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ABSTRACT

Let (M,g) be a Lorentzian manifold, (H,h) a Riemannian
manifold, and let f: H » (0,®) be an arbitrary smooth func-
tion. Then the product manifold M x H with Lorentzian met-
ric g = (f2g) ® h is called a Lorentzian warped product and
denoted by Mf x H. In the case (a,b)f x H, =» < a <b £ o,
with metric g = (—fzdtz) ® h, the metric is static and the
warped product is called a standard static space-time.
Examples of such manifolds include Minkowski space-time,
Schwarzschild space-time, universal anti-de Sitter space-
time, and the Einstein static universe.

Geodesic completeness in products of the form Mg x H
is considered. A standard static space-time (a,b)f x H
with a or b finite is timelike, null, and spacelike geodesi-
cally incomplete. However, inZRf x H the geodesic complete-
ness depends on the warping function f: H » (0,*) and com-
pleteness of the Riemannian space (H,h). We say that £
satisfies the K-growth condition if for all a > 0, there is
a compact set K in H such that f(x) =2 a for all x e H\K.
Then a sufficient condition for timelike geodesic complete-
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ness on]Rf x H is that f: H » (0,») satisfy the K-growth
condition. For null geodesic completeness ofIRf x H, it
is sufficient that (1) (H,h) be a complete Riemannian man-
ifold and (2) that f: H > [m,») be bounded from below by
m > 0.

We investigate conditions on a standard static space-
time which guarantee that the strong energy, null conver-
gence, and generic conditions are satisfied. If the warp-
ing function f is convex and Ric(v,v) > 0 for all v ¢ T H,
then (a,b)f x H satisfies the strong energy condition. 1If,
in addition, f is strictly convex, then (a,b). x H also
satisfies the generic condition.

Also, we study causality and other elementary properties
of doubly warped products. If f: H > (0,*) and e: M > (0,*)
are smooth functions, then a Lorentzian doubly warped pro-
duct is the manifold M x H equipped with the metric

g = f2g ® eh.
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CHAPTER 1

Introduction

Lorentzian manifolds have been studied for their im-
portance in the theory of general relativity since the early
part of this century. Interest has increased since the late
1960's, especially as a result of the singularity theorems
of Hawking and Penrose (1970). Techniques developed to study
Riemannian geometry - employing methods from topology and
differential geometry - have been used fruitfully to study
Lorentzian manifolds as well as the more general pseudo-
Riemannian manifolds. 1In addition, techniques developed more
specifically for Lorentzian manifolds and motivated by the
physical applications to general relativity, e.g. causal
structure (cf. Chapter 2), have led to much progress in under-
standing these manifolds. In this paper we will be studying
properties of a large class of pseudo-Riemannian manifolds
called doubly warped products. Much of our attention will
be on a class of Lorentzian warped products: the standard
static space-times (Definition 2.3).

If (M,g) and (H,h) are two pseudo-Riemannian manifolds,
there is a natural metric 99 defined on the product M x H
so that (M x H,go) is a pseudo-Riemannian manifold. Warped
product manifolds are a larger class which are created by
"warping" the natural metric 9o on M x H by using warping
functions defined on M and H. That is, if e: M » (0,®) and

f: H > (0,) are smooth functions, then Mf X eH is the



manifold M x H with the doubly warped metric 5 = f2g ® e2h.

Bishop and O'Neill (1969) studied the case when both (M,q)
and (H,h) are Riemannian manifolds. Using warped products
they were able to construct a wide variety of complete
Riemannian manifolds with everywhere negative sectional
curvature. Several authors have subsequently studied warped
products in the Lorentzian and pseudo-Riemannian case [Beem
and Ehrlich (1981), Beem and Powell (1982), Kemp (1981),
Kobayashi and Obata (1980), O'Neill (1983), Powell (1982)].
Here they have turned out to be a useful and unifying con-
cept. We will primarily focus on Lorentzian singly warped
products which have the warping function f defined on the
Riemannian factor space. If the interval (a,b) is given the
negative definite metric - dt2 and (H,h) is Riemannian,

f: H » (0,») a smooth function, then the singly warped pro-
duct (a,b)f x H with metric —f2 dt2 ® h is a static space-
time, called a standard static space-time. Examples of such
manifolds include the Schwarzschild space-time and universal
anti-de Sitter space-time (cf. section 2.12).

Causality in a Lorentzian manifold refers to the general
question of which points can be joined by nonspacelike curves.
Relativistically, causality refers to which events can in-
fluence (or be influenced by) a given event. The definition
of chronological future and causal future (and chronological
past and causal past) are fundamental to the concept of
causality. First, in a time-oriented connected Lorentzian

manifold (M,g), the time orientation divides all null and



timelike tangent vectors into two separate classes, called
future and past-directed. Then the chronological future
I+(p) is defined to be the set of all points in M which can
be reached by a future-directed timelike curve from p. The
causal future J+(p) is the set of all points in M which can
be reached by a future-directed nonspacelike curve from p.
The corresponding past versions are defined similarly using
past-directed curves.

Various conditions which restrict the causal structure,
and thereby rule out certain "causality violations", have
been defined in the literature. For example, one might re-
quire that a Lorentzian manifold (M,g) not contain any
closed timelike curves (i.e., p ¢ I+(p) for all p € M);
for a closed timelike curve would allow a person to travel
to his or her own past and this would lead to paradoxes. A
more restrictive causality condition is that of global hyper-
bolicity. A Lorentzian manifold is said to be globally
hyperbolic if it is strongly causal and if for each pair of
points p,qg ¢ M, the set J+(p) n J (q) is compact (see
section 2.7 for the definition of strongly causal). In
chapter 3 we discuss how the causal structure of Lorentzian
doubly warped products depends on the factor spaces and the
warping functions.

A basic result along these lines is that a Lorentzian
doubly warped product Mf X eH is globally hyperbolic if and
only if (1) (M,g) is a globally hyperbolic space-time and

2

(2) (H, £ h) is a complete Riemannian manifold [Beem and



Powell (1982)]. Theorem 3.16 gives sufficient conditions

for Mf X eH to be globally hyperbolic that are more straight-
forward to calculate. If (M,g) is a globally hyperbolic
space-time or else (R, - dtz), (H,h) is a complete Riemannian
manifold, and f: H > (0,*) and e: M > (0,*) are smooth func-
tions, then Mf x eH is globally hyperbolic if the integral

JO F%%T diverges; where F: (0,®) »> (0,~) is defined as the
maximum value of f(y) for points y in the closed ball of
radius r about a fixed point Py in H. 1In particular,

Mf X eH is globally hyperbolic if f: H-~ (0,L] is bounded
above by some L < «.

On the other hand, we state the following criterion for
determining when Mg X eH fails to be globally hyperbolic.
Suppose (M,g) is a space-time or else (R, - dt2) and (H,h)
is a noncompact complete Riemannian manifold. Define
G:(0,») > (0,®) to be the minimum value of f(y) for all
points y that area distance r from a fixed py ¢ H. If

G(r)

This result applies to universal anti-de Sitter space-time

J £ is finite, then Mg X R is not globally hyperbolic.
0

to show that it is not globally hyperbolic.

The singularity theorems of Hawking and Penrose were
both an impetus to and a large step toward the understanding
of the global properties of the space-times used as models
in general relativity. The existence of singularities in
many important space-times has been known for a long time
but their existence was often thought to be due to certain

unrealistic assumptions in the model, such as symmetries



[cf. Tipler, Clarke, and Ellis (1980)]. Futhermore, to
precisely define what one means by a singularity poses a
problem [cf. Geroch (1968), Hawking and Ellis (1973)1. A
minimum condition is certainly that the space-time be time-
like ‘or null geodesically incomplete. The theorems of
Hawking and Penrose prove that large classes of physically
realistic space-times are timelike or null geodesically in-
complete, and hence are "singular".

