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NONPARAMETRIC AND SEMIPARAMETRIC METHODS FOR

INTERVAL-CENSORED FAILURE TIME DATA

Chao Zhu

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Interval-censored failure time data commonly arise in follow-up studies such as clin-

ical trials and epidemiology studies. For their analysis, what interests researcher most

includes comparisons of survival functions for different groups and regression analysis.

This dissertation, which consists of three parts, consider these problems on two types of

interval-censored data by using nonparametric and semiparametric methods.

In Chapter 2, we discuss a goodness-of-fit test for checking the proportional odds (PO)

model with interval-censored data. The PO model has a feature that allows the ratio

of two hazard functions to be monotonic and converge to one. Hence, it provides an

important tool for modeling the situation where hazard functions are nonproportional.

We derive a procedure for testing the PO model, which is a generalization of Dauxois and

Kirmani (2003) for right-censored data. Simulation studies suggest that the proposed test

works well and we apply the test to a real dataset from an AIDS cohort study.

Chapters 3 considers nonparametric comparison of survival functions. For this, several

test procedures have been proposed for interval-censored failure time data in which distri-

butions of censoring intervals are identical among different treatment groups. Sometimes

these distributions may not be the same and depend on treatments. A class of test statis-

tics is proposed for situations where the distributions may be different for subjects in

different treatment groups. The asymptotic normality of the test statistics is established

and the test procedure is evaluated by simulations, which suggest that it works well. An

illustrative example is provided.

Chapter 4 discusses semiparametric regression analysis of two-sample current status

vii



data. For their regression analysis, One limitation of commonly used models is that

they cannot be used to situations where survival functions cross. We consider a class

of two-sample models that include these commonly used models as special cases and

especially, are appropriate for crossing survival functions. Some estimating equation-based

approaches are presented and the proposed estimates of regression parameters are shown

to be consistent and asymptotically normally distributed. The method is evaluated using

simulation studies and applied to a set of current status data arising from a tumorgenicity

experiment.
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CHAPTER 1

INTRODUCTION

1.1 Basic Quantities in Survival Analysis

Survival analysis, or time-to-event data analysis is used predominately in biomedical

science where the interest is in observing time to death either of patients or of laboratory

animals. It has also been used widely in social sciences where interest is on analyzing

time to events such as job change, marriage, birth of children and so forth. The engineer-

ing science has also contributed to the development of survival analysis which is called

“reliability analysis” or “failure time analysis” in this field, where the main focus is on

modeling the time of machines or electronic components to break down. The data arising

from these fields are usually referred to as survival data, time-to-event data, or failure

time data. Note that the failure time, usually denoted by T , is a nonnegative random

variable.

The survival function of T is defined as S(t) = P (T ≥ t) = 1 − F (t), where F (t) is

the cumulative distribution function (CDF). S(t) is the probability that an individual

experiences the event no earlier than time t. In survival analysis, the survival function

of a failure time is preferred over the cumulative distribution function because it is more

intuitive and easier to communicate with people in applied fields where survival data

occur such as medical sciences.

In addition to the survival function, the hazard function and the cumulative hazard
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function of T are also commonly used in modeling T because of their conveniences. When

T is continuous, the hazard function of T is defined as

λ(t) = lim
∆t→0

1

∆t
P (t ≤ T < t + ∆t|T ≥ t) =

f(t)

S(t)
= −[

d

dt
{S(t)}]/S(t),

where f(t) = dF (t)/dt is the density function of T . Note that λ(t) is the instantaneous

failure rate at time t given that an individual survives up to time t−. The cumulative

hazard function is defined as

Λ(t) =

∫ t

0

λ(u)du.

It is easy to see that

S(t) = exp[−Λ(t)] = exp[−
∫ t

0

λ(u)du].

Thus, S(t), λ(t), or Λ(t) uniquely determines the distribution of T .

If T is a discrete random variable taking values 0 = t0 < t1 < t2 · · · , the hazard function

is defined as

λ(tj) = P (T = tj|T ≥ tj) =
f(tj)

S(tj)
, j = 1, 2, · · ·

where S(t0) = 1 and f(tj) = S(tj)−S(tj+1), j = 1, 2, · · · . The cumulative hazard function

is defined as

Λ(t) =
∑
tj≤t

λ(tj).

1.2 Typical Censoring Mechanisms and Examples

Imagine that you are a researcher in a hospital for studying the effectiveness of a new

treatment for a generally terminal disease. The major variable of interest could be the

number of days (failure time T ) that the patient with the disease survives. In principle,
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if everyone dies, one could use the standard parametric and nonparametric statistics for

describing the average survival and for comparing the new treatment with traditional

treatments. However, at the end of the study there may be patients who survive over

the entire study period, in particular among those patients who entered the hospital (and

the research project) late in the study. Also there may be other patients with whom we

lose contact. Surely, one would not want to exclude all of these patients from the study

by declaring them to be missing (since most of them are “survivors” and, therefore, they

reflect on the success of the new treatment method). These observations, which contain

only partial information, are called censored observations (e.g., patient A survived at least

4 months before he moved away and we lost contact. The term censoring was first used

by Hald, 1949).

Above is an example of right censoring. It is the most commonly encountered censoring

mechanism in many fields such as clinical trials, environmental science, insurance, and

manufacturing. Two common types of right censoring are Type I and Type II censoring.

The Type I right censoring means that there is a fixed censoring time C and the exact

failure time X of an individual is known if and only if X is less than or equal to C. If

X is greater than C, his or her event time is censored at C. The data from this type of

experiments can be conveniently represented by pairs of random variables (T, δ), where δ

indicates whether the survival time is observed (δ = 1) or censored (δ = 0) and T is equal

to X if the survival time is observed and C if it is censored, i.e., T = min(X,C).

Type II right censoring means that a study continues until r failures occur, where r is

a predetermined integer (r < n). Experiments involving Type II censoring are often used

in testing of equipment life. Here, all items are put on test at the same time and the test

3



is terminated when r of the n items have failed. Such an experiment may save time and

money because it could take a very long time for all items to fail. Also the statistical

treatment of Type II censored data is simpler in some sense because the data consist of

the r smallest survival times in a random sample of n survival times and the theory of

order statistics is directly applicable.

A failure time T associated with a specific individual in a study is considered to be left

censored if it is less than a censoring time Cl, that is, the event of interest has already

occurred for the individual before that person enters the study at time Cl. For such

individuals, we know that they have experienced the event some time before time Cl,

but their exact event time is unknown. For example, on a survey questionnaire, the

investigator wonders when the individual first used marijuana. A subject is then left

censored if he/she admits that he/she has used it before but cannot recall when the first

time was.

Interval censoring is another type of censoring mechanism. There exist two types of

interval-censored data, case I and II interval-censored data (Groeneboom and Wellner,

1992; Sun, 2005). The former, which is also often referred to as current status data,

means that each subject is observed only once and thus the failure event of interest is

observed only to have occurred before the observation time or not yet. In other words,

the failure time of interest T is either left- or right-censored. Case I interval-censored data

commonly occur in, for example, tumorigenicity experiments. In these experiments, the

tumor onset time of animals is usually of main interest but not observable. Instead, only

tumor status is usually known at death (either natural death or being sacrificed). Thus,

the tumor onset time is known only to be less or greater than the death time.

4



Case II interval-censored data mean that the failure time T is known only to belong to

an interval, say [L,R]. They reduce to case I interval-censored data if the interval includes

either 0 or infinity. This type of data arises in many medical and health studies that entail

periodic follow-ups. In this situation, an individual due for scheduled observations for a

clinically observed change in disease status may miss some observations and may return

with a changed status, thus contributing an interval-censored time of the occurrence of

the change. Another example arises in the acquired immune deficiency syndrome (AIDS)

studies that concern the human immunodeficiency virus (HIV) infection and the AIDS

incubation time (the time from HIV infection to AIDS diagnosis). In this case if a subject

is HIV positive at the beginning of the study, his or her HIV infection time is usually

determined by a retrospective study of the subject’s history. Thus only an interval given

by the last HIV negative test and the first HIV positive test is known for the HIV infection

time.

Another way to represent a case II interval-censored observation is to use {U, V, δ1 =

I(T ≤ U), δ2 = I(U < T ≤ V ), δ3 = 1− δ1 − δ2 } assuming that each subject is observed

twice, where U and V are two random variables satisfying U ≤ V with probability 1. This

formulation is convenient and often used, for example, in a theoretical investigation of an

inference procedure. Both representations give rise to the same likelihood function. Note

that although (U, V ) representation seems natural, it is not common to have interval-

censored data collected or given in these formats in practice. However, it is much easier

and more natural to impose assmptions such as independence with T on them than on

(L,R) representation, which is often needed for derivation of the asymptotic properties of

inference procedures. For data given in (U, V ) representation, one can easily obtain the
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corresponding data with (L,R) representation. More discussion on this is given in later

chapters.

1.3 Parametric and Semiparametric Models in Survival Analysis

In this section, we review some commonly used parametric and semiparametric models

in survival analysis.

1.3.1 Parametric models

Parametric models (for the failure time T ) naturally smooth the data by “borrowing”

information from adjacent points. With growing computing power and existing statis-

tical programming languages, it is relatively simple to work with exact likelihood for

interval-censored data with a variety of parametric models. Among other distributions,

the exponential, Weibull and log-logistic distributions are mostly used in practice. We

shall briefly introduce the latter two distributions in the following.

Suppose that T is continuous. By Weibull distribution, we mean that T has density

function

f(t) = α η tα−1 exp{−η tα},

where α > 0 and η > 0. Thus the survival function of T is

S(t) = exp{−η tα}

and the hazard function is

λ(t) = α η tα−1.

6



The corresponding cumulative hazard function is

Λ(t) =

∫ t

0

α η tα−1dt = η tα.

Note that the Weibull distribution is flexible enough to accommodate increasing (α >

1), decreasing (α < 1), or constant (α = 1) hazard rates. When α = 1, the Weibull

distribution reduces to the exponential distribution with λ(t) = η.

A failure time T is said to follow the log-logistic distribution if its logarithm, Y =ln(T ),

follows the logistic distribution, a distribution closely resembling the normal distribution.

Its survival function and hazard rate may be written as

S(t) =
1

1 + η tα

and

λ(t) =
α η tα−1

1 + η tα
.

The numerator of the hazard function is the same as the Weibull hazard, but the denom-

inator allows the hazard to possess the following characteristics: monotone decreasing

for α ≤ 1, and for α > 1, the hazard rate increases initially to a maximum at time

[(α− 1)/η]1/α and then decreases to zero as time approaches infinity.

1.3.2 The proportional hazards model

Although the analysis of interval-censored data based on parametric models can be

simple and efficient if the model is correctly specified, they are not widely used since

the model choice is hard to determine in many situations. Instead, one usually looks

for semiparametric or nonparametric methods. For the former, a common used model is

the proportional hazards (PH) model, also referred to as the Cox model (Cox, 1972). It

7



specifies the hazard function of a continuous survival time T to have the form

λ(t|Z) = λ0(t) exp{β′Z}

given covariates Z which may depend on time, where β is a p × 1 vector of unknown

regression parameters and λ0(t), the baseline hazard, is an unknown and unspecified

function. Note that the proportionality comes from the fact that, for example, if we look

at two individuals with covariate values Z and Z∗, the ratio of their hazard functions is

λ(t|Z)

λ(t|Z∗)
=

λ0(t) exp[
∑p

k=1 βkZk]

λ0(t) exp[
∑p

k=1 βkZ∗
k ]

= exp

[
p∑

k=1

βk(Zk − Z∗
k)

]
,

which is a constant, where β = (β1, ..., βp). Usually β is of the main interest and can

be estimated independently by the partial likelihood approach (Cox, 1975) when right-

censored data are observed. This appealing property of the PH model, together with its

great flexibility, has made it one of the most popular models in survival analysis during

the past three decades.

Diamond et al. (1986) were the first to use the PH model on case I interval cen-

sored data. Their methods, however, require estimation of the baseline hazard λ0(t).

