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ABSTRACT 

The objective of this research is to develop a simple and innovative technology 

that effectively lowers chemical concentrations to meet Environment Protection Agency 

(EPA) drinking water regulations. This study focuses on fabric inclined settling screen 

development for application to small community drinking water treatment systems to 

help them with compliance, particularly with disinfection by-products (DBPs) through 

enhanced solids contact. The technology developed combines fabric filters with the 

traditional inclined plate concept. Fabric material performance and serviceability was 

first checked by exposure to a drinking water treatment environment and then 

measuring turbidity, total dissolved organic carbon, and UV254. The study suggests a 

product like Pureflo (a polyester) is the more appropriate material in acidic and neutral 

conditions and one like Surefil (rayon/polyester blend) is the more appropriate material 

in basic conditions. The Pureflo product was used in bench scale systems to determine 

performance of the designed fabric inclined settling screen. Experiments with different 

coagulants, different angle, and different layers of fabric screens was conducted. A pilot 

scale system was set up in Vandalia, MO to test the feasibility of the fabric screen of 

turbidity, TOC, UV254, and TTHM removal. Results indicated that screens made from 

pureflo with angles from 30o through 70o under acidic condition have positive effects on 

sedimentation enhancement. 

 



 

1 
 

 

1.  INTRODUCTION 

1.1 DBPs and Sedimentation 

Disinfection agents remove organic contaminants which serve as nutrients or 

shelters for microorganisms. It also prevents pathogenic microorganisms from growing 

in the plumbing after disinfection, causing the water to be recontaminated. However, it 

has negative effects. Disinfection byproducts (DBPs) are the large group of possible 

reaction products produced when organic molecules in water being treated combines 

with some types of oxidant. Humans are exposed to DBPs through drinking water and 

oral, dermal, and inhalational contact with chlorinated water. It has been determined 

that the elevated cancer risk is associated with DBPs rather than the disinfectant that 

generates them. So the reduction of DBPs becomes urgent. 

Total Trihalomethanes Rule was established by EPA in 1979. WHO release 

guideline values of DBPs in 1993. In 1999, the Stage 1 D/DBP Rule was promulgated in 

response to the increasing information available about DBPs. The Stage 2 D/DBP Rule 

came after this to address the issue of average and highest concentration area. It is 

harder for small water facilities to meet the standards because of lacking of financial 

support and technology. 

The reduction of DBPs can be accomplished in a few ways. One is to try to 

remove them after their formation. The other is to prevent them from formatting. DBP 

formation is a function of many variables. One of them is the concentration and types of 
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source water organic precursors. As a result, one of the THM reduction methods is to 

enhance coagulation and sedimentation. The effects of an enhanced sedimentation 

approach, using inclined fabric settling screens, should be included in the 

considerations.  

1.2 Research Objectives 

The objective of the research is 1) to determine characteristics of fabric 

materials, especially their intercepting ability of solids and their endurance in 

water/coagulant solutions; 2) bench scale experiment to determine the feasibility of the 

design of fabric inclined settling screens in sedimentation tank with different coagulants, 

different fixing angles, and different thickness of the materials; 3) help small water 

facility to determine the effectiveness of their process and try to improve their water 

quality to meet the regulation; 4) pilot scale experiment to determine the feasibility of 

the design in real utility.  
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2. Literature Review 

2.1 Disinfection By-Products (DBPs) Formation 

Disinfection can be attained by means of physical or chemical disinfectants. The 

agents also remove organic contaminants from water, which serve as nutrients or 

shelters for microorganisms. At the same time, it should prevent pathogenic 

microorganisms from growing in the plumbing after disinfection, causing the water to 

be recontaminated. Disinfectants should not only kill microorganisms, it must also have 

a residual effect, which means that they remain active in the water after the initial 

disinfection stage of treatment. 

