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ABSTRACT

The existence problem is solved, and global pointwise estimates of solutions are
obtained for quasilinear and Hessian equations of Lane—Emden type, including the

following two model problems:
_Apu:uq+:ua Fk[_u]:uq+ua u >0,

on R", or on a bounded domain 2 C R". Here A, is the p-Laplacian defined by
Apu = div (Vu|VulP~?), and Fi[u] is the k-Hessian defined as the sum of k X k

principal minors of the Hessian matrix D?*u (k = 1,2,...,n); u is a nonnegative

) Y

measurable function (or measure) on (.
The solvability of these classes of equations in the renormalized (entropy) or
viscosity sense has been an open problem even for good data p € L*(2), s > 1.

Such results are deduced from our existence criteria with the sharp exponents

s = % for the first equation, and s = 24=%)

o for the second one. Further-

more, a complete characterization of removable singularities for each corresponding

homogeneous equation is given as a consequence of our solvability results.
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Chapter 1

Introduction

In this work, we study a class of quasilinear and fully nonlinear equations and
inequalities with nonlinear source terms, which appear in such diverse areas as
quasi-regular mappings, non-Newtonian fluids, elasticity, reaction-diffusion prob-
lems, and stochastic control. In particular, the following two model equations are

of substantial interest:
(11) _Apu:f<x7u)7 Fk‘[_u] :f(x,u),

on R" or on a bounded domain 2 C R", where f(x,u) is a nonnegative function,
convex and nondecreasing in u for u > 0. Here Ayu = div (Vu |Vu[P~2) is the
p-Laplacian (p > 1), and Fylu| is the k-Hessian (k = 1,2,...,n) defined by
(1.2) Ful= Y A,

1<i <-<ip<n
where A, ..., \, are the eigenvalues of the Hessian matrix D?u. In other words,

Fy[u] is the sum of the k x k principal minors of D?u, which coincides with the
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Laplacian Fi[u] = Au if k = 1, and the Monge-Ampere operator F,[u] = det (D?u)
if & =n.

The form in which we write the second equation in (1.1) is chosen only for
the sake of convenience, in order to emphasize the profound analogy between the
quasilinear and Hessian equations. Obviously, it may be stated as (—1)* Fj[u] =
f(z,u), u>0,or Fi[u] = f(z,—u), u <0.

The existence and regularity theory, local and global estimates of sub- and
super-solutions, the Wiener criterion, and Harnack’s inequalities associated with
the p-Laplacian, as well as more general quasilinear operators, can be found in
[HKM], [IM], [KM2], [M1], [MZ], [S1], [S2], [SZ], [TW4] where many fundamental
results, and relations to other areas of analysis and geometry are presented.

The theory of fully nonlinear equations of Monge-Ampere type which involve
the k-Hessian operator Fy[u] was originally developed by Caffarelli, Nirenberg and
Spruck, Ivochkina, and Krylov in the classical setting. We refer to [CNS], [GT],
[Gu], [Iv], [Kr], [Ur], [Tru3], [TW1] for these and further results. Recent develop-
ments concerning the notion of the k-Hessian measure, weak continuity, and point-
wise potential estimates due to Trudinger and Wang [TW2]-[TW4|, and Labutin
[L] are used extensively in this thesis.

We are specifically interested in quasilinear and fully nonlinear equations of



Lane-Emden type:

(1.3) —Ayu=u?, and Fi[—u] = 9, u>0 in Q,
where p > 1, ¢ >0, k=1,2,...,n, and the corresponding nonlinear inequalities:
(1.4) —Apu>ul, and  Fy[—u] > uf, uw>0 in Q.

The latter can be stated in the form of the inhomogeneous equations with measure

data,
(1.5) —Apu =u+ p, Fil—u] = u? + p, u>0 1in €,

where p is a nonnegative Radon measure on ).

The difficulties arising in studies of such equations and inequalities with compet-
ing nonlinearities are well known. In particular, (1.3) may have singular solutions
[SZ]. The existence problem for (1.5) has been open ([BV2], Problems 1 and 2; see
also [BV1], [BV3], [Gre]) even for the quasilinear equation —A,u = u?+ f with good
data f € L*(Q), s > 1. Here solutions are generally understood in the renormalized
(entropy) sense for quasilinear equations on bounded domains, potential-theoretic
sense for quasilinear equations on R™, and viscosity, or k-convexity sense, for fully
nonlinear equations of Hessian type (see [BMMP], [DMOP], [JLM], [KM1], [TW1]-
[TW3], [Ur]).

In this thesis, we present a unified approach to (1.3)—(1.5) which makes it

possible to attack a number of open problems. It is based on global pointwise
3



estimates, nonlinear integral inequalities in Sobolev spaces of fractional order, and
analysis of dyadic models, along with the Hessian measure and weak continuity
results [TW2]-[TW4]. The latter are used to bridge the gap between the dyadic
models and partial differential equations. Some of these techniques were developed
in the linear case, in the framework of Schrodinger operators and harmonic analysis
[ChWW], [Fef], [KS], [NTV], [V1], [V2], and applications to semilinear equations
[KV], [VW], [V3].

Our goal is to establish necessary and sufficient conditions for the existence
of solutions to (1.5), sharp pointwise and integral estimates for solutions to (1.4),
and a complete characterization of removable singularities for (1.3). We are mostly
concerned with admissible solutions to the corresponding equations and inequali-
ties. However, even for locally bounded solutions, as in [SZ], our results yield new
pointwise and integral estimates, and Liouville-type theorems.

In the “linear case” p = 2 and k = 1, problems (1.3)—(1.5) with nonlinear
sources are associated with the names of Lane and Emden, as well as Fowler.
Authoritative historical and bibliographical comments can be found in [SZ]. An
up-to-date survey of the vast literature on nonlinear elliptic equations with mea-
sure data is given in [Ver|, including a thorough discussion of related work due to
Adams and Pierre [AP], Baras and Pierre [BP], Berestycki, Capuzzo-Dolcetta, and

Nirenberg [BCDN], Brezis and Cabré [BC], Kalton and Verbitsky [KV].



It is worth mentioning that related equations with absorption,
(1.6) —Au +u? = p, u>0 in ,

were studied in detail by Bénilan and Brezis, Baras and Pierre, and Marcus and
Véron analytically for 1 < ¢ < oo, and by Le Gall, and Dynkin and Kuznetsov
using probabilistic methods when 1 < ¢ <2 (see [D], [Ver]). For a general class of

semilinear equations
(1.7) —Au+ g(u) = p, uw>0 in{,

where g belongs to the class of continuous nondecreasing functions such that g(0) =
0, sharp existence results have been obtained quite recently by Brezis, Marcus, and
Ponce [BMP]. Tt is well known that equations with absorption generally require
“softer” methods of analysis, and the conditions on p which ensure the existence
of solutions are less stringent than in the case of equations with source terms.
Quasilinear problems of Lane-Emden type (1.3)—(1.5) have been studied ex-
tensively over the past 15 years. Universal estimates for solutions, Liouville-type
theorems, and analysis of removable singularities are due to Bidaut-Véron, Miti-
dieri and Pohozaev [BV1]-[BV3], [BVP], [MP], and Serrin and Zou [SZ]. (See also
[BiD], [Gre], [Ver], and the literature cited there.) The profound difficulties in this

theory are highlighted by the presence of the two critical exponents,

(18) Gs = n(p—1) q* _ n(p—1)+p

n—p ’



where 1 < p < n. As was shown in [BVP], [MP], and [SZ], the quasilinear inequality
(1.5) does not have nontrivial weak solutions on R™, or exterior domains, if ¢ < g,.

For g > q, , there exist u € Wfli’cp ML, which obey (1.4), as well as singular solutions

loc

[e.e]

to (1.3) on R™. However, for the existence of nontrivial solutions u € VVl(l)f N Ly,

to (1.3) on R", it is necessary and sufficient that ¢ > ¢* [SZ]. In the “linear case”
p = 2, this is classical [GS], [BP], [BCDN].

The following local estimates of solutions to quasilinear inequalities are used
extensively in the studies mentioned above (see, e.g., [SZ], Lemma 2.4). Let Bpg
denote a ball of radius R such that Bog C €2. Then, for every solution u €

WP N L2 to the inequality —A,u > u? in Q,

loc loc

w
(1.9) / wWdr < CR" e+l 0<v<yq,
Br

ap P
(1.10) / |Vu|ttt de < C R aptl 0<vy<y,
Br

where the constants C'in (1.9) and (1.10) depend only on p, ¢, n,~. Note that (1.9)
holds even for v = ¢ (cf. [MP]), while (1.10) generally fails in this case. In what
follows, we will substantially strengthen (1.9) in the end-point case v = ¢, and
obtain global pointwise estimates of solutions.

In [PV1], we proved that all compact sets E C € of zero Hausdorff measure,
H" a—p+1(E) = 0, are removable singularities for the equation —Apu =ul, g >
¢s. Earlier results of this kind, under a stronger restriction cap, q_;;ﬁ +E(E) =0

for some € > 0, are due to Bidaut-Véron [BV3]. Here cap, ,(-) is the capacity
6



associated with the Sobolev space W15,

In fact, much more is true. We will show below that a compact set £ C ) is a
removable singularity for —A,u = u? if and only if it has zero fractional capacity:
cap, Hﬁ (E) = 0. Here cap, , stands for the Bessel capacity associated with the
Sobolev space W*#® which is defined in Section 2.1. We observe that the usual
p-capacity cap; , used in the studies of the p-Laplacian [HKM], [KM2] plays a
secondary role in the theory of equations of Lane-Emden type. Relations between
these and other capacities used in nonlinear PDE are discussed in [AH], [M2], and
[V4].

Our characterization of removable singularities is based on the solution of the

existence problem for the equation
(1.11) —Apu =u? + p, u >0,

with nonnegative measure p obtained in Chapter 6. Main existence theorems
for quasilinear equations are stated below (Theorems 5.4 and 6.5). Here we only
mention the following corollary in the case @ = R™: If (1.11) has an admissible

solution u, then
P4
(1.12) / du < CR" a»ptl
Br

for every ball B in R", where C' = C(p,q,n), provided 1 < p < n and ¢ > ¢,; if

p>mnorq<q., then u=0.



Conversely, suppose that 1 <p <n, ¢ > q., and du = fdz, f > 0, where

1+€ n*(lj_e)plq
(1.13) ffde < CR" art

Br

for some € > 0. Then there exists a constant Cy(p, ¢, n) such that (1.11) has an
admissible solution on R™ if C' < Cy(p, ¢, n).

The preceding inequality is an analogue of the classical Fefferman—Phong condi-
tion [Fef], which appeared in applications to Schréodinger operators. In particular,
(1.13) holds if f € L™a=p+1)/Pe:o0(R™). Here L*> stands for the weak L°® space.
This sufficiency result, which to the best of our knowledge is new even in the L?®
scale, provides a comprehensive solution to Problem 1 in [BV2]. Notice that the
exponent s = % is sharp. Broader classes of measures p (possibly singular
with respect to Lebesgue measure) which guarantee the existence of admissible
solutions to (1.11) will be discussed in the sequel.

A substantial part of our work is concerned with integral inequalities for non-
linear potential operators, which are at the heart of our approach. We employ the
notion of Wolff’s potential introduced originally in [HW] in relation to the spectral

synthesis problem for Sobolev spaces. For a nonnegative Radon measure ;1 on R”,

s € (1, +00), and a > 0, the Wolff’s potential W, , i is defined by

tnfas

(1.14) W, s u(z) = /OOO [M}l% z € R"

We write W, , f in place of W,, ¢ u if du = fdz, where f € L] _(R"), f > 0. When
8



dealing with equations in a bounded domain €2 C R", a truncated version is useful:

(1.15) W, () = /0 [M] A cal

tn—as t ’

where 0 < r < 2diam(2). In many instances, it is more convenient to work with
the dyadic version, also introduced in [HW]:
1

(1.16) Warnte) = 3 [i] ™ ol a e,

QeD

where D = {Q} is the collection of the dyadic cubes Q = 2/(k+1[0, 1)*),i € Z, k €
7", and £(Q) is the side length of Q.

An indispensable source on nonlinear potential theory is provided by [AH],
where the fundamental Wolff’s inequality and its applications are discussed. Very
recently, an analogue of Wolff’s inequality for general dyadic and radially decreasing
kernels was obtained in [COV]; some of the tools developed there are employed
below.

The dyadic Wolff’s potentials appear in the following discrete model of (1.5)

studied in Chapter 4:

(1.17) u= Wy sul + f, u > 0.

As it turns out, this nonlinear integral equation with f = W, ,p is intimately

connected to the quasilinear differential equation (1.11) in the case a = 1, s = p,

2k

e s=k+1 Similar discrete

and to its k-Hessian counterpart in the case a =
9



models are used extensively in harmonic analysis and function spaces (see, e.g.,
INTV], [St2], [V1]).

The profound role of Wolff’s potentials in the theory of quasilinear equations
was discovered by Kilpeldinen and Maly [KM2]. They established local point-
wise estimates for nonnegative p-superharmonic functions in terms of Wolff’s po-
tentials of the associated p-Laplacian measure pu. More precisely, if 4 > 0 is a

p-superharmonic function in Bsg(z) such that —A,u = p, then

R : 2R
(1.18) Cy Wi, () < ulz) < Cy Bl(gﬁ%) u+ C3 Wi u(r),

where C,Cy and C3 are positive constants which depend only on n and p.

In [TW1], [TW2], Trudinger and Wang introduced the notion of the Hessian
measure p[u] associated with Fy|u] for a k-convex function u. Very recently, Labutin
[L] proved local pointwise estimates for Hessian equations analogous to (1.18),
where the Wolff’s potential WI:%;_CI osq M 15 used in place of W .

In what follows, we will need global pointwise estimates of this type. In the case

of a k-convex solution to the equation Fj[u] = p on R™ such that inf,cgn (—u(x)) =

0, one has
(1.19) CoW oy p(2) < —u(a) < oW s (),

where C and Cy are positive constants which depend only on n and k. Analogous
global estimates are obtained below for admissible solutions of the Dirichlet problem

for —A,u = p and Fi[—u] = p in a bounded domain €2 C R" (see Chapter 3).
10



In the special case Q@ = R"™, our criterion for the solvability of (1.11) can be

stated in the form of the pointwise condition involving Wolff’s potentials:
(1.20) Wi, (Wi ,0) () <CWy,u(x) <4oo ae.,

which is necessary with C' = C4(p, ¢,n), and sufficient with another constant C' =
Cy(p, q,m). Moreover, in the latter case there exists an admissible solution u to

(1.11) such that
(1.21) a1 Wi, u(z) <u(z) < ca Wi, p(z), r € R",

where ¢; and ¢y are positive constants which depend only on p, ¢, n, provided 1 <
p<mnandq>gq,ifp>norq<g,thenu=0and p=0.