The above considerations motivate us to study geodesic
completeness in Lorentzian warped products in Chapter 4. It
is shown that standard static space-times of the form
(a,b)f x H with (a,b) an interval and a or b finite are
always timelike, null, and spacelike geodesically incomplete,
independent of the warping function f: H - (0,») (Propositions
4.2, 4.4, and 4.5). However, timelike and null geodesic
completeness in a standard static space—timeiIRf x H depends
on the warping function. We say that a function f: H - (0,)
satisfies the K-growth condition if for all a > 0 there is
a compact set K in H such that f(x) > a for all x ¢ H\K.

Then a sufficient condition for timelike geodesic complete-
ness of R, x H is that f: H - (0,») satisfies the K-growth
condition (Theorem 4.7). Here we require no condition of
completeness on the Riemannian factor space (H,h). On the
Oother hand, our most easily stated sufficient condition for
null geodesic completeness is (1) completeness of (H,h)

and (2) that f: H~> [m,~*] be bounded from below by a constant

m > 0 (Theorem 4.12).



In chapter 5 we discuss conditions on a standard static
space-time which guarantee that certain of the energy con-
ditions are satisfied. In particular, we discuss the strong
energy, null convergence and generic conditions. The strong
energy condition is the requirement that the Ricci curvature
Ric(v,v) be nonnegative for all timelike tangent vectors v.
The null convergence condition is that Ric(v,v) be non-
negative for all null tangent vectors v. A precise defini-
tion of the generic condition is stated in section 5.1. Any
physically realistic space-time should satisfy these condi-
tions. For example, the strong energy condition says that
on the average, gravity attracts. The conditions are im-
portant due to their role in proving the singularity theorems
of Hawking and Penrose.

In section 5.2 we show that if the warping function
f: H > (0,») is convex and the Ricci curvature of the
Riemannian manifold (H,h) is nonnegative, then the standard
static space-time (a,b)'f x H satisfies the strong energy
condition. If, in addition, f is strictly convex, then
(a,b)f x H also satisfies the generic condition. In case
(H,h) is Ricci flat, we derive the interesting result that
(a,b)f x H satisfies the strong energy condition if and

only if it satisfies the null convergence condition.



Chapter 2
Preliminaries
In this chapter we will state the basic definitions and
background material. The basic references are [Beem and

Ehrlich (1981), Hawking and Ellis (1973), O'Neill (1983)].

2.1 Pseudo-Riemannian Manifolds
In this paper a manifold M will be connected Hausdorff
and paracompact. For p ¢ M, TpM denotes the set of tangent

vectors to M at p. The tangent bundle

™ = ng TpM

is the set of all tangent vectors of M. A metric tensor g

on M is a symmetric nondegenerate (0,2) tensor field on M of
constant index. In other words, at each point p ¢ M, g
smoothly assigns a scalar product gp on the tangent space

TpM and the index of gp is the same for all p ¢ M. A pseudo-

Riemannian manifold (M,g) is a smooth manifold furnished

with a metric tensor g. If the index of g is zero then g
is a positive definite inner product and we say (M,g) is a

Riemannian manifold. If the index of g is 1 and the

dimension of M is =2 2 then we say (M,g) is a Lorentzian

manifold. In this case, the sign convention (-,+,+,*+*+,+)
will be used.
Let (M,g) be a Lorentzian manifold. A nonzero tangent

vector v ¢ TM is timelike (resp. nonspacelike, null, space-

like) if g(v,v) < 0 (resp. < 0, = 0, > 0). The category in

which a vector falls is said to determine its causal



character. A smooth section X of TM is a vector field on M.

A continuous vector field X on M is timelike if g(X(p), (X(p))
< 0 for each p ¢ M. If M admits a timelike vector field

X:M > TM then M is said to be time-oriented by X. The

vector field X divides the set: of nonspacelike tangent vectors
at a point p ¢ M into two classes; those that are future-

directed and those that are past-directed. A nonspacelike

tangent vector v « TpM is said to be future-directed (resp.

past-directed) if g(X,v) < 0 (resp. g(X,v) > 0).

Now we can state the following basic definition:
A space-time (M,9) is a connected smooth Hausdorff manifold
of dimension > 2 which has a countable basis, a Lorentzian

metric g with signature (-,+,+,++-,+), and a time-orientation.

2.2 Geodesics
Let V denote the Levi-Civita connection on a pseudo-
Riemannian manifold (M,g). A smooth curve in (M,g) is said

to be timelike (resp. nonspacelike, null, spacelike) if its

tangent vector is always timelike (resp. nonspacelike, null,
spacelike). A geodesic is a smooth curve c: (a,b) » M that
moves by parallel displacement, that is, the geodesic
differential equation Vc,c'(t) = 0 is satisfied for all

t ¢ (a,b). Using linearity and the compatibility of V with

the metric g, we obtain the following:

2 gler () et (8)) = 2g(T et (8) ' (£) = 0

for a geodesic c. Hence, g(c'(t),c'(t)) = constant for all

t ¢ (a,b) and thus, the tangent vector c'(t) has the same



causal character for all t. Geodesics are said to be timelike,

nonspacelike, null, or spacelike depending on the causal

character of c'(t) for some t. Acurvey:(a,b) » M which
can be reparameterized sothat Vy,y'(t) = 0 is said to be a

pre-geodesic. A parameter t for a pre-geodesic Yy for which

VY'Y'(t) = 0 is said to be an affine parameter. For time-
like and spacelike geodesics, affine parameters correspond
to a constant length parameterizationof the geodesic.

A curve Y: (a,b) » M is inextendible to t = b if the

limit of y(t) does not exist as t-b-. An inextendible

geodesic is sometimes called a maximally extended geodesic.

2.3 Geodesic Conpleteness

In the Riemannian case, the Hopf-Rinow Theorem
[Choquet, DeWitt, and Dillard (1982), Gromoll, Klingenberg,
and Meyer (1968), Kobayashi and Nomizu (1963)] implies the
equivalence of metric completeness and geodesic completeness.
This theorem fails in the Lorentzian case, and consequently,
the consideration of geodesic completeness is an important
and more subtle task. Let (M,g) be an arbitrary Lorentzian
manifold. A geodesic ¢ in (M,g) with affine parameter t is
said to be complete if it can be defined for -« < t < o,
A past and future inextendible geodesic is said to be in-
complete if it cannot be extended to arbitrarily large
positive and negative values of an affine parameter. The
Lorentzian manifold (M,g) is said to be timelike (resp.

nonspacelike, null, spacelike) geodesically complete if all

timelike (resp. nonspacelike, null, spacelike) inextendible
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geodesics are complete. (M,g) is geodesically complete if

all inextendible geodesics are complete. On the other hand,

(M,g) is said to be timelike (resp. nonspacelike, null, space-

like) geodesically incomplete if one timelike (resp. non-

spacelike, null spacelike) inextendible geodesic is incomplete.
Finally, a nonspacelike incomplete space-time is said to be

a geodesically singular space-time [Geroch 1968]. It is

interesting to note that the three conditions, spacelike
completeness, null completeness and timelike completeness,

are independent [Beem and Ehrlich (1981)].

2.4 Exponential Map

Now the exponential map expp: TpM + M will be defined.

