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ABSTRACT

Short-fiber polymer composites experience widespread use in many industrial ap-

plications, where the orientation state of the short-fibers within the polymer matrix

define the material properties of the composite structure. Due to the extensive use

of these short fiber products, it is necessary to develop an accurate understanding

of the fiber orientation kinematics and the resultant material characteristics of the

processed part.

This dissertation presents techniques to accurately represent the orientation state

of fibers during the part molding process, and from the orientation state within

the processed part predict, statistically, the resulting elastic material characteris-

tics. Higher-order representations of the fiber orientation distribution are presented

through the sixth-order orientation tensor fitted closure, and results yield a mate-

rial stiffness tensor with fewer planes of material symmetry than current fourth-order

closures while retaining a more accurate representation of fiber orientation. Analytic

expressions for material stiffness expectation and variance are developed and validated

through the Monte-Carlo method, and provide a more thorough understanding into

the statistical nature of the material stiffness tensor. This work concludes with the

presentation of the directional diffusion model for fiber collisions, and results demon-

strate a significant delay in fiber alignment beyond existing models while retaining

an identical steady state orientation.
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CHAPTER 1

INTRODUCTION

Short-fiber polymer composites experience widespread use in many industrial appli-

cations due in large part to their high strength to weight ratio. The orientation state

of the short-fibers within the polymer matrix defines the material properties of the

composite structure. Therefore a thorough understanding of fiber orientation dur-

ing mold filling, and the associated material characteristics, is necessary for accurate

product and process analysis. This dissertation seeks to present techniques for an ac-

curate representation of the fiber orientation state during the part molding process,

and from the orientation state within the processed part predict the resulting elastic

material characteristics.

Perhaps the most important application for fiber orientation prediction is the me-

chanical property evaluation of the short fiber composite. Mechanical properties may

be computed from the distribution function of fibers, ergo a more accurate repre-

sentation of the distribution function is expected to yield more accurate mechanical

properties. Current methods to predict material stiffness behavior from orientation

tensors are based on the volume average of a transversely isotropic stiffness tensor.

The sixth-order closures are not constrained by the transversely isotropic assumption,

hence the formulation of material stiffness predictions warrant further investigation.

Fiber orientation closure methods and material stiffness prediction formulations

are of little worth if the underlying model for fiber orientation flow kinematics is

flawed. Current industrial models representing interacting fiber flow have been sug-

gested to over predict the alignment of fibers during the transient solution, and for
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simple flows the steady state solution is attained at a faster rate than experimental

results indicate. Until recently, this characteristic has been acceptable for industrial

applications due to significant uncertainty in the fabrication process. With increasing

industrial demands it is necessary to develop methods to accurately model the entire

transient solution of the fiber orientation probability distribution function.

The following dissertation investigates procedures to accurately predict the orien-

tation state of fiber suspensions, with considerable effort devoted to material property

predictions given an orientation state. The focus is on three interrelated topics to

analyze short-fiber behavior in polymer products. The first presents accurate approx-

imations of fiber distributions through the sixth-order closures. The second studies

mechanical property analysis procedures through the employment of closure methods

and mathematical expressions are developed for the statistical nature of short fiber

distributions. The third presents an objective, phenomenological, directionally depen-

dant diffusion model for fiber collisions shown to have several desirable characteristics

to qualitatively represent fiber kinematics.

In Chapter 3, three sixth-order closures are presented along with an analysis of

their effects to accurately represent the fiber orientation state. These closures allow

fiber orientation representations unavailable through the fourth-order closures, and it

is demonstrated that the sixth-order fitted invariant based closure is not constrained

by the orthotropic assumption inherent to the fourth-order closures.

With the capability of sixth-order closures to represent material behavior without

the orthotropic assumption, Chapter 4 investigates the effect of closures on material

property predictions to determine the effectiveness in representing various orienta-

tion states. To develop material property prediction methods, this work introduces
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the Laplace series of complex spherical harmonics to expand the fiber orientation

probability distribution function assuming only that the distribution is symmetric

about a single axis. This method makes no assumptions regarding the form of the

orientation tensors beyond their inherent symmetry, thereby providing a means for

computing material behavior from orientation tensors, and bypasses the issue of a clo-

sure selection. In Chapter 5, an analytic form is developed to evaluate the variance

of the stiffness tensor’s distribution, which requires orientation tensors through the

eighth-order. Statistical results obtained from the method of Monte-Carlo to obtain

the sample mean and variance of material stiffness tensor components are compared

to computed results obtained from the analytically derived expectation and variance.

Results are studied in depth for a simple analytic function and for industrially rele-

vant center-gated disk flow obtained from numerical distribution function simulations

to demonstrate the effectiveness of the proposed method.

Chapter 6 presents a directionally dependant diffusion model and results demon-

strate the capability to adjust both the final orientation state and the transient so-

lution through two scalable parameters. Shearing and elongational flows are investi-

gated and illustrate the flexibility of the proposed model to diminish the orientation

solution rate while retaining an accurate representation of the final orientation state.

The dissertation concludes with a discussion of the scientific advancements from

the present work. Limitations of the fiber orientation models presented are discussed

with suggestions for further enhancements of the current work. Particular emphasis

is given to directions of future research endeavors and a listing is given of possible

actions that may be undertaken to promote current scientific understanding.
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CHAPTER 2

FIBER ORIENTATION ANALYSIS

Due to the extensive use of short-fiber polymer composites in industrial applications

and the strong dependance of these products on their manufacturing process, a com-

plete investigation into fiber orientation characteristics required. This chapter sets

the framework to develop effective methods to analyze the flow kinematics and fiber

orientation relationship. Development starts from the representation of a single fiber

and transitions to the distribution of fibers necessary for effective industrial appli-

cations. Considerations such as bulk fluid deformation, fiber volume fraction, and

fiber aspect ratio are incorporated to evaluate the motion of a single fiber. Current

models to represent fiber interactions are introduced along with a discussion of known

limitations. The fiber orientation tensor equations of motion allow rapid computa-

tions of industrial simulations for complex parts. Unfortunately, their use leads to

the classical closure problem which has been extensively investigated in the litera-

ture. Several closures are introduced, along with the need for higher order closures.

Since the material response of the final product is essential for a full analysis, cur-

rent approaches for material property predictions from the orientation tensors are

introduced. The discussion concludes with the introduction of the Laplace series of

spherical harmonics which will prove essential in later chapters to allow development

of a closed form solution for material property behavior from the fiber orientation

distribution function.
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p(θ,φ)

Figure 2.1: Coordinate system defining p(θ, φ) along with the angles θ and φ.

2.1 Fiber Orientation Representation

The orientation of a single rigid fiber within a polymer matrix can be described by

the angle pair, (θ, φ), or by the unit vector p (θ, φ) aligned along the axis of the fiber

as shown in Figure 2.1 which are related through

p (θ, φ) =





sinθ cosφ
sin θ sin φ

cosθ



 (2.1)

Observe that a fiber along p (θ, φ) will be indiscernible from a fiber aligned along

−p (θ, φ) since the two ends of the fiber are indistinguishable [1], therefore any de-

scription of the orientation must satisfy

(θ, φ) → (π − θ, φ + π) (2.2)

Fibers are rarely, if ever, perfectly aligned along a single direction, and instead

each discrete fiber will have an orientation that varies from nearby fibers. There are

examples where discrete fibers have been modeled in simple flows for small numbers
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of fibers [2], but for typical industrial use, modeling individual fibers is computation-

ally impractical. Therefore, the discrete set of fibers is assumed to satisfy a given

continuous probability distribution function ψ (θ, φ) defined such that the probability

of a fiber oriented between the angles θi and θi + dθ and between φi and φi + dφ is

defined as [3]

P (θi ≤ θ ≤ θi + dθ, φi ≤ φ ≤ φi + dφ) = ψ (θ, φ) sin θidθdφ (2.3)

Observe that Equation (2.2) will cause the distribution to be an even function, i.e.

ψ (θ, φ) = ψ (π − θ, φ + π) (2.4)

Since every fiber is described by some angle pair (θ, φ) ∈ S2, the integral of the

distribution function over the unit sphere S2 must equate to one

∮

S2
ψ (θ, φ) dS =

∫ 2π

0

∫ π

0

ψ (θ, φ) sin θdθdφ = 1 (2.5)

which is often referred to as the normalization condition. The fiber distribution

function ψ (θ, φ) is a complete description if the orientation of a fiber is statistically

uncorrelated with that of any of its neighbors, and is considered to be a continuous

function that is assumed to vary smoothly with position [1]. The case of “orientational

clustering” has been considered by Ranganathan and Advani [4] where the local

clustering of the fibers causes a local inhomogeneity of the distribution function.

This phenomena is relegated to complex flow fields, and is neglected here since all

results will be for simple flow fields.

The fiber orientation probability distribution function presented in Equation (2.3)

is defined on the surface of the unit sphere. Therefore an understanding of spherical

coordinates and the derivatives of the spherical unit vectors is essential. The spherical
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coordinate unit vectors r, φ, and θ are [5]

r =





sinθ cosφ
sinθ sinφ

cosθ



 φ =




− sinφ
cosφ

0



 θ =





cosφ cosθ
sinφ cosθ
− sinθ



 (2.6)

where the bold font on a lower case letter designates a vector belonging to R3. Ob-

serve, the spherical coordinate r is identical to the definition of the unit vector p

aligned along the fiber axis given in Equation (2.1) and shown in Figure 2.1. Unlike

Cartesian coordinates, derivatives of the coordinate unit vectors in spherical coordi-

nates are not identically zero. The derivatives of the unit coordinate vectors are [5]

∂r
∂r

= 0 ∂r
∂φ

= sinθφ ∂r
∂θ

= θ

∂φ
∂r

= 0
∂φ
∂φ

= − cosθθ − sinθr
∂φ
∂θ

= 0

∂θ
∂r

= 0 ∂θ
∂φ

= cosθφ ∂θ
∂θ

= −r

(2.7)

Additionally, it will be useful to recognize that the Kronecker Delta δij is written as

δij = rirj + θiθj + φiφj (2.8)

where ri, θi and φi are the ith components of the unit vectors r, θ and φ given in

Equation (2.6), respectively. The ith component of the gradient on the surface of the

unit sphere where r = 1 is

∇i = θi
∂

∂θ
+ φi

1

sinθ

∂

∂φ
(2.9)

and the Laplacian in spherical coordinates on the surface of the unit sphere is simply

∇2 =
1

sin2 θ

∂2

∂φ2
+

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2
(2.10)

The fiber orientation distribution function is a complete description of the fiber

orientation state, but calculations with the distribution function are too cumbersome

to apply to industrially relevant flows due to computational considerations. Addition-

ally, ψ (θ, φ) does not provide a convenient interpretation of physical behavior [1,6,7].
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An alternative approach is to consider an average orientation property over a suffi-

ciently large enough volume to contain many fibers, but small enough such that the

statistics of the orientation are uniform throughout. This assumption is valid when

the volume is small in regards to the dimensions of the part but large with respect to

the fiber length [8]. The statistical behavior of the distribution function is captured

in a compact form for rapid computations using the moments of the distribution,

commonly referred to as the orientation tensors, defined as [6]

aij =

∮

S2
pipjψ (θ, φ) dS aijkl =

∮

S2
pipjpkplψ (θ, φ) dS

aij... =

∮

S2
pipj . . . ψ (θ, φ) dS (2.11)

Due to the symmetric nature of the fiber orientation probability distribution func-

tion in Equation (2.4), odd ordered orientation tensors integrate to zero and will not

be discussed further. Through the application of Equations (2.1) and (2.11) orienta-

tion tensors can be shown to be completely symmetric

aij = aji

aijkl = aklij = ajikl = ailkj = · · · (2.12)

aijklmn = ajiklmn = aklijmn = amnklij = ailkjmn = ainklmj = · · ·

Note that aijkl enjoys more symmetry than that of an anisotropic stiffness or

compliance tensor (see e.g. [9, 10]). In addition, higher order orientation tensors

completely describe lower order orientation tensors which can be shown using the

normalization condition of the distribution function ψ (θ, φ) from Equation (2.5) along
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with Equation (2.1) and Equation (2.11)

aij···αβγγ =

∮

S2
pipj . . . pαpβpγpγψ (θ, φ) dS

=

∮

S2
pipj . . . pαpβ (p1p1 + p2p2 + p3p3) ψ (θ, φ) dS

=

∮

S2
pipj . . . pαpβ

(‖p‖2
)
ψ (θ, φ) dS

=

∮

S2
pipj . . . pαpβ (1) ψ (θ, φ) dS = aij···αβ (2.13)

where here and throughout the remainder of the text repeated indices imply sum-

mation, i.e. aii =
∑3

i=1 aii = a11 + a22 + a33. Due to the symmetry conditions of

Equation (2.12), there are six independent components of aij which is reduced to

five components when accounting for the normalization condition of Equation (2.5).

Similarly, the fourth-order orientation tensor aijkl has 14 independent components,

the sixth-order orientation tensor aijklmn has 27 independent components, the eighth-

order orientation tensor aijklmnop has 44 independent components, and the tenth-

order orientation tensor aijklmnopqr has 65 independent components when accounting

for normalization and symmetry. Additionally, due to the normalization condition

of Equation (2.13) it is trivially shown that lower ordered orientation tensors are

completely contained within the higher ordered orientation tensors

1 = aij (2.14)

aij = aijpp (2.15)

aijkl = aijklqq (2.16)

Although the tensors may seem an unusual means to describe fiber orientation,

they have a simple physical interpretation. For example, take an isotropic, i.e. 3-D

random orientation, state with ψ (θ, φ) = 1
4π

where a sample set of fibers is shown in
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Figure 2.2, then the second order orientation tensor is simply

aij =




1
3

0 0
0 1

3
0

0 0 1
3


 (2.17)

When all fibers lie along the x1 axis such as the fiber set in Figure 2.3, the second-order

orientation tensor is

aij =




1 0 0
0 0 0
0 0 0


 (2.18)

It will be shown later that the orientation tensors are an incomplete representation of

the fiber distribution function, but are very useful in practical industrial simulations

of fiber orientation kinematics.

2.2 Fiber Orientation Kinematics

Most fiber orientation analysis are based on the Folgar and Tucker model [11] which in-

corporates fiber interaction effects through a phenomenological diffusion term. Their

model adds to the Jeffery model [12] for fiber motion in a Newtonian solvent, and

has enjoyed wide acceptance for simulations of the fiber orientation kinematics.

A comprehensive treatment of fiber suspension flow in complex geometries involves

flow/orientation coupling. It is well understood that fibers orient in response to flow

kinematics, while the suspension rheology is defined in part by the concentration and

orientation of the suspended fibers. For example, Dinh and Armstrong [13] provide

a rheological equation of state for semi-concentrated suspensions of stiff fibers in

a Newtonian solvent. Flow simulations that incorporate flow/orientation coupling

further emphasize the need for including these fully coupled evaluations to make

accurate predictions in certain geometries. Lipscomb, et al., [14] showed that the size

of the corner vortex in axisymmetric contraction changed significantly when fibers
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x3

x1

x2

Figure 2.2: Isotropic orientation state, ψ (θ, φ) = 1
4π

.

x3

x1

x2

Figure 2.3: Uniaxially aligned orientation state along x1 axis.
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were added, and VerWeyst and Tucker [15] exposed the influence of fiber concentration

on flow near the gate of an injection molded part.

In the same simulations, however, VerWeyst and Tucker [15] demonstrated that

the effects from incorporating the two-way flow/orientation coupling decays rapidly

with increasing distance from the gate. This latter result supports the earlier con-

clusion by Tucker [16] that flow and fiber orientation evaluations may be decoupled

for flows in narrow gaps where the lubrication approximation applies. Accordingly,

throughout the present work the effect of fiber orientation on the flow kinematics will

be neglected to retain the focus solely on fiber orientation analysis. It is left for future

investigations to pursue the full coupling between the fiber orientation analysis and

the flow kinematics.

2.2.1 Jeffery’s Model

The dynamics of the motion of fibers in a flow field are given by Jeffery [12] where

the motion of individual rigid ellipsoids in a Newtonian solvent is evaluated from

first principles. The Jeffery model assumes the fluid velocity is a linear function of

position in a neighborhood of the fiber and all inertia and body forces are negligible.

Jeffery solved the particle motion by requiring the net forces and moments on the

ellipsoid equal zero. Therefore the centroid of the particle moves with the bulk flow

of the surrounding matrix. Jeffery’s solution in vector notation and index notation

are, respectively, written as

Dph

Dt
= ṗh = −1

2
ω · p +

1

2
λ (γ̇ · p− γ̇: ppp) (2.19)

Dph
i

Dt
= ṗh

i = −1

2
ωijpj +

1

2
λ (γ̇ijpj − γ̇klpkplpi) (2.20)
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where t is time, ṗh is defined as the time derivative of the hydraulic component

of rotational motion of the ellipsoid, λ depends on the fiber aspect ratio ar where

λ = (a2
r − 1) / (a2

r + 1) [6] (for an alternative formulation, see e.g. Harris and Pittman

[17,18]). In Equations (2.19) and (2.20), γ̇ij is the rate of deformation tensor and ωij

is the vorticity tensor written, respectively, as

γ̇ij =
∂vj

∂xi

+
∂vi

∂xj

(2.21)

ωij =
∂vj

∂xi

− ∂vi

∂xj

(2.22)

where vi is the ith component of the velocity of the fluid. Observe in Equations (2.19)

and (2.20) the ordinary derivative d
dt

has been replaced with the material derivative

D
Dt

to recognize that the orientation may not be spatially uniform but may convect

with the bulk motion of the fluid where D
Dt

= ∂
∂t

+ v · ∇.

It is interesting to note that Jeffery’s equation predicts that an ellipsoid in simple

shearing flow will experience periodic motion labeled the Jeffery orbits. The time

average of the Jeffery orbits will describe the general tendency of alignment, but in

practical applications the Jeffery model is insufficient. The Jeffery model predicts that

in simple shear flow after a period T , every fiber will return to its original orientation

state. While this has been shown to be the case for single fibers, Jeffery orbits are not

seen when multiple interacting fibers exist. Instead, a steady state orientation for the

bulk distribution is often obtained after a short period of time with no oscillations in

the distribution [1, 11,19–21].

2.2.2 Effects from Fiber Interactions

Jeffery’s model for fiber suspension kinematics requires there exist no fiber interac-

tions, and is thus valid in the dilute regime only [1,22]. This occurs when the inverse
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of the square of the aspect ratio ar of the fiber, defined as ar = L/D where L is the

fiber length and D the fiber diameter, is much greater than the volume fraction of

fibers, i.e. Vf ¿ 1
a2

r
. Typical fiber aspect ratios range from 10 to 20 [23], therefore

for a suspension with an aspect ratio of 10 to be dilute, the fiber volume fraction

would have to be much less than 1%. The semi-dilute regime is defined [1] such that

1
a2

r
¿ Vf ¿ 1

ar
, therefore for an aspect ratio of 10, the semi-dilute regime would

encompass a volume fraction range of 1% ¿ Vf ¿ 10%. The concentrated regime

is defined as the region where the volume fraction is greater than the inverse of the

aspect ratio, i.e. Vf > 1
ar

. Most typical industrial applications are in the concentrated

regime, and as such the Jeffery model of Equation (2.19) is clearly not sufficient for

industrial use.

Modeling the interaction between two fibers in a fluid suspension is difficult, and

is the subject of continuing work. It is assumed that fiber interactions are due to

volume averaged effects and the model for fiber interactions is similar to the theory

of rotary Brownian motion [24,25] where each of the ellipsoids experience small forces

as they collide within the suspension causing torques on each ellipsoid. Rotary Brow-

nian motion has seen extensive use in the dynamics of polymeric liquids whereby

interactions between individual polymer chains in a suspension are modeled as being

caused by directionally dependant diffusion processes [25]. In traditional Brownian

motion, if the particles are not aligned by some outside force, the orientations will

eventually become random, whereas for short fiber composite flow fibers will not re-

orient unless subjected to a deformation of the surrounding fluid. Assuming rigid

fibers of uniform density and aspect ratio, the model of Bird [25] for rotary diffusion

is accepted whereby the flow of a fiber distribution is given by the equation of mass
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continuity as [25]

Dψ

Dt
= −∇ · [ṗhψ(p)−∇ (Drψ(p))

]
= −∇ · [ṗhψ (p)

]
+∇2 [Drψ (p)] (2.23)

where ∇ and ∇2 represent, respectively, the gradient operator and the Laplacian

operator on the surface of the unit sphere, and Dr is the rotary diffusivity. At the

present, it is sufficient to assume that Dr may be a function of (θ, φ) and as such

cannot be brought out of the Laplacian. When the assumptions from the Jeffery

model are taken into consideration, i.e. no fiber interaction, the rotary diffusion

expression Dr is set to zero. The form of Equation (2.23) has been accepted for rigid

polymer chains [25] and in the case of Dr being independent of direction simplifies to

existing theories for modeling the interaction of fibers. In later chapters, a model to

incorporate a directional dependance into the rotary diffusivity will be introduced.

2.2.3 Current Models for Fiber Interactions

Kamel and Mutel [26] proposed a form for the rotary diffusivity Dr that is a func-

tion of volume fraction and independent of shear rate for a sufficiently large volume

fraction of fibers. Their Dr is determined solely by the intensity of the interactions,

and predicts a continually changing orientation independent of applied deformation

on the surrounding fluid. This implies the fiber orientation tends toward an isotropic

distribution for no applied deformation. Unfortunately, this result violates the phys-

ical system being modeled where fiber motion is only seen to occur during velocity

changes of the surrounding fluid.

Current approaches to model fiber orientation while incorporating fiber interac-

tion effects are based on the Folgar and Tucker model [11]. Their model introduces

interaction between fibers through forces similar to Brownian motion where each of
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the fibers experience small forces as they collide within the suspension causing in-

duced torques upon each ellipsoid. Folgar and Tucker proposed a diffusivity function

based on the rate of deformation tensor γ̇ij and an empirically derived parameter CI

termed the interaction coefficient as

Dr = CI ||γ̇|| (2.24)

where CI is assumed to be a function of volume fraction, and ||γ̇|| is the scalar mag-

nitude of the rate-of-deformation tensor, ||γ̇|| =
√

1
2

γ̇ij γ̇ji. Their model neglects the

directional dependance of the collisions notwithstanding the suggestion by Folgar and

Tucker that “...while it is possible, and even likely, that these orientation changes have

a directional bias, or are different in nearly random and nearly aligned suspensions,

we have chosen to ignore these features.” The Folgar and Tucker model yields excep-

tional results compared to previous theories, and has been considered the standard

throughout both the industrial and academic communities. After much simplifica-

tion, the time evolution for the fiber orientation distribution function of Equation

(2.23) can be expressed with the Folgar and Tucker model as [23,27]

Dψ

Dt
(θ, φ, t) = CI γ̇

∂2ψ

∂θ2
+

CI γ̇

sin2 θ

∂2ψ

∂φ2
+

∂ψ

∂θ

(
CI γ̇

cos θ

sin θ
−λ−1

2
κT : pθ−λ+1

2
κ: pθ

)

+
1

sin θ

∂ψ

∂φ

(
λ−1

2
κT : pφ− λ+1

2
κ: pφ

)
+ψ (3λκ: pp) (2.25)

Computer simulations that numerically evaluate ψ (θ, φ, t) for simple flows may re-

quire several weeks to several months of computational resources to reach steady

state [23] and as thus are impractical to be considered for industrial simulations.

Alternatively, the orientation tensor approach of Advani and Tucker [6] represents

the distribution function of fibers in a concise form alleviating the overwhelming com-

putational burden encountered when solving Equation (2.25) numerically. The Folgar
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and Tucker model is considered to be the benchmark for fiber orientation analysis

during processing and has found wide acceptance in the literature [4,6,15,19,27–39].

Unlike the Kamal and Mutal model, the degree of alignment at steady state for the

Folgar and Tucker model is a function of the strain rate and as such ψ (θ, φ) evolves

due to deformations in the surrounding fluid. The empirically determined interaction

coefficient CI ensures that the final orientation state is accurately captured. Yamane

et al. [40] curve fit the fiber interaction coefficient based upon volume fraction over a

given set of flow conditions, and similarly Bay [23] along with Tucker and Advani [1]

developed a formulation for the fiber interaction coefficient based on a different set

of experimental data. These two forms assume the rate of fiber interactions is solely

dependant on the volume fraction of fibers and yet yield a range of interaction coeffi-

cients with several orders of magnitude difference over the same range of fiber volume

fractions. Phan-Thien et al. [2] discuss the discrepancy, and suggest the variation

may be due to neglecting the fiber aspect ratio in the calculations.

Although the Folgar and Tucker model is used extensively, recently the Folgar and

Tucker model has been questioned in its accuracy to model the orientation of fibers

during the transient solution [2,21,40–45]. With recent industrial demands for efficient

and accurate production design and advances in repeatable production processes, it

is necessary to ensure that accurate models exist to represent the orientation state.

Koch [46] presents a model for orientational diffusion resulting from hydrody-

namic fiber-fiber interactions, but has seen little use in the literature. The model

proposed by Koch is a function of the fourth- and sixth-order orientation tensor and

has two scalable parameters that are fit to calculations of orientational diffusion in

pure extensional flows. The Koch model is presented without any derivation, and
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provides no experimental results to validate the model. Since the proposed model

claims to only be valid for shearing type flows and low concentrations of fibers, it is

not considered further in this work.

Phan-Thien et al. [2,42] assume the rotary diffusion of the fiber distribution is an

anisotropic second-order tensor

Dr = C ||γ̇|| (2.26)

where bold capital letters designate a tensor. Their form assumes the diffusion follows

a “white noise” random force behavior and determine the six independent components

of the symmetric tensor C from experimental sampling data of the steady state so-

lution. They relate their results back to those of the Folgar and Tucker model by

assuming the interaction coefficient is related to the trace of C as

CI =
1

3
TrC (2.27)

Fan et al. [21,41] use Equation (2.27) along with the steady state experimental results

of Mondy et al. [47] for suspensions of fibers in Couette flow, neglecting the transient

solution and demonstrate the validity of their method at steady state. Phan-Thien

and coauthors [2] numerically solve the evolution equations by taking discrete fibers

in a reference cell undergoing simple shear. The reference cell experiences periodic

boundary conditions, i.e. a fiber leaving the reference cell from one side enters the

opposite side with identical exit behavior. Phan-Thien et al. give all results in terms

of the interaction coefficient and develop a relation between interaction coefficient and

volume fraction similar to that of Bay [23]. Unfortunately, Phan-Thien et al. [2] never

discuss the transient results and the effect their method has on the transient solution.

They conclude that fiber interactions may not be best described by a simple diffusion
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process, and clearly the Folgar and Tucker model must be further investigated and

improved for accurate simulations of fiber orientation.

Tucker et al. [44] hypothesize that fibers experience a local strain lower than the

average strain through the thickness of a part. This leads to requiring an under-

standing of the fluid flow regions between layers of fibers [19,20,23] where Tucker and

co-workers hypothesize the strain is “absorbed”. They introduce a strain reduction

factor, SRF , to the equation of continuity from Equation (2.23) as

Dψ

Dt
=

1

SRF

(−∇ · (ṗhψ(p)−∇ (Drψ(p))
))

(2.28)

Although results from the model by Tucker and co-workers appears to yield adequate

results in short plaque flow, the details of their model are not currently available

in the literature and as such results developed in the following chapters cannot be

compared to their formulation.

2.2.4 Equation of Motion for aij

Advani and Tucker [6] extend the usefulness of the Folgar and Tucker model by intro-

ducing orientation tensors which represent the fiber orientation state using moments

of the fiber orientation distribution function. Orientation tensors provide a compu-

tationally efficient means for evaluating the orientation state, even in complex flow

fields, and have seen extensive use in simulations of many complex phenomena to

model the orientation distribution function in a concise manner suitable for large

scale computations (e.g. crystalline polymers [48, 49], short-fiber polymer compos-

ites [6], crack fabric tensors [50], and turbulence models [51]). A disadvantage in the

application of orientation tensors arises during the solution whereby the next higher-

ordered orientation tensor is required for a complete representation. Therefore, to
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solve the orientation tensor evolution equation given by Advani and Tucker, a closure

is required where higher-ordered orientation tensors are approximated as functions of

lower-ordered orientation tensors.

The definition of orientation tensors from Equation (2.11) is applied to the equa-

tion of motion given in Equation (2.25) for the fiber orientation distribution function

to obtain the equation of motion of the orientation tensors. Advani [3] assumed the

Folgar and Tucker model of diffusion, and thus several key components necessary for

a directionally dependant diffusion model were not included in the derivation. A full

derivation of the equation of motion is undertaken in Jack [45]. The most common

application of fiber orientation tensor evolution is that of the second-order which has

seen wide use for industrial problems.

The evolution equations for aij obtained by first considering the second-order

tensor B(p) defined in component form as Bij = pipj for i, j ∈ {1, 2, 3} is related

to the second-order orientation tensor through integration as
∮
S2 ψ (θ, φ) BijdS =

∮
S2 ψ (θ, φ) pipj dS = aij. To derive the equation of change associated with the tensor

B(p), post-multiply the equation of continuity with rotary diffusion given in Equation

(2.23), with the i, j component of the test function B(p), where the integral over the

unit sphere S2 is given as

∮

S2

Dψ

Dt
BijdS = −

∮

S2
∇ · (ṗhψ −∇ (Drψ)

)
BijdS (2.29)

where it is assumed that Bij, ψ and Dr each depend on p and are as continuous as

necessary. The left-hand side of the equation is the desired form for the equation of

motion for the second-order orientation tensor aij which is seen as

∮

S2

Dψ

Dt
BijdS =

D

Dt

∮

S2
ψBijdS =

D

Dt

∮

S2
ψpipjdS =

Daij

Dt
(2.30)
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where the material derivative D
Dt

can brought outside the integration since integration

over the unit sphere is independent of time and the velocity gradients within the

material derivative are assumed constant over the surface of integration.

The chain rule may be used to expand the right hand side of Equation (2.29)

while assuming that the rotary diffusion Dr is first-order differentiable within and on

the unit sphere. Recognizing both terms within Equation (2.29) are integrable, the

equation of motion for the second-order orientation tensor becomes

Daij

Dt
=

∮

S2
ṗhψ · ∇ (pipj) dS−

∮

S2
∇ (Drψ) · ∇ (pipj) dS (2.31)

where the first component on the right-hand side represents the rate of change of

motion due to hydrodynamic forces (as given by Jeffery’s equation), and the sec-

ond component represents effects due to rotary diffusion. Jeffery’s component of

the second-order orientation tensor is rewritten using the unit vector derivatives in

Equation (2.7) along with the chain rule to yield the well known expression for the

hydrodynamic effects on aij as

∮

S2
ṗhψ ·∇ (pipj) dS = −1

2
ωikakj +

1

2
aikωkj +

1

2
λ (γ̇ikakj + aikγ̇kj − 2γ̇klaijkl) (2.32)

where fiber collisions have no effect. Observe that the final term in Equation (2.32)

contains the fourth-order orientation tensor aijkl, therein introducing the classical

closure dilemma. To alleviate the need for aijkl this higher order orientation tensor

is typically approximated as a function of a lower ordered orientation tensor. This

problem is not unique to polymer composite flow, but also appears in crystalline

polymer flow [48,49], crack fabric tensors [50], and turbulent flow [51].

The integration associated with the rotary diffusion on the right hand side of

Equation (2.31) can be rewritten using the chain rule for gradients. After much
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simplification (see e.g. [45]) along with the Laplacian in spherical coordinates from

Equation (2.10) and the Kronecker Delta of Equation (2.8), the second term on the

right hand side of Equation (2.31) simplifies to

−
∮

S2
∇ (Drψ) · ∇ (Bij) dS =

∮

S2
Drψ (2δij − 6pipj) dS (2.33)

The equation of motion for the second-order orientation tensor is readily obtained by

combining Equations (2.32) and (2.33) with Equation (2.31) to obtain

Daij

Dt
= −1

2
ωikakj +

1

2
aikωkj +

1

2
λ (γ̇ikakj + aikγ̇kj − 2γ̇klaijkl)

+

∮

S2
Drψ (2δij − 6pipj) dS (2.34)

Notice the equation of motion for aij is, at the least, a function of the fourth-

order orientation tensor aijkl. When rotary diffusivity Dr has no directional

bias, the integration is easily written in terms of the orientation tensors, i.e.

∮
S2 Drψ (2δij − 6pipj) dS = Dr (2δij − 6aij). For the development of the fitted clo-

sures, the rotary diffusivity is assumed to be of the form proposed by Folgar and

Tucker [11] given by Dr = CI ||γ̇|| where CI is the empirically determined interaction

coefficient, and ||γ̇|| is the scalar magnitude of the strain rate tensor discussed in

Equation (2.21). The resulting equation of motion of the second-order orientation

tensor with the Folgar and Tucker model for rotary diffusion is written concisely as

Daij

Dt
=−1

2
ωikakj+

1

2
aikωkj+

1

2
λ (γ̇ikakj+aikγ̇kj−2γ̇klaijkl)+CI ||γ̇||(2δij− 6aij) (2.35)

The time required to compute the evolution of the second-order orientation tensor

is significantly less than the computational time required to evolve ψ (θ, φ, t) with

Equation (2.25) once an appropriate method is selected to approximate the fourth-

order orientation tensor aijkl.
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2.2.5 Equation of Motion for aijkl

A similar derivation as that outlined above for the equation of motion of the second-

order orientation tensor can be performed for the equation of motion for the fourth-

order orientation tensor. Assuming the Folgar and Tucker model for diffusion, the

equation of motion for the fourth-order orientation tensor is expressed as

Daijkl

Dt
= −1

2
(ωim amjkl − aijkm ωml + ωjm aiklm − aijlm ωmk)

+
1

2
λ (γ̇im ajklm + γ̇jm aiklm + γ̇km aijlm + γ̇lm aijkm − 4γ̇mn aijklmn)

+CI γ̇ [−20aijkl + 2 (aijδkl + aikδjl + ailδjk + ajkδil + ajlδik + aklδij)](2.36)

Note that Equation (2.36) is a modification of that proposed by Advani and Tucker [6]

as it includes the correction with the rate of deformation and vorticity tensors as

proposed by Altan et al. [52].

2.2.6 Orientation Closure Overview

Unfortunately, the evolution equation of any even-ordered orientation tensor requires

the next higher even-ordered orientation tensor, i.e. the solution of aij requires aijkl

in Equation (2.35) and the solution of aijkl from Equation (2.36) requires aijklmn.

To avoid solving higher order tensor evolution equations, closure approximations are

introduced to represent a higher order tensor in terms of lower ordered tensors. A

fourth-order closure may be expressed as

aijkl ≈ Fijkl (amn) (2.37)

where Fijkl is a function of the second-order tensor aij. A closure of the sixth-order

orientation tensor may be written in a similar manner as

aijklmn ≈ Gijklmn (aopqr) (2.38)
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where Gijklmn represents a function of the fourth-order orientation tensor.

The fourth-order quadratic closure ãijkl is the simplest of the fourth-order closures

and is exact for highly aligned distributions [48]

ãijkl = aijakl (2.39)

Although the quadratic closure is frequently used in conjunction with Advani and

Tucker’s hybrid closure [6], the quadratic closure does not obey the symmetry re-

quirements for a fourth-order orientation tensor in Equation (2.12), i.e. ãijkl 6=

ãilkj ∀ i, j, k, l. As a result, the hybrid closure, which contains the quadratic clo-

sure, also does not obey the symmetries of Equation (2.12). Even with that being

known, the hybrid closure is still regularly used in many process simulations of short-

fibers [36, 37] perhaps due to the simplicity of its evaluation. Note that even though

the hybrid closure is exact for perfectly aligned orientations of fibers and completely

random orientations of fibers, it overpredicts the actual alignment of fibers for all

other alignment states.