Huang (1996a) gave a systematic treatment of the proportional hazards model under case

I interval censoring. He showed that, under certain regularity conditions, β̂n, the max-

imum likelihood estimator (MLE) of β, is consistent with an n1/2 convergence rate and

has an asymptotic normal distribution with the limiting variance given by the inverse of

the Fisher information of β. However, Λ̂n, the MLE of the cumulative hazard function,

is only consistent with an n1/3 convergence rate, and its asymptotic distribution is un-

known. Finkelstein (1986) proposed to use the Newton-Raphson algorithm to compute

the MLE of the regression parameter β and the baseline cumulative hazard function for

8



case II interval censoring. Satten (1996) proposed a marginal likelihood method to fit

the proportional hazards model to case II interval-censored data, and Pan (2000) applied

a multiple imputation approach for comparing two treatments. Betensky et al. (2002)

proposed a local likelihood method mainly for estimating the baseline hazard function,

while Cai and Betensky (2003) introduced piecewise linear penalized spline for the same

purpose.

1.3.3 The proportional odds model

An important alternative to the PH model is the proportional odds (PO) model, which

assumes that

log{F (t|Z)/S(t|Z)} = h(t) + β′Z,

where F (t|Z) and S(t|Z) denote the distribution function and the survival function of T

given Z, respectively, and h(t) is a baseline monotone-increasing function, also referred

to as the baseline log odds. The original PO model was developed by McCullagh (1980)

for analyzing ordinal data. Although this model is not as commonly used as the PH

model when censored data are observed, partly due to the lack of a widely accepted

estimation procedure for regression parameter β, it does provide certain flexibility that the

PH model can not. For instance, the initial effect of treatment, or the differences between

stages of the disease at diagnosis, may diminish with time and the hazard functions of

different groups of patients should become more similar. In this case, two hazard functions

from different treatment groups are not proportional, but changing with time. Thus the

assumption of the PH model, which requires a constant ratio for two hazard functions, is

then violated. One of the earliest applications of the PO model on interval censoring was
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given by Dinse and Lagakos (1983). Rossini and Tsiatis (1996) also discussed the fitting

of this model to case I interval censoring with approximating the baseline log odds by

step functions, thus obtaining consistent and asymptotic normal estimators for β. Huang

and Rossini (1997) and Rabinowitz et al. (2000) considered the sieve estimation and

the approximated score function methods, respectively. For asymptotic properties and

computation of the MLEs of β and h(t), see Huang and Wellner (1996).

1.4 Nonparametric Survival Analysis

In addition to the semiparametric models discussed in the previous section, nonparamet-

ric methods for the analysis of survival data have also attracted much attention. Similar

to the semiparametric methods, nonparametric methods do not require the knowledge

of the underlying distribution of the failure time T . Hence it provides a flexible way to

deal with the data in many practical situations. In this section, we review some classical

problems that can be addressed by using nonparametric methods.

1.4.1 Nonparametric Estimation of a Survival Function

One of the basic research problems in survival analysis is the estimation of a survival

function, for which numerous methods have been proposed under different censoring mech-

anisms. For right-censored data, consider a survival study that consists of n independent

subjects. Let S(t) denote the true survival function and t0 = 0 < t1 < t2 < . . . < tk+1 = ∞

the observed failure times. Define

dj = the number of failures at tj,

rj = the number of subjects at risk at t−j ,

10



cj = the number of subjects censored in [tj, tj+1),

tj1, . . . , tjcj
=censored survival times in [tj, tj+1) j = 0, 1, . . . , k.

The likelihood function is then proportional to

L =
k∏

j=0

{
[S(tj)− S(tj+)]dj

cj∏
r=1

S(tjr+)

}

and the nonparametric maximum likelihood estimator (NPMLE) of S(t) is given by

Kaplan-Meier estimator

Ŝ(t) =
∏

j|tj<t

rj − dj

rj

(Kaplan and Meier, 1958).

A closely related estimator of a survival function is given by S̃(t) = exp{−Λ̃(t)}, where

Λ̃(t) is the Nelson-Aalen estimator of the cumulative hazard function and has the form

Λ̃(t) =
∑

j:t(j)≤t

dj

rj

(Nelson, 1972; Aalen, 1978).

For case I interval-censored data or current status data, suppose that F denotes the

CDF of the survival time of interest. Then the NPMLE of F can be shown to be equal

to the isotonic regression of {d1/n1, ..., dm/nm} with weights {n1, ..., nm}, where dj =

∑
i∈Sj

I(Ti ≤ sj), nj = |Sj| and Sj denotes the set of subjects who are observed at sj,

j = 1, ..., m. Thus by using the max-min formula for an isotonic regression (Barlow et

al., 1972), the NPMLE of F can be written as

F̂n(sj) = max
u≤j

min
v≥j

(
v∑

l=u

dj/
v∑

l=u

nj).

It can be shown that the above F̂n is consistent. Furthermore, as n → ∞ and at

fixed time point t0, F̂n(t0) has a limiting, non-normal distribution at n1/3 or (n log n)1/3
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convergence rate depending on if the probability of observing T = t0 is zero or away from

zero. Note that this is different than the usual n1/2-covergence rate. However, the integral

of F̂n and its linear functionals can be shown to have asymptotic normal distribution with

n1/2-convergence (Huang et al., 1995 and Geskus, 1999). Anderson et al.(1995) utilized

this property and constructed a nonparametric test procedure based on the asymptotic

normality for comparing two survival functions with case I interval-censored data.

For case II interval-censored data, suppose that observed data can be represented by

{Ii}n
i=1, where Ii = [Li, Ri) is the interval observed to contain the unobserved survival

time associated with the ith subject. If Li = 0, we have a left-censored observation and

if Ri = ∞, we have a right-censored observation. Let {sj}m+1
j=0 denote the unique ordered

elements of {0, {Li}n
i=1, {Ri}n

i=1,∞}, αij be the indicator of the event [sj−1, sj) ⊆ Ii and

pj = F (sj)− F (sj−1). Then the likelihood function of p = (p1, . . . , pm+1)
′
is proportional

to

L(p) =
n∏

i=1

{F (Ri)− F (Li)} =
n∏

i=1

(
m+1∑
j=1

αijpj)

and the problem of finding the nonparametric maximum likelihood estimator of F becomes

that of maximizing L(p) with respect to p subject to
∑m+1

j=1 pj = 1 and pj ≥ 0(j =

1, . . . , m + 1)

To maximize L(p) with respect to p, a simple and common way is to use the self-

consistency algorithm proposed by Turnbull (1976). In this case, the estimator of pj can

be easily obtained by using the following equation on the pj:

pj =
1

n

n∑
i=1

αijpj∑m+1
l=1 αilpl

, for j = 1, . . . , r .
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Note that the above self-consistency algorithm can be seen as a special case of the

EM algorithm. Although it is easy to implement, it has been known to have a slow

convergence rate. Alternatively, Groeneboom and Wellner (1992) developed a convex

minorant algorithm, which converges faster than the self-consistency algorithm. However,

both algorithms are iterative and in fact, there is no closed form for the NPMLE of F .

1.4.2 Comparisons of Survival Functions

The comparison of survival functions is a major goal of many survival studies such as

clinic trials. There usually exist two general approaches for the comparison. One approach

is to use semiparametric regression techniques, and the other is to use nonparametric test

procedures. In the first approach, treatment indicators are included in regression models

as covariates. Then certain types of tests, such as the score test, can be developed to

test whether or not the corresponding regression coefficients are zero. In the second

approach, distribution free procedures are developed to compare survival functions. Most

such procedures use the ranks of failure times instead of the actual failure times, and they

assume that censoring time distributions are the same across treatment groups.

In the case of nonparametric comparisons for right-censored data, the log-rank test

(Mantel 1966), a generalization of the Savage test (1956), is the most commonly used

procedure. It can be shown that the log-rank test statistic is actually the same as the

score statistic from the partial likelihood under the PH model. In other words, the log-

rank test is the locally most powerful test. Other nonparametric test procedures include:

the weighted log-rank tests (Gehan, 1965; Breslow, 1970; Peto and Peto, 1972; Harrington

and Fleming, 1982) and the procedures based on the differences between weighted Kaplan-
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Meier estimates (Pepe and Fleming, 1989). For the first class, different weights can be used

to adjust the sensitivity of the tests to the difference between hazard functions over time.

However, the test procedures in this class could have low power if the hazard functions

cross. In the second class, the tests may not be sensitive to the hazard differences because

they are based on the differences of estimated survival functions. Obviously, such tests

would not be efficient if the survival functions cross.

Several nonparametric test procedures have been developed to compare failure time

distributions for interval-censored data. In addition to the test derived by Anderson et

al. (1995) as above, Sun (1996) developed a log-rank type test, which is a counterpart of

the log-rank test used for right-censored data, and Pan (2000) proposed a two-sample test

using a multiple imputation approach. Petroni and Wolfe (1994) considered procedures

based on the differences between the estimated survival functions. Lim and Sun (2003)

investigated three classes of procedures based on the differences between the estimated

survival functions, estimated hazard functions, and estimated cumulative hazard func-

tions, respectively, using different distance measures. Most existing procedures, such as

those proposed by Sun (1996) and Petroni and Wolfe (1994), can be viewed as special

cases of their approaches. However, for most nonparametric test procedures, the methods

are ad-hoc and the asymptotic properties of the test statistics are unknown. Also, they do

not reduce to the log-rank test, the locally most powerful test, in the case of right-censored

data.

1.5 Outline

The remaining part of this dissertation is organized as follows. Chapter 2 discusses
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the goodness-of-fit test of the proportional odds model with interval-censored data. As

mentioned in Section 1.3, the PH model is the most commonly used model for regression

problems. However, this model has been found to be inappropriate for some data sets due

to the fact that hazard functions from different treatment groups are not proportional,

but changing with time. In contrast, the PO model has a feature that allows the ratio

of two hazard functions to be monotonic and converge to one. Hence, it provides an

important tool for modeling the situation above. Unfortunately, there are no methods

available for checking the PO model with interval-censored data. Corresponding to this,

a procedure for testing the PO model is derived and its performance is evaluated by a

simulation study. In addition, the proposed test procedure is applied to a data set from

an AIDS cohort study.

In Chapter 3, we consider the nonparametric comparison of two survival functions in

the presence of unequal censoring. Most existing methods assume that the distribution

of observation times for two samples are identical. However, there exist cases that the

observation times may depend on the treatments (covariates). A comparison not account-

ing for differences in observation times could seriously overestimate or underestimate the

treatment difference. A new test procedure is thus established. Simulation studies are

conducted to compare the proposed test with two other procedures. Finally, an applica-

tion from an AIDS cohort study is provided for illustration.

Chapter 4 considers semiparametric regression analysis of two-sample current status

data. In practice, there exist situations when the data provide evidence of crossing hazard

functions. For example, a treatment could be effective in the long run but may have

certain adverse effects during the early stage. In this situation, the hazard functions may
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cross. The commonly used semiparametric models mentioned above do not accommodate

such a crossing phenomenon. In this chapter, we describe a two-sample semiparametric

model that can accommodate crossing survival functions. The parameters in this model

are two summary parameters that represent the short-term and long-term hazard ratios

respectively. The model includes the proportional hazards model and the proportional

odds model as special cases. Simulation studies show that the estimators perform well.

In addition, a real dataset from a carcinogenicity experiment is provided for illustration

purpose.

This dissertation concludes with Chapter 5, which discusses several directions for future

research.
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CHAPTER 2

TESTING THE PROPORTIONAL ODDS MODEL FOR

INTERVAL-CENSORED DATA

2.1 Introduction

Consider a survival study that involves two independent survival variables T1 and T2

with continuous distributions F1(t) and F2(t). The proportional odds (PO) model postu-

lates that

1 − F2(t)

F2(t)
= eβ 1 − F1(t)

F1(t)
,

where β is a constant. Define φi(t) = (1−Fi(t))/Fi(t), i = 1, 2. Then the PO model can

be rewritten as φ2(t) = α φ1(t), where α = eβ. That is, the odds of the survival between

the two samples are proportional to each other. Let λi(t) denote the hazard function

corresponding to Fi(t). Under the PO model, we have that

λ2(t)

λ1(t)
=

1

1 + (α− 1) {1− F1(t)} ,

which is a monotonic function and converges to 1 as t → ∞.

