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Abstract 

Compared to inter-band transition for photon absorption in a quantum wells, 

intra-band (or inter-subband) transitions in heterojunction (GaAs/InP) quantum wells can 

provide access to a broader range of wavelengths for detector design, specifically 

detectors operating in the mid infrared region of spectrum (4-12 µm) and beyond is 

possible. These quantum wells not only provide great flexibility in optimizing the Eigen 

energy levels or wavefunctions, and inter-subband optical matrix elements determining 

the corresponding transition probability, but also allow controlling electron-phonon 

scattering rates and thus electron lifetime.  

The research presented in this dissertation investigates asymmetric quantum well 

structures formed through III-V semiconductor material system such as AlGaAs/ InxGa(1-

x)As/InyGa(1-y) As/AlGaAs that can further improve the responsivity through higher 

carrier mobility. Asymmetry is introduced by using multiple materials to form the well 

region. The advantage of exploring stepped quantum well structure stems from 

experimental evidence that such structures are capable of absorbing normal incidence and 

thus eliminates the requirement of incorporating additional optical coupling schemes such 

as grating structures. An important contribution of this research is the development of an 

analytical model to analyze single or multiple quantum well structures to quantify photon 

absorption. The physical model developed in this work is based on non-equilibrium 

Green’s function (NEGF), Fermi’s golden rule and quantum mechanical wave impedance 

concept. The approach has two distinct advantages. First, it is accurate, easily 

programmable and yet computationally efficient. Second, it facilitates quantifying the 
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broadening of states resulting from both photon absorption and tunneling, which provides 

important insight for improving detection efficiency. Instead of being presented through 

calculations, such broadening has been simply assumed in previously reported works. 

The method developed in this research provides an efficient methodology to quantify the 

absorption rate of photons with different polarizations. 

The study looks into the design and analysis of the wells to enhance infrared 

radiation detection, and suggests mechanisms to optimize the structures in terms of 

material choice, composition, structural geometry and applied voltages. The high electron 

mobility and hence drift velocity in InGaAs ( >5×106cm/s), along with low carrier 

recapture lifetime, is expected to improve the detection speed of the device. Unlike 

GaAs/AlGaAs, the lattice mismatch at InGaAs/AlGaAs interface is likely to introduce 

strain in the structure. The effect of such strain as well as the layer thickness is taken into 

account in this work.  Also, a methodology for achieving voltage tenability, i.e. the 

ability to detect different wavelengths at different bias voltages has been investigated. 

Although both n-type and p-type systems have potential for optoelectronic devices, n-

type quantum wells are more advantageous because of their nearly parabolic sub-band 

structure. As for material consideration, direct band gap material based systems, such as 

AlGaAs/InGaAs  and AlGaAs/GaAs, have been found to be particularly suitable for n-

type QWIP photodetectors. The reason being that the electrons in such materials occupy 

states around the Γ valley where the effective mass is smaller and therefore mobility is 

higher; a condition which leads to higher photoresponsivity.  Moreover such systems 

allow the possibility of highly stable device operation owing to the insensitivity of intra-
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band transition energies to temperature fluctuation and reduced influence of Auger 

recombination. 
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CHAPTER 1 
 

Introduction 

 

 

Infrared (IR) photodetectors sensitive to 2-10 μm radiation play vital roles in 

thermal imaging and sensing, which has important commercial and defense applications. 

Understandably, mechanisms and material considerations and characteristics that may 

lead to improved photondetection in the infrared regime have been rigorously 

investigated. Among the devices that are being explored, quantum well structures have 

been shown to be the most versatile for infrared detection, as by merely changing the 

material composition, one can tune the detection wavelength anywhere from 2 to 35 µm 

and beyond [1]. The quantum well photodetectors are fabricated using Molecular Beam 

Epitaxy (MBE), which is a well matured materials growth and process technology 

capable of producing ultra-pure and thin films on larger substrates [2]. 

A quantum well IR photodetector (QWIP) absorbs photons that involve 

transitions among sub-bands in quantum wells which connect electronic states within the 

same band (conduction or valence band). Compared to inter-band transition, intra-band 

(or inter-subband) transition provides access to much lower energy, allowing device 

operation at longer wave lengths. The intra-band transitions were first investigated during 

1960s in the context of two-dimensional electron gas confined within the quantum well at 

silicon/silicon dioxide interface [3]. The intra-band transition is particularly suitable for 
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photodetectors as they ensure covering of a broad range of wavelengths using the 

combinations of GaAs and InP based alloys that are used for state-of-the-art electronics 

and optical communications. Therefore the major impetus for engineering new photonic 

materials and optoelectronic devices operating in the mid infrared region of spectrum (4-

12 µm) and beyond came from the subsequent investigation on GaAs/InP based 

heterojunction quantum wells [3]. These heterojunction quantum wells not only provide 

greater flexibility in optimizing the eigen energy levels or wavefunctions, and inter-

subband optical matrix elements determining the corresponding transition probability, but 

also electron-phonon scattering rates and thus electron lifetime.  

Although both n-type and p-type systems have potential for optoelectronic 

devices, n-type quantum wells are more advantageous because of their nearly parabolic 

sub-band structure [4]. As for material consideration, direct band gap material based 

systems, such as AlGaAs/InGaAs  and AlGaAs/GaAs, have been found to be particularly 

suitable for n-type QWIP photodetectors. The reason being that the electrons in such 

materials occupy states around the Γ valley where the effective mass is smaller and 

therefore mobility is higher; a condition which leads to higher photoresponsivity [5].  

Moreover such systems allow the possibility of highly stable device operation owing to 

the insensitivity of intra-band transition energies to temperature fluctuation and reduced 

influence of Auger recombination [4]. 

This thesis presents an investigation on QW structures, composed of high electron 

mobility material like InGaAs, that has certain asymmetry introduced through either 

stepped well formed by of different materials (can be varied in terms of composition)  or 

spatial variation of doping  in the well region. Use of stepped quantum wells, for 
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example, formed through AlGaAs/ InxGa(1-x)As/InyGa(1-y) As/AlGaAs structure can also 

improve the wavelength tunability of the QWIP. The high electron mobility and hence 

drift velocity in InGaAs ( >5×106cm/s), along with low carrier recapture lifetime, is 

expected to improve the detection speed of the device. However one of the main 

motivations behind exploring stepped quantum well structure stems from the 

experimental evidences that such structures are capable of absorbing normal incidence 

and thus would eliminate the requirement of incorporating additional optical coupling 

schemes such as grating structures. Unlike GaAs/AlGaAs, the lattice mismatch at 

InGaAs/AlGaAs interface is likely to introduce strain in the structure, which the work 

presented in this thesis takes into account and minimizes by optimizing the thickness of 

different layers. The methodology of achieving voltage tenability, i.e. the ability to detect 

different wavelength at different bias voltages has also been demonstrated. The next 

section (1.1) provides an overview of photon absorption physics outlining different 

photodetection techniques with their limitations and advantages. This would be followed 

by the section 1.2 that briefly describes the asymmetric QW structures form through 

AlGaAs/InGaAs stepped quantum wells that has been explored in this research. The 

concluding section of this chapter (1.3) would outline the next chapters that describe the 

detailed physics concepts, model development, calculation and simulation approach,  and 

results of this work. 

 

1.1 An Overview of Absorption Mechanism 

Unlike detection of objects using visible light that requires a light source, infrared 

detectors can detect objects by detecting their natural heat emission.   It is this non-
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reflective detection mechanism that makes infrared photodetectors particularly useful for 

certain applications, such as night vision. Semiconductor photodetectors absorb photons 

and generate charged carriers (electrons and holes), which are collected in the external 

circuit as photocurrent. The detectors that absorb photons of wavelength close to its band 

gap that excite band to band transition of carriers are called intrinsic photodetectors and 

are shown in Figure:1.1(a). In an extrinsic photodetectors, on the other hand, the 

absorption of a photon involves deep impurity or defect levels within the band gap. The 

extrinsic photodetection mechanism is shown in Figure: 1.1(b). 

hn~Eg

Ec

Ev

hn<Eg

(a) (b)
 

Figure: 1.1 (a) Intrinsic Photodetector, (b) Extrinsic Photodetector 

 

These detectors, therefore, can detect photons with energy smaller than the band 

gap. The most commonly used infrared detectors include those that use mercury (Hg), 

tellurium (Te) and cadmium (Cd) and therefore are known as MCT detectors. Although 

MCT detectors are capable of operating at moderate temperatures (~70K), the main 

technological problem that has reduced their popularity is associated with weak Hg–Te 

and Cd-Te bond, which results in bulk, surface and interface instabilities. Since in these 

devices photon detection is accomplished by exciting valence electron to the conduction 

band, preferably in the depletion region of a p-n junction, and subsequently collecting the 
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photo-generated carriers, the sensitivity is heavily influenced by the structural quality of 

the film [6-8]. Due to the poor bonds in MCT detector, trap density becomes inevitably 

high, which results in low carrier lifetime. This makes MCT structures not very suitable 

for fabricating large area imaging devices. 

A variation of extrinsic photodetector, termed as intersubband photodetectors and 

has been the focus of this work, involves transitions of charged carriers between subband 

energies in a quantum well. QWIPs are based on such intersubband optical transition 

within a single energy band. In case of IR detection, the amount of energy transition is 

very small and this motivates the study of transitions between energy levels within the 

same band in a quantum well. These discrete energy levels within a band (either 

conduction or valence or both) are originated from spatial confinement of charged 

carriers achieved by sandwiching a low band-gap material in between two high band-gap 

materials as shown in Figure:1.2. AlGaAs/GaAs based QWIPs have 

E2

E1

H1

H2

Eg (Well)Eg (barrier)

ΔEC

ΔEV

Conduction

band

Valence

band  

Figure: 1.2 Band structure of Quantum-well inter-sub-band absorption 

between electron levels E1 and E2 or levels H1 and H2 is schematically 

shown. 
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significant advantages over HgCdTe detectors. Mature GaAs growth and processing 

techniques lead to high uniformity and excellent reproducibility, which allow the 

fabrication of large-area low-cost detector arrays. The ability to precisely control peak 

detection wavelength and spectral bandwidth by varying device and material parameters 

such as QW width and barrier composition and thickness enables the fabrication of multi-

color detectors and modulators and also allows monolithic integration of these detectors 

with high-speed electronics. 

For a rectangular potential well with infinite depth, with parabolic bands assumed, 

the energy levels are simply given by 

Ej= 2

2*

22

2
j

Lm w












 
            (1.1) 

where Lw is the width of the quantum well, m
*
 is the effective mass in the well, and j is 

an integer. The transition energy between the two sub bands is thus  

  2*22

21 2/3 wLmEE 
                              (1.2) 

 

 

Figure: 1.3 Bound-to-bound inter-sub-band transition followed by tunneling out of 

the well  
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This transition has a large dipole matrix element 
29/16 Lz 

.
The oscillator strength 

for the quantum well with infinitely high barriers is given by [9] 

  2

122

*2
zEE

m
f 


                     

             (1.3)
 

Since oscillator strength determines absorption of photons with that particular energy, by 

varying the quantum well width, the absorption wavelength can be tuned. 

The QWIP demonstrated by Levine et al .[2] was based on quantum wells 

containing two bound states. By absorbing infrared signals, intersubband transition 

occurs from the bound ground state to the bound excited state. The photoexcited electrons 

then tunnel out of the well (Figure:1.3) and are transported by the electric field over a 

distance L which is the mean free path for the photo-excited carriers for recapture back 

into the quantum wells.   

As most of the oscillator strength is concentrated in the bound-to-bound state 

transition, the absorption probability from the ground state to the continuum above the 

top is very weak [10]. However, by decreasing the size of the quantum well, the strong 

oscillator strength of the excited bound state can be pushed up into the continuum, 

leading to a strong bound-to-continuum state absorption. This has been shown in 

Figure:1.4. This extended state structure has the major advantage that the photoexcited 

electron can escape from the quantum well without tunneling through the energy barrier. 

The bias voltage required for the photoelectron to escape from the well therefore is low, 
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Figure: 1.4 A GaAs/AlGaAs QWIP structure which employs bound-to-continuum. 

 

which results in reduced dark current. Also this allows the deployment of thicker barriers 

that can suppress the ground state tunneling probability and hence reduce the dark current 

further [11-15]. The low required bias voltage and reduced dark current make bound-to-

continuum structure particularly attractive for low power applications. The bias voltage 

required to transport free photoexcited carriers in bound-to-continuum QWIP is less than 

5 V, whereas in bound-to-bound QWIP, it is 9 V [10].  For same temperature and cross-

sectional area, the dark currents measured for a bound-to-continuum and a bound-to-

bound QWIP were 1×10 
-12

 A and 1×10 
-4

A respectively [10], which represents a 

significant
 
improvement. 

 

1.2 Asymmetric Quantum-well Structure 

One way to introduce asymmetry is to use multiple layers of different material of 

similar material with different compositions in the well region. This produces a stepped 

QW. In this study we have extensively investigated AlGaAs/InxGa(1-x)As/InyGa(1-

y)As/AlGaAs QW (shown in Figure:1.5), which provides some additional design to 

simple rectangular wells, where only the well width and barrier height can be varied. But 



9 
 

using such asymmetric well, the geometry and composition of the materials for both 

wells and barriers can be varied to tune the wavelength [10]. Moreover dipole matrix 

elements of transitions for odd-to-odd or even-to-even quantum number disappear in 

rectangular quantum well. On the other hand, Helgesen et al [16] found that the double 

well structure can achieve a significant enhancement of the dipole matrix element, due to 

the double maximum shape of the ground-state wave function. Thus, stepped quantum 

well structures are likely to provide the flexibility of adjusting both the energy levels 

involved in transition and the oscillation strength.  

AlGaAs

InyGa(1-y)As

InxGa(1-x)As

AlGaAs

×20

 

AlGaAs AlGaAs

InxGa(1-x)As

InyGa(1-y)As  

Figure: 1.5 AlGaAs /InxGa(1-x)As/InyGa(1-y)As/AlGaAs QWIP structure 

 In the structure studied, the well is doped with 2×10
18

/cm
3 

(not in step). Pan et al 

[17] showed that using such doping asymmetry, a large number of intersubband 

transitions which are forbidden in uniformly doped wells can be achieved. To enhance 

the speed of the detector, the material with high mobility (InGaAs) is used as the well 

material. However, using indium in the quantum well material means that strain is 

incorporated in the structure as GaAs and InGaAs are not lattice-matched. While InGaAs 

is grown epitaxially on GaAs or AlGaAs, first few atomic layers will remain strained to 

match the previous layer. Once a certain thickness is exceeded, defects will be introduced 
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in the structure. This will undermine the carrier mobility and therefore the layer thickness 

should be carefully optimized.  The procedure to calculate this optimum thickness is 

described in later section. Taking this into consideration indium composition is varied 

from 1.5% to 18 % and Al composition is varied from 0-40% obtain the desired 8-10 µm 

detection wavelength.  

 The voltage tunability is achieved by incorporating one additional potential well 

in a period as shown in Figure: 1.6. This approach is based on transferring electrons 

between the ground states of coupled QWs under an applied bias. Each period of the 

multiple quantum well (QW) structure consists of a left QW coupled (LQW) to a right 

QW (RQW) through a thin AlGaAs barrier to facilitate tunneling. The double QW 

structure is separated from the next set of coupled wells by a thicker AlGaAs barrier, as 

shown in Figure:1.6.  In this work only one well has been stepped, although both wells 

can be made stepped.  At zero bias, the lowest two states in the RQW have an energy 

difference of ΔERQW while those in the LQW are separated by ΔELQW. These structures 

are usually designed to have a bound to continuum transition (B-C) in the RQW and 

either a bound to bound (B-B) or a bound to continuum transition in the LQW. In 

Figure:1.6, B-C and B-B transitions in the RQW and the LQW, respectively. Under 

positive bias shown in Figure: 1.6(b), electrons are transferred from the ground state of 

the LQW to the ground state of the RQW through tunneling. When infrared radiation is 

coupled into this detector, electrons are excited from the ground state of the RQW to the 

continuum of states above it. These photoelectrons are  



11 
 

 

Figure: 1.6. Energy band diagram of a double quantum well structure for voltage 

tunable photodetector: (a) in equilibrium, (b) positive voltage applied and (c) 

negative voltage applied. 

