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ABSTRACT

RNAs are polynucleotide chains. Despite the widespread importance of RNA folding

for cellular function, understanding of the principle of the RNA folding, especially of the

tertiary structure folding, is very limited. Reliable prediction for tertiary structural stability

and folding pathways is not possible, even for the simplest tertiary folds. In this thesis, we

develop statistical mechanical models for the folding of simple RNA tertiary structures.

One of the bottlenecks to model RNA tertiary folding is the entropy problem. The major

focus of this thesis is to develop a conformational entropy model for simple RNA tertiary

structures, specifically, for RNA folds with simple tertiary contacts and RNA pseudoknotted

folds. A major challenge in the theory is how to account for (1) the nonlocal correlations

between different parts of the tertiary structures and (2) the volume exclusion between dif-

ferent nucleotide units of the chain. Our principle approach is “dividing and conquering”:

to divide the structure into conformational subunits and to treat the inter-subunit interac-

tions by focusing on the local interactions near the inter-subunit interfaces. The theory is

developed based on a two-dimensional lattice model. Extensive tests against exhaustive

computer lattice enumerations show that the model is accurate and reliable.

The model developed in this thesis enables predictions for the energy landscapes and

conformational transitions for simple RNA tertiary folds and RNA pseudoknots. The model

can predict the interplay between the secondary and the tertiary interactions in the confor-

mational changes. The theory has been applied to study the mechanical unfolding of model

RNA H-pseudoknots. The information about structural transitions in the unfolding process

has been obtained from force-extension curves, computed using the force-dependent parti-

xi



tion functions. The (equilibrium) folding pathways and folding cooperativities have been

predicted based on the free energy landscapes.

Though the current form of the model is based on a two-dimensional lattice model, the

machinery developed here permits the use of arbitrary chain representation and can be gen-

eralized to any off-lattice models. Furthermore, the analytical formulation of the method

makes possible the systematic development of the theory for more complex tertiary struc-

tures. Therefore, the models developed in this thesis may provide paradigms for modeling

more complex RNA tertiary structure folding thermodynamics.
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Chapter 1

INTRODUCTION

1.1 What is RNA?

Ribonucleic acids (RNAs) are polymer molecules which perform various critical functions

in processes of transmission, expression, and conservation of genetic information. The

building blocks of an RNA are nucleotides. Each nucleotide consists of a phosphate, a

sugar, and a base (Fig. 1.1). The phosphate groups link the 5’ carbon of one ribose to the 3’

carbon of the next. Correspondingly, the two ends of the chain are referred as 5’ and 3’ ends

and have different chemical properties. The sequence of a nucleotide chain is defined from

the 5’end to the 3’ end. Bases are responsible for coding the genetic information. There

are four types of bases in RNA: adenine (A), guanine (G), cytosine(C) and uracil (U) (Fig.

1.1). The RNA structure can be described at three different levels. The primary structure

of the molecule is a sequence of bases, i.e. the covalent chain structure. The conformations

of nucleotides depend on the torsion angles for rotation around each covalent bond (Fig.

1.1). There are seven torsion angles that must be specified to characterize the conformation

1



of each nucleotide.
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Figure 1.1: (a) RNA nucleotide chain (b) Seven torsion angles are shown which characterize the

conformation of each nucleotide and correspond to rotation around covalent bonds.

The secondary structure is formed by pairing of bases. J. Watson and F. Crick pro-

posed the idea of specific interactions between complementary bases: A with U and G with

C. A weaker base pair is also possible between G and U (so called wobble base pair). As

a result of base pairing, a single-stranded RNA molecule folds back onto itself with the

formation of double helices (stacked base pairs) of complementary strands. The base pairs

are hydrogen-bonded and their geometry is such that they can fit into the helix without it’s

2



distortion.

A secondary structure is formally defined as a list of base pairs (contacts) such that any

two contacts (i, j) (i < j) and (k, l) (k < l) are either nested (i < k < l < j) or unrelated

(i < j < k < l). A convenient way to visualize intrachain contacts and represent RNA struc-

tures is a polymer graph. It consists of vertices which represent monomers, and straight

line links representing covalent bonds between monomers. Monomers in spatial contact

(base pairs in RNA) are also connected by curved links. There are three possible relation-

ships between two contacts: nested, unrelated and crossing linked (Fig. 1.2). Secondary

structures can be represented by graphs which involve only nested and unrelated contacts.

k

i j

l

i j k l

i j k l

i k lj

i j

k l

jlki

nested unrelated linked H−pseudoknot

Figure 1.2: Three possible relationships between two links of a polymer graph, and an H-

pseudoknot: graphs and chain conformations.

According to the intrachain contacts, we can decompose a secondary structure into

relatively independent secondary structural motifs (subunits): stacked base pairs and loops.

Most of RNA molecules adopt A-form double helices which have the following char-

acteristics: they are right-handed, have narrow, deep major (depth 13.5Å, width 2.7Å) and

wide, shallow minor (depth 2.8Å, width 11.0Å) grooves, 11 base pairs per turn, translation
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per residue 2.6Å, helix diameter 19Å and pitch 28Å.

The term “tertiary interactions” is sometimes applied to non-canonical interactions (for

example, a hydrogen bond to a phosphate group can often be seen in loops) which are

formed in the late stage of folding and are usually weak compared to interactions in sec-

ondary structures. Here we use a more restricted definition. If there is a base pair (i, j)

(i < j), then any interaction between nucleotides k, l such that i < k < j < l is called

tertiary. In the polymer graph, a tertiary interaction is represented by a crossing link (Fig.

1.2). The tertiary structure describes how the different parts of the secondary structure

are brought together by the tertiary crossing links to form a compact three-dimensional

structure. Probably the simplest tertiary structure in an RNA is an H-pseudoknot, which,

as shown in Fig. 1.2, contains nucleotides of the hairpin loop paired with tail nucleotides

external to the loop.

1.2 RNA functions.

RNA molecules play a variety of critical roles in cell functions. They play a crucial role

in the process of protein synthesis, exhibit catalytic activity and store genetic information.

There are several types of RNAs according to the functions they have.

1. Messenger RNA (mRNA) molecules are typically several thousand nucleotides long.

The DNA molecule, which is usually located in the nucleus of the cell, contains the

genetic code which determines the structure of proteins. The genetic code consists of

successive triplets of bases; each triplet encodes one amino acid of the polypeptide

chain. The function of the messenger RNA is to carry the genetic code to the cyto-
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plasm to control the formation of the proteins. The mRNA (as well as other types

of RNA) is assembled in a process called transcription. The large protein enzyme

DNA-dependent RNA polymerase moves along the DNA molecule, temporally un-

winding and separating the two DNA strands. Using one of two strands as a template,

the RNA polymerase forms the chain of RNA nucleotides which are complementary

to DNA nucleotides. In such a way, the sequence of code triplets in the DNA causes

the formation of the sequence of complementary code triplets (codons) in the mRNA,

which will control the synthesis of a protein molecule. The RNA molecule formed

in the transcription is the primary RNA transcript, called pre-messenger RNA, which

consists of exons (protein-coding sequences) and introns (non-coding sequences).

The primary transcript must undergo processing steps to produce a mature, functional

mRNA. Processing includes cutting off introns (splicing) and modification of termini,

i.e. formation of untranslated regions (UTR) at 3’ and 5’ ends of the molecule. The

functions of UTRs are to protect the molecule from degradation by enzymes called

exonuclease, which cleave (break down linkages between nucleotides) at the ends of

the molecule, and to regulate the function of the molecule. For example, a stretch of

adenine (A) nucleotides (poly(A) tail) is added at the 3’ end of mRNA which protects

from degradation and signals translatability (enhances the translation initiation). The

formed mature mRNA is released into cytoplasm.

2. Transfer RNA (tRNA) molecules are small (4S) and contain 75-95 nucleotides. They

form a very well-defined clover-leaf secondary structure and L-shaped tertiary struc-

ture. This structure allows binding of amino acid at one end (acceptor stem) and
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Figure 1.3: Types of RNA and their roles in protein synthesis.
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mRNA at the opposite end (anticodon loop). The function of tRNA is to transfer

amino acid molecules to protein molecules as the protein is being synthesized. There

are more than 20 types of tRNA, each type binds with one of the 20 amino acids

and recognizes a corresponding codon on the mRNA. For each amino acid, there is

a special enzyme, aminoacyl-tRNA synthetase, which catalyzes its attachment to the

acceptor stem of the cognate tRNA. In the anticodon loop, there is a special triplet of

bases called anticodon which hydrogen bonds with the complementary codon on the

mRNA. This way, the tRNA delivers the appropriate amino acid to the appropriate

place on the mRNA.

3. Ribosomal RNAs (rRNAs) along with about 75 different proteins form the ribo-

somes. The ribosomes are particles on which protein molecules are actually synthe-

sized during the process called translation. They function in association with tRNAs

which transport amino acids to ribosomes and with mRNAs which provide the in-

formation necessary for sequencing the amino acids in proper order. Ribosomes are

composed of two sub-units, large and small. In prokaryotes, they are 30S and 50S

subunits. The small subunit contains 16S rRNA (approx. 1500 bases). The large

subunit contains 23S rRNA (approx. 2500 bases) and a smaller 5S rRNA (approx.

120 bases). The size is indicated by S numbers which reflect the rate at which the

molecules sediment in the ultracentrifuge. There are two sites in the large subunit:

the A site accepts a new tRNA bearing an amino acid, and the P site accepts the tRNA

with amino acid attached to the growing chain. Two GTP-driven elongation factors

(proteins), EF-Tu and EF-G, are responsible for positioning of tRNAs with incoming
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and attached amino acids in the appropriate site.

At the beginning of translation, the ribosome comes in contact with the initiation

sequence of nucleotides at the 5’ end of mRNA. After that, the mRNA travels through

the ribosome so that codons are read in a 5’ to 3’ direction, and a protein molecule

forms. When the ribosome meets a chain-terminating codon, the end of a protein

molecule is signaled and a protein molecule is freed into the cytoplasm. There are

three possible ways (reading frames) of reading a nucleotide sequence as a series

of triplets. For example, the nucleotide sequence AGCCCAUGG can be translated

in different reading frames as AGC CCA UGG, GCC CAU or CCC AUG. An open

reading frame is defined by the start codon (AUG) and triplets are read one after

another until the in-frame stop codon (can be UAG, UAA or UGA) is met. The

change in translational reading frame is called frameshifting.

4. Small nuclear RNA (snRNA, ' 100 − 300 nucleotides) are found in the nucleus of

cells. They are involved in the processing of other classes of RNA. For example, sev-

eral snRNAs in complex with proteins form a spliceosome which play an important

role in the splicing processing.

5. RNA viruses are particles consisting of one or more RNA molecules surrounded by

a protein coat. RNA molecule in this case carries out the role normally played by

DNA: it stores genetic information. In DNA viruses genetic material is stored in

DNA molecule. RNA viruses can infect bacterial, plant, and animal cells. When

the virus enters the host cell, the viral RNA functions as mRNA and is translated by

host ribosomes to produce three virus specific proteins, one of which is the enzyme
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RNA polymerase (replicase). The RNA polymerase then copies genomic RNA into

complementary RNA. This synthesized RNA serves as a template for synthesis of

new RNA strands. The newly formed RNA can either serve as a template for more

RNA strands, or be packed into new virus, or be translated to produce more proteins.

6. Ribozymes, or RNA enzymes, are catalytic RNA molecules. They catalyze cova-

lent changes in the structure of other (mostly RNA) molecules. Here are several

examples. The group I and II introns are able to catalyze their own splicing out of

the primary RNA transcript to form mature RNAs. RNase P is an RNA processing

endonuclease that specifically cleaves the 5’ end of the precursor tRNA. It consists

of an RNA of approximately 350 nucleotides bound to a protein of approximately

120 amino acids. The hammerhead and hairpin ribozymes are small catalytic RNA

motifs that catalyze self cleavage of the strand. They are involved in the replication

of plant viroid and viroidlike satellite RNAs (small, circular RNA molecules of 300-

400 nucleotides that infect plant cells. Unlike viruses, they don’t have a protein shell.

Their precursor RNA contains many repeats of viroid structure, which must be cut

out and ligated). Recently, it was shown that the 23S rRNA in the large (50S) subunit

of ribosome catalyses the formation of the peptide bond that links each amino acid

to the growing polypeptide chain, i.e., it is a ribozyme.

Before the discovery of ribozymes, only proteins were known to have catalytic activ-

ity. The fact that RNA can serve as a catalyst in addition to its ability to store genetic

information, provided the support to the theory of “RNA world”. It states that there

was a time shortly after the origin of life on the Earth when RNA alone carried out all
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biological functions required for a cell to survive, i.e. served as the genetic material,

structural and catalytic molecule.

1.3 The forces that stabilize RNA structures.

In the primary structure of RNA the residues are covalently bonded to each other. The free

energy change due to formation of a covalent bond is ∆G ' 100kBT (kBT ' 0.6kcal/mole).

The free energy change associated with the change of conformation of the molecule

depends on the enthalpy change (heat associated with the reaction at constant pressure),

∆H, and on the entropy change ∆S of the system:

∆G = ∆H − T ∆S . (1.1)

All thermodynamic variables refer to standard state (1M concentration of species, pressure

1 atm). The ∆H is determined by the potential energy of interaction between nucleotides,

∆H = ∆(E + PV) ' ∆E (changes of pressure and volume are almost always negligible for

conformational transitions). The energy E is the sum of energies of bonded and non-bonded

interactions.

The bonded interactions are stretching and bending of bonds between the nearest neigh-

bors, and rotation of torsion angles. The potential energy of such interactions can be ex-

pressed by the formula:

Eb =
∑

bonds

kr(r − req)2 +
∑

angles

kθ(θ − θeq)2 +
∑

dihedrals

Vn

2
[1 + cos(nφ)], (1.2)

where kr and kθ are force constants for bond stretching and bending, r − req and θ − θeq

are deviations of bond lengths and angles from the equilibrium values, Vn is the energy
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barrier of rotation, and n is 3 for rotation around the bond linking two tetrahedral atoms

(sp3 bonding) and 2 for sp2 bonding.

Non-bonded are interactions between nucleotides separated by three or more bonds.

Those are: (i) electrostatic Coulomb’s interactions; (ii) London attractions (fluctuation

dipole-induced dipole interactions) which decays with distance as r−6; (iii) van der Waals

short- range repulsions proportional to r−12. The energy of all such non-bonded interactions

can be written as

Enb =
∑

i<j















qi q j

εRi j
−

Ai j

R6
i j

+
Bi j

R12
i j















. (1.3)

Here qi, q j are charges, Ri j is the distance between charges i and j, ε is the dielectric

constant of the medium, and constants Ai j and Bi j are positive and depend on the interacting

atoms i and j.

When we deal with polymer molecules in aqueous solution, we have to distinguish

between translational and conformational entropy. Bringing of two strands together to

form a duplex, and binding or release of water molecules and of ions result in change of the

translational entropy. If a single-stranded molecule folds to form a compact structure, the

conformational entropy decreases because of the restrictions imposed on the torsion angles.

The Boltzmann’s statistical interpretation of entropy relates entropy S to the number Ω of

states of the system with the same energy:

S = kB lnΩ. (1.4)

Here kB is the Boltzmann’s constant. In order to reach the stable state, which, according to

laws of thermodynamics, is the one with minimal free energy, the system tends to minimize

enthalpy and maximize entropy (Eq. 1.1).
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The stability of the secondary structure is mainly influenced by three factors: base

stacking, base pairing and flexibility of the backbone.

(1) Base stacking is the dominant stabilizing force in an RNA structure. It was found

experimentally, that separate bases or nucleosides in water prefer to stack (form columns

of several flat bases) rather than to form the hydrogen bonds between complementary pairs.

This is an enthalpy driven process, i.e. there exist attractive forces between planar aromatic

bases. The bases in stack are held together mainly by London attractions of the polarizable

electrons (induced dipole interactions between the π electron clouds of the stacked bases)

and Coulombic electrostatic interactions among the net charges on base atoms.

backbone backbone

base base

Figure 1.4: The stacking interactions occur between all neighboring bases and significantly stabi-

lize RNA helices.

The stacking interactions significantly stabilize RNA helices. They occur not only be-

tween consecutive bases of one strand, but also between bases belonging to neighboring

strands (cross-strand stacking, Fig. 1.4). The stacking interactions can also cause so called

coaxial (end-to-end) stacking of double helices which is energetically even more favorable

then forming of one long helix because of some conformational freedom in the junction

region.
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(2) Base pairs are formed as a result of hydrogen-bonding interactions between base

edges. The hydrogen bonds form between hydrogen atoms with partial positive charges,

and oxygen, nitrogen or fluorine atoms with partial negative charges. The nature of hy-

drogen bonds is mainly electrostatic with a small covalent component. In addition to the

standard or canonical Watson-Crick base pairs, many other hydrogen-bonded base pairs

(e.g. wobble and Hoogsteen base pairs, see Fig.2) can form; the backbone can interact

with bases or with other sugar and phosphate groups. The fact that in usual double helices

mostly Watson-Crick base pairs are found is due to their remarkable isostericity, which

allows each of four combinations to fit into the A-form helix without it’s distortion. The

hydrogen-bonding interactions between bases are weak in comparison with base stacking

because of the competition with the hydrogen bonding with water.

The formation of the base stack is associated with the free energy change which has

enthalpic and entropic contributions. The enthalpic contribution is due to the described

non-covalent interactions: stacking forces and hydrogen bonding between bases. The en-

tropy change for base stack formation is caused by two reasons: the “freezing” of the chain

conformational entropy because of the restrictions imposed on the (7 per nucleotide) tor-

sional angles of the backbone and of the base, and the change of the solvation entropy, i.e.

the entropy of ions and water molecules. In the present research, we focus only on the con-

formational entropy change. Both, ∆H and ∆S of the stack are sequence-dependent. The

sequence-dependence of the stack entropy comes from (i) the dependence of the solvation

entropy on the chemical structure of bases, and (ii) the dependence of the degree of the loss

of rotational freedom on the strength of the interactions between bases: the larger ∆H is

associated with the larger ∆S .
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The stacking thermodynamic parameters for different base stacks have been measured

by Turner et al [1] . For example, for the stack of G − C and U − A base pairs in 1M NaCl

and T = 37◦C,

∆H = −10.2 kcal/mol; ∆S = −26.2 cal/(K mol);

∆G = ∆H − T ∆S = −2.1 kcal/mol.

(3) Most of the conformational flexibility of the RNA molecule is induced by it’s back-

bone. The backbone of RNA is a highly charged polyelectrolite, because each phosphate

residue bears a unit negative charge. The resulting electrostatic repulsion between two

strands (or two parts of one strand) reduces flexibility and acts against the helix formation.

However, the presence in aqueous solution of positively charged counterions and their con-

densation into a small volume around the RNA molecule partly neutralizes the negative

backbone charges and can cause the helix formation. Localization of multivalent counteri-

ons is more favorable since less particles should be localized to neutralize the same charge

which provides significant entropic advantage.

1.4 Structure and conformational changes determine RNA

functions.

RNA is extremely versatile and flexible molecule which plays a variety of roles due to

its ability to form different structures and interact with many other macromolecules. Many

RNA functions are based on specific RNA structures, conformational changes and stability.

To demonstrate it, we consider two examples.
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The translational repression mechanisms [4, 5]. Translation in prokaryotes is initiated

by formation of ternary complex between 30S subunit, tRNA which binds with methionine

f met − tRNAmet
f , and mRNA initiation sequence (initiation codon AUG and a sequence

complementary to the 3′ end of 16S rRNA called Shine-Dalgarno sequence) (Fig. 1.5).

First, the sequence at the 3’ end of 16S rRNA binds to Shine-Dalgarno sequence; then, this

preinitiation complex undergoes slow isomerization to the final initiation complex in which

f met − tRNAmet
f in the ribosome P-site is paired with the initiation codon on mRNA. After

that, the process of translation starts, the mRNA molecule moves through the ribosome to

synthesize the protein molecule.

fmet
Shine−Dalgarno

sequence

GUGAUG

30S

mRNA

16S rRNA
3’

5’ 3’

initiation codon

stop codon

ribosome

50S

AGGAGGU

tRNA

���
���
���
���

���
���
���
���

G
G

U

A
G
G

A

AUG GUG5’ 3’

protein

mRNA

Figure 1.5: Translation is initiated by formation of ternary complex between 30S subunit, f met −

tRNAmet
f , and single-stranded mRNA initiation sequence. Folding of mRNA can prevent the ribo-

some binding and repress the protein production.