The PO model is attractive in many situations. This is especially the case when the ratio

of the two hazards are not proportional, but changing with time. One of such example is

that treatment effect diminishes along with time. Many authors have discussed inference

about the PO model (Dabrowska and Doksum, 1988; Huang and Rossini, 1997; Rossini

and Tsiatis, 1996; Murphy, Rosssini and van der Vaart, 1997; Shen, 1998). In particular,
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Dauxois and Kirmani (2003) developed a procedure for testing the PO model for two

sample right-censored failure time data. For inference based on interval-censored failure

time data, Huang and Rossini (1997) and Rossini and Tsiatis (1996) proposed some

sieve estimation approaches. Huang and Wellner (1997) and Rabinowitz et al. (2000)

considered the same problem and studied the full likelihood approach and an approximate

conditional likelihood approach, respectively.

Let w1(t) and w2(t) be two positive known weight functions such that the ratio w1/w2

is an increasing function. Define θij =
∫ τ2

τ1
wi(t) φj(t) dt, where τ1 and τ2 are prespecified

constants such that τ1 < τ2 with Fi(τ1) > 0 and Fi(τ2) < 1, i, j = 1, 2. To test the

PO model or the hypothesis H0 : φ2(t) = α φ1(t) for all t > 0 and some α > 0 against

H1 : φ2(t) and φ1(t) are not proportional, Dauxois and Kirmani (2003) proposed to use

the statistic

q(w1, w2) = θ11 θ22 − θ12 θ21 (2.1)

with replacing 1−Fi(t) by their Kaplan-Meier estimators. In the following, we generalize

the above test procedure to the interval-censored failure time data situation.

Interval-censored data have become common as described in Chapter 1. However,

there does not seem to exist a procedure to test the PO model for interval-censored data.

Note that in this case, the Kaplan-Meier estimator does not exist anymore and also due

to the significant difference between right-censoring and interval-censoring, the theory

developed in Dauxois and Kirmani (2003) cannot be directly generalized to interval-

censored data. For example, the Kaplan-Meier estimator has a
√

n convergence rate,

but the nonparametric maximum likelihood estimator of a survival function for interval-

censored data may only have a n1/3 convergence rate (Groeneboom, 1996). Fortunately,
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Geskus and Groeneboom (1999) showed that under some conditions, the linear functional

of the nonparametric maximum likelihood estimator from interval-censored data still has

the usual
√

n convergence rate.

In the following, we first discuss in Section 2.2 the generalization of the test procedure

given in Dauxois and Kirmani (2003) to two sample interval-censored data situations and

the related asymptotic theory is established. Note that although the idea behind the

generalized test is straightforward, the implementation and the derivation of asymptotic

properties of the test are not trivial due to complex structure of interval-censored data.

Section 2.3 considers the testing of the hypothesis H0 against H1 using the theory given

in Section 2.2 and two implementation procedures are presented. In Section 2.4, the test

procedure given in the previous sections is generalized to situations where there exists

a categorical covariate or K different populations with K ≥ 2. Simulation results for

assessing the performance of the proposed method are reported in Section 2.5 and Section

2.6 applies the method to a set of interval-censored data arising from an AIDS study. The

chapter concludes with some remarks in Section 2.7.

2.2 Asymptotic theory for two- sample interval-censored data

In this section, we first consider situations where only two sample interval-censored

data are available for T1 and T2 defined above. By this, we mean that Ti is not observable

except for knowing that it belongs to some interval given by

{Ui, Vi, ∆i1 = I(Ti ≤ Ui), ∆i2 = I(Ui < Ti ≤ Vi)} ,

where Ui ≤ Vi are random monitoring times for Ti and I(·) is the indicator function,
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i = 1, 2. In the following, we assume that Ti is independent of (Ui, Vi) and the observed

data are

{Uij, Vij, ∆
(j)
i1 , ∆

(j)
i2 , i = 1, 2, j = 1, ..., ni} ,

where {Uij, Vij, ∆
(j)
i1 , ∆

(j)
i2 } are i.i.d. replicates of (Ui, Vi, ∆i1, ∆i2).

Now consider the testing of the hypothesis H0. Let F̂i(t) denote the nonparametric

maximum likelihood estimator of Fi(t) based on the interval-censored data

{Uij, Vij, ∆
(j)
i1 , ∆

(j)
i2 ; j = 1, ..., ni}

and define

φ̂i(t) =
1− F̂i(t)

F̂i(t)
, i = 1, 2.

Motivated by the statistic given in equation (2.1), we propose to base the test on the

statistic

Qn(w1, w2) =
(n1n2

n

)1/2 [
θ̂11θ̂22 − θ̂12θ̂21

]
, (2.2)

where n = n1 + n2 and

θ̂ru =

∫ τ2

τ1

wr(t)φ̂u(t)dt , r = 1, 2, u = 1, 2 .

It is easy to see that if the hypothesis H0 is true, Qn(w1, w2) should be close to zero. Thus

H0 should be rejected in favor of the hypothesis H1 if |Qn(w1, w2)| is too large.

To employ the statistic Qn, we need to establish its asymptotic distribution under

the hypothesis H0. For this end, let Gi(u, v, δi1, δi2) denote the distribution function of

(Ui, Vi, ∆i1, ∆i2) and hi(u, v) the density function of (Ui, Vi) with the marginal density

functions hi1 and hi2 for Ui and Vi, respectively. Define

C1(t) =
θ12w2(t)− θ22w1(t)

F1(t)2
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and

C2(t) =
θ21w1(t)− θ11w2(t)

F2(t)2
.

Also let ΨFi
denote the solution to the following Fredholm integral equation

ΨFi
(t) = di(t)

{
Ci(t)−

∫ τ2

τ1

ΨFi
(t)−ΨFi

(s)

|Fi(t)− Fi(s)| h∗i (t, s)ds

}
, i = 1, 2, (2.3)

where di(t) = Fi(t)(1−Fi(t))/[hi1(t)(1−Fi(t)+hi2(t)Fi(t)] and h∗i (t, s) = hi(t, s)+hi(s, t).

Also define

Φi(u, v, δi1, δi2) = −δi1
ΨFi

(u)

Fi(u)
− δi2

ΨFi
(v)−ΨFi

(u)

Fi(v)− Fi(u)
+ (1− δi1 − δi2)

ΨFi
(v)

1− Fi(v)
.

Assume that the regularity conditions (A)-(D) of Fang, Sun and Lee (2002) hold about the

random monitoring times (Ui, Vi) (i = 1, 2). Then the asymptotic normality of Qn(w1, w2)

is given in the following theorem.

Theorem 2.1. Assume that the weight functions wi(t) (i = 1, 2) have bounded derivatives

on [τ1, τ2] and n1/n → ρ (0 < ρ < 1) as n → ∞. Then under the above conditions and

H0, Qn(w1, w2) has an asymptotic normal distribution with mean zero and variance

σ2 = (1− ρ)

∫
Φ2

1(u, v, δ11, δ12)dG1(u, v, δ11, δ12) + ρ

∫
Φ2

2(u, v, δ21, δ22)dG2(u, v, δ21, δ22).

(2.4)

The proof of this theorem is sketched in the Appendix. In the next section, we describe

the use of the results given above for testing H0.

2.3 Two-sample test procedure
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To test the hypothesis H0 by using the statistic Qn, we present two implementation

approaches based on the above theorem. One is to directly apply Qn by deriving a

consistent estimate of the asymptotic variance σ2 and the other is to employ a simple

bootstrap procedure.

First we consider estimation of σ2. For this, note that F̂i (i = 1, 2) only has mass at

observation times and according to Theorem 3.5 of Groeneboom (1996), ΨF̂i
is absolutely

continuous with respect to F̂i and a step function with jumps at the time points where

F̂i jumps. Let 0 < t
(i)
1 < ... < t

(i)
mi < ∞ denote the time points at which F̂i has jumps

and z
(i)
j = F̂i(t

(i)
j ), i = 1, 2, j = 1, ..., mi. Also let Ĥi, Ĥi1 and Ĥi2 denote the empirical

distributions of (Ui, Vi), Ui and Vi, respectively. Define

∆j(hil) =

∫ t
(i)
j+1

t
(i)
j

hil(t)dt ≈
∫ t

(i)
j+1

t
(i)
j

dĤil(t) , l = 1, 2,

∆jk(hi) =

∫ t
(i)
j+1

u=t
(i)
j

∫ t
(i)
k+1

v=t
(i)
k

hi(u, v)dudv ≈
∫ t

(i)
j+1

u=t
(i)
j

∫ t
(i)
k+1

v=t
(i)
k

dĤi(u, v),

d
(i)
j =

z
(i)
j (1− z

(i)
j )

∆j(hi1)(1− z
(i)
j ) + ∆j(hi2)z

(i)
j

,

∆j(Ci) =

∫ t
(i)
j+1

t
(i)
j

dCi(t)dt ≈
∫ t

(i)
j+1

t
(i)
j

dĈi(t)

j, k = 1, ..., mi, i = 1, 2, where

Ĉ1(t) =
θ̂12w2(t)− θ̂22w1(t)

F̂1(t)2
, Ĉ2(t) =

θ̂21w1(t)− θ̂11w2(t)

F̂2(t)2
.

Let y
(i)
j = ΨF̂i

(t
(i)
j ). Then it can be shown that the vector y(i) = (y

(i)
1 , ..., y

(i)
mi)

′ (i = 1, 2) is

the unique solution to the following set of linear equations

y
(i)
j

{
(d

(i)
j )−1 +

∑

k<j

∆kj(hi)

z
(i)
j − z

(i)
k

+
∑

k>j

∆jk(hi)

z
(i)
k − z

(i)
j

}
= ∆j(Ci)+

∑

k<j

∆kj(hi)

z
(i)
j − z

(i)
k

y
(i)
k +

∑

k>j

∆jk(hi)

z
(i)
k − z

(i)
j

y
(i)
k

for j = 1, ..., mi (Theorem 3.1 of Geskus and Groeneboom, 1999).
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For each i, define

Φ̂i(u, v, δi1, δi2) = −δi1

ΨF̂i
(u)

F̂i(u)
− δi2

ΨF̂i
(v)−ΨF̂i

(u)

F̂i(v)− F̂i(u)
+ (1− δi1 − δi2)

ΨF̂i
(v)

1− F̂i(v)
.

It follows from the uniform consistency of Ĥi, Ĥi1, Ĥi2 and F̂i that Φ̂i(u, v, δi1, δi2) is

a uniformly consistent estimator of Φi(u, v, δi1, δi2). This naturally yields a consistent

estimator of σ2 given by

σ̂2 =
n2

n

∫
Φ̂2

1(u, v, δ11, δ12)dĜ1(u, v, δ11, δ12) +
n1

n

∫
Φ̂2

2(u, v, δ21, δ22)dĜ2(u, v, δ21, δ22) ,

(2.5)

where Ĝi is the empirical estimator of Gi. Hence the test of the hypothesis H0 can be

carried out by using the statistic Qn(w1, w2)/σ̂ based on the standard normal distribution.

Note that the above estimator σ̂2 is very technically involved due to the complexity of

the estimator ΨF̂i
. Thus the above procedure could be complicated and demanding in

computation, especially when the number of jumps of F̂i is not small. For this, we suggest

the following simple bootstrap procedure.