The iterated Wolff’s potential condition (1.20) is crucial in our approach. As
we will demonstrate in Chapter 5, it turns out to be equivalent to the fractional

Riesz capacity condition

(1.22) u(E) < CCap, _o_(F),

q—p+1

where C' does not depend on a compact set £ C R™. Such classes of measures p
were introduced by V. Maz’ya in the early 60’s in the framework of linear problems.

It follows that every admissible solution u to (1.11) on R™ obeys the inequality

(1.23) / u'dr < CCap, o« (F)
E 7g—p+1
for all compact sets £ C R™. We also prove an analogous estimate in a bounded

domain © (see Chapter 6). Obviously, this yields (1.9) in the end-point case v = q.
11



In the critical case ¢ = ¢., we obtain an improved estimate (see Corollary 6.2):

(1.24) / ut dz < C (log(22)) T :

r

for every ball B, of radius r such that B, C Bgr, and By C (). Certain Carleson
measure inequalities are employed in the proof of (1.24). We observe that these
estimates yield Liouville-type theorems for all admissible solutions to (1.11) on R™,
or in exterior domains, provided ¢ < ¢, (cf. [BVP], [SZ]).

Analogous results will be established in Chapter 7 for equations of Lane-Emden
type involving the k-Hessian operator Fylu]. We will prove that there exists a

constant C(k, q,n) such that, if

(1.25) W (W o qp)?(@) SCW oo (7)) < +oo ace.,

k417 k+1° k417

where 0 < C' < Cy(k, q,n), then the equation
(1.26) Fy[—u] = u? + p, u >0,
has a solution u so that —u is k-convex on R", and

(1.27) et W g p(r) Sulz) <ca Wz o p(x), r € R",

k+1° k+1°

where ¢y, ¢y are positive constants which depend only on k,¢,n, for 1 < k < 3.

Conversely, (1.25) with C' = Cy(k,¢,n) is necessary in order that (1.26) has a

nk_ .

solution w such that —u is k-convex on R" provided 1 < k < 7 and ¢ > q. = -"o;

isz%orng*thenu:Oanduzo.
12



In particular, (1.25) holds if du = f dx, where f > 0 and f € L™Ma7k)/2ka, o0 (]Rn),
the exponent "(2(177;9) is sharp.

Also in Chapter 7, we will obtain precise existence theorems for equation (1.26)
in a bounded domain €2 with the Dirichlet boundary condition u = ¢, ¢ > 0, on 0f2,
for 1 < k < n. Furthermore, removable singularities £ C €2 for the homogeneous
equation Fi[—u] = u? u > 0, will be characterized as the sets of zero Bessel
capacity capgy, e (E) =0, in the most interesting case ¢ > k.

The notion of the k-Hessian capacity introduced by Trudinger and Wang proved
to be very useful in studies of the uniqueness problem for k-Hessian equations
[TW3], as well as associated k-polar sets [L]. Comparison theorems for this capacity
and the corresponding Hausdorff measures were obtained by Labutin in [L] where
it is proved that the (n — 2k)-Hausdorff dimension is critical in this respect. We
will enhance this result (see Theorem 7.14) by showing that the k-Hessian capacity
is in fact locally equivalent to the fractional Bessel capacity cap 2k g1

The main results presented in this thesis is taken from the paper [PV2] and we
remark that our methods provide a promising approach for a wide class of non-
linear problems, including curvature and subelliptic equations, and more general
nonlinearities.

Finally, for the convenience of the reader we include at the end of this thesis

two appendices. In Appendix A we give a detailed proof of the weak continuity

of quasilinear elliptic operators due to Trudinger and Wang [TW4]. In Appendix
13



B we aslo follow [TW4] with some modifications to give a detailed proof of the

pointwise potential estimate (1.18) for p-superharmonic functions originally found

by Kilpeldinen and Maly [KM2].

14



Chapter 2

Preliminaries

2.1 Some notation

Throughout the thesis, B,.(z) stands for an open ball in R", n > 2, with center
at x and with radius r > 0. We write A ~ B if there are constants ¢, ¢; such
that ;A < B < ¢ A. By a Radon measure we mean a (signed) Borel regular
(outer) measure which is finite on compact sets. The class of all nonnegative finite
(respectively locally finite) Radon measures on an open set 2 is denoted by M£(£2)
(respectively M™(Q)). For a Radon measure p and a Borel set E C Q, we denote
by pg the restriction of p to E: dug = xgdp where x g is the characteristic function
of E. The closure, the boundary and the n-dimensional Lebesgue measure of E
are denoted respectively by E, OF and |E|. The notation E € Q means that F is
a compact subset of 2. The space of p-integrable functions on 2 with respect to
Lebesgue measure is denoted by LP(€2). A function u belongs to the Sobolev space

WhP(Q) if u and all of its first weak partial derivatives belong to LP(f2). Local
15



versions of LP(€Q) and W'?(Q) are denoted respectively by L” () and W,27(Q).

loc loc

We define the Riesz potential I, of order o, 0 < o« < m, on R™ by

I.u(z) = c(n, a) |z — y|* "du(y), r e R",
]Rn

where yp € M*(R™) and ¢(n, «) is a normalized constant. For a > 0, p > 1, such

that ap < n, the Wolff’s potential W, ,u is defined by

tn—ap t )

W, pi(x) = /0°° [M] p%l@ x e R"

When dealing with equations in a bounded domain 2 C R", it is convenient to use
the truncated versions of Riesz and Wolft’s potentials. For 0 < r < oo, a > 0 and

p > 1, we set

I p(z) = /07’ %£7 W;p,u(x) = /OT [M] ﬁ@

t tnoap t

Here I? and Wg7 ) are understood as I, and W, , respectively. For a > 0, we

denote by G, the Bessel kernel of order o (see [AH|, Sec. 1.2.4). The Bessel

potential of a measure p € MT(R") is defined by

Gou(z) = [ Galr —y)du(y), zeR"™

R"
Various capacities will be used throughout this work. Among them are the Riesz

and Bessel capacities defined respectively by

Capy, ,(E) = inf{[|f]

is(Rn) . Iaf 2 XE? O S f E LS<Rn)}’
16



and
Capg,, s(E) = inf{||f||7s®n) : Gaf > x&, 0 < f € L*(R")}

for any set £ C R™.
2.2 A-superharmonic functions

In this section, we collect some crucial facts on A-superharmonic functions from
[HKM], [KM1], [KM2], and [TW4] for our later use. Let © be an arbitrary open
set in R, and let p > 1 though we will mainly be interested in the case where
0 is bounded and 1 < p < n, or = R” and 1 < p < n. We assume that

A R"xR" — R" is a vector valued mapping which satisfies the following structural

conditions:
(2.1) the mapping x — A(z, ) is measurable for all £ € R",
(2.2) the mapping £ — A(z, €) is continuous for a.e. x € R",

and there are constants 0 < a < 3 < oo such that for a.e. x in R", and for all £ in

R™,

(2.3) Az, ) - € = alglr,  [A(z,§)] < BlEP,
(24) [A(ZL’, 51) - A<x7§2)} ’ (gl - 52) > 07 if 51 7é 527
(2.5) Az, \6) = AAP2A(z,€),  if Ae R\ {0}

For u € W,2?(Q), we define the divergence of A(x, Vu) in the sense of distri-
17



butions, i.e., if ¢ € C§°(£2), then
divA(z, Vu)(p) = — /Q A(x,Vu) - Vodz.
It is well-known that every solution u € W,2?(Q) to the equation
(2.6) —divA(z, Vu) =0

has a continuous representative. Such continuous solutions are said to be A-

harmonic in Q. If u € W2 ?(Q) and

loc
/ A(z,Vu)-Vedr >0
Q

for all nonnegative p € C§°(2), i.e., —div.A(x, Vu) > 0 in the distributional sense,
then u is called a supersolution to (2.6) in €.

A lower semicontinuous function u :  — (—o00, 00| is called A-superharmonic
if u is not identically infinite in each component of €2, and if for all open sets D
such that D C €, and all functions h € C(D), A-harmonic in D, it follows that
h <won 0D implies h < u in D.

In the special case A(x,§) = [£|P72¢, A-superharmonicity is referred to as p-
superharmonicity. It is worth mentioning that the latter can also be defined equiv-
alently using the language of viscosity solutions (see [JLM]).

We recall here the fundamental connection between supersolutions of (2.6) and

A-superharmonic functions [HKM].
18



Proposition 2.1 ([HKM]). (i) If v is A-superharmonic on S then

(2.7) v(z) = ess lim inf v(y), x € S

Yy—x

Moreover, if v € WP(Q) then

loc
—divA(z, Vv) > 0.

(ii) If u € W,oP(Q) is such that

loc
—divA(z, Vu) > 0,

then there is an A-superharmonic function v such that u = v a.e.

(iti) If v is A-superharmonic and locally bounded, then v € W,2P(Q) and
—divA(z, Vv) > 0.

;From statement (i) of Proposition 2.1 we see that if u and v are two A-
superharmonic functions on {2 such that u < v a.e. on 2 then u < v everywhere
on 2.

Note that an A-superharmonic function u does not necessarily belong to the
space W,2P(€2), but its truncation min{u, k} does for every integer k by Proposition

2.1(iii). Using this we set

(2.8) Du = lim V [min{u, k}|,

k—o0

defined a.e. If either u € L=(Q) or u € W '(Q), then Du coincides with the

loc

regular distributional gradient of u. In general, we have the following gradient

estimates [KM1] (see also [HKM], [TW4], and Theorem A.2 in Appendix A).
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Proposition 2.2 ([KM1]). Suppose u is A-superharmonic in Q and 1 < g < 5.

Then both |DulP~" and A(-, Du) belong to L{ (Q). Moreover, if p > 2 — %, then

loc

Du is the distributional gradient of wu.

We can now extend the definition of the divergence of A(x, Vu) to those u

which are merely A-superharmonic in €2. For such u we set
—divA(z, Vu)(p) = / A(xz, Du) - Vo dz
Q

for all ¢ € C§°(©2). Note that by Proposition 2.2 and dominated convergence

theorem,
—divA(z, Vu)(p) = klim A(z, Vmin{u, k}) - Vodx >0
—00 Jq

whenever ¢ € C§°(Q2) and ¢ > 0.
Since —div.A(z, Vu) is a nonnegative distribution in € for an A-superharmonic
u, it follows that there is a positive (not necessarily finite) Radon measure denoted

by p[u] such that

—divA(z, Vu) = plu] in
in the sense
(2.9) [ Atw.Du) Vo = [ odu
Q Q

for every ¢ € C§°(Q).
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Conversely, given a nonnegative finite Radon measure p in a bounded domain
(), there is an A-superharmonic function u such that —divA(z, Vu) = p in ©Q and

min{u, k} € Wy*(Q) for all integers k (see [KM1]).

Remark 2.3. For any subdomain w C € with smooth boundary, pfu(w) depends

only on the value of u near dw. Indeed, by (2.9),

) = dulul
— 1t [ el

= lim Az, Du)Vep,

<0 Jsupp(Vipe)
where ¢, € C§°(w) such that ¢, =1 in {z € w: d(z, dw) > €}.
The following weak continuity result in [TW4] will be used later to prove the

existence of A-superharmonic solutions to quasilinear equations.

Theorem 2.4 ([TW4]). Let {u,} be a sequence of nonnegative A-superharmonic
functions in Q that converges a.e. to an A-superharmonic function u. Then the

sequence of measures {pu,|} converges to p[u] weakly, i.e.,

im [ pdulu) = [ pdu

for all ¢ € C§°(82).
In [KM2] (see also [Mi], [MZ], [TW4]) the following pointwise potential estimate

for A-superharmonic functions was established, which serves as a major tool in our

study of quasilinear equations.
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Theorem 2.5 ([KM2]). Suppose uw > 0 is an A-superharmonic function in Bsg(z).
If p = —divA(x, Vu), then there are positive constants Cy, Cy and Cs which depend

only on n,p and the structural constants o, 3 such that

R 2R .
(2.10) Ciy Wi, () Sulz) < Co Wi u(r) + Cs Bglﬁ?’) u.

We will present the proofs of Theorems 2.4 and 2.5 in Appendices A and B
below following a recent paper of Trudinger and Wang [TW4].
A consequence of Theorem 2.5 is the following global version of the above

potential pointwise estimate.

Corollary 2.6 ([KM2]). Let u be an A-superharmonic function in R"™ such that

infgnu = 0. If p = —divA(z, Vu), then
Cr Wi pn(z) < u(z) < Co Wi pu()

for all x € R™, where Cy, Cy are positive constant depending only on n,p and the

structural constants o, 3.
2.3 k-convex functions

The notion of k-convex (k-subharmonic) functions associated with the fully non-
linear k-Hessian operator Fj, k = 1,...,n, introduced recently by Trudinger and
Wang in [TW1]-[TW3]| plays a role similar to that of A-superharmonic functions

in the quasilinear theory discussed in the previous section.
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Let 2 be an open set in R", n > 2. For k = 1,...,n and u € C*(Q), the

k-Hessian operator F}, is defined by
Fylu] = Sp(M(Du)),

where A(D?u) = (A,...,\,) denotes the eigenvalues of the Hessian matrix of
second partial derivatives D?u, and Sy is the k* symmetric function on R™ given
by
SN = D Ay
1<iy <--<ip<n

Thus Fi[u] = Au and F,[u] = det D?u. Alternatively, we may also write
Fk[u] = [DQU]k,

where for an n X n matrix A, [A]; is the k-trace of A, i.e., the sum of its k x k
principal minors. Several equivalent definitions of k-convexity were given in [TW2],
one of which involves the language of viscosity solutions: An upper-semicontinuous
function u : Q — [—00,00) is said to be k-convex in Q, 1 < k < n, if Fylqg] > 0
for any quadratic polynomial ¢ such that u — ¢ has a local finite maximum in §2.
Equivalently, an upper-semicontinuous function u : Q — [—00, 00) is k-convex in
if, for every open set € € Q and for every function v € C?(Q') N C°(Y) satisfying
Filv] > 0in €', the following implication holds:

u<vond = u<vin
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(see [TW2, Lemma 2.1]). Note that a function u € C?(Q) is k-convex if and only

if

Filu>0inQforall j=1,... k.

We denote by ®%(Q) the class of all k-convex functions in 2 which are not identically
equal to —oo in each component of Q. It was proven in [TW2] that ®"(§2) C
P HQ) -+ C P(Q) where ®!(Q) coincides with the set of all proper classical
subharmonic functions in 2, and ®"(2) is the set of functions convex on each
component of €.