In the water industry, disinfection has been acknowledged as a key step in 

production of safe drinking water since the early 1900’s. The addition of chemical 

oxidants to water has been found to disrupt the reproductive processes of pathogens in 

water through reactions with cellular material such as proteins, DNA, and cell 

membranes of various microorganisms [1]. Some of these unintended reactions with 

organic molecules can produce compounds associated with risks to human health after 

long-term, low-level exposure. 

2.1.1 Types of DBPs formed 

Disinfection byproducts (DBPs) are the large group of possible reaction products 

produced when organic molecules in water being treated combines with some types of 

oxidant. Studies have identified hundreds of disinfection byproducts over the past few 



 

4 
 

decades, including various aldehydes, haloacetonitriles, trihalomethanes, haloketones, 

and haloacetic acids. [1-3] 

The regulated trihalomethanes (THM) are a group of four chemicals that are 

formed along with other disinfection byproducts when chlorine or other disinfectants 

used to control microbial contaminants in drinking water react with naturally occurring 

organic and inorganic matter in water. The regulated trihalomethanes are chloroform, 

bromodichloromethane, dibromochloromethane, and bromoform. EPA has 

promulgated Disinfectants/Disinfection Byproducts Rule to regulate total 

trihalomethanes (TTHM) at a maximum allowable annual average level of 80 parts per 

billion. 

Haloacetic Acids (HAA5) are a group of chemicals that are formed along with 

other disinfection byproducts when chlorine or other disinfectants used to control 

microbial contaminants in drinking water react with naturally occurring organic and 

inorganic matter in water. The regulated haloacetic acids, known as HAA5, are: 

monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, 

and dibromoacetic acid. EPA has promulgated the Disinfectants/Disinfection Byproducts 

Rule to regulate HAA5 at 60 parts per billion annual average.  

Bromate is a chemical that is formed when ozone used to disinfect drinking 

water reacts with naturally occurring bromide found in source water. EPA has 

established the Disinfectants/Disinfection Byproducts Rule to regulate bromate at 

annual average of 10 parts per billion in drinking water. This standard has became 

effective for all public surface and ground water systems since December 2003. [4] 



 

5 
 

Chlorite is a byproduct formed when chlorine dioxide is used to disinfect water. 

EPA has published the Disinfectants/Disinfection Byproducts Rule to regulate chlorite at 

a monthly average level of 1 part per million in drinking water. This standard also 

became effective for all public surface and ground water water systems in December 

2003. [4] 

2.1.2 DBPs Formation Kinetics 

THMs and HAAs are chlorination byproducts, thus were selected as a focus due 

to the prevalence of these compounds compared with other known chlorination 

byproducts and large fraction of facilities use free chlorine at some point in their 

treatment process. [2, 5, 6] 

In most chlorinated water, the primary oxidant used is hypochlorous acid (HOCl). 

Although the reactions that form THMs and HAAs are carried and sometimes complex, 

the general form of such reactions is as follows: 

                                HOCl + NOM (+ HOBr) = THMs + HAAs + other DBPs                 (Eqn. 2-1) 

If the source water contains a measurable concentration of bromide, it can be 

oxidized by HOCl to form hypobromous acid (HOBr). The HOBr formed also participates 

in DBPs formation reactions according to available concentrations and reactivity. Zhang 

[7] et, al. modeled that water temperature has significant effects on the disinfection by-

product (DBP) formation and concentration in many water utilities and distribution 

systems. 
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2.1.3 Health Risks 

Richardson [8] identified greater than 600 water disinfection byproducts in 

chlorinated tap water, including haloacetic acids (HAAs). THMs, and to a lesser extent 

HAAs, are currently used as indicator chemicals for all potentially harmful compounds 

formed by the addition of chlorine to water. In many countries the levels of THMs and 

HAAs in chlorinated water supplies are regulated based on this assumption.   

Humans are exposed to DBPs through drinking-water and oral, dermal, and 

inhalational contact with chlorinated water [9]. In populations who take hot showers or 

baths, inhalation and dermal absorption in the shower accounts for more exposure to 

THMs than drinking water [10].  