Let M be a prespecified integer and Q
(0)
n denote the observed value of the test statistic

Qn. For each i (= 1, 2) and l (1 ≤ l ≤ M), draw a simple random sample

D
(l)
i = {U

(l)
ij , V

(l)
ij , ∆

(jl)
i1 , ∆

(jl)
i2 , j = 1, ..., ni }

with replacement from the observed data on Ti. Let Q
(l)
n denote the value of statistic

Qn calculated based on the generated data set {D
(l)
1 , D

(l)
2 }. It follows from the theorem

given in the previous section that under H0 and when n is large, the bootstrap samples

{Q
(l)
n ; l = 1, ..., M } follow a normal distribution. The variance of Q

(0)
n can then be

estimated by the sample variance, say σ̂2
b , of the Q

(l)
n ’s and the hypothesis H0 can be

tested by using the statistic Q∗
n = Q

(0)
n /σ̂b based on the standard normal distribution.
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Similar bootstrap procedures have been used by Fang, Sun and Lee (2002) and Monaco,

Cai and Grizzle (2005) among others.

To implement the above test procedure, one needs to determine the maximum likelihood

estimator F̂i of Fi. For this, several procedures are available (Gentleman and Geyer,

1994; Sun, 2004) and perhaps the simplest procedure, which will be used below, is the

self-consistency algorithm given in Turnbull (1976). Also one needs to choose τ1 and τ2

and it is easy to see that to test H0 against H1 over all possible t, one should select them

to make the interval [τ1, τ2] as large as possible. Dauxois and Kirmani (2003) suggested

to choose them such that

0 < F̂i(τ1) < 10−3 , 0 < 1− F̂i(τ2) < 10−3 ,

i = 1, 2. Another choice that one has to make is the selection of weight functions w1

and w2 and different weight functions give different test statistics. It is apparent that

these weight functions set up the measurement scales for the null hypothesis. If the null

hypothesis is true, the test statistic Qn should be close to zero no matter what scales are

used and otherwise, Qn is away from zero. For the following numerical studies, we consider

several choices including the natural and simple functions w1(t) = 1 and w2(t) = 1/(1+t).

It should be noted that in practice, interval-censored data may be given in the form

{(Lij, Rij] , i = 1, 2, j = 1, ..., ni}, where (Lij, Rij] is the interval within which the failure

time of the jth subject from the ith group is observed to occur. This form is commonly

used in practice, while the form used above is more convenient and usually used for the

situation where the asymptotic property of an approach for interval-censored failure time

data is of interest. There is no difference between the two forms in terms of implementation

of the test procedure proposed here and other inference procedures (Huang and Wellner,
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1997).

2.4 K- sample test procedure

Now we consider situations where study subjects come from K different populations.

Let Tij denote the survival variable of interest from subject j in population i with the

cumulative distribution Fi(t), j = 1, ..., ni, i = 1, ..., K. As before, define

φi(t) =
1 − Fi(t)

Fi(t)
, i = 1, ..., K

and suppose that one is interested in testing the null hypothesis H ′
0 versus the alternative

hypothesis H ′
1, where

H ′
0 : φi(t) = αi φ1(t) for all t > 0 and some constants αi > 0, i = 2, ..., K,

H ′
1 : some φi(t) and φ1(t) are not proportional.

Furthermore, suppose that for the Tij’s, only interval-censored data are available and have

the form

{Uij, Vij, ∆
(j)
i1 , ∆

(j)
i2 ; j = 1, ..., ni, i = 1, ..., K }

as before, where ∆
(j)
i1 = I(Tij ≤ Uij), ∆

(j)
i2 = I(Uij < Tij ≤ Vij). In the following, it is

assumed that Tij is independent of (Uij, Vij).

As before, let F̂i(t) denote the nonparametric maximum likelihood estimator of Fi(t)

based on the interval-censored data {Uij, Vij, ∆
(j)
i1 , ∆

(j)
i2 ; j = 1, ..., ni } and define

φ̂i(t) =
1− F̂i(t)

F̂i(t)
, θ̂rk =

∫ τ2

τ1

wr(t) φ̂k(t) dt ,

i, r, k = 1, ..., K. In the above, τ1 and τ2 are defined as in the previous sections and

the wr(t)’s are some positive known weight functions such that w1/wr is an increasing
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function. To test H ′
0 versus H ′

1, as in Section 2.2, we propose to use the statistic Qn(w) =

(Q
(2)
n (w1, w2), ..., Q

(K)
n (w1, wK))′, where w = (w1, ..., wK)′ and

Q(i)
n (w1, wi) =

(n1ni

n

)1/2 (
θ̂11θ̂ii − θ̂1iθ̂i1

)

with n =
∑K

i=1 ni. It is apparent that if H ′
0 is true, all Q

(i)
n (w1, wi) should be close to

zero.

For the null asymptotic distribution of Qn(w), following the notation used in the pre-

vious sections, let Gi(u, v, δi1, δi2) denote the distribution function of (Ui1, Vi1, ∆
(1)
i1 , ∆

(1)
i2 )

and hi(u, v) the density function of (Ui1, Vi1) with the marginal density functions hi1 and

hi2 for Ui1 and Vi1, respectively, i = 1, ..., K. Define

Ci1(t) =
θ1iwi(t)− θiiw1(t)

F1(t)2
, Ci2(t) =

θi1w1(t)− θ11wi(t)

Fi(t)2
.

Also let Ψi1 and Ψi2 denote the solutions to the Fredholm integral equations

Ψi1(t) = d1(t)

{
Ci1(t)−

∫ τ2

τ1

Ψi1(t)−Ψi1(s)

|F1(t)− F1(s)| h
∗
1(t, s)ds

}

and

Ψi2(t) = di(t)

{
Ci2(t)−

∫ τ2

τ1

Ψi2(t)−Ψi2(s)

|Fi(t)− Fi(s)| h
∗
i (t, s)ds

}
,

respectively, where h∗i (t, s) = hi(t, s) + hi(s, t) and

di(t) =
Fi(t)(1− Fi(t))

hi1(t)(1− Fi(t)) + hi2(t)Fi(t)
.

Also define

Φi1(u, v, δ11, δ12) = −δ11
Ψi1(u)

F1(u)
− δ12

Ψi1(v)−Ψi1(u)

F1(v)− F1(u)
+ (1− δ11 − δ12)

Ψi1(v)

1− F1(v)

and

Φi2(u, v, δi1, δi2) = −δi1
Ψi2(u)

Fi(u)
− δi2

Ψi2(v)−Ψi2(u)

Fi(v)− Fi(u)
+ (1− δi1 − δi2)

Ψi2(v)

1− Fi(v)
,
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and assume that the regularity conditions (A)-(D) of Fang, Sun and Lee (2002) hold

about the random monitoring times (Uij, Vij) (i = 1, ..., K, j = 1, ..., ni). Then one can

generalize the theorem 2.1 as follows.

Theorem 2.2 Assume that the weight functions wi(t) (i = 1, ..., K) have bounded deriva-

tives on [τ1, τ2] and ni/n → ρi (0 < ρi < 1) as n →∞. Then under the above conditions

and H0, Qn(w) converges in distribution to a normal random vector with mean zero and

a covariance matrix Σ = (σij), i, j = 2, ..., K, where

σii = ρi

∫
Φ2

i1(u, v, δ11, δ12)dG1(u, v, δ11, δ12) + ρ1

∫
Φ2

i2(u, v, δi1, δi2)dGi(u, v, δi1, δi2),

and for i 6= j,

σij = (ρiρj)
1/2

∫
Φ2

i1(u, v, δ11, δ12)dG1(u, v, δ11, δ12).

The proof of the theorem given above is similar to that of the theorem 2.1 and thus

omitted. Based on this theorem, one can carry out the test of H ′
0 using the statistic

Q(w) Σ̂−1 Q′(w), where Σ̂ is a consistent estimator of Σ. For the implementation, as in

Section 3, one can easily develop a simple bootstrap procedure similar to that described

for the two sample situation.

2.5 Numerical Studies

This section reports some results obtained from simulation studies conducted for as-

sessing the performance of the proposed approach for testing the PO model. In the

study, we focused on the two sample situation and to generate T1 and T2, the log-logistic
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distributions F1(t) = F (1, β1) and F2(t) = F (α, β2) were used, where

F (α, β) =
(t/α)β

1 + (t/α)β

and α and β are constants. This gives φ2(t)/φ1(t) = αβ2 tβ1−β2 and H0 and H1 correspond

to β1 = β2 and β1 6= β2, respectively.

For censoring intervals, we mimicked interval-censored data commonly arising from

periodic follow-up studies and first generated a right-censoring time Cij from the uniform

distribution U(0, A), where A is a positive constant chosen to control the percentage of

right-censored observations. Given Cij, if Tij, the above generated failure time for the

jth subject from group i, is greater than Cij, we defined Lij = Cij and Rij = ∞.

That is, Tij was right-censored. If Tij ≤ Cij, we defined Lij = max(0, Tij − a1) and

Rij = min(Tij + a2, Cij), where a1 and a2 are random numbers generated independently

from the uniform distribution U(0, B). Here B is a positive constant controlling the length

of censoring intervals. For the variance estimation of Qn, the simple bootstrap procedure

was used and in the study, we took τ1 and τ2 to be the smallest and largest possible values.

Table 1 presents the estimated size and power of the test procedure based on Qn for

testing H0 at the significance level of 5% based on 1000 replications, M = 500, n1 = 100,

n2 = 150, w1(t) = 1 and w2(t) = 1/(1 + t). Here we considered the situations with

α = 2, β1 = 1, 1.5, 2, or 3, β2 = 1, and the percentage of right-censored observations

being 10%, 20% or 30%. The top half of the table is for the case where B = 0.5 and

the bottom half is for the case where B = 1. The results suggest that the test procedure

seems to have right size and reasonable power. As expected, the power decreases when

the length of censoring intervals increases.

To investigate the dependence of the power of the proposed test procedure on the
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sample size and weight function, we also performed simulations using different sample

sizes and weight functions. For example, under the same set-up as in Table 1 but with

n1 = 200 and n2 = 300, we obtained powers of 0.610, 0.467 and 0.403 for the situations

with β1 = 1.5, B = 1, and 10%, 20% and 30% right-censorings, respectively. For the

exact same situation but with n1 = 100, n2 = 150, w1(t) = t and w2(t) = 1/(1 + t),

the test gave powers of 0.398, 0.284 and 0.231, respectively. These results indicate that

as expected, the power of the test procedure increases as the sample size increases and

could depend on the selection of weight functions.

To evaluate the normal approximation given in Theorem, we studied the normal quan-

tile plots of the standardized test statistics. Figure 1 displays such plots for B = 0.5

and 1 with α = 2, β1 = β2 = 1 under 10%, 20% and 30% right censoring percentages,

respectively. They suggested that the normal approximation works well.

2.6 An Application

To illustrate the proposed methodology, consider the data presented in Tables 2 & 3,

which are reproduced from DeGruttola and Lagakos (1989). The data arose from a cohort

study on hemophiliacs that consists of 262 persons with hemophilia treated since 1978.

All patients were at the risk of being infected by HIV due to contaminated blood that

they received for their hemophilia. By the end of study, 197 subjects were confirmed to be

infected with HIV and among these infected subjects, 25 were found infected at their first

tests for the infection. Since the determination of HIV infection was based on periodic

blood test results, only interval-censored data were obtained for the infection times. One

objective of the study was to investigate the relationship between their HIV infection rate
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and the amount of blood that they received.

For this, in the original study, the patients were classified into two groups as the lightly

and heavily treated groups. In the former group (157), the patients received less than

1000 µg/kg in each year and in the other group (105), the patients received at least 1000

µg/kg of blood for at least one year between 1982 and 1985. In the study, the observed

time intervals for the HIV infection were measured in 6-month intervals.

Define T1 and T2 to be the times to HIV infection for the patients in the lightly and

heavily treated groups, respectively. To examine the appropriateness of the PO model for

the data set and the relationship of the distribution functions of T1 and T2, we applied

the test procedure proposed in the previous sections and obtained Q
(0)
n = 9.5547 with

the estimated standard error being 9.3053. In the procedure, we used w1(t) = 1 and

w2(t) = 1/(1 + t). This yielded a p-value of 0.305 for testing H0 against H1 and suggests

that the PO model seems to be appropriate for the data. By using w1(t) = t and

w2(t) = 1/(1 + t), we obtained a p-value of 0.384 and the same conclusion. For the

results, we took τ1 = 6 and τ2 = 17, the smallest and largest possible time points for T2.