Given Vv ¢ TpM, let cv(t) denote the unique geodesic in M

with cV(O) = p and c;(O) = v. Then expp(v) is defined by
expp(v) = cv(l), provided cv(l) exists.
Let VyreeseVy be any basis for TpM. For sufficiently
small (x%,x%,...x") ¢ R*, the map
1 n 1 2 n
Xyt et XV expp(x vyt xTv, o+ xv )

is a diffeomorphism of a neighborhood of the origin in TpM

onto a neighborhood U(p) of p in M. So a coordinate chart

for M can be defined by assigning coordinates (xl,x2

,...,xn)
to the point expp(xlvl + ... + xnvn) in U(p). These coor-

dinates are called normal coordinates based at p. The set

U(p) is called a convex normal neighborhood of p if any two

points in U(p) can be joined by a unique geodesic segment

of (M,g) lying entirely in U(p) and if for any ¢ e U(p)
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there are normal coordinates based at g containing U(p)

[Hicks (1965, p. 133-136), Hawking and Ellis (1973)].

2.5 Operators

On a pseudo-Riemannian manifold, there are natural
generalizations of the familiar differential operators of
vector calculus on R?: gradient, divergence, and Laplacian.
The gradient grad f of a function f: M - R is the vector
field corresponding to the (0,1) tensor field df on M. Thus,
Y(f) = df(Y) = g(grad f,Y) for an arbitrary vector field Y.

In local coordinates, grad f is represented by

grad £ = ) g —ig o,
i, j=1 axt  ax’
For a tensor A the contraction of the new covariant

slot in its covariant differential DA with one of its

original slots is called a divergence div A of A. 1In two

special cases the divergence is uniquely defined. For a

n
vector field X, div X = izl g(Ei'Ei)g(inXi’Ei)’ where
El'E2""’En is a frame field. Recall that a frame field

is a set of n = dim M mutually orthogonal unit vector fields.
The second case is that of a symmetric (0,2) tensor A. Then
div A will be a one-form, or a (0,1) tensor field on M.

For a frame field El'Ez""’E '

n

(div A) (X) =
1

o~ 8

g(E,,E,) (V A)E.,X).
1 1" 71 Ei i
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The Hessian Hess(f) of a function f: M > R is the second
covariant differential of f. Equivalently, the Hessian
Hess (f) of f is the symmetric (0,2) tensor field such that
Hess (f) (X,Y) = g(VXgrad f, Y) for vector fields X,Y on M.
Finally, the Laplacian Af of a function f: M > R is

the divergence of its gradient: Af = div grad f.

2.6 Curvature
Let (M,g) be a pseudo-Riemannian manifold with Levi-

Civita connection V. The Riemannian curvature tensor R is

a (1,3) tensor field on M defined by

. - V.,V -
R(X,Y)Z VXVYZ v XZ V[X,Y]Z

for vector field X,Y,Z where [ , ] denotes the Lie bracket.
The trace of the Riemannian curvature tensor is the Ricci
curvature Ric. Ric is a symmetric (0,2) tensor, and is

given relative to a frame field by

n
Ric(X,Y) = |} 9(E; 1E{) g(R(E;,Y)X,E) .

The scalar curvature 1 of M is the trace of its Ricci tensor.

Thus, if el,...,en is a frame at p, i.e. an orthonormal

basis of TpM, then

g(ei,ei)Ric(ei,ei).
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2.7 Causality

Causality in a Lorentzian manifold refers to the question
of which points in the manifold can be joined by nonspace-
like curves. The notation p << g is used if there is a
smooth future-directed timelike curve from p to g, and p < g
is used if either p = g or there is a smooth future-directed

nonspacelike curve from p to g. The chronological future

I+(p) of p is the set 1V (p) = {qeM : p << g} and the

chronological past I (p) = {geM : g <<p}. The causal future

J+(p) of p is J+(p) = {gqeM : p < g} and the causal past is

J (p) = {geM : g < p}.

A number of causality conditions have been defined in
general relativity. Some of these conditions will now be
discussed in order of increasing strength. If a space-time
(M,g) contains no closed timelike curves, then we say (M,q)

is chronological. A space-time with no closed nonspacelike

curves is said to be causal. An open set U in a space-time

is said to be causally convex if no nonspacelike curve inter-

sects U in a disconnected set. Given peM, the space-time

(M,g) is said to be strongly causal at p if p has arbitrarily

small causally convex neighborhoods. A strongly causal

space-time is one that is strongly causal at each point.
Before continuing our discussion of causality conditions,
we will briefly discuss the fine g topologies on the space

Lor (M) of all Lorentzian metrics on M. The fine ¢’ topolo-

gies on Lor (M) may be defined by using a fixed countable

locally finite covering B = {Bi} of M by coordinate neigh-
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borhoods. Let §: M » (0,®) be a continuous function.

Then 9119, € Lor (M) are said to be §: M » (0,v) close in
the c* topology, written |gl - g2‘r < 8, if for each peM
all of the corresponding coefficients and derivatives up

to order r of the metric tensors 9, and g, are § (p) close
at p when calculated in the fixed coordinates of all B, ¢B
which contain p. A basis for the fine ct topology on Lor (M)
consists of the sets {g; ¢ Lor(M) :|g; - gzlr < 8§} for

9, € Lor (M) arbitrary and §: M + (0,~) an arbitrary con-
tinuous function.

A space-time (M,g) is said to be stably causal if there

is a fine C0 neighborhood U(g) of g in Lor(M) such that
each g, € U(g) is causal. A C0 function f: M + R is a

global time function if f is strictly increasing along each

future-directed timelike curve. A space-time is stably
causal if and only if it admits a global time function
[Hawking (1968), Seifert (1977)]. The final and strongest
causality condition that we will discuss is global hyper-
bolicity. A strongly causal space-time (M,g) is said to be

globally hyperbolic if for each pair of points p,q ¢ M, the

set J+(p) n J (g) is compact. Globally hyperbolic space-
times may be characterized using Cauchy surfaces. A subset
of M which every inextendible nonspacelike curve intersects

exactly once is called a Cauchy surface. A space-time is

globally hyperbolic if and only if it admits a Cauchy surface
[Hawking and Ellis (1973, p. 211-212)]. An important pro-

perty of globally hyperbolic space-times is that any pair
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of causally related points may be joined by a nonspacelike
geodesic segment of maximal length. [Avez (1963), Seifert

(1967) 1.

2.8 Lorentzian Distance

A distance function can be defined for Lorentzian
manifolds in an analogous fashion to the Riemannian distance.
Let (M,g) be a Lorentzian manifold of dimension > 2. Given
p,q ¢ M, with p < g, let Qp,q be the path space of all
future-directed nonspacelike curves y: [0,1] - M with

Yy(0) = p, Y(1) = g. The Lorentzian are length functional

L = Lg: Qp q + R is then defined as follows: Given a
14
piecewise smooth curve Y ¢ Qp q' choose a partition
r
0=t <ty < oo <t g t =1 such that y!(ti,ti+l) is
smooth for each i = 0,1,2,...,n-1. Define
n-1 ti+l
L(y) = L_(y) = I V=g(y'(t),y'(t))dt.
g i=0 t=t;

Now we can define the distance function d: M x M > R.
Given p ¢ M, if g ¢ J+(p), set d(p,q) = 0. If g ¢ J+(p)
set d(p,q) = sup{Lg(Y) Y € Qp,q}' The appearance of
"sup" rather than "inf" in the preceding definition results
in a duality of results on minimality in a Riemannian
setting and maximality in the Lorentzian case.