Cintra and Tucker [27] introduced the eigenvalue based fourth-order fitted closure

which provides a significant accuracy increase over previous analytic closures. There

exist several modifications to the Cintra and Tucker closure [33, 35, 49, 53], but the

fundamental basis remains unchanged. The natural closure of Verleye and Dupret

[54] and Dupret et al. [55] is formed from the general expression given by Lipscomb

et al. [14] for a fully symmetric fourth-order orientation tensor obtained from the

Cayley-Hamilton theorem in terms of a second-order orientation tensor through a

fitting process. The invariant based closure of Chung and Kwon [56] modifies the

natural closure of Dupret et al. to account for a range of fiber volume fractions

while removing the singularity issues found in the natural closure. Petty et al. [31]
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introduced the fully symmetric closure, a further enhancement to the natural closure,

and has been demonstrated to yield realizable behavior in Couette flow. Schache

[57] along with Smith et al. [58] developed the fourth-order neural-network based

closure, and demonstrated its effective use in simple flows of short-fibers. Recently,

Jack [59] and Jack and Smith [60] demonstrated, through the use of distribution

reconstruction functions, that current closures of the fourth-order orientation tensor

represent fiber orientation distribution functions nearly as accurately as does the

true fourth-order reconstruction of the distribution function. In other words, further

research on fourth-order closures is expected to yield only minor improvements in

accuracy over current methods. To obtain a significant increase in accuracy it becomes

necessary to investigate closures of higher-order orientation tensors.

The sixth-order closures of Doi [48], Advani and Tucker [6] and Altan et al. [61]

have been shown to over predict the alignment state, and tend to diverge from the

actual solution except in alignment states tending toward either a random or a per-

fectly aligned state (see e.g. Jack and Smith [60]). The sixth-order closure of Doi as

used by Altan et al. [61] is simply written as

ãijklmn ' aijklamnpp (2.40)

and is exact for perfectly aligned orientations, but in general flow conditions it over-

estimates the actual alignment of fibers (see e.g. [60]). The sixth-order linear closure

âijklmn from Advani and Tucker [6] given as

âijklmn =
1

693
[δijδklδmn + δikδjlδmn + · · · (15 total terms)]

− 1

99
[aijδklδmn + δijaklδmn + · · · (45 total terms)]

+
1

11
[aijklδmn + aijmnδkl + · · · (15 total terms)] (2.41)
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produces the exact solution for uniformly random fiber orientation states. The sixth-

order hybrid closure āijklmn given by Advani [3] and Advani and Tucker [6] is created

by forming an approximation that is more accurate over the range of possible orien-

tations. The sixth-order hybrid closure simply combines the sixth-order linear and

quadratic closures through a scalar measure of orientation f as

āijklmn ' (1− f) âijklmn + fãijklmn (2.42)

where f is zero for randomly orientated fibers and unity for perfectly aligned fibers.

The use of higher-order closures has been avoided, perhaps due in part to the

conclusion by Cintra and Tucker [27] that fiber orientation predictions using sixth-

order closures are less accurate than those based on current closures of the fourth-

order orientation tensor, despite requiring more computational efforts. Alternatively,

Altan et al. [52] state that lower- (e.g. fourth-) order approximations may result

in “... errors for complex flow fields, where both shear and elongational velocity

gradients exist in three unique planes. Therefore, higher-order approximations may

be required for the accurate description of suspension mechanics.” To date, the

investigation into higher order tensors, i.e. closures of the sixth-order or higher,

has yet to yield acceptable results for injection molding processes of concentrated

suspensions of fibers [6, 52, 61–63].

In the following chapter, several new fitted sixth-order closures will be introduced.

The sixth-order fitted invariant based closure INV6 of Jack and Smith [38] will be

demonstrated to more accurately predict the second-order orientation tensor than

simulations that employ existing fourth-order and sixth-order closures. Additionally,

it will be shown that the sixth-order INV6 closure more accurately represents the

distribution function of fibers than any of the current closure methods.
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2.3 Material Stiffness Predictions

Fiber orientation predictions from polymer flow simulations are often used to compute

the material properties of the finished composite part. Material properties such as

mechanical strength and stiffness are strongly dependant on the orientation of the

fibers in a molded part [3,10,23,29,36,37,52,55,64–69]. In general, the tensile strength

and modulus are higher where significant fiber alignment occurs [3,10,66,70]. Several

theories have been developed to compute the mechanical properties of a short fiber

composite once fiber orientation is known. Although there is some disagreement in the

current theories, they all use a basic two step procedure. The first step estimates the

properties of the unidirectional short-fiber reinforced composite [6,10,66,71–74], and

the second step averages the properties according to the fiber orientation distribution

function [3, 23, 66, 71, 75–79]. The second step is the focus of several of the following

chapters, and will be discussed later in detail.

The computation of unidirectional material properties such as Young’s Modulus,

Poisson’s Ratio and Shear Modulus begins with Hooke’s Law [70]

εij = Sijklσkl σij = Cijklεij (2.43)

where εij represents the strain tensor, σkl represents the stress tensor, Sijkl is the

fourth-order compliance tensor, and Cijkl is the fourth-order stiffness tensor. Note

that the stiffness tensor, Cijkl is the inverse of the compliance tensor, Sijkl.

Tucker and Liang [80] review and discuss micromechanics models that are com-

monly used to calculate the elasticity tensor for unidirectionally aligned short-fiber

composites. Their review includes dilute suspensions where elastic properties are

based on Eshelby’s equivalent inclusions [81], the Mori-Tanaka model [82], the Halpin-

Tsai equations [70], the bound interpolation model of Lielens [83], and several others.
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All of the models included in [80] are written in terms of the volume fraction of

fibers Vf , Young’s modulus and Poisson’s ratio of the fiber, Ef and νf , respectively,

Young’s modulus and Poisson’s ratio of the matrix, Em and νm, respectively, and

the fiber aspect ratio, ar. Each of the various stiffness predictions investigated by

Tucker and Liang yield five independent properties for perfectly aligned fibers along

the x1 axis. These properties are typically chosen to be E1, E2, G12, G23 and ν12

which are, respectively, Young’s modulus in the x1 direction, Young’s modulus in

the x2 direction, shear modulus in the x1 − x2 plane, shear modulus in the x2 − x3

plane, and Poisson’s ratio on the x1 face in the x2 direction. Tucker and Liang con-

cluded that the Halpin-Tsai equations provide reasonable estimates for stiffness, with

the best predictions coming from the Mori-Tanaka model and the bound interpo-

lation model of Lielens. In this thesis, the Halpin-Tsai equations are employed to

obtain the unidirectional material properties for simplicity in computations, but the

reader is encouraged to consider either the Mori-Tanaka model or the Lielens method

in actual part simulations. The Halpin-Tsai equations have seen extensive use in

fiber-reinforced composites with isotropic fibers (see e.g. [6,7,66,71]), and have been

experimentally shown to be valid for volume fractions up to 70%.

For a unidirectional fiber distribution aligned along the x1 axis, the stiffness tensor

Cijkl may be written as the 6 × 6 matrix [C] in contracted notation as a function of

the five previously discussed material constants as [9, 10,84]

[C]=




1
E1

−ν12

E1

−ν12

E1
0 0 0

−ν12

E1

1
E2

−ν23

E2
0 0 0

−ν12

E1

−ν23

E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12




−1

(2.44)

where ν23 is substituted in place of E2

2G23
− 1 for simplicity. In Equation (2.44), and
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throughout this paper, contracted notation is used to relate material property ma-

trices (i.e., [C]) to material tensors (i.e., Cijkl) in the usual manner. For example,

contracted notation replaces indices of 11, 22, and 33 with 1, 2 and 3 respectively,

indices of 23 and 32 are replaced by 4, indices of 13 and 31 are replaced by 5, and

indices of 12 and 21 are replaced by 6, i.e., C2213 can be written as C25 in contracted

notation. The material stiffness tensor given in Equation (2.44) may be used to rep-

resent the corresponding stiffness tensor for the unidirectional composite with the

material parameters, E1, E2, E3, etc. of Equation (2.44) being determined from the

Halpin-Tsai equations listed in Table 2.1, where the shear modulus G and bulk mod-

ulus K for the matrix (or fiber) are related to Young’s Modulus and Poisson’s Ratio

of the matrix (or fiber) by [9, 10,84,85]

G =
E

2 (1 + ν)
K =

E

3 (1− 2ν)
(2.45)

Wright [66] and Advani [3] provide expressions for computing unidirectional mate-

rial properties from the orientation tensors of Equation (2.11). They consider a tensor

property T (p) that is associated with the unidirectional microstructure aligned along

the direction of p. If T is assumed to be transversely isotropic with p as the axis of

symmetry, then the orientation average of the tensor T is given as

〈T〉 =

∮

S2
T (p) ψ (p) dS (2.46)

Both Wright [66] and Advani [3] state that a fourth-order property tensor that has

the symmetries of a transversely isotropic tensor must take the following form

Tijkl(p) = B1 (pipjpkpl)+B2 (pipjδkl+pkplδij)

+ B3 (pipkδjl+piplδjk+pjplδik+pjpkδil)+B4 (δijδkl)+B5 (δikδjl+δilδjk)(2.47)
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Table 2.1: Halpin-Tsai Equations for a unidirectional composite.

Material Parameter ζ η

E1 = Em

(
1+ζηVf

1−ηVf

)
ζ = 2ar η =

Ef /Em−1

Ef /Em+ζ

E2 = Em

(
1+2ηVf

1−ηVf

)
η =

Ef /Em−1

Ef /Em+2

E3 = E2

ν12 = νfVf + νm (1− Vf )

G12 = Gm

(
1+ζηVf

1−ηVf

)
ζ = 1 + 40V 10

f η =
Gf /Gm−1

Gf /Gm+ζ

G13 = G12

G23 = Gm

(
1+ζηVf

1−ηVf

)
ζ = Km/Gm

Km/Gm+2
η =

Gf /Gm−1

Gf /Gm+ζ

ν23 = −1 + E2

2G23

where the Bm, m ∈ {1, 2, . . . , 5} are scalar constants estimated from independent

components of the associated transversely isotropic elasticity tensor. From Equation

(2.11) and Equation (2.47), fourth-order tensor properties may be obtained as [3,66]

〈Tijkl〉 = B1 (aijkl) + B2 (aijδkl + aklδij) + B3 (aikδjl + ailδjk + ajlδik + ajkδil)

+B4 (δijδkl) + B5 (δikδjl + δilδjk) (2.48)

Recall that the second-order orientation tensor may be written solely in terms of

the fourth-order orientation tensor using Equation (2.15). Therefore, the orientation

average of the fourth-order tensor is determined by the fourth-order orientation tensor

aijkl and the underlying unidirectional tensor δij. The relationship between the five

coefficients Bi and the five independent components of the stiffness tensor of Equation
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(2.44) is [3]




B1

B2

B3

B4

B5





=





C11 + C22 − 2C12 − 4C66

C12 − C23

C66 + 1
2
(C23 − C22)
C23

1
2
(C22 − C23)





(2.49)

Currently in the literature, there does not exist a method for computing the ma-

terial properties from the distribution function of fibers ψ (θ, φ). Additionally, the

calculations in Equations (2.48) provide the orientation average of a transversely

isotropic stiffness tensor but do not address property variation. Recognizing the sta-

tistical nature of fiber orientations within the composite, commonly defined through

the fiber orientation probability distribution function, an analytical function will be

developed in later chapters to predict both the expectation and variance of the ma-

terial stiffness tensor from the probability distribution function of fibers.

2.4 Spherical Harmonic Reconstruction

Reconstructions of the fiber orientation probability distribution function provide a

quantitative means for assessing the effect of using closure approximations when rep-

resenting ψ (θ, φ) [6, 60]. Onat [86, 87] provided a reconstruction of the distribution

function ψ (θ, φ) as

ψ (θ, φ) = f0 (θ, φ) V0 + fij (θ, φ) Vij + fijkl (θ, φ) Vijkl + · · · (2.50)

where f0 (θ, φ), fij (θ, φ), fijkl (θ, φ), · · · are referred to as the orthogonal Fourier basis

functions and V0, Vij, Vijkl, · · · are labeled the Fourier coefficients with i, j, k, l, . . . ∈

{1, 2, 3}. Onat’s reconstruction has been used to describe fiber distributions under

rigid body rotations of a material, but little information is given as to expansions

beyond sixth-order. When Fourier basis reconstructions up to the sixth-order are
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used, Equation (2.50) can be written exclusively in terms of the orientation tensors

(see e.g. [86,87] for the second- and fourth-order expansion, and [60] for the extension

to the sixth-order). Unfortunately, expressions for expansions of eighth-order and

higher were not included in Onat’s original and subsequent works. To the best of our

knowledge, these higher-order terms have yet to be defined and are instead described

in terms of the conditions that the higher order expansions must satisfy.

To facilitate a derivation for the statistical behavior of the material stiffness tensor,

it is necessary to develop a general expression for the tensors appearing in Equation

(2.50). It has been shown by Gelfand [88] that any arbitrary real function defined

on S2 expanded about a fixed point, may be resolved into irreducible representations

forming a complete orthogonal system, which is often called a Laplace series or a

generalized Fourier series. In general, the Laplace series states that any real function

(such as the fiber orientation distribution function ψ (θ, φ)) where the square of the

modulus is integrable over the surface of the sphere (i.e.,
∮
S2 |ψ (θ, φ) |2dS exists and

is finite), may be expanded as a series of complex spherical harmonics. The Laplace

series for ψ (θ, φ) is thus written as

ψ (θ, φ) =
∞∑

l=0

αl (θ, φ) (2.51)

where each αl (θ, φ) is within the invariant subspace for an irreducible representation

[88], i.e., there is no subspace of S2 in which the representation αl (θ, φ) remains

invariant. Each of these invariant subspaces are formed by the given order spherical

functions as

αl (θ, φ) =
l∑

m=−l

Cm
l Y m

l (θ, φ) (2.52)

where the set {Y m
l (θ, φ) : |m| ∈ N, l ∈ N, |m| ≤ l} form an orthogonal system on the

unit sphere, N is the set of integer numbers N = {1, 2, . . . , N}, and Y m
l (θ, φ) are the
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lth order complex spherical harmonic functions given as

Y m
l (θ, φ) =

1√
4π

eimφPm
l (cos θ) (2.53)

where i is the imaginary unit equal to the square root of -1, and the functions

Pm
l (cos θ) are the associated Legendre polynomial solutions to the Legendre differ-

ential equation given as

Pm
l (µ) = (−1)m

√
2l + 1

2

(l −m)!

(l + m)!

1

2l · l!
(
1− µ2

)m/2 dm+l (µ2 − 1)
l

dµm+l
(2.54)

It can be shown that the spherical harmonics satisfy the orthogonality condition [88],

∮

S2
Y m

l (θ, φ) Y
m′

l′ (θ, φ) dS = δmm′δll′ (2.55)

for all {m,m′, l, l′ : |m|, |m′|, l, l′ ∈ N, |m| ≤ l, |m′| ≤ l′} and δmm′ is the Kronecker

delta such that δmm′ = 0, ∀m 6= m′, otherwise δmm′ = 1. The process to deter-

mine the coefficients Cm
l from Equation (2.52) is similar to that of determining the

coefficients in a Fourier Series. Multiplying the function g (θ, φ) with Y
m′

l′ (θ, φ), the

complex conjugate of Y m′
l′ (θ, φ), and integrating over the unit sphere, the coefficient

Cm
l is determined with the orthogonality condition from Equation (2.55) as

∮

S2
ψ (θ, φ) Y

m′

l′ (θ, φ) dS =

∮

S2

( ∞∑

l=0

l∑

m=−l

Cm
l Y m

l (θ, φ)

)
Y

m′

l′ (θ, φ) dS

=
∞∑

l=0

l∑

m=−l

Cm
l

∮

S2
Y m

l (θ, φ) Y
m′

l′ (θ, φ) dS =
∞∑

l=0

l∑

m=−l

Cm
l δmm′δll′ = Cm

l (2.56)

The form of Equation (2.52) along with the integral definition of complex variables

given in Equation (2.56) is somewhat cumbersome, and is simplified as

αl (θ, φ) =
l∑

m=0

βm
l (θ, φ) (2.57)
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where the function βl (θ, φ) is defined for 0 ≤ m ≤ l as

βm
l (θ, φ) ≡

(
1− 1

2
δm0

) (
Cm

l Y m
l (θ, φ) + C−m

l Y −m
l (θ, φ)

)
(2.58)

such that when m = 0, β−0
l (θ, φ) = β0

l (θ, φ). Using the Euler identities, the functions

βm
l (θ, φ) are simplified as

βm
l (θ, φ) =

(
1− 1

2
δm0

)(
1

π
Pm

l (cos θ) cos (mφ)

∮

S2
ψ (θ, φ) Pm

l (cos θ) cos (mφ) dS

+
1

π
Pm

l (cos θ) sin (mφ)

∮

S2
ψ (θ, φ) Pm

l (cos θ) sin (mφ) dS
)

(2.59)

It then follows for example that α0 (θ, φ) can be written succinctly as

α0 (θ, φ) = β0
0 (θ, φ) =

(
1− 1

2
δ00

)
1

π
P 0

0 (cos θ)

∮

S2
ψ (θ, φ) P 0

0 (cos θ) dS

=
1

2

1

π

1√
2

∮

S2
ψ (θ, φ)

1√
2
dS =

1

4π

∮

S2
ψ (θ, φ) dS =

1

4π
(2.60)

where it is recognized that the integral of the distribution function over all possible

orientations is equal to one, i.e.
∮
S2ψ (θ, φ) dS = 1 (see Equation (2.5)). Observe,

the above expression is the same as the zeroth-order term from Onat’s reconstruction

[86,87] where V0f0 (θ, φ) = 1
4π

.

The second-order spherical function α2 (θ, φ) is the summation of the three terms,

α2 (θ, φ) = β2
0 (θ, φ)+β2

1 (θ, φ)+β2
2 (θ, φ) which can be derived using Equation (2.59),

and after some simplification

β0
2 (θ, φ) =

5

32π
(1 + 3 cos(2θ)) (3a33 − 1) (2.61)

β1
2 (θ, φ) =

15

4π
cos θ sin θ (a13 cos φ + a23 sin φ) (2.62)

β2
2 (θ, φ) =

15

16π
sin2 θ ((a11 − a22) cos(2φ) + 2a12 sin(2φ)) (2.63)

where Equation (2.11) is used to replace
∮
S2 pi (θ, φ) pj (θ, φ) ψ (θ, φ) dS with aij, the

second-order orientation tensor. Summing the terms from Equations (2.61)-(2.63)
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provides the form for the spherical function α2 (θ, φ). A careful comparison shows

that α2 (θ, φ) is identical to the second-order reconstruction function used by Onat

for Vijfij (θ, φ) and may be written as

α2 (θ, φ) =
15

8π

(
pi (θ, φ) pj (θ, φ)− 1

3
δij

) (
aij − 1

3
δij

)
(2.64)

Similarly, the fourth-order function α4 (θ, φ) can be constructed with Equa-

tion (2.59), and is identical to the fourth-order Onat reconstruction function,

Vijklfijkl (θ, φ) [86,87] with each function βm
4 (θ, φ), m ∈ {0, 1, 2, 3, 4}, given as

β0
4 (θ, φ) =

9

2048π
(9 + 20 cos (2θ) + 35 cos (4θ)) (3− 30a33 + 35a3333) (2.65)

β1
4 (θ, φ) =

45

128π
(9 cos θ + 7 cos (3θ)) sin θ (cos φ (7a1333 − 3a13)

+ sin φ (7a2333 − 3a23)) (2.66)

β2
4 (θ, φ) =

45

128π
(5 + 7 cos (2θ)) sin2 θ (cos (2φ) (7 (a1133 − a2233)− (a11 − a22))

+ sin (2φ) (14a1233 − 2a12)) (2.67)

β3
4 (θ, φ) =

315

32π
cos θ sin3 θ (cos (3φ) (4a1113 − 3a13 + 3a1333)

+ sin (3φ) (3a1123 − a2223)) (2.68)

β4
4 (θ, φ) =

315

256π
sin4 θ (cos (4θ) (8a1111 − 8a11 + 8a1133 + 1− 2a33 + a3333)

+ sin (4φ) (8a1112 − 4a12 + 4a1233)) (2.69)

Note that when l is odd, the functions αl (θ, φ) are zero since the fiber orien-

tation distribution function is symmetric, ψ (p) = ψ (−p). By recognizing that

f0 (θ, φ) V0 = α0 (θ, φ), fij (θ, φ) Vij = α2 (θ, φ), and fijkl (θ, φ) Vijkl = α4 (θ, φ), and

setting fij···2N (θ, φ) Vij···2N = α2N (θ, φ) for {N : N ∈ N, N ≥ 3} the full reconstruc-

tion of Onat can be realized succinctly as that of Equation (2.51) or (2.57). Although

the notation of the spherical harmonic expansion does not lend itself to the succinct
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notation of Onat’s expansion which allows easy rotations, it does provide a means

for constructing an expansion up to a desired order. Additionally, it is essential in

the derivation given in Chapter 5 to fully understand the construction for all terms

in the expansion and not just the first few.

An nth order approximate reconstruction of the fiber orientation distribution can

be given as

ψ̂n (θ, φ) =
n∑

l=0

αl (θ, φ) (2.70)

where n ∈ {0} ∪ N, and for each {l : l = 2m + 1,m ∈ N} the function αl (θ, φ) is

zero. To asses the error between the distribution function ψ (θ, φ) and the nth order

reconstruction of the distribution function ψ̂n, the following error metric is employed

(see e.g. [59, 60] for a full discussion)

ERRn =

√∮

S2

(
ψ(θ, φ, to)− ψ̂n(θ, φ, to)

)2

dS (2.71)

where the integration is performed over the unit sphere at the time to. Equation

(2.71) may be used to form an nth order truncation limit from the exact nth order

orientation tensors in Equation (2.11). To form the truncation limit for a particular

flow field it is necessary to first numerically evaluate the exact distribution function

ψ (θ, φ, t). The orientation tensors are then computed from ψ (θ, φ, t) with Equation

(2.11) and the distribution function is reconstructed to the desired order with Equa-

tion (2.70). This reconstructed distribution function ψ̂n (θ, φ, t) is then used with the

exact distribution function ψ (θ, φ, t) in Equation (2.71) to form ERRn. When the

exact orientation tensors aij, aijkl, . . . computed using Equations (2.25) and (2.11) are

used in Equation (2.71) a truncation limit of the reconstruction is obtained. Alterna-

tively, when the closures discussed above and in the following chapters are employed
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to compute any of the orientation tensors that compose the Laplace series reconstruc-

tion in Equation (2.70), Equation (2.71) can be used to indicate the error introduced

by the closure. Note that any nth order closure of an orientation tensor can only be as

accurate in representing the distribution function as the exact nth order reconstruc-

tion. As discussed in Jack and Smith [60] existing fourth-order closures approach the

fourth-order reconstruction limit, therefore any significant increase in the distribution

function representation is expected to require a sixth- or higher-order representation.
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CHAPTER 3

SIXTH-ORDER CLOSURE METHODS FOR

MODELING SHORT-FIBER SUSPENSIONS

Orientation tensors experience widespread use in short-fiber reinforced injection mold-

ing simulations of industrial polymer composite products. As described in Chapter

2, the evolution equation for each even-order orientation tensor is written in terms of

the next higher even-order orientation tensor necessitating the use of a closure. It has

been shown that current fourth-order closures approach the fourth-order truncation

limit when representing the fiber orientation distribution function (see, e.g. Jack and

Smith [60]), ergo an increase in accuracy necessitates the development of a robust

sixth-order closure. The following chapter outlines three fitted sixth-order closures.

The two preliminary sixth-order fitted closures presented in Jack and Smith [39], are

expressed in terms of the second-order orientation tensor where it is assumed that

the orthogonal planes of material symmetry of the sixth-order orientation tensor are

defined by the principal directions of the second-order orientation tensor. The sixth-

order tensor components are fit to either eigenvalues or invariants of the second-order

orientation tensor over numerous flow conditions and interaction coefficients. The

results from the two preliminary models illustrate the effect that sixth-order closures

may have in surpassing accuracy limits over the existing fourth-order closures, but

fail to provide the desired effects throughout the range of flows investigated. The

final investigated closure is that of the sixth-order invariant based fitted closure INV6

appearing in Jack and Smith [38]. The INV6 is formed from a general expression for

a fully symmetric sixth-order tensor written as a function of a fourth-order orienta-

tion tensor. The components of this sixth-order closure are fit to a linear polynomial
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of the fourth-order orientation tensor invariants whose coefficients are computed by

fitting the sixth-order components obtained from the closure to those computed from

distribution function simulations obtained with the Folgar and Tucker model for fiber

interaction [11] from a variety of flow fields and fiber interaction coefficients. The

sixth-order INV6 closure is shown to more accurately predict the second-order orien-

tation tensor than simulations that employ existing fourth-order and the preliminary

sixth-order closures. Additionally, it is shown that the sixth-order INV6 closure more

accurately represents the fiber orientation probability distribution function than any

current closure method.

3.1 Sixth-Order Fitted Closures from aij

The first two sixth-order fitted closures considered here demonstrate accuracy im-

provements in the representation of the fiber orientation distribution function that

may be attained through higher-order closures. These two new closures identified

here as EBF6 and IBF6, appear in Jack and Smith [39]. The closures provide a means

for computing aijklmn from aij, but have been shown to diverge into non-physical

orientation states under some flow conditions.

3.1.1 Eigenvalue Based Sixth-order Fitted Closure

The eigenvalue-based sixth-order fitted closure (EBF6) assumes (1) that the principal

directions of the second-order orientation tensor correspond with the planes of or-

thogonal symmetry of the sixth-order orientation tensor, and (2) that each principal

component of the sixth-order orientation tensor is a function of the independent prin-

cipal components of the second-order orientation tensor and the principal components

of the fourth-order orientation tensor.
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The sixth-order orientation tensor has 729 components, 28 of which are indepen-

dent due to the symmetries in Equation (2.12). If it is assumed that the principal

frame of the second-order orientation tensor aij forms the planes of orthogonal sym-

metry for both the fourth-order orientation tensor aijkl and the sixth-order orientation

tensor aijklmn, then only ten nonzero components of aijklmn remain

a(111111) a(111122) a(111133) a(112222) a(112233)

a(113333) a(222222) a(222233) a(223333) a(333333) (3.1)

where (· · · ) indicates that components of aijklmn are given in the principal reference

frame of aij. Using Equation (2.13) for the relation between aij, aijkl and aijklmn, the

number of independent components in a(ijklmn) reduces further from those listed in

Equation (3.1) to just four (see e.g. [59]). The EBF6 closure is formed by arbitrarily

selecting the four unknown independent components to be a(111111), a(111122), a(222222),

and a(333333).

The second-order orientation tensor aij has three eigenvalues, a(1), a(2), and a(3).

From Equation (2.13) the trace of aij is 1, and selecting a(1) ≥ a(2) ≥ a(3) there

remain only two independent principal values of the second-order tensor, a(1) and

a(2). The four independent components from Equation (3.1) are found by fitting

them to a second-order polynomial of the independent eigenvalues of the second-order

orientation tensor




a(111111)

a(111122)

a(222222)

a(333333)


 =




α11 α12 α13 α14 α15 α16

α21 α22 α23 α24 α25 α26

α31 α32 α33 α34 α35 α36

α41 α42 α43 α44 α45 α46








1
a(1)

a(2)

a(1)a(2)

a2
(1)

a2
(2)





(3.2)

where αij are coefficients determined during the fitting procedure.
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The EBF6 closure may be computed once aij is known, where aij is given in a

reference frame not necessarily corresponding to the principal frame of aij. First,

the eigenvalues a(1) and a(2) are computed and the rotation tensor is formed from the

unit normalized eigenvectors of the second-order tensor (see e.g. Knowles [89]). Next,

the principal components of the sixth-order orientation tensor a(ijklmn) are computed

from Equation (3.2). Finally, the sixth-order orientation tensor in the principal frame

a(ijklmn) is rotated into the reference frame yielding aijklmn for the given aij. Note that

the rotation of a sixth-order orientation tensor is not trivial. A sixth-order closure

formed in the principal frame will require the rotation of 729 tensor components (28

if tensor symmetries are accounted for) which is a significant computational cost.

3.1.2 Invariant Based Sixth-order Fitted Closure

To avoid the costly tensor rotations, an invariant-based sixth-order fitted closure may

be formed in a similar manner to the fourth-order natural closure of Dupret et al. [55]

and Chung and Kwon [56]. The sixth-order invariant based fitted closure (IBF6) is

formed by taking a general expression for a fully symmetric sixth-order tensor aijklmn

in terms of the second-order tensor aij and the unit tensor δij. The form of the

invariant based sixth-order closure is defined by writing all possible combinations of

a second-order tensor to define an approximation of aijklmn as

aIBF6
ijklmn = β1S (δijδklδmn)+β2S (δijδklamn)+β3S (δijδklampapn)+β4S (δijaklamn)

+ β5S (δijaklampapn)+β6S (δijakpaplamqaqn)+β7S (aijaklamn)

+ β8S (aijaklampapn)+β9S (aijakpaplamqaqn)+β10S (aipapjakqaqlamrarn) (3.3)

where the expressions βi, i = 1, 2, ...10 are functions of the second-order orientation

tensor, and the operator S represents the symmetric part of its argument which can
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be expressed for a general sixth-order tensor Bijklmn as

S (Bijklmn) =
1

720
(Bijklmn + Bklijmn + Bjiklmn + · · · (720 total terms)) (3.4)

Employing the relations between second-, fourth- and sixth-order orientation tensors

from Equation (2.12), three of the ten βi in Equation (3.3) can be solved in terms

of the remaining seven. In this work, β1, β2 and β3 are selected as dependent to

avoid singularity issues (see e.g. [30, 54]) since arbitrarily selecting other combina-

tions of three dependent βi terms may lead to singularities in the solution at some

orientation states (i.e. perfect alignment or completely random in space). After some

mathematical manipulation using the normalization and symmetry conditions of the

second-order orientation tensor given in Equations (2.12) and (2.13), respectively, ex-

pressions for the dependant βi functions can be expressed in terms of second and third

invariants of the second-order orientation tensor (see e.g. Boresi and Chong [90]), II

and III, respectively, as

β1 = − 2

21
+

(
− 4

35
II +

3

35

)
β4 +

(
− 8

35
II− 2

5
III +

3

35

)
β5

+

(
−12

35
II− 12

35
III +

8

35
II2 +

3

35

)
β6 +

(
− 8

35
II− 8

35
III +

2

21

)
β7

+

(
−12

35
II− 8

35
III +

16

105
II2 +

2

21

)
β8

+

(
−16

35
II− 4

21
III +

16

35
II2 +

8

35
II III +

2

21

)
β9

+

(
−4

7
II− 4

35
III +

32

35
II2 +

8

35
II III− 8

35
III2 − 32

105
II3 +

2

21

)
β10 (3.5)

β2 =
5

7
− 2

7
β4 +

(
6

7
II− 1

7

)
β5 +

(
4

7
II− 4

7
III

)
β6 +

(
4

7
II− 1

7

)
β7

+

(
16

21
II− 4

7
III− 2

21

)
β8 +

(
16

21
II− 4

7
III− 16

21
II2 − 1

21

)
β9

+

(
4

7
II− 4

7
III− 8

7
II2 +

8

7
II III

)
β10 (3.6)
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β3 = −4

7
β4 − 5

7
β5 +

(
8

7
II− 6

7

)
β6 − 4

7
β7 +

(
4

7
II− 13

21

)
β8 +

(
4

3
II− 4

7
III− 2

3

)
β9

+

(
16

7
II− 8

7
III− 8

7
II2 − 5

7

)
β10 (3.7)

Since a closed form solution to equate the second- and sixth-order orientation tensor

exists only for perfectly aligned and random orientations, a fitting procedure is used

to form the remaining functions βi for a wide range of fiber orientations. The IBF6

closure assumes that β4 through β10 are functions of the second- and third-invariant of

the second-order orientation tensor, recognizing that the first-invariant is identically

equal to 1 by the normalization property given in Equation (2.13). The 7 functions

β4 through β10 are fit to a third order polynomial of the second- and third-invariant

of the second-order orientation tensor as

βi = Bi1 + Bi2II + Bi3III + Bi4II
2 + Bi5II III + Bi6III

2 + Bi7II
3

+Bi8II
2III + Bi9II III2 + Bi10III

3

i = 4, 5, . . . , 10 (3.8)

requiring the fitting of the 10× 7 = 70 parameters Bij. This number of fitted param-

eters is not much different than that used in other fourth-order closures such as the

orthotropic closure employed by VerWeyst [91] which contains 45 fitted parameters

and the invariant based closure of Chung and Kwon [56] which requires the fitting of

63 parameters. A third-order polynomial of the invariants of the second-order orien-

tation tensor is selected to diminish the number of fitted parameters while retaining

an accurate representation of the sixth-order orientation tensor.
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Figure 3.1: Eigenspace of possible orientations of the second-order orientation tensor.

3.1.3 Computed Results

As with previous fitted closures [27, 33, 56–58, 91], multiple flows are considered that

produce second-order tensors that span the eigenspace as shown in Figure 3.1. The

eigenvalues a(i) of the second-order orientation tensor are defined such that a(1) ≥

a(2) ≥ a(3) ≥ 0. Then recognizing that a(1) + a(2) + a(3) = 1, there are only two

independent eigenvalues of aij. Therefore all possible orientation states are contained

within the shaded region of Figure 3.1. To encompass as much of the eigenspace of the

second-order orientation tensor as possible, fourteen representative flows are selected.

Five of the flows are similar to those presented by Cintra and Tucker [27], three of the

flows are from Chung and Kwon [56], and the remaining six are variations of those

from Cintra and Tucker and from Chung and Kwon, selected to fill the eigenspace of

aij. The fourteen flows used here are:

1. Simple Shear, CI = 10−3, v1 = Gx2, v2 = v3 = 0
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2. Biaxial Elongation, CI = 10−3, v1 = Gx1, v2 = Gx2, v3 = −2Gx3

3. Uniaxial Elongation, CI = 10−3, v1 = 2Gx1, v2 = −Gx2, v3 = −Gx3

4. Shear Stretch A, CI = 10−3, v1 = −Gx1 + 10Gx2, v2 = −Gx2, v3 = 2Gx3

5. Shear Stretch B, CI = 10−3, v1 = −Gx1 + Gx2, v2 = −Gx2, v3 = 2Gx3

6. Simple Shear, CI = 10−2, v1 = Gx2, v2 = v3 = 0

7. Shear Stretch C, CI = 10−2, v1 = −Gx1 + 3.75Gx2, v2 = −Gx2, v3 = 2Gx3

8. Shear Stretch D, CI = 10−2, v1 = −Gx1 + 1.5Gx2, v2 = −Gx2, v3 = 2Gx3

9. Shear/Biaxial A, CI = 10−2, v1 = Gx1 + 2Gx3, v2 = Gx2, v3 = −2Gx3

10. Shear/Biaxial B, CI = 10−2, v1 = Gx1 + 2.75Gx3, v2 = Gx2, v3 = −2Gx3

11. Shear/Biaxial C, CI = 10−2, v1 = Gx1 + 1.25Gx3, v2 = Gx2, v3 = −2Gx3

12. Shear/Planar A, CI = 10−2, v1 = −Gx1 + 10Gx3, v2 = Gx2, v3 = 0

13. Shear/Planar B, CI = 10−2, v1 = −Gx1 + Gx3, v2 = Gx2, v3 = 0

14. Shear/Uniaxial, CI = 10−2, v1 = 2Gx1 + 3Gx3, v2 = −Gx2, v3 = −Gx3

where vi are the flow velocity components in the xi direction and G is a scaling param-

eter. Each fiber flow evolution starts from an isotropic orientation, often represented

as a(1) = a(2) = a(3) = 1/3. The distribution function ψ (θ, φ, t) is solved with Equa-

tion (2.25) through steady state using the finite difference technique of Bay [23] for

each of the fourteen representative flows. The eigenspace with the flows of CI = 10−2

are seen in Figure 3.2 and the eigenspace of the flows with CI = 10−3 are shown

in Figure 3.3. As demonstrated in the two figures, the fourteen representative flows

encompass much of the eigenspace of the second-order orientation tensor.

For most fitted closures, the selection of the representative orientation state is

taken at discrete time increments throughout the orientation evolution [27, 33, 56].

This tends to weigh the fitted solution more towards the steady state solution, while

neglecting the transient orientations. To avoid favoring a particular alignment state,

the eigenspace triangle in Figure 3.1 is divided into sub-regions, with one orientation
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Figure 3.2: Representative flows with an interaction coefficient of CI = 10−2 used in
the fitting of the preliminary sixth-order closures.
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Figure 3.3: Representative flows with an interaction coefficient of CI = 10−3 used in
the fitting of the preliminary sixth-order closures.
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Figure 3.4: Eigenspace containing the 428 representative orientation states.

state selected within each of the smaller regions. This is similar to the method used

in the eigenvalue based closure employed by VerWeyst [91] and the rational closure

of Chaubal and Leal [49]. Various discretizations of the eigenspace triangle were

considered where it was found that a minimum of 250 sub-regions were required

to yield satisfactory results. The fitting procedure given in the following section

employed 428 sub-regions that yield the orientation states shown in Figure 3.4.

