than the true. Figure 4.4 shows a comparison of the estimation

error between the results of the benchmark conjugate analysis and those obtained with

the model selection technique. The biggest differences are in the estimates of B, where

the conjugate analysis obtained almost perfect results, while the estimation error of the

variances are of the same magnitude.

Example 4.2. Consider the same model as Example 4.1, but this time with T = 500.

We compare the results obtained with the conjugate and the model selection techniques.

For the conjugate case, we use two different priors for B. In the first case we use the

same benchmark prior as in the previous example, in the second case we choose a more

realistic prior, having mean equal to .3 in correspondence of the positive elements of

the true B, and −.3 in correspondence of the negatives, with variances ten times bigger

than in the previous example. All the other priors as set as before. The estimates are

as follows:
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1. Conjugate Analysis, best prior

Σ̂h =




.468 −.730 −.763 −.609

−.730 1.653 1.216 .979

−.763 1.216 1.693 .990

−.609 .979 .990 1.261




, Σ̂e =




.250 −.385 −.733 −.298

−.385 .873 1.129 .462

−.733 1.129 3.227 .911

−.298 .462 .911 .612




,

B̂ =




.3029 .2006 −.4983 −.0999

.0001 .4006 −.1997 .0005

.0023 .0022 .8002 −.2001

−.0001 −.0004 .008 .7992




,

Â =




.9971 −.0002 −.0009 −.0005

−.0008 .9978 −.0003 .0002

−.0007 .0011 1.0007 .0002

−.0016 .0035 .0016 1.0018




.

2. Conjugate Analysis, other prior

Σ̂h =




.455 −.671 −.748 −.598

−.671 1.512 1.129 .924

−.748 1.129 1.696 .979

−.598 .924 .979 1.257




, Σ̂e =




.263 −.429 −.743 −.299

−.429 1.001 1.195 .504

−.743 1.195 3.214 .914

−.299 .504 .914 .608




,

B̂ =




.3308 .1688 −.4767 −.0825

.0013 .4176 −.1962 .0059

.0233 .0525 .7824 −.2238

−.0340 −.0393 .0202 .7714




,

Â =




.9958 −.0010 −.0020 −.0012

−.0060 .9960 −.0005 .0003

−.0016 .0014 1.0030 .0011

−.0019 .0038 .0014 1.0027




.
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3. Model selection

Σ̂h =




.466 −.714 −.763 −.608

−.714 1.602 1.193 .966

−.763 1.193 1.702 .993

−.608 .966 .993 1.261




, γ̂ψ =




* 1.000 .999 .974

* * .495 .501

* * * .411

* * * *




,

Σ̂e =




.255 −.405 −.738 −.301

−.405 .935 1.161 .479

−.738 1.161 3.218 .916

−.301 .479 .916 .611




,

B̂ =




.3108 .1936 −.4928 −.0976

.0073 .4018 −.1958 .0025

.0048 .0148 .7985 −.2005

−.0003 .0073 .0009 .7908




, γ̂b =




1.000 .998 1.000 .930

.323 1.000 .995 .226

.308 .304 1.000 1.000

.300 .287 .255 1.000




,

Â =




.9963 .0001 −.0032 −.0011

−.0002 .9975 −.0001 .0000

−.0020 .0007 1.0011 .0002

−.0011 .0031 .0015 1.0012




.

Again, the stochastic search algorithm tends to select models which are more complex

than the true. Posterior means of γb and γψ express in fact similar values as in the

previous example. The estimation is generally more precise, with the biggest estimation

error for a non-zero element in B, Σe and Σh being respectively 3, 15 and 4 percent. All

the elements of B̂ present estimation error smaller to those of the B̂ relative to the non

benchmark conjugate analysis. That is not the same if we consider the variance estimate,

where the model selection estimator does not perform unifromly better, maybe because

of the indirect estimation of Σh. A graphical comparison of the estimates obtained with
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the model selection technique and the non benchmark conjugate analysis can be found

in Figure 4.5.

Example 4.3. Consider now a five-variable model with T = 500 and the following

parameters,

Ψ =




1.5 2.5 2.5 2.0 2.0

0 1.5 0 0 0

0 0 1.5 0 0

0 0 0 1.5 0

0 0 0 0 1.5




, (4.58)

Σh =




.444 −.741 −.741 −.593 −.593

−.741 1.679 1.235 .988 .988

−.741 1.235 1.679 .988 .988

−.593 .988 .988 1.235 .790

−.593 .988 .988 .790 1.235




, (4.59)

Σe =




.250 −.375 −.750 −.313 −.313

−.375 .813 1.125 .469 .469

−.750 1.125 3.250 .938 .938

−.313 .469 .938 .641 .391

−.313 .469 .938 .391 .641




, (4.60)

B =




.3 .2 −.5 −.1 0

0 .4 −.2 0 .1

0 0 .8 −.2 0

0 0 0 .8 −.2

0 0 0 0 .5




, A =




.1 0 0 0 0

.5 .1 0 0 0

0 .5 .1 0 0

0 0 .5 .1 0

0 0 0 .5 .1




. (4.61)

