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POTENTIAL THEORY AND HARMONIC ANALYSIS METHODS
FOR QUASILINEAR AND HESSIAN EQUATIONS

Nguyen Cong Phuc

Dr. Igor E. Verbitsky, Dissertation Supervisor

ABSTRACT

The existence problem is solved, and global pointwise estimates of solutions are

obtained for quasilinear and Hessian equations of Lane–Emden type, including the

following two model problems:

−∆pu = uq + µ, Fk[−u] = uq + µ, u ≥ 0,

on Rn, or on a bounded domain Ω ⊂ Rn. Here ∆p is the p-Laplacian defined by

∆pu = div (∇u|∇u|p−2), and Fk[u] is the k-Hessian defined as the sum of k × k

principal minors of the Hessian matrix D2u (k = 1, 2, . . . , n); µ is a nonnegative

measurable function (or measure) on Ω.

The solvability of these classes of equations in the renormalized (entropy) or

viscosity sense has been an open problem even for good data µ ∈ Ls(Ω), s > 1.

Such results are deduced from our existence criteria with the sharp exponents

s = n(q−p+1)
pq

for the first equation, and s = n(q−k)
2kq

for the second one. Further-

more, a complete characterization of removable singularities for each corresponding

homogeneous equation is given as a consequence of our solvability results.
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Chapter 1

Introduction

In this work, we study a class of quasilinear and fully nonlinear equations and

inequalities with nonlinear source terms, which appear in such diverse areas as

quasi-regular mappings, non-Newtonian fluids, elasticity, reaction-diffusion prob-

lems, and stochastic control. In particular, the following two model equations are

of substantial interest:

(1.1) −∆pu = f(x, u), Fk[−u] = f(x, u),

on Rn, or on a bounded domain Ω ⊂ Rn, where f(x, u) is a nonnegative function,

convex and nondecreasing in u for u ≥ 0. Here ∆pu = div (∇u |∇u|p−2) is the

p-Laplacian (p > 1), and Fk[u] is the k-Hessian (k = 1, 2, . . . , n) defined by

(1.2) Fk[u] =
∑

1≤i1<···<ik≤n

λi1 · · ·λik ,

where λ1, . . . , λn are the eigenvalues of the Hessian matrix D2u. In other words,

Fk[u] is the sum of the k × k principal minors of D2u, which coincides with the
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Laplacian F1[u] = ∆u if k = 1, and the Monge–Ampère operator Fn[u] = det (D2u)

if k = n.

The form in which we write the second equation in (1.1) is chosen only for

the sake of convenience, in order to emphasize the profound analogy between the

quasilinear and Hessian equations. Obviously, it may be stated as (−1)k Fk[u] =

f(x, u), u ≥ 0, or Fk[u] = f(x,−u), u ≤ 0.

The existence and regularity theory, local and global estimates of sub- and

super-solutions, the Wiener criterion, and Harnack’s inequalities associated with

the p-Laplacian, as well as more general quasilinear operators, can be found in

[HKM], [IM], [KM2], [M1], [MZ], [S1], [S2], [SZ], [TW4] where many fundamental

results, and relations to other areas of analysis and geometry are presented.

The theory of fully nonlinear equations of Monge-Ampère type which involve

the k-Hessian operator Fk[u] was originally developed by Caffarelli, Nirenberg and

Spruck, Ivochkina, and Krylov in the classical setting. We refer to [CNS], [GT],

[Gu], [Iv], [Kr], [Ur], [Tru3], [TW1] for these and further results. Recent develop-

ments concerning the notion of the k-Hessian measure, weak continuity, and point-

wise potential estimates due to Trudinger and Wang [TW2]–[TW4], and Labutin

[L] are used extensively in this thesis.

We are specifically interested in quasilinear and fully nonlinear equations of
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Lane–Emden type:

(1.3) −∆pu = uq, and Fk[−u] = uq, u ≥ 0 in Ω,

where p > 1, q > 0, k = 1, 2, . . . , n, and the corresponding nonlinear inequalities:

(1.4) −∆pu ≥ uq, and Fk[−u] ≥ uq, u ≥ 0 in Ω.

The latter can be stated in the form of the inhomogeneous equations with measure

data,

(1.5) −∆pu = uq + µ, Fk[−u] = uq + µ, u ≥ 0 in Ω,

where µ is a nonnegative Radon measure on Ω.

The difficulties arising in studies of such equations and inequalities with compet-

ing nonlinearities are well known. In particular, (1.3) may have singular solutions

[SZ]. The existence problem for (1.5) has been open ([BV2], Problems 1 and 2; see

also [BV1], [BV3], [Gre]) even for the quasilinear equation−∆pu = uq+f with good

data f ∈ Ls(Ω), s > 1. Here solutions are generally understood in the renormalized

(entropy) sense for quasilinear equations on bounded domains, potential-theoretic

sense for quasilinear equations on Rn, and viscosity, or k-convexity sense, for fully

nonlinear equations of Hessian type (see [BMMP], [DMOP], [JLM], [KM1], [TW1]–

[TW3], [Ur]).

In this thesis, we present a unified approach to (1.3)–(1.5) which makes it

possible to attack a number of open problems. It is based on global pointwise
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estimates, nonlinear integral inequalities in Sobolev spaces of fractional order, and

analysis of dyadic models, along with the Hessian measure and weak continuity

results [TW2]–[TW4]. The latter are used to bridge the gap between the dyadic

models and partial differential equations. Some of these techniques were developed

in the linear case, in the framework of Schrödinger operators and harmonic analysis

[ChWW], [Fef], [KS], [NTV], [V1], [V2], and applications to semilinear equations

[KV], [VW], [V3].

Our goal is to establish necessary and sufficient conditions for the existence

of solutions to (1.5), sharp pointwise and integral estimates for solutions to (1.4),

and a complete characterization of removable singularities for (1.3). We are mostly

concerned with admissible solutions to the corresponding equations and inequali-

ties. However, even for locally bounded solutions, as in [SZ], our results yield new

pointwise and integral estimates, and Liouville-type theorems.

In the “linear case” p = 2 and k = 1, problems (1.3)–(1.5) with nonlinear

sources are associated with the names of Lane and Emden, as well as Fowler.

Authoritative historical and bibliographical comments can be found in [SZ]. An

up-to-date survey of the vast literature on nonlinear elliptic equations with mea-

sure data is given in [Ver], including a thorough discussion of related work due to

Adams and Pierre [AP], Baras and Pierre [BP], Berestycki, Capuzzo-Dolcetta, and

Nirenberg [BCDN], Brezis and Cabré [BC], Kalton and Verbitsky [KV].
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It is worth mentioning that related equations with absorption,

(1.6) −∆u + uq = µ, u ≥ 0 in Ω,

were studied in detail by Bénilan and Brezis, Baras and Pierre, and Marcus and

Véron analytically for 1 < q < ∞, and by Le Gall, and Dynkin and Kuznetsov

using probabilistic methods when 1 < q ≤ 2 (see [D], [Ver]). For a general class of

semilinear equations

(1.7) −∆u + g(u) = µ, u ≥ 0 in Ω,

where g belongs to the class of continuous nondecreasing functions such that g(0) =

0, sharp existence results have been obtained quite recently by Brezis, Marcus, and

Ponce [BMP]. It is well known that equations with absorption generally require

“softer” methods of analysis, and the conditions on µ which ensure the existence

of solutions are less stringent than in the case of equations with source terms.

Quasilinear problems of Lane–Emden type (1.3)–(1.5) have been studied ex-

tensively over the past 15 years. Universal estimates for solutions, Liouville-type

theorems, and analysis of removable singularities are due to Bidaut-Véron, Miti-

dieri and Pohozaev [BV1]–[BV3], [BVP], [MP], and Serrin and Zou [SZ]. (See also

[BiD], [Gre], [Ver], and the literature cited there.) The profound difficulties in this

theory are highlighted by the presence of the two critical exponents,

(1.8) q∗ = n(p−1)
n−p

, q∗ = n(p−1)+p
n−p

,
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where 1 < p < n. As was shown in [BVP], [MP], and [SZ], the quasilinear inequality

(1.5) does not have nontrivial weak solutions on Rn, or exterior domains, if q ≤ q∗.

For q > q∗ , there exist u ∈ W 1, p
loc ∩L∞

loc which obey (1.4), as well as singular solutions

to (1.3) on Rn. However, for the existence of nontrivial solutions u ∈ W 1,p
loc ∩ L∞

loc

to (1.3) on Rn, it is necessary and sufficient that q ≥ q∗ [SZ]. In the “linear case”

p = 2, this is classical [GS], [BP], [BCDN].

The following local estimates of solutions to quasilinear inequalities are used

extensively in the studies mentioned above (see, e.g., [SZ], Lemma 2.4). Let BR

denote a ball of radius R such that B2R ⊂ Ω. Then, for every solution u ∈

W 1,p
loc ∩ L∞

loc to the inequality −∆pu ≥ uq in Ω,

∫
BR

uγ dx ≤ C R
n− γp

q−p+1 , 0 < γ < q,(1.9) ∫
BR

|∇u|
γp

q+1 dx ≤ C R
n− γp

q−p+1 , 0 < γ < q,(1.10)

where the constants C in (1.9) and (1.10) depend only on p, q, n, γ. Note that (1.9)

holds even for γ = q (cf. [MP]), while (1.10) generally fails in this case. In what

follows, we will substantially strengthen (1.9) in the end-point case γ = q, and

obtain global pointwise estimates of solutions.

In [PV1], we proved that all compact sets E ⊂ Ω of zero Hausdorff measure,

H
n− pq

q−p+1 (E) = 0, are removable singularities for the equation −∆pu = uq, q >

q∗. Earlier results of this kind, under a stronger restriction cap
1,

pq
q−p+1

+ε
(E) = 0

for some ε > 0, are due to Bidaut-Véron [BV3]. Here cap1, s(·) is the capacity
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associated with the Sobolev space W 1, s.

In fact, much more is true. We will show below that a compact set E ⊂ Ω is a

removable singularity for −∆pu = uq if and only if it has zero fractional capacity:

cap
p,

q
q−p+1

(E) = 0. Here capα, s stands for the Bessel capacity associated with the

Sobolev space Wα, s which is defined in Section 2.1. We observe that the usual

p-capacity cap1, p used in the studies of the p-Laplacian [HKM], [KM2] plays a

secondary role in the theory of equations of Lane–Emden type. Relations between

these and other capacities used in nonlinear PDE are discussed in [AH], [M2], and

[V4].

Our characterization of removable singularities is based on the solution of the

existence problem for the equation

(1.11) −∆pu = uq + µ, u ≥ 0,

with nonnegative measure µ obtained in Chapter 6. Main existence theorems

for quasilinear equations are stated below (Theorems 5.4 and 6.5). Here we only

mention the following corollary in the case Ω = Rn: If (1.11) has an admissible

solution u, then

(1.12)

∫
BR

dµ ≤ C R
n− pq

q−p+1 ,

for every ball BR in Rn, where C = C(p, q, n), provided 1 < p < n and q > q∗; if

p ≥ n or q ≤ q∗, then µ = 0.
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Conversely, suppose that 1 < p < n, q > q∗, and dµ = f dx, f ≥ 0, where

(1.13)

∫
BR

f 1+ε dx ≤ C R
n−

(1+ε)pq
q−p+1

for some ε > 0. Then there exists a constant C0(p, q, n) such that (1.11) has an

admissible solution on Rn if C ≤ C0(p, q, n).

The preceding inequality is an analogue of the classical Fefferman–Phong condi-

tion [Fef], which appeared in applications to Schrödinger operators. In particular,

(1.13) holds if f ∈ Ln(q−p+1)/pq,∞(Rn). Here Ls,∞ stands for the weak Ls space.

This sufficiency result, which to the best of our knowledge is new even in the Ls

scale, provides a comprehensive solution to Problem 1 in [BV2]. Notice that the

exponent s = n(q−p+1)
pq

is sharp. Broader classes of measures µ (possibly singular

with respect to Lebesgue measure) which guarantee the existence of admissible

solutions to (1.11) will be discussed in the sequel.

A substantial part of our work is concerned with integral inequalities for non-

linear potential operators, which are at the heart of our approach. We employ the

notion of Wolff’s potential introduced originally in [HW] in relation to the spectral

synthesis problem for Sobolev spaces. For a nonnegative Radon measure µ on Rn,

s ∈ (1, +∞), and α > 0, the Wolff’s potential Wα, s µ is defined by

(1.14) Wα, s µ(x) =

∫ ∞

0

[µ(Bt(x))

tn−αs

] 1
s−1 dt

t
, x ∈ Rn.

We write Wα, s f in place of Wα, s µ if dµ = fdx, where f ∈ L1
loc(Rn), f ≥ 0. When
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dealing with equations in a bounded domain Ω ⊂ Rn, a truncated version is useful:

(1.15) Wr
α, s µ(x) =

∫ r

0

[µ(Bt(x))

tn−αs

] 1
s−1 dt

t
, x ∈ Ω,

where 0 < r ≤ 2diam(Ω). In many instances, it is more convenient to work with

the dyadic version, also introduced in [HW]:

(1.16) Wα, s µ(x) =
∑
Q∈D

[ µ(Q)

`(Q)n−αs

] 1
s−1

χQ(x), x ∈ Rn,

where D = {Q} is the collection of the dyadic cubes Q = 2i(k +[0, 1)n), i ∈ Z, k ∈

Zn, and `(Q) is the side length of Q.

An indispensable source on nonlinear potential theory is provided by [AH],

where the fundamental Wolff’s inequality and its applications are discussed. Very

recently, an analogue of Wolff’s inequality for general dyadic and radially decreasing

kernels was obtained in [COV]; some of the tools developed there are employed

below.

The dyadic Wolff’s potentials appear in the following discrete model of (1.5)

studied in Chapter 4:

(1.17) u = Wα, s uq + f, u ≥ 0.

As it turns out, this nonlinear integral equation with f = Wα, s µ is intimately

connected to the quasilinear differential equation (1.11) in the case α = 1, s = p,

and to its k-Hessian counterpart in the case α = 2k
k+1

, s = k + 1. Similar discrete
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models are used extensively in harmonic analysis and function spaces (see, e.g.,

[NTV], [St2], [V1]).

The profound role of Wolff’s potentials in the theory of quasilinear equations

was discovered by Kilpeläinen and Malý [KM2]. They established local point-

wise estimates for nonnegative p-superharmonic functions in terms of Wolff’s po-

tentials of the associated p-Laplacian measure µ. More precisely, if u ≥ 0 is a

p-superharmonic function in B3R(x) such that −∆pu = µ, then

(1.18) C1 WR
1, p µ(x) ≤ u(x) ≤ C2 inf

B(x,R)
u + C3 W2R

1, p µ(x),

where C1, C2 and C3 are positive constants which depend only on n and p.

In [TW1], [TW2], Trudinger and Wang introduced the notion of the Hessian

measure µ[u] associated with Fk[u] for a k-convex function u. Very recently, Labutin

[L] proved local pointwise estimates for Hessian equations analogous to (1.18),

where the Wolff’s potential WR
2k

k+1
, k+1

µ is used in place of WR
1, p µ.

In what follows, we will need global pointwise estimates of this type. In the case

of a k-convex solution to the equation Fk[u] = µ on Rn such that infx∈Rn (−u(x)) =

0, one has

(1.19) C1 W 2k
k+1

, k+1 µ(x) ≤ −u(x) ≤ C2 W 2k
k+1

, k+1 µ(x),

where C1 and C2 are positive constants which depend only on n and k. Analogous

global estimates are obtained below for admissible solutions of the Dirichlet problem

for −∆pu = µ and Fk[−u] = µ in a bounded domain Ω ⊂ Rn (see Chapter 3).
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In the special case Ω = Rn, our criterion for the solvability of (1.11) can be

stated in the form of the pointwise condition involving Wolff’s potentials:

(1.20) W1, p (W1, p µ )q (x) ≤ C W1, p µ(x) < +∞ a.e.,

which is necessary with C = C1(p, q, n), and sufficient with another constant C =

C2(p, q, n). Moreover, in the latter case there exists an admissible solution u to

(1.11) such that

(1.21) c1 W1, p µ(x) ≤ u(x) ≤ c2 W1, p µ(x), x ∈ Rn,

where c1 and c2 are positive constants which depend only on p, q, n, provided 1 <

p < n and q > q∗; if p ≥ n or q ≤ q∗ then u = 0 and µ = 0.

The iterated Wolff’s potential condition (1.20) is crucial in our approach. As

we will demonstrate in Chapter 5, it turns out to be equivalent to the fractional

Riesz capacity condition

(1.22) µ(E) ≤ C Capp, q
q−p+1

(E),

where C does not depend on a compact set E ⊂ Rn. Such classes of measures µ

were introduced by V. Maz’ya in the early 60’s in the framework of linear problems.

It follows that every admissible solution u to (1.11) on Rn obeys the inequality

(1.23)

∫
E

uq dx ≤ C Capp, q
q−p+1

(E)

for all compact sets E ⊂ Rn. We also prove an analogous estimate in a bounded

domain Ω (see Chapter 6). Obviously, this yields (1.9) in the end-point case γ = q.
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In the critical case q = q∗, we obtain an improved estimate (see Corollary 6.2):

(1.24)

∫
Br

uq∗ dx ≤ C
(
log(2R

r
)
) 1−p

q−p+1 ,

for every ball Br of radius r such that Br ⊂ BR, and B2R ⊂ Ω. Certain Carleson

measure inequalities are employed in the proof of (1.24). We observe that these

estimates yield Liouville-type theorems for all admissible solutions to (1.11) on Rn,

or in exterior domains, provided q ≤ q∗ (cf. [BVP], [SZ]).

Analogous results will be established in Chapter 7 for equations of Lane–Emden

type involving the k-Hessian operator Fk[u]. We will prove that there exists a

constant C1(k, q, n) such that, if

(1.25) W 2k
k+1

, k+1(W 2k
k+1

, k+1µ)q(x) ≤ C W 2k
k+1

, k+1µ(x) < +∞ a.e.,

where 0 ≤ C ≤ C1(k, q, n), then the equation

(1.26) Fk[−u] = uq + µ, u ≥ 0,

has a solution u so that −u is k-convex on Rn, and

(1.27) c1 W 2k
k+1

, k+1 µ(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1 µ(x), x ∈ Rn,

where c1, c2 are positive constants which depend only on k, q, n, for 1 ≤ k < n
2
.