The recognition of a ribosome binding site (RBS) requires the mRNA to be locally
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single-stranded. Therefore, the binding of the ribosome can be prevented by folding of

the messenger RNA, for example, formation of a hairpin containing the mRNA initiation

sequence. Whether it will totally prevent the ribosome binding, depends on the stability

of the structure. The experiment has been carried out [6] where the stability of the hairpin

structure at the coat-gene RBS from bacteriophage MS2 has been varied. The individual

base pairs were disrupted and restored by site-directed mutagenesis, and the relative expres-

sion (the fraction of mRNA that is bound by a 30S subunit) of each mutant was measured.

The experiment has clearly shown that translation decreases gradually as the structure is

stabilized [6]. The data from other sources [7]-[10] have been compiled [5] which support

control of translation by the stability of the mRNA structure at the RBS. The base-pairing

at the RBS doesn’t totally prevent the ribosome binding because RNA structures don’t exist

permanently: due to thermal fluctuations the molecule continually and spontaneously folds

and unfolds. The fraction of time which each molecule spends in the unfolded state, and

therefore the fractional population of the molecules in the unfolded state depends on the

structure stability. Since the probability of 30S subunit binding depends on the fraction of

mRNAs in the unfolded state, it also decreases with the stabilizing of the folded mRNA

structure.

Process of splicing of introns [13]. The process is assisted by a ribonucleoprotein

complex called spliceosome which consists of five snRNPs: U1, U2, U4, U5 and U6 and

other protein factors. The intron splicing occurs in two steps. In the first step, the 2’

hydroxil group of a conserved adenosine residue near the 3’ end of the intron (so called

intron branch site) approaches the 5’ end of the intron and causes cleavage of the exon 1

-intron junction. In the second step, the 3’ hydroxil of exon 1 disrupts the intron - exon
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2 connection and binds exons. The details of the process are shown in Fig. 2 in [13].

Most introns have common consensus sequences at their ends which participate in the

spliceosome formation. The process starts from the base-pairing of U1 and U2 snRNPs

with two ends of the intron. The U2 duplex bulges the branch-point adenosine. Then, the

base-paired U4-U6 and U5 get involved into the conformational changes, namely, duplex

U4-U6 unwind, U4 and U1 are displaced, and U6 base-pairs with 5’ splice site and part of

U2. The U5 snRNP is believed to base-pair with both exons in order to position them for

the second step of splicing. After the process is completed, the spliceosomal components

dissociate. Thus, the process of intron splicing is intrinsically associated with multiple

structural rearrangements of snRNAs.

To understand how RNA functions and to manipulate its functions, one should have

information about (i) specific RNA structures, including interactions with other RNAs and

proteins; (ii) thermodynamic stabilities of structures and (iii) kinetics, i.e. how fast is the

given structure formed.
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Chapter 2

OVERVIEW ON RNA FOLDING

EXPERIMENTS.

2.1 Measuring thermodynamic parameters.

The main methods by which thermodynamic parameters for nucleic acid conformational

changes and structural stability can be determined, are differential scanning calorimetry

(DSC) and temperature dependent optical spectroscopy (melting curves). In DSC, two

identical cells with reference solution are taken, one of them containing the sample of in-

terest (RNA molecule). The electrical energy is used to gradually increase the temperatures

of both cells from some initial Ti to some final T f value. The temperature of the transition

is supposed to be between Ti and T f . The energies required to raise the temperature in

both cells are measured and their difference found in order to cancel out heat changes due

to effects of no interest. Such measured heat capacity is called excess heat capacity (C p).

Cp is associated with the transition (heat absorbed by the conformational change of the
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molecule). The resulting data is usually plotted as Cp versus T .

Τ i Τ f

Cp

Τ

U

F

Τ

Figure 2.1: The excess heat capacity dependence on temperature for the single transition from state

F to state U. The transition temperature T is between initial T i and final T f temperatures.

For a single two-state transition from folded state F to unfolded state U the curve will

have a peak in the transition region like one shown in Fig. 2.1. The area under the curve

for the given temperature interval is the total enthalpy change ∆Htot of the sample system:

∆Htot =

∫ T f

Ti

CpdT, (2.1)

which includes heat absorption associated with the transition ∆H and heat absorption by

molecules in states U and F (for example, as a result of the solvent heat absorption). Sub-

tracting the later heat from ∆Htot gives ∆H (see Fig. 2.1):

∆H(T ) = ∆Htot −

∫ T

Ti

CU
p dT −

∫ T f

T
CF

p dT, (2.2)

where CU
p and CF

p are heat capacities of the molecule in unfolded and folded states. In this

way, the ∆H at any temperature T within interval (T i, T f ) can be calculated. If two peaks

are seen in a Cp(T ) melting curve, it means that at least two different transitions occur at
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two different temperatures. Sometimes it is difficult to separate two transitions, especially

if their transition temperatures are close to each other.

The advantages of optical methods are the less amount of material required (< 1mg

whereas calorimetry requires 1 − 5mg per experiment) and more quickly obtained results

(because a spectrophotometer equipped with the automatic cell changer can run several

samples simultaneously). The optical methods for measuring thermodynamic parameters

associated with the molecule conformational changes are based on two equations. The first

of them connects the free energy change ∆G with the equilibrium constant K:

∆G = −RTlnK; K =
[U]
[F]
, (2.3)

and the second, the van’t Hoff equation, describes the relationship between the enthalpy

change ∆H for the reaction and the equilibrium constant temperature derivative:

∂ln K
∂T

=
∆H
RT 2
. (2.4)

Using the above two equations we can obtain ∆H, ∆S and ∆G from K. The absorption

spectroscopy is the most common method to determine temperature dependence of the

equilibrium constant.

As light passes through the absorbing solution, its intensity decreases exponentially

according to Beer-Lambert law:

I = I0 10−εcl,

where I0 and I are incident and transmitted light intensities, l is the path length (cm), c is

the molar concentration, and ε is the molar extinction coefficient (M−1cm−1). ε is a function

of the wavelength of the exciting light. The absorbance is

A = log(I0/I) = εcl
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The interactions between nucleotides such as base pairing and stacking lead to the decrease

in absorption. The increase in temperature causes the unstacking of base pairs and increase

in absorption. The measured absorption melting curve (absorption vs. temperature) pro-

vides information about the concentration (population) of different structures from which

we can obtain thermodynamic parameters from Eqs. 2.3 & 2.4. The melting curves can

be repeated at two different wavelengths: breaking of C-G base pairs produce the largest

increase in absorption at 280nm, and A-U base pairs - at 260nm. Comparison of melting

curves recorded at different wavelengths can give additional information about the relative

amounts of melted C-G and A-U base pairs and can be helpful in the case of multiple close

transitions.

The two-state analysis for RNA oligomers has been used by Turner et al [1] to obtain the

thermodynamic parameters for base pair stacks and simple loops. Consider the equilibrium

reaction when two oligomer strands form a duplex: S A+S B → D. It is assumed that a given

strand can exist in only two states: as a single strand or in a duplex, i.e. a two-state model is

used. One way to obtain thermodynamic parameters for duplex formation is by fitting the

shape of optical melting curve by the model parameters as described above (see Eqs. 2.3

& 2.4). The alternative way is to use the plot of inverse melting temperature 1/Tm vs lnCt.

The equilibrium constant for this reaction is K = [D]/[S A][S B], total strand concentration

Ct = 2[D] + [S A] + [S B], and the fraction of strands in duplexes in solution f = 2[D]/Ct.

Then the equilibrium constant can be expressed as ([S A] = [S B]):

K =
2 f

Ct(1 − f )2
.

Solving Eq. 2.3 for T , using the obtained expression for K, and taking into account that at
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melting temperature f = 1/2, we have

1
Tm
=

R
∆H

ln
Ct

4
+
∆S
∆H
.

If strands A and B are self-complementary, i.e. the reaction is 2S → D with Ct = 2[D]+[S ],

then Ct/4 should be replaced by Ct. The plot of lnCt against 1/Tm is a straight line, and the

energy parameters ∆H and ∆S for the reaction can be determined.

These two analyzes give similar results if the transition fits the two-state model, and

different results otherwise. Calorimetry provides another test for adherence to the two-

state model. Most of thermodynamic studies of oligomers are done in 1M NaCl, which is

a common physiological salt concentration.

Thermodynamic data have been measured for many different transitions in RNA. It is

important to be able to systematize these data so that the results can be extrapolated, and can

be used to estimate thermodynamics of other transitions and to predict the conformations

with the lowest free energy for other sequences. As a rough approximation, the additive

nearest-neighbor model has been proposed. It is based on the assumption that the stability

of each base pair depends on its nearest neighbors. The assumption is justified by the fact

that the short-range interactions, hydrogen bonding and base stacking, mainly contribute to

the structure stability. Therefore, the free energy of each structure is estimated by the sum

of free energies of its constituent elements: base pair stacks, loops and dangling ends. The

thermodynamic parameters are measured for RNAs that contain the different secondary

structural elements, and then the contributions from elements determined using the above

methods. These parameters are tabulated as a “periodic table” and can be used to compute

the free energy for an arbitrary RNA structure. There are ten possible combinations of
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adjacent base pairs (two base pair stacks) in RNA helices:

5’AA3’ 5’AC3’ 5’AG3’ 5’AU3’ 5’CA3’ 5’CC3’

3’UU5’ 3’UG5’ 3’UC5’ 3’UA5’ 3’GU5’ 3’GG5’

5’CG3’ 5’GA3’ 5’GC3’ 5’UA3’

3’GC5’ 3’CU5’ 3’CG5’ 3’AU5’

For example, the thermodynamic parameter (∆H, ∆S and ∆G) for the duplex

5′ACUGG3′

3′UGACC5′

is the sum of the initiation parameter I which accounts for the translational entropy loss

due to the bringing two strands together, and of thermodynamic parameters of each stack:

I +
5′AC3′

3′UG5′
+

5′CU3′

3′GA5′
+

5′UG3′

3′AC5′
+

5′GG3′

3′CC5′

To obtain the thermodynamic parameters ∆G, ∆H, and ∆S for each stack, an overdeter-

mined set of oligonucleotides has been studied and the best least-squares values of the

parameters found. Experimental data on loop energy parameters are not extensive and

partially not reliable. The free energies of some small loops have been determined and

extrapolated for larger loops. The obtained by Turner et al thermodynamic parameters for

secondary structure elements have been improved by other researchers ([2],[3]) and are

collectively referred to as the “Turner rules”.
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2.2 Experiments on folding-unfolding kinetics.

There are several ways to fold or unfold an RNA molecule. It can be the change of temper-

ature or ionic concentration, or mechanical force applied to the molecule.

Temperature-jump relaxation spectroscopy.

The kinetics of folding can be measured by the temperature-jump relaxation spectroscopy.

The idea is the following. The system is initially taken to be in the equilibrium state. Then

the temperature of the system is raised a few degrees very rapidly (10−6sec or less) and the

process of the system to approach the new equilibrium state is followed spectroscopically.

For the case of stacked and unstacked dinucleoside monophosphate, the concentration of

unstacked species is changing exponentially:

∆[U] = ∆[U]0 e−t/τ,

where ∆[U]0 is the difference in concentration just before the T -jump and in the new equi-

librium state, t is time and τ is the relaxation time. Since for a unimolecular reaction

τ−1 = k1 + k−1, the forward and reverse rate constants k1 and k−1 can be derived from ex-

perimental values of τ if the equilibrium constant K = k1/k−1 is known. Typically, the rate

constants for single strand stacking are about 107s−1.

Folding/unfolding caused by the change of ionic concentration.

The RNA folding/unfolding kinetics has been extensively studied for the group I ribozyme

from Tetrahymena thermophila.

The structure and activity of the ribozyme largely depend on the presence of Mg2+
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ions, which form a dynamic counterion “atmosphere” around RNA. In the experiments,

the folding process was initiated by the addition of ions Mg2+, and was followed by means

of time-resolved small-angle X-ray scattering (trSAXS). It was found that the addition of

Mg2+ causes a rapid compaction of the molecule from an extended secondary fold to a

globular state of nearly native dimensions. The compaction was found to be substantially

faster than the formation and stabilization of any known tertiary contacts. The collapse

occurs in two distinct kinetic phases, with time constants of 10 ms and 100 ms. The time

constant of tertiary contacts formation is of the order of seconds. The proposed pathway

and physical mechanisms of rapid compaction are the following [14].

At the beginning of the folding, strong Coulomb repulsion between different segments

of the molecule causes largely extended RNA conformation, helices push away each other.

After the addition of 10 mM Mg2+, the electrostatic repulsion is screened by divalent coun-

terions, and the molecule relaxes to a partially collapsed self-avoiding conformation. The

time constant of this electrostatic relaxation, 10 ms, is large compared to the time constant

of simple hairpin (secondary structure) formation, with tens of µsecs time scale.

At the second stage, the ribozyme collapses on a 100 ms timescale to a globular state.

Because mutations that disable the formation of the long-range tertiary contacts suppress

this phase of collapse, it was suggested that the formation of some of the native tertiary

contacts is critical for formation of this globular state. However, tertiary contacts formed

at this stage appear to be unprotected from solvent in hydroxyl radical footprinting stud-

ies. The proposed working model is that the “tertiary collapse” leads to an ensemble of

conformations in which formation of tertiary contacts is unsynchronized or transient and

therefore not buried from solvent in the majority of conformations.
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At the third stage of folding, the globular state rearranges on a timescale of seconds to

form states with solvent-protected contacts, the stable tertiary structures.

Mechanical folding-unfolding of RNA.

The idea of the experiment is to attach two ends of an RNA molecule to a force- and

extension-measuring device, to apply a small force (in pN range) and to measure the dis-

tance between beads. The device can be an atomic force microscope (AFM) or optical

tweezers. The elastic properties and kinetics of structural transitions of the single molecule

can be studied by recording and analyzing force-extension curves. The advantage of single-

molecule experiments is the possibility to follow the individual folding-unfolding trajecto-

ries (which is difficult in the bulk studies where multiple species and multiple folding path-

ways are present) and to stretch the molecule along a well-defined coordinate, end-to-end

extension.

In AFM, one end of the molecule is tethered to a flat surface (such as mica, gold or

glass) and the other end is attached to the AFM tip. The tip is moving away from the

surface, the molecule gets stretched and unfolds. The tip is attached to the end of a can-

tilever and the force can be measured through it’s deflection. In optical tweezers, two beads

are attached to the ends of the molecule. One bead is held in a force- measuring optical

trap (force is determined by measuring the deflection of the trapping laser beams with

position-sensitive photodetectors), the other is linked to a piezoelectric acutator through a

micropipette to control the position.

For example, experiments on mechanical unfolding and refolding have been used to

study three small RNA molecules (Fig. 1 in [15]): a simple hairpin P5ab, three-helix
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junction P5abc∆A and the P5abc domain of the Tetrahymena thermophila ribozyme (three-

helix junction with the bulge) have been performed by Liphardt et al [15].

The molecules were stretched using optical tweezers. For the simple hairpin P5ab the

force increased monotonically with extension, but there existed the critical force region at

approximately 14pN where the hairpin has shown to be bi-stable and hop between folded

and unfolded states in less than 10ms and without intermediates. (Fig. 1A in [15]) When

the force was kept at the transition value, the molecule was shown to spend equal time

in folded and unfolded states and its end-end distance hopped back and forth by 18nm,

indicating the molecule being in folded and unfolded states. The increased/decreased force

resulted in increased/decreased time spent in unfolded state. The experiment has been

performed in 250mM NaCl, 10mM Mg2+ and at 25◦C.

The three-helix junction P5abc∆A demonstrated the same hopping between folded and

unfolded states, but with a slower kinetics compared to hairpin P5ab due to the presence of

two kinetic barriers.

The relatively complex structure of the third molecule, P5abc, is stabilized by Mg2+-

dependent tertiary interactions between the P5c helix and the A-rich bulge. The tertiary

interactions cause yet even slower kinetics and therefore the absence of the fast hopping

between folded and unfolded states in Mg2+.
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Chapter 3

STATISTICAL THERMODYNAMICS

FOR RNA SECONDARY STRUCTURE

FOLDING.

At the center of the statistical thermodynamics is the partition function Q(T ), defined as

the weighted sum over all the possible conformational states:

Q(T ) =
∑

con f

e−E/kBT , (3.1)

where kB is Boltzmann’s constant, T is the temperature, and E is the energy of an individual

conformation.

In terms of the polymer graph (see section 1.1), the partition function can be calculated

as a sum over all possible graphs instead of all possible conformations, which is computa-

tionally more efficient:

Q(T ) =
∑

graph

Ω e−E/kBT =
∑

graph

e−∆F/kBT , (3.2)
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where Ω is the number of viable chain conformations that satisfy the constraints on the

intrachain contacts depicted by the graph, and ∆F = E − kBT lnΩ is the free energy of the

ensemble of conformations for the given graph. We assume that the intrachain contacts

determine the energy E, as a result, a graph represents an equal-energy conformational

ensemble. Strictly speaking, the free energy should be understood as the potential of mean

force averaged over solvent configurations as well as chain conformations. Considering the

Gibbs free energy ∆G = ∆(F + PV) ' ∆F, we can rewrite Eq. 3.2 as

Q(T ) =
∑

structure

e−∆G/kBT . (3.3)

Here a structure is defined as the macrostate of conformation that satisfy the constraints

imposed by the graph and ∆G is the Gibbs free energy of the structure.

3.1 The additive nearest-neighbor model for the free en-

ergy ∆G of an RNA secondary structure.

The nearest-neighbor model which has been used to obtain thermodynamic parameters for

RNA secondary structural motifs [1] assumes the mutual independence of structural units.

As a result, the free energy of the secondary structure is calculated as a sum of free energies

of all base pair stacks and loops.

For example, for the fragment of 5S rRNA in Fig. 3.1 the folding free energy is calcu-

lated as:

∆G = G( f olded) −G(un f olded) = −1.5− 0.5− 0.6− 1.5+ 0.8− 1.8− 2.9+ 5.9 = −2.1kcal/mole
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Figure 3.1: Fragment of 5S rRNA from Philosamia cynthia ricini. The stability of the structure

can be calculated using the nearest-neighbor model. The free energy parameters for loops and base

pairs are predicted by Turner et al [1].

The given structure is stable if its free energy is lower then the free energy of the unfolded

state, i.e. ∆G = ∆H−T∆S < 0. Therefore, for the stability of the structure the low enthalpy

(stronger interactions within the structure) and the large entropy (more degrees of freedom,

which means weaker intrachain interactions) are favorable. Thus, there exists a competi-

tion between stacking, which lowers the enthalpy, and loop formation, which lowers the

entropy contribution to the free energy of the structure. The increase in temperature favors

unfolding of the structure.

Assuming additivity of free energy and entropy, the nearest-neighbor model neglects

the inter-subunit interferences. For example, the excluded volume interactions (impossi-

bility for two monomers to occupy the same site) between different subunits can cause

nonadditivity in the free energy and cause the chain entropy to be smaller than the sum of

the entropies of all individual structural subunits. For example, for a 58-mer model sec-

ondary structure (two-dimensional lattice), neglecting the inter-subunit excluded volume

interferences can result in a relative error of 40% in a total entropy [16].
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3.2 The nonadditive polymer principle model for RNA sec-

ondary structures.

In the recently developed theory [16]-[18], the loop entropies have been evaluated theoret-

ically using the lattice polymer model. The theory is based on graphical representation of

intrachain contacts and goes beyond the additivity in the free energy by considering the (ex-

cluded volume) interactions between different secondary structural subunits at the junction

regions.
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Figure 3.2: A polymer graph and the corresponding firehose-like chain conformation. The shaded

regions are subunits of the graph and the conformation. The whole graph (structure) in the figure can

be divided into four subunits. Excluded volume interactions between subunits are predominantly

localized at junction regions, and on 2D lattice we take care of them considering four types of

inlet/outlet configurations.

A key issue in the partition function calculation is the computation of the number of
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chain conformationsΩ in Eq. 3.2 for the given graph. Central to the computation ofΩ is the

excluded volume effect. In the theory of Chen & Dill [16]-[18] and Zhang & Chen [19] the

secondary structure is subdivided into the same subunits as in the nearest-neighbor model.