Although both a disinfectant and disinfection byproducts may be found in treated 

water, it has been determined that the elevated cancer risk is associated with DBPs 

rather than the disinfectant that generates them. [11] However, obtaining a definitive 

picture of these health risks posed by exposure to DBPs is still difficult. Table 2-1 shows 

the adverse effects of exposure to particular THM and HAA species as generally 

accepted at present. 

Table 2-1 THM and HAA Toxicological Summary [12] 

 
EPA Cancer 

Classification 
Health Risks 

THM: 

TCM 

BDCM 

DBCM 

TBM 

 

B2 

B2 

C 

B2 

 

Cancer; liver, kidney, and reproductive effects 

Cancer, liver, kidney, and reproductive effects 

Nervous system, liver, kidney, reproductive effects 

Cancer, nervous system, liver, and kidney effects 

HAA: 

DCAA 

TCAA 

 

B2 

C 

 

Cancer, reproductive and developmental effects 

Liver, kidney, spleen, and developmental effects 

Note: B2=Probable human carcinogen, C=possible human carcinogen 
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2.2 DBPs Related Regulation 

DBPs are a fairly new contaminant of concern; the first major publications linking 

disinfection – most commonly achieved through chlorination – to the formation of 

halogenated organics in drinking water did not appear until around 1974 [13, 14]. 

Studies on the relationship between exposure to these compounds and increased 

likelihood of developing certain types of cancers soon followed. With growing concern 

about how widespread potentially-hazardous DBP levels might be, the National Organics 

Reconnaissance Survey (NORS) was undertaken in 1975, with nationwide DBP 

monitoring as one of its objectives. This 80-system survey, focusing primarily on the 

occurrence of THMs, found that greater concentrations were generally produced in 

waters with higher concentration of dissolved organics and in cases where surface water 

was treated with free chlorine near the beginning of treatment. [15] 

The WHO Guideline Values (1993) for the THMs are shown in Table 2. WHO also 

considers potential health effects caused by exposure to the four compounds 

simultaneously. In addition to the individual guidelines, there is an additional guideline 

that states the following: the sum of each individual THM concentration divided by its 

guideline value cannot be greater than one. This is depicted by equation 2-2: [16] 

                              Eqn. 2-2 

Table 2-2: WHO Guideline Values for Trihalomethanes in Drinking Water (WHO, 1996) [17] 
 WHO Guideline Value 

Chloroform 200 µg/L 

Bromodichloromethane 60 µg/L 

Dibromochloromethane 100 µg/L 

Bromoform 100 µg/L 
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Most importantly, the WHO specifically and repeatedly states in the Guidelines 

(1993) that: “Where local circumstances require that a choice must be made between 

meeting either microbiological guidelines or guidelines for disinfectants or disinfectant 

by-products, the microbiological quality must always take precedence, and where 

necessary, a chemical guideline value can be adopted corresponding to a higher level of 

risk. Efficient disinfection must never be compromised.” [16] Thus, waterborne 

pathogens pose a real and immediate threat to health; water disinfection byproducts 

are certainly the lesser of these two evils. 

2.2.1 Total Trihalomethanes Rule 

Although some drinking water contaminants had already been regulated since 

1974 in the Safe Drinking Water Act, the first national control placed on disinfection 

byproducts was the establishment of a maximum contaminant level (MCL) of 0.10 mg/L 

for total trihalomethanes (TTHM) by the EPA in 1979 [18]. TTHM is defined as the sum 

of the concentrations of all four chlorine- and bromine-substituted trihalomethanes. 

