POTENTIAL THEORY AND HARMONIC ANALYSIS METHODS FOR QUASILINEAR AND HESSIAN EQUATIONS

Nguyen Cong Phuc

Dr. Igor E. Verbitsky, Dissertation Supervisor

ABSTRACT

The existence problem is solved, and global pointwise estimates of solutions are obtained for quasilinear and Hessian equations of Lane–Emden type, including the following two model problems:

$$-\Delta_p u = u^q + \mu, \qquad F_k[-u] = u^q + \mu, \qquad u \ge 0,$$

on \mathbb{R}^n , or on a bounded domain $\Omega \subset \mathbb{R}^n$. Here Δ_p is the *p*-Laplacian defined by $\Delta_p u = \operatorname{div}(\nabla u |\nabla u|^{p-2})$, and $F_k[u]$ is the *k*-Hessian defined as the sum of $k \times k$ principal minors of the Hessian matrix $D^2 u$ (k = 1, 2, ..., n); μ is a nonnegative measurable function (or measure) on Ω .

The solvability of these classes of equations in the renormalized (entropy) or viscosity sense has been an open problem even for good data $\mu \in L^s(\Omega)$, s > 1. Such results are deduced from our existence criteria with the sharp exponents $s = \frac{n(q-p+1)}{pq}$ for the first equation, and $s = \frac{n(q-k)}{2kq}$ for the second one. Furthermore, a complete characterization of removable singularities for each corresponding homogeneous equation is given as a consequence of our solvability results.