The subunits are defined as regions in the graph enclosed by the links but containing no

links in its interior. According to this definition, each subunit corresponds to a base stack

or a loop without self-contacts. For example, four subunits connected to each other in a

firehose manner are shown in Fig. 3.2. Unlike nearest-neighbor model, the subunits are not

considered to be mutually independent, but excluded volume interactions are assumed to

occur mainly at junction between two subunits. Therefore, to account for the inter-subunit

excluded volume interactions, the subunit conformations have been classified according to

their inlet and outlet configurations. On 2D and 3D lattices, the inlet and outlet of each

subunit can have one of four or six possible configurations, respectively (Figs. 3.2 and

3.3).

Two matrices have been defined:

1. the structure matrix S with matrix elements S nm denoting the number of subunit con-

formations with the types of inlet and outlet configurations being n and m. The S -

matrix have been calculated by exact computer enumeration of self-avoiding walks

for small subunits and extrapolated for larger ones. In this way, the intra-subunit

excluded volume effect is treated exactly.

2. the viability matrix Y, where elements ynm = 1 or 0 if connection between type n

inlet and type m outlet configurations is viable or not viable, respectively. Thus the

Y-matrix accounts for the inter-subunit excluded volume.
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Figure 3.3: (A) On 3D lattice subunits are classified according to six types of inlet/outlet configu-

rations. (B) the viability for the connections between different types of subunits.
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Using this matrices, the Ω of the firehose-like structure (as in Fig. 3.2) is estimated by

U ·Ω[x0, y0] · U†, where U = [1, 1, 1, 1] and U† is the transpose of U, and matrix Ω[x0, y0]

is obtained by matrix multiplication:

Ω[x0, y0] = S(N) · [
N−1
∏

j=1

Y · S( j)],

where S( j) is the structure matrix of the jth subunit.

The advantages of the method are: (i) division of the graph into subunits and factorabil-

ity of the partition function into subunit components makes the method both accurate and

efficient: computation of the subunit number of conformations requires much less compu-

tational time than of the whole chain and can be done with higher accuracy; (ii) the intra-

and inter-subunit excluded volume interactions are explicitly accounted for.

In the 3D lattice model, each chain segment is less restricted than in 2D because of

the larger degrees of freedom. Therefore, we need to consider the excluded volume inter-

actions between next-nearest-neighbors. It results in 113 types of the inlet/outlet config-

urations and is unfavorable for the computational efficiency. Therefore, Zhang and Chen

[19] proposed a mean-field approach by using the S and Y matrices averaged over all the

possible configurations of the next-nearest-neighbors.

The absence of long-range correlations in secondary structures makes it possible to

apply a recursive algorithm to computation of the partition function (Eq. 3.2). In the

algorithm, the partition function of the chain of length (i+1) is calculated using the partition

function of the chain of length i. The partition function computational time depends on the

chain length L as L6 ([17], [19]).

For the realistic RNA chains the partition function calculations use: (i) the graph en-
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ergy E calculated as the sum of the experimental enthalpies (Turner Rule) of each base

pair stack; (ii) the conformational count Ω obtained by scaling up the lattice model result

computed from the above matrix method by an uniform scaling factor.

The heat capacity of the RNA molecule can be computed from the partition function:

C(T ) =
∂

∂T
[kBT 2 ∂

∂T
lnQ] (3.4)

and compared with the experimental results.

The heat capacities for realistic RNA secondary structures have been calculated using

2D [18] and later - using 3D [19] chain representations. The 3D model makes much bet-

ter predictions, especially for the width of the melting curves, then the 2D model. The

predicted from 2D model melting curve is broader then from 3D model and than the ex-

perimental results. It can be explained the following way. For the two-state transition

between folded (N) and unfolded (U) states, the sharpness of the transition is known to

be proportional to ∆S 2
UN/∆EUN (the width of the melting curve is inverse proportional to

∆S 2
UN/∆EUN). The energy difference between folded and unfolded states ∆EUN is the same

for 2D and 3D lattices, and the folded state has a unique conformation in both cases. But

for the unfolded state the 3D model allows for much larger diversity of conformations than

the 2D model. Therefore, ∆S (3D)
UN � ∆S (2D)

UN , and the melting curve is sharper in 3D chain

representation.

The comparison of melting curves obtained for E.Coli 23S rRNA fragment G1051-

C1109 using four different models with the experimental one is shown in Fig. 3.4. The

McCaskill’s recursive algorithm [21] makes unphysical assumptions about loop entropies

(loop entropy linearly proportional to the loop length) and ignores the excluded volume
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effect between structural units.

Figure 3.4: Differential melting curves for E.Coli 23S rRNA fragment G1051-C1109 in 1M KCl

with 10mM MOPS [20]. The comparisons are between the experimental result (solid line) and the

result from (A) Vienna 1.4 package based on the McCaskill’s algorithm, (B) the 2D graph-theoretic

model, (C) the 3D graph-theoretic model, and (D) a 3D model that neglects inter-subunit excluded

volume interactions.
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From the comparison of melting curves in Fig. 3.4 it follows that (i) graph-theoretic ap-

proach better predicts multiple transitions than McCaskill’s algorithm; (ii) 3D model gives

better predictions than 2D model; (iii) the excluded volume effect significantly contributes

to thermodynamic predictions.

From the partition function, we can obtain the free energy landscape F(x) which is

the free energy as a function of the set of parameters x that characterizes conformational

degrees of freedom. The free energy landscape gives information about distribution of free

energy of the whole conformational ensemble, from which folding stabilities, the native

state(s) with the lowest free energy, and conformational transitions can be predicted. The

set of parameters x should be chosen the optimal way: the number of parameters must

be large enough to give the detailed structural information, but small enough so that the

landscape is visualizable. Two variables: the number of native (n) and non-native (nn)

contacts have been chosen to characterize an RNA secondary structure. The contact (base

pair) is called “native” if it is present in the native structure, and “non-native” otherwise.

The free energy landscape has been calculated from the partition function Q(n, nn, T ):

F(n, nn, T ) = −kBTlnQ(n, nn, T )

for an E.coli 23S RNA segment and is shown in Fig. 3.5 [18]. Each point (n, nn) corre-

sponds to the ensemble of conformations that contain n native and nn non-native base pairs.

The minima on the free energy landscape correspond to stable and well-populated states,

and changes of the minima locations with the temperature identify the structural transitions

and degree of their cooperativity. We see (Fig. 3.5) that at T=30◦C two almost equally

stable conformations coexist: N and Z. The intermediate state Z has many non-native
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Figure 3.5: Energy landscapes and unfolding pathway for an E.coli 23S RNA segment. The free

energies (in kcal/mol) are relative to the native state.
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contacts and is a misfolded intermediate. The unfolding of N involves two parallel path-

ways: through on-pathway intermediates (stable states having a few non-native contacts)

and through off-pathway intermediates (can have many non-native contacts).

The theory predicts that RNA secondary structures have a variety of cooperative be-

haviors: they can have one-state or two-state transitions, stable on-pathway or off-pathway

intermediate states. The limitation of the theory is its applicability only to secondary struc-

tures.
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Chapter 4

STATISTICAL THERMODYNAMICS

FOR SIMPLE TERTIARY FOLDS.

This chapter has been published: Z. Kopeikin and S.-J. Chen. Statistical thermodynamics

for chain molecules with simple RNA tertiary contacts. J. Chem. Phys. 122, 094909 (2005)

4.1 The problems with the modeling of RNA tertiary struc-

ture folding thermodynamics.

The tertiary structures is widely occurring class of conformations which is known to play

critical structural and functional roles for RNA. But our ability to measure or predict the

thermodynamic parameters for such structures is very limited. While the energy parame-

ters for canonical base pairs and simple loops have been obtained from two-state analysis

of short RNA duplexes/hairpins melting data, the further attempts to extract the energy
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parameters for more complex RNA interactions have been hampered by the inability to

decipher the melting experiment data. The reason is that the two-state analysis cannot be

applied to describe the usually multistate melting transitions of larger secondary and espe-

cially tertiary structures. In tertiary structures, the crossing links cause strong correlations

between different structural subunits which result in a very convoluted interplay between

secondary and tertiary interactions and between different tertiary interactions. The statis-

tical mechanical model is required to enable the deconvolution of the results of melting

experiments and the extraction of the energy parameters.

The main problem in theoretical prediction of the folding thermodynamics for tertiary

structures is the non-additivity of conformational entropy caused by the inter-subunit ex-

cluded volume interactions. The non-additivity effect is much stronger in tertiary structures

than in the secondary structures. This is because in secondary structures the inter-subunit

interferences mainly occur between neighboring motifs, but in tertiary structures the distant

secondary structural motifs are strongly dependent on each other due to long-range tertiary

interactions. The calculations based on the additivity assumption and neglecting the inter-

subunit correlations lead to a significant inaccuracy in chain entropy and free energy.

Since the entropy is related to the conformational count Ω by formula S = kBlnΩ, the

additivity of entropy would mean that the number of conformations of the system equals

the product of numbers of conformations of each subunit, which is true only for mutually

independent subunits. That it is not true for tertiary structures, we demonstrate for the

simple case of two crossing links, namely, graph and representative conformation shown

in Fig. 4.1. The constituent secondary structural motifs are two loops. By means of

exact computer enumerations on 2D lattice we find the numbers of conformations for loops

41



ΩA = 52 and ΩB = 210 and for the graph Ω = 560, and see, that ΩA · ΩB = 52 · 210 =

10920� 560. It corresponds to the 47% overestimation of entropy.

1

A

27

12

14

B

1 12 2714

Figure 4.1: The graph and corresponding 2D chain conformation chosen to demonstrate the non-

additivity of free energy of chain conformations with crossing links in graphical representation.

It follows from the above example that because of the non-additivity effect we cannot

use the energy parameters for secondary structural motifs to compute the entropy and free

energy of the tertiary structure.

We present here the thermodynamic model for chains with simple tertiary contacts.

The model is based on a graphical representation of intrachain contacts, so the general

methodology does not depend on any specific chain representation. To illustrate the theory,

the simplest two-dimensional lattice representation of the chain conformations has been

used in the present research. The theory explicitly takes into account the excluded volume

interactions within and between subunits.

In the following sections, we develop the theory for the calculation of the conforma-

tional count Ω by systematically increasing the structural complexity. We start from the

simplest structure - conformations with two crossing links. This simplest case would pro-

vide a useful paradigm for the treatment of more complicated tertiary folds. We will also
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apply the theory to investigate how the interplay between secondary and tertiary interac-

tions determine the folding stability, cooperativity and pathway for model RNA chains.

4.2 Conformations with two crossing links.

We first treat conformations that can be represented by graphs that contain only two crossing-

linked contacts. Such type of graphs represent a large class of conformations because the

graphs can contain an arbitrary number of nested or unrelated contacts and so in general

can form complex secondary structures. In the conformational space, the crossing links

provide linkers for the different secondary structures.

4.2.1 Basic graphs with two crossing links.

We start with the simplest elementary graphs that contain only two contacts, which are

crossing-linked; see contacts (1, i) and ( j,N − 1) in Fig. 4.2a. Our goal in this section

is to develop a theory to count chain conformations for such a graph. To focus on how

the curved links affect the conformational statistics, we neglect the dangling tails, which

involve no curved links. We use only single monomers (labeled as 0 and N in Figs. 4.2a &

b) to account for the excluded volume interactions between the tails and the linked part of

the conformation. The full tails will be added back in the final partition function calculation

to keep the completeness of the conformational ensemble.

As illustrated in Fig. 4.2b, the whole chain conformation can be decomposed into two

loops, A and B. Loops A and B are correlated through (1) the interface from monomer

j to monomer i, namely, the (common) chain segment j → i should have exactly the
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Figure 4.2: (a) The simplest graph with two crossing links. (b) The crossing linked chain con-

formation consists of two loops A and B, having the common chain segment (interface). It can be

divided into relatively independent subunits: enlarged interface (shown bold) and two free single-

stranded segments (FA and FB). The number of conformations of segment FA can be considered to

be a function of its end-end vector RA, or, as a further approximation, of interfacial end-end vec-

tor Rint. (c) & (d) Two orientations of the enlarged interface on two-dimensional lattice with the

given coordinate axes. The coordinate systems in (c) and (d) define the arguments of the function

ω f (yint, lint, f ) for the numbers of conformations of segment FA and FB, respectively.
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same conformation in both loops, and (2) the steric hindrance (the excluded volume effect)

between the two loops. As a result, the total number of the chain conformations is usually

much smaller then the product of the number of conformations of each individual (isolated)

loop.

In general, exact calculation for the excluded volume interactions between A and B

is not viable. However, since the excluded volume interferences between A and B occur

mainly near the interface, we can focus on the interface, which is a much simpler and a

much more manageable system. To account for the excluded volume in the vicinity of the

interface, we define an “enlarged interface” as the system consisting of the interface and

its neighboring monomers. Specifically, as shown in Fig. 4.2b, the enlarged interface I

consists of monomers 0, 1, 2 and N − 2,N − 1,N in addition to the chain segment from

monomer j − 1 to monomer i + 1. The enlarged interface can approximately account for

the correlations between A and B. To describe the conformations for the other parts of the

chain, we define “free loop segment” FA for chain segment from monomer 2 to j − 1 for

loop A and free loop segment FB for chain segment from monomer i + 1 to N − 2 for loop

B. FA and FB have chain lengths of fA = j − 3 and fB = N − i − 3, respectively. For each

given conformation I of the enlarged interface, we use Ω f (I, fA) and Ω f (I, fB) to denote the

number of conformations for FA and FB for a given I.

With the separation of the free loop segments FA and FB from the enlarged interface I,

the computation of the number of accessible conformations Ω for the two-contact graph in

Fig. 4.2a becomes tractable, and Ω can be computed as

Ω =

ωI
∑

I=1

Ω f (I, fA) · Ω f (I, fB), (4.1)
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where I = 1, 2, ..., ωI denotes the viable conformations of the enlarged interface, ωI is

the number of the viable conformations of the enlarged interface. Fig. 4.3 shows all the

ωI = 21 conformations for an enlarged interface with a 5-mer (4-bonds) interface in a

two-dimensional lattice. The number of the enlarged interface conformations ωI increases

exponentially with the chain length of the interface.

N

0 0 0 0
0 0

0 0 0 0
0

0 0
0 0

0
0

0 0
0 0

N

N
N

N
N

N
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N N N

N
N

N

N

N N N
N

N
N

(2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)

(12) (13) (14) (15)

(16) (17) (18) (19) (20) (21)

(1)

Figure 4.3: The viable conformations of the 5-mer interface, numbered from 1 to 21.

Central to the computation of Ω from Eq. 4.1 is the calculation of Ω f (I, fA) and

Ω f (I, fB). In the following, in order to be specific, we useΩ f (I, fA) to illustrate the method-

ology. Due to the large number of possibilities for (I, fA), it is impractical to have a pre-

computed table that lists all the values of Ω f (I, fA) for all the possible (I, fA)’s. However,

as we will show in the following, through successive approximations, we can transform the
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calculation for Ω f (I, fA) into a much simpler and computationally viable problem.

General methodology

First, as shown in Fig. 4.2b for the free loop segment FA and the enlarged interface I,

Ω f (I, fA) mainly depends on the enlarged interface conformation I through the positions of

the two ends of the enlarged interface (i.e., monomers 2 and j−1) and the excluded volume

interactions between FA and I in loop A. Therefore, for Ω f (I, fA), we can approximately

represent the conformation I of the enlarged interface by the chain length of the interface

lint (= i − j) and the end-end vector RA = the vector from monomer 2 to monomer ( j −

1) (see Fig. 4.2). We note that RA is also equal to the end-end vector of FA. A larger

end-end distance corresponds to more stretched conformations of I and FA, and gives less

accessible conformations, i.e., a smaller Ω f (I, fA). Through this approximation, we can

compute Ω f (I, fA) as a function of (RA, lint, fA).

Second, for more complex graphs with multiple crossing links and multiple interfaces,

it is hard to track the conformations for each of the enlarged interfaces. So it would be

much more convenient to use the interfaces rather than the enlarged interfaces. Therefore,

we simplify the RA-dependence by the Rint-dependence, where Rint is the end-end vector of

the interface (see Fig. 4.2b) instead of the enlarged interface. To account for the excluded

volume effect, which is originally represented by the enlarged interface, we approximate

the number of the conformations of the free loop segment Ω f (I, fA) for a given enlarged

interface conformation I by the average Ω f (I, fA) over all the possible enlarged interface

conformations that have the same end-end vector of the interface Rint. The resultant approx-

imate value of Ω f (I, fA) would be a function of Rint rather than of the enlarged interface

47



conformation I.

Third, because no intrachain contact exists for the interface chain segment, its confor-

mation is largely extended. As an approximation, we assume that the interfacial chain does

not double back. As a result, for Rint = (xint, yint), where xint = x j − xi, yint = y j − yi in Fig.

4.2b, we have

lint = |xint| + |yint|. (4.2)

The above relation shows that the x and y components of Rint are not independent of each

other for a given lint. Therefore, we can further simplify the dependence of Ω f ( fA, I) on

the vector Rint as the dependence on a single scalar variable, say, yint. The yint-dependence

of Ω f (I, fA) is much more manageable than the original I-dependence because of the much

less possibilities for yint than for I.

For a given vector Rint the actual values of the xint and yint components depend on the

coordinate system. The coordinate system should be defined in such a way that it gives

consistent treatment for loops A and B. The conformation of the enlarged interface defines

the directionality of the coordinate system. For Ω f (I, fA), we define the coordinate system

by fixing the coordinates of the first three monomers, labeled as 0, 1, and 2 in Fig. 4.2c,

to (0,0), (1,0), and (1,1). While for Ω f (I, fB), we use the equivalent monomers, namely,

monomers N, N − 1, and N − 2, to define the coordinate system. The correspondence be-

tween these two sets of monomers becomes obvious if we apply a rotational transformation

to the two loops, as shown in Fig. 4.2d. For the enlarge interface conformation shown in

Fig. 4.2c & d, Rint = (xint, yint) is equal to (1, 4) for loop A (see Fig. 4.2c) and (4, -1) for

loop B (see Fig. 4.2d).
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Finally, by averaging over all the possible interface chain conformations that have the

same yint, we can represent Ω f (I, fA) as a function of the yint of the interface chain confor-

mation instead of Rint. The resultantΩ f (I, fA) for a given enlarged interface conformation I

is simplified as a function of yint (= the y-component of the end-end vector of the interface

' that of the free loop chain segment), lint (= the chain length of the interface), and fA (=

the length of the free loop chain segment):

Ω f (I, fA) ' ω f (yint, lint, fA). (4.3)

For example, for the enlarged interface conformation in Fig. 4.2c & d, lint is equal to 5,

and (yint, fA) is equal to (4, j − 3) for loop A and (−1,N − i − 4) for loop B. Therefore,

Ω f (I, fA) ' ω f (4, 5, j − 3); Ω f ( fB, I) ' ω f (−1, 5, N − i − 4).

With Eq. 4.3, we have

Ω '
∑

I

ω f (y
(A)
int , l(A)

int , fA) ω f (y
(B)
int , l(B)

int , fB), (4.4)

where (y(A)
int , l(A)

int , fA) and (y(B)
int , l(B)

int , fB) are the respective parameter sets for a given con-

formation I of the enlarged interface.

In the limit of very short interface chain segment, i.e., if the interface is much shorter

than the free loop chain segment: lint << f , where f is the chain length of the free loop

segment,Ω f (I, f ) would be only weakly dependent on the enlarged interface conformation

I. As a result, we can neglect the yint-dependence of ω f (yint, lint, f ) and approximate it by

an yint-independent function ω0( lint, f ):

ω f (yint, lint, f ) ' ω0( lint, f ) =
Ωloop

ωl
, (4.5)

where Ωloop is the number of conformations of the loop and ωl is the number of conforma-
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tions for the part of the enlarged interface within the loop. For example, in Fig. 4.2, for the

free loop chain segment FA from monomer 2 to monomer j− 1, fA = j− 3 and lint = i− j.

Ωloop is for the loop 1→ i→ 1, and ωl is for the chain segment j− 1→ i→ 1→ 2, which

is part of the enlarged interface. In terms of the ω0( lint, f ) function, for lint << fA, , fB,

we can compute Ω in Eq. 4.4 as

Ω ' ωl ω0( lint, fA) ω0( lint, fB). (4.6)

Illustrative calculations and tests in two-dimensional lattice model

We choose a short (25-mer) chain to illustrate the method. The chain makes two crossing

linked contacts, as specified by the graph in Fig. 4.4a. For the given graph, the length of

the interface 8 → 12 is lint = 4, and the lengths of the free loop segments are f = 5, 9 for

2→ 7 and 13→ 22, respectively.