Thus, the structure is expected to detect radiation at a wavelength of λRQW = hc/ΔERQW for 

positive bias. As illustrated in Figure: 1.6(c), under negative bias electrons tunnel from 

the RQW to the LQW and lead to photodetection at λLQW = hc/ΔELQW. It is important to 

note that under negative bias, the LQW photoexcited carriers must tunnel through a 

triangular barrier before contributing to photocurrent in detectors with a B-B LQW 

transition. The electron transfer process was first observed by Choi et al. [18] in multiple 

quantum well structures with alternately doped QWs. Subsequently, this mechanism was 
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demonstrated in optical modulators [19-21]. The success of voltage tunable detector 

depends on careful optimization of the structure dimension such that when coupled to 

infrared radiation electron tunneling rate through the intermediate barrier is favorable to 

absorption. For example under positive bias, electron tunneling lifetime from left to right 

well must be significantly smaller compared to the electron transition lifetime from the 

ground to the excited state of the LQW. The optimization and calculation methodology 

used to achieve this has been detailed in chapter 2. 

 

1.3 Thesis Outline 

 

This thesis presents investigation on photon absorption in asymmetric quantum well for 

infrared photodetectors (QWIP) to facilitate absorbing normal incidence. The motivation 

of this work is twofold: first to develop analytical/ mathematical model to analyze single 

or multiple quantum well structures to quantify photon absorption efficiency; and second 

is to optimize and characterize a complete quantum well photo detector through 

simulation. The physical model developed in this work is based on non-equilibrium 

Green’s function (NEGF), and Fermi’s golden rule and quantum mechanical wave 

impedance concept. Unlike previously reported works that assume broadening of energy 

states due to inter subband transition for calculating absorption coefficient, this model 

quantifies broadenings resulting from both optical absorption and tunneling. Results have 

been presented for AlxGa1-xAs/GaAs/InyGa1-yAs system which confirms that asymmetry 

in a QW breaks the symmetry or parity of the bound state wavefunctions and hence 
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facilitates transition among certain energy states, which are otherwise forbidden by the 

selection rule. Assuming TM polarization of light, it has been demonstrated that stepped 

QW structures can in fact have improved absorption coefficient due to this symmetry 

breaking.  The approach presented here can be extended to calculate the response of any 

arbitrary asymmetric well to both TE and TM polarization.  

Chapter 2, titled “Optical Absorption in Quantum Wells” details the physical 

mechanism detecting infrared radiation and quantifying various performance parameters 

like oscillator strength, absorbance and responsivity. The chapter details the mathematics 

to calculate the eigenstates and oscillator strengths that quantifies transition probabilities 

or in other words coupling strengths among those states. In this context the quantum 

mechanical tunneling from a bound to bound state is discussed. The reasoning behind 

choosing the materials to produce asymmetric well structure is then discussed. The 

detailed mathematical reasoning behind symmetric wells’ failure to absorb normal 

incidence is also presented here. Finally the chapter discusses quantitatively how voltage 

tunability can be achieved.  

In Chapter 3, titles “Quantifying Inter-subband Transition in Asymmetric 

Quantum Wells”, the calculation approach and algorithm used to quantify optical 

absorption in asymmetric QW is represented. The chapter details the modeling 

framework developed to analyze the structures and how it quantifies the performance 

parameters and the impact of different structural dimensions (like doping concentrations, 

depths and widths of well, step and barriers). In this work the idea of quantum 

mechanical wave impedance concept has been used to calculate the Eigen states, along 
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with non-equilibrium Green’s function to calculate the tunneling probabilities and 

oscillator strength. The procedure is inherently simpler as it does not require any matrix 

manipulation, yet computationally efficient. This model takes into account and calculates 

the broadening of the energy states due to absorption and tunneling, which was only 

assumed in previously reported works while calculating absorption. So this model gives a 

complete and accurate result in terms of absorption. The chapter concludes describing 

how the structure is optimized to be tuned to the desired absorption spectra with 

acceptable responsivity. 

 Chapter 4, is titled “Analysis of Asymmetric Quantum Wells for Infrared 

Photodetection”, and describes the investigated structures. The calculated results 

obtained though the developed model described in chapter 3 is presented here. Physical 

consistency of the results and their comparison with published works are also presented. 

The results obtained for different polarization of light for different structures are 

discussed here. The asymmetry of the structure aids the absorption of normal incidence 

light without changing the geometry of incident plane of the detector and thus facilitates 

the fabrication of large arrays of focal planes. One of the major contributions of the 

model developed here is to provide an efficient way to quantify the absorption rate of 

different light polarizations and thus enable effective optimization of the photodetector 

structure. Finally voltage tenability is demonstrated for a muti-quantum well structure. 

The potential advantages that can be achieved through the structure analyzed in this work 

is then outlined. 
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 The concluding remarks are provided in Chapter 5:”Summary and Concluding 

Remarks”, which provides the research summary by briefly reviewing the photon 

absorption physics, along with the modeling framework, and obtained results. The 

chapter ends with some suggestions to current and future researchers as to what can be 

studied further in such structures. 
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CHAPTER 2 
 

Optical Absorption in Quantum Wells 

 

 

The physical mechanism of infrared (IR) photo-detection specifically using 

quantum well structures is presented in this chapter. Like any other photodetection 

mechanisms, an IR photo-detector responds to incident electromagnetic radiation by 

generating electric current.  Electrons (in some cases holes as well) in a suitable 

semiconductor material are excited from their lower energy states to higher ones in the 

conduction band where they can freely respond to applied electric field and flow through 

external detection circuitry. The amount of external current quantifies the “responsivity” 

of the photodetector to the incident electromagnetic wave of a particular wavelength. 

This chapter presents a comparative discussion on quantum well infra-red photodetection 

and interband photo detection schemes.  Quantum wells usually facilitate detection of 

long wave length radiation as they exploits carrier transition within in the same band, e.g. 

conduction band. This chapter also details various quantum structures that can be used as 

photodetectors. In the following section (2.1), infrared photo-detection mechanism has 

been discussed along with material systems commonly used for the purpose. Section 2.2 

details a quantum well infrared photodetector (QWIP), in terms of optical absorption 

process, performance parameters such as responsivity and efficiency. The considerations 

regarding materials and structural choices of this research work is presented in later 



17 
 

sections which describes the superiority of asymmetric quantum well structures like 

InGaAs/AlGaAs  that has been focused in the study presented here. 

 

2.1 Infrared Photodetection: 

Almost everything radiates energy in the form of heat, which is nothing but 

electromagnetic waves having frequency in the infrared region. Infrared photodetectors 

therefore does not require any source of electromagnetic radiation to detect an object and 

posses an inherent advantage over other detectors. The energy radiated by any object at a 

given temperature is determined by its emissivity, ε, which is defined as the ratio of 

energy it radiates to that by a perfect emitter, termed as blackbody. The emission 

spectrum of an object at temperature T as a function of wavelength λ is given by LS (λ,T)  

 

Figure: 2.1. Spectral radiance LBB of blackbodies at different temperatures T [22]. 
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= ε(λ,T) LBB(λ,T), where LBB is the spectral radiance of a blackbody at the same 

temperature and is calculated as [22]: 
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        (2.1) 

Here h is the Plank’s constant, c is the speed of light in vacuum, kB is the Boltzman’s 

constant, and T is the absolute temperature. Fig 2.1 shows the calculated values for LBB 

(λ) at different temperatures. 

As can be seen in from Figure: 2.1, generally emission peaks within 2-12 μm 

range. These blackbodies radiate most of their energy in the infrared range (λ > 0.7 μm). 

The peak emission at around room temperature (300 K) is found to be at ~10 μm.  The 

peak shifts to lower wavelengths as the blackbody temperature goes up. λm ≈ 10 μm for 

blackbodies at room temperature T ≈ 300 K. Coincidentally, the transmittance of 

electromagnetic radiation through atmosphere becomes maximum  at wavelengths 8-14 

μm range (along with 2-5 μm  and 28-34 μm range), which is known as atmospheric 

transmittance window [23]. This makes an infrared detector very powerful tool for 

observing distant objects at or around 300 K. Figure: 2.2 show a biased two-terminal 

photoconductor with optical power Pin incident on an area A. The incident photon flux is 

φin = Pin/hν, where hν is the photon energy. The number of photons absorbed per unit 

time is ηφin, where η is the quantum efficiency of the photoconductor that depends on 

absorption coefficient α of the device. Assuming each absorbed photon creates a 

photoelectron, the generation rate of photoelectrons per unit volume is G =ηφin/AL. In 

steady state, the photoelectron density is n = Gτ = ηφinτ/AL, where τ is the electron 
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lifetime. When a voltage bias Vb is applied across the detector, the photocurrent flowing 

between the two contacts separated by L is 

                             

                

Figure: 2.2. Schematic of a photodetection mechanism, showing a phodetector 

biased and connected to external detection circuitry. 

 

Ip = enAvd = eηφinτvd/L = eηφing, where e is the charge of an electron, vd the 

electron drift velocity, and g = τvd/L the photoconductive gain, defined as the ratio of the 

lifetime to the transit time (L/vd) across the detector and can be interpreted as the fraction 

of electrons contributing in photocurrent to the total photo-generated electrons. Detector 

responsivity R is defined as the photocurrent Ip generated per unit incident optical power 

Pin and can be expressed in terms of quantum efficiency (η), photoconductive gain (g) 

and tunneling probability [24-25]: 

gT
h

e

P

I
R

in

P 


        (2.2) 

The mercury-cadmium-telluride, MCT (HgCdTe), which  is  an alloy of HgTe and 

CdTe, is the only common material that can detect infrared radiation in both of the 

accessible atmospheric windows namely 3-5 µm and 8-12 µm. Understandably HgCdTe 

http://en.wikipedia.org/wiki/Infrared_detector
http://en.wikipedia.org/wiki/Atmospheric_windows
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is a common material in photodetectors used in a wide range of applications spanning 

from Fourier transform infrared spectrometers, military field specifically for night 

vision, remote sensing and infrared astronomy research. Although HgCdTe-based 

detectors operating at  3-5 µm require cooling to temperatures near that of liquid 

nitrogen (77K), to reduce noise due to thermally excited current carriers,  HgCdTe  based 

detectors enjoy much higher speed of detection and is significantly more sensitive than 

some of its cheaper competitors like Si-based bolometers [26]. However, as have been 

mentioned in the previous chapter, weak Hg–Te and Cd-Te bonds leading to bulk, 

surface and interface instabilities severely undermines the performance of MCT detectors 

[6-8]. Quantum well infrared photodetectors (QWIP), manufactured from III-V 

semiconductor materials such as GaAs, AlGaAs, InGaAs etc., have been investigated as 

potential alternative material systems. But as will be detailed in later sections, the 

performance of quantum well based photodetectors are limited by the fact that they 

require the use of complicated reflection/diffraction gratings to overcome certain 

polarization exclusion effects which impact responsivity. 

 

2.2 Traditional interband based detectors and intraband QWIPs 

It has been already mentioned that the materials used in both mid wavelength 

infra-red (MWIR) and long wavelength regions (LWIR) are mainly mercury cadmium 

telluride (MCT) and InSb.  Usually these MCT based detectors utilize interband 

transition of carriers to absorb photons. The primary drawback of traditional MCT based 

technology is that it is soft, difficult to synthesis by any growth method and suffers from 

http://en.wikipedia.org/wiki/Photodetector
http://en.wikipedia.org/wiki/Remote_sensing
http://en.wikipedia.org/wiki/Infrared_astronomy
http://en.wikipedia.org/wiki/Liquid_nitrogen
http://en.wikipedia.org/wiki/Liquid_nitrogen
http://en.wikipedia.org/wiki/Bolometer
http://en.wikipedia.org/wiki/Responsivity
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non-uniformity, making the fabrication of focal plane arrays a challenging and costly 

proposition. The band gap of MCT varies as a function of its mercury composition to 

HgTe, which is a semimetal with a negative band gap, to CdTe with a band gap of 1.6 

eV. At a mercury composition of 80%, the band gap attains a value of 1.6 eV, sufficient 

for detection of IR radiation up to 12 μm. In the low wavelength IR (LWIR), the high 

concentration of mercury is the reason for the great difficulty in achieving uniform focal 

plane arrays. As a result, GaAs based QWIPs, which absorbs radiation through interband 

or intra-subband transition, are emerging as dominating candidates in the range of 8-12 

μm and also have achieved considerable commercial success [9]. The main reason behind 

the great interest in GaAs stems largely from the fact that it has mature material growth 

and device processing technologies. Much effort has been devoted to optimize the 

performance of devices operating in the 8-12 μm regime, most of which are based on 

photoconductive multi-quantum well structures, because of their high responsivity. 

However in the MWIR region, where the concentration of mercury needed to synthesize 

devices is low, MCT has been the main driving force and two-dimensional array 

technology has been developed based on both MCT and InSb compounds. Although, 

InSb does not suffer from material uniformity problems which trouble MCT, it also 

requires cooling while being operated at mid-IR region, as the band gap decreases with 

increasing temperature and this exacerbates the enhanced thermal generation always 

associated with temperature elevation.  This limits device operating cut-off wavelength 

above 5 μm. Introduction of InAlSb (10% Al) blocking layers has successfully raised the 

temperature at which images can be obtained from InSb arrays (256 X 256 pixels) to 
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130K. Use of all InAlSb (3.5% Al) devices can raise this operating temperature still 

further to 150K while keeping the operating wavelength below 5 μm [10]. 

One of the drawbacks of QWIP detectors is their lack of ability to absorb normal 

incidence originating from the polarization selection rules [11], that has been extensively 

discussed later. This necessitates additional processing in the form of gratings or 

polishing at 45º to achieve coupling of the light such that normally incidence radiation 

can have field component in desired direction . The internal quantum efficiency is also 

typically less than 20%, compared to more than 70% achievable with interband detectors 

due to the smaller number of carriers available to take part in transitions. Increasing the 

doping can enhance quantum efficiency [12] but this necessarily raises the Fermi energy 

and thus quantum efficiency is increased at the expense of a relatively large dark current 

and hence increased noise for a given operating temperature. For a detector responding in 

the range 3-5 μm(8-9.5 μm), cooling to temperatures down to 100-120K (70-77K) is 

typically necessary in order to reduce dark currents to sufficiently low levels. The 

dominant mechanism of dark current generation in QWIPs is longitudinal optical phonon 

excitation of carriers because of very strong coupling in III-V materials. The most 

obvious way of minimizing the dark current is thus to decrease the detector temperature. 

It is also evident that cooling requirements become more severe for longer cut-off 

wavelengths. The temperature at which background limited performance (BLIP) is 

achieved is a useful figure of merit to compare detector operating temperature 

performance. A BLIP detector is defined as one in which the dark current is less than or 

equal to the background (300K) photocurrent (180º field of view, with a cooled sample). 
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It is only in the last few years that sufficient advances in epitaxial growth, 

synthesis and design of strained GaAs and InP quantum well structures have been made, 

and this has started to challenge the pre-eminence of MCT and InSb in the MWIR region. 

Along with the uniformity of growth and processing, which are essential for focal plane 

arrays, the advantages that these materials potentially offer includes high speed switching 

for free space communications applications [13].The combination of relatively short 

wavelengths and the high barriers achieved in double barrier quantum well (DBQW) 

structures also enables high temperature operation for moderately doped QWIP structures 

[14,15]. Apart from these materials, other technologies such as antimonide-based 

compounds are also being intensively researched [16, 17] and are showing real potential 

for the MWIR detection. Nevertheless this technology is still not matured enough to be a 

competitor of either GaAs or InP. 