The unknown coefficients αij of the eigenvalue based closure in Equation (3.2)

and Bij of the invariant based closure in Equation (3.8) are determined through a

fitting procedure that minimizes the difference between the true sixth-order orienta-

tion tensor aijklmn computed from the actual distribution function ψ (θ, φ, t), and the

sixth-order orientation tensor evaluated with a given closure formula. Note that the
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two closures are fit in slightly different manners. Determining a useful set of coeffi-

cients αij and Bij is a nontrivial procedure since the optimization procedure suffers

from local minima issues and is highly dependant on the selection of representative

flow fields and the flow history.

The fourth-order orientation tensor components from each of the different orien-

tation states are substituted into the EBF6 closure of Equation (3.2) and the IBF6

closure of Equation (3.3). For the EBF6 closure the fitted components of the sixth-

order orientation tensor aEBF6
ijklmn are compared with the sixth-order orientation tensor

obtained from the actual distribution aijklmn using Equation (2.11) to minimize the

cost function

χ2
EBF6

=

npts∑
N=1

3∑
i=1

3∑
j=i

3∑

k=j

(
aN

(iijjkk) − aN EBF6

(iijjkk))

)2

(3.9)

where npts represents the number of different orientation states over which the min-

imization is performed. Notice only the components of aijklmn that are assumed to

be non-zero in the principal frame of aij are used in the fitting for the EBF6 closure.

For the IBF6 closure, the 28 independent components of the sixth-order orientation

tensor aIBF6
ijklmn are tabulated and compared with the sixth-order orientation tensor

aijklmn obtained from the actual distribution function. Fitted components and the

components of the actual sixth-order orientation tensor define the cost function χ2
IBF6

to be minimized as

χ2
IBF6

=

npts∑
N=1

3∑
i=1

3∑
j=i

3∑

k=j

3∑

l=k

3∑

m=l

3∑
n=m

(
aN

ijklmn − aN IBF6
ijklmn

)2

(3.10)

Notice that the nonstandard summations in Equations (3.9) and (3.10) (i.e. j =

i, . . . , 3 not j = 1, . . . , 3) applies the summation over the 28 independent components

of the sixth-order orientation tensor only. The minimizations of Equation (3.9) and
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Table 3.1: Optimal Set of Coefficients for the EBF6 closure.

αi1 αi2 αi3 αi4 αi5 αi6

i = 1 0.202748 -0.255697 -0.710519 0.723147 1.040096 0.608822
i = 2 0.039026 -0.094871 -0.082023 0.423829 0.062962 -0.046934
i = 3 0.226678 -0.592443 -0.487907 0.939447 0.366080 1.191984
i = 4 1.041155 -1.887184 -2.028437 1.814210 0.847071 1.003185

Table 3.2: Optimal Set of Coefficients for the IBF6 closure.

B4j B5j B6j B7j B8j B9j B10j

j = 1 7.058430 -13.455559 6.454477 6.327924 -1.969256 -8.883780 5.472371
j = 2 -22.713077 30.725940 -9.383351 -6.965827 -1.305849 -2.275332 8.501474
j = 3 -6.056070 -1.578164 -5.930348 1.697995 1.835046 2.275327 7.068016
j = 4 0.973595 15.735807 -5.613790 3.535952 2.632386 1.356542 5.077645
j = 5 3.901555 2.836412 0.218869 3.341889 0.739824 -1.204312 -1.943925
j = 6 2.940500 2.119271 1.476051 3.474308 2.188826 1.381563 0.881585
j = 7 5.771155 5.469221 -1.974298 2.035038 -3.725924 -11.211195 -13.635644
j = 8 3.447005 2.442307 1.291376 3.316028 1.627336 0.518012 -0.084504
j = 9 0.865905 0.634756 0.451750 0.976714 0.634758 0.404470 0.255297
j = 10 0.098945 0.072333 0.050396 0.108356 0.073258 0.046699 0.031920

Equation (3.10) were performed using the software VisualDoc 4.0 [92], with the 24

parameters from Equation (3.2) for the EBF6 closure and the 70 parameters from

Equation (3.8) for the IBF6 closure. Optimal values of the fitted coefficients appear

in Table 3.1 for the EBF6 closure and Table 3.2 for the IBF6.

To evaluate the computational effort associated with these new sixth-order clo-

sures, second-order tensors aij from several flows are first computed from the distribu-

tion function evolution in Equation (2.25). Then fourth-order tensors are computed

using the orthotropic closure employed by VerWeyst et. al [53]. Sixth-order orienta-

tion tensors are then computed from the same second-order tensor components using

the EBF6 and the IBF6 closures described above. Due to computationally expensive

sixth-order tensor rotations, the EBF6 requires about 4.5 times the computational

effort of the VerWeyst closure. Conversely, the IBF6 has a 35% reduction in the
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computational cost when compared to the VerWeyst closure. This decrease is due in

large part to the costly tensor rotations required by the VerWeyst closure. In other

simulations the time required to solve Equation (2.36) with the IBF6 was found to

take about 2.9 times longer than the time required to solve Equation (2.35) using

the orthotropic closure of VerWeyst, whereas the EBF6 closure required nearly 10

times the computational effort. The increased computational costs result from the

calculation of the 14 independent aijkl components in Equation (2.36), whereas the

evolution of Equation (2.35) includes only 5 independent aij components.

3.1.4 Investigation of Results

The accuracy of the sixth-order fitted closures presented above is assessed using the

spherical harmonic reconstruction procedure of Equation (2.70) for several flows. All

closure results are compared to the solutions from the evolution of the distribution

function in Equation (2.25) (see e.g. Bay [23]), which is assumed here to be the true

solution of the orientation distribution function. Results are obtained by computing

the second-order orientation tensor aij with Equation (2.11) from ψ (θ, φ) evaluated

with Equation (2.25). Then sixth-order tensor components aEBF6
ijklmn and aIBF6

ijklmn are

computed from Equations (3.2) and (3.3) respectively. The approximate sixth-order

orientation tensors are then used to reconstruct the distribution functions ψ̂EBF6
6 and

ψ̂IBF6
6 , and finally the error metrics ERREBF6

6 and ERRIBF6
6 from Equation (2.71)

are computed.

The average error ERRn is defined over the transient solution ψ(θ, φ, t) as

ERRn =

∫ √∮
S2

(
ψ(θ, φ, t)− ψ̂n(θ, φ, t)

)2

dS dt

∆t
(3.11)

where ∆t is the range of time considered, typically taken from the initial time to a
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steady state orientation condition and ψ̂n is the reconstructed distribution function

from the orientation tensors as given in Equation (2.70). Truncation limits are se-

lected to assess the accuracy of closures since this approach provides a meaningful

comparison between closures of fourth- and sixth-order on the representation of the

fiber orientation distribution function (see e.g. Jack [59] and Jack and Smith [60]).

3.1.4.1 Simple Shear Flow

The first example considers simple-shear flow (e.g. flow condition #1 from above) with

an interaction coefficient of CI = 10−3 beginning from an initially random distribu-

tion of fibers. For reference, the second-order tensor components from the distribution

function evolution are given in Figure 3.5. Notice that the fibers begin from a random

distribution (a11 = a22 = a33 = 1/3), and obtain an orientation state where most of

the fibers tend to align along the x1 axis as seen by the large a11 component. The

errors in reconstruction ERR2, ERR4 and ERR6 are formed from the actual second-,

fourth- and sixth-order orientation tensors and appear in Figure 3.6. These represent

truncation limits that occur when higher-order data is ignored [60]. Note also that

ERR4 and ERR6, respectively, define accuracy limits when fourth- and sixth-order

closures are employed. For example, an ideal sixth-order closure could at best ap-

proach the line ERR6. From the distribution function evolution, the second-order

orientation tensors are computed. Then the sixth-order orientation tensors aEBF6
ijklmn

and aIBF6
ijklmn, are formed from the EBF6 and IBF6 closures, respectively. Then the

distribution function is reconstructed through Equation (2.70) and finally the errors

of reconstruction ERREBF6
6 and ERRIBF6

6 are formed from Equation (2.71). Notice

that throughout the transient solution shown in Figure 3.6, the error in reconstruc-

tion from both the EBF6 and IBF6 closures approach the sixth-order truncation limit
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ERR6, with the IBF6 closure performing slightly better than the EBF6 closure.

3.1.4.2 Shear Planar A Flow

The second example considers Shear/Planar A flow (e.g. flow condition #12 from

above) with CI = 10−2 which superimposes shearing along the x1-axis in the x3 direc-

tion and planar elongation in the x1-x2 plane. The fiber alignment is initially random

and exhibits a larger degree of fiber interaction than seen in the simple shear exam-

ple. Second-order orientation tensor components are plotted in Figure 3.7. Notice

for this example that alignment of the fibers begins in a manner similar to the exam-

ple considered above for simple shear flow, with the fibers quickly becoming aligned

along the x1 axis, but as steady state approaches the fibers tend to orient in the x1-x2

plane. From the second-order orientation tensor, the approximate sixth-order tensors

are computed with the EBF6 and IBF6 closures, and the error in reconstruction from

the closures are given in Figure 3.8. For Shear/Planar A, the IBF6 closure behaves

quite well in attaining the sixth-order truncation limit ERR6. One the other hand,

the EBF6 closure does not represent the distribution function as well as the IBF6

closure, but the error remains below the fourth-order truncation limit ERR4.

3.1.4.3 Average Reconstruction Error for Investigated Flows

The error in reconstruction is computed for all 14 flows in Section 3.1.3 used in the

fitting procedure described above. Instead of presenting transient plots for all the

flows, the average of the reconstruction error ERRN , as given in Equation (3.11), is

presented in Table 3.3 for the EBF6 closure and the IBF6 closure. Also given in Table

3.3 are the values ERR2, ERR4 and ERR6 computed from the orientation tensors

obtained from the distribution function evolution. These three values represent the
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Figure 3.5: Selected tensor components of aij for Simple-Shear for CI = 10−3.
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Figure 3.6: Transient error for Simple-Shear for CI = 10−3.
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Figure 3.7: Selected tensor components of aij for Shear/Stretch A for CI = 10−2.
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Figure 3.8: Transient error for Shear/Stretch A for CI = 10−2.
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Table 3.3: Comparison of ERR2, ERR4 and ERR6 to ERR
EBF6

6 and ERR
IBF6

6 over the
14 flows used in the fitting analysis.

Flow ERR2 ERR4 ERR6 ERR
EBF6

6 ERR
IBF6

6 %ERR
EBF6

6 %ERR
IBF6

6

1. 1.43× 100 1.15× 100 8.80× 10−1 9.68× 10−1 8.81× 10−1 10.00 0.14
2. 4.13× 10−1 3.53× 10−1 3.02× 10−1 3.23× 10−1 3.02× 10−1 6.97 0.03
3. 1.51× 101 1.46× 101 1.40× 101 1.41× 101 1.40× 101 0.82 0.01
4. 3.07× 100 2.72× 100 2.35× 100 2.42× 100 2.35× 100 3.08 0.20
5. 1.65× 101 1.61× 101 1.54× 101 1.56× 10−1 1.54× 101 0.90 0.01
6. 1.86× 10−1 8.92× 10−2 3.86× 10−2 4.72× 10−2 4.15× 10−2 22.08 7.51
7. 9.97× 10−1 6.91× 10−1 4.30× 10−1 5.29× 10−1 4.46× 10−1 22.81 3.58
8. 1.66× 100 1.28× 100 8.96× 10−1 9.02× 10−1 9.00× 10−1 0.70 0.49
9. 2.08× 10−1 1.35× 10−1 8.07× 10−2 9.20× 10−2 8.10× 10−2 13.99 0.34
10. 1.92× 10−1 1.20× 10−1 6.92× 10−2 8.09× 10−2 6.96× 10−2 16.79 0.57
11. 2.21× 10−1 1.47× 10−1 9.04× 10−2 1.01× 10−1 9.06× 10−2 11.87 0.21
12. 8.70× 10−2 4.05× 10−2 1.70× 10−2 2.97× 10−2 1.82× 10−2 74.62 7.02
13. 1.19× 100 8.66× 100 5.67× 10−1 6.06× 10−1 5.76× 10−1 6.79 1.49
14. 1.40× 100 1.03× 100 6.69× 10−1 6.98× 10−1 6.76× 10−1 4.43 1.04

limit of a second-, fourth- and sixth-order reconstruction. Notice the error in recon-

struction ERR
EBF6

6 from the EBF6 closure and ERR
IBF6

6 from the IBF6 closure is

always less than the fourth-order truncation limit ERR4 for all flows investigated. In

addition, the average error in reconstruction from the IBF6 closure is nearly the same

as the average error in reconstruction ERR6 from the exact sixth-order orientation

tensor. The percentage error in Table 3.3 is computed from

%ERR
closure
6 =

ERR
closure
6 − ERR6

ERR6

(3.12)

where it is seen that the sixth-order closure IBF6 represents the sixth-order truncation

limit quite well for nearly all flows investigated. For the worst case, the percentage

error in reconstruction is less than 8%.
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Figure 3.9: Schematic for center-gated disk flow.

3.1.4.4 Center-Gated Disk

Since all of the results presented above involve flows employed in the fitting of the

EBF6 and IBF6 closures, the performance of the closures is investigated in a more

general flow condition that is not included in the fitting procedure. The nonhomo-

geneous flow field represented by a center gated disk, as illustrated in Figure 3.9, is

often used for this purpose [27, 33, 56], and provides an example for analyzing the

usefulness of a closure. Unlike the homogeneous flow fields used in the fitting process,

the velocity gradients of center-gated disk flow change with radial position and the

height within the gap between the mold walls. For a Newtonian fluid, the velocity

field for the center-gated disk is given as

vr =
3Q

8πrb

(
1− z2

b2

)
vθ = vz = 0 (3.13)

where r is the radial location, z is the gap height between the mold walls (where

z = 0 defines the disk’s midplane), b is half the gap thickness, and Q is the volumetric

flow rate entering the gate. In a local Cartesian coordinate system where the local

directions (x1, x2, x3) correspond to (r, θ, z), the velocity gradients are given as

∂vi

∂xj

=
3Q

8πrb



−1

r

(
1− z2

b2

)
0 2

b
z
b

0 1
r

(
1− z2

b2

)
0

0 0 0


 (3.14)
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Notice that for small radii, the flow is dominated by ∂v1

∂x1
and ∂v2

∂x2
providing significant

out-of-plane stretching which causes fibers to orient normal to the plane of the flow.

As r increases, the flow becomes dominated by shearing from the ∂v1

∂x3
component,

causing the fibers to become oriented in the radial direction.

Two examples are presented for gap heights of z/b = 3/10 and z/b = 7/10 with

CI = 10−2. For z/b = 3/10 the transition between out of plane stretching and shearing

defines much of the flow history. The lengthy transition time can be easily seen in

Figure 3.10 which plots the significant second-order orientation tensor components.

For z/b = 7/10, the transition period is relatively quick between the stretching and

the shearing flow. The second-order orientation tensor components for z/b = 7/10 are

shown in Figure 3.11 where the shearing flow dominates much of the flow history.

For the two examples, the error in reconstruction from the EBF6 closure and the

IBF6 closure lies in strike contrast to each other. As shown in Figures 3.12 and 3.13

the IBF6 closure lies near the sixth-order truncation limit ERR6 throughout the flow

evolution for both flows, whereas the EBF6 closure behaves erratically during the

entire transition region for z/b = 3/10. The EBF6 closure has difficulty during the

transition region for z/b = 7/10 but behaves well during the shear portion of the flow.

The average error in reconstruction of Equation (3.12) is presented for gap heights

of z/b = 1/10,
2/10, . . .9/10 in Table 3.4. The EBF6 closure performs poorly throughout

the entire gap height, whereas the IBF6 closure performs relatively well as seen by

the percentage error in reconstruction.
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Table 3.4: Comparison of ERR2, ERR4 and ERR6 to ERR
EBF6

6 and ERR
IBF6

6 through-
out the gap-height z/b for a center-gated disk, CI = 10−2.

z/b ERR2 ERR4 ERR6 ERR
EBF6

6 ERR
IBF6

6 %ERR
EBF6

6 %ERR
IBF6

6

1/10 1.63×10−1 8.58×10−2 4.28×10−2 1.37×10−1 4.61×10−2 220.1 7.79
2/10 1.40×10−1 6.88×10−2 3.17×10−2 6.85×10−2 3.37×10−2 116.0 6.34
3/10 1.34×10−1 6.38×10−2 2.82×10−2 5.08×10−2 3.00×10−2 80.12 6.22
4/10 1.33×10−1 6.23×10−2 2.70×10−2 3.64×10−2 2.87×10−2 34.84 6.24
5/10 1.35×10−1 6.25×10−2 2.67×10−2 3.24×10−2 2.85×10−2 21.27 6.42
6/10 1.38×10−1 6.38×10−2 2.71×10−2 3.10×10−2 2.89×10−2 14.27 6.60
7/10 1.42×10−1 6.55×10−2 2.78×10−2 3.13×10−2 2.91×10−2 12.69 4.66
8/10 1.48×10−1 6.85×10−2 2.90×10−2 3.42×10−2 3.10×10−2 17.92 6.97
9/10 1.56×10−1 7.18×10−2 3.02×10−2 3.54×10−2 3.25×10−2 17.02 7.33

3.1.5 Discussion of Sixth-Order Closures from aij

Both of the sixth-order fitted closures EBF6 and IBF6 exceed the fourth-order re-

construction truncation limit ERR4, and for many orientation states both closures

approach the sixth-order truncation limit ERR6. By exceeding the fourth-order trun-

cation limit, one can conclude that the sixth-order fitted closures surpass the accuracy

in representing the orientation distribution of fibers than is possible by any fourth-

order closure. Of the two fitted closures, clearly the IBF6 performs better than the

EBF6 closure. For all the orientation states investigated, the error in reconstruction

from the IBF6 closure approaches the sixth-order reconstruction limit, whereas the

error in reconstruction from the EBF6 closure is not as reliable in representing the

sixth-order truncation limit.

There exist several possible reasons for the noticeable difference in accuracy be-

tween the IBF6 and the EBF6 closures. One possible difference may be due to the fact

that the EBF6 closure explicitly assumes that certain components of the sixth-order

orientation tensor are zero, which may or may not be the actual case. Secondly, the
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EBF6 closure requires the rotation of the sixth-order orientation tensor. This rotation

is a function of the second-order orientation tensor, which may not contain sufficient

higher-order information. To perform a more accurate rotation, it may be necessary

to investigate the rotation brought about from the eigentensors of the fourth-order

orientation tensor (see e.g. [93]).

In these results, there is a significant difference between the number of fitted

parameters used in the EBF6 closure (24) and the IBF6 closure (70). Note, however,

that the EBF6 closure was fit to a third-, fourth- and fifth-order polynomial (not given

here) of the eigenvalues of the second-order orientation tensor without significant

accuracy increases to warrant the increased order of the fitted polynomial. It is

worthwhile to also note that the cost function for the EBF6 closure was changed to

the cost function of the IBF6 closure, introducing a rotation into the calculation of

the cost function. The new cost function yielded significantly less accurate results for

the EBF6 closure, ergo the cost function in the principal frame of aij as presented

above was employed.

The EBF6 and IBF6 closures are worthwhile to approximate the sixth-order ori-

entation tensor from second-order orientation tensor components. These sixth-order

closures are demonstrated to more accurately model the distribution function of fibers

than the exact fourth-order reconstruction, and reveals a degree of accuracy unobtain-

able from even the most elegant fourth-order closure. Of the two closures presented,

the invariant based IBF6 closure yields a more accurate representation of the distribu-

tion of fibers than does the eigenvalue based EBF6. Unfortunately, both closures are

only effective in accurately representing the distribution function of fibers when the

second-order orientation tensor is already known by some means. When either the
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IBF6 or the EBF6 are employed in actual flow simulations of the second- or fourth-

order orientation tensor, solutions were seen to rapidly diverge into the non-physical

regime outside of the eigenspace triangle in Figure 3.1. This issue is resolved with

the more sophisticated INV6 closure discussed in the following section.

3.2 Sixth-order Invariant Based Closure INV6

The sixth-order fitted closure INV6 is based on the invariants of the fourth-order

fiber orientation tensor and is shown to more accurately represent the fiber orientation

distribution than existing closures, including the two aforementioned sixth-order fitted

closures. INV6 is introduced, along with a discussion of fourth-order tensor invariants.

The fitting procedure is then described, followed by an investigation into results that

demonstrate the increased accuracy of the INV6 closure. The effect of the new sixth-

order fitted closure on the prediction of mechanical properties and computational

expense is also discussed.

As described previously, several fitted closures have been developed for aijkl

(e.g. [27, 30, 33, 35, 53–56]), however there is no fitted closure to represent aijlkmn

as a function of aijkl. One possible method for forming a fitted sixth-order closure is

to employ a procedure analogous to that used to define the fourth-order eigenvalue

based closures [27, 33, 53]. This, however, would require that the sixth-order tensor

be rotated into the principal frame of the second-order tensor, or perhaps the planes

of material symmetry for the fourth-order orientation tensor which introduces com-

putationally expensive rotations. Additionally, the rotation may require the costly

computation of the eigentensors (not eigenvectors) of a fourth-order tensor [63,93].

To avoid costly tensor rotations, a sixth-order closure form is considered that more
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closely follows the fourth-order natural closure of Dupret et al. [55] and the fourth-

order invariant based orthotropic fitted closure of Chung and Kwon [56]. In the

proposed sixth-order closure, it is assumed that the material planes of symmetry of

the fourth-order orientation tensor define those of the sixth-order orientation tensor.

This assumption is analogous to that of the natural and the invariant-based fitted

closures in which the principal directions of the second-order orientation tensor define

the material planes of symmetry for the fourth-order orientation tensor.

3.2.1 Functional Form of INV6

The sixth-order invariant based closure (identified here as INV6) is formed from a

general expression for a fully symmetric sixth-order tensor aijklmn written in terms

of the fourth-order tensor aijkl and the unit tensor δij. INV6 is defined in terms of

all possible combinations of the fourth-order orientation tensor to form a symmetric

sixth-order orientation tensor as

aINV6
ijklmn = β1S (δijδklδmn) + β2S (δijδklamnpp) + β3S (δijδklappmrarnqq)

+β4S (δijaklppamnqq) + β5S (δijaklppaqqmsasnrr) + β6S (δijappktatlqqarrmuaunss)

+β7S (aijppaklqqamnrr) + β8S (aijppaklqqarrmtatnss)

+β9S (aijppaqqkuaulrrassmvavntt) + β10S (appivavjqqarrkwawlssattmxaxnuu)

+β11S (δijaklmn) + β12S (aijppaklmn) + β13S (appirarjqqaklmn) (3.15)

where the terms βi, i = 1, 2, ...13 are functions of the fourth-order orientation tensor

defined as a linear polynomial of the five independent invariants Ii, i = 2, 3, . . . , 6 of

aijkl written as

βi = Bi1 + Bi2I2 + Bi3I3 + Bi4I4 + Bi5I5 + Bi6I6

i = 1, 2, . . . , 13 (3.16)
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where the parameters Bij will be computed in the fitting procedure discussed below.

The symmetric operator S in Equation (3.15) represents the symmetric part of

its argument which is expressed for a general sixth-order tensor Bijklmn as

S (Bijklmn) =
1

720
(Bijklmn + Bklijmn + Bjiklmn + · · · (720 total terms) ) (3.17)

For example, the symmetric operator of the sixth-order tensor δijδklδmn may be ex-

pressed as

S (δijδklδmn) =
1

720
(δijδklδmn + δklδijδmn + δjiδklδmn + · · · (720 total terms) )

=
1

15
(δklδjmδin + δjlδkmδin + δjkδlmδin + δklδimδjn + δilδkmδjn

+ δikδlmδjn + δjlδimδkn + δilδjmδkn + δijδlmδkn + δjkδimδln

+ δikδjmδln + δijδkmδln + δjkδilδmn + δikδjlδmn + δijδklδmn) (3.18)

The INV6 closure in Equation (3.15) may be simplified using Equation (2.15) as

aINV6
ijklmn = β1S (δijδklδmn) + β2S (δijδklamn) + β3S (δijδklampapn) + β4S (δijaklamn)

+β5S (δijaklampapn) + β6S (δijakpaplamqaqn) + β7S (aijaklamn)

+β8S (aijaklampapn) + β9S (aijakpaplamqaqn) + β10S (aipapjakqaqlamrarn)

+β11S (δijaklmn) + β12S (aijaklmn) + β13S (aipapjaklmn) (3.19)

which expresses the dependence of INV6 on aij and aijkl.

In the principal frame of aij, the symmetric operator multiplying the terms β1

through β10 in Equation (3.19) can be reduced to a transversely isotropic fourth-order

orientation tensor (see e.g. Jack and Smith [7]). When β11, β12 and β13 are set to zero,

the IBF6 closure in Equation (3.3) is obtained. However the terms multiplying β11,

β12 and β13 may yield a fully populated (non-zero) fourth-order orientation tensor,

thereby allowing a representation of aijkl that has fewer planes of material symmetry
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than transversely isotropic. For example consider the symmetric operator multiplying

β11 in Equation (3.19) where the terms associated with the a1112kk component of the

INV6 closure are given as

S (δ11a12kk) =
1

15
(a1112δkk + 6a112kδ1k + 3a12kkδ11 + 2a111kδ2k + 3a11kkδ12) (3.20)

Recognizing that δkk = 3, a112kδ1k = a1112, a12kkδ11 = a12kk = a12, and a11kkδ12 = 0,

Equation (3.20) simplifies to

S (δ11a12kk) =
1

15
(11a1112 + 3a12) (3.21)

Note that a12 is zero in the principal frame, but a1112 may be non-zero even during

simple flow conditions. This is of particular importance here since all existing sym-

metric fourth-order closures implicitly or explicitly set a1112 to zero in the principal

frame as will be discussed in the following chapter. The preceding argument can be

repeated for the terms a1113, a1123, a1222, a1223, a1233, a2223, and a2333.

The sixth-order linear closure âijklmn from Advani and Tucker [6] is represented by

Equation (3.19) when β1 = 15/693, β2 = 45/99, and β11 = 15/11 with all other βi = 0.

The sixth-order quadratic closure of Doi [48] (see, e.g. Equation (2.40)) composes one

of the terms in the symmetric operator S (aijaklmn) from Equation (3.19), but cannot

be computed from INV6 since the quadratic closure does not exhibit the symmetries

of an orientation tensor, i.e. ãijklmn 6= ãijmnkl ∀ i, j, k, l, m, n. In addition, since the

sixth-order hybrid closure [6] is formed from the quadratic closure, it also may not

be represented by INV6.

3.2.2 Fourth-order Orientation Tensor Invariants

The invariant based sixth-order closure INV6 is a function of the invariants of aijkl

as shown in Equation (3.15). The invariants of a second-order tensor are commonly
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found in mechanics texts (see e.g. Malvern [9] and Jones [10]), however the invari-

ants of the fourth-order orientation tensor are not prevalent in the literature. The

eigenproblem for the fourth-order tensor D is expressed as [93]

D : M = λM (3.22)

where M is the 3 × 3 eigentensor of D and λ is the eigenvalue associated with the

eigentensor. A double contraction of the fourth-order tensor D with a second-order

tensor A may be defined as 1

D : A = DijklAjkgi ⊗ gl (3.23)

where ⊗ is the dyadic product and g is a basis vector. Equation (3.22) may be

rewritten as

(D − λI ) : M = 0 (3.24)

where I is the fourth-order identity tensor defined as I = gi ⊗ gi ⊗ gj ⊗ gj, where

the usual summation is employed. Assuming the nontrivial solution M 6= 0, nine

eigenvalues are obtained from Equation (3.24) from the determinant

det [D − λI ] = 0 (3.25)

which may be evaluated in the usual manner once the components of its argument

D − λI are represented as a 9× 9 matrix [93]. The invariants Ii, i = 1, 2, . . . 9 of a

1Note that the double contraction given is only one of three possible forms. Each form would
lead to its own matrix representation and correspondingly to its own eigenvalue problem (see e.g.
Itskov [93]).
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fourth-order tensor D are computed from the eigenvalues as [93]

I1 = λ1 + λ2 + · · ·+ λ9

I2 = λ1λ2 + λ1λ3 + · · ·+ λ8λ9

I3 = λ1λ2λ3 + λ1λ2λ4 + · · ·+ λ7λ8λ9

...

I9 = λ1λ2 · · ·λ9 (3.26)

The invariants of the fourth-order orientation tensor aijkl evaluated from Equation

(3.26) are included in Equation (3.16) to compute the INV6 closure in Equation

(3.15). Using the techniques outlined by Itskov [93] the calculation of the invariants

can be performed, but at a substantial computational burden due to the calculation

of the fourth-order tensor eigenvalues. A simplified computation may be derived

considering that orientation tensors are super-symmetric. A super-symmetric fourth-

order tensor is defined as a fourth-order tensor in which any pair of indices may be

interchanged without changing its form (e.g. Dijkl = Dklij = Djikl = Dilkj = · · · ). For

a super-symmetric fourth-order tensor the number of non-trivial eigenvalues reduces

to six [93], which may be solved by writing the lowest order polynomial of the principal

traces of the fourth-order tensor D . Beginning with Equation (3.26) and following

mathematical manipulations, the invariants of a general super-symmetric fourth-order

tensor D may be evaluated as

I1 = Tr [D ]

I2 =
1

2
Tr [D ]2 − 1

2
Tr

[D 2
]

I3 =
1

6
Tr [D ]3 − 1

3
Tr

[D 3
]− 1

2
Tr

[D 2
]
Tr [D ]

I4 =
1

24
Tr [D ]4 − 1

4
Tr

[D 2
]
Tr [D ]2 +

1

3
Tr

[D 3
]
Tr [D ] +

1

8
Tr

[D 2
]2 − 1

4
Tr

[D 4
]
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I5 =
1

120
Tr [D ]5 − 1

12
Tr

[D 2
]
Tr [D ]3 +

1

8
Tr

[D 2
]2

Tr [D ] +
1

6
Tr

[D 3
]
Tr [D ]2

−1

6
Tr

[D 3
]
Tr

[D 2
]− 1

4
Tr

[D 4
]
Tr [D ] +

1

5
Tr

[D 5
]

I6 =
1

720
Tr [D ]6 − 1

48
Tr [D ]4 Tr

[D 2
]
+

1

16
Tr

[D 2
]2

Tr [D ]2 +
1

18
Tr

[D 3
]
Tr [D ]3

−1

8
Tr

[D 4
]
Tr [D ]2 − 1

6
Tr

[D 3
]
Tr

[D 2
]
Tr [D ]− 1

48
Tr

[D 2
]3

+
1

18
Tr

[D 3
]2

+
1

8
Tr

[D 4
]
Tr

[D 2
]
+

1

5
Tr

[D 5
]
Tr [D ]− 1

6
Tr

[D 6
]

(3.27)

The above results agree with Itskov [93] who presents I1 − I4. The remaining two

invariants I5 and I6 may be shown to agree with the expression in Equation (3.26)

when D is written in its principal frame of reference. The trace of a fourth-order

tensor Tr [D ] in Equation (3.27) is defined as [93]

Tr [D ] = D :: I = I :: D = Diijj (3.28)

and the operation D 2 in Equation (3.27) represents the double contraction of a

fourth-order tensor D with itself as

D 2 = D : D = DijklDjnrkgi ⊗ gn ⊗ gr ⊗ gl (3.29)

In a similar manner, D 3 is the double contraction of the fourth-order tensor D , with

D 2 written as

D 3 = D : (D : D ) (3.30)

which obeys the associative law of tensor multiplication. Similar expressions follow

for D 4, D 5 and D 6.

A further simplification for the invariant calculations in Equation (3.27) is realized

through the normalization property for orientation tensors in Equations (2.13) and

(2.15). For example, the first invariant of the fourth-order orientation tensor is shown
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to be unity through Equations (2.13) and (2.15), i.e.,

I1 =Tr [aijkl] = aiijj = a1111+ a1122+ a1133+ a2211+ a2222+ a2233+ a3311+ a3322+ a3333

= a11 + a22 + a33 = 1 (3.31)

With I1 = 1 the non-trivial invariants in Equation (3.27) reduce to the five invariants

I2 and I6 that form the INV6 closure in Equation (3.19).

3.2.3 Computed Results

The unknown coefficients Bij in Equation (3.16) are determined through a fitting

procedure that minimizes the difference between components of the exact sixth-order

orientation tensor aijklmn computed from Equation (2.11), and the same tensor eval-

uated with the INV6 closure from Equation (3.15). During the fitting, aijklmn from

the INV6 closure is computed from aijkl obtained by first evaluating ψ(θ, φ, t) with

Equation (2.25) for various flow simulations. The aijklmn values used as the reference

points are evaluated from the solution of ψ(θ, φ, t) in Equation (2.25) as well.

Equation (3.16) requires the fitting of the 13× 6 = 78 parameters Bij. Note that

this number of fitted parameters is slightly more than that of the orthotropic fourth-

order closure of VerWeyst et al. [53] which contains 45 fitted parameters and the

fourth-order invariant based closure of Chung and Kwon [56] which fits 63 parame-

ters. The first order polynomial of the five independent invariants of the fourth-order

orientation tensor in Equation (3.16) is selected to reduce the number of fitted param-

eters while retaining the higher-order behavior of the fourth-order orientation tensor.

A second-order polynomial, for example, would require 21 coefficients for each value

βi, yielding 13×21 = 273 parameters. Although this number is within computational

feasibility, it will be demonstrated that a linear function is sufficient.
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The fourth-order natural closure [55] and invariant based closure [56] both employ

the condition aijkk = aij to simplify the number of parameters required in the fitting

procedure. For the natural closure this method produced singularities for select orien-

tation states which were corrected by the invariant based closure. Note that a closed

form expression using aijklmm = aijkl to simplify the number of fitted parameters has

yet to be developed that does not present singularities for select orientation states.

Therefore Equation (2.15) is not used to simplify INV6.

The fitting procedure employed in this study is similar to that used to develop

the aforementioned preliminary fitted closures. The same fourteen flows presented

in Section 3.1.3 are selected to encompass the eigenspace shown in Figure 3.1 for

two interaction coefficients CI = 10−3 and CI = 10−2 to allow for a broad range

of fiber interactions. Each fiber orientation calculation using Equation (2.25) begins

with a completely random orientation, such that a(1) = a(2) = a(3) = 1/3, and the

distribution function ψ (θ, φ, t) is computed by solving Equation (2.25) for each flow

condition until steady state is achieved using the finite difference technique of Bay [23].

The fourth-order orientation tensor components from each of the different ori-

entation states are substituted into the INV6 closure of Equation (3.19). The 28

independent components of the sixth-order orientation tensor aINV6
ijklmn are then com-

pared with the sixth-order orientation tensor obtained from the actual distribution

aijklmn using Equation (2.11). The fitted components and the components of the true

sixth-order orientation tensor define the cost function of the minimization as

χ2 =

npts∑
N=1

3∑
i=1

3∑
j=i

3∑

k=j

3∑

l=k

3∑

m=l

3∑
n=m

(
aN

ijklmn − aN INV6
ijklmn

)2

(3.32)

where npts is the number of orientation states included in the minimization calcu-

lation. Notice that the nonstandard summations (i.e. j = i, . . . , 3 not j = 1, . . . , 3)
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limits the summation to be performed over the 28 independent components of the

sixth-order orientation tensor. The minimization of Equation (3.32) was performed

using the software VisualDOC 4.0 [92], where the 78 parameters from Equation (3.16)

serve as design variables in the unconstrained optimization.

Previous fitted closures were defined based on orientation states sampled at uni-

form time increments throughout the orientation evolution [27,33,56] which may tend

to more heavily weight the steady state solution while placing less emphasis on the

initial transient response. To prevent over emphasizing a particular alignment state

in the calculations, the eigenspace triangle of Figure 3.1 is divided into sub-regions,

each of which contributes only one orientation state to the fitting procedure so as to

avoid weighting results toward a particular flow or orientation condition. A similar

approach was employed by VerWeyst [91] in the formation of the eigenvalue based

fourth-order ORT closure. In the fitting procedure, optimizations were performed

using several values of npts ranging from 250 to 5,000. It was found that the co-

efficients Bij showed little change for npts > 750. As a result, npts = 1, 100 was

selected since little additional improvements were seen by adding more orientation

states. The optimally fitted coefficients Bij in Equation (3.16) for npts = 1, 100 ori-

entation states (as illustrated in Figure 3.14) appear in Table 3.5. It is noted that

other fitted coefficients Bij may yield a lower value of χ2 in Equation (3.32) for a

set of orientation states that are different from those defined above. However, the

demonstration problems considered below illustrate that the set of Bij in Table 3.5

yield good results for flow conditions employed in the fitting procedure as well as

other, more general, conditions.
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Figure 3.14: The 1,100 representative orientation states used in the fitting of INV6.