Many properties of the Lorentzian distance function may
be found in Beem and Ehrlich (1981). Here we mention only

two. In globally hyperbolic space-times, the Lorentzian



le6

distance function is finite and continuous. In arbitrary
Lorentzian manifolds, a reverse triangle inequality is
satisfied. Explicitly, if p < g < r, then

d(p,r) = d(p,q) + d(g,r).

2.9 Submanifolds and the Induced Connection

Let N be an immersed submanifold of a pseudo-Riemannian
manifold (M,g). If i: N - M denotes the inclusion map, by
identifying i*p(TpN) with TpN, we may regard TpN as being a
subspace of TpM. Let g, = i*g denote the pullback of the
metric g for M to a symmetric tensor field on N. Under the
identification of TpN and i*p(TpN), we may also identify

g_ at p and gITpN x TpN for all p € N. This identification

o
will be used throughout this section. The tensor field 95
will be a metric on N if and only if each TpN is a non-
degenerate subspace of TpM relative to g (i.e. for each
P € N and nonzero V € TpN, there exists some w ¢ TpN with

g(v,w) # 0) and the index of TpN is the same for all p.

In this case, we say N is a nondegenerate submanifold of

(M,g). 1If in addition, gITpN x T N is positive definite

P
for all p ¢ N, then N is said to be a spacelike submanifold.

If gITpN x TpN is a Lorentzian metric for each p ¢ N, then

N is said to be a timelike submanifold.

For the rest of this section we will assume that N is
a nondegenerate submanifold of (M,g). Then for each p ¢ N

there is a subspace TplN of TpM given by
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L
T "N = {v e T M: v,w) = 0 fo 1
D b g(v,w) r all w « TpN}
such that TpN n TplN = {0}. Consequently, we can define an
orthogonal projection map P: TpM > TpN. If V is the Levi-
Civita connection for (M,g), we can define Vg

for vector field X,Y tangent to N. It can be verified that

Y = P(V Y)

VO is actually the Levi-Civita connection for (N,go).

[Hicks (1963), Cheeger and Ebin (1975, p. 22)] That is,

VO is the unique torsion free connection on (N,go) satisfying

X(g,(Y,2)) = go(VgY,Z) + gO(Y,VQZ)

for all vector fields X,Y,Z on N.

The second fundamental form measures the difference

between V and VO. Specifically, if x,y e TpN, extend them

to local vector fields X,Y tangent to N and define

0 L .
= - Y. Then S: T N x T N T "N
S(x,y) VXY VX n P D - D 1s a

Symmetric, bilinear vector-valued tensor called the second

fundamental form tensor or the shape tensor. Given

n e TplN, define the second fundamental form
Sn: TpN x TpN ~ R in the direction n by

- 0
Spxy) = 9SGy m) = g(Vy¥]ym) = g(vyv| - Vx¥ ).

It may be checked that the definition of S and Sn are
independent of the extensions X,Y for X,Y € TpN and also

that sn: TpN x TpN > R is a symmetric bilinear form.
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A nondegenerate submanifold N of (M,g) is said to be

totally geodesic if the second fundamental form tensor S = 0

on N. The following result is well-known [Cheeger and Ebin

(1975, p. 23), Beem and Ehrlich (1981, p. 55)].

Proposition 2.1

Let N be a nondegenerate submanifold of a pseudo-
Riemannian manifold (M,g). The following are equivalent.
1) N is totally geodesic in M
2) Each geodesic y of (M,g) with Y(0) = p and
Y'(0) € TpN is contained in N in some neigh-
borhood of p.

3) Every geodesic of N is also a geodesic of M.

A point p ¢ N ¢ M is said to be umbilic provided
there is a normal vector n e TplN such that S(v,w) = g(v,w)n
for all v,w ¢ TpN. A nondegenerate submanifold N of (M, g)

is totally umbilic provided every point of N is umbilic.

2.10 Warped Products

If (M,g) and (H,h) are two pseudo-Riemannian manifolds,
there is a natural metric 99 defined on the product manifold
M x H so that (M x H, go) is a pseudo-Riemannian manifold.
A larger class of manifolds, called warped products, have
been studied by several authors. Bishop and O'Neill (1969)
Sstudied the case with (M,g) and (H,h) Riemannian manifolds.

Using warped products they were able to construct a wide
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variety of complete Riemannian manifolds of everywhere
negative sectional curvature. Several authors have sub-
sequently studied warped products in the Lorentzian case
[Beem and Ehrlich (1981), Beem, Ehrlich, and Powell (1982),
Beem and Powell (1982), Kemp (1981), Kobayashi and Obata
(1980), O' Neill (1983), Powell (1982)].

Definition 2.2:

Let (M,g) and (H,h) be pseudo-Riemannian manifolds and
let e: M > (0,») and f: M > (0,*) be smooth functions. Let
mT: M x H> M and n: M x H > H be the projections. The

doubly warped product M. x ol is the product manifold M x H

furnished with the metric tensor g defined by

g(v,w) (fon)z(p)g(ﬂ*v,ﬂ*W) + (eoﬂ)z(p)h(n*v,n*w)

for v,w € Tp(M x H).

In classical notation the line element for Mg X eH is

2

as? = £(n)2do} + e(m) ?as?

where doi and dog are the line elements on M and H,

respectively. The functions f: M » (0,») and e: M > (0

are called warping functions. If either e = 1 or f = 1, but

not both, then we obtain a singly warped product. If both

e = 1 and f = 1 then we have a product manifold.
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If (M,g) and (H,h) are both Riemannian manifolds then
Mf X eH is also Riemannian. On the other hand, in order for

Mf X eH to be a Lorentzian manifold, we will take (M,g) to
be Lorentzian or else a one-dimensional manifold with a
negative definite metric —dt2 and take (H,h) to be a Riemann-
ian manifold. In this paper we will primarily be interested
in Lorentzian singly warped products of the form Mf x H,

with the warping function defined on the Riemannian factor H.

We will also state some results for doubly warped products.

2.11 Static Space-Times:
A static metric for a space-time is one which admits
a timelike Killing vector field K which is orthogonal to a

family of spacelike surfaces [Hawking and Ellis (1973 , p.72)].

Definition 2.3:

Let H be a given Riemannian manifold, (a,b) an open
interval, -» < a <b < «, and f: H > (0,*) a smooth
function. Let t and n be the projections of (a,b) x H

onto (a,b) and H. The standard static space-time (a,b)f x H

is the manifold (a,b) x H with the line element

2 . g
dsz = -f(n)zdtz + d02 where do” is the line element of H.

Note that a standard static space-time is a special
case of a warped product. O'Neill (1983 p. 361) proves that
any static space-time is locally isometric to a standard

static space-time. The space-times described in the next



section are examples of standard static space-times.

2.12 Examples

The simplest example of a space-time is Minkowski space-

time Ln, the Lorentzian analogue of euclidean space. " ois

the manifold R" with the metric

dx?.

2 1

o~ 3

d52 = —dxi +
i

" is the space-time of special relativity and the geometry
induced on each fixed tangent space of an arbitrary Lorentzian

. . . . n .
manifold. Minkowski space-time L~ can be viewed as a warp-

ed product v:'LaZIR.f x éRn—l with £ =1, e =1, g = —dt2 ® h,

1

where h is the usual euclidean metric on R

Schwarzschild space-time is the relativistic model

of a universe containing a single star which is assumed to
be static and spherically symmetric and to be the only
source of gravitation for the space-time [Misner, Thorne,
and Wheeler (1973), Weinberg (1972)]. Let R4 be given the
coordinates (t,r,6,¢) where (r,6,¢) are the usual spherical
coordinates onZR3. The exterior Schwarzschild space-time

is defined on the subset r > 2m of R4 where m is a positive
constant. Topologically this subset is]R2 X 82 and is given

the metric

-1
as? = -1 - Fyat® + (1 - 2-::“-) ar? + r?(a0? + sinZ0de?).