Under the Total Trihalomethanes Rule, all community drinking water systems were 

required to analyze representative samples of the water in their distribution system 

quarterly, regardless of whether surface water or ground water was used as the water 

supply. Systems using exclusively ground water were subsequently allowed a reduction 

in monitoring requirements if initial testing showed that the source water did not have a 

significant potential to generate THMs upon disinfection. 
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2.2.2 Stage 1 and Stage 2 DBPs Rule 

Two decades after the Total Trihalomethanes Rule, the Stage 1 Disinfectants and 

Disinfection Byproducts Rule (or Stage 1 D/DBP Rule) was promulgated in response to 

the increasing information available about DBPs. All water systems were required to 

comply with these regulations before 2004, with larger systems meeting earlier 

compliance deadlines. Stage 1 D/DBP Rule was intended to be only an intermediate step 

in a more comprehensive plan to reduce DBP concentrations in drinking water. Under 

this rule, more complex monitoring and reporting requirements were instituted, as well 

as a 0.080 mg/L MCL for TTHM and a 0.060 mg/L MCL for HAA5. [19] 

Stage 1 D/DBP Rule also required water treatment plants to remove certain 

amounts of total organic carbon (TOC), based on source water characteristics. [19] TOC 

is not considered intrinsically harmful but it contains compounds known to generate 

DBPs upon chemical oxidation, so reduction of the concentration of DBP source 

compounds would be expected to reduce final DBP concentrations. 

While the Stage 1 D/DBP Rule represented a significant step forward in limiting 

the concentration of DBPs in drinking water, continuing research findings and 

discussions among regulators highlighted the need for further regulatory action. The 

MCLs of 0.080 mg/L for TTHM and 0.060 mg/L for HAA5 were still deemed appropriate; 

however, a modification of the method for compliance determination was necessary. 

The additional requirements set out by the Stage 2 Rule apply to all community water 

systems (CWS), as well as all non-transient, non-community water systems (NTNCWS) 
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serving more than 10,000 customers. The complete rule and its implications for drinking 

water utilities are described in the Federal Register. [20] 

In both the Total Trihalomethanes Rule and the Stage 1 D/DBP Rule, 

concentrations of samples taken within the distribution were averaged over each 

quarter and split for comparison with the MCLs. With this practice, sites yielding high 

and low concentration samples for each sampling date can effectively cancel each other 

out, which does not require the standards to be met at every customer’s tap. To address 

this issue, the Stage 2 Rule changes the reporting and compliance methods such that the 

quarterly measurement for each location are averaged separately throughout the year, 

with each average individually compared with the MCL to determine compliance. Using 

this method, it is no longer possible for utilities to be in compliance while one part of its 

distribution system is routinely above the established MCLs, provided that the 

compliance sample collection sites in the highest concentration areas have been 

selected. 

As regulation limiting THM and HAA levels in drinking water have become 

increasing strict it has also become increasingly difficult for utilities to find ways to bring 

their system into compliance with these regulations. Typically, solutions for initial 

reductions in DBP levels are often more easily found to implement than subsequent 

modifications to reduce concentrations even further. Modifying treatment to reduce 

free chlorine usage or switching to a different disinfectant entirely can decrease THM 

and HAA formation, as can other process modifications that reduce precursors 

compound concentrations in water prior to chlorination. [1] 
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2.3 Organic DBPs Precursors 

DBP formation is a function of many variables. Parameters such as temperature, 

concentration and type of source water organic precursors, effectiveness of treatment 

process at removal of organic precursors, disinfection contact time, and types of 

disinfection practiced all can play important roles in determining DBP concentrations. To 

understand how water treatment might be able to reduce DBP concentrations, the 

organic compounds naturally present in surface water from which DBPs are formed 

must also be better understood. 

Although the reaction pathways of THM and HAA formation are numerous and 

can be complex, laboratory studies of model compounds have shown that aromatic 

characteristics in NOM, often similar but not necessarily identical to the characteristics 

monitored by UV absorbance measurements , may be at least partially responsible for 

DBP formation. [21] Resorcinol (1,3-dihydroxybenzene) and its derivation have been 

shown to produce chloroform and some HAAs, although other types of molecules that 

may or may not be associated with UV absorption have also been shown to potentially 

play a role in the formation of regulated DBPs [22]. Among aromatic compounds, it has 

been hypothesized that resorcinol-type structures are what reacts quickly to form 

THMs, while phenolic structures increase in importance with longer formation times 

[23]. The presence of electron-donating or electron-withdrawing functional groups also 

appears to affect a molecule’s suitability as a DBP precursor, with carboxyl groups 

having been noted as potentially decreasing the reactivity of a molecule.  