3.2.4 Investigation of Results

To demonstrate the effectiveness of the INV6 closure, two types of flows are investi-

gated. The first investigation employs homogeneous flows where the components of

the vorticity tensor ωij and the rate of deformation tensor γ̇ij are constant. Recall

that the INV6 closure is derived entirely from homogeneous flows, and that no direct

consideration was made for nonhomogeneous flow. To assess the accuracy of INV6

on flows not included in the fitting procedure, consideration is made for the nonho-

mogeneous flow of a polymer melt in a center-gated disk, which is representative of

flow near an injection molding pin gate. For the center-gated disk example, ωij and

γ̇ij vary with both the radial distance from the gate, and the gap height under con-

sideration. All results are compared to the solutions obtained from Equation (2.25)
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Table 3.5: The 78 coefficients Bij for the INV6 closure from Equation (3.16).

Bij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 −6.71528×10−4 2.64957×10−4 3.14372×10−2 −1.93532×10−1 −2.79700×100 −1.18032×10−1

i = 2 1.07799×10−1 −7.02833×10−1 2.74216×100 −2.03454×100 −7.19463×10−1 −3.03564×10−2

i = 3 −1.02912×10−1 6.10351×10−1 −1.86199×100 −2.66728×10−1 −2.03282×10−1 −7.42565×10−3

i = 4 −9.64877×10−1 −1.67110×100 −1.32979×100 5.10429×10−2 −1.73186×10−1 −7.39697×10−3

i = 5 1.84254×10−1 4.68462×100 −1.41952×100 4.67754×10−1 −5.64326×10−2 −1.40796×10−3

i = 6 3.21562×10−1 −2.63075×100 −2.96517×100 3.79441×10−1 −3.34489×10−2 −1.10832×10−3

i = 7 −2.38593×100 1.67553×100 7.95162×10−1 6.43177×10−1 −3.67029×10−2 −1.88557×10−3

i = 8 1.31397×100 3.32342×100 7.60810×10−1 6.69170×10−1 −1.65931×10−2 −1.87309×10−3

i = 9 −2.10217×100 1.74331×10−2 −5.74857×10−2 5.96671×10−1 −1.21391×10−2 −1.15321×10−4

i = 10 1.98698×100 −1.25858×100 −5.77328×10−1 5.46301×10−1 −1.10324×10−2 −2.09103×10−4

i = 11 4.57917×10−1 3.21522×10−1 1.96795×100 −1.27631×10−1 −3.36087×10−1 −1.51742×10−2

i = 12 5.28705×100 −5.36365×100 −2.87411×10−1 4.86932×10−1 −7.13534×10−2 −2.43975×10−3

i = 13 −3.10267×100 1.32892×100 7.30233×10−1 6.63385×10−1 −2.14327×10−2 −1.30109×10−3

for the distribution function ψ(θ, φ, t) [23] which will be labeled DFE, for Distribu-

tion Function Evolution, in the following evaluations. The results from these DFE

calculations provide a benchmark on which to evaluate closure approximations (see

e.g. [27,35,56]). Flow evolutions of aijkl are evaluated with Equation (2.36) employing

the sixth-order closure, INV6, developed above. For comparison, flow evolutions of aij

using Equation (2.35) are also considered here which employ the fourth-order closure

ORT (see e.g. [32,53,91]). Other fourth-order closures are omitted in the comparison

for conciseness since the ORT closure has been shown to be among the best perform-

ing closures used to solve Equation (2.35). The evolution of the fourth-order tensor

is evaluated with Equation (2.36) using the sixth-order quadratic closure Quad6 of

Altan et al. [61]. The Quad6 closure is presented here to provide a comparison be-

tween the INV6 and an analytical sixth-order closure. For many flow conditions, the

sixth-order hybrid closure Hybrid6 of Advani and Tucker [6] yields similar results to

the Quad6 closure, therefore the Hybrid6 results are only discussed briefly for flows
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with high shearing and stretching where the Quad6 and the Hybrid6 behave differ-

ently. Note here that stable results are obtained for INV6 with aijkl evolutions, unlike

the issues encountered with EBF6 and IBF6.

3.2.4.1 Homogeneous Flows

Fiber orientation calculations were performed for several homogeneous flow conditions

where a comparison of the second-order tensor components and the error in recon-

structing the distribution function described above are used to asses the INV6 closure.

Each flow condition begins from an initially random state where the second-order ten-

sor components aij = 0, i 6= j and a11 = a22 = a33 =1/3. The orientation state is then

evaluated with the evolution of Equation (2.25) and Equations (2.35) or (2.36). Then

the errors in reconstruction are computed with Equations (2.71) and (3.11) using the

distribution function reconstruction technique introduced in Equation (2.70).

The first homogeneous flow example is for simple-shear flow where v1 = Gx3, v2 =

v3 = 0 with an interaction coefficient CI = 10−2 (i.e. flow condition #6 used in

the fitting procedure above). The principal second-order tensor components are pre-

sented in Figure 3.15 for the orientation tensors computed from the DFE and those

resulting from solving Equation (2.35) and (2.36) using the ORT, Quad6, and INV6

closures. Notice the solid line representing the a11 component obtained from the DFE

calculation exhibits a rapid initial increase and stabilizes at a relatively large value.

As a11 approaches unity, the orientation of the fibers tends to align along the x1 axis.

Observe how the ORT and INV6 closure results also appearing in Figure 3.15 closely

follow the DFE solution, whereas the Quad6 closure tends to overpredict the actual

fiber alignment. It is interesting to note that a11 from the DFE reaches its largest
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Figure 3.15: Selected tensor components of aij for Simple-Shear for CI = 10−2.

value of 0.766 at Gt = 6.7 and diminishes to a value of 0.727 for Gt > 19.7. This re-

duction in a11 for the ORT closure is nearly imperceptible where a11 reduces to 0.773

at the same final time. Alternatively, the a11 component from the INV6 simulation is

reduced to 0.740 at the end of the flow simulations and thus exhibits a response that

is similar to the DFE a11 values. Figure 3.15 illustrates that all of the aij components

are more accurate using the INV6 than compared to any of the closures considered

here including the sixth-order closure Quad6.

The second-order tensor components are useful when visualizing the orientation

behavior in the flow, however the ability of a closure to represent the distribution

of fibers is better demonstrated with the reconstruction error described previously.

Using the DFE results, ERR2, ERR4 and ERR6 are evaluated, respectively, from the

exact second-, fourth-, and sixth- order orientation tensors obtained with Equations
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Figure 3.16: Transient error for Simple-Shear for CI = 10−2.

(2.11) and (2.71). These error measures represent the truncation limits of second-

order, fourth-order, and sixth-order reconstructions, respectively. Figure 3.16 illus-

trates the truncation limits where it is noted that all three limits attain their maxi-

mum value during the state of highest alignment near Gt = 6.7 as shown in Figure

3.15. As expected, ERRN decreases as N increases. In these results, the error in

reconstruction from the ORT closure (ERRORT) approaches the fourth-order trun-

cation limit ERR4 and the error in reconstruction formed from the INV6 closure

(ERRINV6
) is nearly indistinguishable from the sixth-order truncation limit ERR6.

On the other hand, the error in reconstruction from the Quad6 closure (ERRQuad6
)

is significantly greater than even the second-order truncation limit ERR2 for the en-

tire flow history. The results for the sixth-order hybrid closure Hybrid6 are nearly

identical to the results of the Quad6 and are therefore omitted for clarity.
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Simple shear flow with an interaction coefficient of CI = 10−3 (i.e., flow condition

#1 in Section 3.1.3) results in a more highly aligned state than the previous example.

Selected second-order tensor components computed with CI = 10−3 appear in Figure

3.17 where the overshoot in a11 is still evident. The fourth-order ORT closure fails

to capture the reduction in a11 following its peak value, which is possible with INV6.

The a22 component is well represented using the INV6 closure, whereas the ORT

closure noticeably underpredicts the actual a22 component. On the other hand, Quad6

again fails to predict the degree of alignment as can be seen in the overprediction of

the a11 component and the underprediction of the a22 component. The errors in

reconstruction from the DFE, ORT, Quad6 and INV6 are plotted in Figure 3.18.

Notice, as in the previous example, the error in reconstruction from the ORT closure

approaches the fourth-order truncation limit and the error in reconstruction from

the INV6 closure approaches the sixth-order truncation limit. In this example the

quadratic closure performs better than in the simulation above, but still fails to

approach the sixth-order truncation limit. Notice that ERRQuad6
exhibits a greater

accuracy than the fourth-order truncation limit during the highly aligned state near

Gt = 10. However, as fiber alignment decreases, the accuracy of the Quad6 closure

does so as well. The results from the Hybrid6 closure are graphically indistinguishable

from the results obtained through the Quad6, and are therefore omitted as before.

The final homogeneous flow considered in detail is Shear-Stretch C flow with

v1 = −Gx1 + 3.75Gx2, v2 = −Gx2, v3 = 2Gx3 and CI = 10−2 (i.e. condition #7

described above). The high degree of alignment is illustrated with the a33 component

in Figure 3.19 that approaches a value of unity in steady state, which corresponds to

a nearly perfect alignment of fibers along the x3 axis. Notice that as fibers become
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Figure 3.17: Selected tensor components of aij for Simple-Shear for CI = 10−3.
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Figure 3.19: Selected tensor components of aij for Shear Stretch C for CI = 10−2.

aligned, (i.e. a33 → 1) the Quad6 closure yields the most accurate representation. On

the other hand, the ORT closure underpredicts the fiber alignment, whereas the INV6

closure has a slight overprediction of fiber alignment. In the previous simple shear

flow examples the Hybrid6 closure gave nearly identical results to the Quad6 closure.

However, when Shear/Stretch C flow is imposed, the solution from the Hybrid6 closure

rapidly diverges from the actual solution, yielding non-physical results.

In each of the previous examples, INV6 results approach the sixth-order trunca-

tion limit, surpassing the accuracy of the ORT closure and the fourth-order truncation

limit. Additionally, INV6 results surpass the sixth-order quadratic closure in repre-

senting the fiber orientation distribution function for all flow conditions considered.

To better illustrate the use of fourth- and sixth-order closures, all 14 flows used

in the fitting process of the INV6 closure were analyzed by computing the average

percent error of reconstruction %ERRN appearing in Equation (3.12). Table 3.6
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summarizes these results and presents the average percent error of reconstruction for

the ORT closure %ERRORT, the Quad6 closure %ERRQuad6
, the Hybrid6 closure

%ERRHybrid6
, and the INV6 closure %ERRINV6

. In most cases the percent error

from the INV6 closure is less than 1%. In two cases the percent error is just over 10%,

but in comparison to the ORT closure with a percent error over 150% for the same

cases, the INV6 is significantly better. Alternatively, the Quad6 and Hybrid6 perform

poorly for all flows with low degrees of alignment while showing some improvement for

flows with high alignment states. It is important to note that solutions of Equation

(2.36) were not possible using the Hybrid6 for flows where shearing is large relative

to the elongational velocity component (i.e. Shear Stretch A, Shear Stretch C, and

Shear Planar A). In these flows, the solution rapidly diverges and eventually yields

nonphysical solutions (see e.g. Figure 3.19). For all flow cases, the percent error in

reconstruction is substantially lower for the INV6 closure than that seen using any

other fourth- or sixth-order closure. Note that the %ERRclosure results measure the

reconstruction error against the sixth-order truncation limit. A similar calculation

comparing the ORT results to the fourth-order truncation limit would perhaps be

more appropriate if the interest were in how the ORT performs relative to ERR4.

Fiber orientation calculations using the INV6 closure are expected to require more

computational effort than the ORT closure since the former evaluates 14 independent

components of aijkl using Equation (2.36) whereas the latter solves for 5 independent

components of aij with Equation (2.35). This alone is expected to yield an approxi-

mately 3× increase when computing fiber orientations by evolving aijkl instead of just

aij. In addition, the form of the closure itself affects computational costs. For exam-

ple, the INV6 computations in Equation (3.15) include the costly evaluations of the
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Table 3.6: Comparison of %ERRORT, %ERRQuad6
, %ERRHybrid6

, and %ERRINV6

over the 14 flows used in the fitting procedure.

Flow %ERRORT %ERRQuad6
%ERRHybrid6

%ERRINV6

1. 32.54 35.41 25.27 1.310
2. 16.88 537.7 525.8 0.002
3. 4.197 1.034 0.890 0.248
4. 16.03 15.55 ** 0.824
5. 4.101 0.708 0.242 0.001
6. 158.1 1236. 946.0 10.21
7. 60.77 23.37 ** 0.226
8. 42.94 9.706 4.600 0.014
9. 67.65 2007. 2074. 1.748
10. 74.49 1708. 1964. 0.958
11. 62.25 2012. 1987. 1.243
12. 150.3 4460. ** 11.63
13. 52.77 22.24 17.23 1.341
14. 53.53 21.68 19.73 0.077

** Nonphysical solution reached before steady state attained.

symmetric operator, whereas the ORT closure requires the rotation of the fourth-order

orientation tensor into the principal frame of aij. In both cases, the computational

effort can be reduced by taking advantage of the symmetries possessed by all fiber

orientation tensors, thus eliminating redundant calculations. The computation time

required to perform each of the flow evolutions used in the INV6 fitting process above

was evaluated when solving Equation (2.35) with the ORT closure and solving Equa-

tion (2.36) with the INV6 closure. The more accurate INV6 evaluations were found

to take 2.91± 0.07 times longer than computations performed with the ORT closure.

3.2.4.2 Center-Gated Disk

Since all of the results presented above involve flows employed in the fitting of INV6,

it is desired to evaluate the performance of the new closure in a more general flow

condition that is not included in the fitting procedure for the INV6 closure. The
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nonhomogeneous flow field represented by a center gated disk discussed in Equations

(3.13) and (3.14) is selected. Unlike the homogeneous flow fields used in the fitting of

the INV6 closure, the velocity gradients of center-gated disk flow change with radial

position and the height within the gap between the mold walls.

The first example considers fibers suspended at a gap height of z/b = 2/10 where

much of the initial flow history is dominated by out of plane stretching. Initially

random fibers begin to orient out-of-the plane of the flow which is illustrated by the

rapidly increasing a22 component in Figure 3.20. Both the ORT and the INV6 closures

accurately follow this rapid increase in out-of-plane alignment, whereas both the

Quad6 and the Hybrid6 closures over predict the actual alignment state, as expected.

As the radial location increases and the flow becomes dominated by the shearing in

the radial direction, the a11 component increases and the a22 component decreases

signifying an increased alignment in the radial direction. Again, both the ORT and the

INV6 results illustrate this behavior, while the Quad6 and the Hybrid6 over predict

the alignment of the fibers in the radial direction. From the second-order tensor

components in Figure 3.20 it is clear that earlier sixth-order closures (Quad6 and

Hybrid6) yield poor results, whereas the ORT and INV6 perform quite well. Similar

trends are identified in the error reconstruction plots appearing in Figure 3.21. The

Quad6 and the Hybrid6 both yield a poor representation of the fiber distribution

function whereas the ORT and the INV6 reconstructions approach the fourth-order

truncation limit ERR4 and the sixth-order truncation limit ERR6, respectively.

The second-example considers the orientation state at a gap height of z/b = 5/10.

As shown in Figure 3.22, tensor computations employing either the ORT or the INV6

closures represent the actual second-order tensor components quite well throughout
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Table 3.7: Comparison of %ERRORT, %ERRQuad6
, %ERRHybrid6

, and %ERRINV6

throughout the gap height for center-gated disk flow CI = 10−2.

Flow %ERRORT %ERRQuad6
%ERRHybrid6

%ERRINV6

1/10 114.77 1405.27 1144.86 8.64
2/10 138.30 1837.14 1491.62 10.74
3/10 152.19 2027.64 1633.25 13.05
4/10 160.82 2109.92 1689.95 14.76
5/10 166.30 2145.03 1736.77 15.87
6/10 169.95 2103.82 1737.32 16.54
7/10 172.28 1968.37 1618.70 16.88
8/10 173.83 1773.25 1447.08 16.98
9/10 175.82 1611.73 1304.35 17.09

the entire flow history, but as the radial location increases tensor evaluations using the

INV6 closure represents aij components slightly better than those employing the ORT

closure. The error in reconstruction of the distribution function appears in Figure

3.23 where it is shown that the accuracy in representing the distribution function

from the INV6 simulations far surpasses the fourth-order truncation limit ERR4 and

nearly attains the sixth-order truncation limit ERR6.

The average percent error in reconstruction is presented in Table 3.7 for gap

heights of z/b = 1/10,
2/10, . . .9/10. Throughout the range of gap heights, the average

percent error in reconstruction from the INV6 closure is much less than the average

percent error of any of the other closures considered.

3.2.4.3 Effect on Material Property Calculations

Perhaps the most important use of fiber orientation predictions is the evaluation of the

mechanical properties (i.e. Young’s modulus and Poisson’s ratios) of the short fiber

composite. Mechanical properties have been computed from the distribution function

(see e.g. [29, 52, 64]), therefore, it is expected that a more accurate representation
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of ψ(θ, φ) as obtained using INV6 is expected to yield more accurate mechanical

properties than those computed when fourth-order closures are employed. A common

practice is to evaluate the components of the stiffness or compliance tensor via the

procedure described by Advani and Tucker [6], and outlined in the following chapters,

which is based on the fourth- and second-order orientation tensors and the underlying

unidirectional stiffness tensor obtained from the constituent materials (see e.g., [80]).

Therefore, the effect of solving Equation (2.36) using INV6 on predicted mechanical

properties may be exposed, in part, by considering the components of aijkl. To

better illustrate the influence of using INV6 on computed mechanical properties, the

evaluation of stiffness tensor components in the principal frame of aijkl (which are

assumed to be defined by the eignevectors of aij [27]) are considered. Here the analysis

is restricted to the principal components of the fourth-order orientation tensor as

a(ijkl) (where ( ) designate the tensor components given in the principal frame) since

these values represent the effect of fiber orientation on material properties as given

by Advani and Tucker [6].

For the center-gated disk flow example discussed previously with a gap height of

z/b = 5/10, selected principal components are plotted in Figure 3.24. Observe the

INV6 closure represents the fourth-order orientation tensor components more accu-

rately than that of the fourth-order ORT closure, therefore the INV6 will represent

the material stiffness tensor more accurately than the ORT closure. Note also that

a(1123) and a(2223) are non-zero in center-gated disk flow, and as discussed previously

the functional form of the INV6 allows the calculation of these relatively small but

non-zero terms, whereas the ORT closure explicitly sets a(1123) and a(2223) to zero.
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3.2.5 Discussion of INV6 Closure

An invariant based sixth-order fitted closure INV6 is defined from a general expres-

sion for a fully symmetric sixth-order tensor. This new sixth-order closure is written

as a function of the fourth-order orientation tensor, where the components of the

INV6 closure are fit to a linear polynomial of the fourth-order orientation tensor

invariants. The sixth-order INV6 closure is demonstrated to surpass the accuracy

of existing fourth-order closures in the representation of the second-order orientation

tensor components in all flow simulations investigated. More importantly, reconstruc-

tion of the fiber orientation distribution function using INV6 exceeds the fourth-order

reconstruction of the distribution function limit ERR4 for all flow conditions inves-

tigated. By exceeding the fourth-order truncation limit, the INV6 closure surpasses
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the accuracy in representing the orientation distribution of fibers than that which is

possible using any fourth-order closure. The INV6 closure is nearly as accurate in

representing the fiber orientation state as the exact sixth-order reconstruction of the

distribution function.

3.3 Sixth-Order Fitted Closures

The stated goal into the investigation of sixth-order closures was to develop a clo-

sure that provides a more accurate representation of the fiber orientation distribution

function than is possible with any fourth-order closure. Clearly each of the pre-

sented closures satisfy this goal, but only the INV6 closure may be utilized in actual

short-fiber flow simulations. The sixth-order invariant based closure INV6 results

demonstrate the increased accuracy of the INV6 closure with only minor additional

computational costs. Clearly, the INV6 closure provides a more accurate description

of fiber orientation kinematics than the existing closures, and far surpasses the use-

fulness of the sixth-order fitted models, EBF6 and IBF6. Flow simulations utilizing a

sixth-order closure should employ the INV6 over other sixth-order fitted closures to

properly evaluate the orientation state of fibers.
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CHAPTER 4

ORIENTATION CLOSURE APPROXIMATION

EFFECTS ON MECHANICAL PROPERTY

PREDICTIONS

Current approaches used to simulate the flow of short-fiber suspensions employ fiber

orientation tensors where the dependence on higher-order orientation tensors is alle-

viated through the use of a closure. Unfortunately, the effect that a given closure has

on material property predictions has received little attention in the literature. Ac-

cordingly this investigation, also appearing in Jack and Smith [7], demonstrates that

current objective fourth-order closures assume an orthotropic form, whereas existing

sixth-order closures, such as the INV6, are shown to provide a material representa-

tion with fewer symmetries than orthotropic. Numerical calculations demonstrate the

existence of shear-extensional and shear-shear coupling in simple homogeneous flow

and for a center-gated disk. Although these components are minor in comparison to

principal components of the stiffness tensor, these components can be obtained via

the fitted sixth-order INV6 closure.

4.1 Motivation for Current Investigation

The current investigation into closures is undertaken to provide a better under-

standing related to the linear elastic material behavior when a closure is employed

in polymer composite molding simulations. The closure used in a flow simulation

plays a key role since fourth-order elasticity tensors describing the mechanical prop-

erties of the composite structure are computed from fourth-order orientation ten-

sors [6, 27–29, 35–37, 56, 64, 78, 79] as are thermo-elastic properties (e.g. Camacho et
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al. [71]). The inclusion of sixth-order orientation tensor closures in the present inves-

tigation is motivated by Altan et al. [52] who state that lower- (e.g. fourth-) order

approximations may result in “...errors for complex flow fields, where both shear and

elongational velocity gradients exist in all three different planes. Therefore, higher-

order (e.g. sixth-order) approximations may be required for the accurate description

of suspension mechanics.”

This chapter investigates the effect of closure approximations on material property

behavior for injection molding predictions of short-fiber composites. This is only one

factor that must be taken into consideration when selecting an appropriate closure

for numerical predictions, but may be a deciding factor. By construction, the class of

fourth-order orthotropic closures (see e.g. [27]) assume an orthotropic form. Cintra

and Tucker [27] state that all objective fourth-order closures must be orthotropic,

however, the form of many current fourth-order closures is not obvious. Furthermore,

the orthotropic issue has not been addressed for sixth-order closures. It will be demon-

strated that current fourth-order closures employed in short fiber composite process

simulations either directly or indirectly assume an orthotropic form. In addition, an

investigation into the sixth-order invariant based fitted closure of Jack and Smith [38]

(see e.g. Equation (3.15)) will demonstrate that sixth-order closures provide a means

for representing a material state that is more general than orthotropic.

Fiber orientations in several homogeneous flows are considered below to explore

conditions where fourth- and/or sixth-order closures are appropriate. In addition,

the inhomogeneous flow of a center-gated disk is included to relate the current work

to flows found in the injection molding process. These simulations, all of which are

based on the Folgar-Tucker model for fiber orientation [11], demonstrate that although
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fourth-order closures are constrained by orthotropic assumptions, non-orthotropic

components of the resulting elasticity tensor are small in comparison to the or-

thotropic components.

4.2 Material Behavior from Closures

The symmetries of aijkl make it possible to define a contracted notation for fourth-

order tensors where indices of 11, 22, and 33 are replaced with 1, 2, and 3 respectively,

indices 23 and 32 are replaced by 4, indices of 13 and 31 are replaced by 5, and indices

of 12 and 21 are replaced by 6. Contracted notation may be used to represent the

fourth-order orientation tensor aijkl as the 6× 6 matrix Amn in the usual manner as

Amn=




A11 A12 A13 A14 A15 A16

A12 A22 A23 A24 A25 A26

A13 A23 A33 A34 A35 A36

A14 A24 A34 A44 A45 A46

A15 A25 A35 A45 A55 A56

A16 A26 A36 A46 A56 A66



=




a1111 a1122 a1133 a1123 a1113 a1112

a1122 a2222 a2233 a2223 a2213 a2212

a1133 a2233 a3333 a3323 a3313 a3312

a1123 a2223 a3323 a2323 a2313 a2312

a1113 a2213 a3313 a2313 a1313 a1312

a1112 a2212 a3312 a2312 a1312 a1212




(4.1)

Employing the symmetries of the orientation tensors from Equation (2.11), the general

fourth-order orientation tensor shown in Equation (4.1) has at most 15 independent

components (14 recognizing that aiijj = aii = 1).

The generalized Hooke’s Law relates strain εij to stress σij through the compliance

tensor as shown in Equation (2.43). This expression may be written in contracted

notation, recognizing that the compliance tensor is symmetric as




ε1

ε2

ε3

ε4

ε5

ε6





=




S11 S12 S13 S14 S15 S16

S12 S22 S23 S24 S25 S26

S13 S23 S33 S34 S35 S36

S14 S24 S34 S44 S45 S46

S15 S25 S35 S45 S55 S56

S16 S26 S36 S46 S56 S66








σ1

σ2

σ3

σ4

σ5

σ6





(4.2)

For a general anisotropic material experiencing no planes or directions of material

symmetry, there exist 21 independent components of Sijkl [10]. As will be shown in
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the following chapter, and presented in Jack and Smith [7], all current fourth-order

closures assume an orthotropic form, and neglect shear-extensional and shear-shear

coupling terms in the stiffness tensor shown in Equation (2.44). The shear-extensional

terms, S14, S15, S16, S24, S25, S26, S34, S35, and S36, represent the response of the

normal strains to applied shear stresses, and the shear-shear coupling terms, S45, S46,

and S56, represent the effects of an applied shear stress in one plane to the shear strain

response in a different plane. Many applications of engineering materials only account

for extension (S11, S22 and S33), shear (S44, S55 and S66), and extension-extension

coupling (S12, S13 and S23) behavior that compose the orthotropic components of the

compliance tensor. Polymer composites experience additional coupling phenomena

such as shear-shear and shear-extensional coupling which will be referred to as the

anisotropic compliance tensor components. An effective closure for polymer process

use would not only be capable of predicting the orthotropic terms, but would also

effectively represent the other anisotropic coefficients.

Advani and Tucker [6] compute the volume-averaged stiffness tensor 〈Cijkl〉, which

relates to the compliance tensor Sijkl through the inverse, as

〈Cijkl〉 = B1(aijkl)+B2 (aijδkl + aklδij)+B3 (aikδjl + ailδjk + ajlδik + ajkδil)

+ B4(δijδkl) + B5 (δikδjl + δilδjk) (4.3)

where the five coefficients Bi are obtained from the five independent components

of the unidirectional stiffness tensor Cijkl discussed in Equation (2.44). A complete

derivation of this form for the stiffness tensor is derived in the following chapter. It is

sufficient here to use the Advani and Tucker form in Equation (4.3) which has been

widely accepted within the literature [6,27–29,35–37,56,64]. As discussed in Chapter

2, the prediction of the material stiffness tensor requires a fundamental understanding
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of the stiffness tensor associated with a unidirectional fiber distribution. Tucker

and Liang [80] discuss several methods for computing material properties for the

unidirectional stiffness tensor Cijkl from the individual properties of the fiber and

the matrix which include Eshelby’s Equivalent Inclusion model [81], the Mori-Tanaka

model [82], the Halpin-Tsai equations [70], and several others. Tucker and Liang

conclude that the Halpin-Tsai equations as given in Table 2.1 yield reasonable results

for the stiffness tensor of short fiber polymer composites.

A fourth-order stiffness tensor lacking any plane of material symmetry is called

anisotropic (or triclinic). In the principal reference frame the anisotropic stiffness

tensor would have 21 independent non-zero components [10] having the same form

as the tensor in Equation (4.2). Conversely, a monoclinic stiffness tensor exhibits a

single plane of material symmetry with 13 independent constants, and an orthotropic

stiffness tensor with three mutually orthogonal planes of material symmetry has 9

independent components. A transversely isotropic stiffness tensor, with a plane in

which properties are identical in all directions, requires only 5 independent compo-

nents. A complete discussion of material symmetries can be found in Malvern [9]

or Jones [10]. Regardless, since aijkk = aij and aiijj = 1 from Equations (2.13) and

(2.15), the volume-averaged values of the material stiffness tensor in Equation (4.3)

will clearly experience the same planes of symmetry as those of the fourth-order ori-

entation tensor. Therefore a stiffness tensor computed from Equation (4.3) can never

be anisotropic since aijkl is not anisotropic.

4.2.1 Analytical Closures

The fourth-order quadratic closure is the simplest fourth-order closure, and is ex-

act for highly aligned distributions [48] where the fourth-order orientation tensor is
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approximated as aijkl ' aijakl. The quadratic closure is frequently used to form Ad-

vani and Tucker’s hybrid closure [6] which is written as a linear combination of the

quadratic closure and the linear closure of Hand [94]. Unfortunately, the quadratic

closure (as well as the hybrid closure [6]) does not obey the previously mentioned sym-

metry requirements for a fourth-order orientation tensor, i.e. aijkl 6= aikjl ∀ i, j, k, l.

Even with that being known, the hybrid closure is still regularly used in many process

simulations of short-fibers (see e.g. [36, 37]). The quadratic and hybrid closures will

not be discussed further in this chapter since they do not obey the symmetries of

an orientation tensor. More recently, the orthotropic smooth closure of Cintra and

Tucker [27] was shown to give exact results for uniaxial, random in-space and ran-

dom in-plane orientations, but experiences poor behavior in flow simulations. Dupret

and Verleye [30] present an analytical 2-D Natural closure, but have yet to present

a comparable analytical form for their 3-D closure. It is noted here, that although

the neural-network closure of Schache [57] and Smith et al. [58] is not analytic, it

is not considered in the present work because the closure is not objective since it is

unclear whether the principal axis of the fourth-order orientation tensor correspond

with those of the second-order orientation tensor (see e.g. [27]). As discussed by

Schache, further work may be undertaken that will allow the neural-network closure

to satisfy the objective criterion, at which point it will be worthwhile to also include

in the following analysis.

4.2.2 Eigenvalue-Based Closures

There exist several orthotropic closures of the fourth-order orientation tensor

[27, 33, 35, 53]. These closures are orthotropic in nature and assume that the prin-

cipal directions of the second-order orientation tensor define the planes of material
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symmetry of the fourth-order orientation tensor. In the principal frame of the second-

order orientation tensor, the fourth-order orientation tensor is explicitly assumed to

be orthotropic and is represented as

A(mn) =




A(11) A(12) A(13) 0 0 0
A(12) A(22) A(23) 0 0 0
A(13) A(23) A(33) 0 0 0

0 0 0 A(44) 0 0
0 0 0 0 A(55) 0
0 0 0 0 0 A(66)




(4.4)

The subscripted (· · · ) notation is employed to designate that a tensor is in the prin-

cipal reference frame of aij, and note that all of the zero components of the matrix in

Equation (4.4) may be written in tensor form as a(iiij) or a(iijk) (no sum on i, i 6= j,

i 6= k, and j 6= k). For example A(14) = a(1123) = 0, A(15) = a(1113) = 0, etc.

Equation (4.4) may be rewritten as a function of six independent components

by applying the symmetries of the fourth-order orientation tensor, A(12) = A(66),

A(13) = A(55), and A(23) = A(44). Then using the normalization property in Equation

(2.13), A(66) is solved in terms of the other components as A(66) = 1−A(11)−2A(55)−

2A(44)−A(22)−A(33). Therefore, an orientation tensor satisfying Equation (4.4) can be

written as a function of five independent components (c.f. Cintra and Tucker [27]),

the same number of components as that of a transversely isotropic stiffness tensor.

Orthotropic closures (e.g. [27] and [33]) satisfying Equation (4.4) explicitly neglect

the orientation tensor components that contribute to the shear-extensional coupling

terms by setting A(14), A(15), A(16), A(24), A(25), A(26), A(34), A(35), and A(36) each

equal to zero. Orthotropic closures also explicitly neglect the components of a(ijkl)

that contribute to the shear-shear coupling terms by setting the components A(45),

A(46), and A(56) to zero.
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4.2.3 Invariant Based Closures

Existing invariant based closures of aijkl are all written as a general expression of a

fully symmetric fourth-order orientation tensor in terms of aij and the unit tensor

δij [6, 30,31,56] as

aijkl = β1S (δijδkl) + β2S (δijakl) + β3S (aijakl) + β4S (δijakmaml)

+β5S (aijakmaml) + β6S (aimamjaknanl) (4.5)

where βi, i = 1, 2, . . . , 6 are functions of the invariants of the second-order orientation

tensor aij. The symmetric operator S (Tijkl) is employed to form invariant closures

where S (Tijkl) is the symmetric part of its argument

S (Tijkl) =
1

24
(Tijkl + Tjikl + · · · (24 total terms)) (4.6)

Equation (4.5) describes the linear closure [6], the natural closure [30], the fully

symmetric (FSQ) [31] and the invariant based orthotropic fitted (IBOF) [56] closures,

with the differences occurring in the formation of βi. For example, the linear closure

is formed by setting β1 = −3/35, β2 = 6/7 and β3 = β4 = β5 = β6 = 0. The natural,

FSQ and IBOF closures each define β1 through β6 as functions of the invariants of

the second-order tensor aij (see e.g. [30, 31, 56]). The more recent IBOF [56] closure

yields an accurate description of the second-order orientation tensor in typical flow

conditions over a range of fiber interaction coefficients, and removes the singularity

issues inherent in the natural closure [56, 60], whereas the FSQ has been shown to

yield realizable behavior in Couette flow [95].

To explore material symmetries for invariant closures, the frame of reference is

taken to be the principal frame of the second-order orientation tensor where the only

three non-zero terms of aij are the principal values, designated here as a(11), a(22),
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and a(33), where (· · · ) designates the second-order tensor components are given in the

principal reference frame of aij. Note that if the components aiiij and aiijk (no sum on

i, i 6= j, i 6= k, j 6= k) obtained from Equation (4.5) can be shown to equate to zero in

the principal frame of aij, then the invariant based closures will also yield orthotropic

material properties as do the orthotropic closures. Chung and Kwon [56] recognize

the IBOF satisfies the orthotropic assumption, however, the following discussion is

undertaken to clarify the material symmetries of closures, both current and future.

To prove all fourth-order invariant based closures are orthotropic, consider any

set of second-order tensors bij, cij viewed in an appropriate reference frame such that

bij = 0, cij = 0 ∀ i 6= j, where bij and cij may be nonzero when i = j. Notice, for

example, the second-order tensors aij and δij are of this form. Then bikckj = 0, ∀i 6= j

(sum on k) since for each k = 1, 2 or 3, bikckj = 0 (no sum on k) where either bik = 0

or ckj = 0. Using mathematical induction [96], assume that bikckl · · · cαβcβγ = 0, ∀

γ 6= i (no sum on γ, sum on k, l, . . . , α, β). Then take bikckl · · · cαβcβγcγj. When

γ 6= i this expression is zero by the preceding inductive step, and when γ = i then

cγj = cij = 0 by the above hypothesis. Therefore, by induction bikckl · · · cαβcβγcγj = 0.

Similarly this will hold for any product of second-order tensors satisfying the condition

imposed on bij and cij above. Therefore, each of the terms aiiij and aiijk (no sum

on i, i 6= j, i 6= k, j 6= k) obtained from the invariant based closure of Equation

(4.5) in the principal frame of the second-order orientation tensor are zero since each

term obtained from the symmetric operators can be written as a product of second-

order tensors which satisfy the property δij, aij = 0, ∀ i 6= j in the principal frame

of aij. Note that if higher-order terms formed as products of aij were included in

Equation (4.5) (i.e., terms such as S ((aiα · · · aβj)(akγ · · · aηl))), they too will have
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zero contribution, in the principal frame, to the orientation tensor components aiiij

and aiijk (no sum on i, i 6= j, i 6= k, j 6= k) by the same argument. Therefore,

all current and/or future fourth-order closures which can be written in the form of

Equation (4.5), or as an expansion of any of the products in Equation (4.5), will yield

aiiij = aiijk = 0 (no sum on i, i 6= j, i 6= k, j 6= k) in the principal frame of aij,

thereby yielding an orthotropic tensor (cf. Equation (4.4)).