 

2.3 Quantum well Infrared Photodetector (QWIP) 

Quantum well infrared photodetectors (QWIP) were originally built on 

GaAs/alxGa1-xAs lattice matched multiple quantum wells [18]. A QW is formed in GaAs 

when it is sandwiched between two layers of AlGaAs. Confinement of carriers in the QW 

leads to quantization of energy levels, as shown in Figure:2.3. Signatures of these energy 

levels have been observed in transport [27] and interband absorption experiments [28]. 

By varying the Al molar ratio x in the barriers, intersubband absorption at a wide range of 

wavelengths was demonstrated. For instance, using a small x of 0.07, a far infrared QWIP 

detecting 27.1 µm wave was designed [29]. Detection was also reported at the other 

extreme of infrared spectrum, namely at 2.9 µm, using x=1 [30]. Moreover energy level 
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separations of the order of 100 meV can be achieved with proper tuning of well width 

and depth.  

 

   

E2

E1

ΔEC

Conduction

band

Wellbarrier barrier
 

Figure: 2.3 Schematics of conduction band profile of a quantum well structure 

absorbing radiation 

 

Optical Absorption in QWIPs: different transitions  

 Absorption of infrared radiation excites electrons from the ground state to an 

excited state of a quantum well. A QW structure is particularly suitable infrared radiation 

or low energy photons as the energy separations among the quantized states can be made 

much smaller compared to that of the band gaps of most commonly used semiconductors. 

Since intraband transition resulting from infrared absorption occurs entirely within 

conduction band, electron-hole pairs are not created and hence QWs must be doped (in 

this context n-doped) to ensure sufficient carrier concentration required for producing 

detectable photo-current. 

 In order to quantify the absorption in a QWIP, one needs to calculate the electron 

transition rate among the bound states of the quantum well. The detail of calculating the 

energy eigen states and the wave functions associated with them for a generalized 
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quantum well structure will be presented in chapter 3.  However for illustrating the 

calculating transition rate, let us assume a rectangular potential well with infinite depth. 

Then with parabolic bands assumed, the energy levels are simply given by 

Ej= 2

2*
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where Lw is the width of the quantum well, m
*
 is the effective mass in the well, and j is 

an integer. The transition energy between the two sub bands is thus  

 2*22

21 2/3 wLmEE 
       (2.4)

 

One of the most important parameter quantifying the detector performance, is 

responsivity R, which is given by GT
e

R 


 . Assuming G and P to be constants in ω, 

the spectral shape of R(ω) will be determined by the functional form of f(ω).  It has been 

found that the product of G and P is approximately constant for bound-to-continuum 

detectors at low bias. [30,31]. With this assumption, the normalized responsivity NR, 

defined as Cf(  )/   for some normalization constant C, will give the spectral line 

shape of R. Its maxima determine the responsivity peak wavelength. 

 

2.4 Inter-subband absorption between bound states  

Different types of quantum well structures are used for intersubband absorption as 

discussed in the following sections. 

A. Rectangular quantum wells 

1. GaAs/AIxGa(1-x)As: Intersubband absorption results from transitions between 

energy levels within the same conduction or valence band, as schematically represented 
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in Figure: 2.4. These levels are originated from the spatial localization of charge carriers 

or electrons introduced by quantum wells, that is formed when a low-band-gap material 

(e.g., GaAs) is sandwiched by a higher-band-gap semiconductor (e.g., AIxGa(1-x)As). For 

infinitely high barriers and parabolic bands, the energy levels in the well are simply given 

by [22] equation 2.3, whereas the intersubband transition energy between the lowest and 

first excited state is thus given by equation 2.4. Furthermore this transition has integrated 

absorption strength of 
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where wDc LN  is the two-dimensional density of carriers in the well, ND is the three-. 

                 

Figure: 2.4. Band structure of quantum-well (depths cE  and vE . 

Intersubband absorption between electron levels 1E  and 2E  or hole levels 1H  

to 2H  is schematically shown. 
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dimensional carrier density, Nw is the number of doped wells, nr is the index of refraction, 

'  is the angle between the direction of the optical beam and the surface normal (inside 

the medium), and f  is the oscillator strength.  

This oscillator strength, which is proportional to the energy separation of the 

concerned eigenstates, is very large (near unity) for a quantum well with infinitely high 

barriers and can be expressed as [22] 
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     (2.6) 

where z is the direction normal to the quantum well. Thus, by changing the quantum-well 

width Lw this intersubband transition energy can be varied over a wide range from the 

short wave infrared SWIR ( m 2~ ), the midwave infrared MWIR ( )4~ m , through 

long-wave LWIR ( m 10~ ) and into the very long-wave VWIR spectral regions (

m 14 ). It should be noted from equations ( 2.5) and (2.6) that since the oscillator 

strength only has a component along z, the optical electric field must also have a 

component parallel to z in order to induce an intersubband absorption; thus, normal 

incidence radiation [i.e., 0'   in Eq. (2.5)] will not be absorbed. Therefore different 

optical coupling techniques that include ingenious gration structures, have been deployed. 

Among many proposed schemes, West and Eglash [22] used a Brewsters’ angle (

 73B ) geometry in order to give a large component of the optical electric field along 

the growth (i.e., z) direction. A 5% absorption was measured at λ=8μm, corresponding to 

an oscillator strength near unity. Levine et al [10] reported the use of a multiple-pass 

waveguide geometry that increased the net intersubband absorption (Figures. 2.5).  
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Figure: 2.5 Measured bound-to-bound QWIP intersubband absorbance=-log 

(transmission) vs photon energy at Brewster’s angle θB=73º [10]. 

 

and 2.6) by approximately two orders of magnitude, thus permitting accurate 

measurements of the oscillator strength, the polarization selection rule, and the line shape 

even for single quantum wells [23-27]. This have been shown in Figures: 2.5 and 2.6.  

The polarization selection rule  2cos (where   is the angle between the 

electric field and the z direction) was found to approximately hold as shown in Figure. 

2.7 where the absorption vanishes at  90  (i.e., for light polarized in the plane of the 

quantum wells). This selection rule can also be tested by keeping the light polarized in 

the plane of incidence (i.e., p polarization), but varying the angle of incidence θ. The 

absorption can be calculated from ''2 cos/sin)(  T , where )(T  is the 

transmission factor into the semiconductor and '  is the angle of incidence inside the 
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material. This curve is plotted in Figure. 2.7 and is also in excellent agreement with 

experiment. 

Detailed measurements and analyses of the intersubband absorption peak 

wavelength position λp and spectral width have been done as a function of temperature, 

well width, barrier height (e.g., AIxGa(1-x)As composition), and doping ND  and are 

reported in Ref [28-36]. It is found that, for high doping density (ND> 10
18 

cm
-3

), the peak 

absorption shifts to higher energy, which is accompanied by linewidth broadening, and a 

linear increase in oscillator strength with doping (i.e., DNf  ). It has been also shown 

that the shift in intersubband energy had a large contribution from the collective plasma 

oscillation (i.e., the depolarization shift) and a smaller contribution from the exciton like 

shift.  

 

Figure: 2.6 Measured QWIP absorbance vs photon energy for the 

multipass waveguide geometry shown in the insert [10]. 



30 
 

In addition to these doping shifts, there the peak wavelength and linewidth also 

changes  with temperature [37,38,39-41]. As the temperature is lowered below room 

temperature down to cryogenic temperatures, a small ( %3~v ) decrease in the peak 

wavelength and linewidth is found. However, the oscillator strength remains constant so 

that the decrease in v  ( ~75% of the room temperature value) is accompanied by an 

increase in the peak absorption [42] (by a factor ~ 1.3). Regarding the temperature shift, 

Manasreh et al. [33] found that in order to explain this temperature dependence one must 

include the collective plasma, excitonlike, Coulomb and exchange interactions as well as 

nonparabolicity and the temperature dependencies of the effective mass and band gaps. It 

was also found that the intersubband absorption spectral linewidth depended significantly 

on the dopant impurity scattering.  

Modulation-doped samples [43,44] which separated the dopant from the quantum 

well by doping the barriers gave substantially narrower spectra. For example, Dupont et 

al [42] found that %4 vv  was obtained for samples doped in the center of the barrier, 

to be compared with %8 vv  for well-doped QWIPs. It is also worth mentioning that 

the intersubband absorption strength of GaAs grown directly on Si substrates has been 

reported [45] to be comparable to that grown on GaAs substrates. Such GaAs/Si QWIPs 

might be advantageous for large imaging arrays because there would be no thermal 

mismatch with a Si multiplexer. However, the question of the thermal cycling stability of 

the epilayer needs further study.  
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Figure: 2.7 Measured QWIP absorbance vs angle of incidence  (dots), and 

theoretical dependence (solid curve)[10]. 

 

2. lnxGa(1-x)As: In addition to the GaAs/AlxGa(1-x)As materials system, intersubband 

absorption measurements and theoretical calculations on lnxGa(1-x)As multiquantum-well 

structures have also been investigated [46,47-52]. The doping ND, well width Lw, and 

polarization dependence of the intersubband oscillator strength f and peak position have 

been measured by Asai and Kawamura [53, 54] and Lobentanzer et al. [55] for 

In0.53Ga0.47As/In0.52Al0.48As grown lattice matched on InP substrates. They find that f is 

proportional to ND and that as the Fermi level is raised above the second bound level, 

both the E1 to E2 and the E2 to E3 transitions can be observed. By varying Lw from 35 to 

200 Ǻ, the peak of the absorption could be shifted from λp=4.1 μm [the (E2-El) transition] 
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to λp=13.9μm [the (E4-E3) transition]. By using highly strained 

In0.66Ga0.33As/In0.30Al0.70As multiquantum wells [56] grown on InP, the intersubband 

peak could be shifted to a significantly shorter wavelength, λp=3.1 μm. Very interesting 

intersubband absorption experiments have been done by Peng et al.[48] on strained 

InGaAs/InAlAs single and multiple quantum wells. They find, in agreement with their 

theory,[68] that both s and p polarizations are allowed when the full symmetry (i.e., 

including both strain and lack of inversion symmetry) of the quantum wells is taken into 

account.  

Zhou et al.[49] have measured the absorption in InxGa(1-x)As/In0.40Al0.60As as a 

function of strain and composition for 15.00  x . For Lw=50 Ǻ they find that the 

intersubband transition varies from 6 to 7 μm. The In0.15Ga0.85As/In0.35Al0.65As 

composition was studied in more detail by Shakuda and Katahama [50] who varied ND 

and Lw. They find that the transition energy increases with doping as expected due to the 

depolarization shift and that the (E2–E1 ) and (E3-E2) transitions both shift to lower 

energy [from 200 to 90 meV for (E2-El)] with increasing Lw in good agreement with their 

theory.  

Lattice-matched In0.53Ga0.47As quantum wells and InP barriers have also been 

investigated by Kane et al.[51] and Mṻller et al.[52].  Multiquantum-well samples with  

Lw=70-80 Ǻ gave intersubband absorptions near λp=9.3 μm and Lw= 100 Ǻ resulted in a 

shift to a longer wavelength of λ= 11 μm. These measurements are in agreement with 

their calculated oscillator strengths and energy levels. 
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2.5 Asymmetric Quantum Well  

For a simple rectangular QW, we can only vary the well width and the barrier 

height (composition). In addition, the dipole matrix elements of transitions for odd-to-odd 

or even-to-even (i.e., 1-3 or 2-4) quantum numbers disappear (meaning these kind of 

transitions are not allowed) since the envelope functions of these energy states have the 

same parity due to symmetry of the well. However, the symmetry of the well can be 

broken by applying a strong electric field [53] or doping the QW heavily [54]. A high 

bias can produce a large leakage current, which will degrade the performance of the 

device while for the heavily doped case, the large thermionic emission associated with 

the high doping densities will prevent operation at higher temperatures. An alternative 

approach to achieving normal incidence operation is to use an asymmetric structures, 

which can be formed in different ways as shown in Figure:2.8.  

 

 

Figure: 2.8 Asymmetric QW structures: graded dope and stepped wells 
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The introduction of the step inside the well results in normally forbidden 

transitions becoming allowed. Furthermore, the transition energies and related oscillator 

strengths can now be tuned “independently” by changing the well width, the step width, 

and the step height. This gives an advantage over the high electric field and doping 

induced asymmetry in a simple square well [54-56]. A component of normal incidence 

absorption was observed in a stepped DBQW using InGaAs/GaAs QWs with 

AlAs/AlGaAs barriers that operates at 3 μm. 

In simple rectangular wells only the well width Lw and barrier height can be 

varied. By introducing an additional barrier inside the well (thereby creating two closely 

coupled wells), additional design freedom to adjust the energy levels and oscillation 

strengths is achieved. The intersubband absorption in such structures has been studied 

both theoretically and experimentally [53-55]. Trzeciakowski and McCombe [56] show 

that a thin (e.g., 4 monolayer) barrier of AlAs in the center of a GaAs well can shift the 

ground state upward by ~50 meV while hardly affecting the excited state. This strong 

difference is a result of the groundstate wave function having a maximum in the center of 

the well (where the extra barrier is) while the excited state has a minimum. Intersubband 

absorption experiments and theoretical analyses by Lorke et al [57] confirm this large 

decrease in (E2-El) by a thin AlAs barrier in the quantum well. In a closely related study 

by Helgesen et al.,[58] the intersubband absorption energy and dipole matrix element of 

two closely coupled wells were calculated and compared with experiment. They find that 

for the same total well width (e.g., a single uniform GaAs well of 55Ǻ or two 23Ǻ GaAs 

wells coupled by a 9 Ǻ barrier) the double-well structure has a significant enhancement 

of the dipole matrix element, due to the double maximum shape of the ground-state wave 
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function. However, this coupled well structure also has a significantly smaller 

intersubband transition energy. Interestingly, if the width and barrier height of the 

double-well structure are adjusted so that the bound-to-bound transition occurs at the 

same energy as that of the usual single rectangular well, the dipole matrix elements of the 

two structures are essentially identical. Another method of tailoring the energy levels in a 

quantum well is by the use of δ doping. Temple et al.[59] have shown that the δ doping 

can itself generate a shallow quantum well in uniform material with transitions in the far 

infrared (λ~100 μm).  

         

Figure: 2.9. Stepped quantum well indicating that the E1 to E2 transition and the 

E1 to E3 transitions are both allowed. 

 

In symmetric quantum wells only transitions that change parity [i.e., between 

even and odd states so that Δj =odd in are allowed; this restriction is removed in 

asymmetric wells. This a point of discussion which has been thoroughly covered in 

chapter 3.  By doping only one side of the well, it is shown that this doping asymmetry 
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allows the observation of a large number of intersubband transitions which are forbidden 

in uniformly doped wells. By using a stepped quantum well (as shown in Figure: 2.9) 

much stronger asymmetries can be introduced, [56] increasing the freedom to control the 

positions of the energy levels and oscillator strengths. Most important, by spatially 

separating the wave-function maxima of the ground and excited states strong electric-

field effects can be obtained (as discussed in the following subsection). It has been 

investigated that for the structure shown in Figure. 2.9 the experimental oscillator 

strength of the (usually forbidden) 31  transition (at hν= 150 meV) was 65% that of 

the normally allowed 21  transition (at 112 meV) [60] 

 

Figure: 2.10 Dark current transport in a typical QWIP. The three mechanisms 

shown are sequential resonant tunneling (ISRT), thermionic emission (ITE) and 

thermally assisted tunneling (ITAT). At low bias, Fcb EEE  0  is the 

barrier height seen by electrons in the ground state 0E  of the QWs. cE  is the 

conduction band offset and FE  the Fermi energy measured from 0E . 
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2.6 Dark current 

Dark current and activation energy 

Dark current is the current that flows through a photodetector in the absence of 

incident radiation. Dark current in most QWIPs is caused by sequential resonant 

tunneling at low temperatures (typically 4−40 K), and thermionic emission (TE) and 

thermally assisted tunneling (TAT) at higher temperatures (typically 40−150 K) [2, 21]. 