The exterior Schwarzschild space-time can be viewed as a

singly warped product in two distinct ways. First, we
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can consider the warped product of (R, —dt2) and the

Riemannian manifold (2m,®) x 82 with the metric

as? = (1 - B~lar? + r¥ (a0 + sin0as?), r > 2m.

The warping function f:ZIR2 X 82 + (0,®) in the Riemannian

2
factor is defined by f(r,06,¢) = (1 - =) . In this

fashion the space-time is written as R X ((2m, ) x 32),

The alternate method is to consider M = {(t,r) ijZ; r > 2m}

with the Lorentzian metric g = -(1 - Z-?v)dtz + (1 - g?)—ldrz

and let H = 82 be given in the usual Riemannian metric h

of constant sectional curvature 1 induced by the inclusion
82 +IR3. Now let the warping function e: M - (0,*) on the
Lorentzian factor be defined by e(t,r) = r. Thus, the
exterior Schwarzschild space-time is written as

(M x eH’ g o ezh). In this paper we will usually prefer

the first view of the exterior Schwarzschild space-time with

the warping function defined on the Riemannian factor space.

Universal anti-de Sitter space-time is the Lorentzian

analogue of the Riemannian hyperbolic space of constant

negative sectional curvature. The hyperboloid

n+l, .2 _ .2 . .2 2 2
= s o-xS - x5+ xS+ L. = -
Hy = {x e R 72 =%y = X5 ¥ X5 T ¥p T

for constant r > 0, with the pseudo-euclidean metric

2 _ 2_ 2 2
ds“ = (dxl) (dx2) + (dx3) + ... + (dxn+l

)2

is called anti-de Sitter space-time. This space contains

closed timelike curves. However the universal covering space
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~

H? of anti-de Sitter space-time does not contain any closed

timelike lines. This space is the one we shall subsequently

refer to as (universal) anti-de Sitter space-time H [cf.

1
Wolf (1974), Penrose (1968)]. It has the topology of Rr".

In the case dimension = 4 and curvature k = -1, ﬁi

given coordinates (t,r,0,¢) for which the metric has the

may be

form

2

ds? = - cosh® r at? + ar? + sinhZr(a62 + sin0d¢?).

Note that universal anti-de Sitter space-time may be viewed
as a warped product of the form GRr X H,-f2dt2 ® h). We
define f: H » (0,») to be f(r,9,¢) = cosh r and let h be the
complete Riemannian metric of constant negative sectional
curvature on hyperbolic 3-space H = Rs.

The final example we will discuss in this section is

the Einstein static universe. Consider R with the negative

definite metric —dt2 and let H = s" 1 with the standard
spherical Riemannian metric. The Lorentzian product manifold

R x H is called the n-dimensional Einstein static universe.
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Chapter 3
Causality in Lorentzian Warped Products
In this chapter we will dicuss the causal structure of
Lorentzian warped products. We will begin with a discussion
of some of the elementary properties of pseudo-Riemannian

doubly warped products.

3.1 Basic Properties
The following properties follow directly from the
definition 2.1 of a pseudo-Riemannian doubly warped product

M_ x eH [cf. Beem and Ehrlich (1981, Remark 2.44), Kemp

f
(1981, p. 37-38), O'Neill (1983, p. 205)]. Recall that a

homothetic map F : (M,gl) > (M,gz) is a diffeomorphism such

that F*(gz) = c9, for some constant c.

Remark 3.1

Let M_ x eH be a pseudo-Riemannian doubly warped pro-

f
duct with metric § = f2g ® e2h. Let m : M x H > M and
n : M x H~> H be projections.
(a) For each q € H, the restrction n]n_l(q): n_l(q) > M
is a homothetic map with homothetic factor l/f(q)z.
(b) For each p ¢ M, the restriction
nlﬂ_l(p): n_l(p) > H 1is a homothetic map with
homothetic factor l/e(p)z.
(c) For each (p,q) € M ¥ H, the factor ﬂ_l(q) =M % q

and the leaf W_l(p) = p x H are orthogonal at (p,q)
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(d) For each (p,gq) € M x H the submanifolds
m ~(p) = p x H and n_l(q) = M x g are non-
degenerate.

(e) If ¢ :+ H > H is an isometry such that fo¢ = f
then the map ¢ = lm X ¢ Mf x eH > Mf X eH
given by ¢(p,q) = (p,9(g)) is an isometry of

(f) If y : M > M is an isometry such that e°y = e
then the map ¥ = ¢ x 1H: Mf X eH - Mf X eH
given by Y(p,q) = (V(p),qg) is an isometry of

Vectors tangent to leaves will be called horizontal.

Vectors tangent to fibers will be called vertical.

To relate the calculus of a (topological) product
manifold M x H to that of its factors we use the notion
of lifting. If ¥ : M >R is a smooth map, the lift § of
) toM X H is the map § = YoT: M X H > R, If Vv ¢ TpM and
q ¢ H then the lift v of v to (pP,q) ¢ M x H is the unique

vector in T (M x H) such that m,v = v and nev =0 eTqH.

(prq) g
If X is a vector field on M then the 1lift of X to M x H
is the vector field X such that i(p q) is the 1lift of X
14
to (p,q). Functions, tangent vectors, and vector fields on

H can be lifted to M x H using the projection n: M x H->H.

Ehrlich [1974, p. 139] noted the following fact.

Let M = M_ x JH be a pseudo-Riemannian doubly warped
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product. If ¢y : M » R, then the gradient of the 1lift yen

- 1 1 . -
of y to M is 5 = 5 times the 1lift to M of the
T (fon)

gradient of ¢ on M. That is,

m,(grad_(yem)) = —lf gradM V.
M F

Similarly, if ¢ : H > R the

n,(grad_(¢em) = =5 grad ¢ =

1
~————= grad..¢ .
M 2 H

- (eom)

Proof :

Let y: M > R be a smooth function and suppose x is

the 1ift of a tangent vector on H to M x H, i.e.

X is a
horizontal tangent vector to M X H. Then
g(grad (yom),x) = x(Yom) = m,(X)y = 0
M
since m,(x) = 0. Thus, grad_(Yom) is a vertical vector.

M
Let v be any vertical tangent vector to M at (p,q) ¢ M.

Then since m™ is a homothety we obtain

1 -
5 g(grad woﬂ,v)l(p,q)

g(m,(grad yorm), ﬂ*V)I(p,q)

VT | (p,q)

ﬂ*(v)w'p

= 3 g(grade,ﬂ*v)lp .
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Hence, at each point

m,(grad_(yom)) = —li grade
M £

A similar calculation yields the second part of the lemma.

O
Give vector fields Xl and Yl on M and vector fields
X2 and Y2 on H, we may lift them to vector fields
X = (Xl,O) + (0,X2) = (Xl.Xz) and Y = (Y,,0) + (O,Yz)
= (Yl'Yz)' Now we will proceed to determine the Levi-Civita

connection V for a doubly warped product (M eH,§) on X
and Y as above.

