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Statistical Analysis of Multivariate Interval-censored Failure Time Data

Lianming Wang

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Interval-censored failure time data commonly arise in clinical trials and medical studies.

In such studies, the failure time of interest is often not exactly observed, but known to fall

within some interval. For multivariate interval-censored data, each subject may experience

multiple events, each of which are interval-censored. Research interests on such data in this

dissertation focus on regression analysis and studying the statistical association between

these events.

In Chapter 1, three real-life studies are discussed to illustrate interval-censored data.

We review the research in the literature with the focus on nonparametric maximum likelihood

estimation, regression analysis of univariate interval-censored data, and estimation of the

association parameter for multivariate data.

Chapter 2 considers regression analysis of correlated interval-censored failure time data.

We first review the marginal Cox model approach for regression analysis of multivariate

interval-censored data, and then construct a goodness-of-fit test based on a discrete score

process. Simulation results show that the proposed test works well for finite sample sizes.

The proposed method is illustrated using a set of real data from an AIDS study.

Chapter 3 considers estimation of the association of bivariate interval-censored failure

time data. We assume that the joint survival function of the two variables follows a Copula

model. A two-stage estimation procedure is proposed to estimate the association parameter

and the asymptotic properties of the proposed estimator are established. Simulations are

conducted to assess the finite sample properties of the proposed approach. The same AIDS

x



data used in Chapter 2 are analyzed again with the proposed method.

Chapter 4 discusses regression analysis of case-2 interval-censored data using the ad-

ditive hazards model. In this chapter, we propose an easy procedure to estimate the re-

gression parameter without estimating the baseline hazard function or survival function.

We construct two types of counting processes and martingales and develop some estimating

equations for the regression parameters. The large sample properties of the proposed esti-

mators are proved. Simulations results suggest that the proposed approach works well for

finite sample sizes. Data from a breast cancer study are analyzed to illustrate the proposed

method.

In Chapter 5, we study the efficient estimation of regression parameters and association

parameter simultaneously for bivariate current status data with univariate censoring. Our

proposed method applies to the situations where the two marginal distributions may be

different and where the censoring variable may be dependent of covariates. In the estimation

procedure, the sieve method is applied to approximate the infinite dimensional baseline

hazard function. A set of tumor data from National Toxicology Program is used to illustrate

our method.

Some future research directions are addressed in Chapter 6.

xi



Chapter 1

Introduction

In survival analysis, failure time can be broadly defined as the time to the occurrence

of a certain event. Examples of failure times include the lifetimes of machine components,

duration of strokes, time to HIV infections, and duration of the first marriage. One important

feature of survival data is that each subject can only have one failure for the defined event.

Another feature of survival data is incomplete observation of failure time due to various

reasons including dropouts of study or limited follow-ups. For example, it is common that

not all patients survive at the end of a clinic study, not all people get divorced in a sociology

study, and nonlethal tumors can not be observed until the rats die or are sacrificed in a

cross-sectional study. Such incomplete observation of failure time is called censoring (Cox

and Oakes 1984). A censoring time is also a event time and is always observable. A censoring

time for a subject can be an examination (observation) time, dropout time for the subject,

or the time when the study ends. In some studies, there may be more than one censoring

times for each subject.

There are various types of censoring mechanisms depending on the relationship of

the failure time and the censoring time(s), including left-censoring, right-censoring, and

interval-censoring. Suppose each subject is observed or examined multiple times in the

study. Left censoring occurs when a subject has already experienced the failure at the first

censoring time. Right censoring occurs when a subject has not experienced the failure at the

last censoring time. Interval-censoring occurs when the failure time happens between two

1



adjacent observation times.

Let Ti denote the failure time of interest for subject i in the study. Interval-censoring

means that Ti is not observed exactly but only known to fall within some interval (Li, Ri],

where Li and Ri can be regarded as two censoring times for subject i. The observed interval

(Li, Ri] for subject i has one of the follow forms: (0, u], (u, v], and (v, +∞), where v > u >

0, corresponding to left-censoring, interval-censoring, and right-censoring. Thus, interval-

censored data have a mixed data structure. If Li = 0 for all i, we have left-censored data; if

Ri = +∞ for all i, we have right-censored data; if either Li = 0 or Ri = +∞ for all i, we

have current status data, which is also called case 1 interval-censored data. The latter type

of data usually arises when each subject is observed only once in the study. The general

interval-censored data are often called case 2 interval-censored data.

In most research, people assume that failure time and censoring time(s) are indepen-

dent, which is referred to as noninformative censoring. Without such assumptions, it is hard

to make inference. We assume noninformative censoring throughout this thesis unless it is

mentioned otherwise.

This chapter is organized as follows. Section 1.1 describes three examples of interval-

censored data that motivated this research. Section 1.2 reviews nonparametric maximum

likelihood estimation for interval-censored data. In Section 1.3, we discuss regression anal-

ysis of interval-censored data with commonly used semiparametric regression models. In

Section 1.4, we discuss two main research interests and existing approaches for the analysis

of multivariate interval-censored data. Finally the outline of this thesis is given in Section

1.5.

1.1 Examples of Interval-censored Data

Interval-censored data commonly arise from clinic trials and medical studies. In such

studies, subjects are usually not under continuous observation, and they undergo periodical

2



examinations instead. In consequence, the failure time can not be observed exactly but

only known to be within some intervals. In this section, we describe three examples of

interval-censored data that motivated this research.

1.1.1 Breast cancer data

Breast cancer data contain 94 early breast cancer patients in two treatment groups,

radiotherapy alone and radiation therapy together with adjuvant chemotherapy. Among the

patients, 46 received radiotherapy and 48 received combined therapy aforementioned. In

this study, patients were examined periodically and actual examination times differ from

patient to patient since some of them missed their visits. One objective of this study is to

detect whether chemotherapy changes the rate of deteriorations of the cosmetic state. To

do this, we can compare the treatments with respect to time until the appearance of breast

retraction, a response that has a negative impact on overall cosmesis appearance. Treating

the appearance of breast retraction as failure of interest, we have only interval-censored data,

which are presented in Table 1.1. References that discussed this data set include Finkelstein

et al. (2002) and Goggins and Finkelstein (2000).

1.1.2 Hemophilia data

A multi-center prospective study was conducted in 1980’s to investigate HIV-1 infection

rate among people with hemophilia (Kroner et al., 1994). The patients were at risk of HIV-1

infection from blood products such as factor VIII and factor IX made from donors’ plasma.

In this study, only case 2 interval-censored data were observed for patients’ HIV-1 infection

times. The patients were categorized into one of four groups according to the average annual

dose of the blood products they received: high-, median-, low-, or none-dose group. The

goal of this study is to compare the HIV-1 infection rates between treatment groups. More

details about this study can be found in Kroner et al. (1994) and Goedert et al. (1989).
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1.1.3 ACTG 181 data

The ACTG 181 data come from an AIDS observational study conducted by the AIDS

Clinical Trials Group (ACTG). In this study, patients were scheduled to provide blood and

urine samples at clinic visits every 12 weeks and every 4 weeks, respectively. Urine samples

and blood samples were tested in order to detect the presence of the cytomeglovirus (CMV)

virus. Since CMV shedding is not accompanied by any symptoms and only detectable in the

laboratory test, it can not be observed immediately when it exists and only possibly observed

at scheduled clinic visits. In the study, not all subjects made each clinic visit, and many

people visited sometime after the scheduled time. Some patients missed several visits and

returned with changed CMV shedding status, which resulted in interval-censored data. Some

patients were already shedding when they entered the study, which gave left-censored data.

Some patients had not started shedding by the time the study had ended, which resulted in

right-censored data. The CD4 count was recorded at the entry time. There are 204 subjects

in the study. For the blood shedding, 7 subjects are left-censored , 23 interval-censored,

and 174 right-censored. For the urine shedding, 49 subjects are left-censored subjects, 67

interval-censored, and 88 right-censored. More details about this study can be found in

Finkelstein et al. (2002) and Goggins and Finkelstein (2000).

In this study, the investigators were interested in determining whether the stage of HIV

disease at study entry was predictive of an increased hazard for CMV shedding in either blood

or urine. The stage of HIV is categorized by a CD4 count below a certain threshold. Since

both blood shedding and urine shedding contribute to CMV shedding, we need to model

blood shedding and urine shedding jointly and consider the bivariate regression in term of

the HIV status categorized by CD4 count. Goggins and Finkelstein (2000) studied this

problem by using the marginal Cox model approach.

Another question of interest about this study is to consider the correlation between

blood shedding and urine shedding. We will study this problem in terms of the association

4



parameter in Chapter 3.

1.1.4 NPT tumor data

This data set comes from a part of an animal tumorigenicity experiment conducted by

National Toxicology Program (NTP). It is a 2-year rodent carcinogenicity study of chloro-

prene, in which subjects were F344/N rats and B6C3F1 mice with both sexes. The experi-

ment was described and summarized in Dunson and Dinse (2002). The experiment contained

a control group with no chloroprene and three dose groups with 50 rodents in each group.

Rodents in the dose groups were exposed to chloroprene at the concentration of 12.8, 32,

and 80 ppm, respectively, 6 hours per day, 5 days per week for up to 2 years. The occurrence

of tumors was determined through a pathologic examination when the rodents died. Some

rodents died during the study. Those rodents who did not die at the end of the 2-year study

were sacrificed regardless of health condition. Dunson and Dinse (2002) summarized the data

for male rats in the control group and 80mmp dose group concentrating on adrenal and lung

tumor only. Table 1.2 shows the summarized data in month by Dunson and Dinse (2002).

Since each rat was examined for tumor at the death time, the only information available is

whether the rat had suffered adrenal tumor or lung tumor at that time, that is, the onset

time of adrenal tumor and lung tumor were either left-censored or right-censored by the

death time. Thus, this is bivariate current status data with univariate censoring. In Chapter

5, we study the dose effects and association of the two types of tumors simultaneously.

1.2 Nonparametric Maximum Likelihood Estimation

In the nonparametric setting, the primary interest is to estimate the survival function

or cumulative distribution function (CDF) F of the failure time event T , that is, to find

nonparametric maximum likelihood estimate (NPMLE) given observed data.
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1.2.1 Case 1 interval-censored or current status data

Let {(Xi, δi), i = 1, · · · , n} denote the observed data, where Xi is the censoring time

for subject i, and δi indicates by 1 if subject i has already experienced the failure at Xi. Let

X(i) be the ith order statistic of (X1, · · · , Xn) and let δ(i) denote the corresponding indicator,

i.e., if X(i) = Xj, then δ(i) = δj. Then the NPMLE F̂ is the maximizer of the following

log-likelihood function

l(x̃) =
n∑

i=1

{δ(i) log(xi) + (1− δ(i)) log(1− xi)}

under the condition 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. The NPMLE F̂ can be obtained using

either the self-consistency algorithm or the greatest convex minorant algorithm described in

Groeneboom and Wellner (1992) and Robertson et al. (1988). F̂ can also be represented by

the max-min formula:

F̂ (X(i)) = max
l≤i

min
k≥i

∑k
j=l δ(j)

k − l + 1
.

The distribution of F̂ was derived by Groeneboom and Wellner (1992) and F̂ was shown

to have n1/3- convergence rate instead of n1/2. However, for the smooth functional µ(F )

like mean µ(F ) =
∫

tdF (t), the NPMLE µ(F̂ ) converges to a normal distribution with n1/2

convergence rate under some extra conditions (Groeneboom and Wellner, 1992).

1.2.2 Case 2 interval-censored data

Suppose (Li, Ri] is the observed interval for subject i to contain Ti. Let {sj, j =

0, · · · ,m + 1} denote the distinct elements of { 0, {Li, Ri}n
i=1 , ∞} in ascending order. Let

αij be the indicator of the event sj ε (Li, Ri] and pj = F (sj)−F (sj−1), where j = 1, . . . , m+1.

Under this setting, to find the NPMLE of F is equivalent to maximizing the following

likelihood L(p) with respect to p with constraints
∑m+1

j=1 pj = 1, and pj ≥ 0, j = 1, · · · ,m +

6
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L(p) =
n∏

i=1

{F (Ri)− F (Li)} =
n∏

i=1

(
m+1∑
j=1

αijpj).

For case 2 interval-censored data, there is no close form for the NPMLE . Turnbull’s

estimator is commonly used in this situation and can be obtained through a self-consistency

algorithm (Turnbull,1976). Turnbull’s estimator is easy to implement, but has a slow con-

vergence rate. Another problem to note is that a self-consistent estimator may not be the

NPMLE. Gentleman and Geyer (1994) showed that the Kuhn-Tucker conditions are nec-

essary and sufficient conditions for a self-consistent estimator to be the NPMLE by using

standard convex optimization techniques. Another method to obtain the NPMLE is to ap-

ply the convex minorant algorithm introduced by Groeneboom and Wellner (1992), which

converges faster than the self-consistency algorithm. Since case 2 interval-censored data con-

tains more information about failure time than does case 1 data, one may expect that the

NPMLE has a faster convergence rate than n1/3 for case 2 interval-censored data. However,

the asymptotic distribution of the NPMLE is not established yet for case 2 interval-censored

data although its consistency is already known. It is conjectured that the NPMLE has a

convergence (n log n)1/3 when the two censoring times are bounded away (Groeneboom and

Wellner 1992; Geskus and Groenboom 1999).

1.3 Regression Models

In regression analysis, the prime interest is to estimate covariate effects such as treat-

ment, age, sex, income on the failure time. The baseline survival or hazard function is of

secondary interest or is treated as a nuisance parameter with infinite dimension. In the

following, we use Z to denote covariates and describe several regression models commonly

used in survival analysis.
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1.3.1 The proportional hazards model

The proportional hazards model, also termed as Cox model since it was first proposed

by Cox (1972), specifies that covariates have a multiplicative effect on the hazard function,

i.e.,

λ(t) = λ0(t) exp(β′Z),

where λ0(t) denotes the unknown baseline hazard function.

The proportional hazards model has been widely used in survival analysis mostly due to

the existence of the partial likelihood function for right-censored data under this model (Cox,

1975). Based on the partial likelihood function, one can estimate the regression parameters

without estimating the unspecified baseline hazard function. Anderson and Gill (1982) gave

a simple and elegant proof for the asymptotic properties of regression parameter estimators

using counting process and martingale theory.

Many methods have been proposed to analyze interval-censored data by using propor-

tional hazards model, including full likelihood approach and marginal likelihood approach.

Full likelihood approach requires maximization of the full likelihood over the regression

parameters and the baseline hazard or survival function simultaneously. Finkelstein (1986)

first studied this approach for discrete failure time. Huang (1996) also studied this approach

for current status data and showed the MLE of regression coefficients is consistent and effi-

cient and has asymptotic normal distribution with n1/2-convergence rate. Huang and Wellner

(1996) proved the same results for case 2 interval-censored data under some conditions.

One way to avoid estimating the baseline hazard function is to use the marginal likeli-

hood approach. This approach defines a marginal likelihood as the summation of the prob-

abilities of the rank of the T ′
is that are consistent with the observed interval-censored data

(Satten, 1996). However, this approach needs great computation effort because it does not

have a simple and manageable form. Moreover, little is known about the asymptotic prop-

erties of the estimators obtained. As an alternative, Satten et al. (1998) and Pan (2000)
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proposed imputation methods, in which right-censored data were generated and imputed

based on the observed interval-censored data.

Many other people studied the proportional hazards model for interval-censored data.

Among them, Kooperberg and Stone (1992) and Rosenberg (1995) gave spline-based estima-

tors. More recently, Bebchuk and Betensky (2000) proposed multiple imputation approach,

Betensky et al. (2002) explored a local likelihood method, and Cai and Betensky (2003)

considered piecewise linear penalized spline.

1.3.2 The additive hazards model

The additive hazards model specifies the hazard function as a sum of the baseline

hazard function and a regression function of covariates, i.e.,

λ(t|Z) = λ0(t) + β′Z,

where λ0(t) is a completely unspecified baseline hazard function.

The additive hazards model has drawn attention since Lin and Ying (1994) proposed

an easy-implemented procedure for right-censored data, in which the regression coefficient

estimator has a close form.

There are a few papers discussing the additive hazards model for current status data.

Lin et al. (1998) proposed an easy procedure to estimate the regression parameters without

estimating any nuisance parameters, Martinussen and Scheike (2002) explored efficient esti-

mation under the same setting, and Zhang et al. (2005) studied informative censoring using

the additive hazards model.

Both Lin et al. (1998) and Zhang et al. (2005) assumed that the failure time follows an

additive model and the censoring time follows a proportional hazards model. The advantage

of this setting is that there exists a counting process based on the failure time and the

censoring time that has an intensity function of multiplicative form, thus partial likelihood
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score function can be used directly as with right-censored data.

We generalize this setting to case 2 interval-censored data by assuming that both of

the censoring times follow the proportional hazards model in Chapter 4. In our proposed

method, there is no need estimating any nuisance parameters and asymptotic properties are

established.

1.3.3 The accelerated failure time model

The accelerated failure time model is also widely used in survival analysis. This model

relates the covariates linearly to the logarithm of the survival time T with the following form:

log (T ) = β′Z + ε,

where the distribution of ε is completely unknown.

There are many papers in literature analyzing right-censored data with the accelerated

failure time model, but not many for interval-censored data. For interval-censored data,

Rabinowitz et al. (1995) proposed a class of score statistics and Betensky et al. (2001)

proposed an estimating equation by treating the examination times from the same subject

as if they were from different subjects. Both methods need great computation effort in the

estimation procedure since estimation of the distribution of ε is needed. Huang and Wellner

(1996) discussed this model for both current status data and case 2 interval-censored data.

More recently, Tian and Cai (2004) proposed a MCMC based approach with accelerated

failure time model in a technique report.

1.3.4 The proportional odds model

An important alternative to the proportional hazards model is the proportional odds

model, which assumes that

log{F (t|Z)/S(t|Z)} = λ0(t) + β′Z
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where F (t|Z) and S(t|Z) are the distribution and survival functions of failure time T given

covariate Z, respectively, and λ0(t) is the baseline function referred to as the baseline log

odds.

Rossini and Tsiatis (1996) studied the current status data with the proportional odds

model by approximating the baseline log-odds function with a step function. For interval-

censored data, Huang and Rossini (1997) studied sieve estimation and showed the estimate

of regression parameter converges at n1/2 rate, and Rabinowitz et al. (2000) considered con-

ditional logistic regression. For the asymptotic properties of regression coefficient estimators,

see the review paper by Huang and Wellner (1996). Zhang, et al. (2005) considered a class

of linear transformation models that included the proportional odds model as a special case

and proposed a method that does not need to estimate the baseline log odds λ0(t).