The following weak convergence result proved in [TW2] is fundamental to po-

tential theory associated with k-Hessian operators.

Theorem 2.7 ([TW2]). For each u € ®*(Q), there exists a nonnegative Radon
measure pu[u] in Q such that

(i) prlu] = Fylu] for u € C*(Q2), and

(ii) if {um} is a sequence in ®*(Q) converging in L (Q) to a function u € (),

then the sequence of the corresponding measures {pux[um|} converges weakly to puy|u].

The measure py[u] in the theorem above is called the k-Hessian measure as-
sociated with u. Due to (i) in Theorem 2.7 we sometimes write Fy[u] in place of
pru] even in the case where u € ®%(Q) does not belong to C%(Q2). The k-Hessian

measure is an important tool in potential theory for ®*(€2). It was used by Labutin
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to derive pointwise estimates for functions in ®*(Q) in terms of the Wolff’s poten-
tial, which is an analogue of the Wolft’s potential estimates for A-superharmonic

functions considered in Theorem 2.5.

Theorem 2.8 ([L]). Let u > 0 be such that —u € ®*(Bsgp(x)), where 1 < k < n.
If p = p[—u) then
s 2R :
Clw%7k+1ﬂ($) <u(z) < OQW%,,C+1LL($) +C3 Bl;l(a)u,

where the constants Cy, Cy and Cs3 depend only on n and k.

The following global estimate is deduced from the preceding theorem as in the

quasilinear case.

Corollary 2.9. Let u > 0 be such that —u € ®*(R"™), where 1 < k < 5. 1f

p = pp[—u] and infga u = 0 then for all x € R™,
Ch W%7k+1ﬂ($) <u(r) < Cy sz—fl,k-l-lp’(x)

for constants C, Cy depending only on n and k.
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Chapter 3

Renormalized solutions and global
potential estimates

3.1 Global estimates for renormalized solutions

Let Q be a bounded, open subset of R", n > 2. We denote by Mp(£2) the set
of all Radon measures on  with bounded total variations. Recall that M%(Q)
denotes the set of all nonnegative finite Radon measures on ). For a measure p in
Mp(Q), its positive and negative parts are denoted by put and p~ respectively. We

say that a sequence of measures {p,} in Mp(Q2) converges in the narrow topology

to p e Mp(Q) if
lm [ pdu, = / odu
n—o Jjo Q

for every bounded and continuous function ¢ on .
We also denote by M(2) (respectively M(§2)) the set of all measures in
M () which are absolutely continuous (respectively singular) with respect to the

capacity cap ,(-,§2). Here cap, ,(-,€2) is the capacity relative to the domain
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defined by

(3.1) cap; ,(E,Q) = inf{/Q|V¢]pda: cpeCyP(R),¢>1o0n E}

for any compact set £ C . Recall that, for every measure p in Mpg(f2), there
exists a unique pair of measures (uo, ps) with g € My(Q2) and ps € My(€2), such
that p = po + ps. If g is nonnegative, then so are o and pg (see [FST], Lemma
2.1).

For k > 0 and for s € R we denote by T(s) the truncation
Ti(s) = max{—Fk, min{k, s}}.

Recall also from [BBG] that if u is a measurable function on € which is finite
almost everywhere and satisfies Ty, (u) € Wy ?(Q) for every k > 0, then there exists

a measurable function v : 2 — R™ such that
VTi(u) = vX{ju<ky a.e. on Q, forall k>0.

Moreover, v is unique up to almost everywhere equivalence. We define the gradient
Du of u as this function v, and set Du = v.
In [DMOP], several equivalent definitions of renormalized solutions are given.

In what follows, we will need the following ones.

Definition 3.1. Let p € Mpg(€2). Then w is said to be a renormalized solution of
—divA(z,Vu) =p in Q,
(3:2) { u=0 on 0f,
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if the following conditions hold:

(a) The function u is measurable and finite almost everywhere, and T (u) belongs
to Wy P(Q) for every k > 0.

(b) The gradient Du of u satisfies [Du[P~" € L9(Q) for all ¢ < 2.

(¢) If w belongs to W, P(Q) N L>2(2) and if there exist w™ and w™> in WH"(Q)N

L*>(Q), with r > n, such that

w=w" a.e. on the set {u >k},
w=w""* ae. ontheset {u< —k}

for some k£ > 0 then

(3.3) /A(x,Du)-dea::/wd,u0+/w+°°du:—/w_°°dus_.
Q 0 Q 0

Definition 3.2. Let 1 € Mp(§2). Then u is a renormalized solution of (3.2) if u
satisfies (a) and (b) in Definition 3.1, and if the following conditions hold:

(c) For every k > 0 there exist two nonnegative measures in My(Q2), A\ and A, ,
concentrated on the sets {u = k} and {u = —k}, respectively, such that A\ — uF
and A\, — p in the narrow topology of measures.

(d) For every k >0

(3.4) / A(z, Du) - Vdz :/ odpg + / wd\ — / pd\;,
{lul<k} {lul<k} Q Q

for every o in Wy () N L=(Q).

Remark 3.3. From Remark 2.18 in [DMOP] we see that if u is a renormalized
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solution of (3.2) then (the cap, ,-quasi continuous representative of) u is finite

cap; ,-quasieverywhere. Therefore, u is finite po-almost everywhere.

Remark 3.4. By (3.4), if u is a renormalized solution of (3.2) then
(3.5) —divA(z, VTi(u)) = pp  in Q,

where

[k = X{jul<k o + A — AL
Since Tj(u) € W,P(Q), by (2.3) we see that —divA(z, VIk(u)) and hence gy
belongs to the dual space W1 (Q) of W, (). Moreover, by Remark 3.3, |u| < oo
po-almost everywhere and hence X<k} — Xa Ho-almost everywhere as k — oo.
Therefore, by the monotone convergence theorem, p; converges to p in the narrow

topology of measures.

Remark 3.5. If u > 0, i.e.,, p € ME(Q), and u is a renormalized solution of
(3.2) then w is nonnegative. To see this, for each £k > 0 we “test” (3.3) with

w = Ti(min{u, 0}), w™™ =0 and w™ > = —k:
/A(x,Du) - Vwdzx :/wduo —i—/kdus = / wdpy <0,
Q Q 0 Q
since p; = 0 and w < 0. Thus using (2.3) we get
/ IV Ty (min{u, 0})Pdz < 0
Q

for every k > 0. Therefore min{u,0} = 0 a.e., i.e., u is nonnegative.
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Remark 3.6. Let € ME(Q) and let u be a renormalized solution of (3.2).
Since min{u,0} = 0 a.e. (by Remark 3.5) and hence min{u,0} = 0 cap, -quasi
everywhere (see [HKM], Theorem 4.12), in Remark 3.4 we may take \, = 0,
and thus gy is nonnegative. Hence by (3.5) and Proposition 2.1, the functions
vy, defined by vi(x) = essliminf, ., Tj(u)(y) are A-superharmonic and increasing.
Using Lemma 7.3 in [HKM], it is then easy to see that vy, — v as k — oo everywhere
in €2 for some A-superharmonic function v on €2 such that v = u a.e. In other words,

v is an A-superharmonic representative of w.

Remark 3.7. When dealing with pointwise values of a renormalized solution u
to (3.2) with measure data p > 0, we always identify u with its A-superharmonic

representative mentioned in Remark 3.6.
We now establish a comparison principle for renormalized solutions.

Lemma 3.8. Let p, v € ME(Q) be such that p < v. Suppose that u and v are

renormalized solutions of

—divA(z,Vu) = p in £,
u=0 on O0f),

and

—divA(z,Vv) =v in €,
v=0 on 0N

respectively. If w is uniformly bounded then u < v.
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Proof. Let w = min{(u —v)*,k}. Then w =0 on the set {v > k+ M} and w =k
on the set {v < —k — M}, where M = supq, u. Moreover, w € Wy'* N L>®(Q) as

w = min{(u — Ty (v))", k}. Thus by Definition 3.1 we have
(3.6) /.A(a:,Dv) -Vwdz = / wdvy.
Q 0
On the other hand, since u is bounded (hence belongs to Wy '*(Q)) we have
(3.7) /A(x,Du) -Vwdr = / wdp.
Q Q
From (3.6) and (3.7) we get
/[A(x, Du) — A(z, Dv)] - Vwdx < 0.
0
Consequently,
/ [A(z, Du) — A(x, Dv)] - (Du — Dv)dz <0,
0<u—v<k

since Vw = Vmax{T;(uv —v),0} = D(u — v)X{o<u—v<k}- Thus by (2.4) we have

Vw = 0 and hence w = 0 a.e. for every k > 0, which gives u < v. ]

In the following lemma we drop the assumption that u is uniformly bounded in

Lemma 3.8, but claim only the existence of v such that v > w.

Lemma 3.9. Let pu, v € ME(Q) be such that v > p. Suppose that u is a renor-

malized solution of

—divA(z,Vu) = p in
u=0 on 0.
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Then there exists v > w such that

—divA(z,Vv) =v in €,
v=0 on 0N

in the renormalized sense.

Proof. Let u;, = min{u, k} for each k¥ € N. From Definition 3.2 of renormalized

solutions we have

—divA(z, Vug) = ploguery +Ar  In Q,
up, =0 on 0N

in the renormalized sense for a sequence of nonnegative measures {\}} that con-
verges to ! in the narrow topology of measures. Thus by Lemma 3.8 we have

u < v, where v are renormalized solutions of

—divA(z, Vug) = po+ A\ +v—p in Q,
v, =0 on 0f.

Finally, from the stability results in [DMOP] we can find a subsequence of {vy}
that converges a.e. to a required function v. ]

We will also need the following variant of Lemma 3.9.

Lemma 3.10. Suppose that u is a renormalized solution to (3.2) with data p €
ME(Q). Let B be a ball that contains Q). Then there exists a function w on B

such that u < w on €2, and

w=0 on 0B
33

{ —divA(z,Vw) =p in B,



in the renormalized sense.

Proof. Let u, = min{u, k}, k > 0, and let 1y = xqu<rifto + A; be as in Remark
3.4 (note that A\, = 0 by Remark 3.6). We sce that u; € Wy () is the unique
solution of problem (3.2) with data ug. We next extend uy by zero outside €2, and
set

U = min{wy — ug, 0} = min{min{wy, k} — uy, 0},
where wy, k > 0, is a renormalized solution to the problem

—divA(z, Vwy) = po + A in B,
w, =0 on 0B.

Note that ¥ € W, P(Q) N Wy*(B) N L®(B) since |¥| < u;. Then using ¥ as a

test function we have

0 > /A(x,Vwk) -VWdx — / Az, Vuy) - V¥dx
B Q
= / Az, Vuwy,) - VUdz — / Az, Vuy) - V¥dz
Bn{wg<ug} Bn{wg<ug}

= / [A(z, Vwy) — Az, Vug)] - (Vwy, — Vuy,)de.
Bﬂ{wk<uk}

Thus Vwy = Vuy, a.e. on the set BN {wy < ug} by hypothesis (2.4) on .A. Hence

U =0 a.e,ie.,
(3.9) up < wg  a.e.

Now by the stability results of renormalized solutions established in [DMOP]

we can find subsequence {wy,} of {wy} such that wy, — w a.e., where w is a
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renormalized solution to equation (3.8). By (3.9) we have v < w a.e. on €,
and hence u < w everywhere on €2 due to Remark 3.7 and Proposition 2.1. This

completes the proof of the lemma. O

We now give a global pointwise potential estimates for quasilinear equations on

a bounded domain €2 in R”.

Theorem 3.11. Suppose that u is a renormalized solution to the equation

(3.10) {—divA(x,Vu):w in

u=0 on O,
with data w € ME(Q). Then there is a constant K = K(n,p,a, 3) > 0 such that,

for all x in €,
(3.11) u(z) < KWfffm(Q)w(x).

Proof. Let B = Byg(a) where R = diam(2) and a € €2 so that Q C B. Let w be
as in Lemma 3.10 with respect to that choice of B. For x € ) we denote by d(z)
the distance from x to the boundary 0B of B. By Theorem 2.5, Lemma 3.10, and

the fact that d(x) > R, we have

(3.12) u(z) < wr) < C’Wﬁi(x)u(x) +C inf w

%d(z)(x)

< CWiu(a) + CR=T[[w]| 1)

Note that for p < n we have

1

n(p— < Q -

ol g . < C @)
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for a constant C' independent of R (see [DMOP, Theorem 4.1] or [BBG, Lemma

4.1]). Thus

1

(3.13) l|w][ -1y < CR7T p(Q)71.

Inequality (3.13) also holds for p > n, see for example [Gre, Lemma 2.1]. From

(3.12) and (3.13) we get the desired estimate (3.11). O

Remark 3.12. Estimate (3.11) does not hold in general if u is merely a weak

solution of (3.10) in the sense of [KM1]. For a counter example, see [Kil], Sec. 2.
3.2 Global estimates for k-Hessian equations

Definition 3.13. A bounded domain € in R" is said to be uniformly (k£ — 1)-
convex, k = 1,...,n, if 90 € C? and H,;(0Q) > 0, j = 1,....,k — 1, where H;(09)

denotes the j-mean curvature of the boundary 0f2.

We first recall an existence result for k-Hessian equations with measure data

established in [TW1], [TW2].

Theorem 3.14. Let Q be a bounded uniformly (k — 1)-convexr domain. Suppose
that p > 0, p € C°(9Q) and v = p+ f where p € ME(Q) with compact support in
Qand f >0, fe L*(Q) withs > g5 if 1< k<3, ands=1if 5§ <k <n. Then

27

there exists u > 0, —u € ®*(Q) be such that u is continuous near S and solves

prl—u]l =v in Q,
u=¢ on 2.
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Theorem 3.15. Suppose that p > 0, ¢ € C°(0N) and v = p+ f where p € ME(Q)
with compact support in Q and [ >0, f € L*(Q) with s > 5 if 1 <k < 5, and

s=1if2 <k<n. Letu>0, —uec P*Q) be such that u is continuous near S

and solves

:uk[_u] =v in Q>
u=¢ on 2.

Then there ezists a constant K = K(n, k) such that, for all x € (2,

2diam(2)
u(zr) < K [W%,Hll/(aﬁ) +max ).

Proof. Suppose that the support of i is contained in ' for some open set €)' € (.
Let M = supg g v and u, = min{u,m} for m > M. Then —u, € ®*(Q),

continuous near 0f2, solves

/l’k[_um] =Vp In Qa
Up =@ on  Of)

. . . . . 1
for certain nonnegative Radon measures v, in Q. Since w,, — u in L, (), by

Theorem 2.7 we have
(3.14) fm — v =+ f weakly as measures in €.