4.2.4 Sixth-Order Closures

Only a few works related to sixth-order closures appear in the literature [6,38,39,52,

61]. Altan et al. [61] employed a sixth-order quadratic closure proposed by Advani and

Tucker [6] for dilute suspensions of fibers. Unfortunately, the quadratic closure has

since been shown to overestimate fiber alignment in flows characteristic of industrial

applications [60]. For aligned states that significantly differ from random in space, the

sixth-order linear closure fails to remain within the physical range (see e.g. [39] and

the preceding chapter). The sixth-order hybrid closure of Advani and Tucker [6] and

the sixth-order quadratic closure overestimate the actual alignment of fibers [60], and

both fail to satisfy the symmetry requirements imposed by the commutative property

in the formation of the orientation tensor, e.g. Equation (2.11). Conversely, the

sixth-order eigenvalue based closure EBF6 [38] from Equation (3.2), the sixth-order

invariant based closure IBF6 [39] form Equation (3.3), and the sixth-order invariant

based fitted closure INV6 [38] of Equation (3.15) satisfy the symmetry conditions, with

the INV6 providing a fully symmetric sixth-order orientation tensor as a function of

the fourth-order orientation tensor.

The EBF6 explicitly assumes an orthotropic form for the fourth-order orientation

tensor (see e.g. Jack and Smith [39]) and therefore will not be considered further.
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Alternatively, the IBF6 and the INV6 make no explicit assumptions about the form of

aijkl which is obtained from aijklmn using the normalization condition aijkl = aijklmm.

The sixth-order linear closure, along with the IBF6 and INV6 closures given in Equa-

tions (3.3) and (3.15), respectively, are all contained within the function

aijklmn = β1S (δijδklδmn) + β2S (δijδklamn) + β3S (δijδklampapn) + β4S (δijaklamn)

+ β5S (δijaklampapn) + β6S (δijakpaplamqaqn) + β7S (aijaklamn)

+ β8S (aijaklampapn) + β9S (aijakpaplamqaqn) + β10S (aipapjakqaqlamrarn)

+ β11S (δijaklmn) + β12S (aijaklmn) + β13S (aipapjaklmn) (4.7)

where the operator S represents the symmetric part of its argument discussed in

Equations (3.17) and (3.18). For the IBF6, β1 through β10 are functions of the second-

order orientation tensor invariants, and β11 = β12 = β13 = 0. For INV6, β1 through

β13 are functions of the fourth-order orientation tensor invariants, and in general are

non-zero (see e.g. Jack and Smith [39]). Observe, the IBF6 is a sixth-order closure

that is a function of the second-order tensor recognizing that each aij in Equation

(4.7) can be replaced by aijkk (sum on k) from Equation (2.13), whereas the INV6 is

a function of the fourth-order orientation tensor.

It follows from the normalization condition in Equation (2.13) that the coefficients

of β1 through β10 that contribute to the shear-extensional coupling terms a(iiij) (no

sum on i, i 6= j) in Equation (4.7) are each zero in the principal frame from arguments

provided above. Similarly it can be shown that all a(iijk)(no sum on i, i 6= j, i 6= k,

j 6= k) obtained from the IBF6 closure, through the application of Equation (2.13),

are also zero. Therefore, IBF6 yields a material representation no more general than

orthotropic. Alternatively, the tensor obtained from the symmetric operator that

multiplies β11 in Equation (4.7) yields the shear-extensional coupling components
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a1112kk (sum on k) as

S (δ11a12kk)=
1

15
(a1112δkk+ 6a112kδ1k+ 3a12kkδ11+ 2a111kδ2k+ 3a11kkδ12) (4.8)

Since δkk = 3, a112kδ1k = a1112, and a12kkδ11 = a12, Equation (4.8) may be simplified

to the following form

S (δ11a12kk) =
1

15
(11a1112 + 3a12) (4.9)

Considering this result in the principal frame where a(12) = 0 it is possible to

have a(1112) non-zero, even during simple flow conditions. Similarly, other values

of a(iiijmm) = a(iiij) and a(iijkmm) = a(iijk) (no sum on i, i 6= j, i 6= k, and j 6= k)

obtained from the symmetric operator associated with β11 can be shown to yield

non-zero results in the principal frame. Similar arguments demonstrate that the

symmetric operator multiplying β12 and β13 in Equation (4.7) yield shear-extensional

and shear-shear coupling terms that are not necessarily zero. Therefore, the INV6

closure yields fourth-order orientation tensors that are not limited by the orthotropic

assumption of other sixth-order closures and all objective fourth-order closures.

4.3 Numerical Examples of Mechanical Property

Predictions

To illustrate the effect of material symmetries imposed by a tensor closure on com-

puted mechanical properties, a homogeneous flow is first considered starting from an

isotropic fiber orientation state. The properties to represent a typical fiber reinforced

thermoplastic are given as [80]

Ef = 30× 109 Pa νf = 0.20
Em = 1× 109 Pa νm = 0.38
ar = 10 Vf = 0.2

(4.10)
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where Vf is the volume fraction of fibers. In this analysis, the material stiffness

tensor 〈Cijkl〉 is computed from Equation (4.3) as discussed in [6] and [71], with the

unidirectional stiffness tensor Cijkl computed from the Halpin-Tsai equations [70] in

Table 2.1.

The first flow considered is uniaxial elongational flow with v1 = 2Gx1, v2 = −Gx2,

and v3 = −Gx3. For uniaxial elongational flow beginning from an initially isotropic

orientation state, components such as aij (i 6= j) and aiiij and aiijk (no sum on i,

i 6= j, i 6= k, j 6= k) that begin at zero will remain zero. Therefore the stiffness

tensor from Equation (4.3) will begin as transversely isotropic (actually isotropic,

a subset of transversely isotropic) and remain transversely isotropic. Therefore, in

predicting material properties both the orthotropic and invariant based fourth-order

and sixth-order closures will yield stiffness tensors with identical material symmetries.

The second example considered is simple shear flow with velocity components

v1 = Gx3 and v2 = v3 = 0. In this analysis, the distribution function evolution

(DFE) for ψ(θ, φ, t) is computed with the control volume method of Bay [23] with an

interaction coefficient of CI = 10−2. This example is the same as that used in Cintra

and Tucker [27] who presented the simple shear case to demonstrate that fourth-order

closures cannot “... reproduce this non-orthotropic part of the fourth-order tensor and

still be objective.”

Selected non-orthotropic stiffness tensor components for simple shear flow are

plotted in Figure 4.1 from DFE results, and orientation tensor flow evolutions using

the fourth-order orthotropic closure (ORT) of VerWeyst et al. [53], the invariant based

closure (IBOF) of Chung and Kwon [56], and the sixth-order invariant based closure

INV6 of Jack and Smith [75]. Results for the stiffness tensor are given in contracted
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notation. Clearly in the principal frame the shear-extensional coupling terms C(25) and

C(35) and the shear-shear coupling term C(46) for this flow are non-zero. Observe the

fourth-order closures set each of these terms to zero, whereas the sixth-order closure is

able to reasonably represent the non-orthotropic material behavior. It must be noted

that the non-orthotropic terms are relatively small in comparison to the orthotropic

terms of the stiffness tensor, several of which are given in Figure 4.2. Observe that

C(66) is nearly 5 times larger than C(15), whereas C(11) is nearly 400 times larger than

C(15) at steady state. It is worthwhile to also note that the sixth-order closure is able

to more accurately represent the stiffness tensor components throughout the flow

history than the two fourth-order closures investigated. Percentage error results for

the orthotropic components are given in Figure 4.3 and demonstrate the increased

accuracy of the sixth-order closure. The percentage error remains equal to or less

than 1% throughout the flow history, whereas the ORT closure has more than a 4%

error in the shearing component, C(66) for much of the flow history.

The third example is that of flow near a pin gate [27, 56]. Unlike homogeneous

flows, velocity components in this flow are a function of radial position and gap height

as discussed in Equations (3.13) and (3.14). For small radii the flow is dominated by

out-of-plane stretching, and as r increases the flow is dominated by shearing which

causes the fibers to orient in the radial direction. Beginning from an initially isotropic

fiber distribution, the orientation distribution function ψ(θ, φ, t) is computed for a gap

height of z
b

= 5
10

with an interaction coefficient of CI = 10−2. Selected shear-shear

and shear-extensional coupling components of the stiffness tensor are plotted in Figure

4.4. Observe that as in the simple-shear example, the orthotropic closures again set

these terms to zero, whereas the sixth-order closure captures the non-orthotropic
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behavior. In comparison to the orthotropic terms given in Figure 4.5, these shear-

shear and shear-extensional terms appear small with the C(15) term being nearly 5

times smaller than the C(66) component at steady state. Again, the sixth-order closure

better represents the orthotropic components than the fourth-order closures. Figure

4.6 provides the percentage error of the ORT and the INV6 closure in representing the

orthotropic stiffness tensor components. Observe, as with the simple shear example,

the INV6 has less than half the percentage error as does the ORT closure.

4.4 Remarks on Closure Effects on Mechanical

Properties

Current objective fourth-order closures are limited, by their construction, to an or-

thotropic tensor representation and neglect shear-extensional coupling and shear-

shear coupling effects. This limitation will prevent short-fiber polymer composite

models, polymer crystalline models and other models which employ similar fourth-

order closure techniques from representing material behavior more complex than or-

thotropic. The significance of this limitation may become more pronounced based

upon the initial orientation and should be investigated further. Different conclusions

may also be reached if a diffusion model other than that provided by the Folgar-

Tucker model were used. To avoid the orthotropic limitation it was demonstrated

that sixth-order closures can represent shear-extensional and shear-shear coupling

behavior. Both the fourth-order ORT and the sixth-order INV6 closure predict the

extensional, shear, and extension-extension coupling terms of the stiffness tensor with

reasonable accuracy. The INV6 yields more accurate results by more than a factor

of 2 throughout much of the flow history presented for the orthotropic components
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of the stiffness tensor. Additionally, the INV6 does not experience the orthotropic

limitation experienced by all existing objective orthotropic closures, and presents a

reasonable representation of the anisotropic components of the stiffness tensor. Al-

though results for the anisotropic components are not as accurate as those for the

orthotropic components, the INV6 demonstrates that sixth-order closures are able to

predict, with reasonable accuracy, an anisotropic stiffness tensor.
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CHAPTER 5

ELASTIC PROPERTIES OF SHORT-FIBER

POLYMER COMPOSITES

Current methods for predicting the elastic properties of short-fiber polymer compos-

ites are derived from fiber orientation tensors. These calculations are based on the

orientation average of a transversely isotropic stiffness tensor and have yet to include

a quantitative measure of property variation. Recognizing the statistical nature of

fiber orientations within the composite commonly defined through the fiber orienta-

tion probability distribution function, analytical expressions are developed here to

predict both the expectation and variance of the material stiffness tensor from the

probability distribution function of fibers. As such, the fiber distribution function is

expanded through the Laplace series of complex spherical harmonics. Results pre-

sented here and in Jack and Smith [79] demonstrate that the expectation of the ma-

terial stiffness tensor is a function of orientation tensors up through the fourth-order

and the variance requires orientation tensors up through eighth-order.

The analytic expressions developed are validated through the method of Monte-

Carlo where sample sets are generated from statistically independent unidirectional

samples belonging to the fiber orientation probability distribution function with the

Accept-Reject Generation Algorithm. Analytic predictions for sample sets of fibers

from both an analytic fiber probability distribution function and the industrially rele-

vant case of center-gated disk flow for concentrated suspensions of fibers are developed

through the Central Limit Theorem. Results from the distribution of the material

stiffness tensor obtained through the Central-Limit Theorem presented here and in
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Jack and Smith [78] correspond with results acquired through Monte-Carlo integra-

tions and validate the analytic expressions for material expectation and variance.

5.1 Analytical Forms for Expectation and Vari-

ance of the Material Property Tensor

Due to the overwhelming computational burden for industrial applications to numer-

ically solve the fiber orientation probability distribution function ψ (θ, φ) for com-

plex part geometries, the method of orientation tensors introduced by Advani and

Tucker [6] is often employed. As a result, little attention has been given to evaluating

short fiber composite elastic properties from the fiber distribution function itself. The

Advani and Tucker method to predict material stiffness behavior from orientation ten-

sors is based on the volume average of a transversely isotropic stiffness tensor [6]. The

class of objective fourth-order closures discussed in Equation (2.37) either explicitly

or implicitly assume a transversely isotropic form (see e.g. Equations (4.4) and (4.5)

and Jack and Smith [7]), and therefore the Advani and Tucker model for predicting

an orientation-averaged material stiffness tensor is sufficient for fourth-order closure

applications. Conversely, both the sixth-order closure of Altan et al. [52] as well as

the sixth-order INV6 closure [38] given in Equation (3.15) are not constrained by the

transversely isotropic assumption inherent to the objective fourth-order closures [7],

therefore the Advani and Tucker derivation warrants further investigation. Addi-

tionally, there exists no complete derivation of an analytic method to represent the

statistical nature of the material stiffness tensor.

In this section the Laplace series of complex spherical harmonics presented in

Equation (2.51) is employed to expand the fiber orientation probability distribution
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function assuming only that the fiber distribution is symmetric about a single axis.

This approach makes no assumptions regarding the form of the orientation tensors

beyond their inherent symmetry, thereby providing a means for computing material

behavior from orientation tensors, and avoids the issue of a closure selection. It will

be shown that the proposed method to predict the expectation value can be written

in the same form as the Advani and Tucker [6] model. Additionally, an analytic form

is introduced to evaluate the variance of the stiffness tensor’s distribution, which

requires orientation tensors through the eighth-order.

5.1.1 Material Stiffness Tensor Expectation Value

The expectation value (referred to elsewhere as the mean or orientation average [6])

of the material stiffness tensor is formulated from the non-correlated aggregate of

unidirectional fibers defined as the first moment of the fiber orientation probability

distribution function ψ (θ, φ) as [97]

〈Cijkl〉 =

∮

S2
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrsψ (θ, φ) dS (5.1)

where 〈Cijkl〉 is the expectation value of the stiffness tensor, Cpqrs is the unidirec-

tional stiffness tensor represented by the stiffness matrix in Equation (2.44), and

Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs is the unidirectional stiffness tensor aligned

along the angles (θ, φ) given in Figure 2.1. The rotation tensor Q(θ, φ) in Equation

(5.1) is defined as

Q(θ, φ)=




sin θ cos φ sin θ sin φ cos θ
− sin φ cos φ 0

− cos θ cos φ − cos θ sin φ sin θ


 (5.2)

It is essential to note that Equation (5.1) does not take into account the spatial

correlation of fibers with those nearby since the expectation is written in terms of
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the uncorrelated single fiber properties. In other words fibers must have a significant

enough separation such that they do not interact. This assumption is too stringent,

therefore it is assumed that the fibers are fully mixed and have no short range order

as was assumed in Advani and Tucker [6] for the development of the orientation

averaging procedure.

Equation (5.1) may be used to obtain orientation averaged elastic properties for

any sufficiently smooth fiber orientation distribution function ψ (θ, φ). The distribu-

tion ψ (θ, φ) is written in terms of the Laplace series expansion of Equation (2.51) to

obtain the expectation value of the stiffness tensor in Equation (5.1) as the series

〈Cijkl〉 =

∮

S2
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs

∞∑

l=0

l∑
m=0

βm
l (θ, φ) dS

=
∞∑

l=0

∮

S2
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs

l∑
m=0

βm
l (θ, φ) dS

= 〈Cijkl〉0 + 〈Cijkl〉2 + · · ·+ 〈Cijkl〉2N + · · · (5.3)

where N ∈ {0} ∪ N, and for each N , 〈Cijkl〉2N is defined as

〈Cijkl〉2N ≡
∮

S2
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs

(
2N∑

m=0

βm
2N (θ, φ)

)
dS (5.4)

for βm
2N (θ, φ) given in Equation (2.59). All odd-ordered terms 〈Cijkl〉2N+1, N ∈

{0} ∪ N, are zero since βm
2N+1 (θ, φ) = 0 for all values of N for the symmetric fiber

distribution function.

Consider for example the zeroth-order term, 〈Cijkl〉0, from the Laplace series ex-

pansion along with Cpqrs from Equation (2.44) and β0
0 (θ, φ) = 1

4π
given in Equation
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(2.60). The expression for 〈C1111〉0 in this case is given as

〈C1111〉0 =

∮

S2
Qp1(θ, φ)Qq1(θ, φ)Qr1(θ, φ)Qs1(θ, φ)Cpqrs

(
1

4π

)
dS

=
1

4π

∮

S2

(
cos4φ

(
C22 cos4θ+2

(
C12+2C55

)
cos2θ sin2θ + C11 sin4θ

)

+2 cos2φ
(
C22 cos2θ +

(
C12 + 2C55

)
sin2θ

)
sin2φ + C22 sin4φ

)
dS

=
1

15

(
3C11 + 4C12 + 8C22 + 8C55

)
(5.5)

The remaining components for 〈Cijkl〉0 are derived in a similar manner and after some

simplification are written in contracted notation as

[〈C〉0]=




ξ0 η0 η0 0 0 0
η0 ξ0 η0 0 0 0
η0 η0 ξ0 0 0 0

0 0 0 ξ0−η0

2
0 0

0 0 0 0 ξ0−η0

2
0

0 0 0 0 0 ξ0−η0

2




(5.6)

where [〈C〉0] represents the tensor 〈Cijkl〉0 in matrix form and the coefficients ξ0 and

η0 are given as

ξ0 =
1

15

(
3C11 + 4C12 + 8C22 + 8C55

)

η0 =
1

15

(
C11 + 8C12 + C22 + 5C23 − 4C55

)
(5.7)

As in Equation (2.44), Cmn, m,n ∈ {1, 2, . . . , 6}, is the (m,n) component of the

underlying unidirectional stiffness matrix
[
C

]
. Equation (5.6) is an isotropic stiffness

tensor (see e.g. Jones [10]) as one would expect from an isotropic fiber orientation dis-

tribution. This fact is obvious recognizing the first term β0
0 (θ, φ) in the Laplace series

of Equation (2.51) is the full expansion for an isotropic fiber orientation distribution.

The second-order function from the Laplace series expansion of the stiffness tensor

expectation 〈Cijkl〉2 can be derived in a similar manner from
∑2

m=0 βm
2 (θ, φ) where

the functions βm
2 (θ, φ) for each m ∈ {0, 1, 2} are given in Equations (2.61)-(2.63).
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After some simplification, the second-order component from the expansion of the

material tensor expectation 〈Cijkl〉2 in contracted form is given as

[〈C〉2] =


(3a11−1)τ2 (3a11+ 3a22−2)ε2 (1−3a22)ε2 3a23ε2 a13ξ2 a12ξ2

(3a11+ 3a22−2)ε2 (3a22−1)τ2 (1−3a11)ε2 a23ξ2 3a13ε2 a12ξ2

(1−3a22)ε2 (1−3a11)ε2 (2−3a11−3a22)τ2 a23ξ2 a13ξ2 3a12ε2
3a23ε2 a23ξ2 a23ξ2 (1−3a11)η2 3a12η2 3a13η2

a13ξ2 3a13ε2 a13ξ2 3a12η2 (1−3a22)η2 3a23η2

a12ξ2 a12ξ2 3a12ε2 3a13η2 3a23η2 (3a11+3a22−2)η2



(5.8)

where the coefficients ξ2, η2, τ2, and ε2 are defined as

ξ2=
6

42

(
3C11+ C12− 4C22+ 2C55

)

η2=
1

42

(
2C11− 4C12− 5C22+ 7C23+ 6C55

)

τ2=
2ξ2

3

ε2=
1

3
(ξ2 − 6η2) (5.9)

Note that when the second-order orientation tensor aij is viewed in its principal

reference frame, [〈C〉0] + [〈C〉2] from Equations (5.6) and (5.8) yields a transversely

isotropic stiffness tensor (see e.g. Jones [10]). For example in the principal frame of

aij, the term [〈C〉0]15 + [〈C〉2]15 = a13ξ2 is zero since a13 = 0.

The fourth-order contribution from the Laplace series expansion of the stiffness

tensor 〈Cijkl〉4 is derived using Equation (5.3) with the fourth-order function of spher-

ical harmonics
∑4

m=0 βm
4 (θ, φ) as given in Equations (2.65)-(2.69). After much sim-

plification, this component of the stiffness tensor expectation value can be written

concisely as

〈Cijkl〉4 = ξ4

(
aijkl − 1

7
(aijδkl + aklδij + aikδjl + ailδjk + ajkδil + ajlδik)

+
1

35
(δijδkl + δikδjl + δilδjk)

)
(5.10)
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where

ξ4 = C11 − 2C12 + C22 − 4C55 (5.11)

In the principal frame of the second-order orientation tensor, components such as

〈Ciiij〉4 and 〈Ciijk〉4 (no sum on i, i 6= j, i 6= k, and j 6= k) are, in general, non-zero

since the fourth-order orientation tensor components aiiij and aiijk (no sum on i, i 6= j,

i 6= k, and j 6= k) yield, in general, non-zero components in the principal frame of

the second-order orientation tensor (see e.g. Equation (4.9) and Jack and Smith [7]).

Therefore, the expectation of the stiffness tensor component 〈Cijkl〉4 may yield a

stiffness tensor with fewer planes of material symmetry than a transversely isotropic

material and will experience the same planes of symmetry as does the fourth-order

expansion of ψ (θ, φ).

The Laplace series expansion in Equation (5.3) is an infinite series yielding the

terms 〈Cijkl〉2N for {N : N ∈ N, N ≥ 3}. Taking any of the functions
∑2N

m=0 βm
2N (θ, φ)

for N ≥ 3, the order of βm
2N (θ, φ) composed of the spherical function Y m

2N (θ, φ)

given in Equation (2.53) is greater in order than any component of the product

Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ) which is at most fourth-order, therefore by the

orthogonality condition from Equation (2.55), there exist no higher order terms in

the expansion for the stiffness expectation value from Equation (5.3) than fourth.

Ergo, assuming non-interacting fibers, Equation (5.3) may be written succinctly as

〈Cijkl〉 = 〈Cijkl〉0 + 〈Cijkl〉2 + 〈Cijkl〉4 (5.12)

where each of the tensors 〈Cijkl〉0, 〈Cijkl〉2 and 〈Cijkl〉4 are given in Equations (5.6),

(5.8) and (5.10), respectively.

The above expression for the stiffness tensor expectation value can be rewritten in

the form introduced by Advani and Tucker [6] shown in Equation (4.3) by substituting
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the following in Equations (5.6), (5.8) and (5.10)





ξ0

η0

ξ2

η2

ξ4





=




1
5

2
3

4
3

1 2
1
15

2
3

0 1 0
3
7

1 2 0 0
1
21

0 1
3

0 0
1 0 0 0 0








B1

B2

B3

B4

B5





(5.13)

The form of Equation (5.12) and the Advani and Tucker form in Equation (4.3)

for the stiffness tensor expectation value predictions will yield the identical expres-

sions after simplification. For isotropic distributions, the stiffness tensor can be writ-

ten as 〈Cijkl〉 = 〈Cijkl〉0, and for distributions that can be written with solely the

second-order Laplace series expansion, the expectation of the stiffness tensor is sim-

ply 〈Cijkl〉 = 〈Cijkl〉0 + 〈Cijkl〉2.

5.1.2 Material Stiffness Tensor Variance

Recognizing the statistical nature of the fiber orientation probability distribution

function, there is a need to develop a quantitative measure of material property

variation for a given fiber distribution. Continuing in a similar fashion as the above

formulation for the expectation value, the assumption is continued whereby fiber

interaction only occurs during processing through the fiber distribution evolution

equation (see e.g. [11,45]). As such the fiber distribution function ψ (θ, φ) is composed

of uncorrelated variables θ and φ and the variance of the stiffness tensor σ2
ijkl may be

written as the second moment of ψ (θ, φ) about the expectation 〈Cijkl〉 [97, 98] as

σ2
ijkl =

∮

S2

(
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs − 〈Cijkl〉

)2
ψ (θ, φ) dS (5.14)

Equation (5.14) may be viewed as the variance of the stiffness tensors each computed

from an individual fiber in the matrix. In this case, each fiber is defined by the angles

(θ, φ) taken within a region of a part where the fiber distribution ψ (θ, φ) is assumed
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continuous. The form of Equation (5.14) implies uncorrelated variables θ and φ, and

remains valid until the density of fibers is such that individual fibers cause changes

in either the fiber angle or stress field of neighboring fibers. Correlation will cause,

in the laboratory setting, a variance that differs from Equation (5.14) where positive

correlations increase the measured variance and negative correlations diminish the

measured variance relative to Equation (5.14) (see e.g. [98]).

In Equation (5.14), 〈Cijkl〉 is independent of θ and φ and may be brought out of

the integral simplifying the above equation as

σ2
ijkl =

∮

S2

(
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs

)2
ψ (θ, φ) dS

−2 〈Cijkl〉
∮

S2
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrsψ (θ, φ) dS

+ 〈Cijkl〉2
∮

S2
ψ (θ, φ) dS (5.15)

Noting that
∮
S2 Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrsψ (θ, φ) dS = 〈Cijkl〉 from

Equation (5.1) and imposing the normalization property,
∮
S2 ψ (θ, φ) dS = 1 yields

σ2
ijkl =

∮

S2

(
Qpi(θ, φ)Qqj(θ, φ)Qrk(θ, φ)Qsl(θ, φ)Cpqrs

)2
ψ (θ, φ) dS− 〈Cijkl〉2 (5.16)

This form for the variance of the stiffness tensor σ2
ijkl requires an eighth-order Laplace

series expansion for ψ (θ, φ) to fully evaluate the integrand since the square of the

products of the rotation tensors will be eighth-order. The terms higher than eighth-

order will integrate to zero due to the orthogonality condition of Equation (2.55).

The variance of the components of the stiffness tensor σ2
ijkl may be written in

terms of the orientation tensors using the Laplace series expansion of Equation (2.51)

as described below. For example, the variance of the extensional components (see e.g.
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Jones [10]) are

σ2
iiii = ξ2

4aiiiiiiii +

(
4ξ2ξ4 − 12

7
ξ2
4

)
aiiiiii +

(
4ξ2

2 + 2ξ0ξ4 − 100

21
ξ2ξ4 +

222

245
ξ2
4

)
aiiii

+

(
4ξ0ξ2 − 8

3
ξ2
2 −

12

7
ξ0ξ4 +

52

35
ξ2ξ4 − 36

245
ξ2
4

)
aii

+
(105ξ0 − 70ξ2 + 9ξ4)

2

11025
− 〈Ciiii〉2 (5.17)

where the summation convention on i, and similarly for j and k, is suspended in

Equation (5.17) for i, j, k ∈ {1, 2, 3}, and for the remainder of this section. The form

of Equation (5.17) provides the variance of the three stiffness tensor components σ2
1111,

σ2
2222 and σ2

3333. Similarly, the variance of the shearing components of the stiffness

tensor, σ2
1212, σ2

1221, σ2
2121, σ2

1313, . . . may be derived from Equation (5.16) as

σ2
ijij = ξ2

4aiiiijjjj +

(
6η2ξ4 − 2

7
ξ2
4

)
(aiiiijj + aiijjjj)

+

(
ξ0ξ4 − η0ξ4 − 4η2ξ4 +

2

35
ξ2
4

)
aiijj +

(
3η2 − 1

7
ξ4

)2

(aiiii + 2aiijj + ajjjj)

− 1

245
(35 (η0 + 4η2 − ξ0)− 2ξ4) (21η2 − ξ4) (aii + ajj)

+

(
−1

2
ξ0 +

1

2
η0 + 2η2 − 1

35
ξ4

)2

− 〈Cijij〉2 (5.18)

∀ i, j ∈ {1, 2, 3}, i 6= j. The variance of the extension-extension coupling terms of the

stiffness tensor are

σ2
iijj = ξ2

4aiiiijjjj +

(
2ξ2ξ4 − 12η2ξ4 − 2

7
ξ2
4

)
(aiiiijj + aiijjjj)

+

(
2η0ξ4 + 2ξ2

2 − 24ξ2η2 + 72η2
2 −

40

21
ξ2ξ4 +

80

7
η2ξ4 +

24

245
ξ2
4

)
aiijj

+

(
ξ2 − 6η2 − 1

7
ξ4

)2

(aiiii + ajjjj)

+2

(
ξ2 − 6η2 − 1

7
ξ4

)(
η0 − 2

3
ξ2 + 4η2 +

1

35
ξ4

)
(aii + ajj)

+

(
η0 − 2

3
ξ2 + 4η2 +

1

35
ξ4

)2

− 〈Ciijj〉2 (5.19)
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∀ i, j ∈ {1, 2, 3}, i 6= j. The variance of the stiffness tensor for the shear-extension

coupling terms may be expressed as

σ2
iiij = ξ2

4aiiiiiijj +

(
2ξ2ξ4− 6

7
ξ2
4

)
aiiiijj +

(
ξ2− 3

7
ξ4

)2

aiijj −〈Ciiij〉2 (5.20)

σ2
iijk = ξ2

4aiiiijjkk +

(
2ξ2ξ4−12η2ξ4− 2

7
ξ2
4

)
aiijjkk +

(
ξ2−6η2− 1

7
ξ4

)2

ajjkk −〈Ciijk〉2(5.21)

where i, j, k ∈ {1, 2, 3}, i 6= j, i 6= k, and j 6= k in Equations (5.20) and (5.21). Lastly,

the variance of the stiffness tensor for the shear-shear coupling terms are written as

σ2
ijik = ξ2

4aiiiijjkk +

(
6η2ξ4 − 2

7
ξ2
4

)
aiijjkk +

(
3η2 − 1

7
ξ4

)2

ajjkk − 〈Cijik〉2 (5.22)

Note the orientation tensors up through eighth-order appear in Equations (5.17)-

(5.22) for the variance of the stiffness tensor. This requirement may pose computa-

tional difficulty since accepted closure approximations have only been developed for

orientation tensors up through the sixth-order (see e.g. [6, 27, 38, 56]). For industrial

applications where only the orientation tensors up to fourth- or sixth-order are known,

it may become necessary to develop higher-order orientation tensor approximations

in order to use Equations (5.17)-(5.22). At present one might consider using a simple

eighth-order quadratic approximation aijklmnop ' aijklmnaop in conjunction with any

one of the sixth-order closures. It is speculated a simple approximation for aijklmnop

similar to the fourth-order linear closure of Hand [94], the sixth-order quadratic clo-

sure used by Altan [61], or the sixth-order hybrid closure introduced by Advani [6]

may provide a sufficient approximation to the eighth-order orientation tensor. In

fiber orientation analysis, the analytic closures have been demonstrated to provide

somewhat reasonable results in approximating the higher-order orientation tensors,

even though they yield unacceptable errors in the flow equations for the orientation

tensors (see e.g. Jack [59] and Jack and Smith [60]).
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5.1.3 Example Analytic Distributions

Several analytical distribution functions are selected to demonstrate the material

property expressions for expectation and variance of the short-fiber composite stiffness

tensor presented above. In the following section and in Jack and Smith [78], numerical

results are obtained for various fiber distribution functions ψ (θ, φ) using the method

of Monte-Carlo to verify the analytic forms. It is worthwhile to note in the following

examples, conditions where the second- and/or the fourth-order expansion for the

stiffness tensor [〈C〉] of Equation (5.12) are zero, such as the case for an isotropic

fiber distribution [〈C〉]2 = [〈C〉]4 = [0] and for a second-order fiber distribution (i.e.,

from Equation (2.51), αl (θ, φ) = 0 for {l : 2 < l, l ∈ N}) [〈C〉]4 = [0].

5.1.3.1 Analytic Fiber Orientation Distribution

The first example considered here is of the analytic fiber orientation probability dis-

tribution function

ψ (θ, φ) = c sin2n θ cos2n φ (5.23)

where c is a constant chosen to satisfy the normalization condition on the distribution

function (
∮
S2 ψ (θ, φ) dS=1), θ and φ are the angles defined in Figure 2.1, and n ∈

{0}∪N. For n = 0 the probability of a fiber being oriented near any given angle pair

(θ′, φ′) ∈ S2 is identical to the probability of a fiber being oriented near any other

angle pair as shown in Figure 5.1. As the coefficient n increases, the distribution

tends toward alignment along the x1 axis corresponding to (θ, φ) =
(

π
2
, 0

)
and (θ, φ) =

(
π
2
, π

)
. For the case with n = 1 the distribution function is shown in Figure 5.2, and

as n increases the peaks of the distribution become sharper as shown in Figure 5.3

for the case with n = 6.
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Figure 5.1: Isotropic fiber orientation distribution ψ (θ, φ) = 1
4π

.
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Figure 5.2: Transversely isotropic second-order fiber orientation distribution
ψ (θ, φ) = 3

4π
sin2 θ cos2 φ.
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Figure 5.3: Transversely isotropic sixth-order fiber orientation distribution ψ (θ, φ) =
13
4π

sin12 θ cos12 φ.
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The zeroth-order component 〈Cijkl〉0 does not depend on ψ (θ, φ) as shown in

Equation (5.6). However, the higher-order components of the stiffness tensor ex-

pectation are functions of the orientation tensors aij and aijkl. Analytic expressions

for the second-order orientation tensor aij as a function of n are included in Equa-

tion (5.8) to obtain the second-order stiffness tensor component 〈Cijkl〉2. After some

simplification, 〈Cijkl〉2 may be written in contracted form as a function of n as

[〈C〉2 (n)] =
2n

3 + 2n




2τ2 ε2 ε2 0 0 0
ε2 −τ2 −2ε2 0 0 0
ε2 −2ε2 −τ2 0 0 0
0 0 0 −2η2 0 0
0 0 0 0 η2 0
0 0 0 0 0 η2




(5.24)

Similarly, analytic expressions as a function of n for the fourth-order orientation

tensor aijkl are substituted in Equation (5.10) to simplify the fourth-order stiffness

tensor component 〈Cijkl〉4 as

[〈C〉4 (n)] =
4n (n− 1)

35 (15 + 16n + 4n2)
ξ4




8 −4 −4 0 0 0
−4 3 1 0 0 0
−4 1 3 0 0 0
0 0 0 1 0 0
0 0 0 0 −4 0
0 0 0 0 0 −4




(5.25)

Notice for the isotropic case (i.e., n = 0) where ψ (θ, φ) is given in Figure 5.1, all

components of [〈C〉2 (0)] and [〈C〉4 (0)] are 0. For the case n = 1 shown in Figure 5.2,

the second-order component of the stiffness tensor [〈C〉2 (1)] is non-zero, whereas the

fourth-order component of the stiffness tensor [〈C〉4 (1)] remains [0]. Note however,

that for n > 1 fourth-order stiffness tensor components contribute to the expectation

of the stiffness tensor.