1.4 Statistical Analysis of Multivariate Interval-censored Data

Multivariate failure time data commonly occur in medical studies, in which there are

at least two failure time events of interest and these events are correlated. Multivariate

interval-censored failure time data can occur when the outcomes are not directly observable

but are detected from periodic clinical examination or laboratory tests, the occurrences of

bacterial and viral infections.

The ACTG 181 study mentioned above provides an example of bivariate interval-

censored data, in which blood shedding and urine shedding are both of interest. In this

example, two questions are usually of interest: (1) Do covariates have significant effects on

occurrences of the blood or urine shedding? (2) Are the two events correlated? If so, in what

degree are these two failure time events correlated? To answer the first question, we need to

perform regression analysis, while for the second question, we need to test or measure the

association of dependence in term of parameter such as Pearson’s correlation ρ and Kendall’s

τ , among others.
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1.4.1 Regression analysis

Two approaches are commonly used in modelling multivariate data: marginal approach

and random effect models. In the literature, both approaches have been applied to the

proportional hazards model. In the following, we will discuss these two approaches in terms

of the proportional hazards model.

Marginal approach

The marginal proportional hazards model approach assumes that each of the correlated

failure times follows a proportional hazards model. It deals with the marginal distributions

directly and ignores the dependence structure between the failure times completely. For

regression analysis, marginal approach focuses on the robust estimation of regression coeffi-

cients.

Marginal proportional hazards model approach has been widely used for regression

analysis of correlated failure time data. For example, Wei et al. (1989) first discussed

this method for correlated right-censored failure time and proposed the partial likelihood

estimators for regression parameters by using a working independence assumption. Cai

and Prentice (1995) investigated the same idea and developed some estimating equation

methods for inference about regression parameters. More recently, Goggins and Finkelstein

(2000) and Kim and Xue (2002) considered the maximum likelihood approach for regression

analysis of multivariate interval-censored failure time data. Bogaerts et al. (2002) applied

generalized estimating equation approach with accelerated failure time model to multivariate

interval-censored data.

Random effect model approach

Random effect model approach assumes conditional independence between different

failure times by introducing a common latent random variable to the marginal hazard func-

tions. The latent random variable is also called frailty, which reflects the dependence of

12



failure times. Thus, we can study the dependence through the estimation of the frailty.

Random effect models have been widely applied to analyze multivariate data. Among

others, Yue and Chan (1997) proposed a dynamic frailty model with gamma frailty for serially

correlated right-censored data. Huang and Wolfe (2002) studied informative censoring for

clustered right-censored data by frailty models.

1.4.2 Estimation of association parameter

When the estimation of association is of prime interest, we focus on estimating associ-

ation parameter and treat marginal distributions as nuisance functions. Thus, parametric,

semiparametric, and even nonparametric method can be used to estimate the marginal dis-

tributions if needed.

The so-called two-stage procedure is as follows: first, estimate the marginal distri-

butions or survival functions; secondly, estimate the association parameter by maximizing

the pseudo-likelihood obtained by plugging in the estimated marginal survival functions.

Shih and Louis (1995) first studied this two-stage procedure to estimate the association pa-

rameter for right-censored data. Wang and Ding (2000) consider the same procedure for

current status data. In Chapter 4, we generalize this procedure to interval-censored data

and asymptotic properties of estimated parameters are established.

There are many other methods studying the dependence of bivariate survival data.

Among others, Shih and Louis (1996) proposed two test statistics based on martingale resid-

uals for testing the independence for bivariate right-censored data. Hsu and Prentice (1996)

studied the dependency of bivariate right-censord failure times with the correlation coef-

ficient between cumulative hazard functions. Betensky and Finkelstein (1999) studied an

extension of Kendall’s coefficient of concordance and applied it to interval-censored data.

In Chapter 5, we estimate the association parameter for bivariate current status data

under univariate censoring when covariates exist. We proposed to estimate regression coef-

ficient and association parameter simultaneously and the estimates are efficient.
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1.5 Outline

The reminder of this thesis is organized as follows. In Chapter 2, we propose a goodness-

of-fit test for marginal Cox model for correlated interval-censored failure time data. We first

review the marginal Cox model approach for interval-censored data, and then construct

a goodness-of-fit test based on a discrete score process. Simulation results show that the

proposed test works well for finite sample sizes. The proposed method is illustrated by

ACTG 181 data mentioned before.

Chapter 3 considers estimation of the association of bivariate interval-censored failure

time data. We assume that the joint survival function of the two variables follows a Copula

model. A two-stage estimation procedure is proposed to estimate the association parameter

and the asymptotic properties of the proposed estimator are established. Simulations are

conducted to assess the finite sample properties of the proposed approach. The ACTG 181

data are analyzed with the proposed method.

Chapter 4 discusses regression analysis of interval-censored data using the additive

hazards model. In this chapter, we develop some estimating equations for regression param-

eters without involving any baseline hazard functions and the large sample properties of the

proposed estimators are established. Simulations results suggest that the proposed approach

works well for finite sample size. Breast cancer data are analyzed to illustrate the proposed

method.

In Chapter 5, we study the efficient estimation of regression parameters and association

parameter simultaneously for bivariate current status data with univariate censoring. In

the estimation procedure, we use the sieve method to approximate the infinite dimensional

baseline function by a step function with finite number of jump points. Full likelihood

method is used for efficiency comparison. The tumor data conducted by National Toxicology

Program are analyzed to illustrate our method.

In Chapter 6, several directions for future research are addressed.
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Chapter 2

A Goodness-of-fit Test for the Marginal Cox Model for

Correlated Interval-censored Failure Time Data

2.1 Introduction

This chapter discusses regression analysis of correlated interval-censored failure time

data with the most commonly used approach in this situation: marginal proportional haz-

ards model approach. We propose a goodness-of-fit test to assess model adequacy for this

approach.

As the most commonly used model for multivariate regression analysis, marginal Cox

model has been applied to interval-censored data. Among others, Goggins and Finkelstein

(2000) and Kim and Xue (2002) considered the maximum likelihood approach for regression

analysis of correlated interval-censored failure time data.

It is well-known that the assessment of the adequacy of an assumed model is often crit-

ical for the validity of statistical inference. To check the appropriateness of the Cox model,

a number of methods have been proposed for univariate and correlated right-censored fail-

ure time data. For example, Wei (1984) discussed the testing of the two-sample continuous

Cox model for univariate right-censored failure time data and proposed to base the test

on the score process given by the partial likelihood. Klein and Moeschberger (2003) gave

relatively complete discussion about commonly used goodness-of-fit test procedures for uni-

variate right-censored data. Spiekerman and Lin (1996) discussed the assessment of the
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marginal Cox model for correlated right-censored data and developed a class of numerical

and graphical procedures using martingale-based residuals. However, it seems that there

is no approach available for correlated interval-censored failure time data. Note that be-

cause of the difference between censoring structures, the development of both inference and

model-checking procedures for correlated interval-censored data is much more difficult than

for correlated right-censored data.

The remainder of this chapter is organized as follows. We begin in Section 2.2 with

introducing the notation and then discuss the marginal Cox model approach for correlated

interval-censored failure time data. Section 2.3 considers the goodness-of-fit test of the

marginal Cox model and a test procedure is presented. The proposed procedure consists of

constructing a score process (Wei, 1984) and approximating the null distribution of the test

statistic through simulation. Section 2.4 presents some numerical results obtained from a

simulation study and by applying the proposed methodology to the set of correlated AIDS

interval-censored data discussed in Chapter 1. Some concluding remarks are given in Section

2.5. In the following, as Goggins and Finkelstein (2000) and Kim and Xue (2002), we will

focus on the discrete marginal Cox model.

2.2 The Marginal Cox Model

Consider a survival study that consists of N independent subjects and in which each

subject experiences K correlated events or types of failures. Let Tk denote the time to

the kth event and Z a vector of covariates that may affect Tk, k = 1, ..., K. Also let

0 = s0 < s1 < ... < sm < sm+1 = ∞ denote all possible values that the Tk’s take.

Sometimes it may be more reasonable to assume that the sj’s are all possible time points at

which subjects are observed. This is the situation for most of interval-censored data arising

from periodic follow-up studies and in this case, the sj’s could be days, months or years,

while Tk could be a continuous or discrete variable.
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Suppose that the failure times Tk’s follow the discrete marginal Cox model given by

Sjk(Z) = Pr{Tk > sj|Z} = (λ1 · · · λj)
exp(β′Z) (2.1)

for the marginal survival function of Tk given Z (Wei et al., 1989; Goggins and Finkelstein,

2000). In the above, β is the p-dimensional vector of regression parameters and λj =

Pr{Tk > sj|Tk > sj−1, Z = 0}, k = 1, ..., K, j = 1, ..., m. Note that model (2.1) assumes

that the K events share the same baseline survival function. An alternative is to assume

that different types of failures have different baseline survival functions. As pointed out

in Spiekerman and Lin (1996), from the model-checking point of view, the development of

a goodness-of-fit procedure for model (2.1) is more delicate and interesting than for the

alternative model and the resultant methodologies are similar for both models. Thus we will

focus on model (2.1) in the following.

Suppose that one observes only interval-censored failure time data given by {(Aik, Zi),

i = 1, ..., N, k = 1, ..., K}, where Aik = [Lik, Rik] is the interval within which the kth failure

of the ith subject is observed to occur and Zi denotes the vector of covariates associated

with subject i. Assume that {Lik , Rik} ⊆ {sj}m+1
j=0 and define αijk = 1 if Aik contains sj

and αijk = 0 otherwise, j = 1, ..., m+1, k = 1, ..., K, i = 1, ..., N . Let γj = log(− log λj),

γ′ = (γ1, ..., γm) and θ′ = (β′, γ′). Then the log-likelihood contribution from the kth type

of failure of the ith subject is given by

lik(θ) = log
m+1∑
j=1

αjik

(
[1− exp{− exp(β′Zi + γj)}]

j−1∏

l=1

exp{− exp(β′Zi + γl)}
)

, (2.2)

where γm+1 = ∞. Note that the reparameterization by the γj’s removes the range restriction

on the λj’s.

For inference about θ, both Goggins and Finkelstein (2000) and Kim and Xue (2002)
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suggested to base the log-likelihood function

l(θ) =
N∑

i=1

K∑

k=1

lik(θ)

obtained under the working independence assumption that the K types of failures are in-

dependent even it is not true in reality. The point estimate of θ is obtained by maximizing

this log-likelihood and the covariance matrix is adjusted by taking into account the corre-

lation later. The same idea was used by, among others, Wei et al. (1989) for the anal-

ysis of multivariate right-censored data. Let θ̂ denote the solution to ∂l(θ)/∂θ = 0 and

I(θ) = −N−1∂2l(θ)/∂θ∂θ′. Then it can be shown (Kim and Xue, 2002) that N1/2(θ̂ − θ)

has an asymptotic normal distribution with mean zero and covariance matrix that can be

consistently estimated by I−1(θ̂)D(θ̂)I−1(θ̂), where

D(θ) =
1

N

N∑
i=1

K∑

k=1

K∑

l=1

∂lik(θ)

∂θ

∂lil(θ)

∂θ′
. (2.3)

In the next section, we will consider the assessment of the marginal model (2.1).

2.3 A Goodness-of-fit Test

To develop a test procedure for checking the adequacy of model (2.1), following the idea

discussed in Wei (1984), we will construct a score process. For this purpose, we need to define

the observed data if all subjects are observed only up to time sr, r = 1, ..., m. One natural

way is to define the observed data up to time sr by {(A(r)
ik , Zi), i = 1, ..., N, k = 1, ..., K},

where

A
(r)
ik =





[Lik, Rik] if Rik ≤ sr,

[Lik,∞) if Lik ≤ sr < Rik,

[sr,∞) if Lik > sr ,

(2.4)

which is a simple generalization of the definition that one would use for continuous right-

censored data.
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The above definition, however, does not seem to make use of the discrete and finite

nature of the problem. Corresponding to this, one could alternatively define the observed

data up to sr as {(A(r)
ik , Zi), i = 1, ..., N, k = 1, ..., K}, where for Rik ≤ sr, A

(r)
ik is the same as

in (2.4) and for Lik ≤ sr < Rik, A
(r)
ik = [Lik, sr] or [sr, τ) determined by a random number

from the Bernoulli distribution with the probabilities proportional to the lengths of the two

intervals, where τ denotes the largest follow-up time. This alternative definition is used in

the following numerical studies and more comments on this are given in Section 2.5.

Let l
(r)
ik (θ) denote the log-likelihood contribution given in (2.2) with replacing Aik by

A
(r)
ik and define

Sr(θ) = N−1/2

N∑
i=1

K∑

k=1

∂l
(r)
ik (θ)

∂β

and

S(θ) = (S ′1(θ), ..., S
′
m−1(θ))

′ .

Note that Sr(θ) can be viewed as the score function for β at time sr under the working

independence assumption and its distribution can be asymptotically approximated by a

normal distribution with mean zero if model (2.1) is correct. Thus it is natural to base the

goodness-of-fit test on S(θ̂) with large values of ‖S(θ̂)‖ indicating the invalidity of model

(2.1). Also it will be seen below that S(θ̂) is asymptotically equivalent to a score test statistic

for the hypothesis that model (2.1) is a special case of the Cox model with time-varying

coefficients.

To investigate the distribution of S(θ̂), using the Taylor series expansion twice, we

obtain

N1/2(θ̂ − θ) = I−1(θ)

{
N−1/2 ∂l(θ)

∂θ

}
+ op(1)

and

Sr(θ̂) = Sr(θ) − N−1/2 I1r(θ)I
−1(θ)

∂l(θ)

∂θ
+ op(1) ,
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where

I1r(θ) = −N−1

N∑
i=1

K∑

k=1

∂2l
(r)
ik (θ)

∂β∂θ′
, r = 1, ..., m− 1 .

This together with the multivariate central limit theorem suggests that the distribution of

S(θ̂) can be approximated by a normal distribution with mean zero and covariance matrix

that can be consistently estimated by

B̂ =
1

N

N∑
i=1

Bi(θ̂)B
′
i(θ̂) −

{
1

N

N∑
i=1

Bi(θ̂)

}
×

{
1

N

N∑
i=1

Bi(θ̂)

}′

,

where

Bi(θ) =




∑K
k=1

{
∂l

(1)
ik (θ)

∂β
− I11(θ)I

−1(θ)∂lik(θ)
∂θ

}

.

.

.
∑K

k=1

{
∂l

(m−1)
ik (θ)

∂β
− I1,m−1(θ)I

−1(θ)∂lik(θ)
∂θ

}




.

Hence it is natural to assess the adequacy of model (2.1) using the statistic

U = S ′(θ̂) B̂−1 S(θ̂)

based on the χ2 distribution with the degrees of freedom p(m− 1).

Note that the statistic U involves the inverse of B̂, the determination of which can be

difficult due to its high dimension. To overcome this, we propose to use the standardized

S(θ̂). Specifically, let v be the vector consisting of the square roots of the first p diagonal

elements of D(θ̂) defined in (2.3), the estimates of the asymptotic variances of the components

of Sm(θ). Also let V̂ be the p(m− 1)× p(m− 1) diagonal matrix with the diagonal elements

given by repeating the vector v m− 1 times. Then one can carry out the goodness-of-fit test

for model (2.1) by using the statistic

W = ‖V̂ −1S(θ̂)‖ =
{

[V̂ −1S(θ̂)]′[V̂ −1S(θ̂)]
}1/2

,

20



the Euclidean norm of the standardized S(θ̂). By the law of large numbers, the distribution

of W can be approximated by ‖N(0, V −1BV −1)‖, where V and B are the limits of V̂ and

B̂, respectively.

To implement the goodness-of-fit test based on W , one needs to know the properties

of ‖N(0, V̂ −1B̂V̂ −1)‖ under model (2.1). To this end, following the idea used in Spiekerman

and Lin (1996) among others, we propose to approximate W through simulation as follows.

Let (G1, ..., GN) be independent standard normal random variables independent of observed

data and define

S̃(θ̂) = N−1/2

N∑
i=1

Gi

{
Bi(θ̂)−N−1

N∑
i=1

Bi(θ̂)

}
.

Then it can be shown by following Spiekerman and Lin (1996) that the distribution of

‖V̂ −1S̃(θ̂)‖ is given by ‖N(0, V̂ −1B̂V̂ −1)‖ conditional on the observed data. This suggests

that the null distribution of W or ‖N(0, V̂ −1B̂V̂ −1)‖ can be approximated by the sampling

distribution of ‖V̂ −1S̃(θ̂)‖. Specifically, let w0 denote the observed value of W and M an

integer. To determine the p-value for testing the adequacy of model (2.1),

Step 1. For each j (1 ≤ j ≤ M), generate an independent sample (G
(j)
1 , ..., G

(j)
N ) of size N

from the standard normal distribution.

Step 2. Calculate S̃(j) = S̃(θ̂) with replacing (G1, ..., GN) by (G
(j)
1 , ..., G

(j)
N ), j = 1, ..., M .

Step 3. Calculate the p-value as
(∑M

j=1 I( ‖V̂ −1 S̃(j)‖ ≥ w0) + 1
)

/(M + 1).

2.4 Numerical Results

First we report some results obtained from a simulation study with the set-up similar to

the AIDS example discussed before for evaluating the proposed methodology. In the study,

we assumed that m = 11 and sj = j and generated Z from a Bernoulli distribution with

success probability 0.5. For the generation of failure times, we used the Gumbel’s bivariate
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exponential distribution given by

F (t1, t2) = F1(t1) F2(t2) [ 1 + c {1 − F1(t1)} {1 − F2(t2)} ] ,

for the joint distribution of (T1, T2), where F1(t1) and F2(t2) denote the marginal distributions

of T1 and T2, respectively, and c is a known constant. Under the above model, the correlation

of the two failure times is c /4. For censoring intervals, to mimic the common structure of

follow-up studies, it was assumed that every subject was supposed to be observed at sj with

the probability of missing an observation being φ = 0.2. The end points Lik and Rik of

censoring intervals were then defined as the last real observation time point before Tik and

the first real observation time point after Tik, respectively, k = 1, 2. The results given below

are based on N = 200 and M = 1000 with 1000 replications.

For assessing the size of the presented procedure based on statistic W , we used the

exponential distribution with the hazard function λ0 exp(βZ) for both F1 and F2, where

λ0 = 0.1. Table 2.1 presents the empirical sizes obtained from simulated interval-censored

failure time data for the situations where β = 0, 0.1, 0.25 or 0.5 and c = 0 or 1, giving

the correlation of T1 and T2 being 0 or 0.25, respectively. The results indicate that the

procedure seems to have the right size. To investigate the power of the procedure, we

again took F1 and F2 to the exponential distribution, but with different hazard functions.