 

12 
 

Beyond this laboratory data, there is a limited understanding of which molecules 

found in natural source water are most important as DBP precursors. It was suggested 

by the calculations of Reckhow et al. [6] that most chlorine consumption observed in 

natural water samples was involved in the degradation of activated aromatic structures, 

and the UV-absorbance monitoring illustrated that such degradation appeared to result 

in the formation of chlorinated organics, including THMs. Although all NOM fractions 

seem to contain some DBP precursors, hydrophobic fractions tend to produce more 

THMs and HAAs. Compounds of increasing molecular weight have also been found to 

have higher THM yields on a mass basis [24]. 

It was found by Ma, et, al. [25] that chlorine reactivity of Dissolved organic 

matters (DOM) decreased with the decrease of molecular weight (MW), and MW > 30 

kDa fractions produced over 55% of total THMs in chlorinated Membrane bio-reactor 

(MBR) effluent. Hydrophobic organics had much higher THMs formation reactivity than 

hydrophilic substances. Particularly, hydrophobic acids exhibited the 

highest chlorine reactivity and contributed up to 71% of total THMs formation. 

Meanwhile, low-MW and hydrophilic DOM were susceptible to produce bromine-

containing THMs. Of the fluorescent DOM in MBR effluent, aromatic moieties and humic 

acid-like had higherchlorine reactivity. Conclusively, macromolecular and hydrophobic 

organics containing aromatic moieties and humic acid-like must be removed to reduce 

THMs formation. [25] 
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2.4 Small Scale System Facilities 

2.4.1 Typical Operational Process in Small Communities in Missouri 

Small communities of up to 10,000 people typically utilize up to one million 

gallons of potable water daily. [1] Follow a drop of water from the source through the 

treatment process, water may be treated differently in different communities 

depending on the quality of the water which enters the plant. At a minimum, the 

treatment required to control microbiological contamination must include disinfection 

to kill disease-causing organisms. The Surface Water Treatment Rule also requires 

surface water systems to install some form of filtration (the process of removing 

suspended solids that cause turbidity) unless criteria for exemptions can be met. 

As stated in Minimum Design Standards for Missouri Community Water System 

(effective on December 10, 2013), [26] plants using conventional clarification to treat 

water prior to filtration shall be designed to provide at least a two-stage treatment 

process consisting of primary rapid mixing, flocculation and sedimentation and 

secondary rapid mixing, flocculation, and sedimentation, in series to treat surface water; 

or provide at least single stage treatment consisting of rapid mix, flocculation and 

sedimentation for clarification to treat groundwater under the direct influence of 

surface water. It also points out that requirements for disinfection residuals are found in 

10 CSR 60-4.055 Disinfection Requirements and 10 CSR 60-4.025 Ground Water Rule. 

Disinfection is required at all surface water supplies, ground water sources under the 

direct influence of surface water, and at any ground water supply of questionable 
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sanitary quality or where treatment is provided that could potentially result in the water 

becoming microbiologically contaminated. Usually primary disinfection process is before 

the filtration step to achieve enough contact time between the water and disinfectant. 

Disinfection may be accomplished with liquid chlorine, calcium or sodium hypochlorite, 

chlorine dioxide, or ozone. However, free chlorine using break point chlorination is the 

preferred method of primary disinfection. Other concerns include sources of water 

supply, different processes (approaches), chemical application, construction, and waste 

handling and disposal. 

2.4.2 Constraints Small Systems Faced With 

The vast majority of community water systems in the United States are small 

water systems, defined by EPA as those serving up to 3,300 residential customers. EPA 

requires all community water systems, regardless of size, to meet or exceed its 

standards on drinking water quality, testing, monitoring and reporting. Hence, each 

state is required to monitor many community water systems and to ensure their 

compliance with the federal and state standards. Because of the small size of their 

customer base, small water systems face greater challenges than larger water systems 

in meeting those standards while also operating their systems in a sustainable manner. 