To compute the number of conformationsΩ from Eq. 4.4, for each of the 21 enlarged in-

terface conformations of the 5-mer interface in Fig. 4.3, we need to knowω f (yint, lint, f ) =

ω f (yint, 4, 5) and ω f (yint, 4, 9) for the respective free loop segments. Following the step-

by-step procedure presented in the previous section for the calculation of ω f (yint, lint, f )

function, we performed exact computer enumeration in a two-dimensional lattice and ob-

tained ω f (yint, lint, f ) for all the possible parameter sets for 1 ≤ lint ≤ 12 and 1 ≤ f ≤ 24.

Table 4.1 shows the results for small lint and f values. For each conformation I of the

enlarged interface in Fig. 4.3, we determine the yint value of the interface in the coordi-

nate system defined by the positions of monomers 0, 1, 2 for y(A)
int and by the positions of

monomers N, N − 1, N − 2 for y(B)
int . Summing over all the 21 conformations gives the
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Figure 4.4: (a) and (b) A simple graph with two crossing links is used to illustrate the method of

calculation of values of function ω f (yint, lint, f ) (see Table 4.1) and how to obtain the total number

of conformations for the given graph (Table 4.2). (c) The test of the theory (dashed line) against

exact enumeration (solid line) using the graph with variable position of the middle contact.
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Table 4.1: Numbers of free loop segment conformations for some values of lint and f

lint yint f = 1 2 3 4 5 6 7 8 9 10

1 0 0.00 1.00 1.00 1.00 5.00

2 1 0.00 0.00 0.00 0.00 0.00

0 0.00 0.50 1.00 2.50 6.25

3 2 1.00 0.00 0.00 0.00 0.00

1 0.00 0.00 2.00 4.00 9.00

0 0.00 0.50 2.00 6.25 17.75

-1 0.00 0.00 0.00 1.00 7.50

4 3 0.00 1.00 0.00 0.50 1.00

2 0.40 0.40 0.20 0.60 1.60

1 0.00 0.00 0.50 2.75 8.50

0 0.00 0.00 0.50 3.50 13.50

-1 0.00 0.00 0.00 0.00 1.00

-2 0.00 0.00 0.00 0.00 1.00
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number of chain conformations for the graph:

Ω =
∑

I

ω f (y
(A)
int , 4, 5) ω f (y

(B)
int , 4, 9) = 45.12. (4.7)

The details of calculations are shown in Table 4.2. The exact value for Ω obtained from the

exact computer enumeration is 49, which is quite close to the estimated result.

In Fig. 4.4c, as a test for the method, we compute the number of conformations for

a series of graphs with two crossing links. We again find good agreement between the

analytical calculation and the exact computer enumeration.

4.2.2 More complex graphs with two crossing links.

The above theory can be generalized to treat more complex graphs that contain multiple

non-crossing links in addition to two crossing links; see Fig. 4.5a for an example. The

non-crossing links bear either nested or unrelated relationships with the crossing links.

Since a cluster of the nested and unrelated links form a secondary structure, the type of

graphs in Fig. 4.5a can be regarded as (tertiary) crossing-linked secondary structures.

We use the graph in Fig. 4.5b to illustrate the theory. The difference between the

graph/conformation in Fig. 4.5b and Fig. 4.2 comes from the additional loop A1 attached

to loop A0 in Fig. 4.5b. We treat the composite loop A0 + A1 as an effective loop A.

The effective “free loop segment” FA for “loop A” is the chain segment from monomer

2 to monomer j − 1, and the free loop segment FB for loop B is from monomer i + 1 to

monomer N − 2. The interface is from monomer j to monomer i of length lint = i − j, and

the enlarged interface is shown as the thick lines in Fig. 4.5b.

We again use Eqs. 4.1 & 4.4 to treat the graph. The key is how to compute Ω f (I, fA) (=
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Table 4.2: Illustrative calculation of the number of conformations of the graph shown in

Fig. 4.4a

I y(A)
int y(B)

int ω f (y
(A)
int , 4, 5) ω f (y

(B)
int , 4, 9) product

1 3 -1 0.0 1.0 0.0

2 3 -1 0.0 1.0 0.0

3 2 -2 0.2 1.0 0.2

4 2 -2 0.2 1.0 0.2

5 2 -2 0.2 1.0 0.2

6 2 -2 0.2 1.0 0.2

7 2 2 0.2 1.6 0.32

8 1 1 0.5 8.5 4.25

9 1 1 0.5 8.5 4.25

10 1 1 0.5 8.5 4.25

11 1 1 0.5 8.5 4.25

12 0 0 0.5 13.5 6.75

13 0 0 0.5 13.5 6.75

14 0 0 0.5 13.5 6.75

15 0 0 0.5 13.5 6.75

16 -1 3 0.0 1.0 0.0

17 -1 3 0.0 1.0 0.0

18 -2 2 0.0 1.6 0.0

19 -2 2 0.0 1.6 0.0

20 -2 2 0.0 1.6 0.0

21 -2 2 0.0 1.6 0.0

sum=45.12
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Figure 4.5: (a) Two crossing- linked secondary structures. The number of conformations of each

secondary structure can be computed from the previously developed matrix method [16, 17] to

obtain S (ν)
A1

in Eq. 4.8. (b) To demonstrate the method, the simplest representative of the secondary

structure, loop A1, has been attached to the loop A0.
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the number of conformations for FA for a given conformation I of the enlarged interface).

To account for the conformational constraint imposed by the additional pair (k,m) and the

excluded volume interactions between A0 and A1, we classify four types of conformations

for the contact (k,m) in a two-dimensional lattice [16] (see Fig. 3.2c). For a given µ-th

(µ = 1, 2, 3, 4) type conformation of the (k,m) contact, we use S (µ)
A1

to denote the number of

conformations for loop A1, and use ω(µ)
f (y(A0)

int , lint, fA0) = ω
(µ)
f (y j − yi, i − j, k + j −m − 2)

to denote the number of conformations for the free loop segment FA0 which consists of the

chain segment 2 → k, the contact (k,m), and the chain segment m → j − 1. FA0 has chain

length of fA0 = k + j − m − 2.

The sum over the four types of the (k,m) contact conformations gives Ω f (I, fA):

Ω f (I, fA) =
4
∑

µ=1

4
∑

ν=1

ω
(µ)
f (y j − yi, i − j, k + j − m − 2) Yµν S (ν)

A1
, (4.8)

where Yµν = 1 and 0 for a viable and non-viable connection between a type µ and a type

ν conformation, respectively [16]. For example, Y12 = 1, Y24 = 0. Furthermore, through

exact computer enumeration for ω(µ)
f ’s, we find that in a two-dimensional lattice,

α(µ) =
ω

(µ)
f (yint, lint, fA0)

ω f (yint, lint, fA0)
' 0, 0.15, 0.15, 0.18 for µ = 1, 2, 3, 4, respectively.

Here we assume that the total length of loop A0 is longer than 4.

Combining the above results, we obtain the following simplified expression for ωFA :

Ω f (I, fA) = ω f (y
(A0)
int , lint, fA0)

4
∑

µ=1

4
∑

ν=1

α(µ) Yµν S (ν)
A1
. (4.9)

For FB, from Eq. 4.3, we have Ω f (I, fB) = ω f (y
(B)
int , lint, fB). With the above results for

Ω f (I, fA) and Ω f (I, fB) we obtain the conformational count Ω from Eq. 4.1 for the graph.
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We can further generalize the above method to treat more complex crossing-linked

secondary structures, for example, the graph and structure shown in Fig. 4.5a, where RNA

secondary structures are brought into contact through the crossing-linked loops A0 and

B0. For such complex graphs, we need to replace the S (ν)
A1

vector in Eq. 4.9 for the loop

A1 by the corresponding vector for the complex secondary structure attached to A0. The

computation of such vector for an arbitrary secondary structure is quite straightforward

with the previously developed matrix method12, by replacing S (ν)
A1

with a product of matrices

for the secondary structural units.

If loop B0 also has a complex secondary structure attached, similar to Eq. 4.9, we have

Ω f (I, fB) = ω f (y
(B0)
int , lint, fB0)

4
∑

µ=1

4
∑

ν=1

α(µ) Yµν S (ν)
A1
, (4.10)

where S (ν)
A1

is for the secondary structure attached to B0. With Eqs. 4.9, 4.10, and 4.1,

we can compute the number of conformations for any crossing-linked arbitrary secondary

structures.

4.2.3 Graphs with multiple crossing links in series.

We can apply the above approach to treat graphs with a series of crossing links; see Fig.

4.6a. We use Ωn, ω2(n), and ω1(n) (n = 1, 2, ...) to denote the number of conformations for

the graph in Fig. 4.6b (with n crossing links), Fig. 4.6c, and Fig. 4.6d, respectively. Using

the following approximation

Ωn+1

Ωn
'
ω2(n)
ω1(n)

,

we have

Ωn ' Ω2

n−1
∏

r=2

ω2(r)
ω1(r)

. (4.11)
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As shown in Fig. 4.6e, tests against exact computer enumeration in two-dimensional lattice

model shows that Eq. 4.4 can give a good estimation for Ωn.

ln
Ω

n

bnan

bn+1bn−1an bnn+1aan−1

an+1

an bn

an−1 bn−1 bn+1

bn+1an+1an bn
an bn

(e)

2 3 4 5

20

10

n

1 14
11 30

28 47

44 61

58 77

(c) (d)(b)

0

(a)n+1nn−1

Figure 4.6: (a) Multiple crossing links in series, the graph and the conformation. The conforma-

tional count for graph in (b) with n crossing links can be computed using conformational counts for

subgraphs (c) and (d). (e) Test against exact computer enumeration (filled circles) shows that the

theory (empty circles) gives the good estimation of the number of conformations for graphs with

crossing links in series.

4.3 Graphs with multiple crossing links.

4.3.1 Graphs with a tertiary contact added to a set of nested contacts.

In this section we treat graphs which contain, as shown in Fig. 4.7a, a tertiary contact

( j,N − 1) that crosses two nested links (1, i) and (m, k). In contrast to the graph in Fig. 4.2,
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an additional contact is established between monomers m and k in Fig. 4.7a, resulting in

two nested loops A1 and A2.
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m
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Figure 4.7: (a) The conformation with three crossing links and the corresponding graph. The addi-

tional contact is established between monomer of free loop segment m and an interfacial monomer

k. The thick lines denote the enlarged interface I. (b) The test of the theory (dashed line) against

exact enumeration (solid line) using the graph with variable position of the middle contact.

To account for the conformational constraint arising from the contact (k,m), we include

the conformation of the (k,m) contact in the enlarged interface I; see the thick lines in Fig.

4.7a. Correspondingly, we define the free loop segments FA1, FA2, and FB as the chain

segments from monomer 2 to monomer m − 1, from m + 1 to j − 1, and from i + 1 to

N − 2, respectively. The sum over all the possible conformations of I gives the number of
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conformations for the graph:

Ω =
∑

I

Ω f (I, fA1) Ω f (I, fA2) Ω f (I, fB), (4.12)

where Ω f (I, fA1), Ω f (I, fA2), and Ω f (I, fB) are the numbers of conformations of the respec-

tive free loop segments, and can be given by the ω f -function defined in Eq. 4.3 and tabu-

lated in Table 4.1:

Ω f (I, fA1) = ω f (y
(A1)
int , l(A1)

int , fA1) = ω f (yk − yi, i − k,m − 3); (4.13)

Ω f (I, fA2) = ω f (y
(A2)
int , l(A2)

int , fA2) = ω f (y j − yk, k − j, j − m − 2); (4.14)

Ω f (I, fB) = ω f (y
(B)
int , l(B)

int , fB) = ω f (yi − y j, i − j,N − i − 3). (4.15)

Using the above three equations, for a given enlarge interface conformation I, we can obtain

Ω f (I, fA1), Ω f (I, fA2), and Ω f (I, fB) from Table 4.1. Fig. 4.7b shows that the method for the

calculations for Ω is reliable as tested against the exact computer enumeration.

We can generalize the above approach to treat graphs with more crossing links; see Fig.

4.8a. Similar to Eq. 4.12, we have

Ω =
∑

I















n
∏

r=1

Ω f (I, fAr)















Ω f (I, fB), (4.16)

where I is the conformation of the enlarged interface (shown as thick lines in Fig. 4.8a),

and Ω f (I, fAr) (r = 1, 2, ..., n) and Ω f (I, fB) are the numbers of conformations of the free

loop segments in loops Ar and B (see Fig. 4.8a). Using Eqs. 4.13-4.15, for each given I, we

can calculate Ω f (I, fAr) (r = 1, 2, ..., n) and Ω f (I, fB) in terms of the ω f -function tabulated

in Table 4.1.
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Figure 4.8: The method can be generalized to treat graphs with more crossing links (a) and two

crossing sets of nested links (b). The enlarged interfaces are shown with thick lines.
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4.3.2 Graphs with a tertiary contact added to a secondary structure.

Using Eqs. 4.17-4.18, we can treat more complex graphs with complex secondary struc-

tures attached to loops Ar (r = 1, 2, ..., n) and B in Fig. 4.8a. To account for the conforma-

tions of the secondary structures attached to the loops, we use Eq. 4.9 to calculateΩ f (I, fAr)

and Ω f (I, fB) in Eq. 4.16:

Ω f (I, fAr) = ω f (y
(Ar)
int , l(Ar)

int , fAr)
4
∑

µ=1

4
∑

ν=1

α(µ) Yµν S (ν)
Ar

; (4.17)

Ω f (I, fB) = ω f (y
(B)
int , l(B)

int , fB)
4
∑

µ=1

4
∑

ν=1

α(µ) Yµν S (ν)
(B), (4.18)

where S (ν)
Ar

and S (ν)
B are the conformational counts for the secondary structures attached to

Ar and to B, respectively. Substituting the above results for Ω f (I, fAr) and Ω f (I, fB) in Eq.

4.16 yields the number of conformations Ω for the graph.

4.3.3 Multiple crossing links between nested contacts.

The graph in Fig. 4.8b consists of two crossing-linked sets of nested links. The enlarged

interface I is shown as thick lines in Fig. 4.8b. The sum over all the possible conformations

for the enlarged interface gives the number of conformations for the graph:

Ω =
∑

I

n
∏

r=1

Ω f (I, fAr)
n′
∏

s=1

Ω f (I, fBs), (4.19)

where FAr and FBs are the free loop segments from monomer mr−1 + 1 to monomer mr − 1

in loop Ar and from monomer m′s−1 + 1 to monomer m′s − 1 in loop Bs, respectively. Here

monomers 1, i, j,N − 1 are regarded as m0, k0, k′n,m
′
n, respectively. Ω f (I, fAr) and Ω f (I, fBs)

are the numbers of conformations of FAr and FBs , which can be obtained through the ω f -
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function, as shown in Eqs. 4.13, 4.14, and 4.15:

Ω f (I, fAr) = ω f (y
(Ar)
int , l(Ar)

int , fAr) (4.20)

Ω f (I, fBs) = ω f (y
(Bs)
int , l(Bs)

int , fBs) (4.21)

where y(Ar)
int is the y-component of the end-end vector kr−1 → kr for the interface from

monomer kr−1 to monomer kr, l(Ar)
int = kr−1 − kr is the chain length of the interface, and

fAr = mr − mr−1 − 2 is the chain length of FAr , and y(Bs)
int is the y-component of the end-end

vector k′s → k′s−1 for the interface from monomer k′s−1 to monomer k′s, l(Bs)
int = k′s−1 − k′s is

the chain length of the interface, and fBs = m′s − m′s−1 − 2 is the chain length of FBs .

4.4 Illustrative calculation for the partition function.

The partition function is defined in Eq. 3.2 as a sum over all the possible graphs. Therefore,

the first step toward it’s calculation is to enumerate graphs. We will enumerate all the

graphs involving up to four crossing links formed by a tertiary contact. We assign the

interaction energy −ε2 for each secondary contact and −ε3 for each tertiary contact. ε3 can

be different from ε2. The energy of a graph is equal to −ε2· [the number of secondary

contacts]−ε3· [the number of tertiary contacts]. Though the present theory can treat the

sequence-dependence of the chain, for the purpose of an illustrative calculation, here we do

not take into account the sequence and temperature dependence of ε2 and ε3. Effectively, we

consider a homopolymer. To simplify the calculation, we consider relatively short chains of

less than 35 monomers (nucleotides). For longer chains, we need to include more complex

graphs with more tertiary contacts and crossing links.
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4.4.1 Secondary and tertiary structure elements.

We can classify the crossing linked graphs into three groups according to the number of

the crossing links (two, three, and four); see Fig. 4.9a for representative examples for

each group of the graphs. For a given chain length, we exhaustively enumerate all the

possible arrangements of the crossing links and shuffle secondary links around all possible

positions on the graph so that the total number of links do not exceed four. For each

generated graph, we compute the number of accessible chain conformations Ω. Fig. 4.9b

shows the total number of (two-dimensional lattice) conformations for each group of the

graphs for different chain lengths. Also plotted in the figure is the result from the exact

computer enumeration. We find good agreement between the two sets of results, especially

for two- and three-crossing links graphs, the theory and the computer enumeration give

nearly identical results.

The graphs so far considered do not contain tails, and we call them the structure el-

ements. Chains which are not longer than 35 nucleotides and have up to four contacts

can fold into a larger number of different secondary and tertiary structure elements. A

secondary structure from monomer a to monomer b is an element if an outermost contact

(a + 1, b − 1) is formed. The examples of secondary structure elements are shown in Fig.

4.10. For a chain segment between monomers a and b, we enumerate all the possible ter-

tiary and secondary elements. For each tertiary element, we use the theory developed above

to compute the number of chain conformations and to calculate the energy in terms of −ε2

and −ε3. From Eq. 3.2, the sum over all the possible elements gives the “element” partition

function for the segment between a and b. For a homopolymer with given ε2 and ε3, such
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Figure 4.9: (a) The three groups of the graphs (with two, three and four crossing links) and their

representative conformations. The tertiary contact is shown bold. The structures presented are called

tertiary structure elements because they do not contain tails. (b) The total number of conformations

of each group as a function of the chain length l. The total number of contacts is restricted to be

≤4. The results of approximate and exact calculations are not distinguishable for two and three

crossing linked graphs. For the case of four crossing links, squares correspond to exact calculations

and crosses represent results from our theory.
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Figure 4.10: The graphs and representative conformations of secondary structure elements with

the same restrictions as for the tertiary structure elements: there are only up to four single contacts.

partition function is a function of the length l = b − a only. So we denote the element

partition function as Q0(l).

4.4.2 Graphs consisting of one or more structure elements and single-

stranded segments.

To obtain the full partition function of the chain, we need to add the contributions from

the tails. For a given chain length L, the graph generally can contain multiple tertiary

or secondary structure elements and the tails (Fig. 4.11). To calculate the number of

conformations for such structures, one can, roughly speaking, multiply the numbers of

conformations of each element and of each single-stranded segment.
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Figure 4.11: To calculate the density of states, all possible sequences of secondary and tertiary

structure elements and of single-stranded segments should be taken into account. The shadowed

regions of the graphs represent secondary and tertiary structure elements, dots denote nucleotides

of single-stranded chain segments.
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Table 4.3: Numbers of tail conformations obtained by exact computer enumeration on 2D lattice.

t 1 2 3 4 5 6 7

ωt 1 2 4 9 21 50 118

t 8 9 10 11 12 13 14

ωt 281 666 1 584 3 743 8 877 20 934 49 522

t 15 16 17 18 19 20 21

ωt 116 579 275 205 646 909 1 524 458 3 579 101 8 418 185 19 768 268

Graphs with a single secondary or tertiary structure element.

The partition function of one (tertiary or secondary) structure element with tails is given

by: Q0(l)ωt(t1)ωt(t2), where ωt(ti) is the number of the tail of length ti (see Table 4.3). In

fact, the number of tail conformations depends mainly on the total length of tails t = t1+ t2,

and as an approximation, we have ωt(t1)ωt(t2) ' ωt(t−1). For a given total chain length L,

there are t − 1 = L − l + 1 possible positions for a single structure element of chain length

l. Therefore, the total partition function for all such graphs is

Q1 ' Q0(l)ωt(L − l + 1) (L − l + 1). (4.22)

Graphs with two structure elements.