Specifically, we considered three nonproportional hazard functions: λ1(t|Z) = λ0 + β Z,

λ2(t|Z) = λ0 t + β Z and λ3(t|Z) = λ0 exp(βZ t). Table 2.2 gives the estimated power under

the three hazard functions and for β = 0.1, 0.25 or 0.5, respectively. It can be seen from

Table 2.2 that the procedure possesses reasonably good power for the situations considered

and has greater power under λ3 than λ1 and λ2 as expected.

We plot the standardized statistic process Sr to compare its behavior under null hy-

pothesis and alternative hypothesis. Figure 2.1 shows randomly selected 50 standardized

test processes under null hypothesis (top one) and alternative hypothesis (bottom one). In
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both cases, the true value β̂ is 0.25 and the alternative hypothesis in Figure 2.1 has hazard

function λ2(t|Z) = λ0 t + β Z. As we can see here, the test processes are centered around

0 under null hypothesis, while they deviate 0 clearly under alternative hypothesis. This

difference contributes to the power of the proposed test. Another point is that under null

hypothesis the standardized process tends to have a smaller variance as r increases. This

pattern is more clear when β is larger.

Now we apply the proposed goodness-of-fit test to the set of bivariate interval-censored

AIDS data mentioned above and discussed in Finkelstein et al. (2002) and Goggins and

Finkelstein (2000). The data set considered here consists of 204 patients whose CMV shed-

ding times in blood (T1) and urine (T2) are left-, right-, or interval-censored with month as

the time unit. One of the objectives of the study was to determine whether the stage of

HIV disease characterized by the CD4 count was predictive of an increased hazard for CMV

shedding in either the blood or urine.

Following Goggins and Finkelstein (2000), define the covariate Z to be 1 if the baseline

CD4 was less than 75 (in late stage of the HIV disease) or 0 otherwise. To study the

covariate effect on CMV shedding in either the blood or urine, Goggins and Finkelstein

(2000) suggested to use the marginal Cox model approach. Corresponding to this, we first

considered the marginal Cox model (2.1). To check its appropriateness, we applied the

goodness-of-fit test procedure based on W given in the previous section and obtained a p-

value of almost zero. This indicates that model (2.1) may not be appropriate for the problem.

To see this graphically, Figure 2.2 presents the separate nonparametric maximum likelihood

estimators (NON) of the marginal survival functions based on univariate interval-censored

data for CMV shedding in urine for patients with Z = 1 and 0, respectively, along with the

maximum likelihood estimators (Cox) of the same functions given by l(θ). It suggests that

model (2.1) does not seem to fit the data well. The similar plots were obtained for CMV

shedding in blood.
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Note that model (2.1) assumes that CMV sheddings in the blood and urine have the

same baseline survival function. By relaxing this to allow different baseline survival functions,

the application of the proposed goodness-of-fit test procedure based on W gave a p-value of

0.169, indicating that the marginal Cox model with different baseline hazard functions for

blood and urine is reasonable. Corresponding to Figure 2.1, we obtained the same estimators

under the new marginal model and presented the estimators in Figure 2.3, which suggests

that now the fit is good. Under the new model, we obtained β̂ = 0.9503 with the estimated

standard error being 0.1932. This suggests that the patients with lower baseline CD4 counts

had higher risk of CMV shedding in the blood or urine than those with higher baseline CD4

counts. The conclusion is similar to that given in Goggins and Finkelstein (2000).

2.5 Concluding Remarks

A goodness-of-fit test procedure has been presented for assessing the validity of the

marginal Cox model for correlated interval-censored failure time data. The basic idea behind

the approach is the construction of a discrete score process and the simulation results suggest

that the method works reasonably well for the situations considered. Note that for right-

censored failure time data, a common approach for checking the Cox model is to employ

the martingale-based residuals. In the presence of interval-censoring, however, the counting

process formulation does not seem to be helpful anymore and it is not clear how the residual-

based approaches for right-censored data can be generalized to interval-censored data.

An important step in the development of the presented test procedure is the definition

of the observed interval-censored data up to a given time point. In addition to the two ap-

proaches discussed in Section 2.3, we also investigated several other methods and performed

simulation studies on them. Simulation results suggest that the second method given in

Section 2.3 and used in the numerical study seems always to perform better than others. A

possible reason for this is that it takes advantage of the finite interval structure of the data.
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It would be helpful to conduct a thorough and theoretical study on this. Another issue that

needs to be investigated rigorously is the asymptotic properties of the proposed method.

To look at the statistic S(θ̂) from another point of view, assume that the underlying

survival times Tk’s are continuous with their hazard functions given by the following more

general marginal Cox model

λk(t|Zk) = λ0(t) exp{β(t)′Zk} (2.5)

instead of model (2.1), k = 1, ..., K. In the above, as β, β(t) is the p-dimensional vec-

tor of regression parameters, but unlike β, it may be time-dependent. Model (2.1) can

be obtained from model (2.5) if each subject is observed only at the sj’s and we define

λj = exp{− ∫ sj

sj−1
λ0(t)dt}, j = 1, ..., m. Assume that β(t) is constant within each interval

(sj−1, sj] and let βj denote the value of β(t) within (sj−1, sj]. Then the checking of model

(2.1) is equivalent to testing β1 = ... = βm = β under model (2.5), which can be naturally

carried out based on the partial score function

(
S ′1(θ̂), {S2(θ̂)− S1(θ̂)}′, ..., {Sm(θ̂)− Sm−1(θ̂)}′

)′

obtained under the working independence assumption and evaluated at γ = γ̂ and β1 =

... = βm = β̂. It is easy to see that S(θ̂) is asymptotically equivalent to the above score

function since Sm(θ̂) = 0.

25



Chapter 3

Estimation of the Association Parameter for Bivariate

Interval-censored Failure Time Data

3.1 Introduction

In this chapter, we study estimation of the association parameter for bivariate interval-

censored data. Estimation of the dependence or association of correlated failure time events

is a very important topic in multivariate data analysis. Many methods have been proposed

to deal with this problem (Shih and Louis, 1995; Hsu and Prentice, 1996; Wang and Ding,

2000; Betensky and Finkelstein 1999). Among them, a two-stage procedure was proposed to

estimate association parameter for bivariate right-censored and current status data by Shih

and Louis (1995) and Wang and Ding (2000), respectively. In this chapter, we generalize

their ideas and propose a two-stage estimation procedure for the same purpose for bivariate

interval-censored data. The asymptotic properties of the proposed estimator are established

and the simulation results suggest that the proposed estimation procedure works well for

practical situations.

In the following, we study the estimation of the association of two correlated continuous

survival variables based on interval-censored data. Let T1 and T2 be two failure times of

interest with respective marginal survival functions S1(t) and S2(t) and joint survival function

S(t1, t2) = P (T1 > t1, T2 > t2). To estimate the association between T1 and T2, as most
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authors, we will focus on the situation where (T1, T2) follow a copula model given by

S(t1, t2) = Cα(S1(t1), S2(t2)) , (3.1)

where Cα is a genuine survival function on the unit square and α ∈ R is a global association

parameter. One attractive feature of model (3.1) is its modeling flexibility since it includes

as special cases many useful bivariate failure time models such as the Archimedean copula

family

Cα(u, v) = φα{φ−1
α (u) + φ−1

α (v)} , 0 ≤ u , v ≤ 1 ,

where 0 ≤ φα ≤ 1, φα(0) = 1, φ′α < 0, φ′′α > 0. Here φ′α(u) = dφα(u)/du and

φ′′α(u) = dφ′α(u)/du. Taking φα(u) = (1 + u)1/(1−α), the Laplace transformation of a gamma

distribution, we have

Cα(u, v) = (u1−α + v1−α − 1)1/(1−α) , α > 1 ,

which is commonly referred to as the Clayton family (Clayton, 1978). Another attractive

feature of copula models is that marginal distributions do not depend on the choice of the

association structure and thus one can model the marginal distributions and the association

separately.

Another parameter measuring global association is Kendall’s τ , which is defined as

τ = Pr{ (T1i − T1j)(T2i − T2j) > 0} − Pr{ (T1i − T1j)(T2i − T2j) < 0}

for i.i.d. replicates (T1i, T2i) and (T1j, T2j) of (T1, T2). When the marginal distributions are

uniform, τ can be evaluated as follows:

τ = 4

∫ 1

0

∫ 1

0

S(u, v) f(u, v) du dv − 1 ,

where S(· , ·) and f(· , ·) are the joint survival and density function, respectively, and S(· , ·)
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is given in (3.1). When the marginal distributions are not uniform, the same formula holds

with integration range covering the full distribution. Kendall’s τ has a nice property that it

is unchanged by both linear and nonlinear increasing transformation (Hougaard, 2000).

Both α and τ measure the global association. Under the Clayton model, α is also the

ratio of the hazard function of T1 = t1 given T2 = t2 to that given T2 ≥ t2 or that of T2 = t2

given T1 = t1 against given T1 ≥ t1 (Clayton, 1978). The relationship between α and τ is

summarized as τ = (α− 1) / (α + 1) (Genest and MacKay, 1986; Genest and Rivest, 1993).

Many authors have considered the copula model for bivariate distributions (Clayton,

1978; Genest and Rivest, 1993; Hougaard, 1986). In particular, Shih and Louis (1995) and

Wang and Ding (2000) discussed estimation of the association parameter under the model

for bivariate right-censored and current status data, respectively. It does not seem, however,

that there exists research on the association parameter for bivariate interval-censored data

except Betensky and Finkelstein (1999), who considered estimation of the Kendall’s τ by

using the multiple imputation approach. However, they did not give a theoretical justification

for their method.

The remainder of this chapter is organized as follows. In Section 3.2, we will describe

the structure of observed data and some assumptions. A two-stage inference procedure for

the association parameter α is presented in Section 3.3 and the asymptotic properties of

the proposed estimate are established. Section 3.4 discusses estimation of the asymptotic

variance of the proposed estimate. Due to the significant difference between censoring struc-

tures, the derived asymptotic variance estimate does not have the simple form as that for

right-censored or current status data . To address this problem, a bootstrap procedure for

variance estimation of the proposed point estimate is also presented. In Section 3.5, we

report some simulation results for the assessment of the proposed method in addition to

applying the method to the ACTG 181 data. Some concluding remarks are given in Section

3.6.
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3.2 Data Structure and Assumptions

Consider a survival study involving two survival variables T1 and T2 of interest. Suppose

that (T1, T2) are not exactly observable except for knowing that they belong to some intervals

given by

{U (1), V (1), ∆
(1)
1 = I(T1 ≤ U (1)), ∆

(1)
2 = I(U (1) < T1 ≤ V (1))}

and

{U (2), V (2), ∆
(2)
1 = I(T2 ≤ U (2)), ∆

(2)
2 = I(U (2) < T2 ≤ V (2))} ,

where (U (1), V (1)) and (U (2), V (2)) are random monitoring times for T1 and T2, respec-

tively, and I(.) is the indicator function. We assume that (T1, T2) are independent of

(U (1), V (1), U (2), V (2)) but (U (1), V (1)) and (U (2), V (2)) could be dependent. Let H(x ) de-

note the joint distribution function of (U (1), V (1), U (2), V (2)) and Gα(x , δ) the distribution

function of (U (1), V (1), U (2), V (2), ∆), where x = (x1, x2, x3, x4), δ = (δ
(1)
1 , δ

(1)
2 , δ

(2)
1 , δ

(2)
2 ) and

∆ = (∆
(1)
1 , ∆

(1)
2 , ∆

(2)
1 , ∆

(2)
2 ). The density or probability functions of (U (1), V (1), U (2), V (2))

and (U (1), V (1), U (2), V (2), ∆) will be denoted by h(x ) and gα(x , δ).

Suppose that observed data are n i.i.d. replicates of (U (1), V (1), U (2), V (2), ∆) and given

by

{U (1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i, i = 1, ..., n} ,

where ∆i = (∆
(1)
1i , ∆

(1)
2i , ∆

(2)
1i , ∆

(2)
2i ). Then under model (3.1), the log likelihood function is

given by

log L(α, S1, S2) =
n∑

i=1

l(α, S1, S2, U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i) , (3.2)

where

l(α, S1, S2,x , δ) = δ
(1)
1 δ

(2)
1 log S11(α,x ) + δ

(1)
1 δ

(2)
2 log S12(α,x )

+δ
(1)
1 (1− δ

(2)
1 − δ

(2)
2 ) log S13(α,x ) + δ

(1)
2 δ

(2)
1 log S21(α,x )

+δ
(1)
2 δ

(2)
2 log S22(α,x ) + δ

(1)
2 (1− δ

(2)
1 − δ

(2)
2 ) log S23(α,x )
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+(1− δ
(1)
1 − δ

(1)
2 )δ

(2)
1 log S31(α,x ) + (1− δ

(1)
1 − δ

(1)
2 )δ

(2)
2 log S32(α,x )

+(1− δ
(1)
1 − δ

(1)
2 )(1− δ

(2)
1 − δ

(2)
2 ) log S33(α,x ) + log h(x )

and

S11(α,x ) = P (T1 ≤ x1, T2 ≤ x3) = 1− S1(x1)− S2(x3) + Cα(S1(x1), S2(x3)) ,

S12(α,x ) = P (T1 ≤ x1, x3 < T2 ≤ x4) = S2(x3)− S2(x4) + Cα(S1(x1), S2(x4))

−Cα(S1(x1), S2(x3)) ,

S13(α,x ) = P (T1 ≤ x1, T2 > x4) = S2(x4)− Cα(S1(x1), S2(x4)) ,

S21(α,x ) = P (x1 < T1 ≤ x2, T2 ≤ x3) = S1(x1)− S1(x2)) + Cα(S1(x2), S2(x3))

−Cα(S1(x1), S2(x3)) ,

S22(α,x ) = P (x1 < T1 ≤ x2, x3 < T2 ≤ x4) = Cα(S1(x1), S2(x3))− Cα(S1(x1), S2(x4))

−Cα(S1(x2), S2(x3)) + Cα(S1(x2), S2(x4)) ,

S23(α,x ) = P (x1 < T1 ≤ x2, T2 > x4) = Cα(S1(x1), S2(x4))− Cα(S1(x2), S2(x4)) ,

S31(α,x ) = P (T1 > x2, T2 ≤ x3) = S1(x2)− Cα(S1(x2), S2(x3)) ,

S32(α,x ) = P (T1 > x2, x3 < T2 ≤ x4) = Cα(S1(x2), S2(x3))− Cα(S1(x2), S2(x4)) ,

S33(α,x ) = P (T1 > x2, T2 > x4) = Cα(S1(x2), S2(x4)) .

When δ
(1)
2 = 0 and δ

(2)
2 = 0, log L(α, S1, S2) reduces to the log-likelihood for bivariate current

status data (Wang and Ding, 2000). In the next section, we will discuss estimation of the

association parameter α.
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3.3 Estimation of the Association Parameter

To estimate α, note that if the marginal survival functions S1 and S2 are known,

a natural estimator is then given by the maximum likelihood estimator from (3.2). This

naturally leads to the following two-stage procedure: first estimate S1 and S2 and then

estimate α by maximizing the pseudo log likelihood given by log L(α, S1, S2) with S1 and S2

replaced by their estimates. The same idea was used by Shih and Louis (1995) and Wang

and Ding (2000) among others.

In the first stage, we propose to consider the univariate sample

{U (r)
i , V

(r)
i , ∆

(r)
1i = I(Tri ≤ U

(r)
i ), ∆

(r)
2i = I(U

(r)
i < Tri ≤ V

(r)
i ), i = 1, ..., n}

and to estimate Sr by the nonparametric maximum likelihood estimator Ŝr given by maxi-

mizing the univariate interval-censored data likelihood

Lr =
n∏

i=1

(1− Sr(U
(r)
i ))∆

(r)
1i (Sr(U

(r)
i )− Sr(V

(r)
i ))∆

(r)
2i Sr(V

(r)
i )1−∆

(r)
1i −∆

(r)
2i

given {(U (r)
i , V

(r)
i ) , i = 1, ..., n}, r = 1, 2. Several algorithms for maximizing Lr have been

proposed including the self-consistency and iterative convex minorant algorithms given in

Turnbull (1976) and Groeneboom and Wellner (1992), respectively. Given Ŝ1 and Ŝ2, the

association parameter α can be estimated by the solution α̂ to the pseudo score equation

U(α, Ŝ1, Ŝ2, Ĝn) = 0, where

U(α, Ŝ1, Ŝ2, Ĝn) =
1

n

∂

∂α
log L(α, Ŝ1, Ŝ2) =

∫
∂

∂α
l(α, Ŝ1, Ŝ2,x , δ)dGn(x , δ) (3.3)

with Gn(x , δ) denoting the empirical estimator of Gα(x , δ). It can be easily shown that α̂ is

consistent and the above equation can be solved by a standard root finding method or the

Newton-Raphson algorithm.

The asymptotic distribution of α̂ depends on some regularity conditions on the im-
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posed copula model and the plugged-in estimators Ŝr (r = 1, 2). Since the convergence rate

of the nonparametric maximum likelihood estimator for interval-censored data is only n1/3

(Groeneboom and Wellner, 1992), the asymptotic expansion of Ŝr (r = 1, 2) are more com-

plex in the present setting than in the case of right-censored data. In the following, using

the results given in Groeneboom and Wellner (1992) and Geskus and Groeneboom (1999),

we show that, under suitable assumptions, the proposed estimator α̂ converges to a normal

random variable at the standard rate n1/2.

Let α0 be the true value of α and let Ψr(t) be the influence curve of the functional

U(α0, S1, S2, Gα0) at Sr, obtained by differentiating U(α0, (1 − ε1)S1 + ε1S1, (1 − ε2)S2 +

ε2S2, Gα0) with respect to εr (r = 1, 2) and evaluating at ε1 = ε2 = 0. Moreover, let φSr

denote the solution to the Fredholm integral equation

φSr(t) = dSr(t)

{
wr(t)−

∫ t

0

φSr(t)− φSr(x)

Sr(x)− Sr(t)
hr(x, t)dx +

∫ ∞

t

φSr(x)− φSr(t)

Sr(t)− Sr(x)
hr(t, x)dx

}
,

where dSr(t) = Sr(t)(1−Sr(t))/(hr1(t)Sr(t)+hr2(t)(1−Sr(t))), wr(t) = dΨr(t)/dt, hr is the

density function of (U (r), V (r)), and hr1 and hr2 are the marginal densities of U (r) and V (r),

respectively. Define

Φr(u, v, δ
(r)
1 , δ

(r)
2 ) = −δ

(r)
1

φSr(u)

1− Sr(u)
− δ

(r)
2

φSr(v)− φSr(u)

Sr(u)− Sr(v)
+ (1− δ

(r)
1 − δ

(r)
2 )

φSr(v)

Sr(v)
.