These transport mechanisms are schematically indicated in Figure: 2.10. Thermally 

assisted impurity tunneling through defect states in the barrier is dominant in some 

QWIPs in this temperature range [2 ,23]. At even higher temperatures (usually T > 150 

K), the detectors act like resistors with linear current-voltage (I-V) characteristics. TE and 

TAT currents exhibit an activated temperature dependence that is used to deduce the 

activation energy. The deduced values of activation energy can then be compared with 

simple dark current transport models to determine the quality and accuracy of wafer 

growth. 

 

2.6.1.  Sequential resonant tunneling  

In order to treat QWIPs based on this absorption mechanism we now need to 

consider the application of electric fields to a multiquantum-well structure, and the 

tunneling escape and subsequent transport of these photoexcited electrons. 

The first QWIP was demonstrated by Levine et al.,[9] and that was based on 

quantum wells containing two bound states. The infrared absorption due to the 

intersubband transition from the bound ground state to the bound excited state is followed 

by the photoexcited electrons tunneling out of the well, as shown in Figure. 2.12.  
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These photocarriers, which escape from the well, are transported by the electric 

field in the continuum above the barriers for an excited-state lifetime L  during which 

they travel a distance L (which is the mean free path for recapture back into the quantum 

wells) and thereby produce a photocurrent.[10]  

In principle, due to the two-dimensional (2D) nature of the electron gas in the 

well, resonant tunneling is possible only when the energy levels in each well allign, a 

condition generally not fulfilled in the presence of an applied electric field. However, it is 

shown that in the presence of acoustic phonons and impurity scattering within each well, 

conservation of energy and momentum is relaxed and resonant tunneling is possible 

provided that 1<<peV , where Vp is the potential difference per period between the 

adjacent wells and 1  is the ground-state scattering time [10]. Therefore, at small bias the 

electrons are able to conduct by ground-state resonant tunneling through the ground states 

of each well and this has been schematically represented in Figure. 2.12(b). The first 

negative differential conductance peak thus indicates the disruption of the resonant 

tunneling.  

Thus, for an applied bias low enough such that the ground-state resonant 

tunneling condition is still satisfied, the total current I can be written as I=Ist+Ith+Ipt, 

where Ist is the sequential resonant tunneling contribution, Ith is due to thermionic 

emission, and Ipt is phonon assisted tunneling, which is expected to be small. The first 

two contributions can be written as [10] 
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Figure: 2.11 (a) Sequential resonant tunneling in high-field domain (right-hand 

side); tunneling through ground state (left-hand side). (b) Photoconductivity 

produced by absorption of intersubband radiation followed by tunneling out of 

well [10]. 
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Figure: 2.12. Schematic band diagram of the superlattice for several values of 

the average potential drop per period VP (a) Zero bias. (b) Sequential resonant 

tunneling through the ground state E1 for 1/2 <pV  ; arrows indicate electron 

transport. (c) Formation of first high-field domain for VP slightly greater than

1/2  . Sequential resonant tunneling occurs through E1 in the low-field region 

and through the first excited state E2 in the high-field region. (d) Expansion of 

the high-field domain by one additional quantum well for a voltage increase of 

ΔV [10]. 

 

In the above equations, A is the area of the device, Δ1 is the potential drop across 

one barrier, EF is the T-dependent Fermi energy, m* is the effective mass of GaAs, Dv  is 
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the effective drift velocity over the barrier, Eb is the barrier height, and Δ2 is the potential 

drop across one well. In the WKB approximation, the barrier transmission coefficient is 

given by  
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where *

bm  is the effective mass in the barrier, Lb is the barrier thickness, and 21 pV  

is the potential drop per period.  

At high bias, i.e., when the potential drop Vp across a period is larger than 1/2  , 

ground-state resonant tunneling is not possible and as a result negative differential 

resistance occurs. As each period breaks off from the resonant condition, the resistance 

across this period becomes much larger and a high-field domain forms Any subsequent 

increase in the bias will appear across this domain until the ground level rises to within 

2/2   (where 2  is the excited-state lifetime) of the first excited level E2 in the next well 

whereupon the resonant tunneling condition is restored [Figure: 2.12(c)]. Further 

increases in bias will cause another well to break off from the resonant condition and the 

I-V characteristic repeats [Figure. 2.12(d)]. Due to the screening effect of the space-

charge buildup at large bias and the consequent band bending, the domain formation is 

not a random process but occurs first at the anode and then extends one by one toward the 

cathode. As a result, one would expect there to be p - 1 negative conductance peaks for a 

device with p periods. Indeed in Figure. 2.13, 48 oscillations can be identified, [10] in 

agreement with this interpretation.  
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2.6.2. Reduction of dark current:  

The intersubband absorption excites an electron from the doped ground state to 

the second bound state where it can tunnel out, thereby producing a photocurrent. For this 

two-bound state structure, the absorption in the continuum above the top of the barriers is 

very weak, since most of the oscillator strength is concentrated in the bound-to-bound 

state transition. However, by decreasing the size of the quantum well, the strong 

oscillator strength of the excited bound state can be pushed up into the continuum 

resulting in a strong bound-to-continuum state absorption. [l3] This extended state 

structure has the major advantage that the photoexcited electron can escape from the 

quantum well without tunneling through the energy barrier (as indicated in Figure. 2.13).  

 

                          

Well barrier

 

Figure: 2.13 A QWIP structure which employs bound-to-continuum 

 

Thus, the bias voltage required for the photoelectron to efficiently escape from the well 

can be dramatically reduced, strongly lowering the dark current. In addition, the barrier 

thickness can now be substantially increased thereby further reducing the ground-state 

sequential tunneling by many orders of magnitude. By making use of these 
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improvements, Levine et al. [15] demonstrated the first bound-to-continuum QWIP and 

achieved a dramatic increase in the performance, i.e., detectivity, by several orders of 

magnitude. This is experimentally confirmed by results of dark current versus 

temperature and bias for two different samples.[15]  In order to understand this dramatic 

dark current reduction, we first calculate the effective number of electrons n
*
(V) which 

are thermally excited out of the well into the continuum transport states, as a function of 

bias voltage V. This is given by [I7] 

     

















1

,,
2

*
*

E
p

dEVETEf
L

m
Vn


        (2.11) 

where the first factor containing the effective mass m
*
 is obtained by dividing the two-

dimensional density of states by the superlattice period Lp (to convert it into an average 

three-dimensional density), and where f(E) is the Fermi factor 

     1

1 /exp1


 kTEEEEf F  ,     (2.12) 

1E  is the bound ground-state energy, FE  is the two dimensional Fermi level (measured 

relative to 1E ), and T (E, V) is the bias-dependent tunneling current transmission factor 

for a single barrier. We have used the total energy E since for a real system, electron 

scattering causes the electron wave function to decay in the barriers according to E rather 

than 1E  (which would be appropriate in ideal case). Equation (2.11) accounts for both 

thermionic emission above the energy barrier Eb (for E > Eb) and thermionically assisted 

tunneling (for E < Eb). We can now calculate[17] the bias-dependent dark current Id(V), 

using Id(V)=n
*
(V)ev(V)A,  
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where e is the electronic charge, A is the device area, and v is the average transport 

velocity given by    212
/1



 svFFv  , where μ is the mobility, F is the average field, 

and sv is the saturated drift velocity. 

A novel alternative approach is to use thick (around 500 Ǻ) barriers for strongly 

reducing the ground-state sequential tunneling. This has been discussed by Choi et al. 

[24]. Their proposed three-terminal structure (indicated schematically in Figure. 2.14) 

consists of thin 150 Ǻ barriers in the multiquantum well section of the QWIP, followed 

by a thick 1000 Ǻ collector barrier which acts as a high-pass filter for the photocurrent 

and a blocking contact for the ground-state tunneling dark current. By independently 

biasing the emitter and collector contacts a new hot-electron spectroscopy, which can 

determine the electron energy distribution, has been demonstrated  

VE

E

VD

B

E2

E1

Figure 2.14. Conduction-band structure of a biased three terminal 

QWIP(emitter E, base B, and collector C). The collector barrier blocks the 

tunneling current from the ground state E1. 
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It has been found that the energy distribution of the dark current electrons (which 

includes tunneling through the barriers) is lower than that of the photoexcited carriers 

even after traveling through many (e.g., ~ 50) periods. Thus, by optimally biasing the 

collector voltage to adjust the hot-carrier analyzer bandpass energy, the dark current can 

be preferentially reduced relative to the photocurrent. Even though this approach may 

lower the detectivity D
*
  (see Sec. V K), for situations where the dark current is so large 

that it saturates the imaging array multiplexer capacitors, the noise-equivalent 

temperature difference NEΔT (see Sec.XVII) can actually be improved since longer 

integration times can be used (this is discussed further in Sec. XVII). Although these 

three-terminal QWIPs are more complicated to fabricate, they allow more flexibility in 

the biasing and imaging array multiplexer design.  

 

2.6.3. Temperature dependence of the dark current  

It has been shown that Eq. (2.11) gives a very good account of both the 

temperature as well as the bias-voltage dependence of the dark current. A much simpler 

expression which is a useful low-bias approximation can be obtained by setting  

T(E) = 0 for E < Eb and T(E) = 1 for E> Eb, resulting in  
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p
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where we have set the spectral cutoff energy Ec =E b- E1. Therefore, 
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and  

)/( 2*

0 wLkTmn             (2.16) 

Thus, by plotting the dark current as a function of temperature we can obtain )( Fc EE   

and compare it with the spectral cutoff energy Ec measured optically. Similarly, by 

plotting ln(Id) vs )( Fc EE   we should obtain a slope of ( - l/kT).  

 

2.7 Structure and Material Consideration 

 QWIPs were originally built on GaAs/AlxGa1-xAs lattice-matched multiple 

quantum wells [6]. By varying the Al molar ratio x in the barriers, a wide range of 

intersubband absorption wavelengths can be obtained. The intersubband transitions in 

modulation doped GaAs/AlGaAs 

quantum wells was first demonstrated by West and Eglash [22] and later in directly 

doped wells by Levine et. al. [24]. The large oscillator strengths of these intra-band 

transitions, together with the flexibility to engineer the materials band gaps through 

composition choice, opened up the possibilities of different applications in nonlinear 

optics, electro-optic modulation and infrared detection. The idea of using such transitions 

in infrared detection was first suggested by Chui et al.[60] and later it was refined by and 

pursued by Levine et al. [11]. 

The most important features of these QWIPs involving III-V semiconductors that 

make them superior to MCT based ones are the chemical stability of the materials 

involved and their well developed growth-process technology. QWIPs have become 

dominant in the area of long wavelength IR focal plane array (FPA) applications in the 
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last few years in terms of array size, uniformity, yield and cost of the systems. The other 

properties of QWIP, such as high impedance, fast response time, long integration time 

and low power consumption are well tailored to the requirements for the fabrication of 

large FPAs.  

As previously mentioned, the AlGaAs/GaAs multiple-quantum-well (MQW) 

detectors, because of it’s lattice matched structure have been preferred by the 

investigators and hence have matured compared to other QWIPs. However, modulation 

speed is still an issue which needs to be resolved in these MQW detectors. Although the 

maximum frequency of infrared detection has been theoretically predicted to be 100 GHz 

, experimental demonstration has been around 80 GHz [9]. Since modulation or detection 

speed is a function of electron mobility and carrier lifetime, the proposed AlGaAs/ 

InGaAs/InGaAs/AlGaAs structure holds better promise in terms of detection speed, due 

to higher carrier velocity of InGaAs. 

 

2.7.1. Strain and Critical layer thickness 

The accommodation of misfit across the interface between an epitaxial layer and its 

substrate is considered in this research. If the misfit between a substrate and a growing 

epilayer is sufficiently small, the first few atomic layers will be strained to match the 

substrate. However, as the layer thickness increases the homogeneous strain energy 

becomes so large that a point is reached after which misfit dislocations are introduced. 

The maximum layer thickness achievable without any defect is called the critical layer 

thickness (CLT). This thickness is calculated for the InGaAs epilayer on GaAs substrate 
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using three different approaches. The approaches for calculating the thickness are the 

following  

 Investigating the conditions under which an existing threading (grown-in) 

dislocation in the film might bow and migrate under the influence of misfit stress 

to generate a misfit dislocation line [17]. The critical layer thickness in a grown-in 

threading dislocation approach is given by 
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 where b is the slip distance f is the misfit and ν is Poisson’s ratio. 

 Investigation of the conditions that are expected to lead to the nucleation and 

expansion of halfloops. Van der Merwe[61] determined critical layer thickness by 

calculating the coincidence of the areal strain energy density in the film with the 

interfacial energy between the film and the substrate. 
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where 0a is the bulk lattice constant of the substrate. 

 According to R. People and J. C. Bean [62], critical layer thickness is calculated 

assuming that the growing film is initially free of threading dislocations and that 

interfacial misfit dislocation will be generated when the areal strain energy 

density exceeds the self-energy of an isolated dislocation. 

The areal strain energy density associated with a film of thickness h is given by                                         

2

1

1
2 hfGH 














n

n


                                                                                                   (2.19) 



49 
 

where G is the shear modulus and the critical layer thickness is given by: 
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2.8 Conclusion  

In this chapter the physical mechanism of infrared detection has been presented. 

Photons, having energy corresponding to infrared region, are absorbed by exciting 

electrons from the ground state to excited state of a quantum well, which is formed by 

sandwiching a low bandgap material in between two large bandgap materials. The 

absorption rate, which is quantified by absorption coupling coefficient, depends on the 

oscillator strength (f) and the relative direction between dipole moment of displacement 

(P) and polarization vector. The oscillator strength is actually nothing but the matrix 

element of the momentum operator. The reasoning behind choosing asymmetric quantum 

well structure has been presented. The InGAs/AlGaAs  well system is superior as they 

promise improved detector responsivity achieved through higher electron mobility. On 

the other hand, exploitation of asymmetric (stepped) quantum well enables the absoption 

of normal incidence, which is very important for many applications requiring array 

operation. The chapter also presents a detailed discussion on dark current transport 

mechanism in the quantum well structures considered for infrared photodetection, along 

with the impact of temperature on the process. Finally, the effect of strain has been 

discussed. 
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CHAPTER 3 
 

Quantifying Inter-subband Transition in 

Asymmetric Quantum Wells 
 

 

With the advancement of III-V semiconductors process technology, quantum well 

infrared photo-detectors (QWIPs) fabricated with such materials have become the most 

promising alternative to conventional HgCdTe based photo detection technology [1]. 

Understandably, optical absorption and electron transport mechanisms in QWIPs 

structures have generated considerable research interest [2-5]. Absorption of 

electromagnetic radiation in quantum well (QW) structures can involve inter-subband 

transitions of electrons within the same band. Owing to the fact that, such transitions 

correspond to small energy differences among the bound quantum states and therefore, 

are particularly suitable for infrared detection. 

Initially when first introduced, QWIPs were fabricated on multiple rectangular 

quantum wells (QWs) composed of lattice-matched III-V materials, such as 

GaAs/AlxGa1-xAs QW structures. As can be seen from the band structure of GaAs (shown 

in Figure: 3.1) that forms the well region, electrons tends to occupy the Γ valley where 

certain conditions for the symmetry of the wave function exist. As detailed later, 

symmetry conditions impose a “selection rule” that diminishes the probability of electron 

transition among certain eigen states having definite parity [6]. Moreover it also forbids 

transition being induced by photons with no electric field component in the growth 
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direction.  Consequentially, photons with transverse electric (TE) polarization with 

respect to the growth direction cannot be absorbed in rectangular  W structures [7-8]. To 

overcome such an eventuality, a number of ingenious techniques have been proposed, 

including fabrication of grating structures on top contact, illumination through 45  facet, 

and a scheme to arrange multiple 

                                                 

 

       Figure: 3.1.  Band structure of GaAs. 300 K 

  

pass of photons with oblique incidence[3] ,[9]. Unfortunately, all these alternatives not 

only complicate the focal plane fabrication process, but also induce cross talks among 

adjacent pixels [10]. 