In this case, the chain has three single-stranded segments, each with chain length denoted

by t1, t2, and t3. The total length of the single-stranded segments is can be determined

from the total chain length L and lengths l1, l2 of each structure element: t = t1 + t2 + t3 =

L−l1−l2+4 and the partition function can be approximated by Q0(l1) Q0(l2)ωt(L−l1−l2+1).
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The number of graphs containing two such elements and single-stranded segments of total

length t can be found from the following considerations. t1 can have t − 2 possible values:

t1 = 1, 2, ...(t − 2), t2 can be chosen from (t − t1 − 1) possible values, and t3 = t − t1 − t2.

Therefore, the number of graphs for given l1 and l2 is :
∑t−1

i=2(t − i) = (t − 2)(t − 1)/2

and the sum over all such graphs gives the partition function for graphs with two structure

elements:

Q2 '
1
2

(L − l1 − l2 + 2) (L − l1 − l2 + 3)Q0(l1) Q0(l2)ωt(L − l1 − l2 + 1). (4.23)

Graphs with three structure elements.

The maximum number of structures in sequence which is allowed by restriction imposed

on the total chain length is three. We estimated the corresponding partition function by

Q3 ' Q0(l1) Q0(l2) Q0(l3)ωt(L − l1 − l2 − l3 + 1)
L−l1−l2−l3+3
∑

i=1

i (i + 1)/2, (4.24)

where the coefficient
∑L−l1−l2−l3+3

i=1 i (i + 1)/2 is the number of possible sets (t1, t2, t3, t4),

obtained from considerations similar to that described above.

4.4.3 Density of states and partition function.

To compute the density of states g(E) (= the total number of all the conformations that

have energy E) for the chain of the given length, we consider all the secondary and tertiary

structure elements along with the tails, such that the total chain length is fixed and the total

number of contacts doesn’t exceed four. The result for a 32-mer homopolymer is shown in

Fig. 4.12 for three different values of (ε2, ε3).
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Figure 4.12: The density of states of a 32-mer homopolymer, calculated for (ε2, ε3) = (ε, ε) for line

(1), (ε, 2ε) for line (2), (2ε, ε) for line (3).
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Figure 4.13: The temperature dependence of the heat capacity C(T) calculated from the model

30-mer chain. The transition takes place at the melting temperature kBT/ε = 0.22.

71



-9

-8

-7

-6

-5

-4

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

kT/  =0.25

kT/  =0.15

(0,0) (1,0)

(4,0)

(3,1)

(1,1)

(2,0)

(3,0)

(2,1)

(2,2)

F
 /  ε

kT/  =0.35

ε

ε

ε

−E /  ε

Figure 4.14: The free energy as a function of the energy for different kB T and ε2 = ε3 = ε. Since

the energies of secondary and tertiary contacts are taken to be equal, the secondary and tertiary

conformations would be indistinguishable in the plot. To separate them, the free energies of confor-

mations with one and two tertiary contact(s) are shown by points shifted by 0.1 and 0.2 to the right

along the x-axis, respectively. The points on the graph are marked (i, j), where i is the number of

secondary contacts and j is the number of tertiary contacts. For each point, a representative confor-

mation is shown. For example, states (3, 0) and (2, 1) have the same energy 3ε, but with 0 and 1

tertiary contact, respectively.
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From g(E), we can compute the partition function as a sum over possible energy values:

Q(T ) =
∑

E

g(E) e−E/kBT . (4.25)

From the partition function Q(T ), we can compute the heat capacity C(T ) = ∂
∂T [kBT 2 ∂

∂T lnQ].

The temperature-dependence of the heat capacity (the melting curve shown in Fig. 4.13)

for a 30-mer homopolymer and ε2 = ε3 = ε shows a single transition at the melting temper-

ature kBTm/ε = 0.22. The energy-dependence of the microcanonical ensemble free energy

F(E) = E − kBT ln g(E) for different temperatures is plotted in Fig. 4.14. In order to

separate conformations with and without tertiary interactions, we show them as separate

points shifted along the x-axis by 0, 0.1 and 0.2 for conformations with zero, one, and two

tertiary contact(s). For example, for E = −4ε, we have three sets of points, corresponding

to conformations that have (4 secondary contacts), (3 secondary and 1 tertiary contacts),

and (2 secondary and 2 tertiary contacts), respectively; see Fig. 4.14. We define a contact

as a secondary structural contact if it is part of a secondary structure (= set of nested or

unrelated contacts), and a tertiary contact if breaking it would cause the crossing-linked

(tertiary) conformation become a secondary structure. For some simple conformations, the

distinction between secondary and tertiary contacts is not unambiguous. For example, in

the conformations marked (1, 1) in Fig. 4.14, both contacts can be either secondary or ter-

tiary. The free energy plot reveals that the most stable state at low temperature, i.e., the

lowest energy state, is the one with 3 secondary structural contacts and one tertiary contact

((3,1) in Fig. 4.14). The unfolding transition from this “native” state to an ensemble of

unfolded and partially unfolded states occurs around Tm when they have about the equal

free energies.
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4.5 Interplay between secondary and tertiary interactions.

In order to study the interplay between the secondary and tertiary contact energies, we fix

the secondary energy parameter ε2 = 4ε and change the energy of the tertiary contact ε3.

The native structure and the melting temperature will obviously change with the chang-

ing of ε3. Figure 4.15 shows the free energy landscapes F as a function of E and ε3 for a

30-mer chain at different temperatures. We find that at low temperature T , independent of

the tertiary energy parameter ε3 ≤ 15ε, the native state (minimum free energy) is always

the state with the lowest energy E. As the temperature is increased, there exists a critical

tertiary energy parameter ε∗3 such that the minimum free energy state is the highest E un-

folded state for ε3 < ε∗3 and shifts to a low E state for ε3 > ε∗3 . As the tertiary interaction

is strengthened, the folding-unfolding melting temperature Tm(ε3) would increase. So for

a given temperature T , there exist a critical ε∗3 determined from T = Tm(ε∗3). For ε3 < ε∗3 ,

Tm(ε3) < T , so the chain is in the unfolded state, and for ε3 > ε∗3 , Tm(ε3) > T , so the chain

is in the folded state.

For a given set of the (ε2, ε3) parameter, we can calculate the heat capacity melting curve

from the partition function. From the melting curve, we can identify the temperatures at

which the conformational transitions occur. From the transition temperatures, we divide the

temperature range into several pre-transition and post-transition regimes. In each regime,

we find the most stable state. By performing the analysis for the melting curves and the

free-energy landscapes for different (ε2, ε3) parameter sets, we are able to obtain the phase

diagram for different parameters (T, ε3) (Fig. 4.16). The chain have different stable struc-

tures in different (T, ε3) regions. The stable state in the phase diagram is marked with (n,m)
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Figure 4.15: The free-energy landscape at temperatures (a) kBT/ε = 0.4 and (b) kBT/ε = 1.8 for a

30-mer homopolymer with ε2 = 4ε and 0 ≤ ε3 ≤ 15ε.

for structures with n secondary and m tertiary contacts. The energy of the corresponding

structure is nε2 + mε3.

From the phase diagram, we find that in the region where ε3 is comparable with ε2, the

chain undergoes multiple transitions in the melting process. Overall speaking, the melting

is less cooperative due to the interplay between the secondary and tertiary interactions when

ε3 is comparable with ε2, and more cooperative when ε3 � ε2 or ε3 � ε2. In the ε3 � ε2

limit, the melting involves the secondary structural changes only, such as (4, 0)→ (3, 0)→

(2, 0) → (1, 0) → (0, 0) for ε3 = 1, here (m, n) denotes states with m secondary and n

tertiary contacts. In the ε3 � ε2 limit, the melting transitions mainly involve the breaking

of the tertiary contacts (e.g. (2, 2) → (1, 1) → (0, ) for ε3 = 14). In the intermediate

range of ε3, the melting transitions involve the change of either the secondary or the tertiary

structural contacts (e.g., (3, 1)→ (2, 1)→ (1, 1)→ (1, 0)→ (0, 0) for ε3 = 7).
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ondary and n tertiary contacts.
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4.6 Discussion.

In the present study, we have established a statistical mechanical machinery for simple

RNA tertiary contacts to treat the nonadditive chain entropy and the partition function, from

which the thermodynamic properties can be predicted. The method that we have developed

enables the calculation for the number of chain conformations and the partition functions of

the RNA-like molecules with simple tertiary interactions. The key idea of the method is to

use the intrachain contacts to subdivide the conformation into different loops, and to assume

that the excluded volume interferences between the loops predominantly come from the

excluded volume of the monomers near the interfaces between the loops. The method

has been shown to give accurate results for two-dimensional lattice test systems. Several

simple types of tertiary folds are considered in the present work. These types of tertiary

folds represent a large class of RNA tertiary structures. Applications to an illustrative

simple model suggest that the interplay between the secondary and tertiary interactions

can cause rugged free energy landscape and noncooperative melting transitions. Moreover,

the generality of the above basic idea for the method suggests that the method may be

extended to treat more complex tertiary topologies that involve multiple crossing-linked

tertiary contacts. In addition, the method is developed based on the graphic representation

of the structure and is thus general in terms of chain representation. The method can be

implemented in more realistic off-lattice chain representations. Tertiary structure thermal

stability is strongly dependent on the ionic solution condition. The electrostatic effect is not

the focus here. But the model developed here would provide a more complete statistical

mechanical framework for the modeling of the electrostatic interactions.

77



Chapter 5

STATISTICAL THERMODYNAMICS

FOR RNA PSEUDOKNOTS.

The major part of this chapter (section 5.4) has been accepted for publication: Z. Kopeikin

and S.-J. Chen. Statistical thermodynamics for RNA pseudoknots. J. Chem. Phys. In press,

scheduled issue: April 2006

5.1 RNA pseudoknots - structure and functions.

RNA pseudoknots are simple tertiary structures composed of single-stranded loop segments

and helical stems. They are formed by base pairing of nucleotides of a loop (hairpin,

internal, bulge or bifurcated) with nucleotides outside that loop. The pseudoknots can be

classified into several types depending on the types of loops. The simplest and most general

is the H(airpin)-pseudoknot which includes only two loops and two stems (Fig. 5.1). The
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stems S 1 and S 2 combine to form a quasi-continuous helical structure of S 1+S 2 base pairs

with one continuous and one discontinuous complementary strands. The loops L1 and L2

are not equivalent since they cross the major and minor helical grooves of stems S 2 and

S 1, respectively. The structural diversity of H-pseudoknots is due to the differences in the

helix-helix junction, such as the number of nucleotides on the continuous strand between

stems, extent to which stems are coaxially stacked, bending and rotation (with respect to

the A-helix geometry) angles at helical junction. The full coaxial stacking takes place if

the single-stranded segment between stems consists of only one bond. Tertiary interactions
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Figure 5.1: (a) The pseudoknot at the site of ribosomal frameshifting of Beet western yellows

virus. (b) The schematic structure of an H-pseudoknot with stems coaxially stacked.

play the dominant role in establishing the global fold of the molecule. They tie together
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the otherwise weakly related loops of branched secondary structure to produce the specific,

rigid, and functional three-dimensional structure.

Pseudoknot stability depends on the presence of divalent cations (Mg2+), and is only

marginally greater then stability of the constituent hairpins, with the gain in free energy

being only 1-2 kcal/mol at 37oC [22], [23]. On this basis, the role of pseudoknots as

conformational switches has been suggested: the input/output of a small amount of energy

may be sufficient to open/close a pseudoknot.

Pseudoknots are found in a wide variety of functional roles in RNAs [24]. Here are

several examples.

(1) Some mRNAs contain pseudoknots which are involved in the regulation of transla-

tion. For initiation translation regulation, pseudoknots are usually positioned in the non-

protein coding leader sequence, or in the sequence containing the ribosomal binding site.

For example, in two mRNAs, encoding ribosomal proteins S15 and S4, the translation ini-

tiation site (Shine-Dalgarno sequence and initiation codon) is located within a pseudoknot

structure [4, 5]. The formation of the fmet-tRNA-ribosome-mRNA initiation complex re-

quires the pseudoknot to be at least partially unfolded. For mRNA encoding S15, it has

been proposed that the pseudoknot is in a conformational equilibrium with the alternative

hairpin structure. Binding of S15 increases the pseudoknot stability and represses its pro-

duction. For ribosomal protein S4, the allosteric mechanism has been suggested for trans-

lational repression: the protein binding induces the conformational change which prevents

initiation of translation. Another pseudoknot has been found within the gene 32 mRNA of

bacteriophage T2. It is located in the 5’ non-coding sequence, upstream of the ribosome

binding site and has been shown to serve as a binding site for the gene 32 protein. At low
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concentrations, protein binds first to the pseudoknot, and then, as the protein concentration

increases, the region of mRNA coated by the protein extends 3’ until the ribosome binding

site is bound and translation is shut off.

The role of RNA pseudoknots present within the protein coding regions of mRNAs can

be stimulation of ribosomal frameshifting or of translational readthrough [29]. The major-

ity of retroviral mRNAs contain the overlapping reading frames of the gag, pro and/or pol

genes (encoding the proteins that form the viral capsid, protease and reverse transcriptase,

respectively). To translate these genes, the purposeful -1 (one nucleotide to the left) shift

in the reading frame is programmed into the RNA. The effective frameshifting requires the

presence of two signals: the so-called slippery sequence, which is the actual frame shift

site, and a structural element, stem-loop or pseudoknot located downstream of a slippery

sequence. The slippery sequence is a heptonucleotide X XXY YYZ, where X can be any

base, Y is A or U, and Z is A, U, or C. The simultaneous slippage model proposes that two

ribosome-bound tRNAs (at sites A and P) simultaneously slip one nucleotide in 5’ direc-

tion from the zero frame XXY YYZ to the -1 frame XXX YYY, so that at least two codon-

anticodon base pairs can be formed after the slippage occur. The efficiency of frameshift-

ing varies from 1-5% to 50% and regulates the relative concentrations of structural (gag

gene) and catalytic proteins (pro, pol genes). The structural proteins are needed in much

larger amounts than the catalytic proteins (polymerase and protease) for the efficient viral

assembly and replication.

The presence of the downstream pseudoknot has been observed to stimulate frameshift-

ing, but the precise mechanism is unknown. It has been shown that the change in the

pseudoknot position with respect to the slippery sequence or replacement of the pseudo-
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knot by the hairpin greatly diminishes frameshifting and readthrough efficiency. One of

the most probable assumptions is that the ribosome pauses or stalls over the slippery se-

quence upon encountering the pseudoknot, which increases the probability of frameshifting

or readthrough to occur. Moreover, the topological constraints of the pseudoknot, in which

the 5’ (closest to the ribosome) and the 3’ structural boundaries of the pseudoknot, when

compared to an hairpin, are on opposite sides of the molecule, may be important.

(2) Three pseudoknots have been found in the small subunit 16S ribosomal RNA [30].

Though the detailed functional roles of these pseudoknots are not known at present, the

mutational analysis has shown that they are essential for the ribosome proper organisation,

stability and functioning. It seems likely that one of pseudoknots is important for the

binding of tRNA to the ribosomal A site.

(3) The probing experiments with FeII −EDT A revealed that the catalytic core of most

ribozymes (e.g. RNase P, group I introns, hammerhead ribozyme) is constructed from

independently folded secondary structural domains which are brought together by tertiary

interactions [31]. The individual domains have been shown to be unable to carry out the

catalytic function. The assembling of a fully functional ribozyme requires the presence and

binding of divalent metal ions (Mg2+), which are known to be the necessary condition for

the formation of stable tertiary contacts. The pseudoknots in the catalytic core are formed

as a result of interactions between distant segments of the molecule.
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5.2 Experiments on RNA pseudoknot folding thermody-

namics.

As it is becoming clear that RNA pseudoknots play a number of important functional roles,

intensive attempts have been made to experimentally study the folding and unfolding of

pseudoknots. The studies are aimed at the obtaining information about the contributions

of different structural elements to the pseudoknot stability, prediction of the equilibrium

unfolding pathway and drawing correlations between the pseudoknot structure, stability

and function.

The unfolding of RNA molecules usually can be modeled as a series of sequential two-

state unfolding steps. Each two-state transition is characterized by an unfolding enthalpy

and melting temperature. The enthalpies and melting temperatures for canonical base pair

stacks can be estimated using Turner rules. It allows the identification of the melting steps

of the secondary structure elements (helices). But the absence of non-canonical tertiary

thermodynamic parameters makes it difficult to draw reliable conclusions about details of

tertiary structures. Only some information about the presence, strength and location of

non-canonical tertiary interactions can be obtained.

Though some pseudoknots fold at low concentrations of monovalent ions, the pres-

ence of high concentrations of monovalent or moderate concentrations of divalent ions was

shown to strongly stabilize the pseudoknot by associating as weakly or partially localized

ions in the regions of higher affinities, for example, at pseudoknot helix-helix junctions.

Here is the brief description for some experiments on pseudoknot unfolding.

(1) Gluick & Draper [32] proposed the folding pathways and estimated thermodynamic
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parameters of the α mRNA pseudoknot, which plays a role in translational repression by

ribosomal protein S4. The αmRNA pseudoknot is depicted in Fig. 5.2 and has been shown

to undergo an allosteric conformational transition that regulates translational efficiency.
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Figure 5.2: The α mRNA pseudoknot involved in control of translational initiation. Melting ex-

periments were carried out on mRNA fragments with disruptions (at points shown with arrows) and

compensatory mutations in helices. The initiation codon is underlined with solid, and the Shine-

Dalgarno sequence-with dashed lines. The helices are labeled by roman numerals.

Two strategies has been used in studying the pseudoknot melting behavior. The first

is to synthesize the RNA fragments which have a common 5’ terminus and 3’ termini at

positions denoted by arrows in Fig. 5.2. The second strategy is to introduce compensatory

mutations which result in disruption of individual helices. The obtained both ways RNA

molecules include different sets of helices, and the comparison of the results of melting

experiments should reveal the contribution of each helix to pseudoknot stability.

The melting of the pseudoknot involves multiple structural transitions. The following

most probable unfolding pathway has been proposed for the αmRNA pseudoknot at 5 mM
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Mg2+ and 100 mM KCl:

1. The lowest temperature transition requires presence of moderate concentrations of

Mg2+ or high concentrations of K+ and very likely corresponds to the unfolding of

non-canonical tertiary contacts.

2. Helix IV unfolds next, but the measured enthalpy change is substantially larger than

predicted for helix IV alone from Turner rules (by 65 kcal/mol). This suggests that

helix IV makes additional, non-canonical contacts with other parts of the RNA.

3. Helix I unfolds after helix IV.

4. Helices II and III melt last in a single, cooperative transition. The canonical base-

pairing alone does not provide any rationale for coupling of this two helix units.

Therefore, it seems likely that some additional non-canonical structure causes their

linking.

The analysis of the melting experiment suggests that the pseudoknot is in fact quite stable

and that there are multiple unfolding intermediates, some of which involve substantial non-

canonical interactions.

(2) Theimer and Giedroc [33] carried out an experiment on unfolding of the frameshift-

ing pseudoknot of mouse intracisternal A-type particles (mIAP), an endogenous retrovirus.

The pseudoknot and its proposed equilibrium unfolding pathway are shown in Fig. 5.3.

The unfolding thermodynamics has been studied by comparison of melting data for

the native pseudoknot, and compensatory base-pair substitution and deletion mutants. The

unfolding pathway includes four optically and calorimetrically defined steps. Stem 2 melts
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first in two closely coupled low-enthalpy transitions at low melting temperatures (F→ S1+J

→ I). The intermediate state I was shown to consist of the stem 1 hairpin and an unknown

non-canonical tertiary structure in the hairpin loop. The tertiary structure unfolds at the

third step to give the stem 1 hairpin (S1).

The experiments were carried out in 50 mM KCl in the absence of divalent cation, and

the observed van’t Hoff enthalpy was found to be comparable to the predictions based on

the nearest-neighbor model. The stability of non-canonical interactions formed in state I

does not influence the overall stability because they melt before the melting of the stem 1.

With the increasing of Mg2+ concentration, no additional folding or energetically signifi-

cant loop-stem interactions has been found.

(3) The crystal structure of another -1 frameshifting pseudoknot, from beet western yel-

lows virus (BWYV), reveals many loop-stem non-canonical tertiary interactions. In par-

ticular, nucleotide C8 in loop 1 forms a well-defined base-triple contact with the G12-C26

base pair in stem 2 (Fig. 5.4). Another structural feature revealed by X-ray crystallography,

is the loop 2-stem 1 interactions where loop 2 forms a series of non-canonical hydrogen-

bonding contacts with the minor groove of stem 1.