Let Vl denote the Levi-Civita connection for (M,q)
and V2 denote the Levi-Civita connection for (H,h). Recall

that we denote the lifts of f and e to M x H by f = fon

and e = eon. The connection V for (Mf x eH, f2g ® e2h) is
2

.= 2
related to the metric g = £°g ® e"h by the Koszul formula

25(V,Y,2) = Xg(¥,2) + Yg(X,2) - Zg(X,¥) + g([X,Y],2)
- g(I[X,Y1,Y) - g([Y,2],X)
[cf. Cheeger and Ebin (1975, p.2)]. A calculation yields

the following formula for the Levi-Civita connection V for
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, X, (£f) Y, (£f)
1, _ o1 2 2 2
(1) vx = Vg Yl + v Y2 + 7 Yl + £ Xl
1 2
Xl(e) Yl(e) _ gradﬁ f
e Yot T Xy T 9(XpeYy) Z
grad__ e
- M
- g(X2,Y2) __ .
e
Here we are identifying the vector Vi Yl € TpM with the
1
1
T M
vector (VX Yl ,Oq) € (p,q)( x H), etc.

1
From formula (1) we can immediately deduce the follow-

ing:

Proposition 3.3

In a doubly warped product M = Mg x H each leaf

- . -1
m l(p) = p x H and fiber n "(q) = M x g is totally umbilic.

Proof:
From the symmetry in (1) between M and H it is clear

that the proofs for fibers and leaves are similar, so we

will only prove the assertion for leaves ﬂ—l(p) = p x H.
Let X,Y be horizontal fields tangent to p x H. By

grad €
v2 M

XY - g(X,Y) éM '

formula (1), VXY = since

TeX =1, Y =0, N,X =X, NgY =Y. Hence the second funda-

mental form tensor S(X,Y) = V.Y - VgY = - §(X,Y) gradMe .
e

By the definition of totally umbilic (Section 2.9) we need

only to show that grad_é is a vertical vector, i.e.
M
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1

: T(prq)

grad e (p x H).

7 | (prq)

We have already established this fact in the proof

of Lemma 3.2.

In the case of a singly warped product of the form
Mf x H we should note the following sharper statement [cf.
Beem and Ehrlich (1981, Lemma 2.34), O'Neill (1983,

Corollary 7.36)].

Proposition 3.4:

For a pseudo-Riemannian warped product of the form

Mf x H, each leaf ﬂ—l(p) = p x H is totally geodesic and
each fiber n—l(q) = M x g is totally umbilic.
Proof:

Fibers are totally umbilic by Proposition 3.3. To

show that leaves are totally geodesic, let X,Y be horizontal

1

vector fields tangent to the leaf T (p) = p x H. From

formula (1) with e = 1 we obtain V_Y = ViY. Hence, the

X
second fundamental form tensor S(X,Y) = 0 and the leaf is
totally geodesic by definition. ]
Now we specialize to the case whére (M,g) is an n-
dimensional manifold (n > 1) with a signature (-,+,...,+)
and (H,h) is a Riemannian manifold. As usual let
e: M > (0,~) and f: H > (0,*) be smooth functions. Then

2 2

(Mg x H), £f7°9 & e h) becomes a Lorentzian doubly warped
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product. We first note the following elementary properties
[cf. Beem and Ehrlich (1981, Remark 2.44), Kemp (1981,

p. 37-38)].

Remark 3.5

Let Mf x eH be a doubly warped product with a Lorentzian
metric g = f2g ® ezh. Let T: M XH->M and n: M x H > H
be the projections.

(a) If v e T( (M x H) then f(q)zg(ﬂ*v,w*v) < g(v,v).

prd)
Thus T,: T(p,q)(M X H) -+ TpM maps nonspacelike
vectors to nonspacelike vectors and 7 maps non-
spacelike curves of Mg % ol to nonspacelike curves
of M.

(b) The map m is length nondecreasing on nonspacelike

curves if £ : H~> (0,1], since v ¢ T(M x H),

lg(m,v,m,v) | 2 |3é%L¥%l > |3(v,v) |-
n

3.2 Causality
In order to discuss causality, we first need to discuss

a time orientation for Mf X eH.

Lemma 3.6:

The Lorentzian doubly warped product Mf X eH is time-

orientable if and only if (M,g) is time-orientable (ifdim M > 2)

or (M,g) is a one-dimensional manifold with a negative

definite metric.
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Proof:

Suppose that Mg x eH is time-oriented by a continuous
timelike vector field X on M. x oHe If the dimension of M is
1 then we are done by the definition of Lorentzian warped
product, so consider the case dim M > 2. Fix a point q ¢ H
and let p = (p,q) ¢ M x H. Since h is positive definite and

X is timelike, we have

2
f(q)zg(ﬂ* xﬁ,n*x_) < £(q) g(ﬂ*xp,ﬂ*xﬁ)-+ e(p)zh(n*X

P

pln*xﬁ)

X_,X=) <0.
g ( B p)

Il

Thus, g(ﬂ*Xp,ﬂ*XE) < 0 for each p ¢ M x H showing that

T, (M x g)(X) is a continuous timelike vector field on M x q.

The vector field defined on M by §m = W*|(M x q) ( will

X
Y (m,q)
time-orient (M,qg).
Conversely, suppose dim M = 2 and (M,g) is time orient-
ed by a vector field V. Lift V to a vector field V on

Mg x H such that m,V =V, Nyv = 0. Then for

f
p = (p,q) ¢ M x H

- _ 2 2 .
g(vﬁ,vﬁ) = f(q) g(vp,vp) + e(p) h(oq,oq) 0

since g(v_,v_) < 0. Thus V time orients M_ x H.
p P f e

Now consider the case dim M = 1 so that M is diffeo-
morphic to sl or R. In either case let T be a smooth vector
field on M with g(T,T) = -1. The lift T to Mf X eH time

orients Mf‘x eH.
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In our discussion of causality we begin by considering
the case when M is a one-dimensional manifold with a nega-
tive definite metric -dt2. As noted above, M is diffeo-

S1 the integral curves of

I

morphic to Sl or R. In case M
the time orienting vector field T in the proof of Lemma 3.6
are closed timelike curves. Hence S% x eH is never chrono-

logical.

In the case M = R we have the following proposition.

Proposition 3.7

Let (H,h) be an arbitrary Riemannian manifold and let
M = (a,b) for -» < a < b < « be given the negative definite
metric -dt2. Let £ : H > (0,*) and e: (a,b) - (0,») be
arbitrary smooth functions. Then the Lorentzian doubly
warped product M = (a,b)f x eH with metric g = —f2 dt2 ® e2h

is stably causal, and consequently, strongly causal, dis-

tinguishing, causal, and chronological.

Proof:

To show stable causality it suffices to show
M = (a,b); x JH admits a time function. Let F:M>R be
defined by F(t,x) = t for (t,x) ¢ (a,b) x H. We need to
show §(grad F, grad F) < 0. Note that F is the 1ift on (a,b)

to (a,b)f x eH of the identity function F: (a,b) » R

defined by F(t) = t. The gradient of F on (a,b) is given by
grad F = - g%, By Lemma 3.2 the gradient on M of the 1ift
F = Fom is 1/f(n)2 times the lift to M of grad F. Thus,
= 1 0
grad_F = - .
7 2 ot

f(n)
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Hence,
pl = = - 1 k) 1 P
g(grad F , grad F ) = g(- ———n =—, 2
| (t,x) | (£,%) £(x)2 OF £(x)2 Ot
- L5
y
f(X)4 ot ot
- 1
£ (x) 2
< 0.

By the hierarchy of causality conditions M is also chrono-

logical, causal, distinguishing and strongly causal.

Corollary 3.8

Every standard static space-time (Definition 2.2) is

stably causal.

Now, causality in a Lorentzian warped product Mf x eH
with metric f2g ® e’h where (M,g) is a space-time of

dim M > 2 will be discussed.