The asymptotic distribution of α̂ is then given by the following theorem.

Theorem 3.1. Under mild regularity conditions, n1/2(α̂ − α0) has an asymptotic normal

distribution with mean zero and variance

σ2 = (A(α0, S1, S2, Gα0))
−2V ar{B(α0, S1, S2, U

(1), V (1), U (2), V (2), ∆)} ,

where

A(α, S1, S2, Gα) =

∫
∂2

∂α2
l(α, S1, S2,x, δ)dGα(x, δ)
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and

B(α, S1, S2,x, δ) =
∂

∂α
l(α, S1, S2,x, δ)− Φ1(x1, x2, δ

(1)
1 , δ

(1)
2 )− Φ2(x3, x4, δ

(2)
1 , δ

(2)
2 ) .

The conditions and proof of Theorem 3.1 are attached in the first part of Appendix A. In

the next section, we discuss how to estimate the asymptotic variance σ2.

3.4 Variance Estimation

We first consider the deviation of a consistent estimate of the asymptotic variance

σ2. For r = 1, 2, let 0 < t
(r)
1 < ... < t

(r)
mr < ∞ denote the time points at which Ŝr jumps

and z
(r)
j = 1 − Ŝr(t

(r)
j ). According to Theorem 3.5 of Groeneboom (1996), φŜr

is absolutely

continuous with respect to Ŝr and a step function with jumps at the t
(r)
j ’s. Let Ĥrn, Ĥr1n and

Ĥr2n denote the empirical distribution functions of (U (r), V (r)), U (r) and V (r), respectively.

Define Ψ̃r(t) as Ψr(t) with α0, S1, S2, Gα0 replaced by α̂, Ŝ1, Ŝ2, Ĝn, respectively. Let

∆j(hrl) =

∫ t
(r)
j+1

t
(r)
j

hrl(t)dt ≈
∫ t

(r)
j+1

t
(r)
j

dĤrln(t), l = 1, 2,

∆jk(hr) =

∫ t
(r)
j+1

u=t
(r)
j

∫ t
(r)
k+1

v=t
(r)
k

hr(u, v)dudv ≈
∫ t

(r)
j+1

u=t
(r)
j

∫ t
(r)
k+1

v=t
(r)
k

dĤrn(u, v),

d
(r)
j =

z
(r)
j (1− z

(r)
j )

∆j(hr1)(1− z
(r)
j ) + ∆j(hr2)z

(r)
j

,

∆j(wr) = Ψ̃(t
(r)
j+1) − Ψ̃(t

(r)
j ), j, k = 1, ..., mr. Moreover, let y

(r)
j = φŜr

(t
(r)
j ). Then it can be

shown that the vector y(r) = (y
(r)
1 , ..., y

(r)
mr)

′ (r = 1, 2) is the unique solution to the following

set of linear equations (e.g. Theorem 3.1 of Geskus and Groeneboom, 1999)

y
(r)
j

{
(d

(r)
j )−1 +

∑

k<j

∆kj(hr)

z
(r)
j − z

(r)
k

+
∑

k>j

∆jk(hr)

z
(r)
k − z

(r)
j

}

= ∆j(wr) +
∑

k<j

∆kj(hr)

z
(r)
j − z

(r)
k

y
(r)
k +

∑

k>j

∆jk(hr)

z
(r)
k − z

(r)
j

y
(r)
k
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for j = 1, ..., mr.

Define

Φ̃r(u, v, δ
(r)
1 , δ

(r)
2 ) = −δ

(r)
1

φŜr
(u)

1− Ŝr(u)
− δ

(r)
2

φŜr
(v)− φŜr

(u)

Ŝr(u)− Ŝr(v)
+ (1− δ

(r)
1 −∆

(r)
2 )

φŜr
(v)

Ŝr(v)
.

Since Ĥrn, Ĥr1n, Ĥr2n, α̂ and Ŝr are uniformly consistent estimates (Van der Vaart and

Wellner, 1996; Groeneboom and Wellner, 1992), Φ̃r(u, v, δ
(r)
1 , δ

(r)
2 ) is uniformly consistent to

Φr(u, v, δ
(r)
1 , δ

(r)
2 ). Also define

B̃(x , δ) =
∂

∂α
l(α̂, Ŝ1, Ŝ2,x , δ)− Φ̃1(x1, x2, δ

(1)
1 , δ

(1)
2 )− Φ̃2(x3, x4, δ

(2)
1 , δ

(2)
2 ).

Note that B̃ is continuous in α and Sr. It then follows that

V ar{B̃(U (1), V (1), U (2), V (2), ∆)} → V ar{B(α0, S1, S2, U
(1), V (1), U (2), V (2), ∆)}

because of the uniform consistency of Φ̃r and Ŝr and the consistency of α̂. It is well

known that A(α̂, Ŝ1, Ŝ2, Ĝn) and the sample variance of { B̃(U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i) , i =

1, ..., n} are consistent estimators of A(α0, S1, S2, Gα0) and V ar{B̃(U (1), V (1), U (2), V (2), ∆)},

respectively. This suggests that the variance σ2 can be consistently estimated by σ̂2 =

(A(α̂, Ŝ1, Ŝ2, Ĝn))−2σ̂2
1, where

σ̂2
1 =

1

n− 1

n∑
i=1

{
B̃(U

(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i)− B̄

}2

,

and

B̄ =
1

n

n∑
i=1

B̃(U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i).

Note that in general, the estimator σ̂2 could be very technically involved due to the

complexity of the estimator φŜr
. Corresponding to this, we propose to use the bootstrap

procedure for variance estimation. One simple and natural approach is to draw bootstrap

samples of size n with replacement from the observed data { (U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i) ; i =
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1, ..., n } independently for M times, where M is a prespecified integer. This yields M

estimators { α̃k ; k = 1, ..., M } of α based on each of M bootstrap samples. The variance of

α̂ can then be naturally estimated by the sample variance of the α̃k’s. Alternatively, given

the observed original data, a bootstrap sample {U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆∗

i , i = 1, ..., n } can

be generated by only generating indicators

∆∗
i = (∆̃

(1)
1i , ∆̃

(1)
2i , ∆̃

(2)
1i , ∆̃

(2)
2i ) ,

where (∆̃
(r)
1i , ∆̃

(r)
2i ) are generated from a multinomial distribution with values (1, 0), (0, 1) and

(0, 0) and the corresponding probabilities 1 − Ŝr(U
(r)
i ), Ŝr(U

(r)
i ) − Ŝr(V

(r)
i ) and Ŝr(V

(r)
i ),

respectively, r = 1, 2.

3.5 Numerical Results

First we present some results from simulation studies conducted for assessing the per-

formance of the inference procedure presented in the previous sections. In the study, we used

the Clayton model

S(t1, t2) = [ S1−α
1 (t1) + S1−α

2 (t2) − 1 ]1/(1−α) , α > 0 (3.4)

for the joint survival function with Sr(t) = exp(−0.1 t) for the marginal survival function,

r = 1, 2. For censoring intervals, we assumed that U (1) and V (1) followed uniform distri-

butions such that U (1) ∼ U(0, 3.98) and V (1) = U (1) + W with W ∼ U(0, 6.02). The

censoring intervals for T2 were generated in the same way independently. The results below

are based on 500 replications.

Table 3.1 presents the simulation results for estimation of α and the Kendall’s τ by

using the method proposed in the previous sections with τ̂ = (α̂− 1)/(α̂ + 1). In the table,

we considered the situations where n = 200 or 400 and α = 2 or 3, giving τ = 1/3 or

1/2. In addition to α̂ and τ̂ , for comparison, we also estimated α and τ by α̃ and τ̃ , where
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α̃ is defined as the solution to U(α, S1, S2, Ĝn) = 0 with U given in equation (3.3) and

τ̃ = (α̃− 1)/(α̃ + 1). Note that the difference between α̂ and α̃ is that for α̃, the marginal

survival functions S1 and S2 were assumed to be known and used, while for α̂, their estimates

were used.

The results in Table 3.1 include the estimated bias given by the averages of point

estimators minus the true values (Bias), the sample standard errors of the point estimators

(SSE), the square root of the average of the estimated variances (ESE), and the 95% empirical

coverage probabilities (CP). For variance estimation of the two estimators of α, the simple

bootstrap method with M = 200 described in Section 3.4 was used, while for that of the

two estimators of τ , by the delta method, we used στ = 2 σα/(α+1)2 with α replaced by its

estimator, where στ and σα denote the estimated standard errors of the estimators of τ and

α, respectively. It can be seen from the table that all estimators seem to be unbiased and

the estimated standard errors of the estimators defined in the previous sections are close to

the sample standard errors. Also the method seems to give reasonable empirical coverage

probabilities and as expected, the results are better when the sample size increases.

In the study, we investigated some other values of M for the bootstrap variance esti-

mation and it seems that M = 200 used above is large enough for the situations considered

here. To assess the asymptotic normality given in Theorem 3.1, we investigated the quantile

plots of the standardized α̂ against the standard normal variable and they indicate that the

normality approximation seems reasonable for the situations considered here.

Now we apply the proposed method to the bivariate interval-censored AIDS data dis-

cussed in Chapter 1 and in Goggins and Finkelstein (2000). Define T1 and T2 to be the times

to the occurrences of CMV shedding in blood and urine, respectively, and assume that they

follow the Clayton model (3.4). The application of the proposed method with M = 200

gave α̂ = 2.8070 with the estimated standard error of 0.5307. This yielded τ̂ = 0.4646 with

the estimated standard error being 0.0732 by the delta method. Note that under the model
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(3.4), α → 1 or τ → 0 means the independence of the CMV shedding times in blood and

urine. The testing of α = 1 against α > 1 based on the standard normal distribution gave

a p-value of 0.0003, while the testing of τ = 0 against τ > 0 based on the standard normal

distribution gave a p-value of less than 0.0001. These suggest that the CMV shedding times

in blood and urine were significantly correlated.

3.6 Concluding Remarks

A two-step statistical procedure for estimation of the association parameter for bivari-

ate interval-censored failure time data under the copula model was proposed. Both finite

and asymptotic properties of the proposed estimator were established with the simulation

results indicating that the method works well for practical situations. The approach is a

generalization of the corresponding approaches for bivariate right-censored or current status

failure time data (Shih and Louis, 1995; Wang and Ding, 2000). Note that the censoring

mechanism behind interval-censored data is much more complicated than that behind right-

censored or current status data. This is because for the former case, one has to deal with two

related censoring variables, while for the latter case, only one censoring variable is involved.

To investigate the association between two correlated variables, an alternative to the

proposed approach is to direct estimate the Kendall’s τ as Betensky and Finkelstein (1999).

Although the method is intuitively appealing and simple, it seems very difficult to study

the asymptotic properties of the method. A limitation of the proposed approach is that it

applies only to situations where the joint survival function follows the copula model although

it is one of the most commonly used models for bivariate data. The idea discussed here can

be applied to the case where there exist covariates and they affect the joint survival function

through marginal survival functions. For some of commonly used regression models for

univariate failure time data, see Sun (2005).
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Chapter 4

A Conditional Approach for Regression Analysis of

Interval-censored Failure Time Data with the Additive

Hazards Model

4.1 Introduction

This chapter considers regression analysis of interval-censored failure time data. To

keep the simplicity, unlike the previous two chapters, we focus on univariate interval-censored

data and the proposed method can be generalized to multivariate interval-censored data. In

Chapter 5, we will return to multivariate survival data.

For regression analysis of interval-censored data, a few methods have been proposed.

For example, Finkelstein (1986) is the first to consider fitting the proportional hazards model

to general interval-censored data and Hunag (1996) studied the same problem for current

status data and established asymptotic properties of the approach. Rossini and Tsiatis

(1996) discussed regression analysis of current status data using the proportional odds model,

while Lin et al. (1998) and Martinussen and Scheike (2002) considered the same, but using

the additive hazards model. Also Rabinowitz et al. (1995) and Betensky et al. (2001)

investigated the use of the accelerated failure time model for case 2 interval-censored data.

More references can be found in Sun (2005). In this chapter, we propose an easy procedure

for regression analysis of case 2 interval-censored data using the additive hazards model.

The remainder of this chapter is organized as follows. Section 4.2 introduces notations
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and models that are used throughout the chapter. In Section 4.3, a conditional estimation

approach is presented for estimating regression parameters of interest. The approach makes

use of counting process theory and a main advantage of it is that it does not involve estimation

of the cumulative baseline hazard function. The consistency and asymptotic normality of

the proposed estimate of regression parameters are established. In Section 4.4, we show

that the proposed method can be also applied to the case of informative censoring, when the

failure time(s) and censoring time share the common unobserved random process. Simulation

studies are conducted in Section 4.5 to evaluate finite sample properties of the proposed

estimate under both independent and dependent censoring, and the breast cancer data is

analyzed to illustrate the proposed method. Section 4.6 contains some concluding remarks.

4.2 Notations and Models

Consider a survival study that consists of n independent subjects. For subject i, let Ti

denote the survival time of interest and Zi(t) a p-dimensional vector of covariates that may

depend on time. Assume that Ti is not observable except for knowing that it belongs to an

interval. Specifically, suppose that we observe two random variables Ui and Vi with Ui ≤ Vi

and the indicator variables δ1 i = I(Ti < Ui), δ2 i = I(Ui ≤ Ti < Vi) and δ3 i = 1 − δ1i − δ2i,

where I is the indicator function. Here Ui and Vi can be regarded as two examination times

that belong to a sequence of random examination times. The variables δ1 i, δ2 i and δ3 i

indicate whether the survival event of interest for subject i has occurred before Ui, during

the examination interval [Ui, Vi), or after Vi, respectively. Then the observed data consist of

{ (Ui, Vi, δ1 i, δ2 i, δ3 i, Zi(t)) ; i = 1, 2, ..., n }. In this paper, we assume that the examination

times U and V are independent of the survival time T given Z and that covariate process

Z(t) is completely observed.

In the following, we consider the analysis of observed interval-censored data using the

additive hazards model. Specifically, we assume that the hazard function of Ti at time t

39



given the covariate process up to t is given by

λi(t |Zi(s), s ≤ t) = λ0(t) + β′0 Zi(t) , (4.1)

where λ0(t) is an unknown baseline hazard function and β0 denotes the p-dimensional vector

of regression parameters.

For censoring times Ui and Vi, note that P (Vi ≥ Ui) = 1. In the following, it will be

assumed that given Zi, the marginal and conditional hazard functions of Ui and Vi are given

by

λU
i (t |Zi(s), s ≤ t) = λ1(t) eγ′0 Zi(t) (4.2)

and

λV
i (t |Ui = ui, Zi(s), s ≤ t) =





λ2(t) eγ′0 Zi(t) if t ≥ ui

0 if t < ui

(4.3)

respectively. In the above, λ1(t) and λ2(t) denote unspecified baseline hazard functions and

γ0 is a p-dimensional vector of unknown regression parameters. Among others, Kelly and

Lim (2000) and Prentice et al. (1981) discussed similar models for regression analysis of

multivariate failure time data and recurrent event data, respectively.

For each i, define a 0-1 counting process N
(1)
i (t) = (1 − δ1i) I(Ui ≤ t) and conditional

on Ui = ui, define N
(2)
i (t) = δ3i I(Vi ≤ t) if t ≥ ui and 0 if t < ui. Then following the same

arguments as those in Lin et al. (1998) and under models (4.1) - (4.3), we can derive the

intensity functions of N
(1)
i (t) and N

(2)
i (t) as

I(Ui ≥ t)λ
(1)
i (t |Zi(s), s ≤ t) and I(ui ≤ t ≤ Vi)λ

(2)
i (t |Zi(s), ui < s ≤ t),

respectively, where

λ
(1)
i (t |Zi(s), s ≤ t) = λ∗1(t) e−β′0Z∗i (t)+γ′0Zi(t) = λ1(t) e−Λ0(t) e−β′0Z∗i (t)+γ′0Zi(t), (4.4)
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and

λ
(2)
i (t |Zi(s), ui < s ≤ t) = λ∗2(t) e−β′0Z∗i (t)+γ′0Zi(t) = λ2(t) e−Λ0(t) e−β′0Z∗i (t)+γ′0Zi(t). (4.5)

In the above,

Z∗
i (t) =

∫ t

0

Zi(s) ds and Λ0(t) =

∫ t

0

λ0(s) ds .

For notational convenience, we will assume that λ
(2)
i (t |Zi(s), s ≤ t) = 0 for any t ≤ ui

given Ui = ui. It is apparent that model (4.4) is a marginal proportional hazards model,

but model (4.5) is not. For model (4.5), the starting time point is ui, the realization of Ui,

and it is a conditional model. In the next section, we will use (4.4) and (4.5) to construct

estimating equations for regression coefficients β0 and γ0.

4.3 Estimation Procedure

To estimate β0 and γ0, for j = 0, 1, define

S
(j)
1,β(t, β, γ) = n−1

n∑
i=1

I(t ≤ Ui) e−β′ Z∗i (t)+γ′Zi(t) Z
∗ (j)
i (t)

and

S
(j)
2,β(t, β, γ) = n−1

n∑
i=1

I(ui < t ≤ Vi) e−β′ Z∗i (t)+γ′Zi(t) Z
∗ (j)
i (t) ,

where Z
∗ (0)
i (t) = 1 and Z

∗ (1)
i (t) = Z∗

i (t). Motivated by Lin et al. (1998), who considered

regression analysis of current status data using models (4.1) and (4.2), we propose to use

the estimating function

Uβ(β, γ) =
n∑

i=1

2∑

k=1

∫ ∞

0

{
Z∗

i (t)− S
(1)
k,β(t, β, γ)

S
(0)
k,β(t, β, γ)

}
dN

(k)
i (t)

=
n∑

i=1

(1− δ1i)

{
Z∗

i (ui)−
S

(1)
1,β(ui, β, γ)

S
(0)
1,β(ui, β, γ)

}
+

n∑
i=1

δ3i

{
Z∗

i (vi) −
S

(1)
2,β(vi, β, γ)

S
(0)
2,β(vi, β, γ)

}

for estimation of β0 given γ0.
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In Uβ(β, γ), the first term is the partial likelihood score function under (4.4) if one

had only current status data and is unbiased. The second term is the partial likelihood

score function obtained under model (4.5) if one considers only current status data given

by the Vi’s and thus also has mean 0 at γ0 and β0 due to the fact that each integral is a

martingale given Ui = ui. Thus Uβ(β, γ) is unbiased. The key idea here is to reduce general

interval-censored data to current status data and similar ideas have been used by Betensky

et al. (2001) among others.