Conversely, (1.25) with C = C2(k, q, n) is necessary in order that (1.26) has a

solution u such that −u is k-convex on Rn provided 1 ≤ k < n
2

and q > q∗ = nk
n−2k

;

if k ≥ n
2

or q ≤ q∗ then u = 0 and µ = 0.
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In particular, (1.25) holds if dµ = f dx, where f ≥ 0 and f ∈ Ln(q−k)/2kq,∞(Rn);

the exponent n(q−k)
2kq

is sharp.

Also in Chapter 7, we will obtain precise existence theorems for equation (1.26)

in a bounded domain Ω with the Dirichlet boundary condition u = ϕ, ϕ ≥ 0, on ∂Ω,

for 1 ≤ k ≤ n. Furthermore, removable singularities E ⊂ Ω for the homogeneous

equation Fk[−u] = uq, u ≥ 0, will be characterized as the sets of zero Bessel

capacity cap2k, q
q−k

(E) = 0, in the most interesting case q > k.

The notion of the k-Hessian capacity introduced by Trudinger and Wang proved

to be very useful in studies of the uniqueness problem for k-Hessian equations

[TW3], as well as associated k-polar sets [L]. Comparison theorems for this capacity

and the corresponding Hausdorff measures were obtained by Labutin in [L] where

it is proved that the (n − 2k)-Hausdorff dimension is critical in this respect. We

will enhance this result (see Theorem 7.14) by showing that the k-Hessian capacity

is in fact locally equivalent to the fractional Bessel capacity cap 2k
k+1

, k+1.

The main results presented in this thesis is taken from the paper [PV2] and we

remark that our methods provide a promising approach for a wide class of non-

linear problems, including curvature and subelliptic equations, and more general

nonlinearities.

Finally, for the convenience of the reader we include at the end of this thesis

two appendices. In Appendix A we give a detailed proof of the weak continuity

of quasilinear elliptic operators due to Trudinger and Wang [TW4]. In Appendix
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B we aslo follow [TW4] with some modifications to give a detailed proof of the

pointwise potential estimate (1.18) for p-superharmonic functions originally found

by Kilpeläinen and Malý [KM2].
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Chapter 2

Preliminaries

2.1 Some notation

Throughout the thesis, Br(x) stands for an open ball in Rn, n ≥ 2, with center

at x and with radius r > 0. We write A ' B if there are constants c1, c2 such

that c1A ≤ B ≤ c2A. By a Radon measure we mean a (signed) Borel regular

(outer) measure which is finite on compact sets. The class of all nonnegative finite

(respectively locally finite) Radon measures on an open set Ω is denoted byM+
B(Ω)

(respectively M+(Ω)). For a Radon measure µ and a Borel set E ⊂ Ω, we denote

by µE the restriction of µ to E: dµE = χEdµ where χE is the characteristic function

of E. The closure, the boundary and the n-dimensional Lebesgue measure of E

are denoted respectively by E, ∂E and |E|. The notation E b Ω means that E is

a compact subset of Ω. The space of p-integrable functions on Ω with respect to

Lebesgue measure is denoted by Lp(Ω). A function u belongs to the Sobolev space

W 1, p(Ω) if u and all of its first weak partial derivatives belong to Lp(Ω). Local
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versions of Lp(Ω) and W 1, p(Ω) are denoted respectively by Lp
loc(Ω) and W 1, p

loc (Ω).

We define the Riesz potential Iα of order α, 0 < α < n, on Rn by

Iαµ(x) = c(n, α)

∫
Rn

|x− y|α−ndµ(y), x ∈ Rn,

where µ ∈ M+(Rn) and c(n, α) is a normalized constant. For α > 0, p > 1, such

that αp < n, the Wolff’s potential Wα, pµ is defined by

Wα, pµ(x) =

∫ ∞

0

[µ(Bt(x))

tn−αp

] 1
p−1 dt

t
, x ∈ Rn.

When dealing with equations in a bounded domain Ω ⊂ Rn, it is convenient to use

the truncated versions of Riesz and Wolff’s potentials. For 0 < r ≤ ∞, α > 0 and

p > 1, we set

Ir
αµ(x) =

∫ r

0

µ(Bt(x))

tn−α

dt

t
, Wr

α, pµ(x) =

∫ r

0

[µ(Bt(x))

tn−αp

] 1
p−1 dt

t
.

Here I∞α and W∞
α, p are understood as Iα and Wα, p respectively. For α > 0, we

denote by Gα the Bessel kernel of order α (see [AH], Sec. 1.2.4). The Bessel

potential of a measure µ ∈M+(Rn) is defined by

Gαµ(x) =

∫
Rn

Gα(x− y)dµ(y), x ∈ Rn.

Various capacities will be used throughout this work. Among them are the Riesz

and Bessel capacities defined respectively by

CapIα, s(E) = inf{||f ||sLs(Rn) : Iαf ≥ χE, 0 ≤ f ∈ Ls(Rn)},
16



and

CapGα, s(E) = inf{||f ||sLs(Rn) : Gαf ≥ χE, 0 ≤ f ∈ Ls(Rn)}

for any set E ⊂ Rn.

2.2 A-superharmonic functions

In this section, we collect some crucial facts on A-superharmonic functions from

[HKM], [KM1], [KM2], and [TW4] for our later use. Let Ω be an arbitrary open

set in Rn, and let p > 1 though we will mainly be interested in the case where

Ω is bounded and 1 < p ≤ n, or Ω = Rn and 1 < p < n. We assume that

A : Rn×Rn → Rn is a vector valued mapping which satisfies the following structural

conditions:

the mapping x 7→ A(x, ξ) is measurable for all ξ ∈ Rn,(2.1)

the mapping ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Rn,(2.2)

and there are constants 0 < α ≤ β < ∞ such that for a.e. x in Rn, and for all ξ in

Rn,

A(x, ξ) · ξ ≥ α|ξ|p, |A(x, ξ)| ≤ β|ξ|p−1,(2.3)

[A(x, ξ1)−A(x, ξ2)] · (ξ1 − ξ2) > 0, if ξ1 6= ξ2,(2.4)

A(x, λξ) = λ|λ|p−2A(x, ξ), if λ ∈ R \ {0}.(2.5)

For u ∈ W 1, p
loc (Ω), we define the divergence of A(x,∇u) in the sense of distri-
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butions, i.e., if ϕ ∈ C∞
0 (Ω), then

divA(x,∇u)(ϕ) = −
∫

Ω

A(x,∇u) · ∇ϕ dx.

It is well-known that every solution u ∈ W 1, p
loc (Ω) to the equation

−divA(x,∇u) = 0(2.6)

has a continuous representative. Such continuous solutions are said to be A-

harmonic in Ω. If u ∈ W 1, p
loc (Ω) and

∫
Ω

A(x,∇u) · ∇ϕ dx ≥ 0

for all nonnegative ϕ ∈ C∞
0 (Ω), i.e., −divA(x,∇u) ≥ 0 in the distributional sense,

then u is called a supersolution to (2.6) in Ω.

A lower semicontinuous function u : Ω → (−∞,∞] is called A-superharmonic

if u is not identically infinite in each component of Ω, and if for all open sets D

such that D ⊂ Ω, and all functions h ∈ C(D), A-harmonic in D, it follows that

h ≤ u on ∂D implies h ≤ u in D.

In the special case A(x, ξ) = |ξ|p−2ξ, A-superharmonicity is referred to as p-

superharmonicity. It is worth mentioning that the latter can also be defined equiv-

alently using the language of viscosity solutions (see [JLM]).

We recall here the fundamental connection between supersolutions of (2.6) and

A-superharmonic functions [HKM].
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Proposition 2.1 ([HKM]). (i) If v is A-superharmonic on Ω then

(2.7) v(x) = ess lim
y→x

inf v(y), x ∈ Ω.

Moreover, if v ∈ W 1, p
loc (Ω) then

−divA(x,∇v) ≥ 0.

(ii) If u ∈ W 1, p
loc (Ω) is such that

−divA(x,∇u) ≥ 0,

then there is an A-superharmonic function v such that u = v a.e.

(iii) If v is A-superharmonic and locally bounded, then v ∈ W 1, p
loc (Ω) and

−divA(x,∇v) ≥ 0.

¿From statement (i) of Proposition 2.1 we see that if u and v are two A-

superharmonic functions on Ω such that u ≤ v a.e. on Ω then u ≤ v everywhere

on Ω.

Note that an A-superharmonic function u does not necessarily belong to the

space W 1, p
loc (Ω), but its truncation min{u, k} does for every integer k by Proposition

2.1(iii). Using this we set

(2.8) Du = lim
k→∞

∇ [ min{u, k}],

defined a.e. If either u ∈ L∞(Ω) or u ∈ W 1, 1
loc (Ω), then Du coincides with the

regular distributional gradient of u. In general, we have the following gradient

estimates [KM1] (see also [HKM], [TW4], and Theorem A.2 in Appendix A).
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Proposition 2.2 ([KM1]). Suppose u is A-superharmonic in Ω and 1 ≤ q < n
n−1

.

Then both |Du|p−1 and A(·, Du) belong to Lq
loc(Ω). Moreover, if p > 2 − 1

n
, then

Du is the distributional gradient of u.

We can now extend the definition of the divergence of A(x,∇u) to those u

which are merely A-superharmonic in Ω. For such u we set

−divA(x,∇u)(ϕ) =

∫
Ω

A(x, Du) · ∇ϕ dx

for all ϕ ∈ C∞
0 (Ω). Note that by Proposition 2.2 and dominated convergence

theorem,

−divA(x,∇u)(ϕ) = lim
k→∞

∫
Ω

A(x,∇min{u, k}) · ∇ϕ dx ≥ 0

whenever ϕ ∈ C∞
0 (Ω) and ϕ ≥ 0.

Since −divA(x,∇u) is a nonnegative distribution in Ω for an A-superharmonic

u, it follows that there is a positive (not necessarily finite) Radon measure denoted

by µ[u] such that

−divA(x,∇u) = µ[u] in Ω

in the sense

(2.9)

∫
Ω

A(x, Du) · ∇ϕ =

∫
Ω

ϕdµ[u]

for every ϕ ∈ C∞
0 (Ω).
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Conversely, given a nonnegative finite Radon measure µ in a bounded domain

Ω, there is an A-superharmonic function u such that −divA(x,∇u) = µ in Ω and

min{u, k} ∈ W 1,p
0 (Ω) for all integers k (see [KM1]).

Remark 2.3. For any subdomain ω ⊂ Ω with smooth boundary, µ[u](ω) depends

only on the value of u near ∂ω. Indeed, by (2.9),

µ[u](ω) =

∫
ω

dµ[u]

= lim
ε→0

∫
ω

ϕεdµ[u]

= lim
ε→0

∫
supp(∇ϕε)

A(x, Du)∇ϕε,

where ϕε ∈ C∞
0 (ω) such that ϕε = 1 in {x ∈ ω : d(x, ∂ω) > ε}.

The following weak continuity result in [TW4] will be used later to prove the

existence of A-superharmonic solutions to quasilinear equations.

Theorem 2.4 ([TW4]). Let {un} be a sequence of nonnegative A-superharmonic

functions in Ω that converges a.e. to an A-superharmonic function u. Then the

sequence of measures {µ[un]} converges to µ[u] weakly, i.e.,

lim
n→∞

∫
Ω

ϕ dµ[un] =

∫
Ω

ϕ dµ[u]

for all ϕ ∈ C∞
0 (Ω).

In [KM2] (see also [Mi], [MZ], [TW4]) the following pointwise potential estimate

for A-superharmonic functions was established, which serves as a major tool in our

study of quasilinear equations.
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Theorem 2.5 ([KM2]). Suppose u ≥ 0 is an A-superharmonic function in B3R(x).

If µ = −divA(x,∇u), then there are positive constants C1, C2 and C3 which depend

only on n, p and the structural constants α, β such that

(2.10) C1 WR
1, p µ(x) ≤ u(x) ≤ C2 W2R

1, p µ(x) + C3 inf
B(x,R)

u.

We will present the proofs of Theorems 2.4 and 2.5 in Appendices A and B

below following a recent paper of Trudinger and Wang [TW4].

A consequence of Theorem 2.5 is the following global version of the above

potential pointwise estimate.

Corollary 2.6 ([KM2]). Let u be an A-superharmonic function in Rn such that

infRn u = 0. If µ = −divA(x,∇u), then

C1 W1, pµ(x) ≤ u(x) ≤ C2 W1, pµ(x)

for all x ∈ Rn, where C1, C2 are positive constant depending only on n, p and the

structural constants α, β.

2.3 k-convex functions

The notion of k-convex (k-subharmonic) functions associated with the fully non-

linear k-Hessian operator Fk, k = 1, . . . , n, introduced recently by Trudinger and

Wang in [TW1]–[TW3] plays a role similar to that of A-superharmonic functions

in the quasilinear theory discussed in the previous section.
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Let Ω be an open set in Rn, n ≥ 2. For k = 1, . . . , n and u ∈ C2(Ω), the

k-Hessian operator Fk is defined by

Fk[u] = Sk(λ(D2u)),

where λ(D2u) = (λ1, . . . , λn) denotes the eigenvalues of the Hessian matrix of

second partial derivatives D2u, and Sk is the kth symmetric function on Rn given

by

Sk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

Thus F1[u] = ∆u and Fn[u] = det D2u. Alternatively, we may also write

Fk[u] = [D2u]k,

where for an n × n matrix A, [A]k is the k-trace of A, i.e., the sum of its k × k

principal minors. Several equivalent definitions of k-convexity were given in [TW2],

one of which involves the language of viscosity solutions: An upper-semicontinuous

function u : Ω → [−∞,∞) is said to be k-convex in Ω, 1 ≤ k ≤ n, if Fk[q] ≥ 0

for any quadratic polynomial q such that u − q has a local finite maximum in Ω.

Equivalently, an upper-semicontinuous function u : Ω → [−∞,∞) is k-convex in Ω

if, for every open set Ω′ b Ω and for every function v ∈ C2(Ω′) ∩C0(Ω′) satisfying

Fk[v] ≥ 0 in Ω′, the following implication holds:

u ≤ v on ∂Ω′ =⇒ u ≤ v in Ω′,
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(see [TW2, Lemma 2.1]). Note that a function u ∈ C2(Ω) is k-convex if and only

if

Fj[u] ≥ 0 in Ω for all j = 1, . . . , k.

We denote by Φk(Ω) the class of all k-convex functions in Ω which are not identically

equal to −∞ in each component of Ω. It was proven in [TW2] that Φn(Ω) ⊂

Φn−1(Ω) · · · ⊂ Φ1(Ω) where Φ1(Ω) coincides with the set of all proper classical

subharmonic functions in Ω, and Φn(Ω) is the set of functions convex on each

component of Ω.

The following weak convergence result proved in [TW2] is fundamental to po-

tential theory associated with k-Hessian operators.

Theorem 2.7 ([TW2]). For each u ∈ Φk(Ω), there exists a nonnegative Radon

measure µk[u] in Ω such that

(i) µk[u] = Fk[u] for u ∈ C2(Ω), and

(ii) if {um} is a sequence in Φk(Ω) converging in L1
loc(Ω) to a function u ∈ Φk(Ω),

then the sequence of the corresponding measures {µk[um]} converges weakly to µk[u].

The measure µk[u] in the theorem above is called the k-Hessian measure as-

sociated with u. Due to (i) in Theorem 2.7 we sometimes write Fk[u] in place of

µk[u] even in the case where u ∈ Φk(Ω) does not belong to C2(Ω). The k-Hessian

measure is an important tool in potential theory for Φk(Ω). It was used by Labutin
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to derive pointwise estimates for functions in Φk(Ω) in terms of the Wolff’s poten-

tial, which is an analogue of the Wolff’s potential estimates for A-superharmonic

functions considered in Theorem 2.5.

Theorem 2.8 ([L]). Let u ≥ 0 be such that −u ∈ Φk(B3R(x)), where 1 ≤ k ≤ n.

If µ = µk[−u] then

C1W
R
8
2k

k+1
, k+1

µ(x) ≤ u(x) ≤ C2W
2R
2k

k+1
, k+1

µ(x) + C3 inf
BR(x)

u,

where the constants C1, C2 and C3 depend only on n and k.

The following global estimate is deduced from the preceding theorem as in the

quasilinear case.

Corollary 2.9. Let u ≥ 0 be such that −u ∈ Φk(Rn), where 1 ≤ k < n
2
. If

µ = µk[−u] and infRn u = 0 then for all x ∈ Rn,

C1 W 2k
k+1

, k+1µ(x) ≤ u(x) ≤ C2 W 2k
k+1

, k+1µ(x)

for constants C1, C2 depending only on n and k.
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Chapter 3

Renormalized solutions and global
potential estimates

3.1 Global estimates for renormalized solutions

Let Ω be a bounded, open subset of Rn, n ≥ 2. We denote by MB(Ω) the set

of all Radon measures on Ω with bounded total variations. Recall that M+
B(Ω)

denotes the set of all nonnegative finite Radon measures on Ω. For a measure µ in

MB(Ω), its positive and negative parts are denoted by µ+ and µ− respectively. We

say that a sequence of measures {µn} in MB(Ω) converges in the narrow topology

to µ ∈MB(Ω) if

lim
n→∞

∫
Ω

ϕ dµn =

∫
Ω

ϕ dµ

for every bounded and continuous function ϕ on Ω.

We also denote by M0(Ω) (respectively Ms(Ω)) the set of all measures in

MB(Ω) which are absolutely continuous (respectively singular) with respect to the

capacity cap1, p(·, Ω). Here cap1, p(·, Ω) is the capacity relative to the domain Ω
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defined by

(3.1) cap1, p(E, Ω) = inf
{∫

Ω

|∇φ|pdx : φ ∈ C∞
0 (Ω), φ ≥ 1 on E

}
for any compact set E ⊂ Ω. Recall that, for every measure µ in MB(Ω), there

exists a unique pair of measures (µ0, µs) with µ0 ∈ M0(Ω) and µs ∈ Ms(Ω), such

that µ = µ0 + µs. If µ is nonnegative, then so are µ0 and µs (see [FST], Lemma

2.1).