Small water systems that do not meet the standards require corrective action, imposing 

additional responsibility on the state in monitoring the many small water systems 

scattered across the state.  

The overarching challenges facing small water systems have been documented in 

numerous reports. A National Research Council committee on small water supply 
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systems published a book on the conditions of small systems[27], and an Environmental 

Protection Agency Office of Inspector General evaluation [28] confirmed the findings. 

Other studies have described similar challenges facing small water systems [29-34]. An 

inherent problem facing all small water systems is the financial constraint due to the 

small size of their customer base. Often, the customers of small systems are located in 

rural areas and have lower household incomes than people living in larger, urban areas 

who are served by the larger water systems [29]. With low revenues, high unit costs and 

pressure to keep rates affordable for their customers, small systems are challenged to 

raise the funds they need for operations, maintenance, and capital improvements.  

Failures in small water system management/operation also reflect shortages in 

technical resources, incomplete understanding of system function, and additional 

shortcomings that could be alleviated through better planning and communication. 

Actions that were recommended to preclude these conditions emphasize greater 

reliance on planning and on clearly-explained procedures and responsibilities, 

developed with expert advice from technical-assistance personnel or from larger water 

system. Solid knowledge of the local system is crucial. Also, an ever-changing regulatory 

environment is very difficult for small water systems, which generally are not well-

represented in the regulatory process. Changed rules may be enforced before small 

systems have the technical expertise or financial capacity to implement them. [35] 

Small water systems need considerable help in water source protection, 

treatment, and distribution, from basic research to community-wide education. 

Scientists present at the colloquium, for example, identified research needs for lower-
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cost monitoring, better treatment methods, public perception of water utilities, and 

more. Consolidation with larger systems can improve both economics of scale and 

access to technical expertise. Yet it is clear that better funding or expert advice cannot 

remove all small-system barriers to safe water delivery. The locally-achievable goals of 

improved communication, science-based education, and thorough planning by all 

involved still remain key components of small system success. [35] 

2.5 Clarifiers 

Sedimentation, both rectangular horizontal flow and circular, tanks are an 

essential process to remove solids from water. With rectangular horizontal-flow tanks, 

the water to be settled flows in one end, and the treated water flows out at the other 

end. They are large tanks in which water is made to flow very slowly in order to promote 

the sedimentation of particles or flocs. In water and wastewater treatment plants, these 

are so large that they are situated outdoor and usually have an open surface. [36] 

Circular tank flow (Figure 2-1) is usually from a central feed (influent) well and moves 

radially outward to peripheral weirs (effluent). The tank floor is usually slightly conical 

with a central sludge well (concentration). The floor is swept by a sludge scraper that 

directs the sludge toward the central wall.  
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Figure 2-1. Horizontal flow clarifier image[36] 

Another common clarifier is the up-flow [37] one (Figure 2-2). Following the 

principles of operation of up-flow sludge blanket clarifiers on entering the bottom of the 

tank, the flow makes its way upwards through the base of the funnel. As the cross-

sectional area of the funnel increases, the velocity of the fluid decreases. At a certain 

height, the upward forces acting on the floc should balance out with the gravitational 

forces. In principle, it is in this region that the floc will remain stationary and a floc 

blanket will form, thickening with time. The residual floc passing the blanket is caught in 

a polishing filter secured at the top of the unit. Over time, floc accumulation can cause 

an increase in headloss across the geotextile fabric, which can be measured by fixing a 

transparent sight tube serving as a manometer across the fabric in which the difference 

in water level in the tube and the Clarifier indicates the headloss. The clarified effluent 

of the treatment unit is then usually collected and stored in a treated water reservoir 

where it undergoes terminal disinfection by free residual chlorination before 

distribution. [37, 38] 



 

18 
 

 

Figure 2-2. Up-flow clarifier image[37] 

2.6 Inclined Plate Settlers 

The tanks described in the former sections have a similar issue that they require 

large space and the settling efficiency is limited. To overcome this issue, multistory tanks 