To further investigate the fit of the PO model to the problem, we obtained the estima-

tors of the separate log odds ratio functions, log φ̂i(t), corresponding to the two groups

and they are presented in Figure 2. Note that if H0 is true, the two curves should be

roughly parallel to each other. Figure 2 again suggests that the PO model seems to fit

the data well.

2.7 Concluding Remarks

This chapter proposed a goodness-of-fit test procedure for the PO model for interval-
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censored failure time data. The analysis of interval-censored data has recently attracted

a lot of attention and several models including the PO model have been investigated for

their regression analysis. However, there seems to exist little research in the literature on

the development of formal approaches that can be used for model checking. One reason

is that the censoring mechanism involved in interval-censored data is much more difficult

to deal with than that in right-censored data in addition to less information given by

the interval-censored data. This can be seen from the problem considered here. The

simulation results suggested that the procedure given here seems to perform reasonably

well for practical situations.

Although the focus here is on K sample situations, the test procedure proposed in

the previous sections can be applied to situations with categorical covariates. However,

it does not seem to be straightforward to generalize the idea used here to continuous

covariate situations, for which some different test procedures need to be developed for

testing the PO model. Another important question that was not fully discussed in the

previous sections is the selection of optimal weight functions for a given situation. As

usual, this is a very difficult question (Sengupta, Bhattacharjee and Rajeev, 1998) and

the existence of interval-censoring makes it even more challenging. Of course, one may

first need to ask the existence of such weight functions, for which we have no clear answer.

One other direction for future research is the asymptotic validity of the simple bootstrap

procedure described in Section 2.3. Note that as mentioned before, several authors used

similar procedures (Fang, Sun and Lee, 2002; Monaco, Cai and Grizzle, 2005), but no

theoretical justification was given. Although the simulation study indicates that it works

well, it would be helpful and desirable to provide some justifications.
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CHAPTER 3

A NONPARAMETRIC TEST FOR INTERVAL-CENSORED DATA

WITH UNEQUAL CENSORING

3.1 Introduction

As discussed in Chapter 1, one of the primary objectives in clinical trials and epidemi-

ological studies is to compare survival functions. In this case, one usually prefers to apply

nonparametric methods due to the lack of knowledge about the underlying distributions

of the failure time of interest. In this chapter, we consider such nonparametric compar-

ison problems when only interval-censored failure time data are available. For survival

comparison based on interval-censored data, a few test procedures have been proposed

(Finkelstein, 1986; Self and Grossman, 1986; Fay, 1996; Pan, 2000; Petroni and Wolfe,

1994; Zhang et al., 2001, 2003; Zhao and Sun, 2004). However, most of them assume

that censoring intervals or observation times for all subjects have the same distribution

function, which obviously may not be true in practice. A failure to take into account this

difference in distributions could seriously overestimate or underestimate the treatment

difference. One exception is given by Sun (1999), who considered survival comparison

based on case I interval-censored data when the distributions of observation times differ

among different treatment groups.

In the following, we discuss the same problem as that in Sun (1999) for case II interval-

censored data. Specifically, we consider the two-sample survival comparison problem and a
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class of test statistics is presented in Section 3.2 that allow the distributions of observation

times to be different between two treatment groups. The statistics are constructed based

on linear functionals of estimated survival functions and are generalizations of those used

in Zhang et al. (2001). The asymptotic normality of the test statistic is established.

Monte Carlo simulation studies are performed to evaluate the finite sample properties of

the proposed approach in Section 3.3 and Section 3.4 applies it to an AIDS cohort study.

Some concluding remarks are given in Section 3.5.

3.2 Statistical Methods

Consider a survival study that consists of n independent subjects randomly assigned to

one of two treatments. For subject i, let Ti denote the failure time of interest and assume

that only an interval-censored observation on it is available. Specifically, suppose that

the observed information includes two random variables Ui and Vi with Ui ≤ Vi and the

indicator variables δ1 i = I(Ti ≤ Ui), δ2 i = I(Ui < Ti ≤ Vi) and δ3 i = 1 − δ1i − δ2i,

where I is the indicator function. It will be assumed that Ui and Vi are independent of Ti.

The variables δ1 i, δ2 i and δ3 i indicate whether the survival event of interest for subject i

has occurred before Ui, within the interval (Ui, Vi], or after Vi. We assume that the failure

time and the observation times are independent.

Define Ni(t) = I(Ti ≤ t), a counting process indicating if the survival event of

interest has occurred by time t, and let zi be 0-1 treatment indicator, i = 1, ..., n.

Also let Fl(t) denote the failure time distribution function for subjects with zi = l,

l = 0, 1. Then the observed data consist of { (Ui, Vi, δ1i, δ2i, δ3i, zi) ; i = 1, ..., n } or

{(Ui, Vi, Ni(Ui), Ni(Vi), zi) ; i = 1, ..., n } and the goal is to test the hypothesis H0 :

33



F0(t) = F1(t).

To construct a test statistic for H0, let H
(l)
1 (u), H

(l)
2 (v) and H(l)(u, v) denote marginal

and joint distribution functions of the Ui’s and Vi’s for subjects with zi = l, respectively,

l = 0, 1. Assume that the support of F0 and F1 is given by a finite interval [0, τ ].

Motivated by the weighted Kaplan-Meier test statistics for right-censored data (Fleming

and Harrington, 1991) and the statistics given in Zhang et al. (2001), we consider the

functional

g(F ) =

∫ ∫

0≤u≤v≤τ

{F (u)η(u) + F (v)η(v)} dH(1)(u, v) , (3.1)

where η(u) is a known bounded weight function. Let F̂0 and F̂1 denote the estimates of

F0 and F1, respectively. Then a natural test statistic for H0 is given by

Q = n1/2
{

g(F̂0) − g(F̂1)
}

for given η(u). It is apparent that under H0, Q should be around zero.

For estimation of F0 and F1, note that we can divide the observed data into two sets

of current status data given below:

{(Ui, Ni(Ui), zi) ; i = 1, ..., n } , {(Vi, Ni(Vi), zi) ; i = 1, ..., n } .

One way to estimate F0 and F1 is to combine these two data sets together, but treat

them as independent samples. Then we have a single larger set of current status data and

can define F̂l to be the maximum likelihood estimator based on this larger data set from

subjects with zi = l, l = 0, 1. The same idea was used by Zhang et al. (2001) among

others and one advantage of this approach is that F̂0 and F̂1 have closed forms. More

comments on this are given below.
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To test H0 using statistic Q, we need to derive the null asymptotic distribution of Q. To

this end, let h
(l)
1 (u) and h

(l)
2 (v) denote the marginal density functions of the U ′

is and V ′
i s

for subjects with zi = l, respectively, l = 0, 1. It will be assumed that these functions

are positive and satisfy

h
(1)
1 (·)

h
(0)
1 (·)

=
h

(1)
2 (·)

h
(0)
2 (·)

= R(·) . (3.2)

Let ξ = η ·R. Then we have the following result.

Theorem 3.1. Suppose that η ◦ F−1 and ξ ◦ F−1 are bounded Lipschitz functions and

n0/n → p (0 < p < 1) as n → ∞, where n0 =
∑n

i=1 (1 − zi). Then under H0 and

n → ∞,

Q → N(0 ,
A0

p
+

A1

1− p
)

in distribution, where

A0 =

∫ τ

0

F0(u)(1− F0(u))ξ2(u)dH
(0)
1 (u) +

∫ τ

0

F0(v)(1− F0(v))ξ2(v)dH
(0)
2 (v)

+ 2

∫ ∫

0≤u≤v≤τ

F0(u)(1− F0(v))ξ(u)ξ(v)dH(0)(u, v)

and

A1 =

∫ τ

0

F1(u)(1− F1(u))η2(u)dH
(1)
1 (u) +

∫ τ

0

F1(v)(1− F1(v))η2(v)dH
(1)
2 (v)

+ 2

∫ ∫

0≤u≤v≤τ

F1(u)(1− F1(v))η(u)η(v)dH(1)(u, v) .

The proof of the above theorem is sketched in the Appendix. Condition (3.2) means

that the ratio of the density functions between the first observation times across the two

groups is the same as that between the second observation times across the two groups.

In other words, the mechanism or reasons behind the difference between the observation
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times in the two groups are the same for the first and second observation times, which

is the case for many medical studies. One situation in which condition (3.2) holds is

of course when H(0)(u, v) = H(1)(u, v). That is, the observation times have the same

distribution and in this case, R(u) = 1. In the following, we will consider situations

where H(0)(u, v) 6= H(1)(u, v) but condition (3.2) still holds.

Using the above theorem, for large n, one can test H0 by the statistic

Tη =
n1/2

∫ τ

0
{ [F̂0(u)− F̂1(u)] η(u) dĤ

(1)
1 (u) + [F̂0(v)− F̂1(v)] η(v) dĤ

(1)
2 (v)}

( n0n−1 Â0 + n1n−1 Â1)1/2

based on the standard normal distribution, where n1 = n − n0,

Â0 =

∫ τ

0

F̂0(u)(1− F̂0(u))ξ̂2(u)dĤ
(0)
1 (u) +

∫ τ

0

F̂0(v)(1− F̂0(v))ξ̂2(v)dĤ
(0)
2 (u)

+ 2

∫ ∫

0≤u≤v≤τ

F̂0(u)(1− F̂0(v))ξ̂(u)ξ̂(v)dĤ(0)(u, v)

and

Â1 =

∫ τ

0

F̂1(u)(1− F̂1(u))η2(u)dĤ
(1)
1 (u) +

∫ τ

0

F̂1(v)(1− F̂1(v))η2(v)dĤ
(1)
2 (v)

+ 2

∫ ∫

0≤u≤v≤τ

F̂1(u)(1− F̂1(v))η(u)η(v)dĤ(1)(u, v) .

In the above, Ĥ
(l)
1 , Ĥ

(l)
2 and Ĥ(l) denote the empirical distributions of Ui’s, Vi’s and

(Ui, Vi)’s for subjects with zi = l, respectively, l = 0, 1, and ξ̂(·) is an estimate of ξ(·).

In the application of the above test procedure, different η gives different test statistics

and it is apparent that the simplest one is η(u) = 1. For estimation of ξ(u) = η(u) R(u),

a simple approach, which is used in the following numerical studies, is to replace h
(1)
1 and

h
(0)
1 in (3.2) with their empirical estimates for given η. Another approach is to use smooth

estimates of h
(1)
1 and h

(0)
1 such as kernel estimates in estimation of R.
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3.3 Numerical Studies

Monte Carlo simulation studies were conducted to investigate the performance of the

proposed test procedure. In these studies, it was assumed that there are two treatment

groups and they have the same number of subjects. The failure time Ti was generated

from Weibull distributions with the shape and scale parameters α1 and β for group 1

and α2 and θ β for group 2, respectively. For observation times, for l = 0, 1, we first

independently generated Ui and Wi from Gamma(pl, λl) and Gamma(q, λl), respectively,

where

λl = λ

[
Γ(pl + q)

Γ(pl)

]1/q

with pl, q and λ being some constants. Then we took Vi = Ui + Wi, which follows

Gamma(pl + q, λl). This gives

h
(l)
2 (t)

h
(l)
1 (t)

=
λpl+q

l tpl+q−1e−λl t/Γ(pl + q)

λpl

l tpl−1e−λlt/Γ(pl)
= λq

l tq · Γ(pl)

Γ(pl + q)
= (λt)q .

and thus condition (3.2) holds. For the results reported below, we took η(·) = 1, p1 = 0.2,

p2 = 0.4, q = 3 and λ = 0.8.