For k > 0 and for s ∈ R we denote by Tk(s) the truncation

Tk(s) = max{−k, min{k, s}}.

Recall also from [BBG] that if u is a measurable function on Ω which is finite

almost everywhere and satisfies Tk(u) ∈ W 1, p
0 (Ω) for every k > 0, then there exists

a measurable function v : Ω → Rn such that

∇Tk(u) = vχ{|u|<k} a.e. on Ω, for all k > 0.

Moreover, v is unique up to almost everywhere equivalence. We define the gradient

Du of u as this function v, and set Du = v.

In [DMOP], several equivalent definitions of renormalized solutions are given.

In what follows, we will need the following ones.

Definition 3.1. Let µ ∈MB(Ω). Then u is said to be a renormalized solution of{
−divA(x,∇u) = µ in Ω,

u = 0 on ∂Ω,
(3.2)
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if the following conditions hold:

(a) The function u is measurable and finite almost everywhere, and Tk(u) belongs

to W 1, p
0 (Ω) for every k > 0.

(b) The gradient Du of u satisfies |Du|p−1 ∈ Lq(Ω) for all q < n
n−1

.

(c) If w belongs to W 1, p
0 (Ω)∩L∞(Ω) and if there exist w+∞ and w−∞ in W 1, r(Ω)∩

L∞(Ω), with r > n, such that

{
w = w+∞ a.e. on the set {u > k},
w = w−∞ a.e. on the set {u < −k}

for some k > 0 then

(3.3)

∫
Ω

A(x, Du) · ∇wdx =

∫
Ω

wdµ0 +

∫
Ω

w+∞dµ+
s −

∫
Ω

w−∞dµ−s .

Definition 3.2. Let µ ∈ MB(Ω). Then u is a renormalized solution of (3.2) if u

satisfies (a) and (b) in Definition 3.1, and if the following conditions hold:

(c) For every k > 0 there exist two nonnegative measures in M0(Ω), λ+
k and λ−k ,

concentrated on the sets {u = k} and {u = −k}, respectively, such that λ+
k → µ+

s

and λ−k → µ−s in the narrow topology of measures.

(d) For every k > 0

(3.4)

∫
{|u|<k}

A(x, Du) · ∇ϕdx =

∫
{|u|<k}

ϕdµ0 +

∫
Ω

ϕdλ+
k −

∫
Ω

ϕdλ−k

for every ϕ in W1, p
0 (Ω) ∩ L∞(Ω).

Remark 3.3. From Remark 2.18 in [DMOP] we see that if u is a renormalized
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solution of (3.2) then (the cap1, p-quasi continuous representative of) u is finite

cap1, p-quasieverywhere. Therefore, u is finite µ0-almost everywhere.

Remark 3.4. By (3.4), if u is a renormalized solution of (3.2) then

(3.5) −divA(x,∇Tk(u)) = µk in Ω,

where

µk = χ{|u|<k}µ0 + λ+
k − λ−k .

Since Tk(u) ∈ W 1, p
0 (Ω), by (2.3) we see that −divA(x,∇Tk(u)) and hence µk

belongs to the dual space W−1, p′(Ω) of W 1, p
0 (Ω). Moreover, by Remark 3.3, |u| < ∞

µ0-almost everywhere and hence χ{|u|<k} → χΩ µ0-almost everywhere as k → ∞.

Therefore, by the monotone convergence theorem, µk converges to µ in the narrow

topology of measures.

Remark 3.5. If µ ≥ 0, i.e., µ ∈ M+
B(Ω), and u is a renormalized solution of

(3.2) then u is nonnegative. To see this, for each k > 0 we “test” (3.3) with

w = Tk(min{u, 0}), w+∞ = 0 and w−∞ = −k:∫
Ω

A(x, Du) · ∇wdx =

∫
Ω

wdµ0 +

∫
Ω

kdµ−s =

∫
Ω

wdµ0 ≤ 0,

since µ−s = 0 and w ≤ 0. Thus using (2.3) we get∫
Ω

|∇Tk(min{u, 0})|pdx ≤ 0

for every k > 0. Therefore min{u, 0} = 0 a.e., i.e., u is nonnegative.
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Remark 3.6. Let µ ∈ M+
B(Ω) and let u be a renormalized solution of (3.2).

Since min{u, 0} = 0 a.e. (by Remark 3.5) and hence min{u, 0} = 0 cap1,p-quasi

everywhere (see [HKM], Theorem 4.12), in Remark 3.4 we may take λ−k = 0,

and thus µk is nonnegative. Hence by (3.5) and Proposition 2.1, the functions

vk defined by vk(x) = ess lim infy→x Tk(u)(y) are A-superharmonic and increasing.

Using Lemma 7.3 in [HKM], it is then easy to see that vk → v as k →∞ everywhere

in Ω for someA-superharmonic function v on Ω such that v = u a.e. In other words,

v is an A-superharmonic representative of u.

Remark 3.7. When dealing with pointwise values of a renormalized solution u

to (3.2) with measure data µ ≥ 0, we always identify u with its A-superharmonic

representative mentioned in Remark 3.6.

We now establish a comparison principle for renormalized solutions.

Lemma 3.8. Let µ, ν ∈ M+
B(Ω) be such that µ ≤ ν. Suppose that u and v are

renormalized solutions of

{
−divA(x,∇u) = µ in Ω,

u = 0 on ∂Ω,

and

{
−divA(x,∇v) = ν in Ω,

v = 0 on ∂Ω

respectively. If u is uniformly bounded then u ≤ v.
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Proof. Let w = min{(u− v)+, k}. Then w = 0 on the set {v > k + M} and w = k

on the set {v < −k −M}, where M = supΩ u. Moreover, w ∈ W 1, p
0 ∩ L∞(Ω) as

w = min{(u− Tk+M(v))+, k}. Thus by Definition 3.1 we have

(3.6)

∫
Ω

A(x, Dv) · ∇wdx =

∫
Ω

wdν0.

On the other hand, since u is bounded (hence belongs to W 1, p
0 (Ω)) we have

(3.7)

∫
Ω

A(x, Du) · ∇wdx =

∫
Ω

wdµ.

From (3.6) and (3.7) we get∫
Ω

[A(x, Du)−A(x, Dv)] · ∇wdx ≤ 0.

Consequently, ∫
0<u−v<k

[A(x, Du)−A(x, Dv)] · (Du−Dv)dx ≤ 0,

since ∇w = ∇max{Tk(u − v), 0} = D(u − v)χ{0<u−v<k}. Thus by (2.4) we have

∇w = 0 and hence w = 0 a.e. for every k > 0, which gives u ≤ v.

In the following lemma we drop the assumption that u is uniformly bounded in

Lemma 3.8, but claim only the existence of v such that v ≥ u.

Lemma 3.9. Let µ, ν ∈ M+
B(Ω) be such that ν ≥ µ. Suppose that u is a renor-

malized solution of {
−divA(x,∇u) = µ in Ω,

u = 0 on ∂Ω.
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Then there exists v ≥ u such that{
−divA(x,∇v) = ν in Ω,

v = 0 on ∂Ω

in the renormalized sense.

Proof. Let uk = min{u, k} for each k ∈ N. From Definition 3.2 of renormalized

solutions we have{
−divA(x,∇uk) = µ0{u<k} + λ+

k in Ω,
uk = 0 on ∂Ω

in the renormalized sense for a sequence of nonnegative measures {λ+
k } that con-

verges to µ+
s in the narrow topology of measures. Thus by Lemma 3.8 we have

uk ≤ vk, where vk are renormalized solutions of{
−divA(x,∇vk) = µ0 + λ+

k + ν − µ in Ω,
vk = 0 on ∂Ω.

Finally, from the stability results in [DMOP] we can find a subsequence of {vk}

that converges a.e. to a required function v.

We will also need the following variant of Lemma 3.9.

Lemma 3.10. Suppose that u is a renormalized solution to (3.2) with data µ ∈

M+
B(Ω). Let B be a ball that contains Ω. Then there exists a function w on B

such that u ≤ w on Ω, and

(3.8)

{
−divA(x,∇w) = µ in B,

w = 0 on ∂B
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in the renormalized sense.

Proof. Let uk = min{u, k}, k > 0, and let µk = χ{u<k}µ0 + λ+
k be as in Remark

3.4 (note that λ−k = 0 by Remark 3.6). We see that uk ∈ W 1,p
0 (Ω) is the unique

solution of problem (3.2) with data µk. We next extend uk by zero outside Ω, and

set

Ψ = min{wk − uk, 0} = min{min{wk, k} − uk, 0},

where wk, k > 0, is a renormalized solution to the problem{
−divA(x,∇wk) = µ0 + λ+

k in B,
wk = 0 on ∂B.

Note that Ψ ∈ W 1, p
0 (Ω) ∩W 1, p

0 (B) ∩ L∞(B) since |Ψ| ≤ uk. Then using Ψ as a

test function we have

0 ≥
∫

B

A(x,∇wk) · ∇Ψdx−
∫

Ω

A(x,∇uk) · ∇Ψdx

=

∫
B∩{wk<uk}

A(x,∇wk) · ∇Ψdx−
∫

B∩{wk<uk}
A(x,∇uk) · ∇Ψdx

=

∫
B∩{wk<uk}

[A(x,∇wk)−A(x,∇uk)] · (∇wk −∇uk)dx.

Thus ∇wk = ∇uk a.e. on the set B ∩ {wk < uk} by hypothesis (2.4) on A. Hence

Ψ = 0 a.e., i.e.,

(3.9) uk ≤ wk a.e.

Now by the stability results of renormalized solutions established in [DMOP]

we can find subsequence {wkj
} of {wk} such that wkj

→ w a.e., where w is a
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renormalized solution to equation (3.8). By (3.9) we have u ≤ w a.e. on Ω,

and hence u ≤ w everywhere on Ω due to Remark 3.7 and Proposition 2.1. This

completes the proof of the lemma.

We now give a global pointwise potential estimates for quasilinear equations on

a bounded domain Ω in Rn.

Theorem 3.11. Suppose that u is a renormalized solution to the equation{
−divA(x,∇u) = ω in Ω,

u = 0 on ∂Ω,
(3.10)

with data ω ∈ M+
B(Ω). Then there is a constant K = K(n, p, α, β) > 0 such that,

for all x in Ω,

(3.11) u(x) ≤ K W
2diam(Ω)
1, p ω(x).

Proof. Let B = B2R(a) where R = diam(Ω) and a ∈ Ω so that Ω ⊂ B. Let w be

as in Lemma 3.10 with respect to that choice of B. For x ∈ Ω we denote by d(x)

the distance from x to the boundary ∂B of B. By Theorem 2.5, Lemma 3.10, and

the fact that d(x) ≥ R, we have

u(x) ≤ w(x) ≤ C W
2
3
d(x)

1, p µ(x) + C inf
B 1

3 d(x)
(x)

w(3.12)

≤ C W2R
1, pµ(x) + CR

−n
p−1 ||w||Lp−1(B)

Note that for p < n we have

||w||
L

n(p−1)
n−p ,∞

(B)
≤ C µ(Ω)

1
p−1
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for a constant C independent of R (see [DMOP, Theorem 4.1] or [BBG, Lemma

4.1]). Thus

||w||Lp−1(B) ≤ CR
p

p−1 µ(Ω)
1

p−1 .(3.13)

Inequality (3.13) also holds for p ≥ n, see for example [Gre, Lemma 2.1]. From

(3.12) and (3.13) we get the desired estimate (3.11).

Remark 3.12. Estimate (3.11) does not hold in general if u is merely a weak

solution of (3.10) in the sense of [KM1]. For a counter example, see [Kil], Sec. 2.

3.2 Global estimates for k-Hessian equations

Definition 3.13. A bounded domain Ω in Rn is said to be uniformly (k − 1)-

convex, k = 1, ..., n, if ∂Ω ∈ C2 and Hj(∂Ω) > 0, j = 1, ..., k − 1, where Hj(∂Ω)

denotes the j-mean curvature of the boundary ∂Ω.

We first recall an existence result for k-Hessian equations with measure data

established in [TW1], [TW2].

Theorem 3.14. Let Ω be a bounded uniformly (k − 1)-convex domain. Suppose

that ϕ ≥ 0, ϕ ∈ C0(∂Ω) and ν = µ + f where µ ∈M+
B(Ω) with compact support in

Ω and f ≥ 0, f ∈ Ls(Ω) with s > n
2k

if 1 ≤ k ≤ n
2
, and s = 1 if n

2
< k ≤ n. Then

there exists u ≥ 0, −u ∈ Φk(Ω) be such that u is continuous near ∂Ω and solves{
µk[−u] = ν in Ω,

u = ϕ on ∂Ω.
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Theorem 3.15. Suppose that ϕ ≥ 0, ϕ ∈ C0(∂Ω) and ν = µ+f where µ ∈M+
B(Ω)

with compact support in Ω and f ≥ 0, f ∈ Ls(Ω) with s > n
2k

if 1 ≤ k ≤ n
2
, and

s = 1 if n
2

< k ≤ n. Let u ≥ 0, −u ∈ Φk(Ω) be such that u is continuous near ∂Ω

and solves

{
µk[−u] = ν in Ω,

u = ϕ on ∂Ω.

Then there exists a constant K = K(n, k) such that, for all x ∈ Ω,

u(x) ≤ K
[
W

2diam(Ω)
2k

k+1
, k+1

ν(x) + max
∂Ω

ϕ
]
.

Proof. Suppose that the support of µ is contained in Ω′ for some open set Ω′ b Ω.

Let M = supΩ\Ω′ u and um = min{u, m} for m > M . Then −um ∈ Φk(Ω),

continuous near ∂Ω, solves

{
µk[−um] = νm in Ω,

um = ϕ on ∂Ω

for certain nonnegative Radon measures νm in Ω. Since um → u in L1
loc(Ω), by

Theorem 2.7 we have

µm → ν = µ + f weakly as measures in Ω.(3.14)

Note that um = u in Ω \ Ω′ since m > M . Thus νm = µk[u] = f in Ω \ Ω′ for all

m > M . Using this and (3.14) it is easy to see that

∫
Ω

φdµm →
∫

Ω

φdµ +

∫
Ω

φfdx
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as m →∞ for all φ ∈ C0(Ω), i.e.,

µm → ν = µ + f in the narrow topology of measures.

We now take a ball B = B2R(a) where R = diam(Ω) and a ∈ Ω so that Ω ⊂ B.

Consider the solutions wm ≥ 0, −wm ∈ Φk(Ω), continuous near ∂Ω, of{
µk[−wm] = νm in B,

wm = max∂Ω ϕ on ∂B,

where m > M . Since um is bounded in Ω the measure νm is absolutely continuous

with respect to the capacity capk(·, Ω), and hence with respect to the capacity

capk(·, B) (see [TW3]). Here capk(·, Ω) is the k-Hessian capacity defined by

(3.15) capk(E, Ω) = sup
{

µk[u](E) : u ∈ Φk(Ω),−1 < u < 0
}

.

By a comparison principle (see [TW3, Theorem 4.1]), we have wm ≥ max∂Ω ϕ in

B, and hence wm ≥ um on ∂Ω. Thus, applying the comparison principle again, we

have

wm ≥ um in Ω.(3.16)

Since νm → ν in the narrow topology of measures in Ω, we see that νm → ν

weakly as measures in B. Therefore, arguing as in [TW2], Sec. 6 we can find a

subsequence {wmj
} such that wmj

→ w a.e. for some w ≥ 0, −w ∈ Φk(B) such

that w is continuous near ∂B and{
µk[−w] = ν in B,

w = max∂Ω ϕ on ∂B.
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Note that from (3.16), w ≥ u a.e. on Ω and hence w ≥ u everywhere on Ω.

Using this and Theorem 2.8 applied to the function w on Bd(x)(x), where d(x) =

dist(x, ∂B) ≥ R we have, for x ∈ Ω,

u(x) ≤ C W2R
2k

k+1
, k+1

ν(x) + C inf
B 1

3 d(x)
(x)

w(3.17)

≤ C W2R
2k

k+1
, k+1

ν(x) + C R−n

∫
B 1

3 d(x)
(x)

w dy.

Thus it follows from estimate (6.3) in [TW2] that

u(x) ≤ C
(
W2R

2k
k+1

, k+1
ν(x) + max

∂Ω
ϕ + R2−n

k ν(Ω)
1
k

)
.

The proof of Theorem 3.15 is then completed by noting that∫ 2R

R

[ν(Bt(x))

tn−2k

] 1
k dt

t
≥ CR2−n

k ν(Ω)
1
k .

The following lemma is an analogue of Lemma 3.9. It is needed in the proof of

Theorem 7.1 below to construct a solution to Hessian equations.

Lemma 3.16. Let Ω be a bounded uniformly (k − 1)-convex domain and let ν,

ϕ and u be as in Theorem 3.15. Suppose that ν ′ is a measure similar to ν, i.e.,

ν ′ = µ′ + f ′, where µ′ ∈ M+
B(Ω) with compact support in Ω, f ′ ≥ 0, f ′ ∈ Ls(Ω)

with s > n
2k

if 1 ≤ k ≤ n
2
, and s = 1 if n

2
< k ≤ n. Then there exists w ≥ u such

that −w ∈ Φk(Ω) and {
µk[−w] = ν + ν ′ in Ω,

w = ϕ on ∂Ω.
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Proof. By approximation we may assume that µ′ is absolutely continuous with

respect to the capacity capk(·, Ω). Let um and νm be as in the proof of Theorem

3.15. Then by the comparison principle in [TW3], Theorem 4.1, we have um ≤ wm

where wm is the solution of

{
µk[−wm] = νm + ν ′ in Ω,

wm = ϕ on ∂Ω.