 Asymmetric QWs have been adopted to break the wave function symmetries, 

despite the fact that such symmetry conditions does not strictly hold for real rectangular 
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wells due to various reasons like surface roughness, truncation of periodic bulk structure, 

etc. Achievable through steps in quantum well, asymmetry “distorts” the bound state 

wave functions in a way that they no longer posses’ definite parity [10].  Investigation on 

inter-subband transition in QWIPs with asymmetric structures have been based on both 

single band and eight(ten)-band k.p model, the later being combined with envelope 

function Fourier expansion [11].  

In this chapter the mesoscopic representation of the quantum processes that 

govern both vertical (absorption) and parallel (tunneling) electron transport in 

asymmetric QW structures are utilized to quantify QWIP performance parameters. Due to 

the scattering potential felt by electrons in the presence of photons, calculation of 

wavefunctions only at eigen energies becomes inadequate. The work presented here, 

therefore, determines the density of states (DOS) as a function of energy using  non-

equilibrium Green’s function(NEGF) formalism and quantum mechanical wave 

impedance concept [12]. This facilitates calculation of broadening of states resulting from 

both photon absorption and tunneling. Such broadening, instead of being calculated, had 

been simply assumed in previously reported works [11]. The chapter is organized as 

follows: first the formulation for calculating absorption rate is presented, followed by a 

discussion on selection rule and definition of dipole matrix element, which quantifies the 

strength of coupling among different eigen states. The next section presents a 

comprehensive analysis of an AlGaAs/GaAs/InGaAs asymmetric quantum well structure 

showing how asymmetry introduced through stepped quantum well can improve photon 

absorption at infrared region. 
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3.1 Quantifying Absorption Rate 

The transition rate or probability of transition per unit time from one 

energy eigenstate of a quantum system into a continuum or other eigenstates due to any 

perturbation can be calculated by Fermi’s Golden Rule. As an obvious consequence of 

Heisenberg’s Uncertainty principle of energy and lifetime, energy of a quantum state 

smears out or ‘broadens’ as particles leaks out of that state. Broadening of an energy state 

i due to electron transition to another state, f, therefore can be calculated by Fermi’s 

Golden rule [13]: 

)(2)(
2

  fifi D       (3.1) 

where ρif is the coupling constant between the states ψi,f, Df is the DOS of the final state 

and ћ is the reduced Planck’s constant and ω is the angular frequency.  The absorption 

coupling constant can be evaluated simply from the matrix elements of the scattering 

potential U
ab 
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Where ψi  and ψf are the wave functions of states i and f respectively. The entire problem 

of calculating ρif amounts to finding the scattering potential Us that an electron feels in 

presence of a photon with particular frequency: 

 Us(r,t) = U
ab

(r) exp (-jωt)       (3.3) 

Once the interaction potential is identified, the absorption coupling constant can be 

evaluated simply with eqn. 3.2. However, the calculation of the matrix elements becomes 

somewhat complicated due to the fact that the effect of electromagnetic field associated 

with a photon enters the Schrödinger equation through the vector potential rather than the 

http://en.wikipedia.org/wiki/Eigenstate
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scalar potential. We first write down the electric field due to a single photon in mode 

(β,ν) in the form: 
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where amplitude EO is calculated by equating the associated energy to that of the photon 

and assuming V to be the volume and ε to be the permitivity: 
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Using the fact that for electromagnetic wave the electric field E is related to the vector 
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Defining the absorption portion (the other portion being the emission) of the vector 

potential due to photon as A
ab

(r) = 
^

n (AO/2)exp(-jωt), the coupling coefficient for the 

absorption process can be written as: 
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Where zjjp 


 , assuming a one-dimensional case with z being the 

propagation direction. In case of QWIP, wavefunctions are localized to a dimension 

shorter than the optical wavelength under consideration, and therefore ).exp(


rj  can be 

neglected. So eqn. (3.7) becomes: 
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Here P = 


ipf ||  is the dipole moment of the transition and θ is the angle between P 

and the electric field polarization
^

n .  It is worth mentioning here that for a specific 

combination of given quantum well and light polarization, Pcosθ can be zero and 

therefore light with that polarization will not be absorbed. This fact forms the basis of the 

so-called selection rule, which has been discussed later. 

The transition probability is Ti→f= Γi /ћ, which is an obvious consequence of 

Heisenberg’s uncertainty principle. The net transition rate from i to f  is:  
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 fififif ffD                  (3.9) 

where fi,f are the Fermi-Dirac distribution of electrons in respective sub-bands. By 

defining DOS in terms of broadening, the absorption co-efficient (αi→f) between i and f 

can now be written as [11]: 
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Where nr is the refractive index, εo is the free space dielectric constant, c is the speed of 

light, V is the volume and E= )(  if EE . 

The transition momentum matrix element or coupling constant ρif is also used to 

define a performance parameter, dipole oscillator strength f (ћω), which is directly 

proportional to the absorption coefficient. f (ћω) is defined as: 

                             
  

   

2

if
z





           (3.11) 

 

where ћω is the incoming photon energy, m* is the effective mass of the ground state, 1  

is the ground state wave function subjected to the normalization condition 1ii 
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within the quantum well structure, and f is the normalized excited state wave function 

having an energy ћω above the ground state. 

  

3.2 Impact of Effective Mass and Strain 

3.2.1 Variation of effective mass with energy: 

Strictly speaking, in a material with spatially varying effective mass, the quantity 

m* in above equation and hence f (ћω) are not well-defined. The absorption rate needs to 

be calculated directly from the Fermi golden rule, whose matrix element depends 

explicitly on mn*(Ei) of each layer. However, it turns out that for the material system 

studied in this work, mn*(Ei) in different layers are quite close to each other, e.g., being 

0.063mo in the well region and 0.085mo in the barrier region for a given structure. 

Therefore it is useful in this work to treat 1  to have an average effective mass and retain 

the concept of the oscillator strength. With this approximation, the quantity m* becomes 

a prefactor in Eq. (3.11), and its value will not affect the absorption spectral line shape. 

For simplicity, m* was chosen to be 






n n

n nn

d

dm
m

*

*         (3.12) 

where mn* is the effective mass at the band edge of the material layer n. Besides the issue 

of m*, if the full wave functions of the quantum well states are considered, Eq. (3.11) 

should also contain a multiplication factor 
2

)()( icfc EES  , where c  is the atomic 

wave function. However, the value of S is typically very close to unity and varies very 

little across the spectrum. The presence of S can thus be ignored. For example, using the 
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certain structural parameters, the value of S based on the two-band model can be shown 

to vary only slightly from 0.934 to 0.963 between λ= 2.9 and 4.1 μm. The change of S 

across the spectrum is therefore can be safely ignored.  

 

3.2.2 Impact of strain: 

The energy band gap Eg of materials forming different layers of the quantum well 

structure determines the well depth and therefore dictates the absorption spectrum of any 

given structure. The strain developed due to juxtaposing different layers of material effect 

the bandgap of any given material. The unstrained band gap of the nth layer in the unit of 

meV is  

,429149937011861424 22

, nnnn

u

ng yyxxE      (3.13) 

where xn and yn are the Al and In molar ratios in the nth layer, respectively. (In the 

present calculation, however, x and y cannot be both nonzero in a given layer, i.e., 

AlInGaAs quaternary compound is not considered). Since the material layers are under 

strain, the values of band gaps are modified. Assuming the strain is accommodated 

exclusively in the InGaAs well layers, which are usually much thinner than the 

GaAs/AlGaAs layers, the modified band gap for yn˃0 is  
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where nya 27008700 meV is the deformation potential, 

)48.381.11()79.032.5(1112 nn yycc   is the ratio of the elastic constants, and 

)405.066533.5(405.011 nn yy   is the hydrostatic component of the strain induced 
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by the adjacent GaAs/AlGaAs material layers. Therefore, in the present assumption, the 

band gap of InGaAs is widened while that of GaAs and AlGaAs are unchanged. The band 

offset nE  is taken as  

)1424(60.0 ,  u

ngn EE       if 0nx  

                     = 0.63( )1424, u

ngE      if ny > 0      (3.15) 

The effective mass at the conduction band edge is given by  

)579.0256.11(0665.0*

nnn yxm        (3.16) 

Since these detectors involve high-energy states, band nonparabolicity has to be taken 

into account. The resulting effective mass mn*(E) can be expressed in the form of  
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where Eg,n is the strain modified band gap. With all these material parameters, the input 

parameters, mn*(E) and kn(E), can be obtained, and can be used to obtain eigen energy 

levels and  state wave functions. With this information, f (ћω) in Eq. (3.11) can be 

computed.  

 

3.3 Selection Rule and Normal Incidence 

For the intersubband transitions at the Γ-point in the conduction band of III–V 

materials, it is customary to assume that the transition in the QW would normally only be 

induced by light polarized along the growth direction of the  W. Initially this ‘‘selection 

rule’’ was thought to be supported by experimental observations made on earliest grown 

standard square QW-type structure. Over the time, it became an accepted fact that QW 
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detectors cannot absorb light incident normal to the multi-QW interfaces in which the 

incident light has no polarization component along the growth direction. As a result 

various means of overcoming this difficulty were proposed and designed. One 

methodology was to exploit rear illumination achieved through a 45° polished facet. 

However, it turned out that this arrangement is not suitable for two-dimensional infrared 

detector imaging arrays. Several alternatives were also devised. One of them was to etch 

a grating structure into the top contact layer of each pixel to scatter the incident photons 

into propagation paths at an angle to the multi-QW interfaces. Another alternative is to 

use a wave guide beneath the multi-QW mesas to allow the coupled radiation to enter at 

an angle and pass through the multi-QW stack several times. As a variation to this 

methodology, one could use a combination of these techniques, namely a grating coupled 

wave guide. The latter is formed by a reflection grating on one side of the multi-QW 

stack and a cladding layer on the other side. These grating-coupled wave guides can have 

quantum efficiencies of nearly unity for photons at normal incidence.  

Unfortunately, despite being very ingenious in nature, such structures not only 

complicate the fabrication of focal plane arrays but they can also cause crosstalk between 

adjacent pixels. As a result there has been a continuing effort to design and optimize QW 

structures in which intersubband absorption of normally incident photon can be achieved. 

In the past such detectors have been fabricated using inter valence band transitions in 

SiGe and GaAs/AlGaAs [13] quantum wells. In case of SiGe structure, xy-polarized 

optical electric field can induce a transition for electronic motion along the growth (i.e., 

z) direction through the off-diagonal terms of the inverse mass tensor, whereas in case of 

GaAs/AlGaAs it is thought that the coupling between the Bloch states of the conduction 



60 
 

and valence bands is responsible for the absorption. However, being p-type detectors, 

they have a responsivity which is typically an order of magnitude lower than that of n-

type detectors. This is thought to occur as a result of the heavy mass and low mobility of 

holes in the valence band compared with that of electrons in the conduction band.  

After the initial learning was achieved, several investigations have reported 

normal incidence intrasubband conduction-band absorption in various III–V QW 

structures. Similarly there have been accompanying theoretical articles aimed at 

explaining these observations. Although there is a degree of ambiguity with regard to the 

experimental observations (which has been discussed later) and a certain amount of 

controversy in relation to the precise theoretical explanation of the occurrence of normal 

incidence absorption, there is a growing body of evidence (both experimental and 

theoretical) that there is some doubt regarding the general validity of the selection rule 

forbidding normal incidence absorption in these material systems. Generally speaking, 

selection rules are a rigorous mathematical consequence of symmetry arguments applied 

to some well defined problem and, in consequence, the rule should be obeyed exactly. If 

evidence exists that sheds doubt on the validity of a proposed selection rule, then one of 

three possibilities arises: either the presumed symmetry does not exist, the problem is ill 

defined (i.e., it is not as well defined as was previously  thought) or both assumptions are 

incorrect (i.e., the presumed symmetry is incorrect and the problem is ill defined). We 

will argue in the following, using concepts from pure quantum theory, that the latter of 

the three possibilities actually applies. An extension of these same arguments will be 

shown to lead to the conclusion that, for the most general QW structures (i.e., those with 

arbitrary shaped QW potential profiles) the selection rule will be broken and further that 
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doping the  W structure in an appropriate manner can ‘‘relax’’ the selection rule even 

further. 

For light polarized along the z direction, i.e., the growth direction, the transition 

dipole moment matrix element or coupling coefficient between two given energy states 

ψ1 and ψ2 becomes, on using the envelope function approximation,                               

           
 

  
            

=  
                  

              
 

  
     

                                                                     ( , , )      ′ ( , , )                  (3.18) 

=  
              

          
 

  
     

                                                                     ( )      ′ ( )    .                          (3.19) 

 

Here Uc is conduction-band Bloch function. It has been assumed that,  

 ),,(),,(),,(1 zyxUzyxazyx ccc        (3.20) 

i.e. we assume magnitude of ac squared is equal to 1. Similarly for a second conduction 

subband state ψ2(z) we may write 

 ),,(),,(),,(2 zyxUzyxbzyx ccc       (3.21)

 It is standard in the literature to assume that       
     (although, as we have 

pointed out above, there is no general requirement in quantum mechanics that this be 

true). To proceed we note that if, the periodic functions    
           are chosen to be 

Bloch states corresponding to the bottom of the respective bands (i.e., to wave vectors 

k=0) then, without loss of generality, they can be chosen to be real functions. For such a 

choice of Bloch function 
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 = 0    (3.22) 

 

Thus, for conduction-band subband states for which the effective mass approximation 

holds (i.e., states close to the bottom of the band) we can assume that     
 

  
     

vanishes. Hence, with these approximations we obtain, since        =1, 

           
 

  
           =   

          
 

  
   

          (3.23) 

 

                                            

Figure: 3.2. Schematic representation of a perfect square QW and the 

wavefunctions of its bound states. The figures show the inversion symmetry of 

the wavefunctions. 
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Since, for a general QW structure, there is no reason to expect that the integral on the rhs 

of Eq. (3.22) vanishes, we see that light polarized along the z direction will be absorbed. 

As an aside, it is interesting to note that for a perfect, rectangular QW structure, the 

assumptions leading to Eq.  (3.22) result in a‘‘selection rule’’ even for light polarized 

along the z direction. For a perfect rectangular QW the system possesses inversion 

symmetry and the eigenstates    
      and    

       will have a definite parity, as shown 

Figure:3.2. Given that      has odd parity, it is clear that the matrix element on the rhs of 

Eq. (3.22) will vanish identically if the states    
       and    

        have the same parity. 

Labeling the eigenstates in increasing order of energy by the numbers n starting with the 

number 1, and noting that alternate states have opposite parity leads to a selection rule 

that only transitions between states for which    odd number are ‘‘allowed.’’ In an 

actual QW, which is doped and nominally rectangular, different degrees of surface 

roughness will, in general, exist at the two interfaces. This follows from the well-known 

fact that the quality of the interface resulting from the growth of semiconductor A on 

semiconductor B is not, in general, the same as the quality of the interface resulting from 

the growth of B on A. Yet again, any asymmetry in the doping profile will destroy the 

inversion symmetry. Hence, in an actual nominally rectangular but doped QW structure, 

the selection rule will be ‘‘relaxed,’’ a feature which is exacerbated if an electric field 

(whether internal or external) exists across any part of the structure. The purpose of these 

considerations is to highlight the ‘‘vulnerability’’ of supposed selection rules to 

differences between actual QW structures and ideal QW structures. 