Note that u,, = u in Q\ ' since m > M. Thus v, = pxu] = f in Q\ & for all

m > M. Using this and (3.14) it is easy to see that

/Q S, — /Q b+ /ﬂ ofdi
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as m — oo for all ¢ € C°(Q), i.e.,
lm — vV =+ f in the narrow topology of measures.

We now take a ball B = Bsg(a) where R = diam(Q2) and a € 2 so that Q C B.

Consider the solutions w,, > 0, —w,, € ®*(Q), continuous near 2, of

Mk[_wm] =Vy In Ba
Wy, = maXggp on 0B,

where m > M. Since u,, is bounded in €2 the measure v, is absolutely continuous
with respect to the capacity cap,(-,2), and hence with respect to the capacity

cap, (-, B) (see [TW3]). Here cap,(-,?) is the k-Hessian capacity defined by
(3.15) cap,(F, Q) = sup {uk[u](E) cu € F(Q), —1<u< 0}.

By a comparison principle (see [TW3, Theorem 4.1]), we have w,, > maxsq ¢ in
B, and hence w,,, > u,, on d€). Thus, applying the comparison principle again, we

have
(3.16) Wy > Uy, I €L

Since v,, — v in the narrow topology of measures in (), we see that v,, — v
weakly as measures in B. Therefore, arguing as in [TW2], Sec. 6 we can find a
subsequence {wy,,} such that w,, — w a.e. for some w > 0, —w € ®*(B) such

that w is continuous near 0B and

Mk[_w] =v in Bv
w=maxgne on OB.
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Note that from (3.16), w > u a.e. on € and hence w > u everywhere on €.
Using this and Theorem 2.8 applied to the function w on By (x), where d(z) =

dist(x,0B) > R we have, for = € Q,

3.17 < CW? C inf
(3.17) u(z) < %7k+1y(x) + B;r(lz)(x)w
< Ow%i7k+1’/($) +CR™ / wdy.
k+1 B%d(m)(x)

Thus it follows from estimate (6.3) in [TW2] that

u(z) < C’(Wzﬁ pr V() + max ¢ + RQ_%I/(Q)%>.

k41>

The proof of Theorem 3.15 is then completed by noting that

/2R [M] %@ > CR> *v(Q)F.

R tn—2k t

=

]

The following lemma is an analogue of Lemma 3.9. It is needed in the proof of

Theorem 7.1 below to construct a solution to Hessian equations.

Lemma 3.16. Let ) be a bounded uniformly (k — 1)-convexr domain and let v,
@ and u be as in Theorem 3.15. Suppose that V' is a measure similar to v, i.e.,
Vo= + f, where i/ € ME(Q) with compact support in Q, f' >0, f € L¥(Q)
with s > op if 1 <k < 3, and s =114 § <k <n. Then there exists w > u such

that —w € ®*(Q) and

ppl—w]=v+v in Q,
w=¢ on O

39



Proof. By approximation we may assume that p’ is absolutely continuous with
respect to the capacity cap,(-,2). Let u,, and v, be as in the proof of Theorem
3.15. Then by the comparison principle in [TW3|, Theorem 4.1, we have u,, < w,,

where w,, is the solution of

prl—wm| = vy + 1V in Q
w, =¢ on  Of.

Thus arguing as in [TW2], Sec. 6 we obtain a subsequence {w,,, } that converges

a.e. to a required function w. O]
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Chapter 4

Discrete models of nonlinear
equations

In this chapter, we consider certain nonlinear integral equations with discrete ker-
nels which serve as a model for both quasilinear and Hessian equations treated
in Chapters 5-7. Let D be the family of all dyadic cubes Q@ = 2'(k + [0, 1)"),
1 € Z, ke Z" in R". For a nonnegative locally finite measure w on R", we define

the dyadic Riesz and Wolft’s potentials respectively by

(4.1) L@ = 329 @),

Qs

(42) Woola) = 3 [ o).

_op

We are concerned with nonlinear inhomogeneous integral equations of the type

(4.3) u =Wy, p(u?) + f, ue L]

loc

(R™),u >0,

where f € LL (R"), f >0, ¢>p—1, and W, , is defined as in (4.2) with o > 0

loc

and p > 1 such that 0 < ap < n.
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It is convenient to introduce a nonlinear operator N associated with the equa-

tion (4.3) defined by
(4.4) N =Wap(f9),  f€LiR"),f=>0,

so that (4.3) can be rewritten as

u=Nu+ f, u€ Ll

loc

(R™),u > 0.

Obviously, N is monotonic, i.e., N'f > Ng whenever f > g > 0 a.e., and N(\f) =

AFTN f for all A > 0. Since

(4.5) (a+b)P~F < max{1,2" "2} (a" "t 4+ 0P )

for all a,b > 0, it follows that

(46 N(s + 9] < max(1,2 ) [ + ()]
4.1 Discrete Wolff type inequalities

Let 1 < s <00, A ={Ag}gep, \g € RT, and let ¢ be a nonnegative locally finite

Radon measure on R"™. We define

A = [ (X o) o)

QeD
1 s—1
As(A) = C;)AQ(@Q%AQ/) ,
i) = [ s (o Q/ZCQAQ/)Sda(x),
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where we assume that Ay = 0 whenever ¢(()) = 0 and follow the convention that

0- 00 = 0. The following theorem is taken from [COV], Proposition 2.2.

Theorem 4.1 ([COV], Proposition 2.2). Let o be a nonnegative locally finite Radon
measure on R™. Let 1 < s < oo. Then there exist constants C; > 0,1 = 1,2, 3,

which depend only on s, such that, for any A = {A\g}gep, A\g € RT,
Ai(A) < C1Ax(A) < CrA3(A) < C3A(A).

Theorem 4.2. Let i1 be a nonnegative locally finite measure on R™, and let o > 0,
p>1, and ¢ > p— 1. Then there exist constants C; > 0,1 = 1,2, 3, which depend

only on n,p,q,a such that for any dyadic cube P,
Bl(P7 M) S ClBQ(Pa :U’) S CQB3<P7 /j“) S O3B1(P7 M)?

where we define

B(Pn - Y [ ]q,

2 g

By(P,p) = /[Z(é,ﬁ%)”ly@(x)rdx,
P qcp "

By(P,p) = /[ |5<1C_224,XQ(:E)}pqldx
P qcp "

Proof. Let o be the restriction of Lebesgue measure on the dyadic cube P. For
Q € D we set \g = u(Q)|Q|™ if Q C P and Ay = 0 otherwise. Note that for
QcCPp,

> @) = Cla,p)u@)Ql™ .

Q'cQ
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Thus by Theorem 4.1 we have
Bl(P, ,LL) ~ Bg(P, /L)
Also, by Theorem 4.1,

(4.7) Bg(P,M)g/[ sup %}”qldx

z€EQCP |Q

Since

e, %] = 2 (%) et

z€QCP |Q|1_7 ocp

from (4.7) we obtain B3(P,u) < CBy(P, ). In addition, for p < 2 we clearly
have By(P, 1) < B3(P, 1) < CBy(P, ). Therefore, it remains to check that, in the
case p > 2, Bo(P,u) < CBy(P, ) for some C' > 0 independent of P and p. For

q>p—1>1Dby Theorem 4.1 we have
1
= q
49 mapa) = [ [¥ LI o)
P Qcp |Q’

< CZ - Q[Z M(Q,)pj ]q_l'

_op _% 1
ocr IQI = o lQ|! !

On the other hand, by Holder’s inequality,

S O S (@) Q)
- Q'cQ

1
-

< (X w@ @) (X j@1t e

Q'CQ Q'CQ

where ' =p—1>1,r = g:—l and € > 0 is chosen so that —r(l—%)%—i—r—r& > 1,
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i.e. O<e<( 0

2 fl — < Cu(@FTIQIQIT T

,_.

oca @ -
_1
_ o M@
QI
Combining this with (4.8) we obtain
= ,,% -1
BQ(P, ,LL) S C Z f’i(?) 1+q . M(Q) 1 - q
Qcp Q" - Q"
= 0 # = CA(P, ),
QCP
which completes the proof of the theorem. O

4.2 Criteria for solvability

We are now in a position to establish the main results of this chapter.

Theorem 4.3. Let a« > 0, p > 1 be such that 0 < ap < n, and let ¢ > p — 1.
Suppose f € LL (R™), f >0, and dw = fidx. Then the following statements are
equivalent.

(i) The equation
(4.9) U= Wa,p(ul) +ef

has a solution u € L _(R™), u >0, for some € > 0.

(ii) The testing inequality

(4.10) /P [ Z w’(gznp Xo(x) ﬁdm < Cw(P)

&l
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holds for all dyadic cubes P.

(iii) The testing inequality

(4.11) /P 2 |C;d|(<f2—1’;;1XQ(x) e < Cuw(P)

holds for all dyadic cubes P.

(iv) There ezists a constant C' such that
(4.12) Wa, pWa,p(f)] (@) < CWa,p(f9)(z) < oo ae.

Proof. Note that by Theorem 4.2 we have (ii)<>(iii). Therefore, it is enough to
prove (iv)=-(i)=-(iii)=(iv).

Proof of (iv)=-(i). The pointwise condition (4.12) can be rewritten as
N?f<ONf<oo ae.,

where N is the operator defined by (4.4). The sufficiency of this condition for the

solvability of (4.9) can be proved using simple iterations:
Uni1 = Nu, + €f, n=0,1,2,...,

starting from ug = 0. Since N is monotonic it is easy to see that u,, is increasing
and that e» TN f + ef < u, for all n > 2. Let ¢(p) = max{1,2" "}, ¢, = 0,
cy = [erilc(p)]q and

e = [Tem)+ ] =34
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where C'is the constant in (4.12). Here we choose € so that

- q=p+1 qoep=l
v ic(p) = (‘q p+1> q <p 1> o
q q

By induction and using (4.6) we have
Uy, < ey N f +ef, n=1, 2, 3,...

Note that

a(p—1)
1 17 poi

pzfplc(p)cq}p -

o = |:
is the only root of the equation
1 1149
r = [61’—1 c(p)(1+ C'qx)}
and thus lim,,_, ¢, = x¢. Hence there exists a solution

u(r) = lim u,(x)

n—oo

to equation (4.9) (with that choice of €) such that
ef + Eﬁwa,p(fq) <u < ef +xoWa,p(f)

Proof of (1)=(iii). Suppose that u € L{L _(R™), u > 0, is a solution of (4.9). Let P

loc

be a cube in D and dy = uidx. Since
[w(@)]" = Wa,p(u?)(@)]*  ae.,

we have

[ Wt < [ utwpas,
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Thus,

(4.13) /P [QCP @’T((F—l:lm(x)rdx < Cu(P)

for all P € D. By Theorem 4.2, inequality (4.13) is equivalent to

L1 Lexe] s < cutr)

_ap

for all P € D, which in its turn is equivalent to the weak-type inequality
(4.14) Zap @I . gy < Ol ot
for all g € L771(R"), g > 0 (see [NTV], [VW]). Note that by (4.9),
dp = ulde > €l fldr = e’ dw.
We now deduce from (4.14),
(1.15) Zap (I oty < it 191t

Similarly, by duality and Theorem 4.2 we see that (4.15) is equivalent to the testing
inequality (4.11). The implication (i)=- (iii) is proved.

Proof of (iii)=(iv). We first deduce from the testing inequality (4.11) that
(4.16) w(P) < C|P|*~ wa-» D)

for all dyadic cubes P. In fact, this can be verified by using (4.11) and the obvious

estimate

( 11 q
/P[U;dll‘ /P i |Q| 1_ap) ey L Xxe(®)] dv.



Following [KV], [V3], we next introduce a certain decomposition of the dyadic
Wolft’s potential W, ,u. To each dyadic cube P € D, we associate the “upper”

and “lower” parts of W, ,u defined respectively by

(4.17) r(a) = 3 [ UL ] xqla),

QCP |Q|1_%
(4.18) Vo) = 3 [ g (e,
Obviously,

UPU({E) < Wa,pﬂ(x)a VPM(x) < Wa,p:“(x)?
and for x € P,

1(P) ] =

Wa,pti(z) = Upp(x) + Vpp(z) — [\Pll—‘

Using the notation just introduced, we can rewrite the testing inequality (4.11) in

the form:
(4.19) /P[Z/lpw(ac)]qu < Cw(P)

for all dyadic cubes P. Recall that dw = f?dx. The desired pointwise inequality

(4.12) can be restated as

(4.20)

3 [fp[Wa,pw(y)]qdy p%lXP(w) < CWi ole).

P

PeD

Obviously, for y € P,

Wa,pw(y) < Upw(y) + Vew(y),
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and from the testing inequality (4.19) we have

5 [fp[upw@)]qdy] Bt ) < W w(e)

A -

Therefore, to prove (4.20) it enough to prove

(4.21) Z [fp Vpw(y)]4 dy

=R

Note that, for y € P,

}p 1X () < C W,y pw(z).

Using the elementary inequality

(i)gi(i)

where 1 < s < 0o and 0 < a; < 00, we deduce

oo < O [T [

From this we see that the left-hand side of (4.21) is bounded above by a constant

multiple of

S P S [ K> ] ) e

PeD QDOP RDOQ

Changing the order of summation, we see that it is equal to

> [ v X 1P Vg )

1—2pP
4en 1€ Pca

By (4.16), the expression in the curly brackets above is uniformly bounded. There-
fore, the proof of estimate (4.21), and hence of (iii)= (iv), is complete. O
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Chapter 5

Quasilinear equations on R"

In this chapter, we study the solvability problem for the quasilinear equation
(5.1) —divA(z, Vu) = u! +w

in the class of nonnegative A-superharmonic functions on the entire space R", where
Az, &) - € ~ |£|P is defined precisely as in Sec. 2.2. Here we assume 1 < p < n,
g > p—1, and w is a nonnegative locally finite measure on R™. In this setting,
all solutions are understood in the “potential-theoretic” sense, i.e., u € L{ _(R"),

loc

u > 0, is a solution to (5.1) if u is A-superharmonic, and for all ¢ € C§°(R"),

(5.2) A(x,Du)-Vgpda@:/ quod:v+/ o dw,

Rn

where Du is defined as in (2.8).
5.1 Continuous Wolff type inequalities

We first prove a continuous counterpart of Theorem 4.2. Here we use the well-

known argument due to Fefferman and Stein [F'S] which is based on the averaging
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over shifts of the dyadic lattice D.