Thus arguing as in [TW2], Sec. 6 we obtain a subsequence {wmj
} that converges

a.e. to a required function w.
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Chapter 4

Discrete models of nonlinear
equations

In this chapter, we consider certain nonlinear integral equations with discrete ker-

nels which serve as a model for both quasilinear and Hessian equations treated

in Chapters 5–7. Let D be the family of all dyadic cubes Q = 2i(k + [0, 1)n),

i ∈ Z, k ∈ Zn, in Rn. For a nonnegative locally finite measure ω on Rn, we define

the dyadic Riesz and Wolff’s potentials respectively by

Iαω(x) =
∑
Q∈D

ω(Q)

|Q|1−α
n

χQ(x),(4.1)

Wα, pω(x) =
∑
Q∈D

[ ω(Q)

|Q|1−αp
n

] 1
p−1

χQ(x).(4.2)

We are concerned with nonlinear inhomogeneous integral equations of the type

(4.3) u = Wα, p(u
q) + f, u ∈ Lq

loc(R
n), u ≥ 0,

where f ∈ Lq
loc(Rn), f ≥ 0, q > p − 1, and Wα, p is defined as in (4.2) with α > 0

and p > 1 such that 0 < αp < n.
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It is convenient to introduce a nonlinear operator N associated with the equa-

tion (4.3) defined by

(4.4) N f = Wα, p(f
q), f ∈ Lq

loc(R
n), f ≥ 0,

so that (4.3) can be rewritten as

u = Nu + f, u ∈ Lq
loc(R

n), u ≥ 0.

Obviously, N is monotonic, i.e., N f ≥ N g whenever f ≥ g ≥ 0 a.e., and N (λf) =

λ
q

p−1N f for all λ ≥ 0. Since

(4.5) (a + b)p′−1 ≤ max{1, 2p′−2}(ap′−1 + bp′−1)

for all a, b ≥ 0, it follows that

(4.6)
[
N (f + g)

] 1
q ≤ max{1, 2p′−2}

[
(N f)

1
q + (N g)

1
q

]
.

4.1 Discrete Wolff type inequalities

Let 1 < s < ∞, Λ = {λQ}Q∈D, λQ ∈ R+, and let σ be a nonnegative locally finite

Radon measure on Rn. We define

A1(Λ) =

∫
Rn

( ∑
Q∈D

λQ

σ(Q)
χQ(x)

)s

dσ(x),

A2(Λ) =
∑
Q∈D

λQ

( 1

σ(Q)

∑
Q′⊂Q

λQ′

)s−1

,

A3(Λ) =

∫
Rn

sup
Q3x

( 1

σ(Q)

∑
Q′⊂Q

λQ′

)s

dσ(x),
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where we assume that λQ = 0 whenever σ(Q) = 0 and follow the convention that

0 · ∞ = 0. The following theorem is taken from [COV], Proposition 2.2.

Theorem 4.1 ([COV], Proposition 2.2). Let σ be a nonnegative locally finite Radon

measure on Rn. Let 1 < s < ∞. Then there exist constants Ci > 0, i = 1, 2, 3,

which depend only on s, such that, for any Λ = {λQ}Q∈D, λQ ∈ R+,

A1(Λ) ≤ C1A2(Λ) ≤ C2A3(Λ) ≤ C3A1(Λ).

Theorem 4.2. Let µ be a nonnegative locally finite measure on Rn, and let α > 0,

p > 1, and q > p− 1. Then there exist constants Ci > 0, i = 1, 2, 3, which depend

only on n, p, q, α such that for any dyadic cube P ,

B1(P, µ) ≤ C1B2(P, µ) ≤ C2B3(P, µ) ≤ C3B1(P, µ),

where we define

B1(P, µ) =
∑
Q⊂P

[ µ(Q)

|Q|1−αp
n

] q
p−1 |Q|,

B2(P, µ) =

∫
P

[ ∑
Q⊂P

( µ(Q)

|Q|1−αp
n

) 1
p−1

χQ(x)
]q

dx,

B3(P, µ) =

∫
P

[ ∑
Q⊂P

µ(Q)

|Q|1−αp
n

χQ(x)
] q

p−1
dx.

Proof. Let σ be the restriction of Lebesgue measure on the dyadic cube P . For

Q ∈ D we set λQ = µ(Q)|Q|αp
n if Q ⊂ P and λQ = 0 otherwise. Note that for

Q ⊂ P , ∑
Q′⊂Q

µ(Q′)|Q′|
αp
n = C(α, p)µ(Q)|Q|

αp
n .
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Thus by Theorem 4.1 we have

B1(P, µ) ' B3(P, µ).

Also, by Theorem 4.1,

(4.7) B3(P, µ) '
∫

P

[
sup

x∈Q⊂P

µ(Q)

|Q|1−αp
n

] q
p−1

dx.

Since [
sup

x∈Q⊂P

µ(Q)

|Q|1−αp
n

] 1
p−1 ≤

∑
Q⊂P

( µ(Q)

|Q|1−αp
n

) 1
p−1

χQ(x),

from (4.7) we obtain B3(P, µ) ≤ CB2(P, µ). In addition, for p ≤ 2 we clearly

have B2(P, µ) ≤ B3(P, µ) ≤ CB1(P, µ). Therefore, it remains to check that, in the

case p > 2, B2(P, µ) ≤ CB1(P, µ) for some C > 0 independent of P and µ. For

q > p− 1 > 1 by Theorem 4.1 we have

B2(P, µ) =

∫
P

[ ∑
Q⊂P

µ(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

χQ(x)
]q

dx(4.8)

≤ C
∑
Q⊂P

µ(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

+q−2

[ ∑
Q′⊂Q

µ(Q′)
1

p−1

|Q′|(1−
αp
n

) 1
p−1

−1

]q−1

.

On the other hand, by Hölder’s inequality,

∑
Q′⊂Q

µ(Q′)
1

p−1

|Q′|(1−
αp
n

) 1
p−1

−1
=

∑
Q′⊂Q

(
µ(Q′)

1
p−1 |Q′|ε

)
|Q′|−(1−αp

n
) 1

p−1
+1−ε

≤
( ∑

Q′⊂Q

µ(Q′)
r′

p−1 |Q′|εr′
) 1

r′
( ∑

Q′⊂Q

|Q′|−r(1−αp
n

) 1
p−1

+r−rε
) 1

r
,

where r′ = p−1 > 1, r = p−1
p−2

and ε > 0 is chosen so that −r(1− αp
n

) 1
p−1

+r−rε > 1,
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i.e., 0 < ε < αp
(p−1)n

. Therefore,

∑
Q′⊂Q

µ(Q′)
1

p−1

|Q′|(1−
αp
n

) 1
p−1

−1
≤ Cµ(Q)

1
p−1 |Q|ε|Q|−(1−αp

n
) 1

p−1
+1−ε

= C
µ(Q)

1
p−1

|Q|(1−
αp
n

) 1
p−1

−1
.

Combining this with (4.8) we obtain

B2(P, µ) ≤ C
∑
Q⊂P

µ(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

+q−2

[ µ(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

−1

]q−1

= C
∑
Q⊂P

µ(Q)
q

p−1

|Q|(1−
αp
n

) q
p−1

−1
= CA1(P, µ),

which completes the proof of the theorem.

4.2 Criteria for solvability

We are now in a position to establish the main results of this chapter.

Theorem 4.3. Let α > 0, p > 1 be such that 0 < αp < n, and let q > p − 1.

Suppose f ∈ Lq
loc(Rn), f ≥ 0, and dω = f qdx. Then the following statements are

equivalent.

(i) The equation

(4.9) u = Wα, p(u
q) + εf

has a solution u ∈ Lq
loc(Rn), u ≥ 0, for some ε > 0.

(ii) The testing inequality

(4.10)

∫
P

[ ∑
Q⊂P

ω(Q)

|Q|1−αp
n

χQ(x)
] q

p−1
dx ≤ C ω(P )
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holds for all dyadic cubes P.

(iii) The testing inequality

(4.11)

∫
P

[ ∑
Q⊂P

ω(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

χQ(x)
]q

dx ≤ C ω(P )

holds for all dyadic cubes P.

(iv) There exists a constant C such that

(4.12) Wα, p[Wα, p(f
q)]q(x) ≤ CWα, p(f

q)(x) < ∞ a.e.

Proof. Note that by Theorem 4.2 we have (ii)⇔(iii). Therefore, it is enough to

prove (iv)⇒(i)⇒(iii)⇒(iv).

Proof of (iv)⇒(i). The pointwise condition (4.12) can be rewritten as

N 2f ≤ CN f < ∞ a.e.,

where N is the operator defined by (4.4). The sufficiency of this condition for the

solvability of (4.9) can be proved using simple iterations:

un+1 = Nun + εf, n = 0, 1, 2, . . . ,

starting from u0 = 0. Since N is monotonic it is easy to see that un is increasing

and that ε
q

p−1N f + εf ≤ un for all n ≥ 2. Let c(p) = max{1, 2p′−1}, c1 = 0,

c2 = [ε
1

p−1 c(p)]q and

cn =
[
ε

1
p−1 c(p)(1 + C1/q)cp′−1

n−1

]q

, n = 3, 4, . . . ,
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where C is the constant in (4.12). Here we choose ε so that

ε
1

p−1 c(p) =
(q − p + 1

q

) q−p+1
q

(p− 1

q

) p−1
q

C
1−p

q2 .

By induction and using (4.6) we have

un ≤ cnN f + εf, n = 1, 2, 3, . . .

Note that

x0 =
[ q

p− 1
ε

1
p−1 c(p) C

1
q

] q(p−1)
p−1−q

is the only root of the equation

x =
[
ε

1
p−1 c(p)(1 + C

1
q x)

]q

and thus limn→∞ cn = x0. Hence there exists a solution

u(x) = lim
n→∞

un(x)

to equation (4.9) (with that choice of ε) such that

εf + ε
q

p−1Wα, p(f
q) ≤ u ≤ εf + x0Wα, p(f

q).

Proof of (i)⇒(iii). Suppose that u ∈ Lq
loc(Rn), u ≥ 0, is a solution of (4.9). Let P

be a cube in D and dµ = uqdx. Since

[u(x)]q ≥ [Wα, p(u
q)(x)]q a.e.,

we have ∫
P

[Wα, p(u
q)(x)]qdx ≤

∫
P

[u(x)]qdx.
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Thus,

(4.13)

∫
P

[ ∑
Q⊂P

µ(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

χQ(x)
]q

dx ≤ Cµ(P )

for all P ∈ D. By Theorem 4.2, inequality (4.13) is equivalent to∫
P

[ ∑
Q⊂P

µ(Q)

|Q|1−αp
n

χQ(x)
] q

p−1
dx ≤ Cµ(P )

for all P ∈ D, which in its turn is equivalent to the weak-type inequality

(4.14) ||Iαp(g)||
L

q
q−p+1 ,∞

(dµ)
≤ C||g||

L
q

q−p+1 (dx)

for all g ∈ L
q

q−p+1 (Rn), g ≥ 0 (see [NTV], [VW]). Note that by (4.9),

dµ = uqdx ≥ εqf q dx = εq dω.

We now deduce from (4.14),

(4.15) ||Iαp(g)||
L

q
q−p+1 ,∞

(dω)
≤ C

εq−p+1
||g||

L
q

q−p+1 (dx)

Similarly, by duality and Theorem 4.2 we see that (4.15) is equivalent to the testing

inequality (4.11). The implication (i)⇒ (iii) is proved.

Proof of (iii)⇒(iv). We first deduce from the testing inequality (4.11) that

(4.16) ω(P ) ≤ C|P |1−
αpq

n(q−p+1)

for all dyadic cubes P . In fact, this can be verified by using (4.11) and the obvious

estimate ∫
P

[ ω(P )

|P |1−αp
n

] q
p−1

dx ≤
∫

P

[ ∑
Q⊂P

ω(Q)
1

p−1

|Q|(1−
αp
n

) 1
p−1

χQ(x)
]q

dx.
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Following [KV], [V3], we next introduce a certain decomposition of the dyadic

Wolff’s potential Wα, pµ. To each dyadic cube P ∈ D, we associate the “upper”

and “lower” parts of Wα, pµ defined respectively by

(4.17) UP µ(x) =
∑
Q⊂P

[ µ(Q)

|Q|1−αp
n

] 1
p−1

χQ(x),

(4.18) VP µ(x) =
∑
Q⊃P

[ µ(Q)

|Q|1−αp
n

] 1
p−1

χQ(x).

Obviously,

UP µ(x) ≤ Wα, pµ(x), VP µ(x) ≤ Wα, pµ(x),

and for x ∈ P ,

Wα, pµ(x) = UP µ(x) + VP µ(x)−
[ µ(P )

|P |1−αp
n

] 1
p−1

.

Using the notation just introduced, we can rewrite the testing inequality (4.11) in

the form:

(4.19)

∫
P

[UP ω(x)]q dx ≤ C ω(P )

for all dyadic cubes P . Recall that dω = f q dx. The desired pointwise inequality

(4.12) can be restated as

(4.20)
∑
P∈D

[∫
P
[Wα, pω(y)]q dy

|P |1−αp
n

] 1
p−1

χP (x) ≤ CWα, pω(x).

Obviously, for y ∈ P ,

Wα, pω(y) ≤ UP ω(y) + VP ω(y),
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and from the testing inequality (4.19) we have

∑
P∈D

[∫
P
[UP ω(y)]q dy

|P |1−αp
n

] 1
p−1

χP (x) ≤ CWα, pω(x).

Therefore, to prove (4.20) it enough to prove

(4.21)
∑
P∈D

[∫
P
[VP ω(y)]q dy

|P |1−αp
n

] 1
p−1

χP (x) ≤ CWα, pω(x).

Note that, for y ∈ P ,

VP ω(y) =
∑
Q⊃P

[ ω(Q)

|Q|1−αp
n

] 1
p−1

= const.

Using the elementary inequality( ∞∑
k=1

ak

)s

≤ s
∞∑

k=1

ak

( ∞∑
j=k

aj

)s−1

where 1 ≤ s < ∞ and 0 ≤ ak < ∞, we deduce

[VP ω(y)]
q

p−1 ≤ C
∑
Q⊃P

[ ω(Q)

|Q|1−αp
n

] 1
p−1

{ ∑
R⊃Q

[ ω(R)

|R|1−αp
n

] 1
p−1

} q
p−1

−1

.

From this we see that the left-hand side of (4.21) is bounded above by a constant

multiple of

∑
P∈D

|P |
αp

n(p−1)

∑
Q⊃P

[ ω(Q)

|Q|1−αp
n

] 1
p−1

{ ∑
R⊃Q

[ ω(R)

|R|1−αp
n

] 1
p−1

} q
p−1

−1

χP (x).

Changing the order of summation, we see that it is equal to

∑
Q∈D

[ ω(Q)

|Q|1−αp
n

] 1
p−1

χQ(x)
{ ∑

P⊂Q

|P |
αp

n(p−1) χP (x)[VQω(x)]
q

p−1
−1

}
.

By (4.16), the expression in the curly brackets above is uniformly bounded. There-

fore, the proof of estimate (4.21), and hence of (iii)⇒ (iv), is complete.
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Chapter 5

Quasilinear equations on Rn

In this chapter, we study the solvability problem for the quasilinear equation

(5.1) −divA(x,∇u) = uq + ω

in the class of nonnegativeA-superharmonic functions on the entire space Rn, where

A(x, ξ) · ξ ≈ |ξ|p is defined precisely as in Sec. 2.2. Here we assume 1 < p < n,

q > p − 1, and ω is a nonnegative locally finite measure on Rn. In this setting,

all solutions are understood in the “potential-theoretic” sense, i.e., u ∈ Lq
loc(Rn),

u ≥ 0, is a solution to (5.1) if u is A-superharmonic, and for all ϕ ∈ C∞
0 (Rn),

(5.2)

∫
Rn

A(x, Du) · ∇ϕ dx =

∫
Rn

uqϕ dx +

∫
Rn

ϕ dω,

where Du is defined as in (2.8).

5.1 Continuous Wolff type inequalities

We first prove a continuous counterpart of Theorem 4.2. Here we use the well-

known argument due to Fefferman and Stein [FS] which is based on the averaging
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over shifts of the dyadic lattice D.

Theorem 5.1. Let µ be a nonnegative locally finite measure on Rn, and let 0 < R ≤

+∞, α > 0, p > 1, and q > p− 1. Then there exist constants Ci > 0, i = 1, 2, 3, 4,

which depend only on n, p, q, α, such that,

(5.3) C1

∫
Rn

(WR
αp, q

q−p+1
µ)qdx ≤

∫
Rn

(IR
αpµ)

q
p−1 dx ≤ C2

∫
Rn

(WR
αp, q

q−p+1
µ)qdx,

and

(5.4) C3

∫
Rn

WR
αp, q

q−p+1
µdµ ≤

∫
Rn

(IR
αpµ)

q
p−1 dx ≤ C4

∫
Rn

WR
αp, q

q−p+1
µdµ.

Remark 5.2. Inequality (5.4) may be regarded as a version of Wolff’s inequality

[HW] (see also [AH], Sec. 4.5):

(5.5) C1

∫
Rn

Wα, sµ dµ ≤
∫
Rn

(Iαµ)
s

s−1 dx ≤ C2

∫
Rn

Wα, sµ dµ,

where 1 < s < +∞, 0 < α < n
s
, and C1, C2 depend only on α, s and n. Further-

more,

(5.6)

∫
Rn

(Iαµ)
s

s−1 dx '
∫
Rn

(Iαµ)
s

s−1 dx '
∑
Q∈D

[ µ(Q)

|Q|1−α
n

] s
s−1 |Q|.

The second equivalence in (5.6) is a dyadic form of (5.5) which was also proved in

[HW] (see also [COV], [V2]).

Proof of Theorem 5.1. We will prove only inequality (5.3) since inequality (5.4),

which is actually a consequence of Theorem 3.6.2 in [AH], can also be deduced by
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a similar argument. We first restrict ourselves to the case R < +∞. Observe that

there is a constant C > 0 such that

(5.7)

∫
Rn

(I2R
αpµ)

q
p−1 dx ≤ C

∫
Rn

(IR
αpµ)

q
p−1 dx.