Here we present the estimates obtained using a ”non benchmark” conjugate analysis

and the stochastic search algorithm for model selection.
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1.Conjugate Analysis

Σ̂h =




.469 −.727 −.785 −.597 −.589

−.727 1.591 1.213 .965 .958

−.785 1.213 1.778 .987 .991

−.597 .965 .987 1.248 .759

−.589 .958 .991 .759 1.216




,

Σ̂e =




.248 −.393 −.737 −.297 −.300

−.393 .912 1.215 .509 .495

−.737 1.215 3.257 .919 .917

−.297 .509 .919 .627 .389

−.300 .495 .917 .389 .646




,

B̂ =




.3079 .2293 −.4850 −.1021 −.0070

.0161 .3772 −.1896 .0131 .1209

−.0260 .0220 .7685 −.2308 −.0123

−.0008 −.0106 .0004 .7819 −.2010

.0085 −.0057 −.0024 .0159 .4926




,

Â =




.9952 .0023 −.0044 −.0008 −.0014

.5015 .9949 −.0007 .0004 .0005

−.0015 .5006 .9994 .0001 .0003

−.0005 .0006 .4994 1.0006 −.00073

−.0024 .0044 .0027 .5017 1.0024




.

2. Model selection

Σ̂h =




.482 −.759 −.792 −.615 −.602

−.759 1.685 1.249 .987 .981

−.792 1.249 1.759 1.023 .998

−.615 .987 1.023 1.268 .775

−.602 .981 .998 .775 1.232




,
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γ̂ψ =




* 1.000 1.000 .973 .960

* * .547 .561 .582

* * * .523 .530

* * * * .557

* * * * *




,

Σ̂e =




.240 −.369 −.709 −.285 −.292

−.369 .854 1.138 .474 .473

−.709 1.138 3.178 .871 .898

−.285 .474 .871 .605 .384

−.292 .473 .898 .384 .646




,

B̂ =




.3045 .2168 −.4924 −.0945 −.0060

.0052 .3842 −.1942 .0055 .0973

−.0051 .0033 .7922 −.2023 .0023

−.0009 −.0057 −.0047 .7907 −.1979

−.0026 −.0023 −.0019 .0082 .4952




,

γ̂b =




1.000 .999 1.000 .928 .347

.419 1.000 .994 .344 .871

.402 .406 1.000 .998 .408

.404 .405 .365 1.000 .991

.392 .376 .356 .298 1.000




,

Â =




.9944 .0006 −.0045 −.0019 −.0022

.5008 .9953 −.0003 .0006 .0004

−.0019 .5012 1.0000 −.0001 .0007

−.0005 .0010 .4999 1.0011 −.0005

−.0025 .0041 .0023 .5015 1.0022




.

The major difference between this example and the previous two lies in the structure of
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A, which now is not an identity matrix. Again, results are generally satisfactory5. The

posterior means of γb and γψ relative to the non-zero elements of B1 and Ψ are still

quite larger than zero, and for γb are even larger than in the four variable examples.

Nevertheless, it is still possible to easy distinguish the zero and non-zero elements of

the matrix. The estimates of B are generally more precise than the estimates of the

covariance matrices, like in the two previous examples. A graphical comparison of the

results obtained with conjugate analysis and model selection can be found in Figure 4.6.

We can see how the model selection procedure generally produces better estimates of

B, but worse estimates of Σh.

4.6 Conclusions

Estimation techniques for dynamic models require feasibility and computational ef-

ficiency. Often dynamic modeling relies on a priori restrictions and assumptions that

are not always easily justifiable using theoretical reasoning. Also, speaking about the

Bayesian choice, being able to elicitate reasonable priors is not a trivial problem at all,

especially for the latent process’ evolution. Extending the results of Chapter 2, we de-

rived a variable selection approach for state space models which allows us to start with

a very general setup and later impose data driven restrictions. The stochastic search al-

gorithm is fast enough and computationally cheap to be used as an instrument of model

calibration in large state space frameworks. Scholars can then focus on all potentially

useful models. We applied the algorithm to artificially generated data, and compared

the estimates with those obtained from a more common Bayesian MCMC algorithm

based on conjugate priors. Results show the efficacy of the stochastic search algorithm.

5Simulations performed with more complex structures of A happened to be much harder to be
correctly estimated.
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Much still needs to be done. Improvements and further developments will be discussed

in the next chapter.

Figure 4.1: Dependence Structure of a Hidden Markov Models. The observed variable
is zt while the latent variable is yt
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Figure 4.2: Comparison of the True and Estimated Latent Process y for One Sample.
Results are obtained estimating the parameters as in Section 4.3
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Figure 4.3: Comparison of the True and Estimated Latent Process y for One Sample.
Results are obtained estimating the parameters as in Section 4.4
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Figure 4.4: Comparison of the estimates obtained with the methods of Section 4.3 and
4.4
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Figure 4.5: Comparison of the estimates obtained with the methods of Section 4.3 and
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Figure 4.6: Comparison of the estimates obtained with the methods of Section 4.3 and
4.4
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Chapter 5