The studies of the unfolding thermodynamics of BWYV pseudoknot [34] has shown

that this non-canonical tertiary interactions are strongly pH-dependent and make a substan-

tial enthalpic contribution to the pseudoknot stability. It was found that mutations resulting

in the disruption of either C8·G12-C26 triplex or the loop 2-stem 1 interactions, greatly

destabilize the pseudoknot.

The equilibrium unfolding of BWYV pseudoknot includes three distinct transitions.

The first transition is attributed to the melting of non-canonical tertiary contacts (the base
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Figure 5.4: The BWYV frameshifting pseudoknot.

triplet); it is followed by unfolding of stem 2, and stem 1 unfolds last. The non-canonical

tertiary structure contributes at pH 6.0 nearly 30 kcal/mol in unfolding enthalpy and '4

kcal/mol in stability in addition to ∆H and ∆G calculated from the nearest-neighbor model

and accounting for the unfolding of canonical base pair stacks. The pH-dependence of the

pseudoknot stability is totally attributed to the protonation of N3 of C8 in loop 1, which

enables the formation of a third hydrogen bond to the G12-C26 base pair of stem 2 and

results in higher stability of the non-canonical tertiary structure. The experiments have

shown that non-canonical loop-stem interactions are absolutely required for stabilization

of the BWYV pseudoknot, because the intrinsic stability of stem 2 is low and doesn’t

benefit from coaxial stacking with stem 1.

From the analysis of melting experiments it becomes obvious that the pseudoknot

folding-unfolding is a complex process which often involves multiple sequential transi-

tions. To correctly interpret the experimental data, it is important to have (1) the energy

parameters for non-canonical interactions, and (2) the theoretical model which can predict

unfolding thermodynamics and account for all possible intermediates. Two bottlenecks for
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modeling tertiary folding are the tertiary conformational entropies and the ion effects in

tertiary interactions. The first problem is a focus in this research.

5.3 Previous models for RNA pseudoknot thermodynam-

ics.

5.3.1 Model based on a modified Jacobson-Stockmayer approxima-

tion.

The first polymer principle-based theoretical evaluation of free energy parameters for H-

pseudoknots has been done by Gultyaev et al [35]. The authors considered H-pseudoknots

with not more than one nucleotide at the junction between stems (Fig. 5.1b). The free

energy of such a structure ∆G = ∆H − T∆S has been approximated by the sum of free

energies of stems and loops. Whereas the stacking energy of stems ∆H can be obtained

from the nearest-neighbor model of helix propagation [36], the loop entropies ∆S which

mainly contribute to the loop free energies, need to be estimated. It has been done using

the Jacobson-Stockmayer [37] approximation for the entropy of N-mer loop:

S (N) = R(NlnΩ − [A +
3
2

lnN]),

where R is universal gas constant, RlnΩ is the conformational entropy of the free chain per

monomer, and A is the constant depending on the loop closure. The intra-loop excluded

volume effect has been taken into account by replacement of 3
2 by 1.75 [38]. Thus, the free
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energy change associated with the formation of the N-mer loop can be estimated by:

∆G = RT (Aloop + 1.75lnN)

with the assumption that there is no enthalpic contribution to the loop stability (∆H = 0).

The constant Aloop depends on the loop type. The Jacobson-Stockmayer approximation is

valid for secondary structure (hairpin, internal, and bulge) loops. To apply the formula

to pseudoknot loops, some specific features of pseudoknot topology should be taken into

account. It results in the following expressions for free energies of loops L1 and L2:

∆GL1 = Adeep(S 2) + 1.75RTln(1 + N − Nmindeep(S 2));

∆GL2 = Ashallow(S 1) + 1.75RTln(1 + N − Nminshallow(S 1)),

where A parameters depend on whether the loop spans deep or shallow groove and on the

stem length, Nmindeep(S 2) and Nminshallow(S 1) are lengths of the shortest possible loops for

the given groove type and stem length, and unity is added to make the logarithm equal

to zero for the minimal value of N. The parameters in the formulas for ∆G have been

estimated for several known pseudoknots obtained from experiments and/or philogenetic

comparisons. In particular, the upper limits of parameters have been derived from the

requirement that the pseudoknot is more stable then alternative structures (hairpins formed

by stems S 1 and S 2). As a result of the above considerations, the set of the free energy

parameters have been proposed.

Such estimations are rather crude due to the neglected sequence-dependence of the loop

entropy as well as the simplified treatment for the excluded volume interactions between

loops and stems and within the loops. Nevertheless, the estimation is more accurate than
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the previously used single value of 4.2 kcal/mol for free energy of all pseudoknot loops

[39] since it accounts for the dependence of pseudoknot free energy on lengths of loops

and stems. The estimated free energy parameters have been used for computer predictions

of RNA structures and were proven not to overestimate pseudoknot stabilities significantly.

Moreover, the proposed thermodynamic parameters have also been tested on two model

pseudoknot systems, for which the melting experiments have been conducted. The melting

temperatures for each of two pseudoknots have been estimated from the condition of co-

existence of the pseudoknot and its alternative hairpins and found to be within an error of

5◦C as compared with the experimental results.

5.3.2 The 3D lattice model for H-pseudoknots

The three-dimensional lattice model for H-pseudoknots has been developed by Lucas &

Dill [40]. There are no restrictions imposed on the number of monomers at the junction

between stems. The model can predict the density of states and the partition function for

all possible pseudoknot conformations.

The key problem is the calculation of the number of conformations for a given pseu-

doknot. The following method has been proposed. The pseudoknot without tails is de-

composed into two pseudoknot core units, each consisting of a stem and a loop (Fig. 5.5).

The pseudoknot core unit is denoted U(n,m), where n is the number of base pairs in the

stem (double-stranded hairpin), and m is the number of monomers in the loop. If n = 0, the

pseudoknot core unit is an m − step polygon (denoted U3D(m)), i.e. an m-step neighbor-
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avoiding walk with the only contact formed between the first and the last monomers. The

case m = 0 corresponds to a planar n-step polygon (U2D(n)) because in the model the stem

conformations are assumed to lie in the plane which is perpendicular to the stem base pairs.

This assumption is not physical because there is no special plane in which helical stem can

bend freely. The numbers of conformations for each type polygons (denoted as ΩU3D(m)

and ΩU2D(n)) have been computed by exact enumeration for n (or m)< 20 and asymptotic

expressions [41] have been used for longer chains. Then the number of conformations of

the pseudoknot core unit is:

ΩU(n,m) '
2ΩU2D(n)

ΩU3D(n)
ΩU3D(m+n),

where the quantity ΩU2D(n)/ΩU3D(n) gives the fraction of planar three-dimensional n-mer

loops.

The second step is to assemble the pseudoknot from two pseudoknot core units, U(n1,m1)

and U(n2,m2) (Fig. 5.5), and tails. The two pseudoknot core units have several common

monomers (their number denoted o). Therefore, the number of pseudoknot conformations

can be estimated as a product of numbers of pseudoknot core units conformations divided

by the number of conformations ω(o) of the o-mer single-stranded segment. To take care

of local excluded volume interactions between pseudoknot core units, an excluded vol-

ume term π has been introduced. π has been found empirically to depend on the length

of the nonoverlapping single-stranded section of the loops and assigned to be π = 1/70

if m1 − o > 2 and m2 − o > 2, and π = 1/35 otherwise. The number of pseudoknot

conformations is given then by

Ωpseud ' π
ΩU(n1,m1)ΩU(n2,m2)

ω(o)
.
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When tails of lengths t1 and t2 are added to the pseudoknot, the number of pseudo-

knot conformations should be multiplied by the numbers of tails conformations (three-

dimensional neighbor-avoiding walks of lengths t1 − 1 and t2 − 1). To account for the

excluded volume interactions between tails and the rest of the structure, another empiri-

cally found excluded volume term πt = 2/3 has been introduced for each tail.

The advantages of the method are that (a) it is much more efficient than the exact com-

puter enumeration, (b) the loop-loop and loop-stem correlations are considered from poly-

mer principle instead of empirical estimations, and (c) the excluded volume effect is rigor-

ously considered.

However, the model is restricted to the 3D lattice conformation and cannot treat realistic

RNA pseudoknots, disallows the formation of possible partially unfolded and misfolded in-

termediate states in the pseudoknot folding process, and employs an unphysical assumption

about the bending of the helix.

In the following section, we develop a statistical mechanical model for RNA pseu-

doknots that can treat the excluded volume effect and the nonadditivity arising from the

correlation between different structural subunits. Though our major focus here is on the

H-pseudoknot and its partially unfolded states, the methodology developed in this work is

general and can be extended to treat more complex pseudoknotted structures. In addition,

the method uses graphical representation for intrachain contacts and is thus independent

of any specific chain representation. For illustrations, we use two-dimensional (2D) lattice

chain conformations, where the excluded volume effect is accounted for by configuring the

chain conformations as self-avoiding walks in a 2D lattice. An advantage of the present

theory is its ability to treat the complete conformational ensemble for the pseudoknotted

94



structures (and the secondary structures), including all the partially folded and misfolded

states.

5.4 A polymer statistical mechanical model for RNA pseu-

doknots.

For the calculation of the partition function Q(T ) using the graph theoretic approach (Eq.

3.2), it is necessary to calculate the conformational count Ω for the given graph. We start

from the simple H-pseudoknot, and then generalize the method to treat more complex pseu-

doknots. The H-pseudoknot which we will consider is shown in Fig. 5.6.
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Figure 5.6: The H-pseudoknot is subdivided in our theory into enlarged interface (solid bold) and

two free loop segments (dashed bold). The coordinate system is chosen so that the y-axis is along

the first pseudoknot stem. The number of free loop segment conformations is approximated by the

function of the free loop segment’s length and of coordinates of the vector R.
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For mathematical convenience, we cut off dangling tails, leaving only one bond of each

tail to account for the excluded volume interactions between the tails and the rest of the

structure. We call such tail-free structure “structure element”. A full structure consists of

two parts: structure element and the tails (in the 5’ and 3’ terminal regions of the nucleotide

chain). Loops A and B share the common single-stranded (interfacial) chain segment and

are also constrained by the helical stems, therefore, the conformations of loops A and B

are strongly correlated with each other. The basic idea in our pseudoknot conformational

entropy theory is to divide a pseudoknot into three components, namely, the enlarged inter-

face (shown as solid lines in Fig. 5.6), and the two non-interfacial free loop segments FA

and FB (shown as dashed lines in Fig. 5.6) of lengths fA and fB, respectively. The enlarged

interface includes two stems of lengths n1 and n2, the single-stranded interfacial segment

of length l, and the tail monomers 0 and N in Fig. 5.6.

A great challenge in the entropy calculation is how to treat the excluded volume effect.

According to the decomposition of the pseudoknot structure, we classify the excluded vol-

ume interactions into two types: (a) between the interfacial monomers (i.e., monomers in

the enlarged interface) and (b) between the free loop monomers (i.e., monomers in each

free loop segment) and between the free loop monomers and the interfacial monomers. We

treat the former (type a) excluded volume effect by considering all the viable self-avoiding

enlarged interface conformations (denoted as I) that (i) do not make self-contacts other than

those specified by the graph and (ii) allow viable positioning of monomers i+1, j−1, k+1,

and m − 1 without causing additional contacts. In terms of I, we compute the number of

conformations ΩP of the pseudoknot as a sum over all the possible viable conformations I
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of the enlarged interface (Eq. 4.1):

ΩP =
∑

I

Ωf(I, fA) · Ωf(I, fB),

where Ωf(I, fA) and Ωf(I, fB) are the numbers of conformations of the free loop segments

FA and FB for a given I, respectively. The later (type b) excluded volume effect plays a

crucial role and should be taken into account in the computation of Ωf(I, fA) and Ωf(I, fB).

In Eq. 4.1, we neglect the volume exclusion between the free loop segments FA and

FB. This is because, first, the free loop segments are spatially separated by the enlarged

interface and, second, the steric hindrance between each free loop segment and the interface

is accounted for in the calculation of Ωf (see next section). For very large loops and long

free loop segments, the volume exclusion between FA and FB may become important.

However, in that case, the chain entropy is large, so the error caused by neglecting the

FA − FB volume exclusion is relatively small as compared with the (large) chain entropy.

If one has a table forΩf(I, fA) andΩf(I, fB) for all the possible free loop segment lengths

fA and fB and enlarged interface conformations I, the computation ofΩP for the given graph

(pseudoknot) from Eq. 4.1 would be efficient and straightforward. However, the number

of possible parameter sets ( fA, fB, I), grows exponentially with the length of the interface,

which makes the tabulation of Ωf for all the possible parameter sets practically impossible.

In the next section, we develop a method to approximate the conformational count Ωf for

the free loop segments. The derived expression forΩf would be mathematically convenient

and computationally efficient.
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5.4.1 Number of conformations of a free loop segment.

Because of the obviously equal roles of loops A and B in Fig. 5.6, instead of calculatingΩf

for the two loops separately, we focus on the calculation for one of the loops, namely, loop

A. In what follows, we derive an approximate expression for the number of conformations

Ωf for the free loop segment FA in loop A. The derived result for loop A would be equally

applicable to loop B.

Strictly speaking, the number of conformationsΩf = Ωf(I, fA) for the free loop segment

FA (in Fig. 5.6) is a function of the enlarged interface conformation I, which is dependent

on the interface length l and the length of the two helical stems (n1 and n2), etc. However,

as an approximation, we replace the I-dependence by the end-end vector R-dependence;

see the vector from i to j in Fig. 5.6. The end-end vector for FB is shown as the dashed

arrow in Fig. 5.6. We further define a two-dimensional Cartesian coordinate system by

choosing the y-axis along stem 1 (directed upward), as shown in Fig. 5.6. Vector R can be

described through the components: R = (x, y), where x = x j − xi and y = y j − yi in Fig. 5.6.

In terms of the components of R, we reduce the Ωf function from a large parameter space

(for the interfacial chain conformations I) to a much smaller two-variable parameter space

(for R = (x, y)):

Ωf(I, f ) ' Ωf(R, f )→ Ωf(x, y, f ).

Since the information about I is now embedded in R, for an fA-mer free loop segment

FA with fixed end-end vector R = (x, y), we compute the conformational countΩf(R, fA) as

an average over all the possible enlarged interface conformations I with the fixed end-end
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vector R:

Ωf(R, fA) '
∑

IΩf(I, fA)
ΩI

,

where ΩI is the number of all the viable enlarged interface conformations with the given

R = (x, y), and
∑

I is the sum over all these conformations. Physically, the calculated

Ωf(x, y, fA) function is the average conformational count of FA for each given enlarged

interface conformation I.

In fact, the first helix stem length n1 affects the conformational count of FA only through

weak excluded volume interactions between FA, the first stem and the tail attached to the

first stem (which is so far one monomer long). For the helix stem length n1 > 2 base

stacks, the conformational count for FA is nearly independent of n1. In our calculation, we

choose n1 = 3 base stacks and fix the orientation of helix stem 1 to be upright (in the y

direction). We then enumerate all the possible conformations of the enlarged interface for

all the possible values of l and n2 such that 1 6 l + n2 6 10. For each enlarged interface

conformation I and the given free loop segment length fA ( fA 6 21), we calculated the

number of free loop segment conformationsΩf(I, fA) by means of exact computer enumer-

ations of self-avoiding walks on 2D lattice. As an illustration, in Fig. 5.7a, we show all the

viable conformations of the enlarged interface with fixed n1 = 3 (base stacks) and end-end

vector R = (x, y) = (3, 4). For the given end-end vector R, the length n2 of stem 2 has only

four possible viable values: n2 = 1, 2, 3, 4, and the length of the single-stranded interfacial

segment is restricted by l 6 10 − n2. The possible interface conformations are represented

as self-avoiding random walks on the dashed grid (with one of the conformations drawn as

solid line). Fig. 5.7b shows how the volume exclusion between the free loop segment and

99



FA

FB

(a) (b)

s
0 0 0

0

000

N

N

N
N

N

N
N

3

4

Figure 5.7: (a) All the viable conformations of possible enlarged interfaces that give end-end vector

R = (x, y) = (3, 4) for the free loop segment FA. The position and length of the first stem are fixed.

Big black circles denote the end monomers of the free loop segment FA. Part of the 2D lattice

which can be covered by the viable conformations of the interfacial segment for possible length

and position of the second stem is shown with dashed lines. The dash-dotted line denotes the F B

segment. Two possible positions for 0 and N are shown for each interfacial conformation. (b) An

example of the conformation of the enlarged interface which is not viable because all the possible

positions of the monomer s would make an additional contact with the interfacial segment.
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the interface determine the viability of conformations. The depicted conformation of the

enlarged interface in Fig. 5.7b is not viable because it is impossible to position monomer s

in the square lattice without making additional contacts with the single-stranded interfacial

segment.

5.4.2 Number of conformations of pseudoknots.

Pseudoknot with two stems.

With the reduced function Ωf(R, f ) for free loop segments FA and FB, we obtain the con-

formational count of the pseudoknot from Eq. 4.1 by replacing Ωf(I, f ) by Ωf(R, f ):

ΩP '
∑

I

Ωf(RA, fA) · Ωf(RB, fB),

where RA and RB are the end-end vectors of the free loop segments FA and FB, respectively,

for a given conformation I of the enlarged interface. As shown in Fig. 5.6, RA is the vector

i→ j and RB is the vector m→ k. The coordinate system for vector RB is defined by stem

2 in the same way as the coordinate system for vector RA is defined by stem 1 (the y-axis

is along the corresponding stem, directed upright).

The method can be generalized to treat more complicated pseudoknots. Here we demon-

strate how to extend the method to treat pseudoknots with an internal loop in the stems (Fig.

5.8a). Such “pseudoknot” conformations are important because they may emerge as par-

tially folded or misfolded intermediates in the pseudoknot folding process.
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Figure 5.8: (a) The polymer graph and structure of a “pseudoknot” with an internal loop (A1)

formed in a helix stem. RA1 ,RA2 , and RB shown in the figure are the end-end vectors of the free

loop segments FA1 , FA2 and FB, respectively. (b) The structure of the pseudoknot with three stems

chosen to illustrate the method and the viable conformations of the enlarged interface. Two positions

are shown for each of the end monomers 0 and N.
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Generalized pseudoknots with three stems.

As shown in Fig. 5.8a, the enlarged interface for such a structure consists of three stems

(n1, n2, n3), two single-stranded interfacial segments (l1, l2), and two end monomers (0,N).

For a given conformation I of the enlarged interface, the end-end vectors RA1, RA2, and RB

of the free loop segments FA1 , FA2, and FB, respectively, can be unambiguously determined.

The conformational count of the “pseudoknot” in Fig. 5.8a can be calculated from the

following sum over all the possible conformations I of the enlarged interface:

ΩP '
∑

I

Ωf(RA1 , fA1) · Ωf(RA2, fA2) · Ωf(RB, fB). (5.1)

Illustrative calculation for the number of conformations of pseudoknots with three

stems.

In Fig. 5.8b, we show the structure of a pseudoknot with an internal loop formed in one

of the helix stems so the “pseudoknot” is partially folded (unfolded) and contains three

helix stems. Also shown in the figure are all the 11 viable conformations of the enlarged

interface numbered from 1 to 11 (excluding the end monomers 0 and N). Since monomers

0 and N each can have two possible positions, from Eq. 5.1, we calculate the number of

pseudoknot conformations as the following:

ΩP ' (2 × 2)
11
∑

K=1

Ωf(RA1 , fA1) · Ωf(RA2 , fA2) · Ωf(RB, fB), (5.2)

where K denotes an interface conformation shown in Fig. 5.8b. The lengths of the free loop

segments for the given pseudoknot are: fA1 = 5 for FA1 , fA2 = 6 for FA2, and fB = 11 for

FB. The details of calculations are given in Table 5.1, where we show, for each interfacial
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Table 5.1: Illustrative calculation for the number of conformations of the pseudoknot in Fig. 5.8b

K (xA1, yA1) Ω
A1
f (xA2 , yA2) Ω

A2
f (xB, yB) ΩB

f Ω
A1
f ·Ω

A2
f ·Ω

B
f

1 (0,2) 1.0 (1,4) 2.6 (1,7) 23.2 60.3

2 (0,2) 1.0 (2,3) 3.0 (2,6) 55.5 166.5

3 (1,3) 1.8 (1,4) 2.6 (-3,3) 21.6 101.1

4 (1,3) 1.8 (2,3) 3.0 (-2,2) 8.0 43.2

5 (2,2) 1.1 (1,4) 2.6 (-2,4) 32.1 91.8

6 (2,2) 1.1 (2,3) 3.0 (-1,3) 17.0 56.1

7 (2,2) 1.1 (1,4) 2.6 (-2,4) 32.1 91.8

8 (2,2) 1.1 (2,3) 3.0 (-1,3) 17.0 56.1

9 (3,1) 0.5 (1,4) 2.6 (-1,5) 52.5 68.2

10 (3,1) 0.5 (2,3) 3.0 (0,4) 37.3 55.9

11 (4,0) 0.0 (1,4) 2.6 (-1,1) 0.0 0.0

sum=791.1

conformation K, the coordinates (x, y) of the end-end vectors and the approximate numbers

of conformations Ωf for each free loop segment (FA1, FA2, and FB).