The variance of the stiffness tensor does not lend itself to concise expressions as

seen in the preceding results for the material expectation tensor. Analytic expressions
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for the orientation tensors as a function of increasing n through eighth-order developed

using the mathematical principle of induction (see e.g. [96]). These analytic functions

are then introduced into Equations (5.17)-(5.22) to yield expressions for the variance

of the stiffness tensor as a function of n for the given fiber orientation probability

distribution function in Equation (5.23). The variance of the extensional components

σ2
1111, σ2

2222, and σ2
3333 from Equation (5.17) are expressed after simplification as

σ2
1111 (n) = − 16n2

(3 + 2n)2 τ 2
2 +

8nξ0 (2ξ2 − 3τ2)

9 + 6n
+

16 (3 + 4n + 4n2) ξ2
2

9 (15 + 16n + 4n2)

− 256 (n− 1) n2

35 (3 + 2n) (15 + 16n + 4n2)
τ2ξ4 +

256n (5 + 2n + 2n2)

105 (7 + 2n) (15 + 16n + 4n2)
ξ2ξ4

+
64 (63 + 192n + 244n2 + 256n3 + 64n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4

σ2
2222 (n) = − 4n2

(3 + 2n)2 τ 2
2 +

4nξ0 (3τ2 − 2ξ2)

9 + 6n
+

16 (3 + n + n2) ξ2
2

9 (15 + 16n + 4n2)

+
48 (n− 1) n2

35 (3 + 2n) (15 + 16n + 4n2)
τ2ξ4 − 32n (10 + n + n2)

35 (7 + 2n) (15 + 16n + 4n2)
ξ2ξ4

+
96 (42 + 79n + 79n2 + 54n3 + 12n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4

σ2
3333 (n) = σ2

2222 (n) (5.26)

where the final relation between σ2
2222 (n) and σ2

3333 (n) is realized due to the symmetry

of the fiber distribution function of Equation (5.23) in the x2 − x3 plane. The two

independent shearing components of the stiffness tensor variance are given as

σ2
2323 (n) =

36 (1 + 2n)

(3 + 2n) (15 + 16n + 4n2)
η2

2 −
48n (1 + 2n)

7 (15 + 16n + 4n2) (3 + 2n) (7 + 2n)
η2ξ4

+
4 (567 + 636n + 208n2 + 64n3 + 16n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4

σ2
1212 (n) =

36 (1 + n)

(3 + 2n)2 (5 + 2n)
η2

2 +
24n (5− 2n)

7 (3 + 2n)2 (35 + 24n + 4n2)
η2ξ4

+
4 (567 + 1644n + 2176n2 + 1744n3 + 400n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4 (5.27)

The remaining shearing components are expressed as one of the two components of
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Equation (5.27). Due to the symmetry of the stiffness tensor from the principal of

incremental work (see e.g. Jones [10]) index pairs may be swapped, i.e. σ2
2323 (n) =

σ2
3223 (n) = σ2

3232 (n) and σ2
1212 (n) = σ2

2112 (n) = σ2
2121 (n). Due to symmetry in the x2−

x3 plane of the selected fiber distribution function the variance of the C1313 component

is identical to the variance of the C1212 component, i.e. σ2
1313 (n) = σ2

1212 (n) =

σ2
3113 (n) = σ2

3131 (n).

For the simple analytic distribution of Equation (5.23) the stiffness tensor variance

for the extension-extension coupling components may be expressed as

σ2
2233 (n) = − 16n2

(3 + 2n)2 ε2
2 +

8nη0 (3ε2 + 6η2 − ξ2)

9 + 6n
+

4 (3 + 4n + 4n2) (ξ2 − 6η2)
2

9 (15 + 16n + 4n2)

+
32 (n− 1) n2

35 (3 + 2n) (15 + 16n + 4n2)
ε2ξ4 +

16n (5 + 2n + 2n2) (6η2 − ξ2)

105 (7 + 2n) (15 + 16n + 4n2)
ξ4

+
4 (567 + 636n + 208n2 + 64n3 + 16n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4

σ2
1122 (n) = − 4n2

(3 + 2n)2 ε2
2 −

4nη0 (3ε2 + 6η2 − ξ2)

9 + 6n
+

4 (3 + n + n2) (ξ2 − 6η2)
2

9 (15 + 16n + 4n2)

+
64 (n− 1) n2

35 (3 + 2n) (15 + 16n + 4n2)
ε2ξ4 +

8n (8n2 + 8n− 25) (6η2 − ξ2)

105 (7 + 2n) (15 + 16n + 4n2)
ξ4

+
4 (567 + 1644n + 2176n2 + 1744n3 + 400n4)

49 (15 + 16n + 4n2)2 (63 + 32n + 4n2)
ξ2
4 (5.28)

The remaining extension-extension components are given as σ2
2233 (n) = σ2

3322 (n) or

σ2
1122 (n) = σ2

2211 (n) = σ2
1133 (n) = σ2

3311 (n) from the principal of incremental work or

due to the inherent symmetry of the fiber distribution function.
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The independent components for the stiffness tensor variance of the shear-

extension coupling terms are expressed as

σ2
1112 (n) =

1 + 2n

15 + 16n + 4n2
ξ2
2 +

16n (1 + 2n)

7 (15 + 16n + 4n2) (7 + 2n)
ξ2ξ4

+
8 (1 + 2n) (21 + 8n + 8n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4

σ2
2223 (n) =

1

15 + 16n + 4n2
ξ2
2 −

12n

7 (15 + 16n + 4n2) (7 + 2n)
ξ2ξ4

+
12 (14 + 3n + 3n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4

σ2
1222 (n) =

1 + 2n

15 + 16n + 4n2
ξ2
2 −

12n (1 + 2n)

7 (15 + 16n + 4n2) (7 + 2n)
ξ2ξ4

+
12 (1 + 2n) (14 + 3n + 3n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4 (5.29)

and

σ2
1123 (n) =

(6η2 − ξ2)
2

15 + 16n + 4n2
+

24n (ξ2 − 6η2) ξ4

7 (15 + 16n + 4n2) (7 + 2n)

+
12 (7 + 12n + 12n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4

σ2
2213 (n) =

(1 + 2n) (6η2 − ξ2)
2

15 + 16n + 4n2
+

4n (1 + 2n) (6η2 − ξ2) ξ4

7 (15 + 16n + 4n2) (7 + 2n)

+
4 (1 + 2n) (21 + n + n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4 (5.30)

where the unwritten shear-extensional coupling variance components may be ex-

pressed as one of components given in Equations (5.29) and (5.30), i.e. σ2
1121 (n) =

σ2
1112 (n), σ2

2333 (n) = σ2
2223 (n), etc.
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Lastly, the independent stiffness tensor variance components of shear-shear cou-

pling simplify to

σ2
2312 (n) =

9 (1 + 2n)

15 + 16n + 4n2
η2

2 −
12n (1 + 2n)

7 (15 + 16n + 4n2) (7 + 2n)
η2ξ4

+
4 (1 + 2n) (21 + n + n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4

σ2
1312 (n) =

9

15 + 16n + 4n2
η2

2 +
72n

7 (15 + 16n + 4n2) (7 + 2n)
η2ξ4

+
12 (7 + 12n + 12n2)

49 (15 + 16n + 4n2) (63 + 32n + 4n2)
ξ2
4 (5.31)

with the remaining shear-shear components expressed in terms of either σ2
2312(n)

or σ2
1312(n) from Equation (5.31), i.e. σ2

1223 = σ2
1332 = σ2

1232 = · · · = σ2
2312 and

σ2
1213 (n) = σ2

1231 (n) = · · · = σ2
1312 (n).

The C1111 component of the stiffness tensor in industrial parts is often of greatest

interest and may be as much as two orders of magnitude greater than other compo-

nents of the stiffness tensor in the principle reference frame (see e.g. [7] and Figures

4.2 and 4.5). For comparison purposes, the second component considered in further

detail is the variance of the C1112 component. The expectation of this particular

component is often zero (or set to zero by the objective fourth-order closures) in

the principal reference frame of aij, and for ψ (θ, φ) in Equation (5.23), is explicitly

zero for the selected distribution function. For the case of an isotropic distribution

function (i.e. n = 0 in Equation (5.23) and shown in Figure 5.1) the variance of the

components C1111 and C1112 are, respectively,

σ2
1111 =

16 (245ξ2
2 + 4ξ2

4)

11025
(5.32)

σ2
1112 =

5 (147ξ2
2 + 8ξ2

4)

11025
(5.33)

For n = 1, the distribution function in Equation (5.23) (see e.g., Figure 5.2) is trans-

versely isotropic such that the second-order term of the stiffness tensor expectation
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[〈C〉]2 appearing in Equation (5.8) is non-zero, while the fourth-order component from

Equation (5.25) remains zero. The variance components σ2
1111 and σ2

1112 are given as

σ2
1111 =

8

848925

(
59290ξ2

2 + 7392ξ2ξ4 + 936ξ2
4 + 11319

(
5ξ0 (2ξ2 − 3τ2)− 6τ 2

2

))
(5.34)

σ2
1112 =

15

56595

(
4851ξ2 + 1232ξ2ξ4 + 296ξ2

4

)
(5.35)

As in the isotropic example, the stiffness tensor variance of the C1112 component is

of a similar magnitude as C1111 since each of the terms ξ0, ξ2, ξ4 and τ2 are similar

in magnitude. For the highly aligned distribution of Figure 5.3, corresponding to the

case n = 6 in Equation (5.23), the variance components σ2
1111 and σ2

1112 are given as

σ2
1111 =

16

20179425

(
1503565ξ2

2 + 338912ξ2ξ4 + 9412ξ2
4

+1345295ξ0 (2ξ2 − 3τ2)− 434112ξ4τ2 − 3228708τ 2
2

)
(5.36)

σ2
1112 =

1105

20179425

(
931ξ2 + 672ξ2ξ4 + 136ξ2

4

)
(5.37)

It is worthwhile to note that in this example, the variance of the stiffness tensor

component C1112 is greater than the variance of C1111 for each selected value of n in

Equation (5.23). Recall, that the C1112 component is often neglected in processing

simulations whereas great attention is provided the C1111 component.

5.1.3.2 Orthotropic Fiber Orientation Distribution

The final analytical example considered here is that of the fiber orientation distribu-

tion appearing in Figure 5.4 which is given by

ψ (θ, φ) =
1

2π

(1 + cot4 θ csc4 φ)
(
1− cos2 φ sin2 θ

)

(1 + cot2 θ csc2 φ)
2 (5.38)

Equation (5.38) is obtained from the orthotropic distribution function ψ (θ, φ) =

1
2π

sin2 θ
(
cos4 φ + sin4 φ

)
rotated into a frame such that the fibers tend to align with
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Figure 5.4: Orthotropic fiber orientation distribution ψ (θ, φ) =
1
2π

(1+cot4 θ csc4 φ)(1−cos2 φ sin2 θ)
(1+cot2 θ csc2 φ)2

.

equal probability along both the x2 and x3 axis. This distribution cannot be expressed

with just the second-order Laplace series expansion and is not transversely isotropic,

even though all objective fourth-order closures would predict such behavior (recall

Equations (4.4) and (4.5) along with Jack and Smith [7]). The zeroth-order contribu-

tion to the expectation value of the stiffness matrix is given in Equation (5.6). The

second-order contribution to the expectation value of the stiffness tensor is evaluated

from Equation (5.8) as

[〈C〉2]=
1

5




−2τ2 −ε2 −ε2 0 0 0
−ε2 τ2 2ε2 0 0 0
−ε2 2ε2 τ2 0 0 0
0 0 0 2η2 0 0
0 0 0 0 −η2 0
0 0 0 0 0 −η2




(5.39)

Since the distribution function for this orthotropic example requires a Laplace series

of order greater than two, there will be non-zero fourth-order contributions to the

127



stiffness tensor expectation value evaluated from Equation (5.10) as

[〈C〉4]=
1

70




0 0 0 0 0 0
0 ξ4 −ξ4 0 0 0
0 −ξ4 ξ4 0 0 0
0 0 0 −ξ4 0 0
0 0 0 0 0 0
0 0 0 0 0 0




(5.40)

After some simplification, the variance of C1111 for ψ (θ, φ) in Equation (5.38) is

obtained with Equation (5.17) as

σ2
1111 = − 1

35
ξ0 (28ξ2 + ξ4) +

267344ξ2
2 − 43736ξ2ξ4 + 4633ξ2

4

1131900
(5.41)

and the variance for C2222 and C3333 are evaluated as

σ2
2222 = σ2

3333 = − 78

175
ξ2
2 +

16

735
ξ2ξ4 +

4651

679140
ξ2
4 (5.42)

The remaining components of the variance may be similarly developed from Equations

(5.18)-(5.22) and are omitted here for conciseness.

5.2 Validation of Analytical Forms of Elastic Prop-

erties with the Method of Monte-Carlo

In the previous section and in Jack and Smith [79] an analytic form was presented

to derive the expectation of the material stiffness tensor and its variance directly

from the orientation tensors. This section presents statistical results obtained from

the method of Monte-Carlo [97] to obtain the sample mean and sample variance

of material stiffness tensor components and compare computed results with those

obtained from the analytically derived expectation and variance. The results are

studied in depth for a simple analytic function to demonstrate the effectiveness of the

proposed method, and for the industrially relevant results obtained from numerical

distribution function simulations for center-gated disk flow.
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For simplicity, results throughout this section will be formulated with the Halpin-

Tsai equations outlined in Table 2.1 to obtain the unidirectional stiffness tensor Cijkl,

with fibers aligned along the x1-axis given in Figure 2.1. Once the unidirectional

material stiffness tensor Cijkl and fiber orientation tensors are known, the expectation

of the material stiffness tensor 〈Cijkl〉 and variance of the material stiffness tensor σ2
ijkl

may be analytically obtained through Equations (5.12) and (5.17)-(5.22), respectively.

Recall that the form for 〈Cijkl〉 was identical to the form of Advani and Tucker [6]

and has been employed elsewhere to compute the mean properties of discrete sample

sets (see e.g. [6, 27–29, 35–37, 56, 64]). The variance σ2
ijkl has yet to be employed or

verified in any practical applications, but will be further investigated below.

5.2.1 Material Stiffness Prediction

One approach to obtain material stiffness values is to compute the expectation

value from the aggregate of unidirectional fibers using the fiber distribution func-

tion ψ (θ, φ) (see e.g. Jack and Smith [75]). Given a set of N angle pairs

{(θn, φn) : 1 ≤ n ≤ N, n ∈ N, N ∈ N} defining an aggregate of unidirectional fibers,

where N is the set of positive integer numbers N = {1, 2, . . .}, the sample mean mijkl

for the stiffness tensor from the corresponding fiber stress field is

mijkl =
1

N

N∑
n=1

(
Qqi(θn, φn)Qrj(θn, φn)Qsk(θn, φn)Qtl(θn, φn)Cqrst

)
(5.43)

where i, j, k, l, q, r, s, t ∈ {1, 2, 3}, Cqrst is the unidirectional stiffness tensor in Equa-

tion (2.44), and Q(θ, φ) is the rotation tensor

Q(θn, φn) =




sin θn cos φn sin θn sin φn cos θn

− sin φn cos φn 0
− cos θn cos φn − cos θn sin φn sin θn


 (5.44)

Note in Equation (5.43), the summation convention is in effect (except on n) where

repeated indices imply summation. The sample mean mijkl is an unbiased estimator
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(see e.g. [97]) of the population mean of a distribution having a probability density

function Pijkl (x) where x belongs to the range of values from the sample set.

If the given set of angles {(θn, φn) : 1 ≤ n ≤ N, n ∈ N, N ∈ N} are sampled such

that as N → ∞ the distribution of representative angles approach the fiber orienta-

tion probability distribution function ψ (θ, φ), then the sample mean mijkl approaches

the expectation value 〈Cijkl〉 (otherwise known as the orientation average or the popu-

lation mean) and may be expressed as the integrand from Equation (5.1). Equations

(5.1) and (5.43) do not take into account the spatial interaction of fibers, this is

assumed to be satisfied through the formation of ψ(θ, φ).

The sample variance s2
ijkl (also labeled as 2mijkl) is the second sample moment

about mijkl defined as

s2
ijkl =

1

N

N∑
n=1

(
Qpi(θn, φn)Qqj(θn, φn)Qrk(θn, φn)Qsl(θn, φn)Cpqrs −mijkl

)2
(5.45)

This is a biased estimator of the population variance σ2
ijkl. To provide an unbiased

estimator, the k-statistic k2
ijkl is defined by

k2
ijkl = s2

ijkl

N

N − 1
(5.46)

5.2.2 Computing Properties with Statistical Sampling

The sample mean and variance of Equations (5.43) and (5.45) may be computed from

experimental data sets of discrete fibers within a sample to form an approximate fiber

distribution. This chapter considers the case where the fiber orientation probability

distribution is known and the method of Monte-Carlo is employed to generate statis-

tical data to analyze both the sample mean and the sample variance of the material

stiffness tensor which are then compared to results obtained analytically.
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5.2.2.1 The Monte-Carlo Simulation Method

The Monte-Carlo simulation procedure has seen extensive use in recent history for

numerical integration of multi-dimensional integrals with complicated boundaries and

functions without local strong peaks (see e.g. [97–100]). The Monte-Carlo simulation

procedure simply simulates synthetic data sets drawn randomly from an appropriate

probability distribution. Analogous to physical experiments where random samples

are drawn from experimental data, Monte-Carlo simulations are performed on a com-

puter to randomly generate the variables (Θ, Φ) from the fiber orientation probability

distribution function to capture the statistical characteristics of the design function,

in this case the material stiffness tensor.

In the following examples, the integration approximated is the material stiffness

tensor in Equation (5.1) and variance in Equation (5.45) which are each evaluated as a

sum of independent data sets drawn from the fiber orientation probability distribution

function. The selection of random data sets from the fiber probability distribution

function ψ (θ, φ) is strongly dependant on the appropriate selection of the random

angle pairs (Θn, Φn).

5.2.2.2 Accept Reject Generation Algorithm

An appropriate set of angle pairs is selected in this study using the Accept-Reject

Generation Algorithm (ARGA) (see e.g [97]). The ARGA numerically generates a

sample set for any given probability distribution function, such as ψ (θ, φ) ∈ S2 us-

ing a uniform random number generator that provides a distribution on (0, 1) ∈ R1.

The Accept-Reject Generation Algorithm can be used when it is relatively easy to

generate a random variable, such as the random variable U with a uniform (0, 1)
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distribution. In one dimension the ARGA may be used to develop a continuous ran-

dom variable X whose probability distribution function is f (x) from the probability

distribution function g(x) where the random variable Y , an observation from g(x),

is sufficiently easy to generate. The ARGA may be applied if there exists some con-

stant K ∈ R+, such that ∀x ∈ (−∞,∞) the probability distribution functions satisfy

the relationship f (x) ≤ Kg (x). The ARGA is demonstrated in Hogg et al. [97],

where the following algorithm is shown to generate a random variable X that has the

probability distribution function f (x).

• Numerically generate the random variables Y and U

• If U ≤ f(Y )
Kg(Y )

, then set the random variable X equal to Y

• The random variable X will have the probability distribution function f (x)

The proof of this algorithm is omitted, and the interested reader is directed to Hogg et

al. [97]. In the current study, it was found numerically that the most effective choice of

constant K was to set K = (maxx∈R1 f (x)) (1 + ε) where ε is a small number greater

than zero. The random variable Y can belong to any probability distribution function

and for ease of computation this can be taken to be a uniform or normal distribution.

After the selection of K and random variable Y , moving from one dimension, R1, to

the surface of the sphere, S2, is trivially accomplished with ARGA for the random

variable pair Θ and Φ belonging to the probability distribution ψ (θ, φ) sin θ. For

examples considered here, the following procedure is followed to generate a sample

set of Θ and Φ values on the sphere at discrete points (θ, φ) =
(

i−1
Nθ−1

π, j−1
Nφ

π
)

for

i ∈ {1, 2, . . . , Nθ} and j ∈ {1, 2, . . . , Nφ}, and Nθ and Nφ are the number of steps in

θ and φ, respectively (distribution function symmetry is assumed).
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1. Select K =
(
max(θ,φ)∈S2 ψ (θ, φ)

)
(1 + ε) where ε ∼ 10−2

2. Select a value for (θ, φ) at which the observation will be made

3. Generate a random observation U belonging to the uniform distribution

4. If K U < ψ (θ, φ) sin θ, then set Θ = θ and Φ = φ.

5. Step two through four are repeated at each point on the sphere

5.2.2.3 Central Limit Theorem

The Central-Limit Theorem (see e.g. [97, 100]) states that a probability distribution

composed of the summation of the mean of many smaller random deviations will,

for non-correlated deviations, converge to a normal distribution. The Central-Limit

Theorem is elegantly stated and proved by Hogg et al. [97] and is paraphrased here

by taking the observations X1, X2, . . ., Xn of a random sample from the distribution

f (x) having a distinct and finite mean µ and variance σ where f(x) is not necessarily

Gaussian. Given Xn as the mean of a set of random samples, the random variable

Yn =
√

n
Xn − µ

σ
(5.47)

will, for sufficiently large n, converge in distribution to a random variable with a

standard normal distribution (i.e., a mean of zero with variance of 1). This particu-

lar theorem allows easy statistical representations of distributions which are poorly

approximated by the normal distribution. Additionally, the Central-Limit Theo-

rem allows trivial mathematical representations of data sets to establish approximate

probabilities on the mean X (see e.g. [97, 99]).
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5.2.3 Monte-Carlo Predictions of Material Stiffness

Examples are selected to demonstrate the Monte-Carlo procedure described above

while validating the analytical expressions for the stiffness tensor mean and variance

described in Section 5.1. The first example illustrates the Monte-Carlo procedure

through a comparison with values published in Advani and Tucker [6]. The second

example is for a simple analytical fiber distribution function to validate the analytical

material stiffness tensor mean and variance formulas presented in Section 5.1. The

third example focuses on applications with the Central Limit Theorem for the same

analytic fiber probability distribution function from the second example. The final

example considers fiber orientation distributions obtained through numerical simu-

lations of center-gated disk flow. In this work, results from the analytic derivation

of the material stiffness tensor expectation and variance given in Equations (5.12)

and (5.17)-(5.22) are compared and validated with results developed through the

Monte-Carlo method of integration. Note that results for correlated sample angle

pairs will yield a variance different than those predicted in Equations (5.17)-(5.22),

where positive correlations cause the sample variance to increase and negative corre-

lations cause the sample variance to decrease (see e.g. Bevington and Robinson [98]).

As such, N random uncorrelated angle pairs {(Θn, Φn) : 1 ≤ n ≤ N, n ∈ N, N ∈ N}

are chosen from the fiber orientation probability distribution function ψ (θ, φ) using

the Accept-Reject Generation Algorithm discussed previously. Once the N random

angle pairs {(Θn, Φn) : 1 ≤ n ≤ N, n ∈ N, N ∈ N}, from the distribution ψ (θ, φ), are

formed using ARGA, Equations (5.43) and (5.45) are used to form the sample mean

and variance, respectively.
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Table 5.1: Comparison between select components published in Advani and Tucker
(1987) for material parameters with the sample mean obtained through the method
of Monte-Carlo for the distribution ψ (θ, φ) = 61

4π
sin60 θ cos60 φ.

Material Advani-Tucker Sample Mean
Properties Properties [6] (N = 2× 109)
〈E1〉 (106psi) 2.220 2.224
〈E2〉 (106psi) 0.813 0.814
〈E3〉 (106psi) 0.813 0.813
〈ν12〉 0.333 0.330
〈G12〉 (106psi) 0.293 0.292
〈G23〉 (106psi) 0.254 0.254

5.2.3.1 Comparison Between Proposed Method and Published Results

The first example considers the simple analytic distribution function of Equation

(5.23) with n = 60 where the material properties of the constitutive materials are

published in Advani and Tucker [6]. The expected value of the material stiffness

tensor 〈Cijkl〉 is computed analytically from Equation (5.12) with orientation tensors

calculated through Equation (2.11) for the distribution function in Equation (5.23).

Next, the material parameters E1, E2, E3, ν12, G12, and G23 are computed with

Equation (2.44) to compare with the results published in Advani and Tucker [6]. The

proposed method for the expectation of the stiffness tensor yields identical results

and the results are given in the second column of Table 5.1. The method of Monte-

Carlo is utilized along with Equation (5.43) to predict the expectation of the stiffness

tensor 〈Cijkl〉 for 2×109 simulations for the same underlying material properties. The

results also appear in Table 5.1. Notice that the values from Advani and Tucker [6]

obtained through orientation tensors are nearly identical to those obtained from the

Monte-Carlo results using Equation (5.43).
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Table 5.2: Fiber and matrix material parameters employed in example problems.

Ef = 30× 109 Pa νf = 0.20 Em = 1× 109 Pa
νm = 0.38 L = 100 µm ar = 10

Vf = 0.1 Vc = 8× 106 µm3

5.2.3.2 Stiffness Tensor Distribution Results

Material properties throughout the remainder of this chapter for the underlying fiber

and matrix appear in Table 5.2 and are taken from those presented in Tucker and

Liang [80] for typical fiber-reinforced engineering thermoplastics. The distribution

function in Equation (5.23) is chosen here for simplicity in integration and because

it provides a degree of alignment that is commonly found in typical injection molded

short-fiber polymer composites with fiber volume fractions in the range of 10-30%

(see e.g. [23, 60]). The calculations to follow are for n = 4 which results in c = 9
4π

.

Figure 5.5 shows the fiber probability distribution function in Equation (5.23) with

n = 4. A sample set of fibers with Vf = 10% is shown in Figure 5.6 having the

same ψ (θ, φ). Observe, the fibers tend to orient along the x1 axis, but by no means

experience unidirectional alignment.

The analytic form of the material stiffness tensor expectation 〈Cijkl〉, is evaluated

from Equation (5.12) for ψ (θ, φ) given in Equation (5.23) for n = 4, and the material

stiffness tensor variance σ2
ijkl is computed from Equations (5.17)-(5.22). Three random

sample sets of {(Θn, Φn) : 1 ≤ n ≤ N, n ∈ N, N ∈ N} for N = 102, N = 105 and

N = 108 are chosen from ψ (θ, φ) using ARGA for the Monte-Carlo simulations to

develop both the sample mean mijkl in Equation (5.43) and the k−statistic k2
ijkl in

Equation (5.46). The analytic results for select components of 〈Cijkl〉 are presented
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Figure 5.5: Fiber probability distribution function ψ (θ, φ) = 9
4π

sin8 θ cos8 φ

in Table 5.3, and the corresponding variance of the stiffness tensor σ2
ijkl is presented

in Table 5.4. Results appearing in Tables 5.3 and 5.4 are evaluated from orientation

tensors through fourth-order for the mean and through eighth-order for the variance.

In all of these calculations, orientation tensors are computed directly from the fiber

probability distribution function ψ (θ, φ) through Equation (2.11). After only 102

Monte-Carlo simulations the sample mean is predicted with reasonable accuracy for

most of the components, whereas for N = 105 and N = 108 the Monte-Carlo results

and the analytic results are in nearly perfect agreement. Conversely, for N = 102

the Monte-Carlo simulations provide a poor representation of the analytic solution

for the variance of the stiffness tensor as shown in Table 5.4. Several of the selected

components have a 10%− 15% difference between the analytic variance solution and

the Monte-Carlo results, and the 〈C2323〉 component has a difference of nearly 22%.

As the number of Monte-Carlo simulations increases to N = 105, the difference in

the variance is reduced significantly, with most of the components experiencing a
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Figure 5.6: Sample fiber distribution sampled from ψ (θ, φ) = 9
4π

sin8 θ cos8 φ for
Vf = 10%.

difference of 1% − 7%. For N = 108 simulations, the difference in the predicted

variance drops to less than 0.1%.

The analytical expectation values of the stiffness tensor 〈Cijkl〉 appearing in Table

5.3 are identical to those obtained using the Advani and Tucker [6] analytical ap-

proach. This is expected since it was shown in Equation (5.13) that the method for

computing the expectation of the stiffness tensor can be written in the form of the

Advani and Tucker model.

To further illustrate the statistical nature of Cijkl, frequency plots of three se-

lected components C1111, C1122 and C1123 appear in Figures 5.7-5.9, respectively, for

N = 102 and N = 106 Monte-Carlo simulations. The maximum for C1111 and C1122

(i.e., Cmax
1111 = 3.34 GPa and Cmax

1122 = 1.73 GPa, respectively) and their minimum

values (i.e., Cmin
1111 = 2.41 GPa and Cmin

1122 = 1.45 GPa, respectively), provide bounds

on the Monte-Carlo results. Note that the upper bound on C1111 corresponds to a
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Table 5.3: Comparison between select components from analytic results for the ex-
pectation of the stiffness tensor 〈Cijkl〉 with the sample mean mijkl obtained through
the method of Monte-Carlo for the distribution ψ (θ, φ) = 9

4π
sin8 θ cos8 φ.

Cijkl 〈Cijkl〉(GPa) mijkl(GPa) mijkl(GPa) mijkl(GPa)

component (N = 102) (N = 105) (N = 108)
1111 3.0318 3.0234 3.0310 3.0318
2222 2.4271 2.4268 2.4273 2.4271
3333 2.4271 2.4290 2.4270 2.4271
1122 1.5273 1.5309 1.5274 1.5273
1133 1.5273 1.5263 1.5274 1.5273
1123 0.0000 −0.0292 −0.0002 0.0000
2323 0.4361 0.4373 0.4357 0.4356

Table 5.4: Comparison between select components from analytic results for the stiff-
ness tensor variance σ2

ijkl with the sample variance obtained through the method of

Monte-Carlo for the distribution ψ (θ, φ) = 9
4π

sin8 θ cos8 φ.

Cijkl σ2
ijkl(Pa2) k2

ijkl(Pa2) k2
ijkl(Pa2) k2

ijkl(Pa2)

component (N = 102) (N = 105) (N = 108)
1111 4.856× 1016 5.570× 1016 4.881× 1016 4.856× 1016

2222 1.276× 1015 1.115× 1015 1.362× 1015 1.275× 1015

3333 1.276× 1015 1.121× 1015 1.253× 1015 1.276× 1015

1122 5.013× 1015 4.816× 1015 5.021× 1015 5.013× 1015

1133 5.013× 1015 5.630× 1015 4.990× 1015 5.014× 1015

1123 2.332× 1015 2.624× 1015 2.350× 1015 2.333× 1015

2323 2.933× 1014 3.566× 1014 3.021× 1014 2.933× 1014

unidirectional fiber distribution along the x1 axis, and the lower bound is located at

a point (θ, φ) near the x2 − x3 plane. Conversely, the minimum value of C1122 corre-

sponds to a unidirectional fiber distribution along the x1 axis and the maxima occurs

when the fibers align in the x2 − x3 plane. The bounds for the C1123 component are

similarly found, and provide definitive limits for the stiffness tensor distribution. It is

clear that C1111, C1122 and C1123 are not Normally distributed, but the trends are not

unexpected in any of the plots. For the high fiber alignment along the x1 axis C1111
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tends toward the unidirectional orientation state given by Cmax
1111 , and it is expected

that as the alignment increases along the x1 direction C1122 will diminish. Since very

few fibers are perpendicular to the x1 axis, there is a smaller probability of a C1111

that approaches Cmin
1111 and the inverse is true of C1122. Similarly, the expectation of

the C1123 component will approach a value of zero for a large enough sample set for

ψ (θ, φ) given in Equation (5.23), but clearly from Figure 5.9 there is a significant

probability that the effective material behavior will not be zero.

5.2.3.3 Applications with the Central Limit Theorem

Multiple independent sample sets of fiber distributions are available from multiple

short-fiber composite parts produced in an industrial manufacturing process. Each

part exhibits its own unique stiffness tensor, such that a set of parts has a mean and

variance that can be evaluated as shown below. This process is duplicated computa-

tionally with the Monte-Carlo method through the central limit theorem by taking

the N random sample angle pairs {(Θn, Φn) : 1 ≤ n ≤ N} obtained from the prob-

ability distribution ψ (θ, φ) where the N random sample pairs compose a single set

with its own sample mean and variance. Taking M unique and independent sets of

the N random angle pairs there will be M unique sample means mi and variances s2
i

for {i : i ∈ N, 1 ≤ i ≤ M}. The Central-Limit Theorem in Equation (5.47) is used to

compute the statistical properties of the random variable Yi for sufficiently large N ,

which converges in distribution to a random variable with a normal distribution.

The parameter N is chosen to be related to the number of fibers for a given sample

set as the integer part of Vf
Vc

Vfiber
, where Vfiber is the volume of an individual fiber

and Vc is the volume of the representative sample cube. This may be considered to

represent a given region within a part with volume Vc that is selected small enough
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Figure 5.7: Frequency of Monte-Carlo results for C1111 for data samples taken from
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such that the fiber distribution is assumed constant, and the fibers within this sample

region form the angles of the sample set. The Central Limit Theorem provides a

method to predict the mean and the variance of the stiffness tensor at the same

region in each of the parts for a given fiber probability distribution function.

For each sample cube i, {i : i ∈ N,M ∈ N, 1 ≤ i ≤ M}, N random sample angle

pairs {(Θn, Φn) : 1 ≤ n ≤ N} are generated from the fiber probability distribution

function ψ (θ, φ). The sample mean of the stiffness tensor mijkl for each of the M

sample sets is computed from Equation (5.43). For select volume fractions, the mean

of the stiffness tensor is normalized as mijkl/N for sample means from M = 102,

M = 103, and M = 106 sample sets from the fiber orientation probability distribution

function ψ (θ, φ) given in Equation (5.23). Volume fractions of fibers within the

polymer matrix of 10%, 20% and 30% are selected and yield, respectively, N =

Vf
Vc

Vfiber
= 101, N = 203 and N = 305 fibers. Histograms of the Monte-Carlo results

for the C1111 component are given in Figures 5.10-5.12, simulations for the C2222

component are given in Figures 5.13-5.15, and simulations for the C1123 component

are given in Figures 5.16-5.18 for, respectively, volume fractions of Vf = 10%, Vf =

20% and Vf = 30%. Additionally, Figures 5.10-5.18 contain the normal distribution

PCijkl
(x) expressed as

PCijkl
(x) =

√
N√

2πσ2
ijkl

e
−(x−〈Cijkl〉)2

/

(
2σ2

ijkl
N

)

(5.48)

where the analytic values of 〈Cijkl〉 and σ2
ijkl are evaluated, respectively, from Equa-

tions (5.12) and (5.17)-(5.22).

In Figures 5.10-5.18, by increasing the number of M sample sets, the frequency

plots mijkl/N approach the analytically determined Normal distribution PCijkl
(x) of

Equation (5.48). For as few as N = 101, corresponding to the case of Vf = 10%, the
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Figure 5.10: Comparison between normal distribution PC1111(x) obtained analytically
and the frequency plot m1111/N for Monte-Carlo results of M sample sets with N =
101 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.11: Comparison between normal distribution PC1111(x) obtained analytically
and the frequency plot m1111/N for Monte-Carlo results of M sample sets with N =
203 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.

7.5 7.55 7.6
0

10

20

30

40

C
1111

 (GPa)

 

 

m
1111

/N

P
C

1111

(x)

7.5 7.55 7.6
0

10

20

30

40

C
1111

 (GPa)

 

 

m
1111

/N

P
C

1111

(x)

7.5 7.55 7.6
0

10

20

30

40

C
1111

 (GPa)

 

 

m
1111

/N

P
C

1111

(x)

(a) (b) (c)

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Figure 5.12: Comparison between normal distribution PC1111(x) obtained analytically
and the frequency plot m1111/N for Monte-Carlo results of M sample sets with N =
305 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.13: Comparison between normal distribution PC2222(x) obtained analytically
and the frequency plot m2222/N for Monte-Carlo results of M sample sets with N =
101 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.14: Comparison between normal distribution PC2222(x) obtained analytically
and the frequency plot m2222/N for Monte-Carlo results of M sample sets with N =
203 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.15: Comparison between normal distribution PC2222(x) obtained analytically
and the frequency plot m2222/N for Monte-Carlo results of M sample sets with N =
305 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.16: Comparison between normal distribution PC1123(x) obtained analytically
and the frequency plot m1123/N for Monte-Carlo results of M sample sets with N =
101 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.17: Comparison between normal distribution PC1123(x) obtained analytically
and the frequency plot m1123/N for Monte-Carlo results of M sample sets with N =
203 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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Figure 5.18: Comparison between normal distribution PC1123(x) obtained analytically
and the frequency plot m1123/N for Monte-Carlo results of M sample sets with N =
305 angle pairs for data samples taken from ψ (θ, φ) = 9

4π
sin8 θ cos8 φ. (a) M = 102

(b) M = 103 (c) M = 106.
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frequency plots for the C1111 and the C1123 components are nearly indistinguishable

for M = 106 sample sets as that of the Normal distribution predicted from the an-

alytic results for the expectation and variance. This trend continues as the volume

fraction is increased to Vf = 20% and Vf = 30% for both the C1111 and the C1123

component. Conversely, for the C2222 component with a volume fraction of Vf = 10%,

there is a clear difference between the normal distribution and the frequency plots.

This discrepancy is still visible for Vf = 20%, but as N increases with Vf = 30%

the frequency plots approach the predicted normal distribution obtained through the

Central Limit Theorem. This behavior is not unexpected, as the Central Limit The-

orem assumes the limiting case as N →∞, and as demonstrated in the figures. The

Central Limit Theorem provides reasonable results for the probability distribution of

the stiffness tensor for samples as low as N = 101.