For estimation of γ0, one can easily develop an estimating function that is similar to

Uβ(β, γ). On the other hand, note that for the Ui’s and Vi’s or models (4.2) and (4.3),

complete data are available and thus it is more efficient to directly estimate γ0 from them.

To this end, define Ñ
(1)
i (t) = I(Ui ≤ t) and Ñ

(2)
i (t) = I(Vi ≤ t) if t ≥ ui and 0 if t < ui,

i = 1, ..., n. Also define

S
(j)
1,γ(t, γ) = n−1

n∑
i=1

I(t ≤ Ui) eγ′Zi(t) Z
(j)
i (t)

and

S
(j)
2,γ(t, γ) = n−1

n∑
i=1

I(Ui < t ≤ Vi) eγ′Zi(t) Z
(j)
i (t) ,

j = 0, 1, where Z
(0)
i (t) = 1 and Z

(1)
i (t) = Zi(t). Then under models (4.2) and (4.3), a

partial likelihood score function of γ0 can be derived as

Uγ(γ) =
n∑

i=1

[∫ ∞

0

(
Zi(t)−

S
(1)
1,γ(t, γ)

S
(0)
1,γ(t, γ)

)
dÑ

(1)
i (t) +

∫ ∞

0

(
Zi(t) −

S
(1)
2,γ(t, γ)

S
(0)
2,γ(t, γ)

)
dÑ

(2)
i (t)

]

=
n∑

i=1

(
Zi(ui) −

S
(1)
1,γ(ui, γ)

S
(0)
1,γ(ui, γ)

)
+

n∑
i=1

(
Zi(vi) −

S
(1)
2,γ(vi, γ)

S
(0)
2,γ(vi, γ)

)

(Lin, 1994).

Let γ̂ be the solution to the equation Uγ(γ) = 0. Then we can estimate β0 by β̂ defined

as the root to the equation Uβ(β, γ̂) = 0. Let Âβ(β, γ) = −n−1 ∂Uβ(β, γ)/∂β and Aβ denote

the limit of Âβ(β, γ) at β = β0 and γ = γ0. It can be easily shown that γ̂ is consistent
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and has an asymptotic normal distribution (Lin, 1994; Wei et al., 1989). The consistency of

β̂ can be similarly proved by noting the facts that Âβ(β, γ̂) is positive semidefinite and its

limit is assumed to be positive definite at β0.

For the asymptotic distribution of β̂, we show in the Appendix A that n−1/2 Uβ(β0, γ̂)

converges in distribution to a normal variable with mean zero and covariance matrix that

can be consistently estimated by Γ̂(β̂, γ̂) given in the Appendix A. This plus the equation

n1/2 ( β̂ − β0 ) = A−1
β {n−1/2 Uβ(β0, γ̂) } + op(1)

given by the Taylor series expansion of Uβ(β̂, γ̂) around β0 shows that the distribution of

n1/2 ( β̂ − β0 ) can be asymptotically approximated by the normal distribution with mean

zero and covariance matrix Σ that can be consistently estimated by

Σ̂ = Âβ(β̂, γ̂)−1 Γ̂(β̂, γ̂) [Âβ(β̂, γ̂)−1]′ .

For determination of β̂ and γ̂, note that both estimating functions Uβ(β, γ) and Uγ(γ)

are similar to the partial likelihood score functions arisen from right-censored failure time

data under stratified proportional hazards models or multivariate right-censored failure time

data under marginal proportional hazards models. Thus β̂ and γ̂ can easily obtained using

any statistical software.

4.4 An Extension of Model Setup

In Section 4.2, we assume that the examination times U and V are independent of

the survival time T given Z. However, this assumption may not hold in practice. In this

section, to address this, we assume that there exists an unobservable random process b(t)

that characterizes the dependency between censoring time(s) and failure time, and given the

covariate process and process b(t), the examination times U and V and the failure time T

are independent. The same idea was used by Zhang, Sun, and Sun (2006) for current status
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data. This is a typical type of informative censoring.

Specifically, we assume the following models for U , V , and T :

λT
i (t |Zi(s), bi(s), s ≤ t) = λ0(t) + β′0Zi(t) + bi(t), (4.6)

λU
i (t |Zi(s), bi(s), s ≤ t) = λ1(t) eγ′0Zi(t)+bi(t) (4.7)

and

λV
i (t |Ui = ui, Zi(s), bi(s), s ≤ t) =





λ2(t)e
γ′0 Zi(t)+bi(t) if t ≥ ui

0 if t < ui

(4.8)

where bi(t)’s are i.i.d. realizations of an unobservable random process b(t), which is assumed

to have mean 0. Here, the distribution of the process b(t) is totally unspecified.

It is easy to show that model (4.6) can reduce to an additive hazard model since the

survival function can be derived as

Pr(T > t|Z(s), s ≤ t) = Eb(Pr(T > t|Z(s), b)) = Eb(Bi(t)) exp(−Λ(t)− β′Z∗
i (t)),

where Bi(t) =
∫ t

0
bi(s)ds and Z∗

i (t) is defined as above. It is worthy to note that the Eb term

is not subject specific since bi’s are i.i.d. realizations of b.

Let the counting processes N
(1)
i , N

(2)
i ,Ñ

(1)
i , and Ñ

(2)
i be defined as before. Their inten-

sity functions are

I(Ui ≥ t)Eb{e−
R t
0 bi(s)ds ebi(t)} e−Λ0(t) λ1(t) e−β′0Z∗i (t)+γ′0Zi(t), (4.9)

I(ui < t ≤ Vi)Eb{e−
R t
0 bi(s)ds ebi(t)} e−Λ0(t) λ2(t) e−β′0Z∗i (t)+γ′0Zi(t), (4.10)

I(Ui ≥ t)Eb{bi(t)}λ1(t) eγ′0Zi(t), (4.11)

and

I(ui < t ≤ Vi)Eb{bi(t)}λ2(t) eγ′0Zi(t), (4.12)

respectively, where ui is the realization of Ui. Notice that none of the Eb terms is subject spe-
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cific. Since none of the baselines and the distribution of b(t) is specified, those nonparametric

parts can be put together as one function in each intensity function. Thus, the intensities

(4.9)-(4.12) reduce to the corresponding intensity function of counting process N
(1)
i , N

(2)
i ,

Ñ
(1)
i , and Ñ

(2)
i in Sections 4.2 and 4.3.

This suggests that the proposed estimation procedure given in Section 4.4 can be

applied here, which indicates that our proposed method is quite robust to such informative

censoring.

4.5 Numerical Results

Simulation studies are carried out to assess the finite sample performance of the esti-

mation approach proposed in the previous sections. In the first part, the failure times Ti’s

are generated from model (4.1) and the censoring times Ui’s and Vi’s are generated from

models (4.2) and (4.3), respectively. For covariates, we assume that there exists only a single

covariate Zi that represents the treatment indicator and follows the Bernoulli distribution

with success probability 0.5. For the results presented below, we take the baseline hazard

functions λ0(t), λ1(t) and λ2(t) to be constants 1, 2, and 1, respectively. The percentages of

left-, interval- and right-censored observations are about 1/3 when β0 = γ0 = 0.

Table 4.1 presents the simulation results with β0 = −0.2, 0, or 0.2 and γ0 = −1 or

1, and n = 100 or 200, respectively. For each setup, the results include the bias (Bias)

given by the mean of 500 point estimates based on simulated data minus the true value

of the parameters, the sample standard error (SSE) of the 500 point estimates, and the

average of 500 estimated standard errors based on simulated data (SEE). The 95% empirical

coverage probabilities were also calculated and given in the table. It can be seen from

Table 4.1 that the proposed estimates of regression parameters appear to be unbiased. The

sample standard error and the estimated standard error are quite close, suggesting that the

proposed variance estimate is good. As expected, both standard errors decrease as sample
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size increases. Also the empirical coverage probabilities seem quite close to the true 95% for

the situations considered here.

In the second part of the simulation study, we apply the same procedure to the case

of information censoring. The random process is taken to be a random variable b/4, where

b follows a standard normal distribution. The purpose of taking a small random effect is to

make sure the hazard function of failure time to be positive in the additive hazard model.

The baseline hazard functions λ0(t), λ1(t) and λ2(t) are set to be 2, 4, and 1, respectively,

and β0 and γ0 are each taken to be 0, 0.5, and −0.5 making 9 setups in total. The same

statistics are calculated as above for 500 replications with sample size n = 100. The results

are summarized in Table 4.2. Again, the estimates seem unbiased, SSEs and SEEs are quite

close, and the 95% coverage probabilities are very close to 0.95. These results suggest that

the proposed method works well for the case of informative censoring.

To illustrate the proposed estimation approach, we apply it to the breast cancer data

mentioned in Section 1.1.1. As discussed before, the study consists of 94 early breast cancer

patients who were given either radiation therapy alone (46) or radiation therapy plus adju-

vant chemotherapy (48). During the study, patients were supposed to be seen at clinic visits

every 4 to 6 months. However, actual visit times differ from patient from patient and times

between visits also vary. At the visits, physicians evaluated the cosmetic appearance of the

patient such as breast retraction, a response that has a negative impact on overall cosmetic

appearance. The goal of the study is to compare the two treatments with respect to the

time to breast retraction, for which only interval-censored are available.

For the analysis, we define Zi = 1 if the patient was given radiation therapy alone

and 0 otherwise. For the determination of the Ui’s and Vi’s, we take Ui and Vi to be left

and right end points of the censoring intervals for interval-censored observations. For left-

censored observations, we let Ui to be the observation time and Vi the largest time point

and for right-censored observations, Ui and Vi are set to be 0 and the observation time,
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respectively. The application of the estimation procedure given in the previous section gives

β̂ = −0.0164 and γ̂ = −0.4261 with the estimated standard errors being 0.0057 and 0.1637,

respectively. This yields a p-value of 0.0041 for testing β0 = 0 and suggests that the patients

given radiation therapy alone have significantly lower risk to develop breast retraction than

those given radiation therapy plus adjuvant chemotherapy. In other words, the adjuvant

chemotherapy increases the risk of breast retraction and this result is similar to that given

by Finkelstein (1986) using the proportional hazards model. The result also indicates that

the observation times Ui’s and Vi’s seem to have different distributions for patients in the

two treatment groups.

Although the result given here is similar to that obtained using the proportional hazards

model, sometimes it is of interest to assess which of the two models is more appropriate to

a given data set. For this, we obtained the separate maximum likelihood estimators of

the survival functions corresponding to the two treatment groups in log and log-log scales,

respectively, and presented them in Figure 4.2. Note that under the additive hazards model,

the former should give a straight line passing the origin and the latter should give a line

parallel to the x-axis. For reference, Figure 4.1 gives the two separate maximum likelihood

estimators. Although there is no clear cut, Figures 4.1 and 4.2 suggest that the additive

hazards model seems to be more reasonable for the data considered.

4.6 Concluding Remarks

In the preceding sections, regression analysis of general interval-censored failure time

data is investigated using the additive hazards model. For estimation of regression param-

eters, an estimating equation-based approach is presented and asymptotic properties of the

proposed estimates are established. Simulation studies suggest that the approach works well

for practical situations. A major advantage of the presented method is that it does not

involve estimation of the baseline cumulative hazard function Λ0(t) =
∫ t

0
λ0(s) ds and also
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it can be easily implemented.

In models (4.2) and (4.3), for simplicity, we assume that the effects of covariates on the

observation times Ui’s and Vi’s are identical. The proposed inference approach can be easily

generalized to the situation where the hazard functions of the Ui’s and Vi’s have the form

λU
i (t |Zi(s), s ≤ t) = λ1(t) eγ′1 Zi(t)

and

λV
i (t |Ui = ui Zi(s), ui < s ≤ t) = λ2(t) eγ′2 Zi(t) .

That is, covariates have different effects on the two observation times. In the models above,

γ1 and γ2 are p-dimensional vectors of regression parameters representing the covariate effects

on the Ui’s and Vi’s, respectively. Another generalization of the estimation procedure given

here that should be useful is to apply some weight functions to Uγ(γ) and Uβ(β, γ). Actually,

one could use different weight functions for the two terms in each of the two estimating

functions. One advantage for this is to increase the efficiency of resulting estimates of

regression parameters.

It should be noted that as that given in Lin et al. (1998) for current status data,

the method given in the previous sections may not be the most efficient. In addition to

using some weight functions, an alternative is to derive efficient score functions of regression

parameters (Martinussen and Scheike, 2002). In this case, one has to estimate Λ0(t) and a lot

of more computational effort is needed compared to the method given here as it will be seen

in the next chapter. More importantly, for asymptotic normality of the resulting regression

parameter estimates, one may have to find an estimate of Λ0(t) that has n1/2-convergence

rate, which is not easy for given interval-censored data unless some assumptions about Λ0(t)

are imposed.
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Chapter 5

Efficient Estimation for Bivariate Current Status Data

5.1 Introduction

As discussed in Chapter 1, current status data arise in many fields including epidemi-

ology and biomedical studies. Such data occur when the failure time of interest is never

observed but can be determined only to be smaller or larger than a monitoring time. They

are also referred to as case 1 interval-censored data (Groeneboom & Wellner 1992).

Regression analysis of univariate current status data has been studied by many re-

searchers. Among others, Huang (1996) explored efficient estimation under the proportional

hazards model. Huang and Rossini (1997) studied the same problem under the proportional

odds model with the use of sieve method and Martinussen and Scheike (2002) used the

additive hazards model.

When multiple failure times are of interest, estimating or testing the dependency of

the failures is an important topic. For bivariate current status data, Wang and Ding (2000)

proposed a two-stage estimation method under the assumption of a copula model for the

joint survival function. They also proposed to test the independency by a 2× 2 contingency

table (Ding and Wang 2004).

In this chapter, we study the efficient estimation of regression parameter and association

parameter simultaneously when bivariate current status data are available. By efficient

estimation, we mean that the variance of the estimate reaches the information bound in
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a specific model setting. In other words, there does not exist an estimate with a smaller

variance under the same model setting.

Denote the two failure times of interest by T1 and T2 on each subject and let C denote

the common monitoring time for T1 and T2. This is called univariate censoring, which

is common for bivariate current status. Let δ1 = I(T1 ≤ C) and δ2 = I(T2 ≤ C) be

the censoring indicators. Let X be a p−dimensional time independent covariate vector

that T1 and T2 may depend on. Thus, the data structure is (C, δ1, δ2, X). Assume there

are n independent subjects in the study, then the observed data are (Ci, δ1i, δ2i, Xi), for

i = 1, . . . , n.

Since we are interested in the dependency of T1 and T2, we need to specify their

dependency structure. For this purpose, as in Chapter 3, we suppose that (T1, T2) follow a

copula model with the joint survival function

S(s, t) = Cα(S1(s), S2(t)),

where S1 and S2 are the marginal distribution of T1 and T2, respectively, Cα(· , ·) is a mapping

from [0, 1]2 to [0, 1], and α is a global association parameter. For more information about

the copula model or Clayton model, please see page 33-34, Chapter 3.

The reminder of this chapter is organized as follows. Section 5.2 introduces the details

of models in different cases. In Section 5.3, we derive the efficient score and information

bound for the model setups and describe the estimation procedure. Simulation results are

presented in Section 5.4 and followed by a real data application in Section 5.5. Section 5.6

gives some concluding remarks.
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5.2 Model Setup

We assume that T1 and T2 both marginally follow a Cox model, i.e.,

Sk(t) = exp(−Λ0 k (t) exp(β′kX)), k = 1, 2.

Here Λ0k(t) are the cumulative baseline hazard functions of T1 and T2, respectively. If T1

and T2 have the same covariate effects, write β1 = β2 = β. In this situation, the parameters

of interest are θ = (β′, α)′. If β1 6= β2, define θ = (β′1, β′2, α)′. For simplicity, we will focus

on the situation that the two marginal distributions are same, i.e., common baseline hazard

function and common covariate effect.

In the following, we consider continuous censoring variable C and confine C to be in

a finite interval (0,M0 ], where M0 is a predetermined constant satisfying P (T1 ≥ M0) > 0

and P (T2 ≥ M0) > 0. For real data, τ can be taken to be the largest observation time.

It is natural to define C = min(C ′,M0), where C ′ is a positive random variable that may

depend on covariate X. Assume that T1 and T2 are independent of C given covariate X.

Let λc (t|X) be the hazard function of C given X with the form λc(t|X) = λc0 (t) exp(ω′X)

for t < M0, where ω denotes the possible covariate effect on C. Let gc (t,X) be the joint

density of C and X and assume that gc (t,X) is free of the parameter of interest, θ.

Define the following four counting processes

N11(t) = δ1 δ2 I(C ≤ t), N10(t) = δ1(1− δ2) I(C ≤ t),

N01(t) = (1− δ1) δ2 I(C ≤ t), N00(t) = (1− δ1) (1− δ2) I(C ≤ t).

Similar to the arguments of Lin et al. (1998), the intensity processes for the four

processes Njm , for j = 0, 1 and m = 0, 1, are

Y (t)λc(t|X)Sjm(t, θ),

51



respectively, where Y (t) = I(C ≥ t) and

S11(θ, t) = P (T1 ≤ t, T2 ≤ t) = 1− S1(t)− S2(t) + Cα(S1(t), S2(t)),

S01(θ, t) = P (T1 > t, T2 ≤ t) = S1(t)− Cα(S1(t), S2(t)),

S10(θ, t) = P (T1 ≤ t, T2 > t) = S2(t)− Cα(S1(t), S2(t)),

S00(θ, t) = P (T1 > t, T2 > t) = Cα(S1(t), S2(t)).

Under the copula model assumption, the typical log-likelihood contribution is given by

l(θ) = δ1 δ2 log(S11(θ, C)) + (1− δ1) δ2 log(S01(θ, C))

+δ1 (1− δ2) log(S10(θ, C)) + (1− δ1) (1− δ2) log(S00(θ, C))

=
1∑

j=0

1∑
m=0

∫ M0

0

log Sjm(θ, t) dNjm(t) (5.1)

The original log-likelihood function contains the term g(C, X) but is omitted here

since that term does not include the parameters of interest. Note that Sjm and l(θ) are both

functions of θ, Λ01, Λ02.

The log-likelihood given in (5.1) contains finite dimensional parameters θ and infinite-

dimensional parameters Λ01(t) and Λ02(t). In this case, projection method can be used to

derive the efficient score and information bound of θ for this semiparametric model (Bickel

et al. 1993).

For this, consider general parametric submodels of Λ01 and Λ02 with parameter η, which

has the same dimension with θ. Let l̇θ and l̇η denote the derivatives of the log-likelihood

l(θ) in (5.1) with respect to θ and η, respectively. The efficient score can be found as the

component of l̇θ that are orthogonal to the linear span formed by all possible l̇η.