As shown in Table 5.1, Eq. 5.2 gives Ωappr
P = 4 × 791.1 = 3164.4, which is close to the

result from the exact computer enumeration: Ωexact
P = 2799.
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5.4.3 Pseudoknot partition function calculation. Thermal unfolding

of pseudoknots.

Central to the folding thermodynamics is the partition function. The calculation of partition

function (Eq. 3.2) for a given nucleotide sequence requires the enumeration of all the

possible polymer graphs and the counting of conformations accessible to each graph. In

the present study, we consider the complete ensemble of pseudoknotted structures as well as

the secondary structures. For the secondary structure partition function, we use a previously

developed statistical mechanical theory [16], [17].

For the pseudoknotted conformations, in the preceding sections, we ignored the full

tails and took into account only the first monomer of each tail closest to the pseudoknot

structure element to represent the volume exclusion effect. We now add the full tails back

to the calculation.

To take into account tails, we have used pre-calculated [17] tables for the numbers of

tail conformations ΩT (t) for tail length t 6 24 and the following fitted formula for longer

tails [17]:

ln ΩT (t) ' −2.62208 + 0.83927 t + 0.30984 ln (t).

This formula has also been used to obtain the number of conformations of the open (fully

unfolded) chain. With the conformational count of the tails, we can calculate the number of

conformations of the pseudoknot with tails as the product of the number of conformations

of the pseudoknot structure element ΩP and the numbers of conformations of tails: Ω =

ΩP ΩT (t1) ΩT (t2), where t1 and t2 are lengths of the two tails at the 5’- and the 3’-terminal,

respectively.
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The Go-model pseudoknots.

We consider a 33-mer chain with a fully folded native state shown in Fig. 5.9a. As a sim-

plified (Go-type) model, we assume that no other contacts besides those (native contacts)

depicted in Fig. 5.9a can form. The interaction energy of each base pair stack is assigned

to be −3 or −1 as shown in the figure. The energy of an isolated (unstacked) base pair is

assumed to be 0. Since in the Go-model, only the native contacts can form or disrupt in the

folding/unfolding process, the conformational ensemble can be generated from the differ-

ent ways to break the native contacts. Examples of partially unfolded states are also shown

in Fig. 5.9a. The unzipping of either helix stem can occur at the top, bottom or internal

base pair of the stem. The partially unfolded states can be conveniently represented by two

parameters: p denotes the state of stem 1 and q - of stem 2. The partially unfolded states of

a stem depend on the stem length and can be enumerated. The possible states of stems of

our native pseudoknot (5- and 2-base stack) are shown in Fig. 5.9b. In this way, each pos-

sible state can be described by a pair of numbers (p, q), which defines the set of contacts.

For example, (p, q) = (1, 1) is the native pseudoknot in Fig. 5.9a, (2, 4) is a hairpin with an

internal loop, and (2, 3) is a pseudoknot with an internal loop in stem 1.

The parameters p and q are used as the labels for the states of the stems. Each (p, q) pair

unambiguously defines a pseudoknotted structure. The p’s and q’s shown in Fig. 5.9b are

exhaustive for the short stems shown in the figure. As a caveat, we note that for illustrative

purpose, we here use the two-dimensional lattice model, which excludes some conforma-

tions due to the lattice constraint (e.g., a 6-mer loop is not possible in a two-dimensional

square lattice). In addition, in this section, in order to focus on the stem-loop interplay,
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Figure 5.9: (a) The 33-mer pseudoknot-forming chain is used to illustrate the calculations for

the density of states and partition function. The numbers in boxes (stacks) denote the energies

of the corresponding (native) base stack. The four types of the representative partially unfolded

conformations considered in the partition function calculation are shown. (b) The partially unzipped

states of the (two) helix stems are labeled with parameters p and q, respectively. As a result, each

state (folded, partially folded, and unfolded) can be represented by the parameter pair (p, q).
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we use the Go-model, which disallows the formation of the misfolded states. For longer

stems, more complex multiple internal loops can be formed. In the next section, we will

go beyond the Go-model by using the complete conformational ensemble, including all the

possible misfolded structures.
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Figure 5.10: Test of the theory (line) against exact computer enumeration (symbols) for the

density of states (a) for all the pseudoknotted conformations and (b) for the complete pseudo-

knot/hairpin/open conformational ensemble for the 33-mer chain shown in Fig. 5.9a.

To test the accuracy of the theory, we compute the density of states for all the possi-

ble pseudoknots (including all the partially unfolded states) and for the complete (pseu-

doknot/hairpin/open chain) conformational ensemble (including all the possible partially

unfolded states) using both the theory developed here and the exact computer enumeration.

Fig. 5.10 shows the test results. We find good accuracy of the theoretical prediction.

To study the folding thermodynamics for the model pseudoknot in Fig. 5.9a, we cal-

culate the free energy landscape F(p, q), which is the free energy of the macrostate for all
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the possible secondary structures and pseudoknots described by the conformational state

(p, q). F(p, q) is computed from the following equation:

F(p, q) = E(p, q) − kBT ln Ω(p, q),

where E(p, q) andΩ(p, q) are the energy (sum of the energies of the stacks) and the number

of conformations of the macrostate described by (p, q). The free energy minima correspond

to stable states. F(p, q) is temperature T -dependent and temperature change causes the

change in the free energy landscape F(p, q) and the transitions between different stable

states.

Fig. 5.11A shows the free energy landscape F(p, q) for the model pseudoknot in Fig.

5.9a. The landscape shows single pronounced minimum at (p, q) = (1, 1) (= the native

state shown in Fig. 5.9a) at low temperature and (17, 4) (= fully unfolded state) at high

temperature. At kBT = 0.672, the landscape shows that the transition between the native

state and the unfolded state involves two hairpin conformations as the intermediate states:

(17, 1) and (1, 4). Each hairpin intermediate is formed through the disruption of a helix

stem of the native pseudoknot.

In order to examine the competition between the helix and loop stability, we further

calculate the free energy landscape for pseudoknots with different sizes of loops. For larger

loops, as shown in Fig. 5.11B, the free energy landscape reveals 3-state transitions, where

the native state, the open chain and the hairpin with the longer stem are equally populated

at kBT = 0.6113. The larger loop would destabilize the folded state. As a result, state

(17, 1), which emerges as a folding intermediate for pseudoknot with smaller loops, is now

absent. This is because the 2-stack short helix stem in the (17, 1) state is not stable enough
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Figure 5.11: The free energy F(p, q,T ) as a function of structure denoted by parameters pair (p, q).

Free energy minima, i.e. stable states for a given temperature, are circled, and the representative

conformations shown. (A) For the pseudoknot with smaller loops, the two hairpins (17, 1) and (1,

4), each formed through the disruption of a native helix stem, emerge as stable intermediate states.

(B) For the pseudoknot with larger loops, the transition is three-state: the native state, open chain

and hairpin with the longer helix stem, which are equally populated at kBT = 0.6113.
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to compete with the destabilizing larger loops. In contrast, the state (1, 4) emerges as an

intermediate because the 5-stack long helix stem is sufficiently enough to compete with

(the larger) loop.

Pseudoknot folding with misfolded states.

The formation of non-native contacts is not allowed in the above Go-model pseudoknots

and therefore many structures, namely, the misfolded states, are excluded from considera-

tion. In this section, we treat complete conformational ensemble, including all the possible

misfolded conformations. We choose two (30- and 34-nt) pseudoknot-forming nucleotide

sequences. We allow the formation of all the possible A − U and C − G base pairs. The

energy of a base stack is equal to −1 for a stack formed by two A − U base pairs, −3 for

a stack formed by one A − U and one C − G base pair, and −4 for a stack formed by two

C −G pairs.

We enumerate all the possible secondary structures and pseudoknotted structures through

the enumeration of all the possible polymer graphs. For each graph, we compute the en-

ergy E and the number of accessible conformations Ω. In Figs. 5.12 & 5.13 we show the

free energy landscapes (F = E − kBT lnΩ) for the 30-nt and the 34-nt sequences, respec-

tively. The free energy landscapes show contrasting folding thermodynamics for the two

sequences. The sequence in Fig. 5.12 unfolds through the sequential disruption of the two

helix stems. The landscape at kBT = 1.0 shows the emergence of an intermediate state (=

minimum in the free energy landscape) which is formed through the breaking of the less

stable 2-stack helix in the native pseudoknot. In contrast, the sequence in Fig. 5.13 unfolds

through the formation of a misfolded state I, shown as the minimum in the free energy
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landscape at kBT = 0.9. The misfolded intermediate (hairpin I in Fig. 5.13) is formed

through a complete rearrangement of the base pairs from the native pseudoknot.
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unfolding is a two-step process with the (less stable) shorter helix stem disrupted first (N → I)

followed by the breaking of the longer (more stable) helix stem (I → U).
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Chapter 6

STATISTICAL THERMODYNAMICS

FOR FORCE-INDUCED RNA

FOLDING AND UNFOLDING.

The major part of this chapter (section 6.2) has been accepted for publication: Z. Kopeikin

and S.-J. Chen. Statistical thermodynamics for RNA pseudoknots. J. Chem. Phys. In press,

scheduled issue: April 2006
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6.1 Force-induced RNA hairpin folding.

6.1.1 Experiments on force-induced RNA hairpin folding.

In the experiment on RNA mechanical folding-unfolding described in Section 2.2 (Liphardt

et al [15]), three simple structural units of RNA were stretched using optical tweezers (Fig.

1 in [15]).

The experiment makes it possible to study thermodynamics of the folding-unfolding

process. It was shown that the characteristic features in the force-extension curve can be

used to obtain the unfolding free energy and the size of the structural element. The force-

extension curve of the simple hairpin P5ab shows at 14.5 pN the 18 nm plateau correspond-

ing to the hairpin unfolding. The process is reversible, which suggests the thermodynamic

equilibrium. At the critical force the hairpin hopped between folded and unfolded states

without intermediates. The corresponding ∆G (Gibbs free energy of the hairpin with re-

spect to the open chain) has been determined in the following ways.

1. The hopping between folded and unfolded states is a stochastic thermally facilitated

process. The probability of the hairpin opening versus force (Fig. 2B in [15]) was

obtained by summing a normalized histogram of hairpins opened versus force (data

from 36 consecutive pulls of one molecule). This dependence can be fit well by the

statistics of a two-state system in an external field at finite temperature. The energy

of the hairpin-laser trap system is E(F) = ∆G(F1/2)−F∆x, where ∆G(F1/2) = F1/2∆x

is the free energy change of unfolding and stretching the hairpin at the midpoint of

the transition (F1/2) and the extension difference between the folded and unfolded
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states ∆x is assumed to be constant. The probability for the system to have energy E

is p(E) = 1/(1+ eE/kBT ). From this analysis, ∆G = 193±6kJ/mol has been obtained.

2. The force-extension curve for the hairpin shows at 14.5pN the 18nm plateau cor-

responding to the hairpin unfolding. The process is reversible, which suggests the

thermodynamic equilibrium. The unfolding free energy can be determined as the av-

erage area under the plateau, which equals the potential of mean force of folding. It

gives ∆G = 157 ± 20kJ/mol.

3. Within the critical force range where folding/unfolding hopping is observed (Fig.

2C in [15]), the equilibrium constant K(F) can be obtained as a ratio of the average

lifetimes of the molecule in two states. This yields ∆G = 156 ± 8kJ/mol.

Thus we see that all three methods give the similar results and therefore are likely

reliable.

In general, the results of single-molecule experiments can not be interpreted using con-

ventional thermodynamic rules [42]. The reason is the following. The traditional bulk

experiments usually deal with the most populated states of the large ensemble of molecules

and yield smoothly changing, averaged over time and population values. The standard

thermodynamic theory can be applied to such measurements. The single-molecule ex-

periments, in contrast, yield data with large fluctuations, which describe the states of the

individual molecule and individual trajectory, randomly deviating from the average of the

population. This fluctuations affect the interpretation of data.

The results of single-molecule experiments were shown [42] to depend on the choice

of the statistical ensemble, i.e. on which variables are held constant and which are allowed

116



to fluctuate in the unfolding process. In the experiments where the molecule is stretched by

force, the following two types of statistical ensembles are generally considered.

(a) Constant distance ensemble (isometric): the molecule’s end-end distance is held

constant and the fluctuation of the force is recorded in experiment. Such an experiment

can be performed, for example, in the following way. One end of the molecule can be

attached to a rigid support, and the other end is attached to the bead held in optical trap.

The feedback loop controls the position of the trapped bead with respect to the other end of

the molecule and cancels its fluctuations by moving the trap center. The fluctuating force,

which is proportional to the displacement of the bead in the optical trap from its equilib-

rium position, as a function of time can be determined from the movement of the optical

trap. In the equilibrium unfolding process, the molecule’s end-end distance (extension) D

is changed slowly, and the mean force averaged over the appropriate time period F as a

function of D is plotted as the force-extension curve.

(b) Constant force ensemble (isotensional): the force is held constant, and the molecule’s

end-end distance fluctuates. In such experiments, the feedback loop makes the optical trap

move in such a way that the bead position with respect to the center of the optical trap is

fixed (which means the fixed force acting at the bead). The fluctuating end-end distance

is then averaged and recorded as D(F). The equivalent force-extension curve F(D) can be

obtained by the inversion of the relation D(F).

It was shown [42] that the difference between results of isometric and isotensional ex-

periments is essential when the system is small (short molecules). For long and flexible

molecules the fluctuations of variables are negligible and the difference between the two

statistical ensembles vanishes.
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6.1.2 Previous thermodynamic theory for force-induced RNA hairpin

folding.

The experiments have motivated the theoretical research on unfolding induced by force

[43]-[46].

Gerland et al [46] theoretically studied the mechanical unfolding of RNA secondary

structure. The experimental setup is sketched in Fig. 6.1a. The two ends of an RNA

molecule are attached to the force-extension measuring device, for example, optical tweez-

ers. The potential of optical tweezers is modeled by the harmonic potential of the linear

spring, connected in series with the RNA molecule (Fig. 6.1b). In the experiment, the

spring constant λ varies with the laser intensity. The intermediate values of λ amount to

working in the mixed ensemble, whereas large and small spring constants correspond to

isometric and isotensional experiments, respectively.

The extension of the spring Rs is measured with respect to the minimum of the trapping

potential. The total extension Rt is hold constant, whereas the extensions of the linear

spring and of the RNA molecule, Rs and R, undergo thermal fluctuations and are averaged

over all accessible conformations of the spring and the RNA molecule at fixed Rt. The

average force acting on the RNA molecule and its average extension are:

< f >= λ < Rs >

< R >= Rt− < Rs > (6.1)

In the following, it is assumed that the pulling occurs in the quasiequilibrium regime, i.e.

slow with respect to the rate of conformational transitions.

For calculation of the average values, the partition function of the system should be
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Figure 6.1: Sketch of the system. (a) Two ends of an RNA molecule are attached to the beads of

optical tweezers. (b) The potential of the optical trap is modeled by the potential of a linear spring

with the spring constant λ.
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known. The conformation of the RNA molecule is divided into two parts: the secondary

structure (filled circles in Fig. 6.1a) and the single-stranded (ss) segments exterior to the

secondary structure (open circles in Fig. 6.1a). This two parts are coupled through the

length of the single-stranded segments, i.e. the number m of the exterior bases (open circles

in Fig. 6.1a). There is the interplay between the lowering the RNA total base pairing energy

which requires the decreasing of m, and gaining the conformational entropy by increasing

m. The total partition function of the RNA molecule is the convolution of the partition

function of the secondary structure Q(m), and the function Wtot(Rt,m) which denotes the

total end-end distance distribution of the single-stranded m-mer RNA in series with the

spring:

Z(Rt) =
∑

m

Q(m)Wtot(Rt,m). (6.2)

The secondary structure partition function Q(m) summed over all RNA secondary struc-

tures with m exterior single-stranded bases can be calculated through the recursion methods

using the experimentally determined rules for the free energy of secondary structures [47].

The function Wtot(Rt,m) can be expressed as:

Wtot(Rt; m) =

Rt
∫

0

dRWRNA(R,m)
e−βλ(Rt−R)2)/2

√

2π/βλ
(6.3)

where WRNA(R,m) is the distribution of the ssRNA molecule alone, i.e. the probability that

the chain with m exterior open bases has the end-end distance R. It is multiplied by the

probability that the spring has the length (Rt − R). WRNA(R,m) can be determined from an

elastic freely jointed chain (EFJC) model [44], [46].

From the partition function Z(Rt), the total free energy can be obtained: G(Rt) =

−kBT ln Z(Rt), and from the free energy - the average force < f > (Rt) = ∂G(Rt)/∂Rt
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and the average extension < R > using Eqs. 6.1 can be calculated. The force-extension

curve for the mixed statistical ensemble is < f > (< R >). If the spring is very stiff, the

fluctuations of R can be neglected and the statistical ensemble is constant distance; for the

soft spring, the fluctuations of force are negligible, and the ensemble is constant force.

As a test of the theory, it was applied to the P5ab hairpin studied in the experiment

of Liphardt et al [15]. In the experiment, the double-stranded DNA linkers were used

to connect the RNA molecule with the beads to avoid surface interactions. The dsDNA

part has been modeled as a wormlike chain (WLC), which means a continuous filament

with a bending stiffness that exponentially decays over a distance along its contour. The

persistence length lp is defined as the contour length over which segment directions are

correlated. As an extreme case, chain segments of length lp behave as rigid rods. The WLC

model gives the following relationship between the force f and the DNA extension [50]:

f (RDNA) =
kBT
lp

(
1

4(1 − RDNA/L)2
+

RDNA

L
−

1
4

) (6.4)

where lp = 3.57nm is the persistence length, and RDNA estimates the total extension of

DNA linkers. From the above equation, we obtain RDNA for a given force f .

The experimental force-extension curve for the P5ab hairpin is in a good agreement

with the theoretical one, with the spring constant λ = 0.2 pN/nm (Fig. 2a in [46]). The

characteristic feature of the experimental FEC - a hump indicating the opening of the hair-

pin is also observed at the theoretical FEC, but the force at which the opening of the hairpin

occurs, is overestimated by the theory. The corrections for the free energy for different ionic

concentrations [51] result in a better agreement with the experiment.

The FEC for the nonbinding control sequence shown in Fig. 2b in [46] with dotted line,
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is calculated theoretically for the dsDNA linkers in series with the ssRNA molecule, using

WLC and EFJC models. Comparison between FECs for the hairpin and for the control

sequence gives information about the total binding free energy of the hairpin (which equals

the area between two curves).

6.1.3 Our improved statistical thermodynamic model for force-induced

RNA hairpin folding.

Recently, we developed a new statistical mechanical model for the force-induced equilib-

rium RNA hairpin folding [52]. The same experimental setup sketched in Fig. 6.1 has

been used, but the constant force and constant extension ensembles have been considered

separately. For the constant force ensemble the spring length Rs is a constant (since it is

proportional to the force which is constant), therefore we can consider the RNA molecule

separately, without taking the spring into account. In the case of the constant extension

ensemble, the extension which is actually hold constant is Rt; it includes the extension of

the spring, and therefore the explicit consideration of the spring is necessary in this case.

Constant force ensemble.

Under the assumption that the pulling process is quasistatic, the energy change of the sys-

tem can be written as:

dU = TdS − PdV + FdR (6.5)

Then, for the Gibbs free energy defined as

G(F) = U + PV − TS − FR, (6.6)
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the free energy change equals:

dG(F) = −S dT + VdP − RdF. (6.7)

Therefore, at constant temperature and pressure, the change in free energy caused by the

applied force f is

∆G( f ) = −

f
∫

0

< R > (F)dF. (6.8)

Similar to Eq. 6.2, the partition function for the RNA molecule with the applied constant

force f is the weighted sum over all the possible m (= the length of the single-stranded

chain segment, see the open circles in Fig. 6.1a):

Z( f ) =
∑

m

Q(m)WRNA( f ,m), (6.9)

where Q(m) is the secondary structure partition function, and WRNA( f ,m) is the force dis-

tribution for the single-stranded molecule with m exterior bases.