5.2.3.4 Center-Gated Disk Results

The final example is based on the flow near a pin gate [27,56] as illustrated in Figure

5.19. The polymer melt is assumed to enter the mold through a pin gate, then flow

radially outward where the velocity components of the flow are a function of radial

position r and gap height z. Assuming a Newtonian fluid for simplicity, the veloc-

ity components in a local Cartesian coordinate system with coordinates (x1, x2, x3),

that correspond to (r, θ, z), are given in Equation (3.14). For small radii the flow is

dominated by out-of-plane stretching, and as the radial location r increases, the flow

tends toward shearing in the direction of flow. In this work, the solution of ψ (θ, φ, t)

from Equation (2.23) is computed numerically using the control volume method of

Bay [23] with an interaction coefficient of CI = 10−2 and a volume fraction near

Vf = 20% (see e.g. [1]). Orientation tensors calculated from the numerical solution of
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Figure 5.19: Schematic for center-gated disk flow depicting selected radial locations
in the example results.

ψ (θ, φ, t) using Equation (2.11) are used to evaluate 〈Cijkl〉 and σ2
ijkl analytically with

Equations (5.12) and (5.17)-(5.22), respectively. For a volume fraction of 20%, there

are N = Vf
Vc

Vfiber
= 203 fibers in each of the M sample sets with the fiber and matrix

constituent properties that appear in Table 5.2. Sample distributions obtained from

the fiber orientation flow simulations are computed at each of the points A, B, C,

and D from Figure 5.19 which corresponds to the radial locations r/b = 2, 5, 10, and

40, respectively. The initial fiber distribution is assumed to be isotropic at r/b = 1.

Monte-Carlo simulations for M = 102 and M = 106 are used to produce a sta-

tistical representation of the stiffness tensor. Results for the normalized frequency

distribution mijkl/N of the sample means mijkl along with the analytical probabil-

ity distribution function PCijkl
(x) from the analytic expectation and variance for the

C1111 and the C1122 stiffness tensor component are presented in Figures 5.20 and 5.21,

respectively. Note the change as a function of radial position in the expectation and

variance for both stiffness tensor components. This change is directly attributed to

the change in the alignment of the fiber probability distribution function along the

radial direction. This changing behavior in both the expectation and the variance

is seen throughout the entire gap height 0 ≤ z/b ≤ 1. To demonstrate the change

in material behavior, the expectation 〈Cijkl〉 is normalized by the isotropic value of
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the stiffness tensor component C iso
ijkl which appears in Figures 5.22 and 5.23 for the

C1111 and the C1122 components, respectively, for radial locations 1 ≤ r
b
≤ 40. The

error bars are provided by σ2
ijkl obtained analytically from ψ (θ, φ). Observe the fiber

probability distribution function does not reach steady state for all gap heights, and

exhibits a clear change in the expectation of the material stiffness tensor as well as

the variance of the material stiffness tensor.

Figure 5.22 illustrates that the variance of C1111 for the gap height z = 1
10

b, at

various radial locations, is small in comparison to the variance at a gap height of

z = 9
10

b. Conversely, the variance of C1122 in Figures 5.23 appears to be relatively

constant. This observation is quantified by the coefficient of variation which describes

the normalized variability (see e.g. [100]), defined as δijkl = σijkl/ 〈Cijkl〉 (no sum

on i, j, k, or l) which is plotted in Figures 5.24 and 5.25 for the C1111 and the

C1122 components, respectively. Note that the coefficient of variation is less than 1%

throughout the entire flow history. The small value for the coefficient of variation

implies that few Monte-Carlo simulations are necessary to accurately capture the

statistical behavior of the stiffness tensor expectation value. In a similar study by

Jack and Smith [39], stiffness tensor components were investigated as a function of

volume fraction for the simple analytical fiber probability distribution function from

Equation (5.23). Results revealed that the material stiffness variability remained

relatively small (δ ≈ 1%) for the entire range of volume fractions investigated.

5.3 Material Property Prediction Remarks

An analytical method is presented to compute the expectation value and variance of

the material stiffness tensor obtained from a fiber orientation probability distribution.
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Figure 5.20: Comparison between normal distribution PC1111(x) obtained analytically
and the frequency plot m1111/N for Monte-Carlo results of M sample sets with N =
203 angle pairs for data samples taken from center-gated disk flow for a gap height
of z = 5b
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Figure 5.21: Comparison between normal distribution PC1122(x) obtained analytically
and the frequency plot m1122/N for Monte-Carlo results of M sample sets with N =
203 angle pairs for data samples taken from center-gated disk flow for a gap height
of z = 5b
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Figure 5.22: Normalized mean of the expectation value component 〈C1111〉 /C iso
1111 for

select gap heights throughout the flow history for center-gated disk flow, CI = 10−2.
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Figure 5.23: Normalized mean of the expectation value component 〈C1122〉 /C iso
1122 for

select gap heights throughout the flow history for center-gated disk flow, CI = 10−2.

150



0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Normal Radial Location (r/
b
)

%
δ 11

11

 

 

z=1b/
10

z=3b/
10

z=5b/
10

z=7b/
10

z=9b/
10

Figure 5.24: Coefficient of variation δ1111 for select gap heights for center-gated disk
flow, CI = 10−2.
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Figure 5.25: Coefficient of variation δ1122 for select gap heights for center-gated disk
flow, CI = 10−2.
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The elastic material constitutive behavior for short fiber composites presented here

is based on the Laplace series reconstruction written in terms of complex spherical

harmonic functions. By employing the Laplace series reconstruction, an expression is

derived for the expectation value of the stiffness tensor using second- and fourth-order

orientation tensors. The relationship between the current approach and that of Ad-

vani and Tucker [6] is presented. The current approach only requires the assumption

of a single axis of symmetry characterized by a monoclinic material (see e.g. [7, 10])

through the symmetry of the distribution function of fibers, ψ (p) = ψ (−p). An

analytic method for computing the variance of the stiffness tensor is also presented

which is shown to be a function of the orientation tensors up to eighth-order.

The analytical method to evaluate the expectation and variance for the material

stiffness tensor from fiber orientation tensors is validated through the method of

Monte-Carlo. The proposed analytic method and the Monte-Carlo simulations yield

the same expectation as results previously published in the literature. These new

results also provide values of the variance of the stiffness tensor previously unavailable

in the literature. The Monte-Carlo results are shown to agree extremely well with

analytic results as the number of sample sets increases. Using the Central-Limit

Theorem, normal probability distributions obtained from the analytic expectation

and variance of the material stiffness tensor corresponded directly with the results

for the normalized frequency of the sample sets for finite angle sets corresponding to

discrete fiber orientation angles.
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CHAPTER 6

DIRECTIONAL DIFFUSION FOR FIBER

ORIENTATION FLOW ANALYSIS

The Folgar and Tucker model [11] for fiber interaction behavior due to the surrounding

flow kinematics has found widespread industrial acceptance, and is considered to

be the standard that new or proposed models are often compared to. Recently,

limitations during the transient analysis of the Folgar and Tucker model have been

identified and new methods to accurately represent the orientation state during the

filling stage of the injection molding process are necessary. The Folgar and Tucker

model predicts fiber orientation aligns at a rate much faster than that seen in the

laboratory [2, 26, 42, 44, 46], and any proposed model should better predict these

experimental results.

Folgar and Tucker [11] observed that an individual fiber follows the Jeffery or-

bits [12] for fibers in a dilute suspension as given in Equation (2.19) for short periods

of time. However, the fiber will at random, reorient to another angle, then resume fol-

lowing a Jeffery orbit. These reorientations are attributed to fiber interactions tending

to randomize the orientation. Folgar and Tucker account for collisions through rotary

diffusion and scaled the diffusion with the rate of deformation of the fluid. They spec-

ulate that rotary diffusion could be constructed with a directional bias to account for

differing behavior between random and aligned suspensions, but chose not to include

such effects.

This chapter extends the directional diffusion model introduced by Jack [45]

through an objective inclusion of local fiber collisions. The directional diffusion model
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seeks to qualitatively represent the behavior of fiber orientation in semi-dilute and

concentrated suspensions through scalable parameters that allow refinement of the

fiber alignment rate and steady state fiber orientation. Results demonstrate the direc-

tional diffusion model yields steady state solutions to within 0.1% of those computed

with the Folgar and Tucker model for the flows considered while providing a significant

delay in the rate of fiber alignment.

6.1 A Model for Directional Diffusion

This new directional diffusion model incorporates two effects, (1) local directionally

dependant effects directly proportional to the probability of collision between two

fibers, and (2) large scale volume averaged diffusion behavior analogous to shear rate

dependant Brownian motion. All motion of a constitutive equation must be invariant

with respect to rigid body motion (see e.g. [9, 101, 102]). For a constitutive fiber

motion model, an observer in a co-rotational frame that translates and rotates with

each fiber views the same behavior as an observer in a co-deformational reference

frame that translates, rotates, and deforms with the flowing fibers. An objective

model states that any constitutive model must be independent of rigid body motion

(also referred to as the principal of material reference frame indifference [9]).

The following diffusion model looks at the relative motion of two fibers repre-

sented by the unit vectors p and ρ shown in Figure 6.1. The model assumes that

local directionally dependant effects are proportional to the probability of a collision

between any two fibers p and ρ. Jeffery’s model for the motion of the fiber ρ is

expressed without rigid body effects to represent the relative fiber motion of ρ with
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Figure 6.1: Coordinate system describing the path through which the fiber ρ passes
into and p.

respect to p as

˙̃ρh = ρ̇h +
1

2
ω · ρ =

1

2
λ (γ̇ · ρ− γ̇: ρρρ) (6.1)

where rigid body effects due to vorticity ω are removed from the Jeffery motion.

During the infinitesimal period of time ∆t, the fiber ρ rotates by an angle relative

to p proportional to ˙̃ρh. During the time period ∆t, the area through which ρ rotates

is proportional to the product of the magnitude of ρ × ˙̃ρh and ∆t (assumed small).

Notice that the resultant vector ρ × ˙̃ρh is normal to the plane containing the fiber.

The probability of a hit between p and ρ will be zero when p is parallel to the plane

containing ρ and ˙̃ρh, and will be greatest when p is parallel to ρ× ˙̃ρh. The probability

of a collision Pρ hit p is defined as being proportional to the scalar triple product

(see e.g. [103]) of p with the vector ρ× ˙̃ρh as

Pρ hit p = C1

∣∣p · (ρ× ˙̃ρh
)∣∣ (6.2)

where the constant C1 may be a function of the fiber aspect ratio ar and the volume

fraction of fibers Vf .
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Note that the magnitude of the scalar triple product for any set of vectors

a,b, c ∈ R3 satisfies the relationship |a · (b× c)| = |b · (c× a)| = |c · (a× b)| =

|a · (c× b)| = · · · [104]. Therefore, the probability of ρ hitting p is proportionate to

the scalar triple product as

Pρ hit p = C1

∣∣ρ · (p× ˙̃ρh
)∣∣ (6.3)

During the time ∆t, the relative motion of fiber ρ to fiber p will experience a

given motion ˙̃ph (c.f., Equation (6.1)) so that the probability of ρ passing through p

is analogous to the probability of p passing through ρ. Therefore it may be similarly

shown that the probability of the fiber p hitting ρ is

Pp hit ρ = C1

∣∣p · (ρ× ˙̃ph
)∣∣ (6.4)

where C1 is assumed to be the same function of volume fraction and fiber aspect ratio

given in Equation (6.3) since the collision of ρ into p is indistinguishable from the

collision of p into ρ.

The process described above is repeated for each fiber near the fiber p to account

for other fiber collisions. Each of the fibers ρ belong to the fiber orientation probability

distribution function ψ (ρ), so that the expectation of a collision with a given fiber p

may be represented by the integral over ρ ∈ S2. The resulting rotary diffusion due

to local fiber collisions is

Dr (θ, φ)

∣∣∣∣Local Collisions
=

∮

ρ∈S2

(
C1

∣∣ρ · (p× ˙̃ρh
)∣∣ + C1

∣∣p · (ρ× ˙̃ph
)∣∣) ψ (ρ) dS (6.5)

The volume averaged effects are assumed to satisfy the Brownian-type behavior

observed by Folgar and Tucker [11], and will be modeled as

Dr (θ, φ)

∣∣∣∣Brownian
=

∮

ρ∈S2
C2 ||γ̇||ψ (ρ) dS (6.6)
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Incorporating the Brownian-type effects produces the desired results, and is similar

to previous fiber interaction models.

The proposed model incorporates the diffusion as the sum of the local collision

effects and Brownian like motion to express the rotary diffusion Dr appearing in

Equation (2.23) as

Dr (θ, φ) = Dr (θ, φ)

∣∣∣∣Brownian
+ Dr (θ, φ)

∣∣∣∣Local Collisions

=

∮

ρ∈S2

(
C1

∣∣ρ·(p× ˙̃ρh
)∣∣ + C1

∣∣p·(ρ× ˙̃ph
)∣∣) ψ (ρ) dS+

∮

ρ∈S2
C2 ||γ̇||ψ (ρ) dS (6.7)

Each of the functions p, ρ, ˙̃ph, ˙̃ρh and ||γ̇|| are assumed continuous and finite,

therefore the integration in Equation (6.7) exists and is finite, and may be written as

Dr(θ, φ)=C1

∮

ρ∈S2

∣∣ρ·(p× ˙̃ρh
)∣∣ψ(ρ)dS+ C1

∮

ρ∈S2

∣∣p·(ρ× ˙̃ph
)∣∣ψ(ρ)dS+ C2

∮

ρ∈S2
||γ̇||ψ(ρ)dS (6.8)

The absolute values within the integration make it impossible to obtain analyt-

ical forms for Dr (θ, φ) expressed in terms of the orientation tensors aij, aijkl, etc.

Therefore the function f (x) = |x| is approximated by g (x) = x2 for x ∈ [−1, 1]. Ob-

serve from Figure 6.2 that this approximation under predicts the function f(x) except

when x ∈ {−1, 0, 1}. Therefore, applying this approximation within the integrations

of Equation (6.8) is expected to under estimate the actual number of collisions.

The approximation which replaces |x| with x2 implies that x remain within the

range (−1, 1). By definition, the components of the unit vectors p and ρ in the scalar

triple products given in Equation (6.8) will have magnitudes less than or equal to

one. Unfortunately, this is not the case for the terms ˙̃ph and ˙̃ρh since they experience

no such bounds. Recall from Equation (6.1) that each component of ˙̃ph (or ˙̃ρh) is a

product of p (or ρ) with the rate of deformation tensor γ̇. Each component of p (or
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−1 1

1

f(x) = |x|

g(x) = x2

x

f(x), g(x)

Figure 6.2: Comparison between f (x) = |x| and g (x) = x2 for x ∈ [−1, 1].

ρ) is less than or equal to one in magnitude, but γ̇ deserves further consideration.

The scalar magnitude of the rate of deformation tensor, ||γ̇||, relates to the magnitude

of the i, j component of γ̇ as

||γ̇|| =

√
1

2
γ̇klγ̇lk =

1√
2

√
γ̇klγ̇kl ≥ 1√

2

√
γ̇2

ij =
1√
2
|γ̇ij| (6.9)

where the repeated indices k and l imply summation, and the symmetry of the rate of

deformation tensor presented in Equation (2.21) is utilized along with the recognition

that the sum of the squares of each tensor component is greater than or equal to the

square of the individual i, j tensor component. Therefore from Equation (6.9) each

expression

∣∣∣∣ρ ·
(

p× ˙̃ρh

√
2||γ̇||

)∣∣∣∣ and

∣∣∣∣p ·
(

ρ× ˙̃ph

√
2||γ̇||

)∣∣∣∣ are less than unity for any

velocity field. With this modification and the approximation in Figure 6.2, Equation

(6.8) is expressed as

Dr (θ, φ) ≈ C1 ||γ̇||
∮

ρ∈S2

(
ρ·

(
p×

˙̃ρh

||γ̇||
))2

ψ (ρ) dS

+C1 ||γ̇||
∮

ρ∈S2

(
p·

(
ρ×

˙̃ph

||γ̇||
))2

ψ (ρ) dS+ C2 ||γ̇||
∮

ρ∈S2
ψ (ρ) dS (6.10)

where the factor
√

2 is absorbed into the constant C1.

158



The scalar triple product for the vectors a, b, and c in index notation is expressed

as a · (b× c) = εijkaibjck where εijk is the permutation symbol defined as [105]

εijk =





0 i = j, , j = k, or k = i
+1 (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 (i, j, k) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)}

(6.11)

The last term of Equation (6.10) is simplified as C2 ||γ̇|| from normalization

∮
ρ∈S2 ψ (ρ) dS = 1 in Equation (2.5). Therefore, Equation (6.10) is expressed as

Dr(θ, φ) =
C1

||γ̇||

(∮

ρ∈S2

(
εijkρipj

˙̃ρh
k

)2
ψ(ρ)dS+

∮

ρ∈S2

(
εijkpiρj

˙̃ph
k

)2
ψ(ρ)dS

)
+C2||γ̇|| (6.12)

It is worthwhile to note that the Folgar and Tucker model for diffusion is readily

obtained by setting C1 = 0 and C2 = CI , and conveniently allows comparisons

between the directional diffusion model of Equation (6.12) and the Folgar and Tucker

model results. In Equation (6.12) the diffusion is a function of the velocity gradients

through the rate of deformation tensor and the fiber orientation through the unit

vector p, which is independent of the integration for ρ ∈ S2. Concern with the

directional diffusion model may arise with the expression 1/ ||γ̇|| as the deformation of

the fluid goes to zero. This concern is alleviated since each component of
(
εijkρipj

˙̃ρh
k

)2

and
(
εijkpiρj

˙̃ph
k

)2
contain γ̇2

ij which goes to zero as quickly or quicker than does the

scalar magnitude of the rate of deformation. Therefore, when there is no deformation

of the surrounding fluid, the diffusion effects go to zero as do the relative fiber motion

effects implying there is no change in the fiber orientation.

6.1.1 Characteristics of the Directional Diffusion Model

To better understand the directional diffusion model for Dr (θ, φ), typical orientation

states are taken from results obtained with the Folgar and Tucker model for two flows,

uniaxial elongation and simple shear. Note that the directional diffusion model will
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alter the fiber orientation path. However, orientation states obtained with the Folgar

and Tucker model are used to investigate the qualitative behavior of the directional

diffusion model at physically meaningful orientation states. To remove volume aver-

aged effects from the directional diffusion model while retaining the behavior resulting

from local fiber collisions, a normalized diffusion D̂r (θ, φ) is defined as

D̂r (θ, φ) = (Dr (θ, φ)− C2 ||γ̇||)




max
t ∈ [0,∞)
(θ, φ) ∈ S2

(Dr (θ, φ, t)− C2 ||γ̇||)




−1

(6.13)

where any absolute values are not necessary since Dr (θ, φ)−C2 ||γ̇|| is always greater

than or equal to zero.

The first flow considered is that of uniaxial elongational flow with v1 = 2Gx1,

v2 = −Gx2 v3 = −Gx3, where the fiber orientation distribution ψ (θ, φ) is calculated

at the points Gt = 1
10

, Gt = 1 and Gt →∞ using the control volume method from Bay

[23] for an initially isotropic orientation state with diffusion coefficients of (C1, C2) =

(0, CI) = (0, 10−2). The normalized directional diffusion D̂r (θ, φ) in Equation (6.13)

is computed with Dr (θ, φ) from Equation (6.8) for (C1, C2) = (1, 10−2) and presented

graphically at Gt = 1
10

, Gt = 1 and Gt → ∞ in Figures 6.3(a), 6.3(c) and 6.3(e),

respectively. Recall for uniaxial elongational flow; fibers tend to align symmetrically

along the x1 axis, and as such, diffusion effects from Equation (6.8) on any fiber along

this axis will be small. This characteristic is observed by the sharp valley in Figures

6.3(a), 6.3(c) and 6.3(e) where the x1 axis corresponds to the angles (θ, φ) = (π/2, 0)

and (θ, φ) = (π/2, π). Notice that diffusion effects for a fiber not aligned near the x1

axis will exhibit a higher value of D̂r (θ, φ) as shown. The normalized diffusion has a

local minima along the plane φ = π/2 which is caused by the low probability of a fiber

sampled from the distribution ψ (θ, φ) even existing in the φ = π/2 plane. Notice that
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as the fiber orientation goes from isotropic to aligned, the effects of diffusion decrease.

This is attributed to the small probability of a fiber existing at orientations away from

the x1 axis since the fiber alignment is nearly uniaxial for large values of Gt.

The directional diffusion Dr (θ, φ) with the approximation |x| ∼ (x)2 appearing

in Equation (6.12) is evaluated at the same three values of time in Figures 6.3(b),

6.3(d) and 6.3(f) for uniaxial elongational flow. Note that results are similar to those

in Figures 6.3(a), 6.3(c) and 6.3(e) except that the approximate model smooths the

diffusion function and is most noticeable along the sharply peaked valley that occurs

along the x1 axis, as expected. Regardless, the effects between the two models share

similar trends justifying the approximation procedure.

Simple shear flow with v1 = Gx3, v2 = v3 = 0 and diffusion coefficients of

(C1, C2) = (0, CI) = (0, 10−2) provides a second view of the diffusion model char-

acteristics. Unlike the uniaxial elongation case, the fibers are not symmetric about a

single axis. Instead, due to shearing along x3, the fiber alignment is not symmetric

when viewed along the axis associated with the principal direction. In this example

right after the initial isotropic distribution the peak of alignment is near the x1 axis,

but shifted toward the x3 axis. As time increases, the peak of the distribution shifts

toward the x1 axis but never attains a large peak in the distribution as in the uniaxial

case. As in the preceding example, Equation (6.8) is normalized with Equation (6.13)

for values of (C1, C2) = (1, CI) = (1, 10−2) for the diffusion coefficients at Gt = 1,

Gt = 10 and Gt → ∞. Results are presented in Figures 6.4(a), 6.4(c) and 6.4(e),

respectively. For Gt = 1, the directional diffusion has two minima in the φ = 0 plane.

The first minima near θ = π/3 corresponds with the peak of the fiber probability dis-

tribution ψ (θ, φ) where a fiber aligned with the distribution of fibers will experience
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Figure 6.3: Normalized directional diffusion D̂r (θ, φ) for C1 = 1, C2 = CI = 10−2

for the fiber orientation distribution predicted from the Folgar and Tucker model for
uniaxial elongation flow, v1 = 2Gx1, v2 = −Gx2 v3 = −Gx3 at (a) Gt = 1

10
, full

diffusion (b) Gt = 1
10

, approximate diffusion (c) Gt = 1, full diffusion (d) Gt = 1,
approximate diffusion (e) Gt =→ ∞, full diffusion (f) Gt =→ ∞, approximate
diffusion
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very little diffusion. The second minima near θ = 2π/3 is due to the low probability

of any fiber existing near that direction. The peaks for the normalized diffusion rep-

resent fiber angle pairs with a significant probability of occurance away from the peak

of the probability of alignment. The valley between the two peaks in the normalized

diffusion function exists because of the relatively small probability of a fiber lying

near the plane (θ, φ) = (θ, π/2) in this flow. As time increases, the probability of a

fiber near the x3 axis, corresponding to θ = 0 and θ = π decreases, correspondingly

the diffusion near the x3 axis diminishs with increasing time. The results for the

approximate directional diffusion model given in Equation (6.12) are plotted at the

same locations in Figures 6.4(b), 6.4(d) and 6.4(f). Observe the characteristics are

very similar between the full model and the approximate model. The approximate

form does tend to smooth the peaks and valleys of the diffusion, and is a reasonable

approximation to capture the effects of the full model.

6.1.2 Applications with the Directional Diffusion Model

Directional diffusion was computed in the previous section using Equations (6.8) and

(6.12) for a given ψ (θ, φ) and known flow conditions. Unfortunately, the directional

diffusion model will significantly increase the computational cost in evaluating Equa-

tion (2.23) for ψ (θ, φ) due to the integration at every point on the sphere to obtain

Dr (θ, φ) during the transient solution. To resolve this issue, the diffusion model is

recast in an appropriate form to alleviate some of the computational burden. Every

term from Equation (6.12) containing
(
εijkρipj

˙̃ρh
k

)2
may be expressed as a product

of components ρiρi
˙̃ρh
k
˙̃ρh
k (no sum on i of k) multiplied by products of the vector p,

and each term of Equation (6.12) containing
(
εijkpiρj

˙̃ph
k

)2
is expressed as a product

of pipi
˙̃ph
k
˙̃ph
k (no sum on i or k) multiplied by products of the vector ρ. The product,
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Figure 6.4: Normalized directional diffusion D̂r (θ, φ) for C1 = 1, C2 = CI = 10−2

for the fiber orientation distribution predicted from the Folgar and Tucker model for
simple shear flow, v1 = Gx3, v2 = v3 = 0 at (a) Gt = 1, full diffusion (b) Gt = 1,
approximate diffusion (c) Gt = 10, full diffusion (d) Gt = 10, approximate diffusion
(e) Gt =→∞, full diffusion (f) Gt =→∞, approximate diffusion
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ρiρi
˙̃ρh
k
˙̃ρh
k defines the tensor Wijkl (ρ) and is expressed as

Wijkl (ρ) = ρi (θ, φ) ρj (θ, φ) ˙̃ph
k (θ, φ) ˙̃ph

l (θ, φ)

=
1

4
λ2γ̇kmγ̇lnρiρjρmρn − 1

4
λ2γ̇kmγ̇noρiρjρlρmρnρo − 1

4
λ2γ̇lmγ̇noρiρjρkρmρnρo

+
1

4
λ2γ̇mnγ̇oqρiρjρkρlρmρnρoρq (6.14)

The tensor Wijkl (p) experiences several symmetries, for example the first pair (or

last pair) of indices, i, j (or k, l) may be interchanged, i.e.,

Wijkl = Wjikl = Wijlk = Wjilk (6.15)

but the first pair i, j may not, in general, be interchanged with the last pair k, l, i.e.,

Wijkl 6= Wkjil Wijkl 6= Wklij (6.16)

The tensor Wijkl (p) is identical to Wijkl (ρ) given in Equation (6.14) with the vector

components ρi replaced by pi. It is useful to define the orientation average of the

fourth-order tensor Wijkl (ρ) as the tensor Tijkl expressed as

Tijkl =

∮

S2
Wijkl (θ, φ) ψ (θ, φ) dS

=
1

4
λ2 (γ̇kmγ̇lnaijmn − γ̇kmγ̇noaijlmno − γ̇lmγ̇noaijkmno + γ̇mnγ̇opaijklmnop) (6.17)

The tensor Tijkl experiences the same symmetries as Wijkl (ρ) while not being fully

symmetric as is the fourth-order orientation tensor aijkl. Note that Tijkl is a function

of the orientation tensors up to the eighth-order.

After simplification, the directional diffusion model from Equation (6.12) may be
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fully expanded as the expression

Dr (θ, φ) = C2 ||γ̇||+ C1

||γ̇||
(
p2

1 (T2233+T3322−2T2323) + p2
2 (T1133+T3311−2T1313)

+ p2
3 (T1122+T2211−2T1212)+2p1p2 (T1323+T2313−T3312−T1233)

+ 2p1p3 (T1232+T3212−T2213 − T1322)+2p2p3 (T2131+T3121−T1123−T2311)

+ a11 (W2233+W3322−2W2323)+a22 (W1133+W3311−2W1313)

+ a33 (W1122+W2211−2W1212)+2a12 (W1323+W2313−W3312−W1233)

+ 2a13(W1232+W3212−W2213−W1322)+2a23(W2131+W3121−W1123−W2311))(6.18)

where the dependance of pi and Wijkl on (θ, φ) is omitted for conciseness in the ex-

pression. It is noted that Tijkl is independent of (θ, φ) but depends on the orientation

tensors up to eighth-order. Observe that only 21 of the 81 components of the fourth-

order tensors Tijkl and Wijkl (θ, φ) must be evaluated at each point in the evaluation

process to solve the distribution function evaluation. There are several facts that

may be utilized to streamline the evaluation procedure. For example, the fourth- and

sixth-order orientation tensors are contained within the eighth-order orientation ten-

sor, e.g. Equation (2.15), and may alleviate redundant multiplications. Many of the

flow conditions considered throughout this work are for constant velocity gradients,

therefore operations within the parentheses of Equations (6.14) and (6.17) need be

evaluated only once if the computer’s memory permits storage of the products. The

same can be said of the unit vector pi which is a constant function independent of

fiber orientation and flow conditions. The form of Equation (6.18) allows rapid com-

putations of the diffusion function Dr (θ, φ) once the orientation tensors are known,

and has been seen to reduce the computational time to express the diffusion function

expressed in Equation (6.12) by a factor of more than 400.
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The distribution function evaluation procedures with control volumes as discussed

in Bay [23] requires hours to days to evaluate the Folgar and Tucker model for dif-

fusion, which is constant with respect to (θ, φ). The new directional diffusion model

requires significantly more evaluation time since at each time step it is necessary to

evaluate the integral over the unit sphere, imposing a significant increase in the num-

ber of operations at a given time step by more than a factor of 45×Nθ×Nφ where Nθ

and Nφ are the number of unique grid points on the unit sphere used to solve the fiber

orientation distribution function, and 45 is the number of independent components

of the eighth-order orientation tensor. It was observed that computations with the

Folgar and Tucker model require an order of magnitude less computation time than

results with the directional diffusion function expressed in Equation (6.18).

6.1.3 Numerical Solution of the Orientation Distribution

The continuity equation given for ψ (θ, φ) in Equation (2.23) with the directional

diffusion model Dr (θ, φ) in Equation (6.12) may be solved numerically in a manner

similar to Advani [3], but the control volume method of Bay [23] is selected since it

ensures global conservation. The following solution of ψ (θ, φ) is developed following

the procedure of Bay with only minor modifications to incorporate the directional

dependance of the diffusion model. Unfortunately due to computational limitations,

results with the directional diffusion model are not available at the present time and

will be left to future endeavors. The following section is intended to facilitate future

developments of distribution function simulations.

Solving the equations of motion with the method of control volumes begins with

Jeffery’s form of Equation (2.19) for the motion of a single fiber. Jeffery’s equation is

premultiplied by the Kronecker Delta tensor of Equation (2.8), and after simplification
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may be expressed as

dph

dt
=

(
λ−κT : pθ + λ+κ: pθ

)
θ +

(
λ−κT : pφ + λ+κ: pφ

)
φ

= θ̇h(θ, φ) θ + φ̇h(θ, φ) φ (6.19)

where λ− = λ−1
2

and λ+ = λ+1
2

. The quantities

θ̇h(θ, φ) =
(
λ−κT : pθ + λ+κ: pθ

)

φ̇h(θ, φ) =
(
λ−κT : pφ + λ+κ: pφ

)
(6.20)

are introduced for simplicity and represent the Jeffery motion of the fiber p in the

θ and φ directions, respectively. The equation of motion for a single fiber with

directional diffusion may be cast as the sum of the Jeffery effects and the directional

diffusion effects as (see e.g. Bird [25])

dp

dt
=

dph

dt
− 1

ψ (θ, φ)
∇ (Dr (θ, φ) ψ (θ, φ))

=

(
θ̇h (θ, φ)− 1

ψ (θ, φ)

∂

∂θ
(Dr (θ, φ) ψ (θ, φ))

)
θ

+

(
φ̇h (θ, φ)− 1

ψ (θ, φ)

∂

sin θ∂φ
(Dr (θ, φ) ψ (θ, φ))

)
φ

= θ̇ (θ, φ) θ + φ̇ (θ, φ) φ (6.21)

where

θ̇ (θ, φ) =

(
θ̇h (θ, φ)− 1

ψ (θ, φ)

∂

∂θ
(Dr (θ, φ) ψ (θ, φ))

)

φ̇ (θ, φ) =

(
φ̇h (θ, φ)− 1

ψ (θ, φ)

∂

sin θ∂φ
(Dr (θ, φ) ψ (θ, φ))

)
(6.22)

represent the fiber motion in the θ and φ directions, respectively, due to hydrody-

namic effects and diffusion.

The control volume method (see e.g. [106]) is employed here to solve the fiber

distribution function ψ (θ, φ) on the sphere S2 as discussed in Bay [23]. In the control
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Figure 6.5: Control volume employed for the flux balance of the fiber orientation
distribution.

volume method, the sphere S2 is meshed with a uniform grid of control volumes at

the points (θi, φj) for i ∈ {1, 2, . . . , Nθ} and j ∈ {1, 2, . . . , Nφ}. Each control volume

such as that shown in Figure 6.5 has an incremental area ∆A equal to the product

of the sides, ∆θ and ∆φ sin θ. The quantity within the control volume is given by

ψ (θ, φ) sin θ∆θ∆φ which has a time rate of change within the control volume [23]

d

dt
(ψ (θi, φj) ∆A) ' ψt+1 (θi, φj)− ψt (θi, φj)

∆t
∆A (6.23)

This rate of change of ψ (θ, φ) ∆A is equal to the balance of the fluxes passing through

the sides of the control volume in Figure 6.5. The flux from the West face is equal to

the length of the side multiplied by the velocity, θ̇ (θ, φ) at the West face as

FluxW (θi, φj) = ψ (θ, φ) θ̇ (θ, φ) sin θ∆φ
∣∣∣
(θ,φ)=

(
θ
i− 1

2
,φj

)

= ψ (θ, φ)

(
θ̇h (θ, φ)− ∂

∂θ
(Dr (θ, φ) ψ (θ, φ))

)
sin θ∆φ

∣∣∣∣
(θ,φ)=

(
θ
i− 1

2
,φj

)(6.24)
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Similarly, the flux on the East face is

FluxE (θi, φj) = ψ (θ, φ) θ̇ (θ, φ) sin θ∆φ
∣∣∣
(θ,φ)=

(
θ
i+1

2
,φj

)

= ψ (θ, φ)

(
θ̇h (θ, φ)− ∂

∂θ
(Dr (θ, φ) ψ (θ, φ))

)
sin θ∆φ

∣∣∣∣
(θ,φ)=

(
θ
i+1

2
,φj

)(6.25)

The flux on the North and South faces are the products of the velocity at their

respective faces multiplied by the length of the corresponding side expressed as

FluxS (θi, φj) = ψ (θ, φ) φ̇ (θ, φ) ∆θ
∣∣∣
(θ,φ)=

(
θi,φj− 1

2

)

= ψ (θ, φ)

(
φ̇h (θ, φ)− 1

sin θ

∂

∂φ
(Dr (θ, φ) ψ (θ, φ))

)
∆θ

∣∣∣∣
(θ,φ)=

(
θi,φj− 1

2

)(6.26)

FluxN (θi, φj) = ψ (θ, φ) φ̇ (θ, φ) ∆θ
∣∣∣
(θ,φ)=

(
θi,φj+1

2

)

= ψ (θ, φ)

(
φ̇h (θ, φ)− 1

sin θ

∂

∂φ
(Dr (θ, φ) ψ (θ, φ))

)
∆θ

∣∣∣∣
(θ,φ)=

(
θi,φj+1

2

)(6.27)

The balance from Equation (6.23) is solved by the sum of the fluxes expressed as

ψt+1 (θi, φj)− ψt (θi, φj)

∆t
∆A = FluxW (θi, φj)− FluxE (θi, φj)

+ FluxS (θi, φj)− FluxN (θi, φj) (6.28)

In the above, each of the terms θ̇h (θ, φ) and φ̇h (θ, φ) are analytic functions which

are evaluated numerically for all values of (θ, φ) ∈ S2. Conversely, the distribution

function is only known at the grid points (θi, φj), therefore the distribution function

on a given face of the control volume is approximated as

ψ
(
θi± 1

2
, φj

)
' ψ (θi±1, φj) + ψ (θi, φj)

2
(6.29)

ψ
(
θi, φj± 1

2

)
' ψ (θi, φj±1) + ψ (θi, φj)

2
(6.30)

The derivative with respect to θ of the product of the functions ψ (θ, φ) Dr (θ, φ)
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on the West face is approximated using the chain rule as

∂

∂θ
(ψ (θ, φ) Dr (θ, φ))

∣∣∣∣
(θ,φ)=

(
θ
i− 1

2
φj

)

=

(
∂ψ (θ, φ)

∂θ
Dr (θ, φ) + ψ (θ, φ)

∂Dr (θ, φ)

∂θ

)∣∣∣∣
(θ,φ)=

(
θ
i− 1

2
φj

)

' ψ (θi, φj)− ψ (θi−1, φj)

∆θ

Dr (θi, φj) + Dr (θi−1, φj)

2

+
ψ (θi, φj) + ψ (θi−1, φj)

2

Dr (θi, φj)−Dr (θi−1, φj)

∆θ

=
ψ (θi, φj) Dr (θi, φj)− ψ (θi−1, φj) Dr (θi−1, φj)

∆θ
(6.31)

The remaining derivatives are similarly obtained, and after much simplification the

balance equation in Equation (6.28) may be expressed as

ψt+1 (θi, φj)− ψt (θi, φj)

∆t
∆A =

ψ (θi−1, φj) ∆φ sin θi− 1
2


 θ̇

(
θi− 1

2
, φj

)

2
+

Dr (θi−1, φj)

∆θ




−ψ (θi+1, φj) ∆φ sin θi+ 1
2


 θ̇

(
θi+ 1

2
, φj

)

2
− Dr (θi+1, φj)

∆θ




+ψ (θi, φj−1) ∆θ


 φ̇

(
θi, φj− 1

2

)

2
+

Dr (θi, φj−1)

∆θ




+ψ (θi, φj+1) ∆θ


 φ̇

(
θi, φj+ 1

2

)

2
− Dr (θi, φj+1)

∆θ




+ψ (θi, φj)


∆φ sin θi− 1

2


 θ̇

(
θi− 1

2
, φj

)

2
− Dr (θi, φj)

∆θ




−∆φ sin θi+ 1
2


 θ̇

(
θi+ 1

2
, φj

)

2
+

Dr (θi, φj)

∆θ




+∆θ


 φ̇

(
θi, φj− 1

2

)

2
− Dr (θi, φj)

∆θ


−∆θ


 φ̇

(
θi, φj+ 1

2

)

2
+

Dr (θi, φj)

∆θ




(6.32)
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This form expresses the dependance of the change in the fiber orientation distribution

function ψ (θ, φ) on the diffusion Dr (θ, φ) with an explicit angular dependance. In

Equation (6.32), the expression will reduce to that given in Bay [23] for a diffusion

model with no angular dependance, i.e. Dr (θ, φ) = CI ||γ̇||.

