THE CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR AND ACID-BASE TRANSPORTERS OF THE MURINE DUODENUM

Janet Elizabeth Simpson

Dr. Lane Clarke, Dissertation Supervisor

ABSTRACT

The alkaline mucus barrier of the duodenum plays an important role in protecting the epithelium from acidic chyme entering from the stomach. Active HCO_3^{-1} secretion involves the apical membrane activities of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl⁻ channel, the protein that is defective in cystic fibrosis (CF), and Cl⁻ /HCO₃⁻ exchangers. Under basal conditions, studies of CF patients and mouse models indicate that HCO_3^- secretion by anion exchange predominates. In addition, basal $HCO_3^$ secretion is reduced in the CF duodenum, but the specific pathophysiology for this deficiency has yet to be elucidated. Our studies reveal that Cl⁻ channel activity by CFTR facilitates apical membrane Cl_{in}/HCO₃ out exchange by providing a Cl⁻ 'leak' and is responsible for the reduced rate of Cl^{-}/HCO_{3}^{-} exchange in the murine CF intestine. Using mice with gene-targeted deletions of the apical membrane Cl^{-}/HCO_{3}^{-} exchangers PAT-1, DRA, and AE4, PAT-1 was found to be the major Cl^{-}/HCO_{3}^{-} exchanger of the upper villus of the duodenum. Interestingly, these studies also revealed a novel role for PAT-1 as a base-importer (i.e., CI_{out}/HCO_{3in}) whereby it interacts with carbonic anhydrase II (CAII), the most widely expressed isozyme of the small intestine, during H^+ /peptide transport to minimize intracellular acidification and sustain nutrient absorption.