Theorem 5.1. Let i be a nonnegative locally finite measure on R", and let 0 < R <
+oo, a>0,p>1, and g > p— 1. Then there exist constants C; > 0,1 =1,2,3,4,

which depend only on n,p,q, «, such that,

(53) O / (WE , p)ide < / (12 )7 de < C, / (WE o )i,
R™ n R™

7 q—p+1 T q—p+l

and

(5.4) Cs | WE o pdu < / (IR p)ride < Cy | WE o jucjt.
p n Rn

R q—p+1 q—p

Remark 5.2. Inequality (5.4) may be regarded as a version of Wolff’s inequality

[HW] (see also [AH], Sec. 4.5):

(5.5) C W, spdp < / (Iau)s%ldx < (Y W, sitdp,

R n R
where 1 < s < +00, 0 < a < %, and (4, C, depend only on a, s and n. Further-

more,

(5.6) /n(Ia,u)s—sld:z: ~ /n(zau)sfldx ~3 [ ) ] Q).

AT
2 g
The second equivalence in (5.6) is a dyadic form of (5.5) which was also proved in

[HW] (see also [COV], [V2]).

Proof of Theorem 5.1. We will prove only inequality (5.3) since inequality (5.4),

which is actually a consequence of Theorem 3.6.2 in [AH], can also be deduced by
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a similar argument. We first restrict ourselves to the case R < +o00. Observe that

there is a constant C' > 0 such that
(5.7) /n(IQR )y ide < C’/R (IR )7 da.
In fact, since

/2R p(By C/ CM(B2R($))
0 tn—op tn ap Rn—ap '

(5.7) will follow from the estimate

on [ e [ [P e

Note that for a partition of R™ into a union of disjoint cubes {Q;} such that

diam(Q;) = & we have

/ (B = 3 [ (Banle)) s
< OZ/qu@j)?’ldx,

where we have used the fact that the ball Byg(z) is contained in the union of at

most N cubes in {Q;} for some constant N depending only on n. Thus
p(Bar()) 1751 p(Bprya(r))155
/ ) [—Rn_ap } dr < CZ e ] dz
W(Bi(x)) di
C Z / / t” o 7 ] da:,

IN

which gives (5.8).

By arguing as in [COV], Sec. 3, we can find constants a, C' and ¢ depending
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only on p and n such that

[ Q) ]pll

—_— d
Q) el

Wipu(x) < C’R_"/
lzl<cR - Gep,
(Q)<4f

where D,, z € R", denotes the lattice D+ z = {Q = Q'+ 2z : Q' € D} and {(Q) is

the side length of (). By Theorem 4.1 and arguing as in the proof of Theorem 4.2

we obtain

QED.
Q)4 E

2/R[ > Q)o@ s,

QGD ’Q|1_7
(Q)<4f

where the constants of equivalence are independent of u, r and z. The last two

estimates together with the integral Minkowski inequality then give
R
[ Wi s
_ Q) 1 ¢ i
<CR ”/ {/ ( [—ap} XQ(J:)) dx} dz
|z|<cR Rn Z ‘Q|1_T

QED.
(Q)<4l

o[, .03 )l

QeD,
(Q)<4%

Note that

Z N(EZJXQ(IE) < C Z Iu \/_Qk))
Q€eD; |Q| " 2k<qft
(Q)<4

8R/7
< Cly' (),

o4




where C' is independent of z. Thus, in view of (5.7), we obtain the lower estimate
in (5.3).

Now by letting R — oo in the inequality

/ (WE w)ide <C | (IEp)o1de,  0< R < +oo,

Rn
we get the lower estimate in (5.3) with R = co. The upper estimate in (5.3) can

be deduced in a similar way. This completes the proof of Theorem 5.1. ]
5.2 Criteria for solvability

In the next theorem, we give a sufficient condition for the solvability of quasilinear
equations in R". Later on we will show that it is necessary as well, and give

equivalent simpler characterizations.

Theorem 5.3. Let w be a nonnegative locally finite measure on R, and let 1 <

p<mn, and ¢ > p— 1. Suppose that

(59) Wl,p(wl,pw)q < CWpr <0 a.e.,
where

g—p+1 q(p’'—1) p—1
5.10 C < ( : ) <—>
(5.10) ~ \¢K max{1,2°'2} qg—p+1

and K is the constant used in Theorem 3.11. Then there is an A-superharmonic

function u € L (R™) such that

loc

inf,epn u(z) =0,
(5.11) { —divA(z, Vu) = u? + w,
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and

Wi w(r) <u(r) < e Wi w(x)

for all x in R™, where the constants ci,co depend only n,p,q, and the structural

constants ., 3.

Proof. For each m € N, let us construct by an induction argument a nondecreasing

sequence {u}'}x>o of A-superharmonic functions on B,,;; such that

—divA(z, Vui') = wp,, in By,
uy' =0 on 0By,

and

—divA(z, Vui') = (u" 1)+ wp,, in  Bpy,
up' =0 on 0B+

for each £ > 1, in the renormalized sense. Here B,, denotes the ball of radius m
and centered at the origin. The renormalized solutions are needed here only to get

the following estimates:
uyg < KWy ,w and up < KWy ,(uf +w)

for all £ > 1; see Theorem 3.11. Set ¢y = K, where K is the constant in Theorem

3.11. From these estimates and (4.5) we get
u? < Kmax{1,2" %} Wi, (ui)? + Wy pw
< Kmax{l, 2p/_2}(cg(pl_1)0 + )W pw

= Clwl,pwa
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where ¢; = K max{1,2"=2}(¢2®” YC + 1). By induction we can find a sequence
{ck}rzo of positive numbers such that u* < ¢, Wi ,w, with ¢ = K and cjyq =
Kmax{1,2p'*2}(cz(p,_1)0 + 1) for all & > 0. It is then easy to see that ¢, <

w for all £ > 0 as long as (5.10) is satisfied. Thus
q—p+1

g

K 1,202
< max{l, }qW1 pwoon B
g—p+1 '
Now by weak continuity (Theorem 2.4) or stability results for renormalized solu-

tions in [DMOP] we see that u}* T u™ for an A-superharmonic function «™ > 0 on

B,,+1 such that

(5.12) —divA(z, Vu™) = (™) +wp,, in By,
' u™ =0 on 0B,

and

(5.13) u" <CWj,w on Bpy.

By Theorem 1.17 in [KM1] we can find a subsequence {u™}; of {u™},, and
an A-superharmonic function v on R"™ such that «™ — wu a.e. Thus by (5.12)
and weak continuity (Theorem 2.4) we see that w is a solution to the equation

—divA(z, Vu) = u? + w in R”. On the other hand, from (5.13) we have
u<CW; ,w ae on R"
which by Corollary 2.6 gives

u<C(u— iélnfu).
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Thus infg-» v = 0, which completes the proof of the theorem. ]

We can now prove the main theorem of this section which gives existence criteria

for quasilinear equations in R".

Theorem 5.4. Let w be a nonnegative locally finite measure on R"™, and let 1 <
p<nandq>p—1. Then the following statements are equivalent.
(i) There exists a nonnegative A-superharmonic solution u € L _(R™) to the equa-

tion

inf,epn u(x) =0,

(5.14) { —divA(z,Vu) =uf +ew in R”

for some € > 0.
(ii) The testing inequality

q

(5.15) /B {Ipr(x)} "z < Cw(B)

holds for all balls B in R".

(iii) For all compact sets E C R",

(5.16) w(E) < CCapy, _«_(E).

q—p+1

(iv) The testing inequality

(5.17) /B [WprB(x)}qu < Cw(B)
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holds for all balls B in R™ .

(v) There exists a constant C such that
(5.18) Wi, (Wi ,w)i(z) <CWi w(r) <oco ae.

Moreover, there is a constant Cy = Cy(n,p,q,a,3) such that if any one of the
conditions (5.15)-(5.18) holds with C' < Cy, then equation (5.14) has a solution u

with € = 1 which satisfies the two-sided estimate
(5.19) a1 Wi w(z) <u(z) < ca Wi w(z), x € R,

where ¢ and ¢y depend only on n,p,q,a, 3. Conversely, if (5.14) has a solution
u as in statement (1) with € = 1, then conditions (5.15)—(5.18) hold with C' =
Ci(n,p,q,a,3). Here a and 3 are the structural constants of A defined in Section

2.2.

Proof. 1t is well-known that that statements (ii) and (iii) in Theorem 5.4 are equiv-
alent (see, e.g., [V2]). Note that (5.15) is also equivalent to the testing inequality
(see, e.g., [VW]):

/ [Ipr(x)] o dx < Cw(B).
By applying Theorem 5.1 we deduce (ii)=(iv). The implication (v)=-(i) clearly
follows from Theorem 5.3. Therefore, it remains to check (i)=-(ii) and (iv)=(v).
Proof of (1)=(ii). Let u be a nonnegative solution of (5.14) and let u = u? + ew.

Then p is a nonnegative measure such that p > v, p > ew and u(z) > C Wy ,u(z)
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by Corollary 2.6. Therefore,

/du > /uquEC’/(Wl,p,u)qu
P P P

> 0 [ [ (ore) et

QCP

for all dyadic cubes P in R™. Using this and Theorem 4.2, we get

> [ g <oup).  pep.

It is known that the preceding condition, which is a dyadic Carleson measure

condition, is equivalent to the inequality (see [V1], Sec. 3)

1T,(f)

ptir gy < C A1

La— p+1 (d
where C' does not depend on f € Lasr (dz). Since p > ew, from this we have

q—p+1

e~ ClIf

N, s ) <

La= p+1 dx)’
Therefore, by duality we obtain the testing inequality (5.15). This completes the
proof of (i)=-(ii).

Proof of (iv)=-(v). We first claim that (5.17) yields
(5.20) w(By(z)) < C " awi,

where C' is independent of x and r. Note that for y € B,(z) and 7 > 2¢, we have

Bi(z) C B;(y). Thus,

Wl,prt(.Z’) (y>

Y
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Combining this with (5.17) we obtain 5.20.
Next, we introduce a decomposition of the Wolff’s potential W, , into its “up-

per” and “lower” parts, which are the continuous analogues of the discrete ones

given in (4.17) and (4.18) above:

Ur,u(:v):/r [M}pllﬂ r>0, reR"

tn—p

Lm@ﬁz/m[ﬂgﬁﬁqj”ﬁ r>0, zcR"

tn—p
Let dv = (W1 pw)?dzx. For each r > 0 let du, = (U,w)%x and d\, = (L,w)?dz.

Then
(5.21) v < C(q) (1 + Ar)

Let z € R" and B, = B,(z). Since Wy ,(W; ,w)? = W, ,v, we have to prove that

rn—p r

Wi ,v(zr) = /000 [V(BT)} Tilﬁ < CW; w(z).

For r > 0,¢t <r and y € B, we have B,(y) C Bs,. Therefore it is easy to see that

U,w = U,wpg,, on B,. Using this together with (5.17), we have

B = [ (U s = / (U, i < Clo(By).

Hence,
* 1 (By) 171 d * rw(Bar) 151 d
(5.22) /‘[“iﬂ)] @< o/m[w&i)} ar
0 r r 0 r r
< "Wy ,w(z)



On the other hand, for y € B, and t > r, we have By(y) C By, and consequently

(5.23) Lw(y) < /OO [W<BQt)] ﬁ@

= ) L t
< c/ [”(Bﬂw@

o L P t
< CLyw(x).

Using (5.23), we obtain

M(B,) = / (Low(y))dy < C(Lyw(x))hr".

T

/000 [AT(BT)]&@ < C//OOO(Lrw(g;))zf’lrfﬁﬁ

r

eI R

_ ot /OMTJ;[LM@)],;A[LB»]A@’

p rner
where we have used integration by parts in the last equality. It then follows from

(5.20) that

(5.24) /0 - WBJ}& dr /0°° [W(B»]p% dr

rn—p T

IN

= C"Wi w(z).

Combining (5.21), (5.22) and (5.24) gives

* ry(B,)1 51 dr
lepl/(.%) = \/0 |: np :| 7 < CWLPW((E),
for a suitable constant C' independent of w. Thus, (iv) implies (v) as claimed which

completes the proof of the theorem. ]
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In view of condition (5.16) in the above theorem, we can now deduce a simple
sufficient condition for the solvability of (5.14) from the known lower estimate of

capacity in terms of Lebesgue measure (see, e.g., [AH|, p. 39):

B 7@ 0 < C Capy, o (E).

q—p+1

n(g—p+

Corollary 5.5. Suppose that f € L™ »a 1)’OO(R") and dw = fdzx. If ¢ >p—1 and

P
q—p+1

< n, then equation (5.14) has a nonnegative solution for some € > 0.

n(g—p+1)

Remark 5.6. The condition f € L™ » **(R"™) in Corollary 5.5 can be relaxed

by using the Fefferman—Phong condition [Fef]:
/ fHde < CR™ it
Br

for some 0 > 0, which is known to be sufficient for the validity of (5.15); see, e.g.,

[KS], [V2].
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Chapter 6

Quasilinear equations on bounded
domains

6.1 Sharp integral estimates

Let @ = {®@} be a Whitney decomposition of €, i.e., Q is a disjoint subfamily
of the family of dyadic cubes in R" such that 2 = Ugco@, where we can assume
that 2°diam(Q) < dist(Q, Q) < 27diam(Q). Let {¢g}geo be a partition of unity
associated with the Whitney decomposition of 2 above: 0 < ¢g € C5°(Q*), ¢pg >
1/C(n) on Q, Ypdg = 1 and [DV¢q| < A, (diam(Q))~1 for all multi-indices .
Here Q* = (1 +¢€)Q, 0 < € < 3 and C(n) is a positive constant depending only
on n such that each point in  is contained in at most C(n) of the cubes Q* (see
[St1]).

The following theorem gives local estimates for solutions of quasilinear equa-

tions.

Theorem 6.1. Let w be a locally finite nonnegative measure on an open (not
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necessarily bounded) set Q. Let p > 1 and ¢ > p — 1. Suppose that there ezists a

nonnegative A-superharmonic function u in Q such that

—divA(x,Vu) =u! +w in .

Then, for each cube P € Q and compact set E C €,

(6.1) pp(E) < CCapy o (E)

q—p+1

o pg
if o1 < and

(6.2) pp(E) < C(P)Capg,, 1 (E)

q—p+1

if qf;qH > n. Here dp = uidx + dw, and the constant C in (6.1) is independent of

P e Q and E C Q, but the constant C(P) in (6.2) may depend on the side length

of P.