In fact, since ∫ 2R

0

µ(Bt(x))

tn−αp

dt

t
≤ C

∫ R

0

µ(Bt(x))

tn−αp

dt

t
+ C

µ(B2R(x))

Rn−αp
,

(5.7) will follow from the estimate

(5.8)

∫
Rn

[µ(B2R(x))

Rn−αp

] q
p−1

dx ≤ C

∫
Rn

[ ∫ R

0

µ(Bt(x))

tn−αp

dt

t

] q
p−1

dx.

Note that for a partition of Rn into a union of disjoint cubes {Qj} such that

diam(Qj) = R
4

we have∫
Rn

µ(B2R(x))
q

p−1 dx =
∑

j

∫
Qj

µ(B2R(x))
q

p−1 dx

≤ C
∑

j

∫
Qj

µ(Qj)
q

p−1 dx,

where we have used the fact that the ball B2R(x) is contained in the union of at

most N cubes in {Qj} for some constant N depending only on n. Thus∫
Rn

[µ(B2R(x))

Rn−αp

] q
p−1

dx ≤ C
∑

j

∫
Qj

[µ(BR/2(x))

Rn−αp

] q
p−1

dx

≤ C
∑

j

∫
Qj

[ ∫ R

0

µ(Bt(x))

tn−αp

dt

t

] q
p−1

dx,

which gives (5.8).

By arguing as in [COV], Sec. 3, we can find constants a, C and c depending
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only on p and n such that

WR
α, pµ(x) ≤ CR−n

∫
|z|≤cR

∑
Q∈Dz

`(Q)≤4R
a

[ µ(Q)

|Q|1−αp
n

] 1
p−1

χQ(x)dz

where Dz, z ∈ Rn, denotes the lattice D + z = {Q = Q′ + z : Q′ ∈ D} and `(Q) is

the side length of Q. By Theorem 4.1 and arguing as in the proof of Theorem 4.2

we obtain ∫
Rn

{ ∑
Q∈Dz

`(Q)≤4R
a

[ µ(Q)

|Q|1−αp
n

] 1
p−1

χQ(x)
}q

dx

'
∫
Rn

[ ∑
Q∈Dz

`(Q)≤4R
a

µ(Q)

|Q|1−αp
n

χQ(x)
] q

p−1
dx,

where the constants of equivalence are independent of µ, r and z. The last two

estimates together with the integral Minkowski inequality then give∫
Rn

(WR
α, pµ)qdx

≤ CR−n

∫
|z|≤cR

{∫
Rn

( ∑
Q∈Dz

`(Q)≤4R
a

[ µ(Q)

|Q|1−αp
n

] 1
p−1

χQ(x)
)q

dx
} 1

q
dz

≤ CR−n

∫
|z|≤cR

[ ∫
Rn

( ∑
Q∈Dz

`(Q)≤4R
a

µ(Q)

|Q|1−αp
n

χQ(x)
) q

p−1
dx

] 1
q
dz.

Note that

∑
Q∈Dz

`(Q)≤4R
a

µ(Q)

|Q|1−αp
n

χQ(x) ≤ C
∑

2k≤4R
a

µ(B(x,
√

n2k))

2k(n−αp)

≤ CI
8R
√

n
a

αp µ(x),
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where C is independent of z. Thus, in view of (5.7), we obtain the lower estimate

in (5.3).

Now by letting R →∞ in the inequality∫
Rn

(WR
α, pµ)qdx ≤ C

∫
Rn

(IR
αpµ)

q
p−1 dx, 0 < R < +∞,

we get the lower estimate in (5.3) with R = ∞. The upper estimate in (5.3) can

be deduced in a similar way. This completes the proof of Theorem 5.1.

5.2 Criteria for solvability

In the next theorem, we give a sufficient condition for the solvability of quasilinear

equations in Rn. Later on we will show that it is necessary as well, and give

equivalent simpler characterizations.

Theorem 5.3. Let ω be a nonnegative locally finite measure on Rn, and let 1 <

p < n, and q > p− 1. Suppose that

(5.9) W1, p(W1, pω)q ≤ C W1, pω < ∞ a.e.,

where

(5.10) C ≤
( q − p + 1

qK max{1, 2p′−2}

)q(p′−1)( p− 1

q − p + 1

)
,

and K is the constant used in Theorem 3.11. Then there is an A-superharmonic

function u ∈ Lq
loc(Rn) such that{

infx∈Rn u(x) = 0,
−divA(x,∇u) = uq + ω,

(5.11)
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and

c1W1, pω(x) ≤ u(x) ≤ c2 W1, pω(x)

for all x in Rn, where the constants c1, c2 depend only n, p, q, and the structural

constants α, β.

Proof. For each m ∈ N, let us construct by an induction argument a nondecreasing

sequence {um
k }k≥0 of A-superharmonic functions on Bm+1 such that{

−divA(x,∇um
0 ) = ωBm in Bm+1,

um
0 = 0 on ∂Bm+1,

and {
−divA(x,∇um

k ) = (um
k−1)

q + ωBm in Bm+1,
um

k = 0 on ∂Bm+1

for each k ≥ 1, in the renormalized sense. Here Bm denotes the ball of radius m

and centered at the origin. The renormalized solutions are needed here only to get

the following estimates:

um
0 ≤ K W1, pω and um

k ≤ K W1, p(u
q
k + ω)

for all k ≥ 1; see Theorem 3.11. Set c0 = K, where K is the constant in Theorem

3.11. From these estimates and (4.5) we get

um
1 ≤ K max{1, 2p′−2}

[
W1, p(u

m
0 )q + W1, pω

]
≤ K max{1, 2p′−2}(cq(p′−1)

0 C + 1)W1, pω

= c1W1, pω,
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where c1 = K max{1, 2p′−2}(cq(p′−1)
0 C + 1). By induction we can find a sequence

{ck}k≥0 of positive numbers such that um
k ≤ ckW1, pω, with c0 = K and ck+1 =

K max{1, 2p′−2}(cq(p′−1)
k C + 1) for all k ≥ 0. It is then easy to see that ck ≤

K max{1, 2p′−2}q
q−p+1

for all k ≥ 0 as long as (5.10) is satisfied. Thus

um
k ≤

K max{1, 2p′−2}q
q − p + 1

W1, pω on Bm+1.

Now by weak continuity (Theorem 2.4) or stability results for renormalized solu-

tions in [DMOP] we see that um
k ↑ um for an A-superharmonic function um ≥ 0 on

Bm+1 such that{
−divA(x,∇um) = (um)q + ωBm in Bm+1,

um = 0 on ∂Bm+1,
(5.12)

and

(5.13) um ≤ C W1, pω on Bm+1.

By Theorem 1.17 in [KM1] we can find a subsequence {umj}j of {um}m and

an A-superharmonic function u on Rn such that umj → u a.e. Thus by (5.12)

and weak continuity (Theorem 2.4) we see that u is a solution to the equation

−divA(x,∇u) = uq + ω in Rn. On the other hand, from (5.13) we have

u ≤ C W1, pω a.e. on Rn,

which by Corollary 2.6 gives

u ≤ C(u− inf
Rn

u).
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Thus infRn u = 0, which completes the proof of the theorem.

We can now prove the main theorem of this section which gives existence criteria

for quasilinear equations in Rn.

Theorem 5.4. Let ω be a nonnegative locally finite measure on Rn, and let 1 <

p < n and q > p− 1. Then the following statements are equivalent.

(i) There exists a nonnegative A-superharmonic solution u ∈ Lq
loc(Rn) to the equa-

tion

(5.14)

{
infx∈Rn u(x) = 0,

−divA(x,∇u) = uq + ε ω in Rn

for some ε > 0.

(ii) The testing inequality

(5.15)

∫
B

[
IpωB(x)

] q
p−1

dx ≤ Cω(B)

holds for all balls B in Rn.

(iii) For all compact sets E ⊂ Rn,

(5.16) ω(E) ≤ C CapIp, q
q−p+1

(E).

(iv) The testing inequality

(5.17)

∫
B

[
W1, pωB(x)

]q

dx ≤ C ω(B)
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holds for all balls B in Rn .

(v) There exists a constant C such that

(5.18) W1, p (W1, pω)q(x) ≤ C W1, pω(x) < ∞ a.e.

Moreover, there is a constant C0 = C0(n, p, q, α, β) such that if any one of the

conditions (5.15)–(5.18) holds with C ≤ C0, then equation (5.14) has a solution u

with ε = 1 which satisfies the two-sided estimate

(5.19) c1 W1, pω(x) ≤ u(x) ≤ c2 W1, pω(x), x ∈ Rn,

where c1 and c2 depend only on n, p, q, α, β. Conversely, if (5.14) has a solution

u as in statement (i) with ε = 1, then conditions (5.15)–(5.18) hold with C =

C1(n, p, q, α, β). Here α and β are the structural constants of A defined in Section

2.2.

Proof. It is well-known that that statements (ii) and (iii) in Theorem 5.4 are equiv-

alent (see, e.g., [V2]). Note that (5.15) is also equivalent to the testing inequality

(see, e.g., [VW]): ∫
Rn

[
IpωB(x)

] q
p−1

dx ≤ C ω(B).

By applying Theorem 5.1 we deduce (ii)⇒(iv). The implication (v)⇒(i) clearly

follows from Theorem 5.3. Therefore, it remains to check (i)⇒(ii) and (iv)⇒(v).

Proof of (i)⇒(ii). Let u be a nonnegative solution of (5.14) and let µ = uq + εω.

Then µ is a nonnegative measure such that µ ≥ uq, µ ≥ εω and u(x) ≥ C W1, pµ(x)
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by Corollary 2.6. Therefore,∫
P

dµ ≥
∫

P

uq dx ≥ C

∫
P

(W1, pµ)q dx

≥ C

∫
P

[ ∑
Q⊂P

( µ(Q)

|Q|1− p
n

) 1
p−1

χQ(x)
]q

dx

for all dyadic cubes P in Rn. Using this and Theorem 4.2, we get

∑
Q⊂P

[ µ(Q)

|Q|1− p
n

] q
p−1 |Q| ≤ C µ(P ), P ∈ D.

It is known that the preceding condition, which is a dyadic Carleson measure

condition, is equivalent to the inequality (see [V1], Sec. 3)

||Ip(f)||
L

q
q−p+1 (dµ)

≤ C ||f ||
L

q
q−p+1 (dx)

,

where C does not depend on f ∈ L
q

q−p+1 (dx). Since µ ≥ ε ω, from this we have

||Ip(f)||
L

q
q−p+1 (dω)

≤ ε
q−p+1
−q C||f ||

L
q

q−p+1 (dx)
.

Therefore, by duality we obtain the testing inequality (5.15). This completes the

proof of (i)⇒(ii).

Proof of (iv)⇒(v). We first claim that (5.17) yields

(5.20) ω(Bt(x)) ≤ C tn−
pq

q−p+1 ,

where C is independent of x and r. Note that for y ∈ Bt(x) and τ ≥ 2t, we have

Bt(x) ⊂ Bτ (y). Thus,

W1, pωBt(x)(y) ≥
∫ ∞

2t

[ω(Bτ (y) ∩Bt(x))

τn−p

] 1
p−1 dτ

τ

≥ C
[ω(Bt(x))

tn−p

] 1
p−1

.
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Combining this with (5.17) we obtain 5.20.

Next, we introduce a decomposition of the Wolff’s potential W1, p into its “up-

per” and “lower” parts, which are the continuous analogues of the discrete ones

given in (4.17) and (4.18) above:

Urµ(x) =

∫ r

0

[µ(Bt(x))

tn−p

] 1
p−1 dt

t
, r > 0, x ∈ Rn,

Lrµ(x) =

∫ ∞

r

[µ(Bt(x))

tn−p

] 1
p−1 dt

t
, r > 0, x ∈ Rn.

Let dν = (W1, pω)qdx. For each r > 0 let dµr = (Urω)qdx and dλr = (Lrω)qdx.

Then

ν ≤ C(q)(µr + λr)(5.21)

Let x ∈ Rn and Br = Br(x). Since W1, p(W1, pω)q = W1, pν, we have to prove that

W1, pν(x) =

∫ ∞

0

[ν(Br)

rn−p

] 1
p−1 dr

r
≤ C W1, pω(x).

For r > 0, t ≤ r and y ∈ Br we have Bt(y) ⊂ B2r. Therefore it is easy to see that

Urω = UrωB2r on Br. Using this together with (5.17), we have

µr(Br) =

∫
Br

(Urω)qdx =

∫
Br

(UrωB2r)
qdx ≤ Cω(B2r).

Hence,

∫ ∞

0

[µr(Br)

rn−p

] 1
p−1 dr

r
≤ C

∫ ∞

0

[ω(B2r)

rn−p

] 1
p−1 dr

r
(5.22)

≤ C ′W1, pω(x).
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On the other hand, for y ∈ Br and t ≥ r, we have Bt(y) ⊂ B2t, and consequently

Lrω(y) ≤
∫ ∞

r

[ω(B2t)

tn−p

] 1
p−1 dt

t
(5.23)

≤ C

∫ ∞

2r

[ω(Bt)

tn−p

] 1
p−1 dt

t

≤ C Lrω(x).

Using (5.23), we obtain

λr(Br) =

∫
Br

(Lrω(y))qdy ≤ C(Lrω(x))qrn.

Thus, ∫ ∞

0

[λr(Br)

rn−p

] 1
p−1 dr

r
≤ C ′

∫ ∞

0

(Lrω(x))
q

p−1 r
p

p−1
dr

r

= C ′
∫ ∞

0

[ ∫ ∞

r

(ω(Bt)

tn−p

) 1
p−1 dt

t

] q
p−1

r
p

p−1
dr

r

= C ′ q

p

∫ ∞

0

r
p

p−1 [Lrω(x)]
q

p−1
−1

[ω(Br)

rn−p

] 1
p−1 dr

r
,

where we have used integration by parts in the last equality. It then follows from

(5.20) that ∫ ∞

0

[λr(Br)

rn−p

] 1
p−1 dr

r
≤ C ′′

∫ ∞

0

[ω(Br)

rn−p

] 1
p−1 dr

r
(5.24)

= C ′′W1, pω(x).

Combining (5.21), (5.22) and (5.24) gives

W1, pν(x) =

∫ ∞

0

[ν(Br)

rn−p

] 1
p−1 dr

r
≤ C W1, pω(x),

for a suitable constant C independent of ω. Thus, (iv) implies (v) as claimed which

completes the proof of the theorem.
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In view of condition (5.16) in the above theorem, we can now deduce a simple

sufficient condition for the solvability of (5.14) from the known lower estimate of

capacity in terms of Lebesgue measure (see, e.g., [AH], p. 39):

|E|1−
pq

n(q−p+1) ≤ C CapIp, q
q−p+1

(E).

Corollary 5.5. Suppose that f ∈ L
n(q−p+1)

pq
,∞(Rn) and dω = fdx. If q > p− 1 and

pq
q−p+1

< n, then equation (5.14) has a nonnegative solution for some ε > 0.

Remark 5.6. The condition f ∈ L
n(q−p+1)

pq
,∞(Rn) in Corollary 5.5 can be relaxed

by using the Fefferman–Phong condition [Fef]:

∫
BR

f 1+δdx ≤ CRn− (1+δ)pq
q−p+1

for some δ > 0, which is known to be sufficient for the validity of (5.15); see, e.g.,

[KS], [V2].
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Chapter 6

Quasilinear equations on bounded
domains

6.1 Sharp integral estimates

Let Q = {Q} be a Whitney decomposition of Ω, i.e., Q is a disjoint subfamily

of the family of dyadic cubes in Rn such that Ω = ∪Q∈QQ, where we can assume

that 25diam(Q) ≤ dist(Q, ∂Ω) ≤ 27diam(Q). Let {φQ}Q∈Q be a partition of unity

associated with the Whitney decomposition of Ω above: 0 ≤ φQ ∈ C∞
0 (Q∗), φQ ≥

1/C(n) on Q,
∑

Q φQ = 1 and |DγφQ| ≤ Aγ(diam(Q))−|γ for all multi-indices γ.

Here Q∗ = (1 + ε)Q, 0 < ε < 1
4

and C(n) is a positive constant depending only

on n such that each point in Ω is contained in at most C(n) of the cubes Q∗ (see

[St1]).

The following theorem gives local estimates for solutions of quasilinear equa-

tions.

Theorem 6.1. Let ω be a locally finite nonnegative measure on an open (not
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necessarily bounded) set Ω. Let p > 1 and q > p − 1. Suppose that there exists a

nonnegative A-superharmonic function u in Ω such that

−divA(x,∇u) = uq + ω in Ω.

Then, for each cube P ∈ Q and compact set E ⊂ Ω,

(6.1) µP (E) ≤ C CapIp, q
q−p+1

(E)

if pq
q−p+1

< n, and

µP (E) ≤ C(P ) CapGp, q
q−p+1

(E)(6.2)

if pq
q−p+1

≥ n. Here dµ = uqdx + dω, and the constant C in (6.1) is independent of

P ∈ Q and E ⊂ Ω, but the constant C(P ) in (6.2) may depend on the side length

of P .

Moreover, if pq
q−p+1

< n and Ω is a bounded C∞-domain, then

µ(E) ≤ C capp, q
q−p+1

(E, Ω)

for all compact sets E ⊂ Ω, where capp, q
q−p+1

(E, Ω) is a capacity associated with

the space W α, s, α = p, s = q
q−p+1

, relative to the domain Ω defined by

(6.3) capα, s(E, Ω) = inf{||f ||sW α, s(Rn) : f ∈ C∞
0 (Ω), f ≥ 1 on E}.

Proof. Let P be a fixed dyadic cube in Q. For a dyadic cube P ′ ⊂ P we have

dist(P ′, ∂Ω) ≥ dist(P, ∂Ω) ≥ 25diam(P ) ≥ 25diam(P ′).
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The lower estimate in Theorem 2.5 then yields

u(x) ≥ C W
23diam(P ′)
1, p µ(x)

≥ C

∞∑
k=0

∫ 2−k+3diam(P ′)

2−k+2diam(P ′)

[µ(Bt(x))

tn−p

] 1
p−1 dt

t

≥ C
∑
Q⊂P ′

[ µ(Q)

|Q|1− p
n

] 1
p−1

χQ(x)

for all x ∈ P ′. Thus it follows from Theorem 4.2 that

(6.4)
∑
Q⊂P ′

[ µ(Q)

|Q|1− p
n

] q
p−1 |Q| ≤ C

∫
P ′

uqdx ≤ Cµ(P ′), P ′ ⊂ P.