Let l̇∗η be the projection of l̇θ onto the linear span formed by all possible l̇η. Then for

all possible l̇η, we have

E(l̇θ − l̇∗η) ∗ l̇η = 0. (5.2)
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and the efficient score is l̇θ∗ = l̇θ − l̇∗η (Huang, 1996; Martinussen and Scheike, 2002).

5.3 Derivation of Efficient Score and Information Bound

Here, we will focus on the situations of common or different marginal baseline hazard

functions with the same covariate effects. If the covariate effects are not same, we can always

obtain common regression parameters by redefining covariates.

5.3.1 Common marginal baseline hazard function

We first start with the situation where the two marginal distributions are same, i.e.,

common baseline hazard function Λ0(t) and common covariate effect β.

Let θ0 = (β′0, α0)
′ be the true value of the parameter θ. In this case, Cα(S1(t), S2(t))

can be rewritten as Cα(S1(t)). Denote Dα = ∂
∂α

Cα(S1) and Du = ∂
∂u

Cα(u)|u=S1 .

It is easy to show that

Sjm(θ, t) = j m + (−1)j mS1 + (−1)m j S1 + (−1)m+j Cα(S1)

for j = 0, 1 and m = 0, 1.

Define

ajm = − exp(β′X) S1 Λ0 [(−1)j m + (−1)m j + 2 (−1)m+j Du]

and

Zjm = (X ′, (−1)m+j Du / ajm)′

for j = 0, 1 and m = 0, 1. Then we have ∂
∂θ

Sjm = Zjmajm for j, m = 0, 1.

The score function of θ can be written as

l̇θ =
1∑

j=0

1∑
m=0

∫
Zjmajm

Sjm

dNjm,
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where the notation
∫

stands for
∫ M0

0
in this chapter if the range is not specified.

Define

dMjm(t) = dNjm(t)− Y (t)λc(t)Sjmdt

for j, m = 0, 1 and it is easy to show that Mjm(t) is a martingale for j, m = 0, 1.

Observe that
∑1

j=0

∑1
m=0 Sjm = 1, which implies that

∑1
j=0

∑1
m=0 Zjmajm = 0. Based

on this fact, we have

l̇θ =
1∑

j=0

1∑
m=0

∫
Zjm ajm

Sjm

dNjm =
1∑

j=0

1∑
m=0

∫
Zjm ajm

Sjm

dMjm.

Suppose ∂
∂η

log Λ0(t) = b(t), then the score function for η is of the following form:

l̇η(b) =
1∑

j=0

1∑
m=0

∫
b ajm

Sjm

dNjm =
1∑

j=0

1∑
m=0

∫
b ajm

Sjm

dMjm.

Using the projection method, to derive the efficient score function for θ, we need only

to find a function b∗ satisfying (5.2) for any b. This yields that for any tε(0, M0],

0 = E (l̇θ − l̇∗η) l̇η

=
1∑

j=0

1∑
m=0

E
{∫ t

0

(Zjm − b∗) ajm

Sjm

dMjm

∫ t

0

b ajm

Sjm

dMjm

}

=
1∑

j=0

1∑
m=0

E
{∫ t

0

(Zjm − b∗) a2
jm

Sjm

b Y λc ds
}

.

for any b. The above equation reduces to

1∑
j=0

1∑
m=0

E [
(Zjm − b∗) a2

jm

Sjm

Y λc ] = 0

for any tε(0, M0]. Solving this equation, we can obtain that

b∗ =

∑
j,m E [ Zjm a2

jm Y λc / Sjm ]∑
j,m E [ a2

jm Y λc / Sjm ]
.
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Then the efficient score for θ is thus

l̇θ∗ =
1∑

j=0

1∑
m=0

∫
(Zjm − b∗) ajm

Sjm

dNjm , (5.3)

and the information for θ is given by

I(θ) = E l̇⊗2
θ∗ =

1∑
j=0

1∑
m=0

E

∫ (
(Zjm − b∗) ajm

)⊗2

S−1
jm Y λc dt, (5.4)

where a⊗0 = 1, a⊗1 = a, and a⊗2 = a a′. Although not explicitly specified, ajm, Zjm, Sjm,

and b∗ are all functions of θ, Λ01, and Λ02 at each time t in the above expressions.

5.3.2 Different marginal baseline hazard functions

In this subsection, we consider the situation where the two marginal distributions are

different, i.e., we have different baseline hazard functions but common regression coefficients.

Suppose the marginal hazard functions follow Cox model:

λk(t|X) = λ0k(t) exp(β′X), (k = 1, 2).

The definitions of all the counting processes remain the same, however, some other

notations need to change. Denote Du and Du the derivatives of Cα(u, v) with respect to u

and v, respectively, at u = S1 and v = S2.

For j = 0, 1 and m = 0, 1, define

a
(1)
jm = −(−1)j exp(β′X) Λ01 S1 [m + (−1)j Du],

a
(2)
jm = −(−1)m exp(β′X) Λ02 S2 [j + (−1)j Dv],

and Bjm = (a
(1)
jm + a

(2)
jm)−1 (−1)m+j Dα . Let ajm = (a

(1)
jm , a

(2)
jm)′ and Zjm be a (p + 1) × 2

matrix in the form of

Zjm =


 X X

Bjm Bjm


 .
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Then the derivative of Sjm with respect to θ is given by ∂
∂θ

Sjm = Zjm · ajm.

Suppose ∂
∂η

log Λ01(t) = b1(t) and ∂
∂η

log Λ02(t) = b2(t), where b1(t) and b2(t) are both

p + 1 dimensional vectors. It can be shown that the derivative of the Sjm with respect to η

is ∂
∂η

Sjm = b · ajm, where b = (b1, b2).

Using the exactly same procedure as that in the previous subsection, we can obtain

the same form of efficient score and information bound for θ but with different definitions of

Zjm, ajm, and b∗. In particular, b∗ = H ∗ G−1, where

G =
1∑

j=0

1∑
m=0

E
[
a⊗2

jm Y λc /Sjm

]

and

H =
1∑

j=0

1∑
m=0

E
[
Zjm a⊗2

jm Y λc /Sjm

]
.

At each time point t, G is a 2× 2 matrix and H a (p + 1)× 2 matrix.

5.3.3 Estimation procedure

Let ajmi, Sjmi, Zjmi, and Yi be defined as ajm, Sjm, Zjm and Y with respect to subject

i. We use the empirical version of the above efficient score as the estimating function, i.e.,

l̇θ∗(Λ0, θ) =
n∑

i=1

1∑
j=0

1∑
m=0

∫ M0

0

(Xjmi − b∗n) ajmi

Sjmi

dNjmi(t) ,

where ajmi, Sjmi , Zjmi and b∗n are all functions of Λ0, θ, and time t. Then we have

b∗n =

∑n
i=1

∑
j,m[Zjmi a

2
jmiYi exp(X ′

iω) / Sjmi]∑n
i=1

∑
j,mi[a

2
jmi Yi exp(X ′

iω) / Sjmi]
(5.5)

at each time tε(0, M0] in the case of common baseline hazard function, and

b∗n(Λ01, Λ02, t) = Hn(Λ01, Λ02, t) ∗G−1
n (Λ01, Λ02, t)
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in the case of different baseline hazard functions, where

Gn =
1

n

n∑
i=1

1∑
j=0

1∑
m=0

[
a⊗2

jmiYi exp(X ′
iω) /Sjmi

]

and

Hn =
1

n

n∑
i=1

1∑
j=0

1∑
m=0

[
Zjmi a

⊗2
jmi Yi exp(X ′

iω) / Sjmi

]
.

Note that the nuisance function Λ0(t) contained implicitly in the estimating function

(5.3) is unknown and the censoring variable C is continuous. Thus, the number of jump

points in the estimate of Λ0 is in the order of O(n). If there exists an estimate Λ̂0 of Λ0

or estimates of Λ01 and Λ02 with n1/3 convergence rate, then θ̂ defined as the root of equa-

tion l̇θ∗ (Λ̂0, θ) = 0 or l̇θ∗ (Λ̂01 Λ̂02, θ) = 0 is efficient and its variance can be consistently

estimated by Î(θ̂)−1, where

Î(θ̂) =
1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫ ((Ẑjmi − b̂∗n)âjmi

Ŝjmi

)⊗2

dNjmi. (5.6)

Here, the notation f̂ means f(Λ̂0) if f is a function of Λ0. The proof is attached in Appendix

C.

It is proved by Huang (1996) that under the proportional hazards model the non-

parametric maximum likelihood estimate (NPMLE) of the cumulative baseline hazard has

a convergence rate n1/3 for univariate current status data with the existence of covariate.

However, there is no close form for the NPMLE. Profile likelihood approach can be used

to obtain the NPMLE for computation purpose. However, the limiting distribution of the

estimate obtained through profile likelihood approach is still not clear yet even though it is

consistent (Huang and Wellner 1996).

For this, in the following, we use the sieve method to obtain a consistent estimator of

Λ0. The idea is to approximate Λ0(t) by a step function with k jump points, where k = nε.

As the number of steps increases along with the sample size, the bias from approximation

57



tends to disappear. Such method was also applied in, for example, Rossini and Tsiatis (1996)

and Huang and Ross(1997) for current status data under the proportional odds model. In

this way, we only need to estimate k parameters for Λ0.

In the following, for simplicity, we focus on the estimation procedure for the case of

common marginal distributions and some minor changes are needed for the case of different

baseline hazard functions in the estimation procedure.

The first step is to obtain a consistent estimator of the cumulative baseline hazard

function Λ0 in terms of k parameters. Marginal approach is used for this purpose. That is,

considering the product of marginal likelihoods as the full likelihood by assuming that the

two events are independent (Goggins and Finkelstein 2000; Kim and Xue 2002). Denote the

maximizer of the product likelihood by (Λ̂, β̃). One can use β̃ as the initial value for β in

the third step below.

Second, calculate b̂∗n at each observed C using the formula (5.5). In this part,the

censoring effect ω can be estimated by using the partial likelihood based on right-censored

data on C. If the censoring variable C is known to be independent of covariate X, then

ω = 0. Then there is no need to estimate ω.

Third, solve the efficient estimating equation l̇θ∗(Λ̂0, θ) = 0 to obtain θ̂ and calculate

the variance estimator Î(θ̂)−1 through (5.6).

When the sieve method is used to approximate the unknown function Λ0, there are only

finite (k + p + 1 for the case of common marginal distribution) parameters to be estimated.

In this case, the full likelihood method can also be used and is efficient under the assumption

that the step function with k jump points is the true baseline. In this situation, the k+p+1

dimensional parameter (Λ′0, β
′, α)′ can be estimated simultaneously. In the next section, this

approach is used as a benchmark for evaluating the proposed method, and we expect that

our proposed method works as well as the full likelihood method since they are both efficient.
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5.4 Simulation Study

In this simulation, 100 subjects are randomly selected to be assigned to treatment and

control groups with equal probability. The two failure times for each subject are generalized

from Clayton-Oakes model Cα(u, v) = (u1−α+v1−α−1)1/(1−α) with the association parameter

α being 2 and 3. For the marginal distribution of the two failure times, the baseline hazard

function is taken to be 1 and the true treatment effect is set to be 0 and 1 .The censoring effect

ω is taken to be 0 and 1 in the simulation. Since Kendall’s τ has a more clear interpretation

of association than α, we summarize the estimate of τ in the following simulation instead of

α̂. For Clayton model, the relationship τ = (α− 1)/(α + 1) can be used to obtain τ̂ through

α̂ and the standard error of τ̂ can be obtained by using the delta method.

As discussed above, the sieve method is used by approximating the baseline hazard

function with a step function. The number of jump points is taken to be n1/3 or k = n2/5.

Jump points are taken to allow approximately equal number of observations within each

interval. Both the proposed method and full likelihood method under this situation are

carried out with 1000 replication. In each of the methods, we calculate the bias, sample

standard error (SSE), average of standard errors (SEE) obtained by using variance formula,

and 95% coverage probability (CP) for the estimators of β and τ .

Tables 5.1 and 5.3 show the performance of the proposed method and the full likelihood

method when the censoring variable is independent of the covariate, while Tables 5.2 and

5.4 show the results when the censoring variable is dependent of covariate with the true

covariate effect w = 1 on the censoring variable.

The simulation results show that the proposed method works well in terms of small

bias, SSE being close to SEE, and the estimated 95% coverage probability being close to

0.95. Also, the proposed method gives similar results as the full likelihood method under

the finite number of parameters, especially the two estimated SEE’s are very close, which

confirms the fact that the estimate of the proposed method is efficient.
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Simulation results are shown in Tables 5.1 and 5.2 when the number of sieve (jump

points) is 5, corresponding to ε = 1/3, and in Tables 3 and 4 in which the number of sieve

is 7, corresponding to ε = 2/5. The estimates show smaller biases and smaller variances

when ε = 1/3 than when ε = 2/5. This suggests that increasing the number of sieve may

not necessarily lead to better results. One possible reason is that estimation of the baseline

function is not easy if there are too many parameters when sample size n is fixed. It is

observed that results become poor when 10 jump points are used, especially the estimation

of nonzero β (Results are not shown here). Similar performance is also reported in Rossini

and Tsiatis (1996).

When sample size is taken to be 200, we observe smaller biases and smaller variances

as expected than in the same setting when n = 100. The results when ε = 1/3 are shown in

Tables 5.5 and 5.6.

5.5 A Real Data Application

This section discusses an illustrative example from an animal tumorigenicity experi-

ment conducted by National Toxicology Program (NTP) discussed in Section 1.1.4. It is a

2-year rodent carcinogenicity study of chloroprene consisting of F344/N rats and B6C3F1

mice with both sexes. The experiment was described and summarized in Dunson and Dinse

(2002), and contained a control group with no chloroprene and three dose groups with 50

rodents in each group. Rodents in the dose groups were exposed to chloroprene at the con-

centration of 12.8, 32, and 80 ppm, respectively, 6 hours per day, 5 days per week for up to

2 years. The occurrence of tumor was determined through a pathologic examination when

the rodents died. Some rodents died during the study. Those rodents who did not die at

the end of the 2-year study were sacrificed regardless of health condition. As in Dunson and

Dinse (2002), we will focus on male rats from the control group and the 80mmp dose group

and only consider adrenal and lung tumor. Thus, we have bivariate current status data with
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univariate censoring and a covariate being the group indicator. Let T1 and T2 denote the age

of onset of adrenal tumor and lung tumor, respectively, and C denote the death time. Let

X denote the group indicator with 1 for the high-dose group and 0 for the control group.

First, we consider if there is any censoring effect between groups, i.e., if there is signifi-

cant difference in death time between the high-dose and control groups. The death times for

the sacrificed rats at the end of study are considered right-censored. Using partial likelihood

method, we obtain ω̂ = 0.4888 with standard error 0.2227, which suggests that the rats in

the high-dose group tend to die earlier than those in the control group.

To check if the two types of tumors have the common baseline hazard function or sur-

vival function, we compute the nonparametric maximum likelihood estimators (NPMLE’s)

of the survival functions of adrenal tumor and lung tumor for both the control and high-dose

groups. As it is shown in the Figure 5.1, the NPMLE’s are quite different for adrenal tumor

and lung tumor and this suggests that the marginal distributions for adrenal tumor and lung

tumor are different.

To analyze this data set, the jump points are taken to be 18, 20, 21, 22, 24, and 25 to

ensure approximately equal number of death times in each interval. Under the assumption of

different baselines and common dose effect, the proposed method gives that the β̂ = 0.4861

with standard error 0.3752 and and τ̂ = 0.1902 with standard error 0.2135 . The estimated

association is positive but not significant and the dose effect is not significant for adrenal

tumor or lung tumor.

To further analyze the data, we apply the proposed method assuming different baselines

and different dose effects and obtain β̂1 = 0.3450 with standard error 0.3919 , β̂2 = 1.2397

with standard error 0.8474 , and τ̂ = 0.2373 with standard error 0.2217 . These results

are quite similar to those under the assumption of common dose effect. Thus, we conclude

that the dose effect is not significant for either adrenal tumor or lung tumor. Also, it seems

that there does not exist significant association between the occurrences of the two types of
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tumors.

5.6 Concluding Remarks

In this chapter, we consider the efficient estimation of regression parameter and associa-

tion parameter for bivariate current status data under the assumption that the joint survival

function of the two interested events follow a copula model. We derive the efficient score

and information bound for the parameters of interest. The key question to carry out the

estimation procedure is to find an uniformly consistent estimate(s) of the unknown baseline

hazard function(s) with n1/3 convergence rate. For this, we propose to use the sieve method

to approximate the baseline hazard function. Simulation results show that the proposed

method works well for finite sample sizes.

In the simulation, we observe that the number of sieve seems to affect the inference re-

sults. When the number is too small, these parameters can not fully represent the variability

of the data. On the contrary, when the number is too large, there are no enough samples

to estimate these parameters. Thus, determining the optimal number of sieve is a worthy

topic. More research is needed on this part.

As an alternative, when the covariate is a binary variable, one can use nonparametric

method to obtain the NPMLE of the baseline survival function and thus the cumulative

hazard function in the control group. This estimate converges at n1/3 rate. However, doing

that may lose efficiency since only the subjects in the control group are used.

In this chapter, to specify the dependence structure, we assume that the joint survival

functions of the two events follow a copula model. However, our proposed method is not

confined within the copula model. Any form of bivariate survival function can be taken and

our proposed method remains valid as long as the marginal distributions are in the form of

the proportional hazards model.
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Chapter 6

Future Research

In this chapter, we briefly discuss some issues that are related to the research presented

in Chapters 2, 3, 4, and 5 and worth more research in the future. In the following, we only

consider case 2 interval-censored data.

6.1 Regression Analysis of Multivariate Interval-censored Data

As mentioned in Chapter 1, both marginal approach and random effect approach can

be used to deal with regression analysis of multivariate interval-censored data. Surprisingly,

only the proportional hazards model has been considered for the marginal distributions in

these approaches (Goggins and Finkelstein, 2000; Kim and Xue, 2002).

Notice that many other models have been applied to univariate interval-censored data

during recent years, such as the accelerated failure time model (Rabinowitz et al. 1995;

Betensky et al. 2001) and the proportional odds model (Huang and Rossini 1997; Rabinowitz

et al. 2000; Zhang et al. 2005). We would like to explore the possibility to generalize their

approaches to regression analysis of multivariate interval-censored data. Both marginal

approach and random effect approach will be considered in the generalization.