Tables 4 & 5 present the estimated size and power at the significance level 0.05 of the

proposed test procedure (NPTU) based on 1000 sets of simulated data with n1 = n2 = 50

or 100, β = 0.5 or 1, θ = 1, 1.5, 2 or 3, and α1 and α2 taking value 0.5, 1 or 1.5. Here the

three different values of α1 and α2 give decreasing, constant and increasing hazard rates,

respectively. Note that under the model used here, the null hypothesis H0 is equivalent

to α1 = α2 and θ = 1. For comparison, by assuming that the underlying true model

is known, we also calculated the estimated size and power of the parametric likelihood

ratio test (PLRT) for H0 and included them in Tables 4 & 5. In addition, Table 4 gives
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the estimated size of the test procedure (NPT) given in Zhang et al. (2001) by assuming

that the distributions of observation times are the same between the two groups. That

is, H(0)(u, v) = H(1)(u, v).

It can be seen from Table 4 that the proposed test has reasonable size and power.

Especially, its size and power are quite close to those of the parametric likelihood ratio

test for most situations, which is optimal for the situations considered here. As expected,

both size and power become better when the sample size increases. On the other hand,

the test that ignores the difference between the distributions of observation times does

not seem to have the proper size.

We also investigated the approximation of the standard normal distribution of the test

statistic Tη under H0 for sample sizes of 50 and 100, respectively. The plots indicate that

the approximation works well (Figures 3 and 4).

3.4 An Application

In this section, we apply the proposed method to the AIDS cohort study discussed in

Chapter 2. One objective of the study was to compare the HIV infection rates between

the two groups.

To apply the proposed approach to test if survival functions of the time to HIV infection

between the two treatment groups are identical, we first check if the distributions of

censoring intervals are the same. For this, we obtained empirical estimates of the joint

distributions H(0)(u, v) and H(1)(u, v) based on subjects within each treatment separately

and display them in Figures 5 & 6. It seems from the figures that the two distributions

are quite different and this suggests that the proposed test procedure should be used. The
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application of the proposed test gave Tη=1 = 3.603, yielding a p-value of < 0.001. The

result indicates that the patients in the two different groups had significantly different risk

to become HIV infected. To confirm this, Figure 7 presents the nonparametric estimators

F̂0 and F̂1 used in the test statistic of the distribution functions of time to HIV infection

for patients in the two groups. It seems to be consistent with the result given by the test

procedure.

3.5 Concluding Remarks

In the preceding sections, a class of test statistics was proposed for two-sample sur-

vival comparison based on interval-censored failure time data. The key advantage of the

approach over existing test procedures is that it allows different distributions of censor-

ing intervals or observation times between two treatment groups, which often occurs in

practice. Failure to take into account such differences in treatment comparison can either

underestimate or overestimate treatment difference (Sun, 1999). The simulation results

suggest that the presented approach works reasonably well for practical situations.

In constructing the test statistics Q, instead of using functional g(F ), an alternative is

to apply different functionals such as

∫ ∫

0≤u≤v≤τ

{F (u)η(u) + F (v)η(v)} dH(0)(u, v) .

A test procedure can be similarly developed by using the functional given above. In the

development of the test procedure given above, another modification that one may apply

is to use the maximum likelihood estimators of F0 and F1 based on observed interval-

censored data instead of F̂0 and F̂1. As commented before, one disadvantage of this
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approach is that the maximum likelihood estimators do not have closed forms, which

would make the implementation of the test procedure much harder. Also the derivation

of asymptotic distribution of the resulting test statistics is not easy to obtain (Zhang et

al., 2001). Of course, one advantage of such test procedures is that they may be more

efficient. However, the efficiency gain may not be significant based on the simulated

results given in Section 3.3.

This chapter discussed the situation where the distributions of censoring intervals or

observation times may differ between two treatment groups, but the observation times are

independent of the survival time of interest. A more complicated situation that may occur

in practice is that the observation times and the survival time of interest are correlated.

In this case, for treatment comparison based on interval-censored data, a different test

procedure would be needed that can take into account the correlation.
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CHAPTER 4

SEMIPARAMETRIC REGRESSION ANALYSIS OF TWO-SAMPLE

CURRENT STATUS DATA

4.1 Introduction

As commented in Chapter 1, current status data or case I interval-censored data arise in

many fields including animal carcinogenicity experiments, demographical studies, econo-

metrics, and epidemiological studies where the variable of interest is the time to occurrence

of a certain event. By current status data, we mean that each subject is observed at only

one time point and no information is available on subjects between their entry times and

observation time points. That is, for each subject, one only knows whether the event

of interest has occurred before the observation time and the occurrence time is either

left- or right-censored. For example, in carcinogenicity experiments, animals are usually

examined only at death or sacrifice time for evidence of a malignancy. In these situations,

the time to tumor onset is of interest, but not directly observable. Instead, one knows

only the age at death or sacrifice and whether or not the tumor is present at that time.

For the two-sample semiparametric modeling, the proportional hazards model is per-

haps the most widely used model and under this model, the hazard ratio for the two

groups is a constant. Sometimes the constant hazard ratio may be in question and in this

case, one can use the proportional odds model, which allows the time-dependent hazard

ratio. One shortcoming of these models is that they do not apply if the two hazard or
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survival functions cross and this can happen in, for example, a medical study where a

treatment may be effective in long run but can have certain adverse effects during the

early stage. In this situation, the hazard functions or survival functions may cross and

one needs different models rather than these discussed above. Corresponding to this, in

this chapter, we consider a class of two-sample semiparametric models that are sometimes

referred to as short-term and long-term hazard ratio models (Yang and Prentice, 2005)

when only current status data are available. One feature of these models is that they

can accommodate crossing survival functions. Also they include the proportional hazards

model and the proportional odds model as special cases and thus can be used for model

checking.

The remainder of this chapter is organized as follows. Section 4.2 introduces the two-

sample hazard ratio model along with some notation and the assumptions used throughout

the chapter and in Section 4.3, an estimating equation-based procedure is presented for

estimation of regression parameters. Furthermore, the asymptotic properties of the pro-

posed estimate are established along with a simple bootstrap procedure for covariance

estimation of the proposed estimate. In Section 4.4, we report some results from a simu-

lation study conducted for evaluating the proposed estimation procedure and they suggest

that the approach works well for practical situations. Section 4.5 provides an illustrative

example arising from a carcinogenicity experiment and some concluding remarks are given

in Section 4.6.

4.2 Two-sample Hazard Ratio Model

Consider a survival study that consists of two groups, control and treatment groups.
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Suppose that the underlying failure times are absolutely continuous and let λC(t) and

λT (t) denote the hazard functions of the failure times corresponding to the two groups.

Define SC(t) = exp{− ∫ t

0
λC(s)ds}, the survival function for subjects in the control

group, τ0 = sup{t : Sc(t) > 0},

θ1 θ2 = lim
t→0

λT (t)

λC(t)
, θ2 = lim

t→τ0

λT (t)

λC(t)
.

The short-term and long-term two sample hazard ratio model postulates that

λT (t) =
θ1 θ2

θ1 + (1− θ1)SC(t)
λC(t) , (t ≤ τ0) . (4.1)

It is easy to see that θ1 θ2 and θ2 represent the short-term and long-term hazard ratios,

respectively, while θ1 denotes the ratio of the short-term ratio and long-term ratio. Also

the ratio of the two hazard functions λT (t) and λC(t) is not constant as the proportional

hazards model, and it is monotonically increasing if θ1 < 1 and monotonically decreasing

if θ1 > 1. If θ1 = 1, meaning that the short-term and long-term effects are the same,

model (4.1) gives the proportional hazards model, and if θ2 = 1, we have the proportional

odds model.

Let

R(t) =
1 − SC(t)

SC(t)
, (t < τ0) . (4.2)

Then the survival functions SC and ST for the two groups have the forms

SC(t) =
1

1 + R(t)
, ST (t) =

1

{1 + θ1 R(t)}θ2
. (4.3)

It can be easily shown that SC and ST cross if either θ1 θ2 < 1 and θ2 > 1, or θ1 θ2 > 1

and θ2 < 1.

In the following, we assume that only current status data are available. Specifically, for

subject i, suppose that it is observed only once at time Ci and the observed information
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for the failure time of interest Ti is given by δi = I(Ti ≤ Ci), indicating if the survival

event of interest has occurred before or at Ci, i = 1, ..., n. Define Zi = 1 if subject i is

in the treatment group and 0 otherwise. Then the observed data are

{Ci , δi , Zi ; i = 1, ..., n }

and the survival function for subject i can be written as

Si(t; β) = { 1 + exp(Ziβ1) R(t) }− exp(Ziβ2) (4.4)

from (4.3), where β = (β1, β2)
′, which will be referred to as regression parameters, with

β1 = ln(θ1) and β2 = ln(θ2). Let n1 =
∑n

i=1 Zi, the number of subjects in the treatment

group. In the following, we assume that limn→∞ n1/n = ρ with 0 < ρ < 1 and that

given Zi, Ti and Ci are independent.

4.3 Estimation of Regression Parameters

In this section, we consider estimation of regression parameters β. For this, suppose

that Ci is a positive, continuous variable with the hazard function λ0(t) and the cumulative

hazard function Λ0(t) =
∫ t

0
λ0(s)ds. For each i, define Ni(t) = δi I(Ci ≤ t), which is a

counting process with the intensity process

Yi(t) pi(t) dΛ0(t)

(Lin et al., 1998), where Yi(t) = I(Ci ≥ t) and pi(t) = Si(t, β), i = 1, ..., n. Also define

the counting process NC
i (t) = I(Ci ≤ t), whose intensity process is given by Yi(t) dΛ0(t),

i = 1, ..., n. These yield martingales

Mi(t) = Ni(t) −
∫ t

0

Yi(s) pi(s) dΛ0(s)
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and

MC
i (t) = NC

i (t) −
∫ t

0

Yi(s) dΛ0(s)

with respect to the σ-filtrations Ft = σ{Ni(s), Yi(s), Zi(s) : s ≤ t, i = 1, · · · , n} and

FC
t = σ{NC

i (s), Yi(s), Zi(s) : s ≤ t, i = 1, · · · , n}, respectively.

Let {mi(t)}n
i=1 be some independently and identically distributed (i.i.d.) random pro-

cesses that may be functions of the observed data and unknown parameters. Define

S(j)(β, t) =
1

n

n∑
i=1

Yi(t) mi(t) q⊗j
i (t) ,

where qi(t) = ∂mi/∂β, j = 0, 1. For estimation of β, we first assume that R(t) and Λ0(t)

are known. Then motivated by the partial score function under the proportional hazards

model, one can use the estimating function

U(β, R, Λ0) =
n∑

i=1

∫ ∞

0

{
qi(t) − S(1)(β, t)

S(0)(β, t)

}
dMi(t)

and define an estimate of β as the solution to U(β, R, Λ0) = 0. In this approach, of

course, we need to estimate R(t) and Λ0(t). Also one needs to choose the mi(t)’s such

that the estimation function n−1/2 U(β, R, Λ0) with R and Λ0 replaced by their estimates

has an asymptotic normal distribution with mean zero, which leads to the unbiasedness

of the resulting estimate.

For estimation of R(t), one can first use the data from the subjects in the control group

to obtain the nonparametric maximum likelihood estimator of SC , which has the n1/3

convergence rate (Groeneboom and Wellner, 1992). Then one can estimate R(t) using

(4.2). In the following, we assume that there exists a uniformly consistent estimator R̂(t)

such that

| R̂(t) − R(t) | = Op(n
−1/3)
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uniformly for t ≤ τ0. For Λ0(t), it can be easily estimated by the Nelson-Aalen estimator

given by

Λ̂0(t) =
n∑

i=1

∫ t

0

dNC
i (s)∑n

j=1 Yj(s)

based on the observed data on the Ci’s. These lead to an estimate of Mi(t) given by

dM̂i(t) = dNi(t) − Yi(t) p̂i(t) dΛ̂0(t) .