To calculate Q(m), the statistical model for secondary structures developed by Chen &

Dill [16, 17] has been used, and the total free energy of all possible secondary structures

with fixed m has been obtained from Q(m): ∆G0(m) = −kBT ln Q(m).

The weight function WRNA( f ,m) can be expressed as WRNA( f ,m) = e−∆Gss( f ,m)/kBT , where

∆Gss( f ,m) is the change in free energy of the m-mer ssRNA due to the applied force f .

The ssRNA is described by the modified elastic freely jointed chain model [49] which

yields the average extension per bond (end-end distance of the whole chain divided by m):

rss( f ) = l(coth(
f b

kBT
) −

kBT
f b

)(1 +
f
S

), (6.10)

where l = 5.6Å is the distance between subsequent nucleotides, b = 15Å is the Kuhn length

(=2× persistence length) and S = 800pN is the stretch modulus of ssRNA.
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Now we apply Eq. 6.8 to the single-stranded part of RNA with the average extension

< R > (F) = m rss(F) and have

∆Gss( f ,m) = −

f
∫

0

m rss(F)dF.

The total free energy of the RNA with the given m is thus known: it is the sum of the free

energies of the folded and the (m-mer) single-stranded parts of the molecule: ∆G( f ,m) =

∆G0(m) + ∆Gss( f ,m), and the total free energy of the RNA for all possible values of m can

be obtained using Eq. 6.9:

∆G( f ) = −kBT ln Z( f ) = −kBT ln
∑

m

e−∆G( f ,m)/kBT

The mean end-end distance of the RNA for a fixed force f is the sum over possible m of

the average extensions for the given m multiplied by the probability that at the given force

the number of monomers of ssRNA equals m:

< RRNA > ( f ) =
∑

m

m rss( f ) e−(∆G( f ,m)−∆G( f ))/kBT (6.11)

The extension of the dsDNA linkers connecting RNA with beads also contributes into Rt

and should be accounted for. The wormlike chain approximation (Eq. 6.4) has been used to

model the DNA linkers of the total length Rl. Finally, for the given force f , with the length

of the DNA linker RDNA given by Eq. 6.4, the force-extension curve can be obtained from

< R > ( f ) =< RRNA > ( f ) + RDNA( f ). (6.12)
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Constant distance ensemble.

In this case the molecule extension is held constant and the applied force is free to fluctuate.

For the Gibbs free energy defined as

G(R) = U + PV − TS , (6.13)

the free energy change is given by (see also Eq. 6.5)

dG(R) = −S dT + VdP + FdR. (6.14)

At constant temperature and pressure, the free energy change of the molecule as a function

of the end-end distance R is equal to the quasi-static work done on the molecule during the

extension from 0 to R:

V(R) =

R
∫

0

< F > (x)dx, (6.15)

where V(R) is the potential of mean force and < F > (R) is the mean force for the system

at fixed R. For the constant distance ensemble, the explicit consideration of the spring is

necessary [45]. The partition function for the system consisting of the RNA and the spring

is given by Eqs. 6.2 & 6.3 with Q(m) computed from the Chen & Dill model ([16], [17])

and WRNA(R,m) computed from the potential of mean force V(R):

WRNA(R,m) = e−
V(R)
kBT . (6.16)

Therefore, the procedure of calculating the force-extension curve < f > (Rt) consists of the

following steps:

1. The m-mer ssRNA and the DNA linkers are modeled as a freely jointed chain and

a wormlike chain, respectively. So, the average force as a function of the end-end
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distance of the RNA with DNA linkers < f > (R) can be found from Eqs. 6.4, 6.10,

and R(< f >) = m rss(< f >) + RDNA(< f >).

2. From < f > (R), the potential of mean force V(R) and end-end distance probability

distribution of the molecule with DNA linkers WRNA(R,m) are determined using Eqs.

6.15 and 6.16, respectively.

3. Substitution of WRNA(R,m) into Eq. 6.3 yields the distribution of the system of RNA,

DNA linkers and the spring in series Wtot(Rt,m), partition function of the system

Z(Rt) (Eq. 6.2), free energy ∆G(Rt) = −kBT ln Z(Rt), and finally the force-extension

curve < f > (Rt) = ∂G(Rt)/∂Rt.
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Figure 6.2: The FEC of the P5ab hairpin with added DNA linker: (a) experimentally obtained by

Liphardt et al [15] (solid line), and theoretically obtained from our model for λ = 0.2pN/nm (dashed

line) and λ = 0.01pN/nm (dotted line) at 0.25M NaCl. (b) theoretically obtained for constant force

ensemble (solid line) and constant distance ensemble (dashed line) with λ = 0.01pN/nm.
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The force-extension curves have been calculated for the P5ab hairpin (Fig. 6.2). The

free energy parameters were adjusted to experimental salt condition ([Na+]=0.25M) by

using SantaLucia’s corrections [51]. The theoretical curve with λ = 0.2 has been found to

be in a great agreement with the experimental one (Fig. 6.2a), and the FEC for the constant

distance ensemble with λ = 0.01 (soft spring) is very close to FEC for the constant force

ensemble.

6.2 Force-induced RNA pseudoknots folding.

Our RNA pseudoknot folding thermodynamics theory developed in Section 5.4 can be

further developed to study the thermodynamics of the mechanical unfolding of RNA pseu-

doknot. We assume that the two ends of the molecule are attached to two beads whose

positions and the acting force are controlled by the force-extension measuring device. In

our calculations, we consider the fixed force and fixed extension ensembles separately.

We assume that one end of the chain is fixed, and the constant force f is applied to the

other end in the constant force experiments. The average end-end vector D of the molecule

is recorded as a function of f. The work f · D done on the molecule by force f contributes

to the energy of the molecule, and the partition function for the constant force ensemble is:

Z(T, f) =
∑

E

∑

D

g(E,D)e−(E−f·D)/kBT , (6.17)

where g(E,D) is the constrained density of states, i.e. the number of conformations with

the energy E and end-end vector D. From Z(T, f), the mean extension of the chain at the
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given force can be calculated as

D(T, f) = kBT
∂

∂f
lnZ(T, f). (6.18)

In the constant extension experiments, the end-end vector D of the chain is assumed to be

held constant, and the average force f acting on the molecule is recorded as a function of

D. Since D is constant, the partition function for the constant extension ensemble is

Z(T,D) =
∑

E

g(E,D)e−E/kBT . (6.19)

If Z(T,D) is known, the mean force f corresponding to the given D can be calculated by

the formula:

f(T,D) = −kBT
∂

∂D
ln Z(T,D). (6.20)

6.2.1 Density of states

In both the constant force and constant extension models, the key problem is how to calcu-

late the density of states g(E,D), which is the total number of conformations with energy

E and end-end vector D. We assume that one end of the molecule is attached to the wall,

and the force f acting on the molecule is directed perpendicular to the wall. Instead of the

end-end vector D, we consider it’s component denoted as D, in the direction of the force.

In the partition function calculation, the conformational ensemble includes both secondary

structures and pseudoknotted structures. In what follows we give detailed description for

the calculation for pseudoknotted and secondary structures, separately.
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Pseudoknotted conformations.

To find the number of conformations of the pseudoknotted structure with the end of one tail

attached to the wall, and the end of the other tail being at the distance D from the wall, we

use the following approach. The structure can be divided into three parts: two tails and the

structure element. For a given D, we exhaustively enumerate all the possibilities of three

numbers: D1 (= extension of tail 1), DP (= end-end extension of the pseudoknot element),

and D2 (= extension of tail 2), such that D1+DP+D2 = D. For each set of (D1,Dp,D2), we

calculate the product of the numbers of conformations of the first tail with extension D1, of

the pseudoknot element with extension DP, and of the second tail with extension D2.

To illustrate the principle, we choose the 2D lattice representation for chain conforma-

tions. On the two-dimensional lattice, a pseudoknot structure element (without tails) can

have four different orientations with respect to the wall (Fig. 6.3). Since we consider the

pseudoknot to be the central part of the structure, a convenient choice of the coordinate

system (x, y) would be such that the y-axis is along the stem with the tail attached to the

wall. This is the same coordinate system as the one used for the calculation of the number

of pseudoknot conformations (Fig. 5.6). In such coordinate system, the wall and the force

have different orientations with respect to the pseudoknot (Fig. 6.3).

For a fixed orientation of the pseudoknot, we need two different functions for the con-

formational count of tails: Ω‖T (t, d) and Ω⊥T (t, d), which denote the numbers of conforma-

tions for a tail of length t with end-end distance d in the (positive or negative) direction

parallel (‖) and perpendicular (⊥) to the first (closest to the pseudoknot structure element)

bond of the tail, respectively. We have obtained theΩ‖T andΩ⊥T functions by means of exact
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Figure 6.3: In the two-dimensional lattice model, a pseudoknot can have four possible orientations

with respect to the wall. xp = x(m) − x(n) and yp = y(m) − y(n). The coordinate system can be

defined by the position of the first stem of the pseudoknot (y-axis along the stem), while the ‖ and

⊥ axes of the tail is defined by the orientation of the first bond as shown in (1).
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computer enumeration for 1 6 t 6 11.

For a given extension D along the line of the action of force, we follow the following

procedure to calculate the the number of conformations of the given pseudoknot with the

given end-end extension D.

1. We enumerate the different orientations of the pseudoknot, as shown in Fig. 6.3.

2. For each pseudoknot orientation, we enumerate the conformations of the pseudoknot

enlarged interface. For a given enlarged interface conformation, the end-end vector

(xp and yp in Fig. 6.3) and the extension DP of the pseudoknot element are fixed.

3. For each enlarged interface conformation, using Eq. 4.1, we calculate the number of

pseudoknot element conformations ΩP.

4. We enumerate all the possibilities of D1 and D2 such that D1 + D2 = D − DP. The

numbers of tail 1 and tail 2 conformations which correspond to the given D1 and D2,

respectively, are approximated by the functionΩ‖T (t, d) or Ω⊥T (t, d). Which of twoΩT

functions should be used depends on the orientations of the wall and the force with

respect to the pseudoknot (cases 1-4 in Fig. 6.3) and on the directions of the first

bonds of the tails. For example, for the first bond of tail 2 directed upward in Fig.

6.3, case 1, the number of tail 2 conformations which have the end-end extension D2

along the x-axis, equals Ω⊥T (t2, d = −x2), because tail 2 has the end-end extension

d = −D2 = −x2 along (and in the negative direction of) the tail’s (local) ⊥-axis (see

Fig. 6.3).

5. For each pair of (D1,D2), we calculate the product of the number of conformations
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ΩP of the pseudoknot with the given enlarged interface and the numbers of confor-

mations of the tails Ωz
T (t1, d1) and Ωz

T (t2, d2), where t1 and t2 are the lengths of the

two tails, z = ‖ or ⊥, and d1 and d2 are required extensions of tails in direction z.

6. The number of conformations of the given pseudoknotted structure with the given

end-end extension D is given by the sum over (i) all the possible (D1,D2), (ii) the

enlarged interface conformations I, and (iii) the pseudoknot orientations:

Ωps.str.(D) =
∑

orientation

∑

I

∑

D1

∑

D2

ΩT (t1, d1) ·ΩP ·ΩT (t2, d2). (6.21)

Here the values of parameters d1 and d2 are determined by the orientation of the

pseudoknot with respect to the wall and on the enlarged interface conformation I,

which defines the direction of the first tail bonds with respect to the pseudoknot.

The density of states gP(E,D) for pseudoknotted structures with energy E and end-end

distance D can be found then by summation of numbers of conformations with the given

extension D over all pseudoknotted structures (graphs) with the given energy E:

gP(E,D) =
∑

graphs with E

Ωps.str.(D).

For the number of conformations ΩT for the single-stranded chain segments, we have

exactly enumerated the conformations for different chain lengths 10 6 l 6 28 and different

extensions D 6 l. We find that we can fit the results by two different functions:

lnΩT (l,D) = (−2.34782 + 0.803224 l) + (−0.0239763 + 2.59832/l) D (6.22)

for D 6 l/2 (less stretched chain) and

ln ΩT (l,D) =

[

3.1649436
l

−
4.19464

l2

]

D(l − D) (6.23)

132



for l/2 6 D 6 l (more stretched chain). In Fig. 6.4c, we show the comparison between

the above approximated ΩT (l,D) and that from exact computer enumeration and find good

agreement. The above approximations for ln ΩT (l,D) are used as extrapolations for longer

open chains.

Secondary structures.

We first use hairpin conformations to illustrate the methodology. We will then generalize

the theory to treat more complex secondary structures. A unique feature of a hairpin struc-

ture element is that it’s end-end distance (between monomers a and b in Fig. 6.4) is fixed.

So the conformational count for a given total extension D of the hairpin element with tails

can be calculated as

g2(E,D) '
∑

hpins with E

k ΩH(E) ·ΩT (l,D), (6.24)

where ΩH(E) is the number of conformations of the hairpin element (from a to b without

tails) with energy E, ΩT (l,D) is the number of conformations of the single-stranded chain

segment as a function of length l = t1 + t2 + 1 and the extension D (see Fig. 6.4a), and the

pre-factor k accounts for the volume exclusion between the tails and the hairpin structure

element. We find that k ' 1/4 for D 6 l − 4 and k ' 1 otherwise.

For secondary structures, which consist of multiple sequentially connected secondary

structure elements (e.g. hairpins), we calculate the density of states from the following

recursive relation (see Fig. 6.4b):

g(n)
2 (E,D) = kΩ(n)

H (En)g(n−1)
2 (E − En,D), (6.25)

where E =
∑n

i=1 Ei is the total energy, Ei is the energy of the ith secondary structure element
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(between ai and bi), and g(n−1)
2 is the density of states of a reduced chain, where the nth

structure element (between an and bn) is replaced by a single bond connecting an and bn.

Ω
(n)
H (En) is the number of conformations of the nth secondary structure element.
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Figure 6.5: The density of states g(E,D) for the pseudoknot/hairpin/open conformational ensemble

for the 38-mer pseudoknot (shown in Fig. 5.9a with added tails of lengths t1 = 3 and t2 = 4).

Symbols: from exact enumeration; lines: from the theory developed in this study.

The sum of the densities of states for secondary and pseudoknot structures gives the

(total) density of states g(E,D) in Eqs. 6.17 & 6.18. In Fig. 6.5, we show the tests for our

theory against exact computer enumeration for a 38-mer pseudoknot-forming chain. We

find good agreements.
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6.2.2 Force-extension curve, misfolded pseudoknots, and folding ther-

modynamics

We consider two specific pseudoknot-forming nucleotide sequences for which thermal un-

folding processes have been studied (Figs. 5.12 & 5.13). In the calculation for the density

of states, we enumerate all the possible secondary and pseudoknotted states, including all

the possible misfolded states and partially folded states. We show the predicted force-

extension curves and the conformational changes for the two sequences in Fig. 6.6.

We find that for the two sequences, both the isometric and isotensional curves show a

major transition from the native pseudoknot (N) to a misfolded intermediate state (I1). A

notable feature shown in Fig. 6.6 is that the misfolded intermediate (I1) emerges when the

extension of the molecule is both small and large compared to the average extension of the

native pseudoknot N. The formation and the re-formation of the intermediate state I1 (with

both small and large extensions) can be explained in the following way.

The native pseudoknots have shorter tails than the intermediate states. Therefore, the

end-end extension of the native pseudoknot is much more restricted than that of the inter-

mediate state I1. For instance, for sequence 1 in Fig. 6.6A, the end-end extension for the

native pseudoknot N and the intermediate I1 in a two-dimensional lattice are in the range of

[3, 10] and [1, 13], respectively. Therefore, for sequence 1, for extension outside the range

[3, 10], the native pseudoknot cannot exist and new structure would emerge. In contrast,

the intermediate state I1 can accommodate a wide range of extension and can exist as a

stable state outside the range [3, 10].

As shown in Fig. 6.4c, the number of tail conformations quickly decreases as the tail
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extension curves and the structural transitions for the two nucleotide sequences specified. For both
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molecules at which the overstretched native pseudoknots are less stable.
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is stretched. When the native pseudoknot, which has short tails, is restricted to have very

small or large extensions, the tails would inevitably be stretched. The entropy of the tails

is small and the free energy F = E − TS of the structure is high. Therefore, the native

pseudoknot is unstable and a structural transition would occur. For the misfolded structures

(I1), however, the longer tails allow the chains to achieve the required (small or large)

extensions without becoming highly stretched. So the intermediate state can be more stable

than the native pseudoknots for small and large extensions.

In the limiting regime of very small end-end extension, the chain is in highly compact

(and thus low-entropy) states. Large extension would cause an increase in the freedom of

such highly compressed chain. So in the small extension limit, larger extension would lead

to lower free energy, resulting in an apparent negative equilibrium pulling force.

Another notable feature in Fig. 6.6 is that sequence 1 mechanically unfolds through

very different steps of conformational transitions than thermal unfolding. The thermal

unfolding involves simple disruptions of native contacts, while in the mechanical unfolding,

the native pseudoknot unfolds, refolds, and unfolds again during the pulling process. In

contrast, for sequence 2, the intermediate state is the same misfolded hairpin as that in the

thermal unfolding.
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Chapter 7

CONCLUSION AND DISCUSSION.

We present a statistical mechanical theory for the folding thermodynamics of pseudoknot-

ted chain conformations, including all the possible partially folded and misfolded struc-

tures. The model enables the calculation of conformational entropy and the partition func-

tion of pseudoknots. The key idea of the theory is (i) to decompose a pseudoknot structure

into stem-loop subunits, (ii) to separate out the interfacial segments between the subunits,

and (iii) to account for the correlation and volume exclusion between subunits through

localized effects within and near the interface. The theory has been shown to give good

predictions for the folding thermodynamics as tested against exact computer enumerations.

The theory enables predictions for the folding stability, native-like and misfolded folding

intermediates, and folding free energy landscapes for simple tertiary, pseudoknotted and

secondary structures.

The current form of the model is not without limitations. Possible further development

of the model should address the following issues.
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1. More realistic off-lattice chain representations can be used within the present graph-

theoretic framework. An example of possible off-lattice chain representation is the

virtual bond model [53], where the six bonds of each nucleotide backbone (Fig. 1.1b)

are replaced by two virtual bonds. The length of the virtual bond is nearly fixed

(3.9Å), and the conformation of each nucleotide is described by two torsional and

two bond angles of the virtual bonds. The bond angles of the virtual bonds vary

between 90◦ and 120◦ in the single-stranded chain region. Based on this observation,

Cao and Chen [54] employed the diamond lattice to describe the secondary structure

chain conformations, which has the bond angle 109◦.

2. Non-canonical intra-loop interactions and other tertiary interactions can play impor-

tant roles in the sequence- and temperature-dependence of the loop entropy and the

folding thermodynamics and therefore should be taken into account in the further

development of the model. The generality of the basic ideas in the current model

suggests the possibility to systematically extend the model to treat more complex

tertiary folds, including ones with multiple crossing-linked contacts8.

3. The helical stems in pseudoknots tend to form the energetically favorable coaxial

stacks. Such coaxial stacking is neglected in the present model and should be in-

cluded in the further development of the model.

4. RNA folding is strongly dependent on the ionic solution condition. The divalent

metal ions (Mg2+) play critical roles in coordinating and stabilizing tertiary inter-

actions. To properly take into account this effect, the chain conformational model

should be combined with the polyelectrolyte theory to account for the ion electro-
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statics.

Thermodynamic parameters (especially the conformational entropy) for tertiary structures

are currently very limited, mainly due to the lack of a rigorous statistical mechanical model

for tertiary folding. The present model provides a general method for the computation

of the conformational entropy for tertiary structures. Moreover, the statistical mechanical

framework developed here can also be used to extract the thermodynamic parameters from

the experiments.

The generality of the basic idea suggests the possibility to extend the method to treat

more complex tertiary folds, including ones with multiple crossing-linked contacts. Before

further extending the theory to treat more complex tertiary folding, we would first apply the

theory to relatively simple tertiary folds and calibrate and validate the theory through com-

parisons with the existing experimental data, including the thermodynamic experiments on

the force-induced folding-unfolding of single RNA molecule.
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