Discussion and Future Research

In this study, we presented Bayesian algorithms for estimation and model selection

of multivariate stochastic volatility and dynamic models. All the algorithms utilize

and extend the stochastic search variable selection method first developed by George

& McCulloch (1993), who applied the method to linear regression. We showed in this

study how the same method can be successfully applied to multivariate time series models

with latent variables, such as stochastic volatility or state space models. We performed

stochastic search model selection for both the regression coefficient and the covariance

parameters. For the stochastic volatility framework, we also performed selection of the

regression coefficient and variance parameters of the volatility equation. Selection of

the non-zero variances of the stochastic volatility generating process in particular allows

us to choose between time varying variance models with stochastic or deterministic

volatilities, a choice that up to now has been made a priori by the researcher. Also,

new challenges are brought to the forefront: unlike all other parameters subject to

model selection, variances of the volatility equation are not normal but inverse gamma

parameters. Selection of these parameters happens to be very sensitive to the choice
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of prior hyperparameters. We found a solution by imposing a flat prior on them, and

simulation studies showed the solution to be successful, but we believe that it could still

be improved, and this will be one of the points of our future research.

Computational efficiency of the stochastic search algorithm lies in embedding model

selection in the same Gibbs sampler used for parameter estimation. In the context of

state space models, all the estimation can be carried out using Gibbs sampling, although

filtering the latent variables will lead to a faster mixing MCMC chain. In the context of

time varying variance models, the unknown form of the stochastic volatility full condi-

tional necessitates a different sampling procedure to be introduced in the Gibbs cycle.

We utilized Gilks sampler, particle filter and smoother, and filter based on rejection

sampling. Alternative methods available (Metropolis Hastings and auxiliary particle fil-

ter among others), did not produced results that were as effective. Metropolis Hasting

has already proven to provide low acceptance rates and slowly mixing MCMC chains

in such frameworks (Carter & Kohn (1994), Chib et al. (1998)), while auxiliary particle

filter has proven to be very useful in particular situations which have not been manifest

in our study. The methods chosen have been compared in terms of speed and efficiency.

The efficiency of the computation can still be improved in many ways, and this will be

another point for future research. In particular, Sun & Berger (2006) developed an algo-

rithm for posterior computation using Cholesky decompositions which allows us to use

only the below diagonal elements of the sample covariance instead of the whole matrix.

This method can be easily adapted for the modified Cholesky decompositions utilized

here, and will greatly reduce the amount of computation necessary to sample from the

covariances’ posteriors.

We employed different types of Cholesky decompositions for efficient parametrization
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of the covariance matrices. Stochastic search algorithms could be embedded in all the

resulting models with only slight modifications. In particular, two different modified

Cholesky decompositions (Pourahmadi (1999) and Chen & Dunson (2003)) have been

used for time varying covariances parametrization, and the resulting models have been

compared with estimated Bayes factors. For both decompositions, we imposed the

resulting diagonal matrices to be time varying, while the lower unit triangular matrix

to be time invariant. This is equivalent to imposing time invariant correlations if we

utilize Chen & Dunson decomposition. By performing model selection between the two

different parametrizations, we can also test the assumption of constant correlations.

We used Bayes factors to compare two restricted models chosen using the stochastic

search algorithm, and so utilizing the two selection techniques in a complementary way.

Both modified Cholesky decomposition can successfully be employed in a state space

model framework. The Chen & Dunson decomposition would allow us to separately

model scale and correlation parameters of the latent variable’s covariance matrix. Also,

different types of covariance decompositions can be utilized for both the models studied

here. Spectral decompositions (for example Chiu et al. (1996)) can obviate the problem

of variable ordering, even if they have some drawbacks when compared to Cholesky type

decompositions.

In addition to the improvements and developments mentioned in this chapter, there

are further avenues for future research. In this study we always adopted independent

priors. The structure of (2.54) can be used to develop better priors for Ψ. Also, non

independent priors for the model indicators can greatly improve the flexibility of the

model. The researcher could impose priority on some variables, or easily develop hier-

archical selection structures, just modifying the prior hyperparameters. The cost of this

is essentially computational: prior independence allows the full conditional posterior for
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the model indicators to have closed form, thus not requiring an additional Metropolis

step.

The multivariate stochastic volatility model in Chapter 2 can be generalized to allow

fat tail distributions of the errors and jumps, similarly to Chib et al. (2005), while the

stochastic search algorithm can be successfully applied to a much broader family of

dynamic structures than the state space models presented here.

In conclusion, this work presents an efficient and computationally feasible method

for performing model selection for large multivariate time series, which present a very

high number of competing models. The method is fully Bayesian and can be easily

applied to different frameworks. It can be used to choose the best submodel for each

framework, which can then be compared using traditional model selection techniques.

Efficient parametrization of the covariance matrix is crucial for the efficiency of the

Bayesian estimation, and Cholesky decompositions are found to be very effective. Much

work must still be done to improve the efficiency of the algorithm and the generality

of the model, but the methods studied here already represent a useful tool for model

building and calibration, a tool that allows the researcher to start with a very general

model and then impose restrictions based on statistical considerations, thus catalyzing

a feedback between theory and quantitative analysis in economics and social sciences in

general.
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