Hence

(6.5) µ(P ′) ≤ C|P ′|1−
pq

n(q−p+1) , P ′ ⊂ P.

To get a better estimate for µ(P ′) in the case pq
q−p+1

= n, we observe that (6.4) is a

dyadic Carleson condition. Thus by the dyadic Carleson imbedding theorem (see,

e.g., [NTV], [V1]) we obtain, for pq
q−p+1

= n,

(6.6)
∑
Q⊂P

µ(Q)
q

p−1

[ 1

µ(Q)

∫
Q

fdµ
] q

p−1 ≤ C

∫
P

f
q

p−1 dµ,

where f ∈ L
q

p−1 (dµP ), f ≥ 0. From (6.6) with f = χP ′ , one gets

(6.7) µ(P ′) ≤ C
(

log
2n|P |
|P ′|

) 1−p
q−p+1

, P ′ ⊂ P,

if pq
q−p+1

= n. Now let P ′ be a dyadic cube in Rn. From Wolff’s inequality (5.6) we
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have

∫
Rn

(IpµP ′∩P )
q

p−1 dx ≤ C
∑
Q∈D

[µP (P ′ ∩Q)

|Q|1− p
n

] q
p−1 |Q|

= C
∑
Q⊂P ′

[ µP (Q)

|Q|1− p
n

] q
p−1 |Q|+ C

∑
P ′ Q

[µP (P ′)

|Q|1− p
n

] q
p−1 |Q|.(6.8)

Thus, for pq
q−p+1

< n, by combining (6.4) and (6.8) we deduce

(6.9)

∫
Rn

(IpµP ′∩P )
q

p−1 dx ≤ C µP (P ′).

In the case pq
q−p+1

≥ n, a similar argument using (6.4), (6.5), (6.7) and Wolff’s

inequality for Bessel potentials:

∫
Rn

(GpµP ′∩P )
q

p−1 dx ≤ C(P )
∑

Q∈D, Q⊂P

[µP (P ′ ∩Q)

|Q|1− p
n

] q
p−1 |Q|,

(see [AH], Sec. 4.5), also gives

(6.10)

∫
Rn

(GpµP ′∩P )
q

p−1 dx ≤ C(P )µP (P ′),

where the constant C(P ) may depend on the side length of P . Note that (6.9) which

holds for all dyadic cubes P ′ in Rn is the well-known Kerman-Sawyer condition.

Therefore by the results of [KS],

||Ipf ||
L

q
q−p+1 (dµP )

≤ C||f ||
L

q
q−p+1 (dx)

for all f ∈ L
q

q−p+1 (Rn) which is equivalent to the capacitary condition

µP (E) ≤ C CapIp, q
q−p+1

(E)
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for all compact sets E ⊂ Rn. Thus we obtain (6.1). The inequality (6.2) is proved

in the same way using (6.10). From (6.1) and the definition of capp, q
q−p+1

(·, Ω), we

see that, for each cube P ∈ Q,

µP (E) ≤ Ccapp, q
q−p+1

(E ∩ P, Ω)

for all compact sets E ⊂ Ω. Thus

µ(E) ≤
∑
P∈Q

µP (E)

≤ C
∑
P∈Q

capp, q
q−p+1

(E ∩ P, Ω)

≤ C capp, q
q−p+1

(E, Ω),

where the last inequality follows from the quasi-additivity of capp, q
q−p+1

(·, Ω), which

is considered in the next theorem.

Let BR be a ball such that B2R ⊂ Ω. It is easy to see that there exists a

constant c > 0 such that `(P ) ≥ cR for any Whitney cube P that intersects BR.

On the other hand, if Br is a ball in BR then we can find at most N dyadic cubes

Pi with c r
4
≤ `(Pi) < c r

2
that cover Br, where N depends only on n. Thus we can

deduce from (6.7) the following corollary which gives an improved estimate in the

critical case q = n(p−1)
n−p

, 1 < p < n.

Corollary 6.2. Let ω, Ω, p, q and u be as in Theorem 6.1. Then in the case

pq
q−p+1

= n we have ∫
Br

uq dx + ω(Br) ≤ C(log 2R
r

)
1−p

q−p+1
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for all balls Br ⊂ BR such that B2R ⊂ Ω.

Theorem 6.3. Suppose that Ω is a C∞-domain in Rn. Then there exists a constant

C > 0 such that

∑
Q∈Q

capp, q
q−p+1

(E ∩Q, Ω) ≤ Ccapp, q
q−p+1

(E, Ω)

for all compact sets E ⊂ Ω.

Proof. Obviously, we may assume that capp, q
q−p+1

(E, Ω) > 0. Then by definition

there exists f ∈ C∞
0 (Ω), f ≥ 1 on E such that

2 capp, q
q−p+1

(E, Ω) ≥ ||f ||
q

q−p+1

W
p,

q
q−p+1 (Rn)

.

By the refined localization principle on the smooth domain Ω for the function space

W p, q
q−p+1 (see, e.g., [Tri], Theorem 5.14) we have

||f ||
q

q−p+1

W
p,

q
q−p+1 (Rn)

≥ C
∑
Q∈Q

||fφQ||
q

q−p+1

W
p,

q
q−p+1 (Rn)

.

Thus

(6.11)
∑
Q∈Q

||fφQ||
q

q−p+1

W
p,

q
q−p+1 (Rn)

≤ Ccapp, q
q−p+1

(E, Ω).

Note that for x ∈ E ∩Q,

fφQ ≥ φQ ≥ 1/C(n).

Hence by definition we have

capp, q
q−p+1

(E ∩Q, Ω) ≤ C||fφQ||
q

q−p+1

W
p,

q
q−p+1 (Rn)

.

From this and (6.11) we deduce the desired inequality.
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6.2 Criteria for solvability

We next give a sufficient condition for the existence of renormalized solutions to

quasilinear equations on a bounded domain Ω, which is an analogue of Theorem 5.3

related to the case Ω = Rn. Its proof is based on stability results for renormalized

solutions in place of the weak continuity of measures generated byA-superharmonic

functions used in the proof of Theorem 5.3.

Theorem 6.4. Let ω ∈M+
B(Ω). Let p > 1 and q > p− 1. Suppose that

W2R
1, p (W2R

1, pω)q ≤ C W2R
1, pω a.e.,

where R = diam(Ω),

C ≤
( q − p + 1

qK max{1, 2p′−2}

)q(p′−1)( p− 1

q − p + 1

)
,

and K is the constant in Theorem 3.11. Then there is a renormalized solution

u ∈ Lq(Ω) to the Dirichlet problem

{
−divA(x,∇u) = uq + ω in Ω,

u = 0 on ∂Ω
(6.12)

such that

u(x) ≤ M W2R
1, pω(x)

for all x in Ω, where the constant M depends only on p, q, n, and the structural

constants α and β.
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Proof. By Lemma 3.9 we can find a nondecreasing sequence {uk}k≥0 of renormal-

ized solutions to the following Dirichlet problems:

{
−divA(x,∇u0) = ω in Ω,

u0 = 0 on ∂Ω,
(6.13)

and

{
−divA(x,∇uk) = uq

k−1 + ω in Ω,
uk = 0 on ∂Ω.

(6.14)

for k ≥ 1. By Theorem 3.11 we have

u0 ≤ K W2R
1, pω, uk ≤ K W2R

1, p(u
q
k−1 + ω).

Thus by arguing as in the proof of Theorem 5.3, we obtain a constant M > 0 such

that

uk ≤ M W2R
1, pω < ∞ a.e.

for all k ≥ 0. Therefore, {uk} converges pointwise to a nonnegative function u for

which

u ≤ M W2R
1, pω < ∞ a.e.,

and uq
k → uq in L1(Ω). Finally, in view of (6.14), the stability result in [DMOP,

Theorem 3.4] asserts that u is a renormalized solution of (6.12), which proves the

theorem.
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Existence results on a bounded domain Ω analogous to Theorems 5.4 are con-

tained in the following two theorems, where Bessel potentials and the corresponding

capacities are used in place of respectively Riesz potentials and Riesz capacities.

Theorem 6.5. Let ω ∈M+
B(Ω) be compactly supported in Ω. Let p > 1, q > p−1,

and let R = diam(Ω). Then the following statements are equivalent.

(i) There exists a nonnegative renormalized solution u ∈ Lq(Ω) to the equation

(6.15)

{
−divA(x,∇u) = uq + ε ω in Ω,

u = 0 on ∂Ω

for some ε > 0.

(ii) For all compact sets E ⊂ Ω,

(6.16) ω(E) ≤ C CapGp, q
q−p+1

(E).

(iii) The testing inequality

(6.17)

∫
B

[W2R
1, pωB(x)]q dx ≤ C ω(B)

holds for all balls B such that B ∩ suppω 6= ∅ .

(iv) There exists a constant C such that

(6.18) W2R
1, p (W2R

1, pω)q(x) ≤ C W2R
1, pω(x) a.e. on Ω.

Proof. Since ω is compactly supported in Ω, using Theorem 6.1 we have (i)⇒ (ii).

Thus we need to show that (ii)⇒ (iii)⇒ (iv) ⇒ (i). Note that the capacitary
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inequality (6.16) is equivalent to the Kerman–Sawyer condition

(6.19)

∫
Rn

[GpωB(x)]
q

p−1 dx ≤ C ω(B),

(see [KS], [V2]). Note also that

(6.20)

∫
Rn

[Gpµ(x)]
q

p−1 dx '
∫
Rn

[ ∫ 2R

0

µ(Bt(x))

tn−p

] q
p−1

dx,

where the constants of equivalence are independent of the measure µ, (see [HW],

[AH]). Thus from (6.19), (6.20), and Theorem 5.1 we deduce the implication

(ii)⇒(iii). By Theorem 6.4 we have (iv)⇒(i). Thus it is left to show that (iii)⇒(iv).

In fact, the proof of this implication is similar to the proof of (iv)⇒(v) in Theorem

5.4. We will only sketch some crucial steps here. We define the “lower” and “upper”

parts of the truncated Wolff’s potential W2R
1, p respectively by

L2R
r µ(x) =

∫ 2R

r

[µ(Bt(x))

tn−p

] 1
p−1 dt

t
, 0 < r < 2R, x ∈ Rn

and

U2R
r µ(x) =

∫ r

0

[µ(Bt(x))

tn−p

] 1
p−1 dt

t
, 0 < r < 2R, x ∈ Rn.

Since R = diam(Ω) and ω ∈ M+
B (Ω), to prove (6.18), it is enough to verify that,

for x ∈ Ω,

(6.21)

∫ 2R

0

[µr(Br(x))

rn−p

] 1
p−1 dr

r
≤ C W2R

1, pω(x),

and

(6.22)

∫ 2R

0

[λr(Br(x))

rn−p

] 1
p−1 dr

r
≤ C W2R

1, pω(x),
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where dµr = (U2R
r ω)qdx, dλr = (L2R

r ω)qdx and 0 < r < 2R. The proof of (6.21) is

the same as before. For the proof of (6.22), we need an estimate similar to (5.20)

in the proof of Theorem 5.4. Namely,

(6.23) ω(Bt(x)) ≤ C tn−
pq

q−p+1 ,

for 0 < t < R
2

and x ∈ Ω. In fact, note that for 0 < t < R
2

and y ∈ Bt(x),

W2R
1, pωBt(x)(y) ≥

∫ 2R

2t

[ω(Bτ (y) ∩Bt(x))

τn−p

] 1
p−1 dτ

τ

≥ C(n, p)
[ω(Bt(x))

tn−p

] 1
p−1

.

Thus from this inequality and (6.17) we get (6.23). This completes the proof of

(iii)⇒(iv), and hence Theorem 6.5 is proved.

Remark 6.6. In the case where ω is not compactly supported in Ω, it can be

easily seen from the proof of this theorem that any one of the conditions (ii)–(iv)

above is still sufficient for the solvability of (6.15). Moreover, in the subcritical case

pq
q−p+1

> n, these conditions are redundant since the Bessel capacity CapGp, q
q−p+1

of a single point is positive (see [AH], Sec. 2.6). This ensures that statement (ii)

of Theorem 6.5 holds for some constant C > 0 provided ω is a finite measure.

Corollary 6.7. Suppose that f ∈ L
n(q−p+1)

pq
,∞(Ω) and dω = fdx. If q > p− 1 and

pq
q−p+1

< n then the equation (6.15) has a nonnegative renormalized (or equivalently,

entropy) solution for some ε > 0.
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6.3 Removable singularities of −divA(x,∇u) = uq

We are now in a position to obtain a characterization of removable singularities for

homogeneous quasilinear equations.

Theorem 6.8. Let E be a compact subset of Ω. Then any solution u to the problem

(6.24)


u is A-superharmonic in Ω \ E,

u ∈ Lq
loc(Ω \ E), u ≥ 0,

−divA(x,∇u) = uq in D′(Ω \ E),

is also a solution to a similar problem with Ω in place of Ω \ E if and only if

CapGp, q
q−p+1

(E) = 0.

Proof. Let us first prove the “only if” part of the theorem. Suppose that

CapGp, q
q−p+1

(E) = 0,

and u is a solution of (6.24). We have cap1, p(E, Ω) = 0, where the capacity

cap1, p(·, Ω) is defined by (3.1). Thus u can be extended so that it is a nonnegative

A-superharmonic function in Ω (see [HKM]). Let µ[u] be the Radon measure on

Ω associated with u, and let ϕ be an arbitrary nonnegative function in C∞
0 (Ω).

As in [BP, Lemme 2.2], we can find a sequence {ϕn} of nonnegative functions in

C∞
0 (Ω \ E) such that

(6.25) 0 ≤ ϕn ≤ ϕ; ϕn → ϕ CapGp, q
q−p+1

-quasi everywhere.
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By Fatou’s lemma we have

∫
Ω

uq ϕ dx ≤ lim inf
n→∞

∫
Ω

uq ϕn dx

= lim inf
n→∞

∫
Ω

ϕn dµ[u]

≤
∫

Ω

ϕ dµ[u] < ∞.

Therefore u ∈ Lq
loc(Ω), and µ[u] ≥ uq in D′(Ω). It is then easy to see that

−divA(x,∇u) = uq + µE in D′(Ω)

for some nonnegative measure µE such that µE(A) = 0 for any Borel set A ⊂ Ω\E.

Moreover, by Theorem 6.1 we have

µE(E) ≤ C(E) CapGp, q
q−p+1

(E) = 0.

Thus µE = 0 and u solves (6.24) with Ω in place of Ω \ E.

The “if” part of the theorem is proved in the same way as in the linear case

p = 2 using the existence results obtained in Theorem 6.5. We refer to [AP] for

details.

77



78



Chapter 7

Hessian equations

In this chapter, we study a fully nonlinear counterpart of the theory presented in

Chapters 5 and 6.

7.1 Hessian equations on Rn

¿From Lemma 3.16 and Theorem 3.15 along with the weak continuity of Hessian

measures (Theorem 2.7) we get the following existence theorem for fully nonlinear

equations whose proof, which we will omit, is similar to that of Theorem 5.3 in the

quasilinear case.

Theorem 7.1. Let ω ∈M+(Rn), 1 ≤ k < n
2
, and q > k. Suppose that

W 2k
k+1

, k+1 (W 2k
k+1

, k+1ω)q ≤ C W 2k
k+1

, k+1ω < ∞ a.e.,

where

C ≤
(q − k

qK

)q/k k

q − k
,
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and K is the constant in Theorem 3.15. Then there exists u ≥ 0, u ∈ Lq
loc(Rn),

such that −u ∈ Φk(Rn) and {
infx∈Rn u(x) = 0,
Fk[−u] = uq + ω.

Moreover, u satisfies the two-sided estimate

c1W 2k
k+1

, k+1ω(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1ω(x)

for all x in Rn, where the constants c1, c2 depend only on n, k, q.

We are now in a position to establish the main results of this section.

Theorem 7.2. Let ω be a measure in M+(Rn), 1 ≤ k < n
2
, and q > k. Then the

following statements are equivalent.

(i) There exists a solution u ≥ 0, −u ∈ Φk(Ω) ∩ Lq
loc(Rn), to the equation

(7.1)

{
infx∈Rn u(x) = 0

Fk[−u] = uq + ε ω in Rn

for some ε > 0.

(ii) The testing inequality

(7.2)

∫
B

[I2kωB(x)]
q
k dx ≤ C ω(B)

holds for all balls B in Rn.

(iii) For all compact sets E ⊂ Rn,

(7.3) ω(E) ≤ C CapI2k, q
q−k

(E).
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(iv) The testing inequality

(7.4)

∫
B

[W 2k
k+1

, k+1ωB(x)]q dx ≤ C ω(B)

holds for all balls B in Rn .

(v) There exists a constant C such that

(7.5) W 2k
k+1

, k+1 (W 2k
k+1

, k+1ω)q(x) ≤ C W 2k
k+1

, k+1ω(x) < ∞ a.e.

Moreover, there is a constant C0 = C0(n, k, q) such that if any one of the conditions

(7.2)–(7.5) holds with C ≤ C0, then equation (7.1) has a solution u with ε = 1

which satisfies the two-sided estimate

c1 W 2k
k+1

, k+1ω(x) ≤ u(x) ≤ c2 W 2k
k+1

, k+1ω(x), x ∈ Rn,

where c1 and c2 depend only on n, k, q. Conversely, if there is a solution u to (7.1)

as in statement (i) with ε = 1, then conditions (7.2)–(7.5) hold with C = C1(n, k, q).

Proof. The proof of Theorem 7.2 is completely analogous to that of Theorem 5.4

in the quasilinear case using W 2k
k+1

, k+1 in place of W1, p and Theorem 7.1 in place

of Theorem 5.3.