Lemma 3.9
Let p = (pl’pZ)' q = (ql,qz) be two points in M_ x H.
Then

(a) p << g implies Py << 9y

(b) p < gq implies Py = 9y



34

Proof:
If p << g then there is a future-directed timelike

curve Y in Mf x eH from p to q. Then

IA

E(n (Y (£)))2g(me¥emay) < £ (Y (£))) 2g(n,y,m,7)
+ e(m(y(£)))%h(m,¥,m,7)
= g(Y(t),y(t))

< 0.

Thus g(ﬂ*Q,ﬂ*Q) < 0. Since w*§(t) = (moy) (t), moy is a
timelike curve in M from Py to dq-
Thus Py << dp- The second implication follows

similarly.

Lemma 3.10

Let pl,q1 e M and b ¢ H. Set p = (pl,b) and q = (ql,b).

Then

(a) Py << gy implies p << g

(b) p; = q implies p < q.
Proof:

Let Yl: [0,1] - M be a future-directed timelike curve
from p, to q,. Define y: [0,1] » M. x H by v(t) = (v, (t),b)

for 0 <t < 1. Then Yy is a future-directed timelike curve
from p to q, and thus p << q. The second implication is

proved similarly.



Lemmas 3.9 and 3.10 imply that each leaf n T(g) = M x g
has the same chronology and causality as (M,g). In fact, we

can state the following result.

Proposition 3.11

Let (M,g) be a space-time and (H,h) an arbitrary Rie-
mannian manifold. The Lorentzian doubly warped product
(M x eH,§) is causal (resp. chronological) if and only if

the Lorentzian manifold (M,g) is causal (resp. chronological).

Proof:

We will prove the causal assertion. The chronological
assertion has a similar proof. Suppose (Mf x eH,§) is not
causal. Then there are points p,q e Mg x oH with p < g < p.
But Lemma 3.9 implies m(p) < m(q) < mw(p). Therefore, (M,9)
is not causal.

Now suppose (M,g) is not causal. That is, assume there
are points p;/q; € M such that Py, <4y < p;. Define
p = (p;,b) and q = (q,,b) for some b ¢ H. Lemma 3.10 implies

P £ g < p so Mf X eH is not causal.

Similar propositions can be stated for strong causality

and stable causality.

Proposition 3.12

Let (M,g) be a space-time and (H,h) an arbitrary Rie-
mannian manifold. Then (Mf X eH,§) is strongly causal if

and only if (M,g) is strongly causal.



36

Proof:

Assume (M,g) is not strongly causal at Py € M. Let
b ¢ H and define p = (pl:b) e M x H. Since (M,g) is not
strongly causal at Py there is an open neighborhood Ul of
p; in M and a sequence {Yk : [0,1] » M} of future-directed
nonspacelike curves with Yk(O) > Py yk(l) > p, as k - o
but Yk(%) £ U, for all k. Define ot [0,1] > M x H by
ok(t) = (Yk(t):b)- Let Vl be any open neighborhood of b in
H and set U = U, x Vl in M x H. Then U is an open neighbor-
hood of p = (p;,b) in M x H and {Ok} is a sequence of
future-directed nonspacelike curves in Mg x H with ok(O) > p
and Ok(l) > p as k > © but Ok(%) ¢ U for all k. Thus

(M, x eH,§) is not strongly causal.

f
To show the converse, assume (Mf X eH,§) is not strongly

causal at p = (pl'ql)' Let (Xl""’xi) be local coordinates

on M near p, such that fzg has the form diag {-1,1,...,1}

at Py and let {xi+l,--',xn} be local coordinates on H near

q, such that h has the form diag {1,1,--+,1} at q,. Then

(x p X g X «++,x_) are local coordinates for M_ x eH

I A n £

near p. Futhermore, Fl = X and F2 = X oT are (locally
defined) time functions for (M,fzg) near p; and (Mf X eH,§)
near p, resp. Since Mf x eH is not strongly causal at p by
assumption, there is a sequence Yt [0,1] > M x H of future-
directed nonspacelike curves with Yy, (0) » p, Y (1) > p as

k > « but Fz(Yk(%)) > ¢ > 0 for all k and some parameteriza-

tion of Yy e Now choose a neighborhood W of Py in M such

that W is covered by local coordinates (xl,---,xi) and such
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that sup {Fl(r) : r e W £ ¢/2. This is possible since the
coordinates at p, are (0,0,-+-,0) and Fl = Xq- The pro-
jection ?k = moy, of the curve y, in M x H to M will be
future-directed and nonspacelike for each k and ?k(O) > Py
?k(l) > p; as k > >. Futhermore, ?k(%) £ W for all k since
if 7,(3) < W then F,(7,(3)) = ¢/2. But the last inequality
contradicts Fl(;l(%)) = Fl(ﬂ°Yk(%)) = Fz(yk(%)) > ¢ for

all k. Therefore, (M,g) is not strongly causal at Pq-

Before stating the result on stable causality, we recall
that a global time function is a continuous function £ : M » R
that is strictly increasing along future-directed nonspace-
like curves. A space-time is (M,g) stably causal if and

only if it admits a global time function [Hawking (1968)].

Proposition 3.13

Let (M,g) be a space-time and let (H,h) be an arbitrary
Riemannian manifold. The Lorentzian doubly warped product
Mf X eH is stably causal if and only if (M,g) is stably

causal.

Proof:

Assume (M,g) is stably causal with global time function
p + M > R. To show (Mg x eH,§) is stably causal, it suffices
to show that the 1lift ¥ = Yom : M X H > R of ¥ to Mf X eH

is a global time function. So consider a future-directed

nonspacelike curve Yy : (a,b) » M X H with nonvanishing



tangent vector &(t). Let o moy : (a,b) > M Dbe the pro-

jection of y into M. Then

IA

£(n(y (£)))2g(&(t),a(t)) < EM(y(£)))2g(a(t), a(t))

+ e(a(t)) 2h(n,y (t) ,n,y(£))

= g(y(t),y(t))

IA

0

since Q(t) is a future-directed nonspacelike tangent vector
for all t. Thus, g(&(t),&(t) < 0 and o is a nonspacelike
curve in M. It is easy to check that o is future-directed
and hence, for t; < t,, w(a(tl)) < W(a(tz)) since ¥ is a

global time function. Thus,

Il

¥(y(t))) = bem(y(t))) = vlalt))) < ylalt,))

por (v (t,)) Yy (ty)) for t, < t

1 2°

Therefore, ¥ is a global time function on Mf X eH.
Conversely, suppose Mf x eH is stably causal and let

¥ : M x H~> R be a global time function. Fix g ¢ H and

define y : M > R by y(m) = ¥(m,q). To show (M,g) is stably

causal we only need to show ¥y is a global time function on M.

Suppose y : (a,b) » M is a future-directed nonspacelike curve

in M and define Y : (a,b) * M x H by ¥(t) = (y(t),q). Then

(), (1)) = £0)2g(Y () v (£)) + e(Y(t))Zh(Oq,Oq) <0

since Q(t) is nonspacelike. Thus, ? is a nonspacelike curve

in Mg x H. Again it is easy to check that y is future-

directed. So for t; < t, we have ¥(Y(t;)) < ¥(Y(t,)).
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Also, Y(v(ty)) = ¥(¥(t),a@) = ¥(¥(t))) < ¥(¥(t,))

V(v (ty) @) = Bly(E,)) if £ < t,.

Therefore, y isaglobal time function for (M,g) and con-

sequently, (M,g) is stably causal.