Next let us consider a light beam polarized along the x direction (i.e., normal 

incidence). For this situation we readily obtain, in place of Eq. (3.23) 
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                                                                              ′        (3.24) 

   =  
              

          
 

  
                        (3.25) 

            

  

Hence, if          
        (as is usually assumed in the literature), the matrix element 

vanishes identically. This is the basis of the polarization selection rule so widely quoted 

in the literature. For future reference we note that if          
        there are two 

further terms that could influence the magnitude of the matrix element. The first involves 

the matrix element of      between the Bloch function states. As mentioned earlier, 

although this vanishes if Uc is, in fact, the same Bloch state corresponding to k=0, we 

will show later that this matrix element does not vanish if the Uc refers to different Bloch 

states. [This means that, although this term may vanish for transitions between low-lying 

states for which the effective mass approximation 

holds, it will not necessarily vanish in general for a transition between either two high-

lying states (for which nonparabolicity effects are important) or for a transition between a 

low-lying state (well described by the effective mass approximation) and a high-lying 

state (for which 

nonparabolicity effects are important).] The second term of relevance involves the in-

plane wave vector kx . Clearly, at higher doping levels the values of kx will increase, and 

in consequence so too, in general, will the magnitude of the transition dipole matrix 

element. 
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In view of these considerations it is clear that, within the approximations that lead 

to Eq. (3.22), a key issue is whether or not the matrix element          
      vanishes. It 

is this issue we will turn to in the next section. 

 

                   
  

 
 

  

   

 

     
     

 

  

 

     
 

 

  
                               

   

              

     
  

 
 

  

   

 

     
     

 

  

 

     
 

 

  
                                        

 

Subtracting these last two equations and noting that    
      and    

       are both real 

functions shows that 
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It follows from Eq. (3.26) that the overlap integral        will not, in general, vanish. 

Consider first the hypothetical situation of a perfect, rectangular QW. There is a step 

function change of magnitude   say, in the value of the inverse effective mass (1/m*) at 

the well-barrier interface region. Consequently, we will have a   function there coming 

from the derivative of the step function. As we move from left to right across the QW, if 

  is positive at the first interface it will be negative at the second one. Thus, 

     
 

  

 

     
 =                                     (3.28) 

 

where we have assumed that the origin of coordinates is at the center of the QW which 

extends from z=-a to z=+a. Given that the states    
      and    

       for a perfect, 

rectangular QW have a definite parity, it is clear that the matrix element 
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will vanish identically if    
      and    

        are of opposite parity. The reason for this is 

simple. If    
       is of opposite parity to    

         then          
        has identical 

parity with   
      . Hence, the product term   

   
  

  is of even parity, which means its 

value at z= -a will be the same as its value at z = +a, thus making the matrix element 

identically zero. Hence, in terms of the present approach, in a perfect rectangular QW the 

overlap integral         vanishes identically for states of opposite parity and we can 

expect negligible normal incidence absorption between adjacent levels in the QW, since 

such levels are of opposite parity. However, the overlap integral will not vanish for states 

having the same parity, although its value may well be small. 

For a conduction-band electron the effective mass, in general, varies only weakly 

(and usually linearly) with the material composition. As a result, by making a binomial 

expansion, it is not unreasonable to expect that, in general, in the graded-gap region of 

the well 

    
 

      
 = a+bz,                            (3.29) 

 

where the z dependence comes from the linear dependence of the physical composition of 

the well material on the position z in the QW. For such a situation we readily obtain 

 

                                 
 

  
 

 

     
   δ        δ           (3.30) 
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where the two delta functions arise from the discontinuous change in the effective mass at 

the interfaces of the well boundary region. Apart from the two delta-function 

contributions, we see that the term involving b on the rhs of Eq. (3.30) gives a 

contribution to Eq. (3.29) of the form 

 

                           
 

  
    ,    (3.31) 

where we have utilized the fact that for two real functions integration by parts shows that 

        
 

  
          

 

  
    .     (3.32) 

 

The interesting feature of Eq. (3.31) is that the matrix element on the rhs is exactly that 

which occurs for light propagating along the z direction as discussed earlier. One final 

point to note from Eq. 3.31 is that, other things being equal, the overlap integral will 

increase for closer energy spacing of the two states concerned, i.e., in general, normal 

incidence absorption would be expected to occur more readily for far infrared radiation 

than for near-infrared radiation. 

Direct bandgap III–V compound semiconductor material systems, such as 

AlGaAs/InGaAs and AlGaAs/InAlAs, are popular choices for n-type quantum well 

infrared photodetectors (QWIPs) [1, 2]. As has been mentioned earlier, electrons in such 

material systems occupy states around the Γ valley, and since the effective mass of the 

electrons in the Γ valley is small, the high mobility of the electrons can provide a large 

photoresponsivity in the QWIP. One major drawback of these material systems is that the 

Γ6 symmetry of the lowest antibonding conduction band basically forbids intersubband 

transitions induced by transverse electric (TE) polarized infrared radiation. However, the 
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parity selection rule governing the transitions does not hold strictly because of the effect 

of band mixing as a result of the truncation of the periodic bulk structure, the spatial 

variation of the material parameters as well as the formation of subbands in multiple 

quantum wells (MQWs). Nevertheless, the response of the symmetrical quantum wells 

(QWs) to TE excitation is generally very small compared to that due to transverse 

magnetic (TM) excitation.  

The parity selection rule can be further broken by modifying the structure of the 

QW. Instead of a symmetrical square QW, an asymmetrical QW could be adopted 

instead. In such a structure, the envelope wavefunctions do not have a definite odd or 

even parity, and therefore could, in principle, allow for a larger TE response. This would 

be very useful as it would facilitate the fabrication of focal plane arrays for normal 

incident absorption without the need for additional coupling schemes such as grating 

structures. In this thesis, the factors that affect TM and TE absorptions, such as the 

probability density distributions of the wavefunctions, and their coupling strengths, are 

investigated in terms of the material and structural parameters of the step QW, namely, 

the depth of the well and the width and height of the step. Through a better understanding 

of the mechanisms governing the intersubband transitions in such devices, it may then be 

possible to design an optimum structure to enhance normal incident absorption.  

 

3.4 NEGF and Quantum Wave Impedance 

Non-equilibrium Green’s function (NEGF) and concept of quantum mechanical 

wave impedance are used to perform the quantum mechanical analysis of asymmetric 

quantum well structures and to deduce their optical absorption properties. This section 
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outlines the theoretical framework for calculating eigen states and their associated 

wavefunctions, and density of states (DOS). The starting point of this scheme is the 

Schrodinger equation modified by the presence of the optical (local) potential: 

 
   110 ,,

,2
)( xxExxG

Ex

i
xE x

R

x

x 













 

 


     (3.33) 

 

The Hamiltonian )(0 x  contains the potential-energy term that is determined by the 

band discontinuity and the self-consistent Hartree potential, and  xp Ex, and  xEx,  

are the electron in-scattering time and the phase-breaking time, respectively. The 

magnetic vector potential is ignored in this work. The function  x

R ExxG ,, 1  therefore 

contains all the interference effects due to elastic scattering. Conventionally, the Green's 

function is expressed in terms of a complete set of eigenfunctions. We will, however, 

solve for the Green's function  x

R ExxG ,, 1  using a different approach. Let us define a 

function  xExxZ ,, 1 as 
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It can be shown from Eq. (3.34) that 
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which has the units of velocity. In order to calculate  xExxZ ,, 1 we have to use two 

different boundary conditions because  xExxZ ,, 1 has a discontinuity at 1xx  . The 

boundary conditions are, respectively, as follows:  
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    01,, ZExxZ x  for 1xx   and     01,, ZExxZ x  for 1xx < . Here 
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   1  is a constant. Similarly for x we have   x
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  where 

   2 . Here 1  and 2  are calculated inside the left and right reservoirs, 

respectively, where the potential energy is constant. The method for the calculation of a 

quantity similar to  xExxZ ,, 1  has been discussed elsewhere. The use of two boundary 

conditions reveals an interesting property of the function  xExxZ ,, 1 . Since  ExxZ ,',  

has a discontinuity at 'xx  , one needs two boundary conditions. These are:     
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where   is an infinitesimally small positive energy. When the two boundary conditions 

are used, it can be shown that, for all xx <' : 

   ,,,', ExZExxZ    

and for all xx ' :  

   .,,', ExZExxZ   

It is worth noting that Z
+
(Z

-
) does not depend on x’ as long as x>x’(x<x’). Z  are 

calculated using a method analogous to the impedance transformation technique of 

transmission lines along with the two boundary conditions discussed above. 
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 3.4.1 Calculation of quantum wave impedance 

 The well-developed theory of transmission lines can be effectively used to 

calculate the quantum mechanical transmission probability, This can be achieved by 

introducing an impedance analog for the quantum mechanical wave. In order to introduce 

and define the concept of wave impedance we use a simple potential barrier (Figure: 3.3). 

Arbitrary potential barrier structures will be used later to show the capability of this 

method. Let us assume that an electron with an energy E is incident on the potential 

barrier, as shown in the figure. The wave function ψ(x), in general, can be written as 

 xx eeAx    )(         (3.38) 

where  

  VEmjj  2* /2         (3.39) 

is the propagation constant, m* is the effective mass, j = √-1, ћ is the modified Plank's 

constant, V is the potential, and ρ is the wave amplitude reflection coefficient. Note that 

in Eq. (3.38) the time variation is implicity assumed as exp( -jEt/ћ). Now, for the two 

regions shown in Figure: 3.3, Eq. (3.38) may be written as 

 

   ,11

11

xx
eeAx

  
 0<x          (3.40) 

,)( 2
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x
eAx
                    ,0x          (3.41) 

where    *2* ,2 iiiiii mjVEmj           (3.42) 
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Figure 3.3: A step potential barrier illustrating the concept of quantum wave 

impedance. 

 

and Vi and mi
*
 (i = 1,2), are the potential and effective mass respectively, for the i-th 

region. It is implied that there is no reflection of x> 0 because the region is of infinite 

extent. Now applying the boundary conditions that ψ1
  
(0)/m

*
 = ψ2

  
(0)/m

*
  and ψ1(0) = 

ψ2(0), we get an expression: 

       *

11

*

22

*

11

*

22 //)/(/ mmmm         (3.43) 

This equation is analogous to the wave amplitude reflection coefficient defined in 

transmission line equations. In order to show this analogy with transmission lines we 

differentiate Eq. (3.38) with respect to x and multiply both sides by a factor ћ/im
*
 to 

obtain  
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where *

0 jmZ  .          (3.45) 

At any plane x, we define the quantum mechanical wave impedance as Z(x)= ϕ(x)/ψ(x). 

Thus, the input value of impedance, Zi = Z( -I), may be expressed in terms of the load 

impedance Zl = Z(0) 
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
        (3.46) 

The load impedance seen by the first region of Figure:3.3 at x = 0 is the input impedance 

Zi of region 2 at x = O.  

 
3.4.2 Eigen functions and DOS 

The eigenenergies of an arbitrary quantum well can easily be determined from 

Z  as we know that at any eigenenergy En 

   nn ExZExZ ,,          (3.47) 

for all values of x inside the quantum well. An attractive part of this method is that, once 

the eigenenergies have been found, the normalized wave functions can be obtained 

without much effort. To show this, we use the well known expansion of G
R
 in terms of 

the complete set of eigenfunctions: 

 
   
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'
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


m m
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iEE
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
      (3.48) 

Here  xm  is the normalized wave function corresponding to the mth eigenenergy Em . 

If Em+1-Em>>ϵ for all values of m, only one term in the series dominates when nEE  , 
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since the discrete eigenenergies in one-dimension are nondegenerate. For the diagonal 

elements of G
R
, we obtain 
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      (3.49) 

Taking imaginary parts of both sides of Eq. (3.49), and substituting E=En , 

    .;,
2

n

R

n ExxGmx        (3.50) 

It can also been shown that 
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Substitution of Eq. (3.49) in Eq. (3.51) gives us 
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It should be pointed out that since the values of Z  are needed to be calculated for all x 

for estimating the eigenenergies En using Eq. (3.47) ,  Eq. (3.52) then allows us to 

calculate the normalized wave functions   2
xn  as a byproduct. While it may seem that 

  2
xn  [Eq.(3.52) depends on the choice of ϵ, the result is actually independent of ϵ. 

This is because, for sufficiently small ϵ, 
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 itself scales linearly 

with 1/ ϵ. The 1D density of states (DOS), NDOS , is related to the diagonal part of G
R
 and 

can be expressed in terms of logarithmic derivatives Z
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Figure:3.4. Representation of DOS as a function of energy that reveals the 

broadening of energy states and FWHM, along with carrier lifetime on a given 

energy state. 

 

When carriers (electrons) tunnel out of any energy state, the carrier lifetimes become 

finite and induces broadening of the DOS around the respective eigenenergy, as shown in 

Figure: 3.4. Tunneling results in complex values for eigenenergies. The real part of the 

complex eigenenergy gives the energy of the quasibound state and the imaginary part is 

related to the lifetime of the carriers. To avoid numerical determination of complex 

eigenvalues of a non-Hermitian Hamiltonian, we apply a different, yet simple approach. 

The energies of the quasibound states, En , are calculated by locating the peaks of N1D as 

a function of energy, evaluated using Eq (3.53). The lifetimes, of the inversion layer 

carriers are obtained from the calculated full width at half maximum (FWHM), Γ, of the 
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energy broadened DOS around the nth eigenenergy using the relationship τ = ћ/2Γ. The 

FWHM can be estimated anywhere inside the potential well as it has been shown that the 

energy broadening of the DOS is the same at all positions. 

 

3.5 Conclusion 

This chapter presents and details the key concepts used in this dissertation to 

quantify the absorption of infrared radiation in asymmetric quantum well structure. The 

mathematical models described here have been used to analyze III-V material based 

quantum well structures to achieve optimized photodetection efficiency that are described 

in the next chapter. One of the main reasons behind choosing III-V material system such 

as AlGaAs/GaAs/InGaAs systems is the option of devising n-type device with higher 

mobility that potentially leads to improved responsively. Unfortunately electrons in these 

materials occupy Γ valley of conduction band and this results in certain symmetries in 

wavefunctions. The wavefunction symmetry or parity prohibits transition among certain 

eigen states. This selection rule is mostly dominant in square quantum wells. This is one 

of the key reasons that the response of a square QW to normal incident radiation is very 

weak. Therefore, to break the symmetry of a simple square QW, an asymmetric step QW 

design is a good candidate for improving the absorption. A detail theoretical description 

of selection rule has been presented. It has been shown mathematically how asymmetric 

quantum wells can break the symmetry of wavefunctions and hence facilitate the 

absorption of normal incidence or transverse electric (TE) wave. 

Starting from defining a scattering potential that is felt by an electron in presence 

of photon, it has been shown how absorption rate is calculated using Fermi Golden rule 
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using the concept of broadening of density of states. The effect of strain that modifies the 

bandgap of the constituent materials and therefore the overall quantum well structure has 

been described. The calculation of eigen energies and associated wavefunctions have 

been calculated using NEGF and the concept of quantum wave impedance, which is 

based on well developed microwave transmission line theory.  
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CHAPTER 4 
 

Analysis of Asymmetric Quantum Wells for 

Infrared Photodetection 
 

 

In this chapter we present detailed description of the investigation on asymmetric 

quantum well structures having potential applications in infrared photodetection that is 

based on the physical model described in previous chapters.   As has been already 

detailed, the quantifying scheme developed in this work is based on non-equilibrium 

Green’s function and quantum mechanical wave impedance concept. The main reason 

that makes the presented methodology very suitable for gaining physical insight 

regarding the efficacy of a given quantum well structure is it’s simplicity. This allows the 

scheme to be easily programmable without sacrificing the accuracy. Moreover the 

presented method allows direct calculation of certain parameters like optical broadening, 

which have been mostly assumed in many previously reported works, a point which has 

been stressed in chapter 3 and is also discussed in brief in this chapter. 

In the following sections of this chapter, the outline of the model is briefly 

described, which is then followed by some key results obtained for asymmetric quantum 

well structure based on  III-V semiconductors that have been already reported as been 

investigated. This allows comparing the results obtained here with published works and 

thus establishes the validity of the developed scheme. The structure that has been 

extensively investigated here is based on AlGaAs/GaAs/InGaAs that forms a stepped 
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quantum well with dimensions tunable with the variation of concentrations of indium (In) 

and aluminum (Al). The step height and width determines the “asymmetry” of the well 

that distorts the wavefunction and hence destroys any “parity” condition that the 

wavefunction may possess due to it’s position at Γ valley, as has been detailed in chapter 

3. The calculated results for optical and tunneling broadening of density of states have 

been presented to explain the impact of asymmetry of the well. This chapter also presents 

the impact of electric field and strain on the overall absorption and detection wavelength. 