The periodic boundary conditions expressed in Bay [23] ensure global conservation

and are given as

ψ(θ, φ) = ψ(π−θ, φ+π)→ ψ(θi, φ0)= ψ
(
θNθ+1−i, φNφ

)
, ψ

(
θi, φNφ+1

)
= ψ(θNθ+1−i, φ1)

ψ(θ, φ) = ψ(θ+π, φ)→ ψ(θ0, φj)= ψ(θNθ
, φj) , ψ(θNθ+1, φj)= ψ(θ1, φj) (6.33)

Equation (6.32) may be solved on a single hemisphere of the unit sphere once an ap-

propriate choice of step size and grid points are chosen. Bay [23] outlines a procedure

to select the appropriate step size and grid points for the diffusion model of Folgar

and Tucker [11]. Unfortunately to select a time step and mesh size assumes a constant

diffusion term, and as such the procedure of Bay can only serve as a guideline when

Dr (θ, φ) in Equation (6.12) is employed.

6.1.4 Directional Diffusion for Orientation Tensor Solutions

Due to the computational expenses required to solve ψ (θ, φ), it is necessary to ex-

press the directional diffusion effects on fiber orientation through the second-order

orientation tensor flow equations of Equation (2.34). The expression for the second-

order orientation tensor given in Equation (2.34) is solved with the diffusion model

of Equation (6.12), expressed in component form given in Equation (6.18), and after
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simplification may be expressed as (see Jack [45] for the full derivation)

∮

S2
Drψ (2δij − 6pipj) dS = C2 ||γ̇|| (2δij − 6aij) +

C1

||γ̇|| (

+(4δija11−6aij11)(T2233+T3322−2T2323)+(8δija12−12aij12)(T1323+T2313−T3312−T1233)

+(4δija22−6aij22)(T1133+T3311−2T1313)+(8δija13−12aij13)(T1232+T3212−T2213−T1322)

+(4δija33−6aij33)(T1122+T2211−2T1212)+(8δija23−12aij23)(T2131+T3121−T1123−T2311)

−6a11 (Zij2233+Zij3322−2Zij2323)+12a12 (Zij1323+Zij2313−Zij3312−Zij1233)

−6a22 (Zij1133+Zij3311−2Zij1313)+12a13 (Zij1232+Zij3212−Zij2213−Zij1322)

−6a33 (Zij1122+Zij2211−2Zij1212)+12a23 (Zij2131+Zij3121−Zij1123−Zij2311)) (6.34)

The fourth-order tensor Tijkl is given in Equation (6.17) and the sixth-order tensor

Zijklmn is defined as the integration of the products pipj with the function Wklmn (θ, φ)

given in Equation (6.14), and is expressed as

Zijklmn =

∮

S2
pi (θ, φ) pj (θ, φ) pk (θ, φ) pl (θ, φ) ˙̃ph

m (θ, φ) ˙̃ph
n (θ, φ) ψ (θ, φ) dS

=
1

4
λ2 (γ̇moγ̇npaijklop− γ̇moγ̇pqaijklnopq− γ̇noγ̇pqaijklmopq+ γ̇opγ̇qraijklmnopqr)(6.35)

Equation (6.34) simplifies to the Folgar and Tucker model when the coefficient pair

(C1, C2) set to (0, CI), but more importantly the directional diffusion expression in

Equation (6.34) provides a means to incorporate the directional dependance for dif-

fusion when computing aij. It was observed that solutions of Equation (6.34) from

the directional diffusion model required nearly 5 times the computational expense as

solutions for the Folgar and Tucker model where C1 = 0.

Observe that orientation tensors up to tenth-order appear in Equation (6.34)

through each of the expressions Zijklmn given in Equation (6.35), and introduces

complications for solutions of the orientation tensor evolution equation. The selection
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of an approximation for the higher order information is necessary to obtain a solution

of the second-order orientation tensor. The analytical hybrid closure was investigated

in [45], but it has been shown to over predict the fiber alignment state in industrial

simulations [59,107]. Therefore the fourth-order ORT closure used by VerWeyst and

Tucker [15] is employed in this work to approximate the fourth-order orientation

tensor from the second-order orientation tensor. The sixth-order INV6 closure of

Jack and Smith [38] given in Equation (3.15) is selected to compute the sixth-order

orientation tensor once the fourth- and second-order orientation tensors are known.

Unfortunately, there exists little mention in the literature of higher order closures

for tensors beyond aijklmn. An eighth-order approximation similar in form to the

sixth-order quadratic closure of Doi [48] is introduced as

aijklmnoq ≈ aijklmnaoq (6.36)

Similarly, a tenth-order approximation as a function of the eighth-order orientation

tensor is proposed as

aijklmnoqrs ≈ aijklmnoqars (6.37)

where for Equations (6.36) and (6.37) i, j, k, l, m, n, o, q, r, s ∈ {1, 2, 3}. In this

case, note that the combination of the eighth- and tenth-order approximations yield

aijklmnoqrs ≈ aijklmnaoqars. Both of these eighth- and tenth-order tensor approxi-

mations do not satisfy the symmetry conditions in Equation (2.12), but Equations

(6.36) and (6.37) exactly solve the higher-order orientation tensors for unidirectional

alignment states while tending to over predict the degree of alignment for all other

orientation states. An accurate analysis with the directional diffusion model must

account for the correct form of the orientation tensors, and it is worthwhile to pursue

in future research.
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6.2 Flow Examples with Directional Diffusion

In this section the qualitative behavior of the directional diffusion model is in-

vestigated where refinements/verification of a directional diffusion model with ex-

perimental data are left to future endeavors. Calculated results are compared to

those obtained with the Folgar and Tucker [11] model for diffusion. This model

is used as the benchmark here since it was developed with an interaction coeffi-

cient CI to fit the numerical results to experimental data, often at steady state

[1, 3, 14, 19, 20, 23, 33, 55, 56, 65, 108–110]. Therefore the steady state results for the

directionally dependant diffusion model in Equation (6.12) will be required to be

similar to the predicted steady state results from the Folgar and Tucker model.

The second-order orientation tensor flow equation of Equation (2.35) is solved nu-

merically with the directional diffusion representation given in Equation (6.34) with

a fourth-order Runge-Kutta solution procedure (see e.g. [111]). In these simulations,

the fourth-order orientation tensor aijkl is approximated with the orthotropic closure

ORT given by Wetzel [32] and used by VerWeyst and Tucker [15]. The sixth-order

orientation tensor aijklmn is approximated from aijkl with the INV6 closure of Jack and

Smith [38], and the eighth- and tenth-order orientation tensors are approximated with

Equations (6.36) and (6.37), respectively. The orientation state is initially isotropic

ψ (θ, φ) = 1
4π

in each of the following examples (see e.g. Figure 5.1) which is repre-

sented in terms of the second-order orientation tensor given in Equation (2.17). It

has been shown that flows indicative of those found in industrial applications are well

represented using interaction coefficients of 10−4 ≤ CI ≤ 10−1 [1,19,56] in the Folgar

and Tucker model. Therefore examples shown below are for an interaction coefficient

of 10−3 to predict the desired steady state results.
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6.2.1 Uniaxial Elongation Results

Elongational flow occurs in injection molding processes when the cavity containing

the polymer fluid expands rapidly. In the following examples, the velocity field is

characterized by v1 = 2Gx1, v2 = −Gx2 and v3 = −Gx3 where G is a scaling

parameter. In the absence of experimental data, the coefficient pair (C1, C2) will be

selected such that steady state results from the Folgar and Tucker model are nearly

attained. Recall, that when (C1, C2) = (0, CI) in Equation (6.34) the directional

diffusion model simplifies to the Folgar and Tucker results. As such all results for the

steady state from the second-order orientation tensor equation of motion with the

directional diffusion model will be compared to steady state results from the Folgar

and Tucker model for an interaction coefficient of CI = 10−3. The procedure to select

a C2 for a fixed C1 is quantified by minimizing the parameter χ2 (C2) defined as

χ2 (C2) =
(
aSS

ij

(
0, 10−3

)− aSS
ij (C1, C2)

)2
(6.38)

where aSS
ij (C1, C2) is the steady state second-order orientation tensor from the direc-

tional diffusion model with the coefficient pair (C1, C2) and aSS
ij (0, 10−3) is the steady

state second-order orientation tensor obtained without directional diffusion. The co-

efficient χ2 is minimized by changing C2 for a given C1 for uniaxial elongation, and

results shown in Figure 6.6 indicate the directional diffusion model yields the same

steady state results as the Folgar and Tucker model for C1 ∈ (0, 7) with very little

change in C2. The optimized results for C2 as a function of C1 show a nearly linear

response between C2 and C1 with the linear fit between C2 and C1 given as

C2 = −5× 10−6C1 + 1× 10−3 (6.39)

with an R2 value of 0.9999. The slope of the line is 5× 10−6 which is several orders
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Figure 6.6: Diffusion coefficient C2 as a function of C1 for uniaxial elongation flow,
v1 = 2Gx1, v2 = −Gx2, v3 = −Gx3 to yield the same steady state as Folgar and
Tucker model results.

of magnitude less than the C2-axis intercept point 10−3. Since the range of applicable

C1 coefficients is less than 100, it is assumed in the following results that C2 is a

constant equal to C2 = 10−3 for C1 ∈ (0, 7).

The results for select components of the second-order orientation tensor from the

evolution of aij in uniaxial elongational flow from an initial isotropic orientation state

are given in Figure 6.7. The results without directional diffusion, i.e. (C1, C2) =

(0, 10−3), are represented by the solid line for select components of the second-order

orientation tensor where the steady state solution is nearly attained when Gt ' 2.

The directional diffusion model results for uniaxial flow from the coefficient pairs

(C1, C2) = (1, 10−3), (C1, C2) = (3, 10−3), (C1, C2) = (6, 10−3), (C1, C2) = (7, 10−3)

and (C1, C2) = (8, 10−3) are also shown in Figure 6.7. Notice how the rate at which

the fibers align as viewed through the a11 component is diminished as the value for the
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Figure 6.7: Transient Solution for aij from the directional diffusion model in uniaxial
elongation flow, v1 = 2Gx1, v2 = −Gx2, v3 = −Gx3 starting from an isotropic
orientation state, ψ (θ, φ) = 1

4π
.

coefficient C1 increases. For values of C1 ∈ (0, 7), the coefficient C2 may be set to 10−3

and still produce the same steady state value as obtained for (C1, C2) = (0, 10−3) to

within 0.1% for each of the components of aij. As C1 increases beyond 7, the value for

the coefficient C2 must be significantly reduced to offset the increased diffusion. It was

observed that C2 could not be reduced below 0 without the orientation state becoming

non-physical, and will be discussed further in the simple shear flow example. Recall

that the directional model for diffusion is constructed such that as fibers approach

unidirectional alignment, the local fiber collision effects go to zero and only the volume

averaged Brownian-type effects remain. Since alignment is rarely at unidirectional,

local fiber collision effects will rarely go to zero. As such the directional diffusion

model will tend to delay alignment due to over predicting the actual diffusion at
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steady state, and the parameter C2 will decrease as C1 increases. For uniaxial, these

decreases were minimal and are able to be neglected.

To ensure correct steady state values, there is a limit to the degree of applied

directional diffusion. Nearly all coefficient pairs in Figure 6.7 yield a steady state of

approximately a11 = 0.995 and a22 = a33 = 0.0025 from an initially isotropic fiber

orientation. Note however, that the coefficient pair (C1, C2) = (8, 0) produces a steady

state near a11 = 0.6 and a22 = a33 = 0.2 from the same initial isotropic orientation.

For C1 = 8, the coefficient C2 is decreased toward zero, but never yields a steady

state alignment above a11 = 0.6 and a22 = a33 = 0.2. The directional diffusion

pair (C1, C2) = (8, 0) are not irrelevant, and present some interesting characteristics.

For example, given two different initial orientation states with the alignments a11 =

0.7, a22 = a33 = 0.15 and a11 = 0.75, a22 = a33 = 0.125, two different steady

state orientations are predicted, as shown in Figure 6.8. The orientation state a11 =

0.7, a22 = a33 = 0.15 yields a lower orientation state than highly aligned, whereas

the orientation state a11 = 0.75, a22 = a33 = 0.125 evolves to the unidirectional

orientation state similar to that appearing in Figure 6.7. This is expected since as

alignment approaches unidirectional with C2 = 0, local fiber interactions go to zero

and fiber motion simply follows Jeffery’s equation.

The directional diffusion model is developed to affect the transient solution with

minimal affects on the steady state orientation. As viewed in Figure 6.7 steady state

orientation remains the same (within ∼ 0.1%) as results from the Folgar and Tucker

model, even though the transient solution is significantly altered. A quantitative

metric to assess when steady state is attained is defined as

∆aij(t) =
aSS

ij − aij (t)

aSS
ij

× 100% (6.40)

179



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G t

a
ij

a
11

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=1/3, a

22
(0)=1/3

a
11

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=0.8, a

22
(0)=0.1

a
11

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=0.7, a

22
(0)=0.15

a
22

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=1/3, a

22
(0)=1/3

a
22

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=0.8, a

22
(0)=0.1

a
22

, C
1
 = 8, C

2
 = 1.0 x 10

−3
, a

11
(0)=0.7, a

22
(0)=0.15

Figure 6.8: Transient Solution for aij from the directional diffusion model in uniaxial
elongation flow.

where aSS
ij is the true steady state value for the aij component. Steady state is consid-

ered to be nearly attained when |∆a11| remains less than 1%. This metric is presented

in Figure 6.9 for select diffusion coefficient pairs in uniaxial elongational flow, and

the ±1% difference is indicated by the solid horizontal lines. As the coefficient C1

increases, the point in time where |∆a11| remains below 1% occurs at a later point

in time. This occurs for the coefficient pair (C1, C2) = (7, 10−3) at a time more than

three times that of (C1, C2) = (0, 10−3).

The directional diffusion model in uniaxial elongational flow significantly alters

the rate at which the fiber distribution becomes aligned. This effect can be viewed

in Figures 6.10 and 6.11 where, respectively, the magnitude of the derivative of the

a11 and a22 component are presented. For time Gt ∈ (0,∼ 0.8) the slope for both a11

and a22 decreases with increasing C1, but as time increases the directional diffusion
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Figure 6.9: Percentage difference between steady state orientation and transient ori-
entation state for a11 in uniaxial elongation flow starting from an isotropic orientation.

model has a higher rate of alignment for both a11 and a22. It is unreasonable to view

the slope as a function of time since the second-order orientation tensor is nearly at

steady state for Gt > 2 when (C1, C2) = (0, 10−3), as viewed in Figure 6.7. This is

equivalent to stating the derivative of aij goes to zero for Gt greater than 2 without

directional diffusion.

A more reasonable comparison is to observe the rate of change of the second-order

orientation tensor as a function of orientation during the flow history. The principal

eigenvalue of the second-order orientation tensor a(1) is selected as the parameter

to indicate the degree of orientation. Figures 6.12 and 6.13 contain results for the

magnitude of the slope as a function of alignment for a11 and a22, respectively. The

parameter a(1) has a value of 1
3

for the initial isotropic orientation and increases

to a value approaching 1 when fibers are nearly aligned. Both Figures 6.12 and 6.13
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Figure 6.10: Magnitude of the slope for a11(t) in uniaxial elongation flow, starting
from an isotropic orientation state.
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Figure 6.11: Magnitude of the slope for a22(t) in uniaxial elongation flow, starting
from an isotropic orientation state.
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demonstrate that the rate of alignment decreases with increasing C1 throughout much

of the flow history. The reverse behavior near isotropic orientation states is expected

since the directional diffusion function Dr (θ, φ) of Equation (6.12) is quite large for

random distributions, and decreases as alignment increases (see e.g., Figure 6.3).

6.2.2 Simple Shear

The second example considered is that of simple shear flow which has a non-zero

velocity in the x1 direction and a constant shear rate in the x3 direction given by

the velocity components v1 = Gx3, v2 = v3 = 0. As discussed in Section 3.1.4.1,

fibers will tend to orient along the x1 axis, and in the absence of fiber collisions,

fibers approach a unidirectional orientation with time. As in the preceding example,

coefficient pairs (C1, C2) are selected to match the steady state results predicted

without directional diffusion, i.e., (C1, C2) = (0, 10−3). The parameter χ2 (C2) from

Equation (6.38) is minimized with aSS
ij (0, 10−3) being the steady state second-order

orientation tensor without directional diffusion. As above, the coefficient χ2 (C2) is

minimized by changing C2 for a given C1 where the results for C1 ∈ (0, 0.06) are

shown in Figure 6.14. The values for C2 as a function of C1 for C1 ∈ (0, 0.06) are

nearly a perfect linear fit with R2 = 0.99997 for the least squares best fit curve

C2 = −1.62× 10−2C1 + 1× 10−3 (6.41)

Unlike the uniaxial elongational flow example, the diffusion coefficient C2 is strongly

dependant on the choice of C1. Additionally, the range for C1 in simple shear is

much smaller than the uniaxial elongation results, C1 ∈ (0, 0.06) versus C1 ∈ (0, 7).

Although results for C1 ≥ 0.06 diminish the rate of fiber alignment, the corresponding

value for C2 to ensure the correct steady state in simple shear flow is negative. A
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Figure 6.12: Magnitude of slope for a11(t) in uniaxial elongation flow as a function of
alignment parameter a(1).
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alignment parameter a(1).
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2Gx1, v2 = −Gx2, v3 = −Gx3 to yield the same steady state as Folgar and Tucker
model results.

negative value for C2 must be discarded since in select orientation states Dr (θ, φ)

as given in Equation (6.12) will yield a negative diffusion implying an increase in

the energy of the system. Take, for example, a uniaxial alignment state, i.e., aij =

aijkl = aijklmn = aijklmnop = aijklmnopqr = 0, ∀i, j, k, l, m, n, o, p, q, r ∈ {1, 2, 3} except

a11 = a1111 = a111111 = a11111111 = a1111111111 = 1, the expression multiplied by

C1 in Equation (6.12) is zero and all that remains is the component independent of

orientation, C2 ||γ̇||. If C2 were negative, it would force regions of the distribution

function ψ (θ, φ) to be less than zero which is impossible since the probability of

finding a fiber in any given region of (θ, φ) must be equal to or greater than 0.

The second-order orientation tensor evolution of Equation (2.35) with the direc-

tional diffusion model Dr (θ, φ) of Equation (6.12) is solved for an initially isotropic

fiber distribution for three select coefficient pairs (C1, C2) = (0, 10−3), (C1, C2) =
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Figure 6.15: Transient Solution for aij from the directionally diffusion model in simple
shear flow, v1 = Gx3, v2 = v3 = 0 starting from an isotropic orientation state,
ψ (θ, φ) = 1

4π
.

(3× 10−2, 5.1× 10−4), and (C1, C2) = (6× 10−2, 2.9× 10−5). The results for select

second-order orientation tensor components are presented in Figure 6.15. For each

coefficient pair, the steady state results are the same as those predicted with the coeffi-

cient pair (C1, C2) = (0, 10−3) which corresponds to the Folgar and Tucker model with

CI = 10−3. The directional diffusion model results diminish the rate of alignment,

and delay when steady state is attained.

By increasing C1, greater priority is given to local fiber collision effects yielding a

steady state that occurs later in time. This characteristic is quantified in Figure 6.16

using Equation (6.40) where fiber alignment is considered to have attained steady

state when a11 is within 1% of its steady state value. Note that as the coefficient

C1 is increased, steady state is attained at a later period in time. The alignment is
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Figure 6.16: Percentage difference between steady state orientation and transient
orientation state for a11 in simple shear flow starting from an isotropic orientation.

within 1% of steady state at Gt = 14.5, Gt = 15.5, Gt = 20, and Gt = 39 for the

coefficient pairs (C1, C2) = (0, 10−3), (C1, C2) = (1× 10−2, 8.4× 10−4), (C1, C2) =

(3× 10−2, 5.1× 10−4), and (C1, C2) = (6× 10−2, 2.9× 10−5), respectively. For C1 =

6× 10−2, steady state is attained at a time nearly 2.5 times higher than as predicted

with (C1, C2) = (0, 10−3).

The important characteristic to take note of in Figure 6.15 is the time at which the

steady state orientation is attained. Directional diffusion causes the fiber distribution

to align at a slower rate than experienced without directionality of the diffusion. As

in the previous example, this characteristic is quantified by the magnitude of the slope

for the a11 and a13 components of the second-order orientation tensor presented in

Figures 6.17 and 6.18, respectively, from select (C1, C2) pairs. On close inspection, as

C1 is increased the rate of change in the a11 component decreases throughout nearly
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the entire flow history. Similarly, the slope of the a13 component also decreases as C1

increases throughout much of the flow history. The downward spike in Figure 6.18

for Da13/Dt is attributed to the peak in the a13 component occurring near Gt = 2 as

viewed in Figure 6.15.

The directional diffusion model is designed to slow the rate of alignment as a

function of fiber orientation. As in the previous example, the principal eigenvalue of

the second-order orientation tensor a(1) is selected as the parameter of alignment. In

Figures 6.19 and 6.20 it is evident that the directional diffusion model results diminish

the rate of alignment as a function of alignment with the greatest change in alignment

rate occurring for relatively high alignment states with a(1) > 0.7.

It is important to ensure robustness of the transient flow solutions with respect to

the initial choice of alignment. As shown in the previous example, when (C1, C2) =

(8, 10−3) in uniaxial elongational flow, aij may come to rest at two different steady

state solutions. To test robustness in simple shear, a highly aligned initial orientation

with a11 = 0.995 and a22 = a33 = 0.0025 is selected and results from the transient

solution for the second-order orientation tensor with (C1, C2) = (3× 10−2, 5.1× 10−4)

and (C1, C2) = (6× 10−2, 2.9× 10−5) are presented in Figure 6.21 along with the

Folgar and Tucker solution from an initial isotropic distribution. As desired, steady

state solutions for the initial high alignment state are identical to those obtained from

the initial isotropic orientation state.

The relationship is quite different between C1 and C2 given in Equations (6.39)

and (6.41) for, respectively, uniaxial elongational flow and simple shear flow. A coef-

ficient pair developed for simple shear flow has little effect on the orientation results

for uniaxial elongational flow. This effect is viewed in Figure 6.22 where the equation
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Figure 6.17: Magnitude of the slope for a11(t) in simple shear flow, starting from an
isotropic orientation state.
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Figure 6.18: Magnitude of the slope for a13(t) in simple shear flow, starting from an
isotropic orientation state.

189



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

a
(1)

|D
a

1
1
/D

t|

 

 

C
1
 = 0,                 C

2
 = 1 x 10

−3

C
1
 = 1 x 10

−2
, C

2
 = 8.3 x 10

−4

C
1
 = 3 x 10

−2
, C

2
 = 5.1 x 10

−4

C
1
 = 6 x 10

−2
, C

2
 = 2.9 x 10

−5

Figure 6.19: Magnitude of the slope for a11(t) in simple shear flow as a function of
alignment parameter a(1).
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Figure 6.20: Magnitude of the slope for a13(t) in simple shear flow as a function of
alignment parameter a(1).
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Figure 6.21: Transient Solution for aij from the directionally diffusion model in simple
shear flow starting from a highly aligned orientation state along the x1 axis, compared
to the Folgar and Tucker model results with an initial isotropic orientation state.

of motion for aij is solved with the coefficient pair (C1, C2) = (6× 10−2, 2.9× 10−5).

Differences between the solution without any directional diffusion are indistinguish-

able from the solution obtained through the simple shear coefficient pair (C1, C2) =

(6× 10−2, 2.9× 10−5). Conversely, a coefficient pair developed from uniaxial elon-

gational flow will significantly alter steady state results for simple shear flow as

viewed in Figure 6.23 for the uniaxial coefficient pair (C1, C2) = (1, 1× 10−3) and

(C1, C2) = (3, 1× 10−3). Recall, the coefficient C1 for simple shear could only be

increased up to 0.06 with no effects on the steady state solution. Since C1 is rela-

tively large and C2 is greater than zero, the diffusion coefficient pair from uniaxial

elongational flow will be so great in simple sharing flow that fibers are not able to

remain in a highly aligned orientation state. The converse is true for the simple shear
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coefficients in uniaxial elongational flow, since the coefficient C1 = 0.06 is much less

than 1 where nominal effects were seen throughout the orientation history.

6.2.3 Simple Plaque Flow

The final example is that of simple plaque flow of a Newtonian fluid as shown in the

schematic in Figure 6.24, where flow is in the x1 direction with shearing in the x3

direction. It may be shown for a Newtonian fluid the velocity is simply [112]

v1 = − dP

dx1

1

µ
h2

(
1− x2

3

h2

)
v2 = v3 = 0 (6.42)

where P is the pressure, a linear function of x1 (see e.g. [112]), µ is the viscosity, and

h is half the gap thickness. The velocity gradients are zero for all components except

∂v1

∂x3
which is simply

∂v1

∂x3

= 2
dP

dx1

1

µ
x3 = Kx3 (6.43)

This is simple shear flow as discussed in Section 3.1.4.1 where the scaling parameter

G is defined for each x3 as G = Kx3. Therefore the previous simple shear flow results

(c.f. Section 6.2.2) may be appropriately scaled by setting

Gt =
Kx3x1

h2
(
1− x2

3

h2

) (6.44)

The plaque flow results are presented in Figures 6.25(a)-(d) for the a11 orientation

tensor component through the thickness at x1

h
= 1, x1

h
= 4, x1

h
= 8, and x1

h
= 20,

respectively. Note that results for a11 from the directional diffusion model are always

less than results obtained by neglecting directional diffusion. Along the center of the

channel, the directional diffusion appears to have little effect, and only along the edges

can a noticeable difference be viewed with the directional diffusion results. Along the
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Figure 6.22: Transient Solution for aij from the directionally diffusion model in uni-
axial elongation flow with simple shear coefficient pair.
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Figure 6.23: Transient Solution for aij from the directionally diffusion model in simple
shear flow with uniaxial elongation coefficient pair.
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Figure 6.24: Schematic for simple plaque flow.

wall edge the flow experiences large shear rates and the fibers are rapidly aligned,

whereas in the center of the channel the shear rate is small causing the fibers to align

at a much slower rate. As discussed in the preceding section, the directional diffusion

model in shearing flow has little effect for alignment states near isotropic relative to

the Folgar and Tucker model. It is not until the fiber distribution becomes aligned

indicated by a11 > 0.6 that differences between the two models are apparent.

6.3 Directional Diffusion Model Conclusions

The directional diffusion model combines the effects from local fiber collisions with

the volume averaged effects proposed by Folgar and Tucker [11] and is shown to alter

the transient orientation solution while not affecting the steady state orientation. The

new model is shown to significantly reduce the time when steady state is attained for

elongational and shearing flows by a factor of more than two.

There are two limitations to the directional diffusion model. The first is given by

the upper bound on the rate of diffusion, therefore if the transient solution must be

delayed more than that shown here, the model must undergo additional developments.

It would be desired that a phenomenological model would provide the capability to

reduce the rate of alignment in shearing flows for orientation states near isotropic.

The present model in shearing flows only had a significant effect once the fibers began
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to align. Incorporating a model to effect the rate of alignment for isotropic orientation

states will allow better adjustments for alignments in the center of the channel for

simple plaque flow. The second limitation is the varied choice of parameters for

elongational flows and shearing flows. Since discussion in the literature is only for

shearing flows, the limitations of the Folgar and Tucker model in elongational flows

are uncertain. If there are no limitations in elongational flows, it would appear that

the selection of diffusion coefficients from shearing flows may be sufficient since their

use has little effect in elongational flows. It is desired that future diffusion models

effect alignment rates near isotropic with adjustable parameters that apply to both

shearing and elongational flows. It is possible that the incorporation of the relative

motion between the center of mass between the two fibers p and ρ, which is neglected

in the derivation, may provide the key to properly analyze the directional nature of

fiber collisions.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Processing conditions of a short fiber composite have a strong impact on the fiber

orientation within the final part, and as such a thorough understanding of the flow

kinematics on fiber orientation is essential for accurate design. Representing the fiber

orientation through the fiber distribution function is computationally cumbersome

and not practical for industrial applications. Therefore fiber orientation tensors are

typically employed to provide a concise representation of the fiber alignment state.

Currently accepted closures are of the fourth-order orientation tensor and their effects

on material property representations are not fully understood. Material character-

istics of the processed composite part contribute significantly to the design process,

and as a result, expressions for the material stiffness relationship from the fiber orien-

tation distribution will be of considerable use in the design setting. To fully represent

fiber orientation throughout the fabrication process an accurate representation of the

orientation state during processing is necessary, where current theories for fiber flow

kinematics tend to predict aligned orientation states sooner than observed physically.

The significant contributions of this work to assist in solving the preceding issues

are briefly summarized in the following list.

• Three sixth-order fitted closures are presented to approximate the sixth-order

orientation tensor from lower-ordered orientation tensor components. The sixth-

order closures more accurately model the distribution function of fibers than

even the exact fourth-order reconstruction and thus provide a degree of accuracy

unobtainable from even the most advanced fourth-order closure. The invariant
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based sixth-order fitted closure INV6 is defined from a general expression for a

fully symmetric sixth-order tensor, where the components of INV6 are fit to a

linear polynomial of the fourth-order orientation tensor invariants. The INV6

closure is demonstrated to surpass the accuracy of existing fourth-order closures

in the representation of the fiber orientation distribution in all flow simulations

investigated, and is nearly as accurate in representing the fiber orientation state

as the sixth-order expansion of the distribution function.

• It is demonstrated that existing fourth-order closures are limited, by their con-

struction, to an orthotropic tensor representation and neglect shear-extensional

coupling and shear-shear coupling effects. This limitation will prevent short-

fiber polymer composite models, polymer crystalline models and other models

which employ similar fourth-order closure techniques from representing material

behavior more complex than orthotropic. The significance of this limitation may

become more pronounced based upon the initial orientation. To avoid the or-

thotropic limitation it was demonstrated that sixth-order closures, in particular

the INV6, can represent shear-extensional and shear-shear coupling behavior.

• Analytical expressions are developed to compute the expectation value and vari-

ance of the material stiffness tensor obtained from the fiber orientation proba-

bility distribution function. The elastic material constitutive behavior for short

fiber composites presented here is based on the Laplace series reconstruction

written in terms of complex spherical harmonic functions. As part of this anal-

ysis, a method to complete the series expansion of Onat [86, 87] is introduced

by defining previously undefined higher-order functions in Onat’s series expan-

sion using the spherical harmonic functions. By employing the Laplace series
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reconstruction, an expression is derived for the expectation value of the stiffness

tensor using second- and fourth-order orientation tensors. The relationship be-

tween the current approach and that of Advani and Tucker [6] is presented where

the current approach only requires the assumption of a single axis of symmetry

characterized by a monoclinic material through the symmetry of the distribu-

tion function of fibers, ψ (p) = ψ (−p). An analytic method for computing the

variance of the stiffness tensor is presented and is shown to be a function of the

orientation tensors up through eighth-order. The analytical method to evaluate

both the expectation and the variance for the material stiffness tensor from the

fiber orientation tensors is validated through the method of Monte-Carlo. The

Monte-Carlo results are shown to agree extremely well with analytic results as

the number of sample sets is increased. With the central-limit theorem, normal

probability distributions obtained from the analytic expectation and variance of

the material stiffness tensor are shown to correspond directly with the results for

the normalized frequency of the sample sets of discrete fiber orientation angles.

• The directional diffusion model investigated incorporates contributions from lo-

cal fiber collisions and volume averaged effects. The diffusion model is demon-

strated to significantly delay the rate of alignment for elongational and shearing

flows by a factor of more than 2. As observed in center-gated disk flow, the

initial out-of-plane stretching effects on the rate of orientation is significantly

reduced and alters the orientation path taken toward steady state.

There is still much work to be undertaken in the area of fiber orientation analysis,

and several thoughts for the direction of future research are presented below.

• The sixth-order closures although accurate, are cumbersome, and efficient
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means for improving the calculation speeds are desired. This is a question

of programming prowess, and efficient methods of computation can be of sig-

nificant use. The sixth-order fitted closure is limited to a small range of fiber

interactions, and a more general fitting procedure is of use. It would be worth-

while to develop a sixth-order fitted closure that was not directly dependant

on specific flow conditions, but is fit to fiber distributions encompassing the

orientation space of the fourth-order orientation tensor. This orientation space

will be in five dimensions providing a significant technical hurdle beyond the

fourth-order closures which are fit in a two-dimensional space. It has been

speculated that the full fiber orientation distribution may be represented by

Bingham distributions [113] (see e.g. Chaubal and Leal [49] for the application

to the fiber distribution). A similar approach may be quite useful and may save

a significant amount of computational expense.

• Although sixth-order closures provide a means to compute shear-extensional and

shear-shear material behavior, it is unclear as to whether this feature is of much

industrial use. There has not been an exhaustive study to conclusively state

whether or not this behavior may be utilized or even measured experimentally.

• With the advent of the directional diffusion model, there is an increased con-

cern with the need for higher-order information. Therefore it is worthwhile to

investigate a different basis other than the spherical harmonics. Wavelet basis

(see e.g. Frazier [114]) may provide a mathematically rigorous means to capture

higher order information without the full lower-order reconstructions.
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• It is understood that the assumption in the derivation of the analytical expres-

sions for expectation and variance was for statistically independent fibers under

a constant stress field. That assumption loses its validity as the density of

fibers increases into the concentrated regime, and it is unclear what additional

effects may need to be incorporated for concentrated fiber suspensions. Hine et

al. [115] generate statistical distributions of fibers from Bingham distributions

and solve, through finite elements, the resultant material stiffness behavior of

the composite. It would be worthwhile to compare the analytical results for ma-

terial property expectation and variance developed in this work to those found

through finite elements for fiber distributions determined through the flow evo-

lution equations. Limits could then be placed on the validity of the analytic

functions as a function of volume fraction and fiber aspect ratio.

• Future work must investigate fiber interaction models for the fiber kinematics.

A complete understanding of the flow on the fiber orientation can provide ac-

curate methods for predicting fiber alignment. Since there are limitations with

the Folgar and Tucker model for fiber interaction and the directional diffusion

model, an accurate model to represent the fiber orientation kinematics based

on a strong physical foundation must be found. There are several aspects of

fiber collisions that may be investigated, but the most fundamental is to work

and develop a new form for the Jeffery equation [12] that directly incorpo-

rates fiber collisions. This work will require a fundamental understanding of

the physical phenomena as two fibers pass near each other, and future work

should incorporate experimental observations to grasp the full nature of the
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fiber orientation during the flow history and move beyond a qualitative repre-

sentation of fiber orientation kinematics. It is desired that the final model for

fiber interactions will have adjustable parameters which can scale both the rate

of alignment throughout the transient solution and the steady state orientation

while retaining a reasonable physical foundation such as the investigated model.
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