Moreover, if q_@qﬂ <n and € is a bounded C*°-domain, then

p(E) < Ceap, a4 (E,Q)

q—p+1

for all compact sets E C (), where cap, - (E,Q) is a capacity associated with
’q—p

the space W**® a=p, s = relative to the domain ) defined by

-
q—p+1’
(63)  cap, (B.Q) = nf{||f|[iya - : F € CF(Q),f>1 on E}.

Proof. Let P be a fixed dyadic cube in Q. For a dyadic cube P’ C P we have

dist(P’,09) > dist(P,99Q) > 2°diam(P) > 2°diam(P’).
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The lower estimate in Theorem 2.5 then yields

U(JI) > CWQSdiam(Pl)/L<I)
2~ k3 diam(P’) 1
(Bt( )17 dt
ey [ =i

k+2diam(P’)

Q)
TSl

v

} ﬁm(m)

for all z € P’. Thus it follows from Theorem 4.2 that

(6.4) |g(|f%)] "ol < c/ wide < Cu(P'), P CP.
QcP " '

Hence

(6.5) u(P') < P, PP

To get a better estimate for u(P’) in the case

—itg = n, we observe that (6.4) is a

dyadic Carleson condition. Thus by the dyadic Carleson imbedding theorem (see,

g., INTV], [V1]) we obtain, for q—l;q—i-l =n,

(6.6) > @)

QCP

]pzl SC/przld/w,

where f € Lﬁ(dﬂp), f > 0. From (6.6) with f = xps, one gets

2" PN =5
(6.7) u(P') < c(log \IL 7 |) o opcp
if P15 =n. Now let P’ be a dyadic cube in R”. From Wolff’s inequality (5.6) we
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have

/n(IpMP/mP)p tde < C Z [M] |Q|

QGD ’Q‘lii
( p— 1 p— 1
(6.8) =C 7| lRI+C 7| QL
WJ@P] %ﬂwv}
Thus, for .47 < n, by combining (6.4) and (6.8) we deduce

(69) / (Ipﬂp/mp)ﬁzl dx S C/LP(P/)

In the case L7 > n, a similar argument using (6.4), (6.5), (6.7) and Wolff’s

inequality for Bessel potentials:

/n(GpManP)”zldx < C(P) Z pp(P'NQ)

1— P
QeD,QCP QI

"1l
(see [AH], Sec. 4.5), also gives
(6.10) [ (@uuprr)*ide < CPYun(P),

where the constant C'(P) may depend on the side length of P. Note that (6.9) which
holds for all dyadic cubes P’ in R™ is the well-known Kerman-Sawyer condition.
Therefore by the results of [KS],

I Il =t gy < CNFI i

for all f € Lirrt (R™) which is equivalent to the capacitary condition

pp(E) < C Capy,
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for all compact sets £ C R™. Thus we obtain (6.1). The inequality (6.2) is proved
in the same way using (6.10). From (6.1) and the definition of cap,, o (,), we

see that, for each cube P € Q,

pp(E) < Ccap, o« (ENPQ)

q—p+1

for all compact sets E C ). Thus

w(E) < Y up(E)

PeQ
< C Z cap, o (ENP,Q)
pPeQ o
< Cj(Hipp744;L4,<Z;,g)),

q—p+1

where the last inequality follows from the quasi-additivity of cap, (-, €2), which

q—p+1

is considered in the next theorem. O]

Let Bgr be a ball such that Bog C ). It is easy to see that there exists a
constant ¢ > 0 such that ¢(P) > c¢R for any Whitney cube P that intersects Bp.
On the other hand, if B, is a ball in B then we can find at most N dyadic cubes
P; with ¢ § < {(F;) < ¢ that cover B,, where N depends only on n. Thus we can
deduce from (6.7) the following corollary which gives an improved estimate in the

critical case g = n(:;:;), l1<p<n.

Corollary 6.2. Let w, Q, p, q and u be as in Theorem 6.1. Then in the case

pq

T = T we have

1—p
/ u!dr + w(B,) < C(log %)q*zﬂrl
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for all balls B, C Br such that Bog C €.

Theorem 6.3. Suppose that () is a C*°-domain in R™. Then there exists a constant

C > 0 such that

anpp . (EﬂQ Q) < C’capp 1 (E Q)
QeQ

for all compact sets E C ().
Proof. Obviously, we may assume that cap,, 1 _ (E 2) > 0. Then by definition

there exists f € Cg°(Q2), f > 1 on E such that

> q p+1
QCapp q (E Q) ||f||Wp = p+1 (R")

By the refined localization principle on the smooth domain €2 for the function space

WP 751 (see, e.g., [Tri], Theorem 5.14) we have

q— P+1 > q— p+1
ATy 2C X Il
QeQ
Thus
q p+1
(6.11) D ool s < Ceap, o (E,9).
QeQ
Note that for x € ENQ,
foq =g =1/C(n).
Hence by definition we have
q— P+1
capy s (ENQ.9) < Cllfooll 717,
From this and (6.11) we deduce the desired inequality. O
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6.2 Criteria for solvability

We next give a sufficient condition for the existence of renormalized solutions to
quasilinear equations on a bounded domain €2, which is an analogue of Theorem 5.3
related to the case 2 = R™. Its proof is based on stability results for renormalized
solutions in place of the weak continuity of measures generated by A-superharmonic

functions used in the proof of Theorem 5.3.
Theorem 6.4. Let w € ME(Q). Let p>1 and g > p — 1. Suppose that
Wi (W)t < CWiTw  ace,

where R = diam(€Q),

C<< qg—p+1 )q(p/—1)< p—1 )
~ \¢gK max{1,2r'-2} qg—p+1/’

and K s the constant in Theorem 3.11. Then there is a renormalized solution

u € L1(Q) to the Dirichlet problem

(6.12)

—divA(z,Vu) =u?+w in €,
u=0 on 0N

such that

u(z) < MWiw(x)

for all x in Q, where the constant M depends only on p,q,n, and the structural

constants o and (3.
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Proof. By Lemma 3.9 we can find a nondecreasing sequence {uy }r>o of renormal-

ized solutions to the following Dirichlet problems:

—divA(z, Vup) =w in €,
(6.13) { ug =0 on 0f),
and
—divA(z,Vug) =uj ;+w in €,
(6.14) { u, =0 on 0.

for £k > 1. By Theorem 3.11 we have

ug < KWiiw, up < KW (ul_) + w).

Thus by arguing as in the proof of Theorem 5.3, we obtain a constant M > 0 such

that

up < MWfﬁ,w < o0 a.e.

for all & > 0. Therefore, {uy} converges pointwise to a nonnegative function u for

which

u < MW%@w < oo a.e.,

and u] — u? in L'(Q). Finally, in view of (6.14), the stability result in [DMOP,
Theorem 3.4] asserts that u is a renormalized solution of (6.12), which proves the

theorem. ]
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Existence results on a bounded domain 2 analogous to Theorems 5.4 are con-
tained in the following two theorems, where Bessel potentials and the corresponding

capacities are used in place of respectively Riesz potentials and Riesz capacities.

Theorem 6.5. Let w € ME(Q) be compactly supported in Q. Letp > 1, ¢ >p—1,
and let R = diam(Q2). Then the following statements are equivalent.

(i) There exists a nonnegative renormalized solution u € L1(S2) to the equation

(6.15)

—divA(z,Vu) =u?+ew in Q,
u=0 on 00

for some € > 0.

(ii) For all compact sets E C (2,

(6.16) w(E) < CCapg, _«_(E).

qg—p+1

(iii) The testing inequality
(6.17) /B W2 s (2)0 do < Cw(B)

holds for all balls B such that B N suppw # ) .

(iv) There ezists a constant C such that
(6.18) Wi (Witw)i(z) < CWiw(z) ae. on Q.

Proof. Since w is compactly supported in €2, using Theorem 6.1 we have (i)= (ii).

Thus we need to show that (ii)= (iii)= (iv) = (i). Note that the capacitary
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inequality (6.16) is equivalent to the Kerman—Sawyer condition
(6.19) / [Gwp(x)]7T do < Cw(B),

(see [KS], [V2]). Note also that

(6.20) /n[Gpﬂ(x)]p“’l dr ~ / [/:R %] ﬁdx,

where the constants of equivalence are independent of the measure p, (see [HW],
[AH]). Thus from (6.19), (6.20), and Theorem 5.1 we deduce the implication
(ii)=-(iii). By Theorem 6.4 we have (iv)=-(i). Thus it is left to show that (iii)=-(iv).
In fact, the proof of this implication is similar to the proof of (iv)=-(v) in Theorem
5.4. We will only sketch some crucial steps here. We define the “lower” and “upper”

parts of the truncated Wolff’s potential W1’ respectively by

(B o7 dt
LfR,u(a:):/ [%] T 0<r<2RaER

and

" (B g dt
UEp(z) = / [W] 1?, 0<r<2R, zeR"
0

Since R = diam(Q2) and w € M} (), to prove (6.18), it is enough to verify that,

for x € Q,
2R 1
W (B ()1 5=t dr
(6.21) /0 [%} T < oWH(),
and
2R N (By ()7 521 dr
(6.22) /O [W} s CWiltw(x),
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where dp, = (U*w)idx, d)\, = (L2Rw)?dz and 0 < r < 2R. The proof of (6.21) is
the same as before. For the proof of (6.22), we need an estimate similar to (5.20)

in the proof of Theorem 5.4. Namely,
(6.23) w(B,(z)) < C " 7w,

for 0 < ¢ < £ and = € Q. In fact, note that for 0 < ¢ < £ and y € By(x),

Wiwnw () > /:R [w(BT(ZLTpBM))]”lldT—T
> O(n,p)[%}pll‘

Thus from this inequality and (6.17) we get (6.23). This completes the proof of

(iii)=(iv), and hence Theorem 6.5 is proved. O

Remark 6.6. In the case where w is not compactly supported in €2, it can be
easily seen from the proof of this theorem that any one of the conditions (ii)—(iv)

above is still sufficient for the solvability of (6.15). Moreover, in the subcritical case

> n, these conditions are redundant since the Bessel capacity CapGp

q— p+1 p+1

of a single point is positive (see [AH], Sec. 2.6). This ensures that statement (ii)

of Theorem 6.5 holds for some constant C' > 0 provided w is a finite measure.

n(g— p+)

Corollary 6.7. Suppose that f € L (Q) and dw = fdx. If ¢ >p—1 and

= p+1 < n then the equation (6.15) has a nonnegative renormalized (or equivalently,

entropy) solution for some € > 0.
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6.3 Removable singularities of —divA(z, Vu) = u!

We are now in a position to obtain a characterization of removable singularities for

homogeneous quasilinear equations.

Theorem 6.8. Let E be a compact subset of Q2. Then any solution u to the problem

u is A-superharmonic in Q\ E,
(6.24) we Ll (Q\E), u>0,

—divA(xz,Vu) =u? in D(Q\E),
is also a solution to a similar problem with Q in place of Q \ E if and only if

Capg. ¢ (E)=0.

P g—p+1

Proof. Let us first prove the “only if” part of the theorem. Suppose that

CapG,,, q (E) = 0,

q—p+1

and u is a solution of (6.24). We have cap, ,(E£,§2) = 0, where the capacity
cap; ,(+,€2) is defined by (3.1). Thus u can be extended so that it is a nonnegative
A-superharmonic function in Q (see [HKM]). Let plu] be the Radon measure on
2 associated with u, and let ¢ be an arbitrary nonnegative function in C§°().

As in [BP, Lemme 2.2], we can find a sequence {p,} of nonnegative functions in

C3(Q2\ E) such that

(6.25) 0< v, < s on — ¢ Capg q+1—quasi everywhere.
P> q—p
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By Fatou’s lemma we have

/qud:c < liminf/uq<pndx
Q e Ja
= liminf / O dpfu]
Q

n—oo

< /Qsodu[U] < 00.

Therefore v € LY

loc

(Q), and pfu] > u? in D'(2). Tt is then easy to see that
—divA(z, Vu) = u? + ¥ in D'(Q)

for some nonnegative measure p such that u#(A) = 0 for any Borel set A C Q\ E.

Moreover, by Theorem 6.1 we have

pF(E) < C(E)Capg, _«_(E) =0.

qg—p+1

Thus ¥ = 0 and u solves (6.24) with  in place of Q\ E.
The “if” part of the theorem is proved in the same way as in the linear case
p = 2 using the existence results obtained in Theorem 6.5. We refer to [AP] for

details. O
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Chapter 7

Hessian equations

In this chapter, we study a fully nonlinear counterpart of the theory presented in

Chapters 5 and 6.

7.1 Hessian equations on R"

JFrom Lemma 3.16 and Theorem 3.15 along with the weak continuity of Hessian
measures (Theorem 2.7) we get the following existence theorem for fully nonlinear
equations whose proof, which we will omit, is similar to that of Theorem 5.3 in the

quasilinear case.

Theorem 7.1. Let w € M (R"), 1 <k < %, and q > k. Suppose that

W a2 W 2 W) < CW 2 w < oo a.e.
m,kz-i—l( 2 k1 )< 2 k1 )

where




and K is the constant in Theorem 3.15. Then there exists u > 0, u € L{ _(R"),

loc

such that —u € ®*(R™) and

inf,egn u(z) =0,
Fil—u] = u? + w.

Moreover, u satisfies the two-sided estimate
Clw%,kﬂw(@ <u(z) < e WkQ—fl,k—i—lw(x)
for all x in R™, where the constants c1,cs depend only on n, k,q.

We are now in a position to establish the main results of this section.

Theorem 7.2. Let w be a measure in M*(R"), 1 <k < %, and ¢ > k. Then the
following statements are equivalent.

(i) There exists a solution u >0, —u € ®*(Q) N L]

loc

(R™), to the equation

inf,epn u(z) =0
(7.1) { Fpl-u] =u'+€ew in R”

for some € > 0.

(ii) The testing inequality

(7.2) / Tywn (@) Edz < Cw(B)
B

holds for all balls B in R™.

(iii) For all compact sets E C R",

(7.3) w(F) < C’Capl2k7%k(E).
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(iv) The testing inequality
(7.4) / W oy wn(@)]de < Cu(B)
B
holds for all balls B in R™ .
(v) There exists a constant C' such that
(7.5) W%ﬁ’kﬂ (W%’k+1w)q(9€) < CW%’kﬂw(aﬁ) < oo a.e.

Moreover, there is a constant Coy = Co(n, k,q) such that if any one of the conditions
(7.2)-(7.5) holds with C' < Cy, then equation (7.1) has a solution u with € = 1

which satisfies the two-sided estimate
¢ W%’kﬂw(x) <wu(zr) < e W%’k+1W($), reR",

where ¢; and ¢y depend only on n, k,q. Conversely, if there is a solution u to (7.1)

as in statement (i) with e = 1, then conditions (7.2)—(7.5) hold with C = Cy(n, k, q).