The structures capable of detecting multiple wavelengths or “color” using applied electric 

fields are also analyzed.  

                               

Figure 4.1: Schematic representation of a single period of AlGaAs/GaAs/InGaAs 

quantum well structure. 

 

4.1 Analysis of AlGaAs/GaAs/InGaAs n-type Step Quantum Wells 

 To demonstrate the validity of the developed mathematical model and the concept 

of improving overall infrared absorption using asymmetric wells, we consider the 
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conduction band energy profile of an AlxGa1-xAs/GaAs/InyGa1-yAs material system as 

shown in Figure 4.1. As previously mentioned, the AlGaAs/GaAs quantum well 

structures, because of it’s lattice matched structure have been preferred by the 

investigators and hence have matured compared to other QWIPs. To enhance the speed of 

the detector, the material with high mobility (InGaAs) is used as the well material. 

However, using indium in the quantum well material means that strain is incorporated in 

the structure as GaAs and InGaAs are not lattice-matched. While InGaAs is grown 

epitaxially on GaAs or AlGaAs, first few atomic layers will remain strained to match the 

previous layer. Once a certain thickness is exceeded, defects will be introduced in the 

structure. This will undermine the carrier mobility and therefore the layer thickness 

should be carefully    

      

 

Figure 4.2: Schematic representation of asymmetric/stepped quantum well 

showing step width and height. 
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optimized.  The procedure to calculate this optimum thickness is described in later 

section. GaAs/InGaAs forms the stepped well region to achieve required “asymmetry”, 

whereas the AlGaAs forms the barrier layers. Since inter-subband transition resulting 

from infrared absorption occurs entirely within conduction band, electron-hole pairs are 

not created and hence QWs must be doped (in this context n-type) to produce detectable 

photo-current. For this reason, the devices investigated here are generally assumed to 

have doping concentrations of 10
18

 cm
-3

 in the well region, along with undoped step and 

barrier regions.  

 The schematic diagram of one period of the structure of the step QW is shown in 

Figure 4.2. In the calculations presented in this section for model validation, the device is 

assumed to be n-type, uniformly doped with a concentration of 2 × 10
18

 cm
−3

 in the well 

region and undoped in the step and barrier regions. The well width, step width and step 

height are varied to study the effects of these parameters of the step MQW on the 

behavior of the envelope wavefunctions and the intersubband transitions, in order to elicit 

those factors that enhance TE absorption. Figure 4.3 shows the calculated conduction 

band profile and wavefunction for an AlxGa1-xAs/ InyGa1-yAs /GaAs with x=0.15 and 

y=0.15.  

As can be seen from the spatial distribution of the wavefunction (it is actually 

wavefunction squared to be exact and therefore can be interpreted as probability density 

distribution), the ground state is localized mostly in the well region, whereas that of first 

excited state has it’s dominant lobe in the step region. Figure 4.4 also show calculated 

DOS and absorption coefficient for the structure under consideration. The eigen states are 

found to be at ~0.068 eV and ~0.1734eV. The corresponding peak of absorption is 
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therefore found to be around 0.10575eV. It is worth mentioning that that the effective 

mass variation of the structure has been taken into consideration. The effective mass for 

the regions barrier, well and step, were found to be 0.79, 0.0659 and 0.0665 respectively. 

The broadening due to tunneling is found to be 2x10
-6

 eV where as that for optical 

absorption is 1x10
-11 

eV. 

 

 

 

Figure: 4.3 Conduction band profile and wavefunctions for a AlxGa1-xAs/ InyGa1-yAs 

/GaAs with 15% Al and 15% In concentration. The wavefunctions associated with 

the ground state and first excited states are shown in blue and purple dotted lines. 
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Figure 4.4 Calculated Density of states (DOS) and absorption coefficient for the 

structure shown in Figure: 4.3. 

 

 

4.2 Effect of Asymmetry on Overall Absorption 

It has been already outlined that, the mesoscopic representation of the quantum 

processes that govern both vertical (absorption) and lateral transport (tunneling) of 

electrons in an asymmetric quantum well structure, has been utilized to quantify QWIP 

performance parameters in this work. Also it has been detailed in chapter 3 that, due to 

the scattering potential felt by electrons in presence of photons electric field, calculation 

of wavefunctions only at eigen energies becomes inadequate in such cases. The work 

reported here, therefore, determines the density of states (DOS) as a function of energy 
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using  non-equilibrium Green’s function(NEGF) formalism and quantum mechanical 

wave impedance concept [63]. It will be evident that the approach has two distinct 

advantages. First, it is accurate, easily programmable and yet computationally efficient. 

Second, it facilitates quantifying the broadening of states resulting from both photon 

absorption and tunneling, which provides important insight for improving detection 

efficiency. Instead of being presented through calculations, such broadening has been 

simply assumed in previously reported works.  

The results presented in this section reveals how the asymmetry of a quantum 

well, in this case achieved through steps, destroys the parity or symmetry of the 

wavefunctions and hence impact the overall absorption performance of the structure. As 

detailed in Ref [31], imaginary part of G
R
 can be expressed as  
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Here Em is an eigen state. The spatial distribution of wave function and the DOS 

functions are then very easily calculated. 
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Note that the DOS at an eigen energy is calculated as a function of energy (E). The peaks 

of NDOS(E)  give the eigen energies while the full width at half maxima of the peaks 

provide Γ of the state due to electrons tunneling out of the state. With NDOS(E) and ρif 

known, the broadening of the given state due to optical absorption is calculated (eqn. 1). 
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Therefore, unlike previous works where Γ is simply assumed [48],[64], the scheme 

presented here  provides an effective way to calculate α in terms of  broadening resulting 

from photon absorption. This formulation also yields relative broadening of a state due to 

optical absorption (Γop) and tunneling (Γtun). Γop /Γtun can be used as a design parameter to 

increase the absorption, since it represents the probability of an electron’s absorbing a 

photon before escaping the quantum well. Here also we consider the conduction band 

energy profile of an AlxGa1-xAs/ InyGa1-yAs/ GaAs material system as shown in Figure 

4.5. For this analysis we have chosen a barrier/well combination of 30nm/12nm. 30nm 

barrier and 12 nm well combination was chosen to ensure that QW structures can have at 

least 3 bound states, such that the impact of wavefunction symmetry breaking achieved 

through stepped QW can be revealed. Results are presented to show that with stepped 

QW, transition from 1
st
 to 3

rd
 excited state actually becomes dominant.  Dimensions other 

than 30nm/12nm will have shifted positions for eigen energies leading to different values 

of ρif. But for any barrier/well combination that are large enough to support minimum 

three bound states, similar results can be obtained that shows the impact of symmetry 

breaking on facilitating transitions forbidden by the selection rule. 

The probability distribution calculated across the structure for the bound states are 

shown in Figure: 4.5 for both stepped and square well. The breaking of wavefunctions 

symmetry in case of stepped or asymmetric well is clearly evident. The wavefunctions 

symmetry is very important as it leads to certain selection rules for photon absorption. 

According to eqn. (4.2), ρif depends on the overlapping integral of final state (ψf) and the 

gradient of initial state (ψi) in the direction of light polarization. This is correct for 

incident light with TM polarization that has E-field component along the growth 
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direction. However for normal incidence or TE polarization, E-field is perpendicular to 

the growth direction, in which the wavefunctions are confined. For instance, in the case 

when ψi,f  are functions of x direction, we can assume normally incident light to be 

 

 

Figure 4.5: Calculated magnitudes of wavefunctions (with their energies shown 

on the vertical axis) for Al0.15Ga0.85As/ In0.15Ga0.85As /GaAs structure. The blue 

dotted lines are for rectangular QW (Al0.15Ga0.85As/GaAs).  

 

polarized along y or z direction. Therefore ρif, in case of TE polarization depends not only 

on the gradient of ψi in the growth direction, but also on the overlapping integral of two 

wavefunctions [48]. As has been detailed elsewhere [24], this leads to different selection 

rule for TE and TM polarization: for TM, ρif vanishes if f-i is an even number. For TE 

polarization, however, ρif is zero for all cases. We have calculated ρif for a rectangular 

QW similar to the one shown in Figure:4.5 (30 nm barrier and 12 nm well) assuming TM 
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polarization. For a square QW, ρif among ground state |1   and second excited state |3   is 

found to be 0.006, whereas that between |2 and |3   is 0.114. Whereas for stepped QW 

(with 6 nm step width), ρif of  |1   → |3   and |2   → |3   are found to be 0.285 and 0.221 

respectively. So, for stepped QW, selection rule forbidden |1 →|3   transition actually has 

the largest coupling constant. Clearly, the selection rule that stem from wavefunctions 

symmetry is nullified.  

Calculated absorption coefficients (αif) for transitions among different eigen states 

are shown in Figure: 4.6. The eigen states for square and stepped QWs were found to be 

at 0.02, 0.08, 0.167 eV and 0.0393, 0.124, 0.186 eV respectively. The absorption 

spectrum in Figure:4.6 confirms the breaking of selection rule in stepped QW, as it shows 

the dominance of |1 →|3   transition in terms of both αif and Γop. For the square QW, 

however, α for |1 →|3   transition is several orders of magnitude smaller than that of |2 

→|3  , which is consistent with the selection rule. Therefore, in terms of total broadening, 

we see Γ |1 < Γ|2   for square  W.  In case of stepped  W, it is other way around, i.e. Γ|2 

<Γ|1  , as selection rule forbidden |1 →|3    transition probability outweighs others.  

Figure: 4.7 shows Γop/ Γtun, along with absorption coefficient as a function of 

Indium concentration. With the increase in In concentration (for a fixed 15% Al), step 

height increases. This increases the asymmetry of the QW and as a result optical coupling 

constant improves, resulting in increased absorption. At higher In concentration, 

however, the wavefunction of higher eigen state leaks out into the barrier. This reduces 

the overlapping between the wavefunctions and lower the amount of coupling and hence 

absorption.  
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Figure 4.6: αif for a 30nm-6nm-6nm AlxGa1-xAs/GaAs/InyGa1-yAs stepped QW 

and it’s square QW counterpart. Inset shows the optical broadening for 

different transitions. 

 

For certain asymmetric structures like those having gradually doped well region, 

overlapping integral of ψf and ψi, required to calculate normal incidence absorption, is 

proportional to the ratio of overlapping integral of ψf and gradient of ψi, and the energy 

difference between the states [24]. Therefore, other things being equal, absorption of TE 

polarized light is expected to increase with the decrease of energy spacing between the 

two concerned states, or in other words for far infrared radiation. 
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Figure: 4.7 Γop /Γtun and α calculated as a function of Indium concentration 

 

4.3 Simulation Setup for a Stepped Quantum Well 

Due to the asymmetry of the well, it is expected that the dipole moment of 

transition from one energy state to another increases significantly thus improving the 

optical transition rate. The deeper well is doped to increase the number of transition and 

thus increasing photocurrent. The proposed AlGaAs/InxGa(1-x)As/GaAs/AlGaAs structure 

has been characterized using ATLAS. ATLAS is an advanced two-dimensional device 

simulator that incorporates both drift-diffusion and energy balance transport equations. A 

large selection of physical models is available which include surface/bulk mobility, 

recombination, impact ionization and tunneling models. Two major models part of this 

simulation are simulation of quantum mechanical effect and optoelectronic effect. 

Quantum effect simulation: In order to simulate the device with quantum effects such 

as energy quantization and confinement, ATLAS exploits the solution of Schrodinger’s 
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equation along with the fundamental device equations. The solution of Schrodinger's 

equation provides a “quantized” description of the density of states in the presence of 

quantum mechanical confining potential variations. Among five quantum models 

available, Self-Consistent Schrodinger-Poisson model has been used. With this model, 

one dimensional Schrodinger equation is solved along y mesh, for Eigen-energies and 

eigen functions using Fermi-Dirac statistics. Once the Schrodinger equation solution is 

obtained, carrier concentrations are calculated and are substituted into the Poisson’s 

equation. The potential derived from solution of Poisson's equation is substituted back 

into Schrodinger's equation. This solution process (alternating between Schrodinger’s and 

Poisson’s equation) is continued until convergence is reached and a selfconsistent 

solution of Schrodinger's and Poisson's equation is obtained. 

Following syntax has been used with model and output statement: 

model schrodinger eigen=n fixed.fermi 

output cond.band valence.band eigen=n 

Here fixed.fermi is used assuming Quasi-Fermi level is uniform across Y slice and is 

calculated to match the classical and quantum mechanical sheet charge; eigen=n solves 

for n eigenstates and schrodinger activates the model. 

 

Optoelectronic effect simulation: LUMINOUS has been used to simulate the 

optoelectronic behavior of the quantum well structure. LUMINOUS is an advanced 

device simulator specially designed to model light absorption and photogeneration in 

non-planar semiconductor devices. Exact solutions for general optical sources are 

obtained using geometric ray tracing. This feature enables Luminous to account for 
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arbitrary topologies, internal and external reflections and refractions, polarization 

dependencies and dispersion. Luminous also allows optical transfer matrix method 

analysis for coherence effects in layered devices. The beam propagation method may be 

used to simulate coherence effects and diffraction. LUMINOUS calculates optical 

intensity profiles within the semiconductor device, and converts these profiles into 

photogeneration rates in the device simulators. LUMINOUS is fully integrated within 

ATLAS with a seamless link to S-Pisces and Blaze device simulators, and other ATLAS 

device technology modules. 

Optoelectronic device simulation with LUMINOUS is split into two distinct 

models that are calculated simultaneously at each DC bias point or transient time-step: 

1. Optical ray trace using real component of refractive index to calculate the 

optical intensity at each grid point. 

2. Absorption or photogeneration model using the imaginary component of 

refractive index to calculate a new carrier concentration at each grid point. 

This is followed by an electrical simulation to calculate terminal currents.  An 

optical beam is modeled as a collimated source using the BEAM statement. The origin of 

the beam is defined by parameters: 

– X.ORIGIN and Y.ORIGIN. 

– The ANGLE parameter specifies the direction of propagation of the beam relative to 

the x-axis. ANGLE=90 is vertical illumination from the top.  
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Results and Discussions: Following figures shows the quantum and optoelectronic 

results obtained for AlGaAs/InGaAs/GaAs structure.  Figure 4.8 shows the conduction 

energy band profile with an applied voltage of 0.2 volt. It clearly demonstrates the 

formation of a stepped quantum well, InGaAs layer being the well and GaAs layer being 

the step. In this simulation both the layers are 4nm thick. The well-step width ratio can be 

exploited to tune the wavefunctions and bound state energies to tailor the detection 

wavelength. 

 

Figure 4.8: Conduction band profile of  AlGaAs/InxGa(1-x)As/GaAs/AlGaAs structure 
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Figure: 4.9. Bound states in the AlGaAs/InxGa(1-x)As/GaAs/AlGaAs stepped 

quantum well 

 

Figure 4.9 shows first five bound states in the stepped quantum well. For this 

given structure the ground state is not confined within the well, but is rather spreaded 

over the step as well. The energy separation between first and 2
nd

, 3rd, fourth, fifth states 

are approximately 0.16, 0.4, 0.48 and 0.5 eV respectively. These correspond to 

approximately 7.75 μm, 3.1 μm, 2.58 μm and 2.48 μm respectively. As expected the 

separation between adjacent energy states diminishes as one move up in the energy scale. 
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Figure: 4.10 Electron wavefunctions of the bound states. 

 

The electron wavefunctions for the bound energy states are shown in Figure 4.10. 