[39] and inclined plate settlers/tubes are coming into use. Multistory (Figure 2-3), or 

tray, tanks are a result of recognizing the importance of settling area to settling 

efficiency. Basic flow is arranged into two layers with multistory tanks. The trays may be 

coupled in parallel with flow divided between them or coupled in series with flow 

passing from one to the next. The Little Falls Water Filtration Plant of the Passaic Valley 

Water Commission, Clifton, New Jersey, uses tanks with two layers of reverse-flow (four 

levels in total) coupled series. [40] Coagulated water enters the lower pass and returns 

on the level above. Coagulated water is removed using submerged launders. Sludge 

collectors move in the direction of the flow, scraping settled material to sludge hoppers 

at the far end of the first pass. Each collector flight is trapped at the effluent end on the 
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return pass so that collected material drops down into the path of the influent to the 

bottom pass. Multistory tanks are useful in the place that land is expensive. Its 

limitations, though, include a limited width of construction for unsupported floors, flow 

distribution, sludge removal, and maintenance of submerged machinery. [39] 

 
Figure 2-3 Multistory Horizontal Tank with Parallel Flow on Three Levels [39] 

The inclined plate settler has industrial origins [41] of closely spaced inclined 

plate systems for water treatment resulting from a search for high-rate treatment 

processes compact enough to be economically housed against winter weather in the 

1950s in Sweden. Inclined tube system was spawned in the United States in the 1960s. 

The most recent developments have involved combining inclined settling with ballasting 

of floc to reduce plant footprint further [42]. Individual modules of inclined plate or tube 

settlers can be constructed of appropriate materials. Inclined surfaces may be contained 

within a suitably shaped tank for countercurrent, concurrent, or cross-flow 

sedimentation. Adequate flocculation is a prerequisite for inclined settling if coagulation 
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is carried out. The angle of inclination of the tubes or plates depends on the application, 

the tendency for self-cleaning, and the flow characteristics of the sludge on the inclined 

surface. Self-cleaning occurs when the angle of inclination is great enough, typically 

more than 50o to 60o [43]. Demir [44] found that for inclined plates fitted at the end of 

a pilot horizontal-flow settler the optimum angle is about 50o, with this becoming more 

pronounced as surface loading rate increases. The main objective in inclined settler 

development has been to obtain settling efficiencies close to theoretical. Metso's 

lamella principle (Figure 2-4 [45]) uses several parallel inclined plates to maximize the 

available area for any available floor area. In this way, the size and cost of the gravity 

settler can be minimized by matching the thickening and clarifying requirements more 

closely. The area needed to clarify a suspension is often greater than that needed for 

thickening. This means that in a cylindrical thickening tank, the lower section with rakes 

and drive mechanism can be oversized.  
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Figure2-4 Typical inclined plate settler unit ("Lamella Gravity Settler: Inclined Plate Settler" 2009) 

It should be noted that the two basic criteria for gravity settling equipment are 

good clarity of the over flow liquid and maximum density of the underflow solids 

discharge.  To meet these criteria, an inclined plate settler consists of two main 

components: the upper tank containing the parallel plates inclined at 55° and the lower 

cylindrical sludge tank.  Raw water enters through an inlet chamber located in the 

center of the unit and proceeds to the plate chamber through side entry plate slots.  As 

shown in Figure 2-4, the countercurrent design of flow through the system reduces the 

risk of disturbing previously settled solids.  Furthermore, this clarification takes place 

above the suspension inlet to ensure there is no mixing of the clarified fluid with the 

incoming feed.  As the water flows upward through the plate chamber, the solids settle 

on the inclined, parallel plates and slide into the sludge tank at the bottom of the unit. 
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These inclined plates utilize Metso’s lamella principle. [46] That is, the floor area is 

minimized by the use of parallel inclined plates. In this way, the size and cost of the 

gravity settler can be minimized by matching the thickening and clarifying requirements 

more closely.  This is in stark contrast to traditional clarifier basins where the area 

required to clarify a suspension is often greater than that needed for thickening. This 

generally results in a cylindrical thickening tank—i.e. the lower section of the basin—

having oversized rakes and drive mechanisms. Further sludge thickening within the 

inclined plate settler is achieved in the sludge hopper.  This inactive zone within the unit 

is created by the influent side entry plate slots previously mentioned.  The clarified 

water exits the inclined plate setter through orifices or weirs at the top of the unit into 

collection channels.  This creates a pressure drop across the collection channels which 

ensure uniform flow distribution across the plates utilizing the full area for settling.   