No matter what models are used for multivariate situation, a nature problem is whether

the data support the models assumed. A solution to this is to consider model checking, which

is another difficult topic. The approach we have proposed in Chapter 2 may be applied to

check other marginal models.
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6.2 The Estimation of Association Parameter when Covariates

Exist

Estimating the dependency or association of correlated events is an important topic in

survival analysis. We studied the estimation of association parameter for bivariate case 2

interval-censored data without covariate in Chapter 2. In Chapter 5, we considered the effi-

cient estimation of regression parameter and association parameter simultaneously for bivari-

ate current status data. Further interesting research questions include: Does the two-stage

estimation procedure described in Chapter 2 still work when there are covariates available

for case 2 interval-censored data? How can we obtain efficient estimation of the association

parameter when only case 2 interval censored data are available?

For estimation of association parameter, most papers assume the copula model for

the dependence structure. These methods may be sensitive to this model assumption. It is

helpful to study how to check this assumption when interval-censored data are available. Test

statistics can be constructed based on the martingale residuals if proper counting processes

can be defined.
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Appendix

Appendix A: Proof of asymptotic properties of α̂ in Chapter 3

We will use the same notation defined in the previous sections and assume that the following

regularity conditions hold:

(C1) Sr and Hr (r = 1, 2) satisfy model conditions (M1)–(M3) and distribution con-

ditions (D1)–(D4) of Geskus and Groeneboom (1999), where Hr is the joint distribution of

(U (r), V (r)).

(C2) Ψr(t) (r = 1, 2) satisfies functional conditions (F1)–(F3) of Geskus and Groene-

boom (1999).

(C3) ∂3l(α, S1, S2, x, δ)/∂α3, ∂3l(α, S1, S2, x, δ)/∂α2∂S1 and ∂3l(α, S1, S2, x, δ)/∂α2∂S2

are continuous and bounded on the support of Gα for α ∈ N (α0), where N (α0) is a compact

neighbourhood of α0.

(C4) A(α0, S1, S2, Gα0) = −∑
δ

∫
[∂l(α0, S1, S2, x, δ)/∂α]2 gα0(x, δ)dx is negative, where

the summation is over all possible δ.

First, we show the consistency of α̂.

It follows from (C3) that for all α ∈ N (α0),

∣∣∣U(α, Ŝ1, Ŝ2, Gn)− U(α, S1, S2, Gn)
∣∣∣

≤
∫ ∣∣∣∣

∂

∂α
l(α, Ŝ1, Ŝ2, x, δ)− ∂

∂α
l(α, S1, S2, x, δ)

∣∣∣∣ dGn(x, δ)
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≤
∫ ∣∣∣∣

∂

∂α
l(α, Ŝ1, Ŝ2, x, δ)− ∂

∂α
l(α, S1, Ŝ2, x, δ)

∣∣∣∣ dGn(x, δ)

+

∫ ∣∣∣∣
∂

∂α
l(α, S1, Ŝ2, x, δ)− ∂

∂α
l(α, S1, S2, x, δ)

∣∣∣∣ dGn(x, δ)

≤ M0

(
sup

0≤t≤τ1

|Ŝ1(t)− S1(t)|+ sup
0≤t≤τ2

|Ŝ2(t)− S2(t)|
)

,

where M0 is some constant and [0, τ1]× [0, τ2] is the bounded support of S(t1, t2). Hence it

follows from sup0≤t≤τr
|Ŝr(t)− Sr(t)| →p 0 (Groeneboom and Wellner, 1992) that

∣∣∣U(α, Ŝ1, Ŝ2, Gn)− U(α, S1, S2, Gn)
∣∣∣ →p 0 . (A.1)

Furthermore, using the Glivenko-Cantelli theorem and the Dominated Convergence Theo-

rem, we have that for all α ∈ N (α0),

U(α, S1, S2, Gn) →p U(α), (A.2)

where U(α) = E{U(α, S1, S2, Gn)}. Note that U(α̂, Ŝ1, Ŝ2, Gn) = U(α0) = 0. Then it follows

from (A.1), (A.2), (C.4) and the inverse function theorem (Foutz, 1977) that α̂ is a consistent

estimate of α0 (e.g. Hsu and Prentice, 1996).

Now we show asymptotical normality of α̂.

First note that (C3) and the application of Taylor series expansion to U(α̂, Ŝ1, Ŝ2, Gn)

at α = α0 yield

U(α̂, Ŝ1, Ŝ2, Gn)− U(α0, Ŝ1, Ŝ2, Gn) = A(α0, Ŝ1, Ŝ2, Gn)(α̂− α0) + Op(|α̂− α0|2). (A.3)

Similarly to (A.1) and (A2), we have

A(α0, Ŝ1, Ŝ2, Gn) →p A(α0, S1, S2, Gα0) < 0 (A.4)

by (C4). Based on (A.3) and (A.4), to prove Theorem 3.1, it is sufficient to show that
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n1/2U(α0, Ŝ1, Ŝ2, Gn) is asymptotically normally distributed with mean zero and variance

V ar{B(α0, S1, S2, U
(1), V (1), U (2), V (2), ∆)}.

To investigate n1/2U(α0, Ŝ1, Ŝ2, Gn), note that we can rewrite it as

n1/2U(α0, Ŝ1, Ŝ2, Gn) = Rn1 + Rn2 + Rn3 , (A.5)

where

Rn1 = n1/2

∫
∂

∂α
l(α0, S1, S2, x, δ)dGn(x, δ),

Rn2 = n1/2

∫ [
∂

∂α
l(α0, Ŝ1, Ŝ2, x, δ)− ∂

∂α
l(α0, S1, S2, x, δ)

]
dGα0(x, δ)

and

Rn3 = n1/2

∫ [
∂

∂α
l(α0, Ŝ1, Ŝ2, x, δ)− ∂

∂α
l(α0, S1, S2, x, δ)

]
d[Gn(x, δ)−Gα0(x, δ)] .

It can be checked that the first term Rn1 is a sum of i.i.d. variables with mean zero:

Rn1 = n−1/2

n∑
i=1

∂

∂α
l(α0, S1, S2, U

(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i).

For Rn3, note that sup0≤t≤τr
|Ŝr(t) − Sr(t)| →p 0 (Groeneboom and Wellner, 1992), supx

|Gn(x)−Gα0(x)| = Op(n
−1/2) and ∂l(α0, Ŝ1, Ŝ2, x, δ)/∂α is continuous and bounded. It then

follows from the Dominated Convergence Theorem that Rn3 converges to zero in probability.

Now look at Rn2. Under (C3) (e.g. Wang and Ding, 2000), an application of von Mises

expansions to Rn2 gives

Rn2 = n1/2

∫ τ1

0

Ψ1(t)d[Ŝ1(t)− S1(t)] + n1/2

∫ τ2

0

Ψ2(t)d[Ŝ2(t)− S2(t)] + op(1) .

Furthermore, it follows from (C1), (C2) and Theorem 3.2 of Geskus and Groeneboom (1999)

74



that for r = 1, 2,

∫ τr

0

Ψr(t)d[Ŝr(t)− Sr(t)] = −
∫ τr

0

Φr(u, v, δ
(r)
1 , δ

(r)
1 )d[Grn(u, v, δ

(r)
1 , δ

(r)
2 )−Gr(u, v, δ

(r)
1 , δ

(r)
2 )],

(A.6)

where Gr is the subdistribution function of the observed vector (U (r), V (r), ∆
(r)
1 , ∆

(r)
2 ) and

Grn is the empirical estimate of Gr. Thus it follows from (A.5) and (A.6) and the fact that

EΦr(U, V, ∆
(r)
1 , ∆

(r)
2 ) = 0 that

n1/2U(α0, Ŝ1, Ŝ2, Gn) = n−/2

n∑
i=1

B(α0, S1, S2, U
(1)
i , V

(1)
i , U

(2)
i , V

(2)
i , ∆i) + op(1) .

The asymptotic normality of n1/2U(α0, Ŝ1, Ŝ2, Gn) then follows from the central limit theo-

rem.

75



Appendix B: Proof of asymptotic normality of n−1/2Uβ(β0, γ̂) in Chapter 4.

Define

M
(1)
i (t) = N

(1)
i (t) −

∫ t

0

I(s ≤ Ui) λ∗1(s) e−β′0Z∗i (s)+γ′0Zi(s) ds ,

M
(2)
i (t) = N

(2)
i (t) −

∫ t

0

I(ui < s ≤ Vi) λ∗2(s) e−β′0Z∗i (s)+γ′0Zi(s) ds ,

M̃
(1)
i (t) = Ñ

(1)
i (t) −

∫ t

0

I(s ≤ Ui) λ1(s) eγ′0 Zi(s) ds

and

M̃
(2)
2i (t) = Ñ

(2)
i (t) −

∫ t

0

I(ui < s ≤ Vi) λ2(s) eγ′0 Zi(s) ds ,

i = 1, ..., n. Then M
(1)
i (t), and M̃

(1)
i (t) are martingales starting at 0, and M

(2)
i (t) and

M̃
(2)
i (t) are martingales starting at ui.

Also define

A1 ≡ E

(∫ ∞

0

{Z∗
1(t)− s

(1)
1,β(t, β0, γ0)

s
(0)
1,β(t, β0, γ0)

}
N

2I(U1 ≥ t)λ∗1(t) e−β′0Z∗1 (t)+γ′0Z1(t) dt

)
,

A2 ≡ E

(∫ ∞

0

{Z∗
1(t)− s

(1)
2,β(t, β0, γ0)

s
(0)
2,β(t, β0, γ0)

}
N

2I(U1 < t ≤ V1)λ
∗
2(t) e−β′0Z∗1 (t)+γ′0Z1(t) dt

)
,

Ã1 ≡ E

(∫ ∞

0

{Z(
1t)−

s
(1)
1,γ(t, γ0)

s
(0)
1,γ(t, γ0)

}
N

2I(U1 ≥ t)λ1(t) eγ′0Z1(t) dt

)
,

and

Ã2 ≡ E

(∫ ∞

0

{Z1(t)−
s
(1)
2,γ(t, γ0)

s
(0)
2,β(t, γ0)

}
N

2I(U1 < t ≤ V1)λ2(t) eγ′0Z1(t) dt

)
,

where s
(j)
l,γ (t, γ) and s

(j)
l,β(t, β, γ) denote the limits of S

(j)
l,γ (t, γ) and S

(j)
l,β (t, β, γ), respectively,

l = 1, 2, j = 0, 1. Let Aγ = A1 + A2 and B = Ã1 + Ã2 and assume that both Aγ and B

are positive definite. Also let Âγ(β, γ) = n−1 ∂Uβ(β, γ)/∂γ and B̂(γ) = −n−1 ∂Uγ(γ)/∂γ.

Then Aγ and B are the limits of Âγ(β, γ) and B̂(γ) at β0 and γ0, respectively.

To investigate the asymptotic normality of n−1/2 Uβ(β0, γ̂), first note that using the
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Taylor series expansions of Uβ(β0, γ̂) and Uγ(γ̂) around γ0, we have

n−1/2 Uβ(β0, γ̂) = n−1/2 Uβ(β0, γ0) + Aγ B−1 {n−1/2 Uγ(γ0) } + op(1) .

Furthermore, following Lin et al. (1998), it can be shown that

n−1/2 Uβ(β0, γ0) = n−1/2

n∑
i=1

{ a1i(β0, γ0) + a2i(β0, γ0) } + op(1)

and

n−1/2 Uγ(γ0) = n−1/2

n∑
i=1

{ b1i(γ0) + b2i(γ0) } + op(1) ,

where

a1i(β, γ) =

∫ ∞

0

{
Z∗

i (t)− s
(1)
1,β(t, β, γ)

s
(0)
1,β(t, β, γ)

}
dM

(1)
i (t) ,

a2i(β, γ) =

∫ ∞

0

{
Z∗

i (t)− s
(1)
2,β(t, β, γ)

s
(0)
2,β(t, β, γ)

}
dM

(2)
i (t) ,

b1i(γ) =

∫ ∞

0

{
Zi(t) −

s
(1)
1,γ(t, γ)

s
(0)
1,γ(t, γ)

}
dM̃

(1)
i (t) ,

and

b2i(γ) =

∫ ∞

0

{
Zi(t) −

s
(1)
2,γ(t, γ)

s
(0)
2,γ(t, γ)

}
dM̃

(2)
i (t) .

These give that

n−1/2 Uβ(β0, γ̂) = n−1/2

n∑
i=1

αi(β0, γ0) + op(1) ,

where

αi(β, γ) = a1i(β, γ) + a2i(β, γ) + Aγ B−1 { b1i(γ) + b2i(γ) } .

It thus follows from the multivariate central limit theorem or the U -statistic theory (Lee,

1990) that n−1/2 Uβ(β0, γ̂) converges in distribution to a zero-mean normal random vector.
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For estimation of the covariance matrix of n−1/2 Uβ(β0, γ̂), define

â1i(β, γ) =

∫ ∞

0

{
Z∗

i (t)− S
(1)
1,β(t, β, γ)

S
(0)
1,β(t, β, γ)

}{
dN

(1)
i (t)− I(t ≤ Ui) e−β′Z∗i (t)+γ′Zi(t)

nS
(0)
1,β(t, β, γ)

dN (1)(t)

}
,

â2i(β, γ) =

∫ ∞

ui

{
Z∗

i (t)− S
(1)
2,β(t, β, γ)

S
(0)
2,β(t, β, γ)

}

{
dN

(2)
i (t)− I(ui < t ≤ Vi)e

−β′Z∗i (t)+γ′Zi(t)

nS
(0)
2,β(t, β, γ)

dN (2)(t)

}
,

b̂1i(γ) =

∫ ∞

0

{
Zi(t) −

S
(1)
1,γ(t, γ)

S
(0)
1,γ(t, γ)

} {
dÑ

(1)
i (t)− I(t ≤ Ui)e

γ′Zi(t)

nS
(0)
1,γ(t, γ)

dÑ (1)(t)

}

and

b̂2i(γ) =

∫ ∞

ui

{
Zi(t) −

S
(1)
2,γ(t, γ)

S
(0)
2,γ(t, γ)

} {
dÑ

(2)
i (t) − I(ui < t ≤ Vi) eγ′Zi(t)

nS
(0)
2,γ(t, γ)

dÑ (2)(t)

}
,

where N (1)(t) =
∑n

i=1 N
(1)
i (t), N (2)(t) =

∑n
i=1 N

(2)
i (t), Ñ (1)(t) =

∑n
i=1 Ñ

(1)
i (t) and

Ñ (2)(t) =
∑n

i=1 Ñ
(2)
i (t). Then the asymptotic covariance matrix of n−1/2 Uβ(β0, γ̂) can

be consistently estimated by Γ̂ = 1
n

∑n
i=1 α̂i(β̂, γ̂) α̂′i(β̂, γ̂) , where

α̂i(β̂, γ̂) = â1i(β̂, γ̂) + â2i(β̂, γ̂) + Âγ(β̂, γ̂) B̂(γ̂) { b̂1i(γ̂) + b̂2i(γ̂) } .
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Appendix C: Proof of the asymptotical efficiency of θ̂ in Chapter 5.

In this part, we will show that the proposed estimate θ̂ is asymptotically efficient,

i.e., the variance of θ̂ reaches the information bound I−1(θ0). We only consider the case of

different baseline hazard functions since similar but simpler arguments can be applied to the

case of common baseline hazard function.

Denote

Un(θ, Λ01, Λ02) =
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

dNjmi,

where Zjmi, ajmi, Sjmi, Hn, and Gn are all functions of θ, Λ01, and Λ02.

Note that θ̂ is defined as the root of equation Un(θ, Λ̂01, Λ̂02) = 0, where Λ̂01 and Λ̂02

are the estimates of Λ01 and Λ02, respectively, with n−1/3 convergence rate. We assume that

the I(θ0) defined in (5.4) is positive definite.

Lemma 5.1.

n−1/2Un(θ0, Λ01, Λ02)
L→ N(0, I(θ0)). (C1)

Proof.

Un(θ0, Λ01, Λ02)

=
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

dNjmi

=
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

dMjmi

+
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmiYiλcdt

=
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

dMjmi

=
n∑

i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HG−1)ajmi

Sjmi

dMjmi + op(n
1/2).
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In the above, we use the facts that
∑1

j=0

∑1
m=0 Zjmiajmi = 0 and

∑1
j=0

∑1
m=0 ajmi = 0 for

each i. The last step holds since Hn and Gn are the empirical version of H and G.

Thus, Un(θ0, Λ01, Λ02) can be approximated by a sum of i.i.d. martingales. By martin-

gale central limit theorem, n−1/2Un(θ0, Λ01, Λ02) converges weekly to a normal variable with

mean 0 and variance I(θ0).

Lemma 5.2.

n−1/2Un(θ0, Λ̂01, Λ̂02) = n−1/2Un(θ0, Λ01, Λ02) + op(1). (C2)

Proof.

n−1/2U(θ0, Λ̂01, Λ̂02)

= n−1/2

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Ẑjmi − ĤnĜ

−1
n )âjmi

Ŝjmi

dMjmi

+n−1/2

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Ẑjmi − ĤnĜ

−1
n )âjmi

Ŝjmi

SjmiYiλcdt

= V1n + V2n.

First consider V1n. Let

Qjmi(Λ01, Λ02) = (Zjmi −HnG
−1
n )ajmi/Sjmi,

Q
(1)
jmi =

∂

∂u
Qjmi(u, v)|u=Λ01,v=Λ02 ,

and

Q
(2)
jmi =

∂

∂v
Qjmi(u, v)|u=Λ01,v=Λ02 .

Expanding Qjmi(Λ̂01, Λ̂02) around the true value (Λ01, Λ02) and using the bounded property

of the second derivative of Qjmi for any t ε [0, M0], we have

Qjmi(Λ̂01, Λ̂02) = Qjmi(Λ01, Λ02) + Q
(1)
jmi(Λ̂01 − Λ01) + Q

(2)
jmi(Λ̂02 − Λ02)

+O(|Λ̂01 − Λ01|2 + |Λ̂02 − Λ02|2),
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which yields that

V1n = n−1/2Un + n−1/2

n∑
i=1

1∑
j=0

1∑
m=0

∫
[Q

(1)
jmi(Λ̂01 − Λ01) + Q

(2)
jmi(Λ̂02 − Λ02)]dMjmi + op(1),

since |Λ̂01−Λ01|2 + |Λ̂02−Λ02|2 = O(n−2/3). By Lemma A.1 of Lin & Ying (2001), the second

term in the above expression is also op(1). Thus, we have V1n = n−1/2Un + op(1).

Now consider V2n. Expanding Sjmi(Λ01, Λ02) around the estimated value (Λ̂01, Λ̂02)

gives that

Sjmi = Ŝjmi + â
(1)
jmi Λ̂

−1
01 (Λ01 − Λ̂01) + â

(2)
jmiΛ̂

−1
02 (Λ02 − Λ̂02) + O(|Λ̂01 − Λ01|2 + |Λ̂02 − Λ02|2).