Corollary 7.3. Suppose that f ∈ L
n(q−k)

2kq
,∞(Rn) and dω = fdx. If q > k and

2kq
q−k

< n then (7.1) has a nonnegative solution for some ε > 0.

Remark 7.4. As in Remark 5.6, the condition f ∈ L
n(q−k)

2kq
,∞(Rn) in Corollary 7.3

can be relaxed by using the Fefferman–Phong condition [Fef]:∫
BR

f 1+δdx ≤ C Rn− (1+δ)2kq
q−k
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for some δ > 0.

Since CapIα, s(E) = 0 in the case α s ≥ n for all sets E ⊂ Rn (see [AH], Sec.

2.6), from Theorems 6.5 and 7.2 we obtain the following Liouville-type theorems

for quasilinear and Hessian differential inequalities.

Corollary 7.5. If q ≤ n(p−1)
n−p

, then the inequality −divA(x,∇u) ≥ uq admits no

nontrivial nonnegative A-superharmonic solutions in Rn. Analogously, if q ≤ nk
n−2k

,

then the inequality Fk[−u] ≥ uq admits no nontrivial nonnegative solutions in Rn.

Remark 7.6. When 1 < p < n and q > n(p−1)
n−p

, the function u(x) = c|x|
−p

q−p+1 with

c =
[ pp−1

(q − p + 1)p

] 1
q−p+1

[q(n− p)− n(p− 1)]
1

q−p+1 ,

is a nontrivial admissible (but singular) global solution of −∆pu = uq (see [SZ]).

Similarly, the function u(x) = c′|x|
−2k
q−k with

c′ =
[ (n− 1)!

k!(n− k)!

] 1
q−k

[ (2k)k

(q − k)k+1

] 1
q−k

[q(n− 2k)− nk]
1

q−k ,

where 1 ≤ k < n
2

and q > nk
n−2k

, is a singular admissible global solution of Fk[−u] =

uq (see [Tso] or [Tru2], formula (3.2)). Thus, we see that the exponent n(p−1)
n−p

(respectively nk
n−2k

) is critical for the homogeneous equation −divA(x,∇u) = uq

(respectively Fk[−u] = uq) in Rn. The situation is different when we restrict

ourselves only to locally bounded solutions in Rn (see [GS], [SZ]).
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7.2 Hessian equations on bounded domains

In this section, we consider the following fully nonlinear problem:{
Fk[−u] = uq + ω in Ω,

u = ϕ on ∂Ω
(7.6)

in the class of nonnegative functions u such that −u is k-convex in a bounded

uniformly (k− 1)-convex domain Ω. Here ω is a nonnegative finite Radon measure

which is regular enough near ∂Ω so that the boundary condition in (7.6) can be

understood in the classical sense (see [TW1], [TW2]).

We first prove a theorem on the existence of solutions to Hessian equations

with non-homogeneous boundary condition which is analogous to Theorem 6.4.

However, due to the inhomogeneity we will need to take care of the boundary

term. Moreover, the weak continuity of Hessian measures is used in place of the

stability result for renormalized solutions in the quasilinear case.

Theorem 7.7. Let Ω be a bounded uniformly (k−1)-convex domain in Rn. Suppose

that ω ∈M+
B(Ω) such that ω = µ + f , where µ ∈M+(Ω) with compact support in

Ω, 0 ≤ f ∈ Ls(Ω) with s > n
2k

if 1 ≤ k ≤ n
2

and s = 1 if n
2

< k ≤ n. Let q > k,

R = diam(Ω) and 0 ≤ ϕ ∈ C0(∂Ω). Suppose that

(7.7) W2R
2k

k+1
, k+1

(W2R
2k

k+1
, k+1

ω)q ≤ AW2R
2k

k+1
, k+1

ω,

and

(7.8) (max
∂Ω

ϕ)
q
k
−1 ≤ B

k
q

2R2|B1(0)|
1
k

,
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where A, B are positive constants such that

(7.9) A ≤
( q − k

3
q−1

q qK

) q
k
( k

q − k

)
, and B ≤

( q − k

3
q−1

q qK
q
k

) q
k
( k

q − k

)
.

Here K is the constant in Theorem 3.15. Then there exists a function u ≥ 0,

−u ∈ Φk(Ω) ∩ Lq(Ω), continuous near ∂Ω such that

(7.10)

{
Fk[−u] = uq + ω in Ω,

u = ϕ on ∂Ω.

Moreover, there is a constant C = C(n, k, q) such that

u ≤ C
{
W2R

2k
k+1

, k+1
ω + W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q + max

∂Ω
ϕ
}

.

Proof. First observe by direct calculations that condition (7.8) is equivalent to

(7.11) W2R
2k

k+1
, k+1

[
W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q

]q

≤ B W2R
2k

k+1
, k+1

(max
∂Ω

ϕ)q.

From Lemma 3.16 it follows that we can choose inductively a nondecreasing se-

quence {um} of nonnegative functions on Ω such that

{
Fk[−u0] = ω in Ω,

u0 = ϕ on ∂Ω,

and

(7.12)

{
Fk[−um] = uq

m−1 + ω in Ω,
um = ϕ on ∂Ω,
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for m ≥ 1. Here for each m ≥ 0, −um is k-subharmonic and is continuous near

∂Ω. By Theorem 3.15 we have

u0 ≤ K W2R
2k

k+1
, k+1

ω + K max
∂Ω

ϕ

= a0W
2R
2k

k+1
, k+1

ω + b0W
2R
2k

k+1
, k+1

(max
∂Ω

ϕ)q + K max
∂Ω

ϕ,

where a0 = K and b0 = 0. Thus

u1 ≤ K W2R
2k

k+1
, k+1

(uq
0 + ω) + K max

∂Ω
ϕ

≤ K
{

(3q−1aq
0)

1
k W2R

2k
k+1

, k+1
(W2R

2k
k+1

, k+1
ω)q +

(3q−1bq
0)

1
k W2R

2k
k+1

, k+1

[
W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q

]q

+

K
q
k W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q + W2R

2k
k+1

, k+1
ω
}

+ K max
∂Ω

ϕ.

Then by (7.7) and (7.11),

u1 ≤ K[(3q−1aq
0)

1
k A + 1]W2R

2k
k+1

, k+1
ω +

K[(3q−1bq
0)

1
k B + K

q
k ]W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q + K max

∂Ω
ϕ

= a1W
2R
2k

k+1
, k+1

ω + b1W
2R
2k

k+1
, k+1

(max
∂Ω

ϕ)q + K max
∂Ω

ϕ,

where

a1 = K[(3q−1aq
0)

1
k A + 1], b1 = K[(3q−1bq

0)
1
k B + K

q
k ].

By induction we have

um ≤ amW2R
2k

k+1
, k+1

ω + bmW2R
2k

k+1
, k+1

(max
∂Ω

ϕ)q + K max
∂Ω

ϕ,
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where

am+1 = K[(3q−1aq
m)

1
k A + 1], bm+1 = K[(3q−1bq

m)
1
k B + K

q
k ]

for all m ≥ 0. It is then easy to see that

am ≤
Kq

q − k
, and bm ≤

K
q
k
+1q

q − k
,

provided (7.9) is satisfied. Thus

um ≤ Kq

q − k
W2R

2k
k+1

, k+1
ω +(7.13)

K
q
k
+1q

q − k
W2R

2k
k+1

, k+1
(max

∂Ω
ϕ)q + K max

∂Ω
ϕ.

Using (7.7) and (7.13) we see that um ↑ u for a function u ≥ 0 such that −u is

k-subharmonic and uq
m → uq in L1(Ω). Thus in view of (7.12) and Theorem 2.7 we

see that u is a desired solution of (7.10).

We will omit the proof of the next theorem as it is completely analogous to the

proof of Theorem 6.1 in the quasilinear case.

Theorem 7.8. Let ω be a locally finite nonnegative measure on an open (not

necessarily bounded) set Ω. Let 1 ≤ k ≤ n and q > k. Suppose that u ≥ 0,

−u ∈ Φk(Ω), such that u is a solution to

Fk[−u] = uq + ω in Ω.
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Then for each cube P ∈ Q, where Q = {Q} is a Whitney decomposition of Ω as

before (see Sec. 6.1), we have

(7.14) µP (E) ≤ C CapI2k, q
q−k

(E),

if 2kq
q−k

< n, and

(7.15) µP (E) ≤ C(P ) CapG2k, q
q−k

(E),

if 2kq
q−k

≥ n for all compact sets E ⊂ Ω. Here dµ = uqdx + dω, and the constant C

in (7.14) does not depend on P ∈ Q and E ⊂ Ω; however, the constant C(P ) in

(7.15) may depend on the side length of P .

Moreover, if 2kq
q−k

< n, and Ω is a bounded C∞-domain then

µ(E) ≤ C cap2k, q
q−k

(E, Ω)

for all compact sets E ⊂ Ω, where cap2k, q
q−k

(E, Ω) is defined by (6.3).

Remark 7.9. Let BR be a ball such that B2R ⊂ Ω. Then in the critical case

q = nk
n−2k

, (k < n
2
), as in Corollary 6.2 we have

µ(Br) ≤ C(log 2R
r

)
−k
q−k

for all balls Br ⊂ BR.

We are now in a position to establish characterizations of solvability for Hessian

equations in a bounded domain.

87



Theorem 7.10. Let Ω be a uniformly (k − 1)-convex domain in Rn, and let ω ∈

M+
B(Ω) be compactly supported in Ω. Suppose that 1 ≤ k ≤ n, q > k, R = diam(Ω),

and ϕ ∈ C0(∂Ω), ϕ ≥ 0. Then the following statements are equivalent.

(i) There exists a solution u ≥ 0, −u ∈ Φk(Ω)∩Lq(Ω), continuous near ∂Ω, to the

equation

(7.16)

{
Fk[−u] = uq + ε ω in Ω,

u = ε ϕ on ∂Ω

for some ε > 0.

(ii) For all compact sets E ⊂ Ω,

ω(E) ≤ C CapG2k, q
q−k

(E).

(iii) The testing inequality

∫
B

[W2R
2k

k+1
, k+1

ωB(x)]q dx ≤ C ω(B)

holds for all balls B such that B ∩ suppω 6= ∅ .

(iv) There exists a constant C such that

W2R
2k

k+1
, k+1

(W2R
2k

k+1
, k+1

ω)q(x) ≤ C W2R
2k

k+1
, k+1

ω(x) a.e. on Ω.

Proof. The proof of this theorem is analogous to that of Theorem 7.2 in the quasi-

linear case. One only has to use Theorems 7.7 and 7.8 in place of Theorems 6.4

and 6.1 respectively.
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Remark 7.11. As in Remark 6.6, any one of the conditions (ii)–(iv) in Theorem

7.10 is still sufficient for the solvability of (7.16) if dω = dµ + f dx, where µ ∈

M+
B(Ω) is compactly supported in Ω and f ∈ Ls(Ω), f ≥ 0 with s > n

2k
if k ≤ n

2
,

and s = 1 if k > n
2
. Moreover, in the subcritical case 2kq

q−k
> n these conditions are

redundant.

Corollary 7.12. Let dω = (f + g) dx, where f ≥ 0, g ≥ 0, f ∈ L
n(q−k)

2kq
,∞(Ω) is

compactly supported in Ω, and g ∈ Ls(Ω) for some s > n
2k

. If q > k and 2kq
q−k

< n

then (7.16) has a nonnegative solution for some ε > 0.

The next theorem is on removable singularities for Hessian equations, an ana-

logue of Theorem 6.8.

Theorem 7.13. Let E be a compact subset of Ω. Then any solution u to the

problem

(7.17)


−u is k-subharmonic in Ω \ E,

u ∈ Lq
loc(Ω \ E), u ≥ 0,

Fk[−u] = uq in D′(Ω \ E),

is also a solution to a similar problem with Ω in place of Ω \ E if and only if

CapG2k, q
q−k

(E) = 0.

Proof. To prove this theorem, we will proceed as in the proof of Theorem 6.8. For

the “only if” part, we may assume that k < n
2
, since otherwise 2kq

q−k
> n, and so

E = ∅. Note that if CapG2k, q
q−k

(E) = 0 then CapG 2k
k+1

, k+1(E) = 0 (see [AH],

Sec. 5.5), which implies that capk(E, Ω) = 0 due to Theorem 7.14 below. Here
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capk(·, Ω) is the (relative) k-Hessian capacity associated with the domain Ω defined

by (3.15). Thus by [L, Theorem 4.2], E is a k-polar set, i.e., it is contained in the

(−∞)-set of a k-subharmonic function in Rn. Suppose that u is a solution of (7.17).

It is easy to see that the function ũ defined by

(7.18) ũ(x) =

{
u(x), x ∈ Ω \ E,

lim inf
y→x, y 6∈E

u(y), x ∈ E,

is an extension of u to Ω such that −ũ ∈ Φk(Ω). The rest of the proof is then the

same as in the quasilinear case.

Finally, we prove the local equivalence of the k-Hessian capacity and an appro-

priate Bessel capacity that is needed in the proof of Theorem 7.13 above.

Theorem 7.14. Let 1 ≤ k < n
2

be an integer. Then there are constants M1, M2

such that

(7.19) M1 CapG 2k
k+1

, k+1(E) ≤ capk(E, Ω) ≤ M2 CapG 2k
k+1

, k+1(E),

for any compact set E ⊂ Q with Q ∈ Q. Furthermore, if Ω is a bounded C∞-

domain then

(7.20) capk(E, Ω) ≤ C cap 2k
k+1

, k+1(E, Ω),

for any compact set E ⊂ Ω, where cap 2k
k+1

, k+1(E, Ω) is defined by (6.3) with α = 2k
k+1

and s = k + 1.
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Proof. Let R be the diameter of Ω. From Wolff’s inequality (5.5) it follows that

CapG 2k
k+1

, k+1(E) is equivalent to

sup {µ(E) : µ ∈M+(E), W4R
2k

k+1
, k+1

µ ≤ 1 on suppµ},

for any compact set E ⊂ Ω (see [HW], Proposition 5). To prove the left-hand

inequality in (7.19), let µ ∈ M+(E) such that W4R
2k

k+1
, k+1

µ ≤ 1 on suppµ, and let

u ∈ Φk(B) be a nonpositive solution of

{
Fk[u] = µ in B
u = 0 on ∂B,

where B is a ball of radius R containing Ω. By Theorem 3.15 and the boundedness

principle for nonlinear potentials (see [AH], Sec. 2.6), we have

|u(x)| ≤ C W4R
2k

k+1
, k+1

µ(x) ≤ C, x ∈ B.

Thus

µ(E) = µk[u](E) ≤ C capk(E, Ω),

which shows that

CapG 2k
k+1

, k+1(E) ≤ C capk(E, Ω).

To prove the upper estimate in (7.19), we let Q ∈ Q, and fix a compact set E ⊂ Q.

Note that for µ ∈M+(E) and x ∈ E we have

W4R
2k

k+1
, k+1

µ(x) = W
2diam(Q)
2k

k+1
, k+1

µ(x) +

∫ 4R

2diam(Q)

[µ(E)

tn−2k

] 1
k dt

t
.
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Thus, for k < n
2
,

(7.21) W4R
2k

k+1
, k+1

µ(x) ≤ C W
2diam(Q)
2k

k+1
, k+1

µ(x), x ∈ E.

Now for u ∈ Φk(Ω) such that −1 < u < 0 by Theorem 2.8 we obtain

W
2diam(Q)
2k

k+1
, k+1

µE(x) ≤ W
2diam(Q)
2k

k+1
, k+1

µ(x) ≤ C |u(x)| ≤ C

for all x ∈ E, where µ = µk[u]. Thus, we deduce from (7.21) that

W4R
2k

k+1
, k+1

µE(x) ≤ C, x ∈ E,

which implies

(7.22) capk(E, Ω) ≤ CCapG 2k
k+1

, k+1(E).

Finally, if Ω is a C∞-domain in Rn, and 1 ≤ k < n
2
, then by (7.22) and the

quasi-additivity of the capacity cap 2k
k+1

, k+1(·, Ω) (see Theorem 6.3) we obtain the

global upper estimate (7.20) for the k-Hessian capacity.
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Appendix A

Proof of Theorem 2.4

Theorem 2.4 was proved by Trudinger and Wang [TW4]. Here we give a detailed

proof with some simplifications and modifications for the convenience of the reader.

Lemma A.1 ([HKM], Lemma 3.57). Suppose that u ∈ W 1, p
loc (Ω) is a nonnegative

supersolution to −divA(x, ∇u) = 0 in Ω. If η ∈ C∞
0 (Ω), η ≥ 0, and ε > 0, then

there exists a constant C > 0 such that

∫
Ω

|∇u|pu−1−εηpdx ≤ C

∫
Ω

up−1−ε|∇η|pdx.

Proof. By replacing u with u + δ for δ > 0, we may assume that the function

v = u−εηp is a nonnegative function in W 1, p
0 (Ω) with compact support. Thus from

the inequality
∫

Ω
A(x, ∇u) · ∇vdx ≥ 0 we obtain

ε

∫
Ω

A(x, ∇u)ηpu−1−ε · ∇udx ≤ p

∫
Ω

A(x, ∇u)ηp−1u−ε · ∇ηdx.
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Using the structural condition (2.3) along with Hölder’s inequality we then get

αε

∫
Ω

|∇u|pu−1−εηpdx ≤ βp

∫
Ω

|∇u|p−1u−εηp−1|∇η|dx

≤ βp
( ∫

Ω

|∇u|pu−1−εηpdx
) p−1

p
( ∫

Ω

up−1−ε|∇η|pdx
) 1

p
.

Thus the lemma follows.

Theorem A.2 ([HKM], Theorem 7.46). If u is A-superharmonic in Ω, then u ∈

Ls
loc(Ω) and Du ∈ Lq

loc(Ω) whenever 0 < s < n(p−1)
n−p

and 0 < q < n(p−1)
n−1

. Moreover,

if u is nonnegative then for any ball BR such that B4R ⊂ Ω we have

(A.1)
( 1

|BR|

∫
BR

|Du|qdx
) 1

q ≤ C R−1ess inf
BR

u.