Given the estimates defined above, it is natural to estimate β by β̂ defined as the

solution to Û(β) = 0, where

Û(β) = U(β, R̂, Λ̂0) =
n∑

i=1

∫ ∞

0

{
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

}
dM̂i(t)

and q̂i(t) and Ŝ(j)(β, t) denote qi(t) and S(j)(β, t) with R(t) and/or Λ0(t) replaced by their

estimates given above. To obtain β̂, we need to specify mi(t) and for this, we propose to

use

mi(t) =
∂pi(t)

∂R

∣∣∣∣R=R(t) = − pi(t)
exp{Zi(β1 + β2)}
1 + exp(Ziβ1) R(t)

.

This gives

qi(t) = qi(t; β, R) = − Zipi(t) exp{Zi(β1 + β2)}
1 + exp(Ziβ1) R(t)

×




[1− exp{Zi(β1 + β2)}R(t)]/{1 + exp(Ziβ1)R(t)}

1− exp(Ziβ2) log{1 + exp(Ziβ1)R(t)}


 .

In the Appendix, we will show that n−1/2 Û(β) can be written as a sum of n i.i.d. zero-

mean random vectors. It follows that β̂ is consistent and its distribution can be approxi-

mated by a normal distribution.

For estimation of the covariance matrix of β̂, it can be seen from the Appendix that it

is possible to derive a consistent estimate but it would be quite complicated. Instead, we
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propose to use the following simple bootstrap procedure. Let M be a prespecified integer.

For each l (1 ≤ l ≤ M), draw a simple random sample of size n denoted by

D(l) = ( C
(l)
i , δ

(l)
i , Z

(l)
i ; i = 1, · · · , n )

from the observed data with replacement. Let β̂(l) denote the estimate of β defined above

based on the data set D(l). Then for large n, ( β̂(l) )M
l=1 follow the same distribution as β̂

and thus the covariance matrix of β̂ can be estimated by the sample covariance matrix of

the β̂(l)’s.

4.4 Numeric Studies

Some numeric studies were conducted to investigate the performance of the proposed

estimation procedure for practical situations with the focus on the bias of the proposed

estimates of regression parameters, the bootstrap procedure and the normal approxima-

tion. In the study, we generated the failure time Ti based on model (4.4) with λC(t) = 1

or SC(t) = e−t and different values of regression parameters. In particular, we considered

β = (0, 0)′ (no group difference), (0, 1)′ (the proportional hazards model), (1, 0)′ (the

proportional odds model), (1, 1)′, (−1,−1)′, (2,−1)′, and (−2, 1)′. The last two choices

represent the situations in which the group or treatment effect is initially negative (posi-

tive) but gradually becomes positive (negative). Also in this last two situations, the two

corresponding survival functions cross. Figures 8-11 display survival functions for cases

(0, 0)′, (0, 1)′, (−1,−1)′, and (2,−1)′. The observation times Ci’s were assumed to follow

the uniform distribution U(0, 4).

Table 6 summarizes the simulation results based on 1000 replications, M = 300, and
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n1 = n2 = 100 or 200. In particular, it gives the estimated bias (Bias) defined as the

means of regression parameter estimates minus their true values, the sample standard

errors (SSE) of the estimates of regression parameters, and the means of the bootstrap

sample standard errors (BSE). These results suggest that the proposed estimates seem

to be unbiased and the bootstrap procedure seems to give reasonable variance estimates.

When n increases from 100 to 200, as expected, there is a substantial reduction in the

biases as well as the estimated standard errors.

To assess the normal approximation to the distribution of β̂, we studied the quantile

plots of the standardized β̂ against the standard normal distribution for the various cases

considered in Table 6. Figure 12 displays two of these plots that correspond to β =

(2,−1)′ and suggest that the normal approximation works well.

4.5 An Application

In this section, we apply the methodology proposed in the previous sections to a set

of current status data arising from a carcinogenicity experiment. This study was origi-

nally reported by Hoel and Walburg (1972) and concerns lung tumors on 144 male RFM

mice. The experiment involves two groups, conventional environment (CE) and germfree

environment (GE), and the observation times Ci’s are the death or sacrifice times of the

animals. At each death or sacrifice time point, the presence or absence of lung tumors

was examined and the lung tumors were found in 27 out of the 96 mice assigned to the

CE compared with 35 out of the 48 mice assigned to the GE. Since lung tumors are gen-

erally regarded as nonlethal, it is reasonable to assume that the tumor onset times Ti’s

are independent of the death or sacrifice times Ci’s.
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To fit model (4.1) to the data, define Zi = 0 for the mice in the CE group and 1

otherwise. The application of the estimation procedure gives β̂ = (0.092, 0.478)′ with

the 95% confidence intervals (-0.273, 0.457) and (0.195, 0.761) for β1 and β2, respectively,

based on M = 500 bootstrap samples. These give θ̂1 = 1.095 and θ̂2 = 1.613 and their

95% confidence intervals are, respectively, (0.730, 1.460) and (1.330, 1.896). These results

indicate that there exists a consistent group or treatment effect throughout the whole

study and that maybe one can fit the data to the proportional hazards model. This latter

conclusion is reinforced by Figure 13, which shows the estimated survival functions for the

two groups given using the proposed inference procedure and by fitting the proportional

hazards model, respectively.

4.6 Conclusion and Discussion

This chapter discussed the analysis of two-sample current status data that commonly

occur in many studies. For the analysis, a class of short-term and long-term hazard

ratio models are described and the inference procedure was proposed with the focus on

estimation of short-term and long-term effect parameters. The asymptotic properties of

the proposed parameter estimates were established and the simulation study suggests

that these estimates work well for practical situations. A major advantage of the models

considered here is that they include some commonly used models as special cases and

allow crossing survival functions. In particular, as shown in Section 4.4, the methodology

can be used as a model-checking procedure for the proportional hazards model and other

models that are included in model (4.1) as special cases.

There exist several directions for future research. One is that we only considered the
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two-sample situation and it would be useful to generalize the proposed methodology to

regression analysis of general current status data. Another question of interest is the

validity of the bootstrap variance estimation procedure. Although the simulation results

indicate that it works reasonably well for practical situations, no rigorous proof to its

validity is available yet.
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CHAPTER 5

FUTURE RESEARCH

There exist many open questions in the analysis of interval-censored data. In this

chapter, we shall discuss several potential directions for future investigation that closely

related to the questions investigated in the previous chapters.

5.1 Testing the Proportional Hazards Model for Interval-censored Data

Regression diagnostics are used to check, for example, the goodness of fit and assump-

tions about regression models. For right-censored data, some residual based methods

such as Cox-Snell residuals are available for assessing the fit of the PH model. Also some

graphical techniques such as score residuals and arjas plots are available for checking the

assumptions of the PH model. However, there seems to have few existing methods for

testing the PH model with interval-censored data. Recently, Yuen et al. (2005) presented

a goodness-of-fit test based on the leveraged bootstrap to check the adequacy of the PH

model for current status data. A generalization of their method to case II interval-censored

data is a possible direction for future research.

5.2 Nonparametric Tests for Comparing Survival Functions for Interval-

censored Data in the Presence of Dependent Censoring

A key advantage of the test proposed in Chapter 3 is that it allows different distributions

51



of censoring intervals or observations times between two treatment groups. However, it

still assumes that the failure time T is independent to the observation times within treat-

ment group as most researchers did. It would be useful if we can release this assumption

and derive a different test such as a log-rank type test (DiRienzo, 2003) based on interval-

censored data for a more general situation. That is, compare survival functions when the

censoring intervals depend on failure times and treatment groups, for which there seems

to be no established method. In addition, we have also assumed that covariates do not

exist. To deal with covariates, some regression models and related inference procedures

would be needed.

5.3 Efficient Estimation for the Short-term and Long-term Hazards Ratios

As discussed in Chapter 4, the estimation procedure for short- and long-term hazard

ratios performs reasonably well. However, it may not be the most efficient way. It would

be useful if we can derive efficient estimators by using, for example, full likelihood ap-

proaches. Also, based on the estimators, one can derive a hypothesis test of identical

survival functions. Due to the advantage of the model, one can expect to obtain more

powers while testing for the crossed survival functions as compared to traditional tests

such as the log-rank type of tests. In addition, recall that the model we proposed includes

the proportional hazards model and the proportional odds model as special cases. There-

fore, hypothesis tests for regression model checking can be derived based on asymptotic

normality properties on parameters.
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APPENDIX

Proof of Theorem 2.1

Proof. Note that for each pair (i, j) (= 1, 2), we have

θ̂ij − θij = −
∫ τ2

τ1

wi(t)

F 2
j (t)

(F̂j(t)− Fj(t))dt +

∫ τ2

τ1

wi(t)

F̂j(t)F 2
j (t)

(F̂j(t)− Fj(t))
2dt . (A1)

Hence it follows from Corollary 4.3 of Groeneboom (1996) that

|θ̂ij − θij| = Op(n
−1/2) . (A.2)

Also note that under H0, q(w1, w2) = 0. Then by (A.1) and (A.2) we have

Qn(w1, w2) =
(n1n2

n

)1/2 [
θ22(θ̂11−θ11)+θ11(θ̂22−θ22)−θ21(θ̂12−θ12)−θ12(θ̂21−θ21)

]
+op(1)

=
(n1n2

n

)1/2
[∫ τ2

τ1

C1(t)(F̂1(t)− F1(t))dt +

∫ τ2

τ1

C2(t)(F̂2(t)− F2(t))dt

]
+ op(1) . (A.3)

For the terms at the right-hand side, by following the proof of the theorem of Fang, Sun

and Lee (2002), it can be shown that

∫ τ2

τ1

Ci(t)(F̂i(t)− Fi(t))dt = −
∫

Φi(u, v, δi1, δi2)d
[
Ĝi(u, v, δi1, δi2)−Gi(u, v, δi1, δi2)

]
.

(A.4)

Thus it follows from EΦi(Ui, Vi, ∆i1, ∆i2) = 0, n1/n → ρ, (A.3), (A.4) and the central

limit theorem that Qn(w1, w2) is asymptotically normal with mean zero and variance

σ2.
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Proof of Theorem 3.1

Proof. To prove the asymptotic normality of Q, first note that under H0, we can rewritten

it as

Q =

(
n

n0

)1/2

Q0 −
(

n

n1

)1/2

Q1 ,

where

Q0 = n
1/2
0 {g(F̂0) − g(F0)}

and

Q1 = n
1/2
1 {g(F̂1) − g(F1)} .

Thus it is sufficient to show that Q0 and Q1 converge in distribution to independent

normal random variables with mean zero and variances A0 and A1, respectively.

Define Sl = {i : zi = l}, l = 0, 1. For Q1, following the proof of Theorem 1 of Zhang

et al. (2001), it can be easily shown that we have

Q1 = U1 + op(1) ,

where

U1 = n
−1/2
1

∑
i∈S1

{ [δ1i − F1(ui)] η(ui) + [δ1i + δ2i − F1(vi)] η(vi)} ,

which clearly has an asymptotic normal distribution with mean zero and variance A1.
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For Q0, under condition (3.2), we have

Q0 = n
1/2
0

∫ τ

0

{
[F̂0(u) − F0(u)]η(u)dH

(1)
1 (u) + [F̂0(v)− F0(v)]η(v)dH

(1)
2 (v)

}

= n
1/2
0

∫ τ

0

{
[F̂0(u)− F0(u)]η(u)

h
(1)
1 (u)

h
(0)
1 (u)

dH
(0)
1 (u) + [F̂0(v)− F0(v)]η(v)

h
(1)
2 (v)

h
(0)
2 (v)

dH
(0)
2 (v)

}

= n
1/2
0

∫ ∫

0≤u≤v≤τ

{
[F̂0(u)− F0(u)]η(u)R(u)dH

(0)
1 (u) + [F̂0(v)− F0(v)]η(v)R(v)dH

(0)
2 (v)

}

= n
1/2
0

∫ ∫

0≤u≤v≤τ

{
[F̂0(u)− F0(u)]ξ(u) + [F̂0(v)− F0(v)]ξ(v)

}
dH(0)(u, v) .