Proof. The proof of Theorem 7.2 is completely analogous to that of Theorem 5.4
in the quasilinear case using W 2k g in place of Wy , and Theorem 7.1 in place
+ b

of Theorem 5.3. O

n(g—k)

Corollary 7.3. Suppose that f € L 20 **(R") and dw = fdx. If ¢ > k and

% < n then (7.1) has a nonnegative solution for some € > 0.
q

Remark 7.4. As in Remark 5.6, the condition f € L% *(R™) in Corollary 7.3

can be relaxed by using the Fefferman-Phong condition [Fef]:

fl—i-(de < CRN—4<1J;6,>§kq
Br
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for some § > 0.

Since Cap; ,(E) = 0 in the case as > n for all sets &£ C R" (see [AH], Sec.
2.6), from Theorems 6.5 and 7.2 we obtain the following Liouville-type theorems

for quasilinear and Hessian differential inequalities.

Corollary 7.5. If ¢ < "(:;__;), then the inequality —divA(z, Vu) > u? admits no

nk
n—2k’

nontrivial nonnegative A-superharmonic solutions in R". Analogously, if ¢ <

then the inequality Fi.[—u] > u? admits no nontrivial nonnegative solutions in R™.

Remark 7.6. When 1 < p <n and ¢ > "flp—__;), the function u(z) = c|z|7771 with

- pFWHMn—m—n@—lmﬁﬁ,

":hq—pm

is a nontrivial admissible (but singular) global solution of —A,u = u? (see [SZ]).

Similarly, the function u(x) = ¢ \x|q_—72]’: with

: (n—l)!]qlk[ (2k)* ] L
- - 2]€ — k q—k
¢ [Mm—kﬂ (q — k) la(n — 2k) — nk]+*,
where 1 < k < 2 and ¢ > - is a singular admissible global solution of Fj[—u] =

u? (see [Tso| or [Tru2|, formula (3.2)). Thus, we see that the exponent ”;p—__;)

(respectively —£-) is critical for the homogeneous equation —divA(z, Vu) = u?

(respectively Fi[—u] = wu?) in R™. The situation is different when we restrict

ourselves only to locally bounded solutions in R" (see [GS], [SZ]).
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7.2 Hessian equations on bounded domains

In this section, we consider the following fully nonlinear problem:

Fyl[-ul=u'+w in Q,
(7.6) { u=¢ on O

in the class of nonnegative functions u such that —u is k-convex in a bounded
uniformly (k — 1)-convex domain €. Here w is a nonnegative finite Radon measure
which is regular enough near 9f) so that the boundary condition in (7.6) can be
understood in the classical sense (see [TW1], [TW2]).

We first prove a theorem on the existence of solutions to Hessian equations
with non-homogeneous boundary condition which is analogous to Theorem 6.4.
However, due to the inhomogeneity we will need to take care of the boundary
term. Moreover, the weak continuity of Hessian measures is used in place of the

stability result for renormalized solutions in the quasilinear case.

Theorem 7.7. Let Q) be a bounded uniformly (k—1)-convex domain in R™. Suppose
that w € ME(Q) such that w = pu+ f, where p € M*(Q) with compact support in
Qo< fel!(Q withs> g ifl<k<Zands=1if 5 <k<n. Letq>k,

R = diam(Q2) and 0 < ¢ € C°(0R). Suppose that

2R 2R 2R
(77) W%,k—&-l(w%ﬁ,kﬁ-lw)qSAW%,/C—FIUJ’
and
BE
(7.8) (max )t~ < T
o8 2R?[B,(0)[*



where A, B are positive constants such that

—k N\Nis k —k N\i/ k
(7.9) Ag(‘gil >k< ) and Bg( Ch >k< )
3TqK q_k BTQKE q_k
Here K is the constant in Theorem 3.15. Then there exists a function u > 0,

—u € ®F(Q) N LY(Q), continuous near ) such that
Fy[-ul=u'+w in €
(7.10) { u=¢® on O

Moreover, there is a constant C' = C(n, k,q) such that

wso{ws
D Rt

2R
O WE o (mge)" g

k+17

Proof. First observe by direct calculations that condition (7.8) is equivalent to

2R 2R ¢ 2R
(7.11) W%7k+1 [W%fl’ml(r%%xgo)q SBW%,kH(I%%X@)q.

From Lemma 3.16 it follows that we can choose inductively a nondecreasing se-

quence {u,,} of nonnegative functions on 2 such that

Frl—ug] =w in
ug=¢ on Of),

and
(7.12) Fel—up] =ul ;1 +w in Q,
' Uy =@ on  Of),
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for m > 1. Here for each m > 0, —u,, is k-subharmonic and is continuous near

09). By Theorem 3.15 we have

2R
w < KWH

w4+ K max ¢
k+1° o2

2R 2R q
= ayW¥4%; w + byW =y max + K max
07 2k 0 szka( B #) o6 £

where ag = K and by = 0. Thus

2R q
w < KW ]fflrk+1(u0 +w) + Kn{f})%xgo
~1,9) s W2R W2ER
< K{(3q ag)* kL ( —,ffl,kﬂw)q +

(37 4) WL

k+1°

w3 (max go)q} ! +

k+1 D

Lxx72R
K+»W5;

q 2R
m,kﬂ(né%xgp) + W w}%—KI%%xgo.

2o k1
Then by (7.7) and (7.11),

w < K[(37'al)F A+ 1)W3E

k+1°

pr1? T

K[(39'00)* B + K+ |W2E

q
max + K max
mvk“( a0 #) oo

2R 2R q
= a; W% w + by W4y max + K max

P A e ! ;pr’fH( B #) s P
where

ay = K[(37'ad)v A+1], b =K[37W)5B+ K.

By induction we have

2R 2R q
Un < amWar 0w+ bmw%,k_i_l(I%%X ©)? + KT%%X ¥,

k+1°
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where
i = K[(37 a8 FA+ 1], by = K[(37700) B + K1)

for all m > 0. It is then easy to see that

Kit!
A, S —q7 and bm S : q7
q—Fk q—Fk
provided (7.9) is satisfied. Thus
Kq ronr
K%Jrlq

Using (7.7) and (7.13) we see that u,, T u for a function v > 0 such that —u is
k-subharmonic and u, — u? in L*(€2). Thus in view of (7.12) and Theorem 2.7 we

see that u is a desired solution of (7.10). O

We will omit the proof of the next theorem as it is completely analogous to the

proof of Theorem 6.1 in the quasilinear case.

Theorem 7.8. Let w be a locally finite nonnegative measure on an open (not
necessarily bounded) set Q. Let 1 < k < n and q > k. Suppose that u > 0,

—u € ®*(Q), such that u is a solution to

Fl—u]=vl+w in Q.
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Then for each cube P € Q, where Q = {Q} is a Whitney decomposition of Q as

before (see Sec. 6.1), we have

(7.14) up(E) < C Capyy, s (E),
if qg_i‘,i <n, and

(7.15) up(E) < C(P) Capa,, o (E),

if j_i‘,i > n for all compact sets E C Q). Here du = uldx + dw, and the constant C'
in (7.14) does not depend on P € Q and E C §); however, the constant C(P) in
(7.15) may depend on the side length of P.

Moreover, if % <n, and  1s a bounded C*°-domain then

M(E) é Ccap2k, k(Ev Q)

for all compact sets E C ), where cap2k7%k(E, Q) is defined by (6.3).
Remark 7.9. Let B be a ball such that Bygr C €. Then in the critical case
q=-"2 (k<1),asin Corollary 6.2 we have

u(B,) < C(log 28)7=

for all balls B, C Bpg.

We are now in a position to establish characterizations of solvability for Hessian

equations in a bounded domain.
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Theorem 7.10. Let Q be a uniformly (k — 1)-convex domain in R™, and let w €
ME(Q) be compactly supported in Q. Suppose that1 < k <n, ¢ >k, R = diam(Q),
and o € C°(0R), ¢ > 0. Then the following statements are equivalent.

(i) There exists a solution u > 0, —u € ®¥(Q) N LI(Q), continuous near O, to the

equation

Fi[-u]=u!+ew in €,
u=¢€ep on IS

(7.16) {

for some € > 0.

(ii) For all compact sets E C €,
w(E) < Ccapc%,q%k(E)-
(iii) The testing inequality

/B W, wn(@)]tdr < Cu(B)

holds for all balls B such that B Nsuppw # 0 .

(iv) There ezists a constant C such that

W%%er (W%7k+lw)q(x) < CW%,HW@) a.e. on €.

Proof. The proof of this theorem is analogous to that of Theorem 7.2 in the quasi-
linear case. One only has to use Theorems 7.7 and 7.8 in place of Theorems 6.4

and 6.1 respectively. ]
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Remark 7.11. As in Remark 6.6, any one of the conditions (ii)—(iv) in Theorem
7.10 is still sufficient for the solvability of (7.16) if dw = du + fdx, where p €
ME(Q) is compactly supported in Q and f € L*(Q), f > 0 with s > 2= if & < Z,
and s = 1 if &£ > . Moreover, in the subcritical case ;_L;IC > n these conditions are
redundant.

n(g—k)

Corollary 7.12. Let dw = (f + g)dx, where f >0, g >0, f € L 2r "2(Q) is

compactly supported in Q, and g € L*(Q) for some s > 5. If ¢ > k and ;_L?C <n

then (7.16) has a nonnegative solution for some € > 0.

The next theorem is on removable singularities for Hessian equations, an ana-

logue of Theorem 6.8.

Theorem 7.13. Let E be a compact subset of 2. Then any solution u to the

problem

—u is k-subharmonic in Q\ E,
(7.17) uwe Ll (Q\E), u>0,

loc

Fy[-u] =u? in D(Q\E),
is also a solution to a similar problem with 0 in place of Q \ E if and only if

Capc%q%k(E) =0.

Proof. To prove this theorem, we will proceed as in the proof of Theorem 6.8. For

the “only if” part, we may assume that & < 7, since otherwise ;_i‘]i > n, and so

E = (). Note that if Capg,,, o (E) = 0 then Capg ,, 41(E) = 0 (see [AH],

F+1

Sec. 5.5), which implies that cap,(F,2) = 0 due to Theorem 7.14 below. Here
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capy(-, ) is the (relative) k-Hessian capacity associated with the domain €2 defined
by (3.15). Thus by [L, Theorem 4.2], E is a k-polar set, i.e., it is contained in the
(—o0)-set of a k-subharmonic function in R™. Suppose that u is a solution of (7.17).

It is easy to see that the function @ defined by

(7.18) liminf u(y), =€ FE,

y—z,y¢E

u(z), xe€Q\FLE,
M:{ @), ren\

is an extension of u to  such that —a € ®*(Q). The rest of the proof is then the

same as in the quasilinear case. O

Finally, we prove the local equivalence of the k-Hessian capacity and an appro-

priate Bessel capacity that is needed in the proof of Theorem 7.13 above.

Theorem 7.14. Let 1 < k < 5 be an integer. Then there are constants My, My

such that
(7.19) M, CaPGA,Hl(E) < capy,(E,Q) < M, CapGgik,k—i-l(E%
k+1 E+1

for any compact set E C Q with Q € Q. Furthermore, if Q is a bounded C*-

domain then

(7.20) cap,(E, Q) < Ccap%7k+1(E7 Q),

for any compact set E C Q, where cap%7k+1(E, Q) is defined by (6.3) with a = ;—ﬁ

and s =k + 1.
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Proof. Let R be the diameter of Q. From Wolff’s inequality (5.5) it follows that

Capg ,, .x41(£) is equivalent to
k+1

sup {u(E) : pe M*(E), WU, u<1onsuppu},

k412

for any compact set E C Q (see [HW], Proposition 5). To prove the left-hand

inequality in (7.19), let © € M™(E) such that W4l i1
k+1°

1 < 1 on suppu, and let

u € ®*(B) be a nonpositive solution of

Fylul=p in B
u=0 on 0B,

where B is a ball of radius R containing (2. By Theorem 3.15 and the boundedness

principle for nonlinear potentials (see [AH], Sec. 2.6), we have

[u(z)] < C WL

k
2 k1M

(x) < C, x € B.

Thus

w(E) = pul(E) < C capy(E,Q),

which shows that

Capg ,, k41(E) < Ccapy(E,€2).

2k
E+1
To prove the upper estimate in (7.19), we let Q € Q, and fix a compact set £ C Q.

Note that for 4 € M*(E) and = € E we have

iam A E % dt
WAL ule) =W [T [HE]
2

2k
s = k41 .
k+1 sl diam(Q)
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Thus, for k < 7,

(7.21) WAL, () < C W@y r€eFE.

2k
g kTl

k+17

Now for u € ®*(Q) such that —1 < u < 0 by Theorem 2.8 we obtain

W@y < W@ )0y < O fu(z)] < ©

2k E 2k
m,k-ﬁ-l k—ﬂ,k-kl

for all z € E, where u = pg[u]. Thus, we deduce from (7.21) that

Wﬁ k+1/1JE(‘T) < C, T e Ea

k417

which implies

(7.22) capy(E,Q) < CCapg ,, x+1(E).

k+1

Finally, if 2 is a C*°-domain in R", and 1 < k < %, then by (7.22) and the
quasi-additivity of the capacity cap 26 +1(+,Q) (see Theorem 6.3) we obtain the
+ b

global upper estimate (7.20) for the k-Hessian capacity. O
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Appendix A

Proof of Theorem 2.4

Theorem 2.4 was proved by Trudinger and Wang [TW4]. Here we give a detailed

proof with some simplifications and modifications for the convenience of the reader.

Lemma A.1 ([HKM], Lemma 3.57). Suppose that u € W,5P(Q) is a nonnegative
supersolution to —divA(z, Vu) =0 in Q. If n € C§(Q), n > 0, and € > 0, then

there exists a constant C > 0 such that

/|Vu\pu_1_677pdx§C’/up_1_€\V77|pdx.
Q Q

Proof. By replacing u with u 4+ 0 for 6 > 0, we may assume that the function
v = u~“n? is a nonnegative function in I/VOl "P(Q) with compact support. Thus from

the inequality [, A(z, Vu)- Vudz > 0 we obtain

e/ A(x, Vu)nPu "¢ Vudr < p/ A(x, Vu)n? 'y - Vndz.
Q Q
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Using the structural condition (2.3) along with Holder’s inequality we then get

ae/ |VulPu™' " nPdr < Bp/ |VulP~tu=nP~ | Vn|dx
0 Q

y

Sﬁp</9|Vu]pu1€77pdx)j(/ﬂuple’vmpdx);.