Proof. Let BR be a ball such that B4R ⊂ Ω. We may assume that u ≥ 0 in B4R.

Let uk = min{u, k}, k=1,2,... Then uk is a supersolution in Ω and hence the weak

Harnack’s inequality [Tru1] implies that

( 1

|BR|

∫
BR

us
kdx

) 1
s ≤ C ess inf

BR

u

for 0 < s < n(p−1)
n−p

. Thus letting k →∞ we obtain u ∈ Ls
loc(Ω).

The integrability of Du follows from this result combined with the estimate

in Lemma A.1. Indeed, let 0 < q < n(p−1)
n−1

and ε > 0. By Lemma A.1 with an
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appropriate choice of η we have∫
BR

|∇uk|qdx =

∫
BR

|∇uk|qu−(1+ε)q/p
k u

(1+ε)q/p
k dx

≤
( ∫

BR

|∇uk|pu−1−ε
k dx

)q/p( ∫
BR

u
(1+ε)q/(p−q)
k dx

)(p−q)/p

≤ C
(
R−p

∫
B2R

up−1−εdx
)q/p( ∫

BR

u(1+ε)q/(p−q)dx
)(p−q)/p

.

Thus if we choose 0 < ε < p− 1 such that (1+ε)q
p−q

< n(p−1)
n−p

we obtain

1

|BR|

∫
BR

|∇uk|qdx ≤ C(R−1ess inf
BR

u)q.

Finally, letting k →∞ we obtain estimate (A.1).

Lemma A.3 ([TW4], Lemma 3.3). If u is nonnegative and A-superharmonic in

Ω then for any compact set E ⊂ Ω we have

µ[u](E) ≤ C
(

inf
Ωδ/3\Ω2δ/3

u
)p−1

,

where C = C(n, p, β, δ). Here δ = 1
2
dist(E, ∂Ω) and for t > 0, Ωt = {x ∈ Ω :

dist(x, ∂Ω) > t}.

Proof. Let uδ be the balayage of u relative to Ωδ in Ω (see [HKM], Chapter 8). We

have uδ is A-harmonic in Ω \ Ωδ, uδ ≤ u, and uδ = u in Ωδ. Since uδ = u in an

open neighborhood of E we get

µ[u](E) = µ[uδ](E) ≤
∫

Ω

ϕdµ[uδ]

=

∫
Ω

A(x, Duδ) · ∇ϕdx

≤ C
( ∫

supp∇ϕ

|Duδ|pdx
) p−1

p
,
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where ϕ ∈ C∞
0 (Ωδ/3), ϕ ≥ 0, and ϕ = 1 in Ω2δ/3. Since supp∇ϕ ⊂ Ωδ/3 \Ω2δ/3 and

µ[uδ] = 0 in Ω \ Ωδ, by Caccioppoli type estimate (see [HKM], Lemma 3.32) and

Harnack’s inequality we have

µ[u](E) ≤ C
(

sup
Ωδ/3\Ω2δ/3

uδ
)p−1

≤ C
(

inf
Ωδ/3\Ω2δ/3

uδ
)p−1

≤ C
(

inf
Ωδ/3\Ω2δ/3

u
)p−1

.

This completes the proof of the lemma.

Proof of Theorem 2.4. Let E ⊂ Ω be a compact set. We first prove that there

is a subsequence {ujk
} of {uj} such that Dujk

→ Du a.e. on E. By truncation

and a diagonal process we may assume that uj, u ∈ W 1, p
loc (Ω). Fix ε > 0. Let

hj = (A(x,∇uj)−A(x,∇u)) · (∇uj −∇u)

and let

Eε
j = {x ∈ E : hj(x) > ε}.

We then have

(A.2) |Eε
j | ≤ |Eε

j ∩ {|uj − u| > ε2}|+ 1

ε

∫
Eε

j∩|uj−u|≤ε2
hj(x)dx.

Let

wj =

{
uj − u if |uj − u| ≤ ε2,

ε2 uj−u

|uj−u| otherwise.

For η ∈ C∞
0 (Ω), η ≥ 0, and η = 1 on E, since

∫
Eε

j∩|uj−u|≤ε2
hj(x)dx ≤

∫
Ω

(A(x,∇uj)−A(x,∇u)) · ∇wjηdx,
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we have

∫
Eε

j∩|uj−u|≤ε2
hj(x)dx ≤

∣∣∣ ∫
Ω

(A(x,∇uj)−A(x,∇u)) · ∇(wjη)dx
∣∣∣

+
∣∣∣ ∫

Ω

(A(x,∇uj)−A(x,∇u)) · wj∇ηdx
∣∣∣

≤
∫

Ω

|wj|η(dµ[uj] + dµ[u])

+C

∫
Ω

|wj|(|∇uj|p−1 + |∇u|p−1)dx

≤ Cε2,

where C is independent of ε and j due to Theorem A.2 and Lemma A.3. Thus

from (A.2) we obtain

|Eε
j | ≤ |Eε

j ∩ {|uj − u| > ε2}|+ Cε.

It follows that hj → 0 in measure on E and hence there exists a subsequence {hjk
}

of {hj} such that hjk
→ 0 a.e. on E. Thus from the structural condition (2.4) we

see that ∇ujk
→ ∇u a.e. on E.

To prove that µ[uj] → µ[u] weakly as measures we let ϕ ∈ C∞
0 (Ω). For any

ε > 0 we choose a set F ⊂ supp∇ϕ with |F | < ε such that Dujk
→ Du uniformly
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on supp∇ϕ \ F . Then for k big enough and for 1 < r < n
n−1

we have

∫
Ω

(A(x, Dujk
)−A(x, Du)) · ∇ϕdx

≤ ε1 + C

∫
F

(|A(x, Dujk
)|+ |A(x, Du)|)dx

≤ ε1 + C

∫
F

(|Dujk
|p−1 + |Du|p−1)dx

≤ ε1 + C|F |(r−1)/r

∫
F

(|Dujk
|(p−1)r + |Du|(p−1)r)dx

≤ ε2,

in view of Theorem A.2. Thus µ[ujk
] → µ[u] weakly as measures. Since the limit

does not depend on the subsequence we have µ[uj] → µ[u] weakly.
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Appendix B

Proof of Theorem 2.5

In this appendix, we give a detailed proof of Theorem 2.5 on the Wolff’s potential

estimates for A-superharmonic functions which is due originally to Kilpeläinen

and Malý [KM2]. Our proof here is based on the approach of Trudinger and Wang

[TW4] with some modifications.

For concentric balls Br ⊂ BR, 0 < r < R < ∞, and t > 0, we let

P t
Br, BR

= inf{v ≥ 0 : v is A-superharmonic in BR and v ≥ t on Br},

and let P̂ t
Br, BR

be the lower semicontinuous regularization of P t
Br, BR

, i.e.,

P̂ t
Br, BR

(x) = lim
r→0

inf
Br(x)

P t
Br, BR

.

Then

P̂ t
Br, BR

= P t
Br, BR

=

{
t in Br,
h in BR \Br,

where h is the unique solution of
−divA(x, ∇u) = 0 in BR \Br,

u = t on ∂Br,
u = 0 on ∂BR.
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Note that P̂ 1
Br, BR

is the A-potential of Br in BR (see [HKM], Chapter 8) thus by

Corollary 3.8 in [KM2] and Example 2.12 in [HKM] we have

(B.1) µ[P̂ 1
Br, BR

](BR) '

{
|R

p−n
p−1 − r

p−n
p−1 |1−p if p 6= n,

(log R
r
)1−n if p = n.

Moreover, by definition we have P̂ t
B19R/20, BR

= tP̂ 1
BR/2, BR

and thus from (2.5),

(B.2) µ[P̂ t
Br, BR

](BR) = tp−1µ[P̂ 1
Br, BR

](BR).

We next introduce the idea of local smoothing of A-superharmonic functions,

which is called the Poisson modification. Suppose that u is an A-superharmonic

function and that ω b Ω is a regular open set. We define the Poisson modification

uω of u in ω to be the function

uω =

{
u in Ω \ ω,
ũ in ω,

where

ũ = inf{v : v is A-superharmonic in ω, v ≥ u on ∂ω}.

Lemma B.1 ([HKM], Lemma 7.14). The Poisson modification uω of u in ω is

A-superharmonic in Ω, A-harmonic in ω, uω ≤ u in Ω and uω = u on Ω \ ω.

Proof. From the construction, uω ≤ u in Ω. Next, choose an increasing sequence

ϕi ∈ C∞(Rn) which converges to u in ω. Let hi ∈ C(ω) be the unique A-harmonic

function in ω such that hi = ϕi on ∂ω. Since hi is increasing and hi ≤ u, the

Harnack’s convergence theorem implies that the function

h = lim
i→∞

hi
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is A-harmonic in ω. Note that for y ∈ ∂ω and i ∈ N,

lim inf
x→y

h(x) ≥ lim inf
x→y

hi(x) = ϕi(y)

and hence

lim inf
x→y

h(x) ≥ u(y).

It follows that h ≥ uω in ω. On the other hand, the comparison principle implies

that hi ≤ uω in ω for all i and therefore uω is A-harmonic in ω. Finally, by the

pasting lemma (see [HKM], Lemma 7.9) we see that uω is A-superharmonic in

Ω.

Lemma B.2 ([TW4], page 394). Let u be A-superharmonic on an open set Ω with

smooth boundary such that u = 0 on ∂Ω and u ≥ t > 0 on a compact set E ⊂ Ω.

Then for any A-superharmonic function v on Ω with 0 ≤ v ≤ t, there holds

(B.3) µ[v](E) ≤ µ[u](Ω).

Proof. To prove (B.3), by replacing u by (1 + δ)u, and v by (1− δ)(v − t
2
) + t

2
for

some δ > 0 small, we may assume that E b {u > t} and 0 < v < t in Ω. Let

w = min{u, v}. Then w = v in an open neighborhood of E and w = u near ∂Ω. It

follows from Remark 2.3 that

µ[v](E) = µ[w](E) ≤ µ[w](Ω) = µ[u](Ω),

which proves the lemma.
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The following lemma was first proved by Kilpeläinen and Malý in [KM1],

Lemma 3.5. Here we give a proof due to Trudinger and Wang in [TW4], Lemma

5.1.

Lemma B.3 ([KM1], [TW4]). If u is nonnegative and A-superharmonic in the

ball B2R, then [µ[u](B9R/10)

Rn−p

] 1
p−1 ≤ C inf

BR/2

u.

Proof. By replacing u with the balayage of u relative to B9R/10 in BR (see [HKM],

Chapter 8), we may suppose that u = 0 on ∂BR and µ[u] = 0 in BR \ B9R/10. By

Harnack’s inequality in the shell BR \B9R/10 we have

sup
∂B19R/20

u ≤ C inf
∂B19R/20

u.

Thus if ũ is the Poisson modification of u in B19R/20 we have

(B.4) sup
B19R/20

ũ ≤ C inf
B19R/20

ũ.

Let t = supB19R/20
ũ. By Lemma B.2 we have

(B.5) µ[ũ](BR) = µ[ũ](B19R/20) ≤ µ[P̂ t
B19R/20, BR

](BR).

Note that µ[u](B9R/10) ≤ µ[ũ](BR) since u = ũ near ∂BR, and t ≤ C infBR/2
by

(B.4). Thus from (B.1), (B.2) and (B.5) we obtain

µ[u](B9R/10) ≤ C( inf
BR/2

)p−1Rn−p,

which proves the lemma.
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Lemma B.4. Let u be nonnegative and A-superharmonic in a ball B2R. If µ[u] = 0

in the set ω = (B5R/8 \B3R/8) ∪ (B11R/10 \B9R/10) then

(B.6) sup
∂BR/2

u− sup
∂BR

u ≤ C
[µ[u](BR)

Rn−p

] 1
p−1

.

Proof. Let ω∗ = B4R/9∪ (B10R/11 \B5R/9) so that BR \ω ⊂ ω∗. Let u∗ = uω∗ be the

Poisson modification of u in ω∗. Then u∗ is harmonic in B11R/10\∂ω∗ and hence the

restriction of µ[u∗] to B11R/10 is supported on ∂ω∗. We also have u∗ ∈ W 1, p(BR)

(because it is locally bounded in B11R/10), µ[u∗](BR) = µ[u](BR) (because u∗ = u

near ∂BR), and u∗ = u on ∂BR/2 (because ∂BR/2 ⊂ B2R \ ω∗). Let w be the

A-superharmonic function on BR such that{
−divA(x,∇w) = µ[u∗] in BR,

w = 0 on ∂BR.

The existence of w is guaranteed by the fact that µ[u∗] ∈ W−1, p(BR) (since u∗ ∈

W 1, p(BR)) which allows the monotone operator theory to apply. Hence w satisfies

the Harnack’s inequality

sup
E

w ≤ C inf
E

w,

where E = B19R/20 \ NR/100(∂ω∗). Here Nδ denotes the δ-neighborhood. Now

replacing w by the Poisson modification of w in NR/100(∂ω∗) we can suppose that

w satisfies the Harnack’s inequality in B19R/20.

Since both w and u∗ belong to W 1, p(BR), by comparison principle we have

w ≥ u∗ − sup
∂BR

u∗ = u∗ − sup
∂BR

u,
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which gives

(B.7) sup
∂BR/2

w ≥ sup
∂BR/2

u∗ − sup
∂BR

u = sup
∂BR/2

u− sup
∂BR

u.

Thus to prove (B.6) it is enough to prove that

(B.8) sup
∂BR/2

w ≤ C
[µ[u∗](BR)

Rn−p

] 1
p−1

= C
[µ[u](BR)

Rn−p

] 1
p−1

.

To this end we let t = infBR/2
u. By Lemma B.2 we have

(B.9) µ[P̂ t
BR/2, BR

](BR) = µ[P̂ t
BR/2, BR

](BR/2) ≤ µ[w](BR).

Thus in light of (B.1) and (B.2) we get

t ≤ C
(µ[w](BR)

Rn−p

) 1
p−1

,

which gives the desired estimate (B.8) by Harnack’s inequality.

Proof of Theorem 2.5. We first prove the lower estimate in (2.10). For any

0 < r ≤ 2R, let ω = B9r/8 \B3r/4, let uω be the Poisson modification of u in ω, and

let ũ be the Poisson modification of uω in B7r/8. Since ũ− infB9r/8
ũ ≥ 0 in B9r/8,

by Lemma B.3 we have

[µ[ũ](B9r/10)

rn−p

] 1
p−1 ≤ C( inf

B7r/8

ũ− inf
B9r/8

ũ)

≤ C( inf
B5r/8

ũ− inf
B5r/4

ũ).

Observe that

µ[u](Br/2) = µ[uω](Br/2) ≤ µ[uω](B9r/10) = µ[ũ](B9r/10),
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since uω = u on B3r/4 and uω = ũ outside B7r/8. Thus we obtain

(B.10)
[µ[u](Br/2)

rn−p

] 1
p−1 ≤ C( inf

B5r/8

u− inf
B5r/4

u),

where we have used the fact that infB5r/4
ũ = inf∂B5r/4

ũ = inf∂B5r/4
u = infB5r/4

u.

We now let Rj = 2−j(2R), where j = 0, 1, . . . , and let r = Rj in (B.10). By

summing up we obtain

WR
1, pµ(x) ≤ C

∞∑
j=0

[µ[u](BRj/2)

Rn−p
j

] 1
p−1 ≤ u(x).

To prove the upper estimate in (2.10), we set Rj = R2−j, where j ≥ 0. Let

us = uBRs , s ≥ 4, be the Poisson modification of u in BRs . Then us ↑ u pointwise

and hence us(x) ↑ u(x). We now let uωs
s , s ≥ 4, be the Poisson modification of us

in ωs, where ωs = ∪s
j=0(B5Rj/4 \ B3Rj/4). Then uωs

s is A-harmonic in ω ∪ B3Rs/4

and uωs
s (x) = us(x). By Lemma B.4 we have, for m ≥ 1,

sup
∂BRm

uωs
s − sup

∂BRm−1

uωs
s ≤ C

(µ[uωs
s ](BRm−1)

Rn−p
m−1

) 1
p−1

,

which by summing up gives for any j ≥ 1,

sup
∂BRj

uωs
s ≤ sup

∂BR

uωs
s + C

j∑
m=1

(µ[uωs
s ](BRm−1)

Rn−p
m−1

) 1
p−1

≤ sup
∂BR

uωs
s + C

s∑
m=0

(µ[uωs
s ](BRm)

Rn−p
m

) 1
p−1

.

Since uωs
s is lower semicontinuous, we then obtain

us(x) = uωs
s (x) ≤ lim inf

y→x
uωs

s (y) ≤ lim
j→∞

sup
∂BRj

uωs
s

≤ sup
∂BR

uωs
s + C

s∑
m=0

(µ[uωs
s ](BRm)

Rn−p
m

) 1
p−1

,
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which in light of Harnack’s inequality gives

(B.11) us(x) ≤ C inf
∂BR

uωs
s + C

s∑
m=0

(µ[uωs
s ](BRm)

Rn−p
m

) 1
p−1

,

since µ[uωs
s ] = 0 in B5R/4 \ B3R/4. Note that uωs

s ≤ us ≤ u in B2R. Also, for

0 ≤ m ≤ s,

µ[uωs
s ](BRm) ≤ µ[uωs

s ](B 3
2
Rm

) = µ[us](B 3
2
Rm

) = µ[u](B 3
2
Rm

)

since u = us = uωs
s near ∂B 3

2
Rs

. Thus we conclude from (B.11) that

us(x) ≤ C inf
∂BR

u + C
s∑

m=0

(µ[u](B 3
2
Rm

)

Rn−p
m

) 1
p−1

.

Finally, letting s →∞ we obtain

u(x) ≤ C inf
∂BR

u + C
∞∑

m=0

(µ[u](B 3
2
Rm

)

Rn−p
m

) 1
p−1

≤ C inf
∂BR

u + C W2R
1, pµ(x).

This completes the proof of Theorem 2.5.
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(1985), 185–212.

[BBG] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L.
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[KM1] T. Kilpeläinen and J. Malý, Degenerate elliptic equations with measure

data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. 19

(1992), 591–613.
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