Then as Q1, we have that

Q0 = U0 + op(1) ,

where

U0 = n
−1/2
0

∑
i∈S0

{[δ1i − F0(ui)]ξ(ui) + [δ1i + δ2i − F0(vi)]ξ(vi)} ,

which obviously has an asymptotic normal distribution with mean zero and variance A0.

It is apparent that U0 and U1 are independent and this completes the proof.
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Asymptotic Normality of n−1/2 Û(β) in Section 4.3

Let Mi(t) and M̂i(t) and other notation be defined as in the previous sections. To see

the asymptotic normality of n−1/2 Û(β), note that it can be rewritten as

1√
n

Û(β) =
1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

) (
dNi(t) − Yi(t)p̂i(t)dΛ̂0(t)

)

=
1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
dMi(t)

+
1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
Yi(t){pi(t)− p̂i(t)}dΛ̂0(t)

+
1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
Yi(t)p̂i(t)

(
dΛ0(t) − dΛ̂0(t)

)
.

To show that n−1/2 Û(β) can be written as a sum of n i.i.d. zero-mean vectors and has an

asymptotic normal distribution, it is sufficient to prove that each of the three terms in the

right side of the above equation has the same property or converges to zero in probability.

For the first term, it is easy to see that it is equal to n−1/2 U(β, R, Λ0) + op(1) as n → ∞

based on the fact that the Mi’s are i.i.d. martingales. For the second term, using the

Taylor series expansion to pi(t) − p̂i(t) at R = R̂(t), we have

pi(t) − p̂i(t) = m̂i(t) {R(t) − R̂(t)} + D2pi(R
∗) {R(t) − R̂(t)}2 ,

where D2pi denotes the second derivative of pi with respect to R and R∗ is some fixed

value between R(t) and R̂(t). It then follows that the second term can be written as

1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
Yi(t)m̂i(t){R(t) − R̂(t)} dΛ0(t)

+
1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
Yi(t)D

2pi(t)(R
∗){R(t) − R̂(t)}2 dΛ0(t) .
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In the above equation, it is apparent that the first part is equal to zero and the second

part converges to zero in probability.

Finally for the third term, note that

Λ̂0(t) − Λ0(t) =
n∑

k=1

∫ t

0

dMC
k (s)∑n

j=1 Yj(s)
.

This leads to

1√
n

n∑
i=1

∫ ∞

0

(
q̂i(t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)

)
Yi(t)p̂i(t)

(
dΛ0(t) − dΛ̂0(t)

)

=
1√
n

n∑
i=1

∫ ∞

0

(
Ŝ(3)(β, t) − Ŝ(1)(β, t)

Ŝ(0)(β, t)
Ŝ(2)(β, t)

) (
1

n

n∑
j=1

Yj(t)

)−1

dMC
k (t) ,

where Ŝ(3)(β, t) and Ŝ(4)(β, t) are defined as

S(j)(β, t) =
1

n

n∑
i=1

Yi(t) pi(t) q
⊗(j−2)
i (t) (j = 3, 4)

with R replaced by its estimate. It is easy to see that the above summation can be written

as a sum of i.i.d. zero-mean vectors.
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Table 1: Estimated Empirical Sizes and Powers of the Test Procedure

Right-censoring β1

percentages 1 1.5 2 3

B = 0.5

q = 10% 0.052 0.523 0.675 0.714

q = 20% 0.048 0.423 0.632 0.691

q = 30% 0.050 0.320 0.554 0.622

B = 1

q = 10% 0.050 0.305 0.519 0.556

q = 20% 0.052 0.246 0.454 0.514

q = 30% 0.043 0.191 0.357 0.473
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Table 2: Interval-censored HIV Infection Data

XL XR XL XR XL XR XL XR

Heavily treated

15 ∞ (2) 16 ∞ (3) 17 ∞ (3)

10 11 1 16 12 13 13 15

14 16 12 14 14 15 13 16

14 15 13 15 9 12 14 15

1 11 12 14 11 12 15 16

15 16 1 13 10 11 5 7

5 7 15 15 14 15 12 13

12 13 1 14 14 15 10 11

10 11 8 10 15 16 9 10

10 12 1 14 1 15 1 13

14 15 3 15 12 13 14 15

9 10 14 15 15 16 1 15

1 14 11 13 10 11 1 7

9 12 1 11 12 13 13 14

10 15 13 15 1 12 7 10

1 15 9 12 7 15 14 16

11 13 11 13 11 13 1 6

8 15 10 11 12 13 7 9

12 13 9 13 13 14 9 12

3 14 10 11 14 15 7 9

12 13 13 14 1 7 3 7

10 11 13 15 10 12 5 7

9 11 1 10 9 13 5 8

10 11 13 15 1 7 10 12

10 12 8 10 9 12 10 12

10 14

Observations for 262 hemophilia patients by amount of blood received. Numbers in parentheses denote
multiplicities.
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Table 3: Interval-censored HIV Infection Data (continued)

XL XR XL XR XL XR XL XR

Lightly treated

1 ∞ 15 ∞ (19) 16 ∞ (31) 17 ∞ (10)

18 ∞ 10 15 12 14 1 15

1 15 1 15 10 12 1 16

15 16 3 10 8 15 8 13

1 12 13 14 5 11 14 16

1 11 9 14 8 16 11 12

1 17 1 18 1 15 11 16

8 12 9 13 1 15 13 14

9 14 1 5 1 16 12 15

9 12 13 15 4 11 1 16

1 15 14 15 1 12 14 15

1 14 6 13 13 14 15 16

7 12 12 14 12 14 1 13

12 13 13 15 15 16 1 15

13 15 8 16 10 12 14 15

11 15 13 15 3 16 6 8

15 16 11 14 13 14 12 14

7 10 1 12 1 15 12 13

1 15 10 16 11 14 1 14

12 13 9 14 12 14 11 12

1 11 1 16 12 13 14 15

1 15 15 16 11 12 13 13

13 14 10 12 6 12 1 12

1 3 11 14 1 5 10 11

7 13 12 13 6 13 11 14
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Table 4: Empirical Sizes of the Proposed Test Procedure (nominal size=5%)

Parameters n1 = n2 = 50 n1 = n2 = 100

β θ α1 α2 NPTU PLRT NPT NPTU PLRT NPT

0.5 1.0 0.5 0.5 3.8 4.5 8.6 4.4 4.5 8.1

0.5 1.0 1.0 1.0 5.3 5.0 8.5 5.2 5.1 7.6

0.5 1.0 1.5 1.5 7.4 5.8 9.8 6.2 5.4 9.0

1.0 1.0 0.5 0.5 4.8 5.4 7.3 4.5 5.4 7.1

1.0 1.0 1.0 1.0 3.6 5.0 7.9 4.0 5.2 8.0

1.0 1.0 1.5 1.5 4.2 6.0 7.6 5.2 5.4 7.3
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Table 5: Empirical Powers of the Proposed Test Procedure

Parameters n1 = n2 = 50 n1 = n2 = 100

β θ α1 α2 NPTU PLRT NPTU PLRT

0.5 1.5 0.5 0.5 10.3 10.6 15.0 18.6

0.5 1.5 1.0 1.0 17.4 22.4 28.6 41.4

0.5 1.5 1.5 1.5 27.5 35.3 42.8 53.5

0.5 2.0 0.5 0.5 22.5 26.6 42.4 43.9

0.5 2.0 1.0 1.0 48.1 60.4 77.2 88.0

0.5 2.0 1.5 1.5 61.8 75.1 90.8 95.7

0.5 3.0 0.5 0.5 48.9 54.2 83.6 88.2

0.5 3.0 1.0 1.0 89.4 94.3 100.0 100.0

0.5 3.0 1.5 1.5 97.2 100.0 100.0 100.0

1.0 1.5 0.5 0.5 9.2 10.6 12.6 17.1

1.0 1.5 1.0 1.0 23.0 27.5 38.0 49.8

1.0 1.5 1.5 1.5 35.4 40.3 63.7 70.4

1.0 2.0 0.5 0.5 21.4 24.6 40.1 44.4

1.0 2.0 1.0 1.0 55.3 67.2 84.0 92.3

1.0 2.0 1.5 1.5 84.6 91.2 97.6 100.0

1.0 3.0 0.5 0.5 44.8 51.4 81.1 87.6

1.0 3.0 1.0 1.0 94.0 95.6 100.0 100.0

1.0 3.0 1.5 1.5 99.8 100.0 100.0 100.0

1.0 2.0 0.5 1.0 59.7 73.0 86.8 96.4

1.0 2.0 1.5 0.5 35.8 99.3 55.3 100.0
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Table 6: Summary Statistics for the Numerical Studies

Bias SSE BSE

β n β1 β2 β1 β2 β1 β2

(0, 0) 100 0.0042 -0.0023 0.0184 0.0212 0.0214 0.0189

200 0.0019 -0.0011 0.0097 0.0111 0.0109 0.0092

(0, 1) 100 -0.0198 0.0107 0.0201 0.0840 0.0184 0.0739

200 -0.0035 0.0041 0.0043 0.0392 0.0034 0.0350

(1, 0) 100 -0.0064 -0.0109 0.0461 0.2815 0.0403 0.2911

200 -0.0023 -0.0011 0.0298 0.1884 0.0240 0.1947

(1, 1) 100 0.0214 0.0609 0.1207 0.4148 0.1188 0.3944

200 0.0153 0.0411 0.1004 0.3061 0.0987 0.2901

(-1, -1) 100 0.0036 0.0044 0.0170 0.0207 0.0183 0.0211

200 0.0024 0.0021 0.0118 0.0143 0.0130 0.0155

(2, -1) 100 -0.0357 -0.0238 0.2143 0.3034 0.1928 0.3011

200 -0.0161 -0.0166 0.1415 0.2097 0.1235 0.2021

(-2, 1) 100 0.0055 -0.0524 0.1573 0.4477 0.1628 0.4011

200 0.0031 -0.0266 0.1015 0.3314 0.1135 0.3021
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Table 7: Lung Tumor Data on RFM Male Mice

Necropsy

Finding Individual ages at death (days)*

A. Conventional mice (96)

Lung 381 477 485 515 539 563 565 582 603 616 624 650

tumor 651 656 659 672 679 698 702 709 723 731 775 779

795 811 839

No Lung 45 198 215 217 257 262 266 371 431 447 454 459

Tumor 475 479 484 500 502 503 505 508 516 531 541 553

556 570 572 575 577 585 588 594 600 601 608 614

616 632 632 638 642 642 642 644 644 647 647 653

659 660 662 663 667 667 673 673 677 689 693 718

720 721 728 760 762 773 777 815 886

B. Germfree mice (48)

Lung 546 609 692 692 710 752 773 781 782 789 808 810

Tumor 814 842 846 851 871 873 876 888 888 890 894 896

911 913 914 914 916 921 921 926 936 945 1008

No Lung 412 524 647 648 695 785 814 817 851 880 913 942

Tumor 986

* Italicized ages represent mice dying of lung tumors.
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Figure 1: Normal Quantile Plots
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Figure 2: Estimated Log Odds Ratio for Two Groups
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Figure 3: Normal Quantile Plots for n = 50
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Figure 4: Normal Quantile Plots for n = 100
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Figure 5: Joint Empirical Distributions of Observation Times (Heavily Treated Group)

Figure 6: Joint Empirical Distributions of Observation Times (Lightly Treated Group)
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Figure 7: Nonparametric Estimators of the Distribution Functions of Time to HIV Infec-

tion for the AIDS Cohort Study
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Figure 8: Survival Functions for β1 = 0, β2 = 0
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Figure 9: Survival Functions for β1 = 0, β2 = 1
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Figure 10: Survival Functions for β1 = −1, β2 = −1
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Figure 11: Survival Functions for β1 = 2, β2 = −1
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Figure 12: Normal Quantile Plots for β1 = 2 (top) and β2 = −1 (bottom)
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Figure 13: Estimates of Survival Functions of Time to Lung Tumor Onset
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