ROLE OF PROα2(I) COLLAGEN CHAINS AND COLLAGEN CROSSLINKING IN THORACIC AORTIC BIOMECHANICAL INTEGRITY DURING AGING USING THE *OIM* MOUSE MODEL

Brent J. Pfeiffer

Dr Charlotte L. Phillips, Dissertation Supervisor

ABSTRACT

Type I collagen, normally a heterotrimeric molecule of two α 1(I) and one $\alpha 2(I)$ collagen chains, is the major contributor to a rtic strength (F_{max}) and stiffness (IEM). We used the *oim* (osteogenesis imperfecta mouse) model, which synthesizes only homotrimeric type I collagen molecules $[\alpha 1(I)_3]$, to assess a ortic integrity when $\alpha 2(I)$ chains are absent from the type I collagen molecule and the effect of age-associated changes. We evaluated *oim*, heterozygote, and wildtype thoracic aortas at 3, 8, and 18-months of age for circumferential F_{max}/IEM, histology, aortic extracellular matrix (ECM) expression, collagen content, and collagen crosslinking. Oim thoracic aortas exhibited reduced F_{max} and IEM, collagen staining, and collagen content at each age class. Aortic ECM expression exhibited age-associated reductions in expression; no genotypeassociated differences were shown. Despite increased collagen crosslinking in oim aortas, homotrimeric fibrils remained inherently weaker than heterotrimeric fibrils. All genotypes exhibited age-associated increases in F_{max}/IEM and collagen content; yet, collagen crosslinking did not correlate with increasing age, suggesting alternative mechanisms are responsible for the age-associated increases in aortic integrity.