Since âjmi = (â
(1)
jmi, â

(2)
jmi)

′ and
∑

j,m â
(k)
jmi = 0 for k = 1, 2, we have

V2n = n−1/2

n∑
i=1

1∑
j=0

1∑
m=0

2∑

k=1

∫
Q̂jmi

[
â

(k)
jmi Λ̂

−1
0k (Λ0k − Λ̂0k)

]
Yiλcdt + op(1)

= n−1/2

∫ 2∑

k=1

Λ̂−1
0k (Λ0k − Λ̂0k)

n∑
i=1

1∑
j=0

1∑
m=0

Q̂jmiâ
(k)
jmiYiλcdt + op(1).

Note that
∑n

i=1

∑1
j=0

∑1
m=0 Q̂jmiâ

(k)
jmkiYiλc = 0 by checking the formulation of Ĥn and Ĝn.

Thus, V2n = op(1).

Lemma 5.3.

n−1 ∂

∂θ
Un(θ, Λ̂01, Λ̂02)|θ=θ0 = n−1 ∂

∂θ
Un(θ, Λ01, Λ02)|θ=θ0 + op(1), (C3)

and

n−1 ∂

∂θ
Un(θ, Λ01, Λ02)|θ=θ0

p→ −I(θ0). (C4)

Proof. (C3) can be proved similarly as the arguments for (C2). To show (C4), we only need

to show that

n−1 ∂

∂θ
Un(θ, Λ01, Λ02)|θ=θ0

p→ −I(θ0)
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based on (C3).

n−1 ∂

∂θ
Un(θ, Λ01, Λ02)|θ=θ0

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

S2
jmi

(Zjmiajmi)
′dNjmi

+
1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
[
∂

∂θ
(Zjmi −HnG

−1
n )ajmi]S

−1
jmidNjmi

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

S2
jmi

(Zjmiajmi)
′dMjmi

− 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

(Zjmiajmi)
′Yiλcdt

+
1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
[
∂

∂θ
(Zjmi −HnG

−1
n )ajmi]S

−1
jmidMjmi

+
1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
[
∂

∂θ
(Zjmi −HnG

−1
n )ajmi]Yiλcdt

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

(Zjmiajmi)
′Yiλcdt + op(1)

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫ (
(Zjmi −HnG

−1
n )ajmi

)⊗2
S−1

jmiYiλcdt

− 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫
(Zjmi −HnG

−1
n )ajmi

Sjmi

(HnG
−1
n ajmi)

′Yiλcdt + op(1)

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫ (
(Zjmi −HnG

−1
n )ajmi

)⊗2
S−1

jmiYiλcdt

−
∫

(HnG
−1
n H ′

n −HnG
−1
n GnG

−1
n H ′

n)dt + op(1)

= − 1

n

n∑
i=1

1∑
j=0

1∑
m=0

∫ (
(Zjmi −HnG

−1
n )ajmi

)⊗2
S−1

jmiYiλcdt + op(1)

p→ −I(θ0).

In the third step, we use the fact

1∑
j=0

1∑
m=0

∂

∂θ
(Zjmi −HnG

−1
n )ajmi = 0
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based on the facts that
∑1

j=0

∑1
m=0 Zjmiajmi = 0,

∑1
j=0

∑1
m=0 ajmi = 0 for each i, and Hn

and Gn are free of j, m and i.

Theorem 5.1. Given that (C1)-(C4), θ̂ is asymptotically efficient.

Proof. For any θ in a neighborhood of θ0, we can show that n−1Un(θ, Λ̂01, Λ̂02) is asymptot-

ically equivalent to n−1Un(θ, Λ01, Λ02) by the arguments similar as the proof of (C2). Also,

it is easy to show that n−1Un(θ, Λ01, Λ02) → V (θ) a.s., where

V (θ) =
1∑

j=0

1∑
m=0

E

∫
(Zjm −HG−1)ajm

Sjm

(θ, Λ01, Λ02) Sjm(θ0, Λ01, Λ02)Yiλcdt.

Note that Un(θ̂, Λ̂01, Λ̂02) = V (θ0) = 0. Thus, based on the above facts and (C3)-(C4),

it follows the inverse function theorem (Foutz, 1977) that θ̂ is a consistent estimate of θ0.

The normality of θ̂ is obtained by using Taylor expansion given (C1)-(C4) and the con-

sistency of θ̂. θ̂ is asymptotically efficient since the variance of θ̂ converges to the information

bound I−1(θ0).
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Table 1.1: Intervals (in months) of cosmetic deterioration (retraction) for early breast cancer
patients

Radiotherapy Alone Radio- and Chemotherapy

(45,∞) (25, 37] (37,∞) (8, 12] (0, 5] (30, 34]

(6, 10] (46,∞) (0, 5] (0, 22] (5, 8] (13,∞)

(0, 7] (26, 40] (18,∞) (24, 31] (12, 20] (10, 17]

(46,∞) (46,∞) (24,∞) (17, 27] (11,∞) (8, 21]

(46,∞) (27, 34] (36,∞) (17, 23] (33, 40] (4, 9]

(7, 16] (36, 44] (5, 11] (24, 30] (31,∞) (11,∞)

(17,∞) (46,∞) (19, 35] (16, 24] (13, 39] (14, 19]

(7, 14] (36, 48] (17, 25) (13,∞) (19, 32] (4, 8]

(37, 44] (37,∞) (24,∞) (11, 13] (34,∞) (34,∞)

(0, 8] (40,∞) (32,∞) (16, 20] (13,∞) (30, 36]

(4, 11] (17, 25] (33,∞) (18, 25] (16, 24] (18, 24]

(15,∞) (46,∞) (19, 26] (17, 26] (35,∞) (16, 60]

(11, 15] (11, 18] (37,∞) (32,∞) (15, 22] (35, 39]

(22,∞) (38,∞) (34,∞) (23,∞) (11, 17] (21,∞)

(46,∞) (5, 12] (36,∞) (44, 48] (22, 32] (11, 20]

(46,∞) (14, 17] (10, 35] (48,∞)

Note: A right endpoint ∞ indicates observation is right-censored
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Table 1.2: Data on the occurance of adrenal and lung tumors by the time of death for 100
male rats in the NTP study of chloroprene given in Dunson and Dinse (2002)

age at deatha Control group High dose group

(months) 0 ppm 80 ppm

11 0 0 0 0b 2 0 0 0

16 1 0 0 0 2 0 0 0

17 1 0 0 0 1 0 0 0

18 4 0 0 0 5 0 0 1

19 3 0 0 0 3 0 0 0

20 4 2 0 0 4 0 0 0

21 2 2 1 0 7 3 0 1

22 5 3 1 0 5 0 0 1

23 0 0 0 0 2 2 1 0

24 3 4 0 0 0 5 0 0

25 1 0 0 0 0 1 0 0

25c 5 8 0 0 0 2 0 2

Total 29 19 2 0 31 13 1 5

a Day of death data are grouped into month for this summary table.

b Number of rats with no tumors, only adrenal, only lung, and both tumors, respectively.

c Animals sacrificed at the end of study.
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Table 2.1: Estimated sizes of the goodness-of-fit test

β=0 β=0.10 β=0.25 β=0.50

c = 0 0.054 0.057 0.056 0.049

c = 1 0.053 0.051 0.046 0.048

Table 2.2: Estimated powers of the goodness-of-fit test

λ1 λ2 λ3

β = 0.10 0.128 0.542 0.993

β = 0.25 0.289 0.923 0.998

β = 0.50 0.606 0.970 0.995
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Table 3.1: Simulation results for estimation of α and τ

τ Estimate Bias SSE ESE CP

n = 200

1/3 τ̃ -0.0018 0.0523 0.0534 0.9540

α̃ 0.0109 0.2421 0.2442 0.9600

τ̂ 0.0003 0.0563 0.0589 0.9520

α̂ 0.0230 0.2594 0.2743 0.9540

1/2 τ̃ 0.0034 0.0469 0.0468 0.9460

α̃ 0.0639 0.3945 0.3917 0.9520

τ̂ 0.0019 0.0557 0.0567 0.9400

α̂ 0.0697 0.4942 0.4850 0.9580

n = 400

1/3 τ̃ 0.0001 0.0385 0.0379 0.9420

α̃ 0.0103 0.1732 0.1722 0.9460

τ̂ 0.0002 0.0425 0.0410 0.9340

α̂ 0.0131 0.1929 0.1876 0.9360

1/2 τ̃ -0.0015 0.0326 0.0331 0.9500

α̃ 0.0050 0.2649 0.2673 0.9540

τ̂ 0.0026 0.0363 0.0380 0.9540

α̂ 0.0426 0.2979 0.3137 0.9640
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Table 4.1: Simulation results for estimation of β0 and γ0 (part 1)

n = 100 n = 200

true est Bias SSE SEE CP Bias SSE SEE CP

γ = 1 γ̂ 0.0056 0.1660 0.1620 0.950 0.0076 0.1067 0.1142 0.954

β = −0.2 β̂ -0.0019 0.3726 0.3578 0.950 -0.0046 0.2627 0.2513 0.952

γ = 1 γ̂ 0.0162 0.1648 0.1629 0.946 0.0022 0.1147 0.1148 0.950

β = 0 β̂ -0.0159 0.4082 0.3862 0.942 -0.0163 0.2717 0.2692 0.952

γ = 1 γ̂ 0.0123 0.1672 0.1629 0.950 0.0123 0.1158 0.1151 0.950

β = 0.2 β̂ 0.0192 0.4440 0.4169 0.950 -0.0043 0.3076 0.2912 0.944

γ = −1 γ̂ -0.0079 0.1635 0.1628 0.940 -0.0058 0.1183 0.1149 0.954

β = 0.2 β̂ -0.0040 0.3760 0.3502 0.944 -0.0003 0.2635 0.2409 0.944

γ = −1 γ̂ 0.0029 0.1685 0.1623 0.948 -0.016 0.1187 0.1152 0.946

β = 0 β̂ -0.0164 0.3361 0.3143 0.940 0.0211 0.2376 0.2229 0.948

γ = −1 γ̂ -0.0223 0.1629 0.1633 0.944 -0.0154 0.1182 0.1152 0.954

β = −0.2 β̂ -0.0154 0.3049 0.2897 0.950 -0.0079 0.1970 0.1985 0.952

88



Table 4.2: Simulation results for estimation of β0 and γ0 (part 2)

γ β Estimte Bias SSE SEE CP

0 0 γ̂ 0.0008 0.1461 0.1437 0.954

β̂ 0.0212 0.5987 0.5643 0.952

0.5 γ̂ -0.0003 0.1481 0.1435 0.944

β̂ 0.0130 0.6558 0.6397 0.950

−0.5 γ̂ 0.0025 0.1513 0.1435 0.946

β̂ -0.0215 0.5247 0.5044 0.948

0.5 0 γ̂ -0.0267 0.1499 0.1486 0.948

β̂ -0.0021 0.6573 0.6068 0.940

.5 γ̂ -0.0273 0.1517 0.1492 0.954

β̂ 0.0385 0.7209 0.6872 0.950

-.5 γ̂ -0.0271 0.1501 0.1482 0.944

β̂ 0.0498 0.5151 0.5416 0.958

-0.5 0 γ̂ 0.0343 0.1481 0.1479 0.942

β̂ 0.0443 0.5917 0.5733 0.954

.5 γ̂ 0.0293 0.1512 0.1487 0.946

β̂ 0.0648 0.7254 0.6456 0.950

-.5 γ̂ 0.0244 0.151 0.1489 0.942

β̂ 0.0621 0.4904 0.5007 0.950
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Table 5.1: Simulation results when the censoring variable is independent of covariate, i.e.,
w = 0. The number of sieve is k = 5 and the sample size is n = 100.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0004 0.2632 0.2609 0.939 -0.0036 0.2709 0.2629 0.939

1/3 τ̂ -0.0152 0.1199 0.1129 0.930 -0.0180 0.1198 0.1148 0.937

1 β̂ 0.0693 0.3241 0.2988 0.948 0.0663 0.3256 0.3068 0.959

1/3 τ̂ -0.0111 0.1185 0.1189 0.939 -0.0147 0.1183 0.1211 0.949

0 β̂ 0.0034 0.2731 0.2761 0.955 -0.0033 0.2805 0.2775 0.953

1/2 τ̂ -0.0100 0.1058 0.1055 0.947 -0.0126 0.1062 0.1066 0.946

1 β̂ 0.0754 0.3390 0.3180 0.948 0.0709 0.3490 0.3254 0.950

1/2 τ̂ -0.0032 0.1104 0.1123 0.939 -0.0061 0.1110 0.1135 0.939

Table 5.2: Simulation results when the censoring variable is dependent of covariate and the
censoring effect w = 1. The number of sieve is k = 5 and the sample size is n = 100.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0511 0.3102 0.3190 0.951 0.0188 0.3367 0.3265 0.949

1/3 τ̂ -0.0134 0.1227 0.1218 0.942 -0.0157 0.1226 0.1215 0.943

1 β̂ 0.0027 0.3482 0.32851 0.948 0.0565 0.3397 0.3394 0.957

1/3 τ̂ -0.0088 0.1154 0.1120 0.939 -0.0119 0.1153 0.1120 0.942

0 β̂ -0.0624 0.3172 0.3350 0.957 0.0067 0.3474 0.3416 0.954

1/2 τ̂ -0.0163 0.1127 0.1116 0.932 -0.0182 0.1126 0.1114 0.934

1 β̂ 0.0152 0.3684 0.3476 0.943 0.0677 0.3600 0.3590 0.960

1/2 τ̂ -0.0103 0.1070 0.1049 0.930 -0.0132 0.1074 0.1049 0.934
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Table 5.3: Simulation results when the censoring variable is independent of covariate, i.e.,
w = 0. The number of sieve is k = 7 and the sample size is n = 100.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0467 0.2522 0.2667 0.942 -0.0537 0.2938 0.2630 0.925

1/3 τ̂ -0.0206 0.1111 0.1144 0.949 -0.0206 0.1109 0.1151 0.951

1 β̂ 0.1153 0.3285 0.3098 0.953 0.0894 0.3360 0.3119 0.939

1/3 τ̂ -0.0114 0.1170 0.1217 0.950 -0.0112 0.1160 0.1225 0.955

0 β̂ -0.0428 0.2477 0.2825 0.962 -0.0496 0.2954 0.2769 0.949

1/2 τ̂ -0.0131 0.1030 0.1063 0.955 -0.0151 0.1028 0.1072 0.957

1 β̂ 0.1293 0.3542 0.3305 0.948 0.0886 0.3699 0.3271 0.929

1/2 τ̂ -0.0140 0.1111 0.1153 0.956 -0.0130 0.1099 0.1158 0.954

Table 5.4: Simulation results when the censoring variable is dependent of covariate and the
censoring effect w = 1. The number of sieve is k = 7 and the sample size is n = 100.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0834 0.2499 0.3244 0.964 -0.0849 0.3336 0.3244 0.941

1/3 τ̂ -0.0095 0.1142 0.1247 0.962 -0.0113 0.1156 0.1244 0.953

1 β̂ 0.0926 0.3658 0.3417 0.945 0.1026 0.3741 0.3493 0.941

1/3 τ̂ -0.0241 0.1116 0.1151 0.944 -0.0261 0.1116 0.1155 0.942

0 β̂ -0.0566 0.2612 0.3409 0.964 -0.0560 0.3646 0.3409 0.943

1/2 τ̂ -0.0190 0.1147 0.1134 0.942 -0.0208 0.1160 0.1133 0.941

1 β̂ 0.1180 0.3796 0.3575 0.934 0.1258 0.3938 0.3668 0.934

1/2 τ̂ -0.0207 0.1052 0.1075 0.949 -0.0220 0.1048 0.1077 0.949
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Table 5.5: Simulation results when the censoring variable is independent of covariate, i.e.,
w = 0. The number of sieve is k = 6 and the sample size is n = 200.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0062 0.1711 0.1817 0.967 -0.0058 0.1735 0.1815 0.966

1/3 τ̂ -0.0051 0.0809 0.0790 0.953 -0.0070 0.0809 0.0795 0.952

1 β̂ 0.0312 0.2075 0.2036 0.957 0.0278 0.2103 0.2063 0.950

1/3 τ̂ -0.0029 0.0853 0.0830 0.937 -0.0052 0.0854 0.0836 0.939

0 β̂ -0.0092 0.1831 0.1919 0.958 -0.0098 0.1876 0.1914 0.955

1/2 τ̂ 0.0008 0.0694 0.0736 0.957 -0.0009 0.0694 0.0739 0.961

1 β̂ 0.0377 0.2213 0.2162 0.958 0.0352 0.2217 0.2198 0.948

1/2 τ̂ 0.0030 0.0826 0.0785 0.929 0.0012 0.0829 0.0787 0.932

Table 5.6: Simulation results when the censoring variable is dependent of covariate with
censoring effect w = 1. The number of sieve is k = 6 and the sample size is n = 200.

Likelihood method Proposed method

Bias SSE SEE CP Bias SSE SEE CP

0 β̂ -0.0561 0.2107 0.2232 0.950 -0.0017 0.2207 0.2247 0.959

1/3 τ̂ -0.0020 0.0858 0.0858 0.952 -0.0034 0.0860 0.0854 0.943

1 β̂ -0.0049 0.2357 0.2250 0.935 0.0287 0.2322 0.2275 0.941

1/3 τ̂ -0.0030 0.0828 0.0785 0.938 -0.0054 0.0828 0.0784 0.934

0 β̂ -0.0663 0.2224 0.2338 0.954 -0.0174 0.2356 0.2347 0.956

1/2 τ̂ -0.0053 0.0768 0.0782 0.952 -0.0067 0.0766 0.0780 0.951

1 β̂ -0.0023 0.2493 0.2375 0.946 0.0311 0.2462 0.2393 0.947

1/2 τ̂ -0.0013 0.0748 0.0734 0.939 -0.0034 0.0751 0.0733 0.937
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Figure 2.1: Standardized test processes based on simulated data with 50 replications; The
top plot is under null hypothesis and the bottom plot is under alternative hypothesis.
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Figure 2.2: Estimates of survival functions under nonparametric setting and Cox model
setting with the same baseline hazard function for urine shedding and blood shedding.
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Figure 2.3: Estimates of survival functions under nonparametric setting and Cox model
setting with different baseline hazard functions for urine shedding and blood shedding.
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Figure 4.1: Maximum likelihood estimators of the two survival functions
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Figure 4.2: Ratios of estimated survival functions in log and log-log scales
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Figure 5.1: Nonparametric maximum likelihood estimators of the survival functions of
adrenal tumor and lung tumor in the high dose group and the control group.
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