Thus the lemma follows. O

Theorem A.2 ([HKM], Theorem 7.46). If u is A-superharmonic in Q, then u €

LS

loc

(Q) and Du € LY _(Q) whenever 0 < s < ™= gnd 0 < ¢ < ”(p—:ll). Moreover,

loc n—p n

if u s nonnegative then for any ball Br such that Byr C 2 we have

1 .
(A.1) (— |Du|qu> < C R 'essinf u.
| Br| Br Br

Proof. Let Bgr be a ball such that Byg C 2. We may assume that v > 0 in Byg.
Let u, = min{u, k}, k=1,2,... Then wuy is a supersolution in  and hence the weak
Harnack’s inequality [Trul] implies that

1 .
<— uidx) < Cessinfu
| Br| Jgy, Br

for 0 < s < "(:;__;). Thus letting £ — oo we obtain u € L; (2).

The integrability of Du follows from this result combined with the estimate

in Lemma A.1. Indeed, let 0 < ¢ < % and ¢ > 0. By Lemma A.1 with an
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appropriate choice of 7 we have

/ |Vug|de = / \Vuk|qu;(1+€)Q/pu,(:+€)Q/de

a/p _ (r—a)/p
( / V)" / {900 )
Br Br

< C’(R_p/ up_l_edx>q/p</ u(1+6)Q/(p_Q)dx>(pq)/p.
Bar Bgr

Thus if we choose 0 < € < p — 1 such that {1394 < ”(:;__;) we obtain

—q

IN

1
— Vuy|%dr < C(R tessinf u)?.
Bl BRl wlfde < O infu)
Finally, letting & — oo we obtain estimate (A.1). ]

Lemma A.3 ([TW4], Lemma 3.3). If u is nonnegative and A-superharmonic in

Q then for any compact set E C ) we have

—1
pldBy<c( it w)"
Q5/3\Q25/3

where C' = C(n,p,3,0). Here § = %dist(E,aQ) and fort > 0, Q, = {x € Q:
dist(x, 092) > t}.

Proof. Let u® be the balayage of u relative to Qs in Q (see [HKM], Chapter 8). We

)

have u° is A-harmonic in Q\ Qs, u’ < u, and v’ = u in Q5. Since u® = u in an

open neighborhood of E we get

ul(E) = uluf](E) < / ]

= /A(:L‘, Du’) - Vipda
Q

p—1

< C(/ |Du5|pdx>T,
suppV
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where ¢ € C§°(€s/3), ¢ > 0, and ¢ =1 in 525/3. Since suppVp C Qs/3 \525/3 and
plu’] = 0 in Q\ Qs, by Caccioppoli type estimate (see [HKM], Lemma 3.32) and

Harnack’s inequality we have

p—1 p—1 p—1
plu](E) <C( sup < C’( inf u5> < C’( inf u) :
573\ Q263 Q5/3\ 253 Q5/3\Q25/3
This completes the proof of the lemma. ]

Proof of Theorem 2.4. Let E C €2 be a compact set. We first prove that there
is a subsequence {u;, } of {u;} such that Du;, — Du a.e. on E. By truncation

and a diagonal process we may assume that u;, u € VVllo’Cp (Q). Fix e > 0. Let

h; = (A(z, Vu;) — A(z, Vu)) - (Vu; — Vu)
and let
Ef={z € E: hj(z) > ¢}

We then have

1
(A.2) |ES| < |ES N {|u; —ul > €} + E/ h;(z)dzx.

ESN|uj—u|<e?

Let

uj—u if |u; —ul <€
J P otherwise.

| —ul

For n € C§°(R), n >0, and n =1 on E, since

/ h;(z)dz < /(A(:c, Vu,) — Az, Vu)) - Vw;ndz,
EfN|uj—u|<e? Q
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we have

IA

/E;muj—ug@ h;(z)dx ‘ /Q(.A(x, Vu;) — A(z, Vu)) - V(wjn)dx‘

IA

/Q i (dals) + dpafr)

+C / lw;| (V[P + |[VulPde
Q

IA

Cé,

where C' is independent of € and j due to Theorem A.2 and Lemma A.3. Thus

from (A.2) we obtain

|ES5| < |ES N {Ju; —ul > €} + Ce.

It follows that h; — 0 in measure on E and hence there exists a subsequence {h;, }
of {h;} such that h;, — 0 a.e. on E. Thus from the structural condition (2.4) we
see that Vu;, — Vu a.e. on E.

To prove that plu;] — pfu] weakly as measures we let ¢ € C§°(£2). For any

e > 0 we choose a set F' C suppV with |F| < € such that Duj, — Du uniformly
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on suppVe \ F. Then for k big enough and for 1 < r < -"5 we have

/Q(A(:c, Du;,) — A(z, Du)) - Vpdz
<1 +C [ (A, D)l + A, Du))da
<ot C'/F(|Dujk|p_1 [ DufY)da
< e+ C|F|CDI" /F (1D, |7 + | Du| D7) d

S €2,

in view of Theorem A.2. Thus pfu;, | — pu] weakly as measures. Since the limit

does not depend on the subsequence we have p[u;] — p[u] weakly. O
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Appendix B

Proof of Theorem 2.5

In this appendix, we give a detailed proof of Theorem 2.5 on the Wolft’s potential
estimates for A-superharmonic functions which is due originally to Kilpeldinen
and Maly [KM2]. Our proof here is based on the approach of Trudinger and Wang
[TW4] with some modifications.

For concentric balls B, C B, 0 <r < R < oo, and t > 0, we let

P%T,BR = inf{v > 0 : v is A-superharmonic in B and v >t on B, },

and let L be the lower semicontinuous regularization of PL ie.,

,Br r» BRr’

Pt x) = lim inf PL .
Br,BR( ) 7—0 B,.(z) By, Br

Then

A - o t in Era
PEWBR _PET,BR _{ h in BR\§T7

where h is the unique solution of
—divA(z, Vu) =0 in Bg\B,,
u=t on OB,,
u=0 on OBp.
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Note that 15% 5, 18 the A-potential of B, in By (see [HKM], Chapter 8) thus by

Corollary 3.8 in [KM2] and Example 2.12 in [HKM] we have

A = T-p if £n
B.1 L 1(Bp) ~{ B il p#En,
(B1) 1P, 15, )(Br) { (log &)= if p=n.
.. Pt _ H1
Moreover, by definition we have PEIQR/% By = tPER/Q, 5,, and thus from (2.5),
(B2) ulPh, 5 )(Br) = """ ulPy  1(Bg).

We next introduce the idea of local smoothing of A-superharmonic functions,
which is called the Poisson modification. Suppose that u is an A-superharmonic
function and that w € €2 is a regular open set. We define the Poisson modification

u® of u in w to be the function

u“’:{ u in Q\w,

U in w,
where

u = inf{v : v is A-superharmonic in w, v > u on dw}.

Lemma B.1 ([HKM]|, Lemma 7.14). The Poisson modification u* of u in w is

A-superharmonic in Q, A-harmonic in w, u* < u in Q and u¥ =u on Q\ w.

Proof. From the construction, u* < w in ). Next, choose an increasing sequence
; € C*°(R™) which converges to u in @. Let h; € C(w) be the unique A-harmonic
function in w such that h; = ¢; on dw. Since h; is increasing and h; < u, the

Harnack’s convergence theorem implies that the function

h = lim h;

i—00
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is A-harmonic in w. Note that for y € dw and i € N,

lim inf A(z) > liminf 2;(z) = ¢;(y)

and hence

liminf A(z) > u(y).

z—y
It follows that h > u* in w. On the other hand, the comparison principle implies
that h; < u* in w for all ¢ and therefore u* is A-harmonic in w. Finally, by the
pasting lemma (see [HKM], Lemma 7.9) we see that u“ is A-superharmonic in

Q. ]

Lemma B.2 ([TW4], page 394). Let u be A-superharmonic on an open set ) with
smooth boundary such that w =0 on 02 and uw >t > 0 on a compact set E C ().

Then for any A-superharmonic function v on Q with 0 < v <'t, there holds

(B.3) plol(E) < plu] ().

Proof. To prove (B.3), by replacing u by (14 ¢)u, and v by (1 —)(v — 5) + & for
some & > 0 small, we may assume that £ € {u >t} and 0 < v < t in Q. Let

w = min{w,v}. Then w = v in an open neighborhood of F and w = u near 0Q. It

follows from Remark 2.3 that

which proves the lemma. O
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The following lemma was first proved by Kilpeldinen and Maly in [KM1],
Lemma 3.5. Here we give a proof due to Trudinger and Wang in [TW4], Lemma

5.1.

Lemma B.3 ([KM1], [TW4]). If u is nonnegative and A-superharmonic in the

ball Bsgr, then

B =
[—u[u]( 9R/10)] <O inf w.
Rr—p Br/2

Proof. By replacing u with the balayage of u relative to EgR/lo in Bgr (see [HKM],
Chapter 8), we may suppose that u = 0 on dBg and pf[u] = 0 in By \EgR/lo. By

Harnack’s inequality in the shell B \ By r/10 We have

sup u < C inf .
dBigr/20 9B19R/20

Thus if @ is the Poisson modification of u in Bigr/o0 we have

(B.4) sup « < C inf a.

Bior/20 Bigr/20

Let t = SUDE 0 U By Lemma B.2 we have

(B.5) pla)(Br) = pla)(Biors2o) < pul P |(Br).

Bigr/20: Br

Note that u[u](Borsio) < plt](Bgr) since u = @ near dBpg, and t < C'infp, , by

(B.4). Thus from (B.1), (B.2) and (B.5) we obtain

ulu)(Bomyao) < CCinf 'R,
R/2

which proves the lemma. O
102



Lemma B.4. Let u be nonnegative and A-superharmonic in a ball Bog. If plu] = 0
Z"fl the set w = <B5R/8 \EgR/g) U (BllR/IO \ES)R/IO) th@’ﬂ

pu] (BR)} ,,%1'

(B.6) sup u —supu < C’[ T

8B 0Bp
Proof. Let w* = BygjoU(Bior/11 \§5R/9) so that B \w C w*. Let u* = u*" be the
Poisson modification of v in w*. Then u* is harmonic in By /10\8w* and hence the
restriction of pfu*] to Biig/io is supported on dw*. We also have u* € Wh?(Bg)
(because it is locally bounded in Biig/10), p[u*](Br) = plu)(Bgr) (because u* = u
near 0Bg), and u* = w on 0Bg/y (because 0Br/s C Bygr \ w*). Let w be the
A-superharmonic function on Bg such that

{ —divA(z, Vw) = p[u*] in  Bg,
w=0 on O0Bg.

The existence of w is guaranteed by the fact that u[u*] € W—1P(Bg) (since u* €
W' ?(Bg)) which allows the monotone operator theory to apply. Hence w satisfies
the Harnack’s inequality

supw < C'inf w,
E E

where E' = Biggr/o \ Nrji0o(0w*). Here N denotes the d-neighborhood. Now
replacing w by the Poisson modification of w in N r/100(0w™) we can suppose that
w satisfies the Harnack’s inequality in Bigg/20.

Since both w and u* belong to W1?(Bg), by comparison principle we have

w>u" —supu® =u" —supu,
0Br 0Br
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which gives

(B.7) sup w > sup u* —supu = sup u — Sup u.

Thus to prove (B.6) it is enough to prove that

I = SIETIC =

To this end we let ¢ = iIleR/2 u. By Lemma B.2 we have

~

(B.9) p[ P [(Br) = ulPs  , 1(Brp2) < ulw)(Bg).

Bry2, Br Br/2; Br

Thus in light of (B.1) and (B.2) we get

L<C (M[I;L(_BPR)),L7

which gives the desired estimate (B.8) by Harnack’s inequality.

]

Proof of Theorem 2.5. We first prove the lower estimate in (2.10). For any

0<r<2R,let w= By s \§3T/4, let u“ be the Poisson modification of u in w, and

let @ be the Poisson modification of u* in Bz, 5. Since @ — infg, s> 01in Bo, s,

by Lemma B.3 we have

[N[@](Bgr/w)} =

< C(inf @ — inf @)
rnTP

B7r/8 B9r/8

< C(inf @ — inf ).
Bs,./8 Bsy /4

Observe that

plu)(By2) = plu?](Br2) < plu?](Boyji0) = pla)(Ber10),
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since u” = u on B3, 4 and u* = @ outside By, 5. Thus we obtain

[u[u](Br/z)} = <o

TP

(B.10)

inf u— inf u),
Bs,/s Bsy /4

where we have used the fact that inwa4 = inféug;s?«/4 U = infan4 u = infBW4 U.
We now let R; = 279(2R), where j = 0,1,..., and let » = R; in (B.10). By

summing up we obtain

Whato <055 AR

=0 j
To prove the upper estimate in (2.10), we set R; = R277, where j > 0. Let

Br

us = u"ks s > 4, be the Poisson modification of v in Bg,. Then ug T u pointwise

and hence us(x) T u(z). We now let u¥s, s > 4, be the Poisson modification of u,

in ws, where wy = Ui_(Bsg, /4 \ EgRj/4>. Then ug* is A-harmonic in w U Bsp, /4
and u¥(z) = us(x). By Lemma B.4 we have, for m > 1,

u[u;"s](Ble)> ﬁj

sup uy® — sup u. < C( o
m—1

OBk, dBr, _,

which by summing up gives for any 57 > 1,

J 1
Z ws|(B P
m=1

9Br, 9Bg RME
S 1

u?*|(BRg,,)\ -1

< apur 030 (MBI
RP

OBR — m
Since u¥s is lower semicontinuous, we then obtain
S 9
us(x) = u(x) <liminfu(y) < lim sup us®
y—w i 9B,

, — ( p[ug*](Br,,)\ 71
< supuy* +C <#> )
aBI; mz:() Ry
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which in light of Harnack’s inequality gives
(B.11) us(x) < C inf u“’s—l—CZ ( il BR’"))ll
' =T By ’

since pu[u®*] = 0 in Bsgss \ Bag. Note that u¥* < ug < u in Byg. Also, for

0<m<s,

plug"|(Br,,) < plug*)(Bsg,,) = plus)(Bsg,,) = plul(Bsg,,)

since u = us, = u¥* near 0B SR, Thus we conclude from (B.11) that

. > N[U](Bng) =
Us<$)§0(%%£u+cz_o<w> .
Finally, letting s — oo we obtain

2. iu](Bsg, )\ 5t
< . 24tm p
u(r) < Calgiu +C 2 <—Rﬁfp >

< C’lnfu—i-CWlpu( x).

This completes the proof of Theorem 2.5. ]
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