The peak of the ground state is found to be in the well (InGaAs layer). This peak gets 

shifted more into the well layer if the In mole fraction is increased to increase the depth 

of the well. The major lobe of the wavefunction of the first excited state is found to be in 

the step (GaAs) layer. Since the third excited state is close to the continuum, the 

asymmetric nature of the quantum well almost has no impact on its shape and hence it is 

symmetrical. The fourth excited state is almost at the continuum and therefore shows 

extreme deformation in the direction of applied electric field. 
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Figure 4.11: Absorption in the structure 

 

            

Figure 4.12 Spectral response of the structure 
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Figure 4.11 and Figure 4.12 show the absorption and spectral response of the structure 

under consideration. The available photo-current is a good measure of the detection 

profile of the device. The peak is found to be around 0.4μm. This implies that the 

detection has been mainly due to inter-band transition, rather than intra-band transition.  

 

4.4 Effect of Step Width on Absorption 

Investigation on the dimensions of the quantum well reveals that absorption peaks 

shift to the left as the width of the GaAs step is increased. This is because the energy of 

the first excited state, which is above the conduction band edge of the step, shifts 

downward with increasing step width. However, since the ground state is bounded in the 

well, its energy is relatively insensitive to the changes of the step width. As a result, the 

ground state to first excited state transition energy decreases and the spectra shift towards 

the lower energy region. 

The probability densities of the both the states are shown in Figure: 4.13, for 

various step widths of the GaAs layer. The vertical line in Figure: 4.13 marks the abrupt 

interface between the barrier and the step. At a step width of 15 A°, the first excited state 

is quasi-bound and its energy is slightly below the edge of the conduction band of the 

barrier. The energetic quasi-bound wavefunction still possesses considerable magnitude 

in the barrier region, and thus appears rather symmetrical. As the step width is increased, 

the energy of the first excited state is lowered and the wavefunction are found to get more 

tightly bound. The coupling constant between the ground state and the first excited state 

wavefunctions increases initially due to the rapid increase of the probability density of 

the first excited state wavefunction in the step and the well regions. However, as the step 
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width is increased to about 30 A°, the smaller secondary lobe of the first excited state 

wavefunction that resides in the well reaches a maximum and then starts to decrease. At 

the same time, the peak of the ground state wavefunction continues to move away from 

the step region and decreases in magnitude while decaying more slowly into the step, as a 

result of which the gradient of the wavefunction decreases. The field coupling of the ψ1 

and ψ2 wavefunctions reaches its peak and saturates. Although the magnitude of the main 

lobe of the bounded first excited state residing in the step region increases with the step 

width, that of the secondary lobe residing in the well decreases, thus reducing the 

coupling with the ground state in the well. As a result, the absorption strength decreases 

for widths of the GaAs step greater than 30 A°.  

 

4.5 Impact of Strain 

Quantum well infrared photodetectors were first introduced using GaAs/AlxGa1-

xAs lattice-matched multiple quantum wells. By varying the Al molar ratio x in the 

barriers, a wide range of intersubband absorption wavelengths can be obtained. However, 

a high Al molar ratio is less desirable in detector applications. Besides the presence of 

higher defect density, the energy crossing of the Γ and X valleys at x>0.45 reduces the 

thermal activation energy of the ground state electrons. The correspondingly higher dark 

current reduces the detector sensitivity in this material. Therefore the material 

characteristics for a mid-wavelength QWIP, which requires a large value of x, still need 

improvement. In order to increase the band offset between the well and the barrier 

without increasing x, Iny Ga1-yAs was introduced as the well material to reduce the 

conduction band offset. Due to the concern of lattice-mismatch between InGaAs and 
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AlGaAs in the early attempts, a small indium molar ratio y was adopted, such as that of 

0.16. In this section the impact of strain is investigated. 

 

 Figure: 4.13. Effect of strain on conduction band profile and wavefunctions 

 

As has been detailed in chapter 3 the strain is developed due to juxtaposing 

different layers of material effect the bandgap of any given material. The unstrained band 

gap of the nth layer in the unit of meV is  
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where nya 27008700 meV is the deformation potential, 

)48.381.11()79.032.5(1112 nn yycc   is the ratio of the elastic constants, and 
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Figure 4.14 shows the impact of strain of the conduction band profile and wavefunction. 

As can be seen that due to strain being considered, the well depth is reduced. This also 

reduces the well to step height ratio. As a result the strained wavefunction is seen to be 

slightly more spreaded over the step.   

 Figure 4.14 demonstrates the impact of strain on the absorption peak. It is found 

that the absorption peak shifts from ~0.14eV to 0.105eV due to stain being considered. 
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That means due to strain, the quantum well becomes more responsive to far infrared 

region. 

 

 

Figure 4.14: Impact of strain on absorption spectrum. 

 

4.6 Multiple Wavelength Detection and Voltage Tunability 

 By using multiple quantum wells, instead of a single one, one can achieve 

detection at more than one wavelength. To illustrate and quantify the idea, presented in 

this section is the results for AlGaAs/InGaAs based multiple well structures. In this case, 



101 
 

one is a normal rectangular well, whereas the other is a step well as has been used in this 

work. 

 

 

Figure: 4.15 Multiple quantum well structures demonstrating multiple 

wavelength detection. Top figure is at zero bias, whereas the bottom one is 

biased at 1V. 

 



102 
 

  

Figure: 4.16 Increased wavelength separation achieved through increased step-

width and reversed applied voltage. 

 

Figures 4.15 and 4.16 show that by applying voltage, the separation among the ground 

state and first excited state and hence the detection wavelengths can be increased. For 

example Figure: 4.15 shows that 1V can increase the wavelength difference from 1.27μm 

to 1.46μm. On the other hand, Figure: 4.16 shows that by increasing the step width the 

wavelength difference can be increased to 2.1μm. This suggests that both voltage and 

step width can be used as variables to enlarge the separation between the detection 

wavelengths. 
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4.7 Conclusion 

 The quantitative analysis of asymmetric quantum wells based on 

AlGaAs/InGaAs/GaAs structures has been presented in this chapter. In case of 

AlGaAs/InGaAs/GaAs structure, GaAs layer forms the step, whereas InGaAs forms the 

well. The composition of In can be varied to tune the step and well heights. 

 The investigation on optical absorption in asymmetric quantum well 

photodetectors has been presented in this chapter. The analysis has been based on non-

equilibrium Green’s function and quantum mechanical wave impedance concept. Unlike 

previously reported works that assume broadening of energy states due to intersubband 

transition for calculating absorption coefficient, the presented technique quantifies 

broadenings resulting from both optical absorption and tunneling. Results have been 

presented for AlxGa1-xAs/InyGa1-yAs/GaAs system which confirms that asymmetry in a 

QW breaks the symmetry or parity of the bound state wavefunctions and hence facilitates 

transition among certain energy states, which are otherwise forbidden by the selection 

rule. Assuming TM polarization of light, it has been demonstrated that stepped QW 

structures can in fact have improved absorption coefficient due to this symmetry 

breaking.  The approach presented here can be extended to calculate the response of any 

arbitrary asymmetric well to both TE and TM polarization. 

 It is worth mentioning here that Indium concentration was varied to change the 

step height and thus to increase the “asymmetry” to clarify how symmetry breaking 

improves transition among certain states. Variation of Al concentration will change the 

well depth and therefore eigen energies and coupling among the states. But as that may 
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not have any strong/direct impact on breaking of wavefunction symmetry, study 

involving variation of Al concentration was not carried out.  
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CHAPTER 5 
 

Summary and Concluding Remarks 

  

 

Absorption of photons having energy corresponding to infrared radiation excites 

electrons in the ground state of quantum wells in the conduction band of semiconductor 

heterostructures to empty higher energy excited states. These photoexcited carriers can be 

made to escape the quantum well and flow through an external circuit under applied 

electric field. Since the energy concerned in this case is within infrared region, intra band 

or inter subband transition within conduction band is particularly suitable, compared to 

band to band or inter band transition. Quantum-well infrared photodetectors (QWIPs) are 

operated based on this mechanism. Typically the detection wavelength of QWIPs spans 

from 2 to 20 μm or even longer. As have already discussed, these detectors have many 

important applications such as remote temperature sensing, target identification and 

discrimination, and chemical analysis. In this dissertation, we have investigated quantum 

well structures, with a particular emphasis on the asymmetric ones that can be used as 

QWIPs.  
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5.1 Asymmetric Quantum Wells and Material Choice 

When QWIPs were first introduced, rectangular or square quantum wells were 

considered as the obvious choice. Due to matured growth technology, GaAs/AlxGa1-xAs 

lattice-matched multiple quantum wells were extensively studied. It was found that, by 

varying the Al molar ratio x in the barriers, a wide range of intersubband absorption 

wavelengths can be obtained.  Also InGaAs/AlGaAs quantum well structures have been 

shown to be versatile for infrared detection. By changing the material composition, one 

can tune the detection wavelength from 2 to 35 mm and beyond. The most important 

features of these QWIPs involving III-V semiconductors that make them superior to 

MCT based ones are the chemical stability of the materials involved and their well 

developed growth-process technology. QWIPs have become dominant in the area of long 

wavelength IR focal plane array (FPA) applications in the last few years in terms of array 

size, uniformity, yield and cost of the systems. The other properties of QWIP, such as 

high impedance, fast response time, long integration time and low power consumption 

are well tailored to the requirements for the fabrication of large FPAs.  

However, it was later realized that, as electrons in these III-V semiconductor 

occupy the Γ valley, the associated wavefunctions posses certain symmetry and parity. 

This leads to a “selection rule” due to which transition among certain energy states are 

forbidden. This phenomenon limits the overall absorption capability of the structure. 

Therefore effort has been made to eliminate the symmetry or parity of the wavefunction. 

Simpler rectangular or square wells are being replaced by quantum wells of different 

shape. These asymmetric quantum wells allow transition among all the eigen staes and 

hence can improve the overall detection efficiency. The asymmetry in the quantum well 
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can be introduced in several forms. For example applied bias can make the bottom of the 

conduction band slanted and thus can make the wavefunction skewed to one direction. 

Similar effect can be brought in by using gradual doping. However, the elegant approach 

to introduce asymmetry is to use stepped quantum well. Steps are made by deploying 

layers of different materials to form the well region. Use of stepped quantum well formed 

through AlGaAs/ InxGa(1-x)As/InyGa(1-y) As/AlGaAs structure, which has been the main 

focus of this work, can further improve the wavelength tunability of the QWIP. The high 

electron mobility and hence drift velocity in InGaAs ( >5×10
6
cm/s), along with low 

carrier recapture lifetime, is expected to improve the detection speed of the device. 

Unlike GaAs/AlGaAs, the lattice mismatch at InGaAs/AlGaAs interface is likely to 

introduce strain in the structure, which, if carefully optimized through deploying 

appropriate thickness, can augment QWIPs performance improvement.  

 

5.2 Quantifying Optical Absorption and Carrier Transport 

A mesoscopic representation of the quantum processes that govern both vertical 

(absorption) and lateral transport (tunneling) of electrons in asymmetric QW structures, 

has been utilized to quantify the optical and transport mechanism in asymmetric quantum 

wells. In order to quantify the optical properties, which include both the absorption 

phenomena through photogeneration and carrier transport across the structure, a quantum 

mechanical model based on non-equilibrium Green’s function, Fermi’s golden rule and 

quantum wave impedance has been developed. The model can calculate the eigen energy 

states, and the associated wave functions of a given quantum well structure using NEGF 

and qauntum wave impedance concept. Fermi’s Golden rule is then used to calculate the 
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coupling coefficients among the states in illuminated condition to determine the 

absorption coefficient. The calculation model developed and used in this dissertation has 

two distinct advantages. The first obvious advantage is that it accurate, easily 

programmable and yet does not sacrifice any computational efficiency. Second, it 

facilitates quantifying the broadening of states resulting from both photon absorption and 

tunneling, which provides important insight for improving detection efficiency. Instead of 

being calculated and optimized through calculations, such broadening has been simply 

assumed in previously reported works. In order to calculate the carrier transport across 

the quantum well structure, the concept of quantum well impedance has been used. This 

methodology uses well developed microwave transmission line theory to calculate the 

tunneling or transmission coefficient as a function of electron energy. The tunneling 

coefficient is needed to calculate the current voltage characteristics under both 

illuminated and dark condition.  

 

5.3 Analyzing the Symmetry Breaking Through Asymmetric QW 

It has been discussed in detail in previous chapters that symmetry conditions 

impose a “selection rule” that diminishes the probability of electron transition among 

eigen states having definite parity. Furthermore it also forbids transition being induced by 

photons with no electric field component in the growth direction.  As a consequence, 

photons with transverse electric (TE) polarization with respect to the growth direction 

cannot be absorbed in a rectangular or square QW structures. A number of ingenious 

techniques have been proposed to overcome this, including fabrication of grating 

structures on top contact, illumination through 45 degree facet, and a scheme to arrange 
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multiple pass of photons with oblique incidence. However, these alternatives, although 

can improve the normal incidence to some extent, complicates the focal plane fabrication 

process, and induce cross talks among adjacent pixels.  

The main motivation behind adopting asymmetric QW structures has been the 

breaking of wave function symmetries, despite the fact that such symmetry conditions 

does not strictly hold for real rectangular wells due to various reasons like surface 

roughness, truncation of periodic bulk structure, etc. Achievable through steps in 

quantum well, asymmetry “distorts” the bound state wave functions in a way that they no 

longer posses’ definite parity.  AlGaAs/GaAs/InGaAs stepped quantum well structure has 

been studied in this work to quantify the impact of steps in the quantum well region on 

coupling coefficients among different energy states. The absorption rate of photons with 

certain energy is directly proportional to   the coupling coefficient between the energy 

stated that are separated by that similar amount of energy. This coupling coefficient, 

which is also referred to as oscillator strength, is increased considerably as wave function 

symmetry is broken. The question that is of enormous importance interest from the 

device viewpoint, is whether it is possible to design quantum well structures in which 

normal incident infrared radiation can be readily absorbed by transitions between 

conduction-band subband states. This thesis has attempted to demonstrate that 

asymmetric QW structures can absorb such radiation, whereas symmetric structures such 

as a rectangular or square QW will absorb only weakly. On the basis of the present 

approach, the ‘‘best’’ materials for infrared QW detectors will be those in which the 

effective mass of the conduction band electron shows the maximum variation with 

material composition. Similarly, heavily graded doping within the well region of the QW 
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structure will increase the amount of the infrared absorption. It is worth mentioning here 

that an intense external electric fields of the appropriate orientation can produce the 

similar increase in absorption by creating the desired slope in the energy band profile.  It 

has been demonstrated that one will need to design carefully the actual composition of 

the QW structure or in that sense, QW potential profile, to obtain an appreciable value for 

the overlap integral of the wavefunction of the concerned energy states. This increased 

overlapping integral increases the amount of absorption of normal incidence infrared 

radiation.  

 

5.4 Future Work 

This section provides a brief overview of what can be done further to improve the 

understanding of the intra subband absorption and hence better optimized the QWIP 

performance. 

 

                      Figure: 5.1 Modified potential profile for dark current reduction 
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Reduction of dark current 

The improvement of responsively of a QWIP depends on lowering the dark 

current. Investigation, therefore needs to be carried out to reduce the dark current density. 

Figure:5.1 shows one such potential structure that can reduce the dark current. In this 

structure, the tunneling probability across the device is going to be considerably reduced 

due to the added barrier.  

 

Lateral Quantum confinement 

Quantum dots (QDs) have three dimensional electron confinement that leads to 

atomic-like energy levels. The selection rules that forbid normal incident absorption in 

QWs are relaxed in QDs. Therefore, quantum-dot infrared photodetectors (QDIPs) would 

exhibit intrinsic normal incidence absorption. Also, the oscillator strength of optical 

transitions are expected to be much larger than those in QWs. Compared to QWIPs, 

QDIPs are also expected to have a larger photoconductive gain because of the larger 

intersubband relaxation time, which results from reduced electron-phonon interaction in 

zero-dimensional systems . For these reasons, QDIPs have been the topic in intensive 

research for the past decade or so as they are attractive candidates for infrared imaging. 

QDIPs fabricated so far are based on self-assembled quantum dots that rely on the strain 

between lattice mismatched semiconductors.  
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