To summarize what we have shown so far, the elementary
causality of a Lorentzian doubly warped product (Mf X eH’a)
is determined by the causality of the space-time factor (M,qg).
The most restrictive causality condition that we defined in
Chapter 2 was global hyperbolicity and we now turn our
attention to this important condition in doubly warped pro-
ducts.

Recall that two pseudo-Riemannian metrics 9, and g2 on M
are conformal if there exists a smooth function Q:M-» (0,%)
such that 9, = ng. It can be shown that two strongly
causal Lorentzian metrics 91 and 9, on M determine the same
past and future sets if and only if the two metrics are
conformal [cf. Beem and Ehrlich (1981, p.6)]. Hence the
causal structure of a space-time depends only on its con-
formal class.

For a singly Lorentzian warped product of the form
M x eH (dim M = 2), Beem and Ehrlich (1981, Theorem 2.55)
have proved that (M x _H, g & ezh) is globally hyperbolic
if and only if (M,g) is globally hyperbolic and (H,h) is a
complete Riemannian manifold. 1In case M = (a,b) < R,

2

((a,b) x eH, -dt® @ e2h) is globally hyperbolic if and only
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if (H,h) is complete.

Using the results above on singly warped products, the
dependency of causal structure on conformal classes, and the
observation that (M x HLf2g® e2h) is conformal to
(M x H, g & e%f—zh)), Beem and Powell (1982) proved the

following necessary and sufficient conditions for a doubly

warped product to be globally hyperbolic.

Theorem 3.14

Let (M,g) be a space-time and (H,h) a Riemannian mani-
fold. The doubly warped product Mf X eH is globally hyper-
bolic if and only if both of the following conditions are
satisfied:

(1) (M,g) is globally hyperbolic

(2) (H,f—zh) is complete.

By a similar argument the following theorem can be

established.

Theorem 3.15

Let (H,h) be a Riemannian manifold. The Lorentzian

doubly warped product R, X R with metric g = —f2 dt2 ® e2h

is globally hyperbolic if and only if (H, £ %h) is complete.

Thus the question of global hyperbolicity of a standard

static space-time (a,b)¢ x H is reduced to the question of

2

whether (H,f “h) is a complete Riemannian manifold.



4]

The following proposition gives conditions on the warp-

ing function £ : H » (0,*) which ensure that Mf X eH is

globally hyperbolic. This sufficient condition is more

straight-forward and easier to calculate then the condition

2

of completeness of (H,f “h) which is used in Theorems 3.14

and 3.15.

Theorem 3.16

Let (M,g) be a globally hyperbolic space-time (dim M > 2)

1

or else M = RY with metric -dt%. Let (H,h) be a complete

Riemannian manifold. Let £ : H > (0,) ande : M > (0,»)

be smooth functions. For a fixed p, € H define
DM (py,r) = {x € H : 4 (Pesx) < r} to be the ball in (H,h)
about p, of radius r. Define F : (0,») > (0,») by

3 . n ® dr = oo
F(r) = max {f(y) =y € D (posr)}. If Jo F(r)

then the Riemannian manifold (H,f_zh) is complete and the
Lorentzian doubly warped product Mf X eH is globally hyper-

bolic.

Proof:

By the Hopf-Rinow Theorem, in order to show (H,f_zh) is
complete it sufficies to show that it satisfies finite com-
pactness. That is, denoting the distance function associated
with the metric f—zh by d: HxH~»> (0,), we must show every

d - bounded subset of H has compact closure.
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Consider K, {p e H : a(po,p) < o}

and B

8 {p e H: 4 (P rP) < B}.

We claim that given o > 0, there exists a B > 0 such that

K < B 2

a B*

plete as follows. (H,h) is complete, and hence, finitely

From this assertion we can show (H,f “h) is com-

compact so that EB is compact for every B > 0. So Ru is

compact for K, < By. Now let K be an d-bounded subset of
H. Since K ¢ K < B, for some a > 0 and 8 > 0, K is compact.

Therefore (H,f-zh) is complete and by Theorem 3.14, Mf x eH

is globally hyperbolic.

It remains to prove that given a > 0, there exists a

roo
B > 0 such that K. < B,. Assuming dr = ®, we can choose
o 0 F(r)

B
° ar > a + 1. Suppose

Yy : [0,8] - H be any unit speed piecewise smooth curve with

0 € Ka\BB and let

B so that J
y(0) = pO’ Y(§) = XO' We can assume h(?,&) = 1 by taking a
strictly increasing reparametrization, if necessary. Since
X £ BB' B < dh(po,xo) < 6. Also for any t = 0,

d(p,,Y(t)) <t so y(t) e D (p st). Hence, F(t) > £(y(t))
for all t 2 0. Now consider the length of y with respect to

the metric f_zh.

6 i . [ (S B
JH(y (£) ,y (£)) 1 1
L _, (y) = J - dt = j > f —— dt >a+1.
£2p o E(y(t))? o F(t) o F(t)
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Since Y was an arbitrary curve (up to parameterization) from

p. to x., d(p.rx.) = inf {L (0) : 0 is a piecewise smooth
0 0 0°70 f-2h
path from Py to xo} > o. This last inequality contradicts

the choice of x. € Ku' Thus, Ka c B

0 B*

Corollary 3.17

Let (M,g) be a globally hyperbolic space-time or else
M =IR1 with metric —dt2 and let (H,h) be a complete Riemannian
manifold. If e: M > (0,®) is smooth and f : H - (0,b) is a
smooth bounded function then (Mf X eH,(}) is globablly hyper-

bolic.

groof:

If 0 < f(x) < L < » for all x € H then

F(r) = max {f(y) : y ¢ Dn(po,r)} < L where pO is any point
, * ar (® dr _ ,
in H. Thus, JO F(r) 2 JO L - Hence, Mf X eH is

globally hyperbolic by Theorem 3.14 or 3.15.
0

It should be noted that [Kemp (1981, p. 47-51)] stated
Corollary 3.17 for the case e = 1. Also, the converse of

3.17 fails as is shown by the following counterexample.

Example 3.18

1
Let (M,g) = (R, -dt?) and (H,h) = (R, ——— dx?).

1 + x4
Define f : H - (0,1] by f(x) =

and e = 1.

1
Vl+x4



44

2
Then (Mf x eH, -fzdt2 & -§§~Z) is globally hyperbolic

1 + x
and f is bounded but (H,h) fails to be complete.

Proof:
(H,£7°h) = (R,dx°) which is complete. Thus, M, x _H
is globally hyperbolic by Theorem 3.15. Let the pregeodesic

Y ¢ (=©,) > H be defined by Y(s) = s. Then

[ee)

[ee]

Jh(¥(s) .y (s) ds=J( 4 <.

- /1 + s4

shows Y has finite length and hence, (H,h) is incomplete.

L, (Y) = J

We can also state the following criterion for deter-

mining the failure of Mf X eH to be globally hyperbolic.

Theorem 3.19

Let (M,g) be a space-time or else M :ZRl with a negative
definite metric -at? and let (H,h) be a noncompact complete
Riemannian manifold. Let e : M > (0,®) and f : H > (0,x)

be smooth functions. For a fixed Py € H, define

[ee]

e . & dr & -2
G(r) = min {f(y): d(pO,Y) =r}. If fo E3N < then (H,f “h)

is incomplete and (Mf X eH,a) is not globally hyperbolic.

Suppose that (H,f_zh) is complete. Let y : (0,») - H
be a geodesic ray issuing from Py having unit speed. That
is, h(?,&) = 1 and Yy realizes the Riemannian<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>