This is primarily because the effective gravity settling area of the inclined plate 

equals each plate’s area projected on a horizontal surface as shown in Figure 2-5. [46] 
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Figure 2-5.  Effective gravity settling area in terms of projected horizontal surface ("Advanced Water & 

Wastewater Treatment Systems: Plate Settler Installations" 2011) 

2.7 Fabric Materials 

As a proof of concept, six fabrics were acquired from the Hanes Product List [47]. 

They can be classified into three categories, polyester, polypropylene, and a 50/50 blend 

of polyester and rayon. Polyester is a category of polymers which contain the ester 

functional group in their main chain.  The main characteristics of polyester fabric include 

being strong, durable, resistant to stretching and shrinking, resistant to most chemicals, 

wrinkle resistant, mildew resistant, and abrasion resistant. In the case when polyester 

composites are immersed in water, the voids and cracks in the material will be gradually 

filled with water molecules, and the capillarity effect would encourage the water 
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penetration. This increases the mass weight of the material. Prolonged immersion 

induces chemical reaction between the water molecules and the fiber as well as the 

matrix causing some elements to leach and dissolve in the water, which causes a decline 

of the mass weight. Rayon is a manufactured fiber composed of regenerated cellulose in 

which substitutions have replaced less than 15% of the hydrogens of the hydroxyl 

groups. Its main characteristics include being highly absorbent, soft and comfortable, 

easy to dye, and to drapes. Polypropylene is a thermoplastic polymer made from the 

propylene monomer; that is rugged and unusually resistant to many chemical solvents, 

bases and acids. Polypropylene is normally tough and flexible, especially when 

copolymerized with ethylene. Its main characteristics include generation low static and 

being abrasion resistant, resistant to deterioration from chemicals, mildew, 

perspiration, rot and weather, thermally bondable, stain and bondable, stain and soil 

resistant, and having astrong structure. Compared to polyester, it is more hydrophobic 

meaning that it does not absorb as much water. It also has a much lower melting point 

and is less UV resistant than polyester. Mao [48] studied the relationship between water 

permeability and fabric structure, and indicated that the water permeability rate of filter 

cloth decreases with the increase of fabric tightness and the decrease of yarn twist. 
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2.8 Filtration 

2.8.1 Membrane Filtration Flux 

Filter fabric is used in this research to settle down some solids in the water in 

order to increase turbidity reduction. The primary function of filter fabric is to act as an 

inclined plated screen, reducing flow velocity, causing deposition of suspended 

sediment behind the structure. The fabric also acts as a filter for suspended solids in the 

water. 

The idea is borrowed from situations where high sediment loads in runoff cause 

severe environmental problems when deposition eventually occurs, so preventing 

sediment movement beyond controllable locations is a very important issue. [49] While 

other methods may be equally effective in controlling sediment, the filter fabric fence is 

a low cost, easy-to-install practice, if properly designed, installed and maintained. 

Limited laboratory and field data exists of flow through filter fabric. One article 

about the high sediment loads mentioned above did report on the development of an 

equation presenting the relationship between water discharge through the fabric and 

the hydraulic head upstream of the filter fabric fence for the given fabric parameters. 

[50] 

The relationship between flow rate and hydraulic head for filter fabric was found 

by applying the Bernoulli equation to the flow. [51] The derived formula equation 

defines an opening coefficient, where φ(n) is called the opening coefficient, a constant 



 

26 
 

for a specified hydraulic head, but it changes with head. The greater the head, the 

greater the opening coefficient is. 
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（Eqn. 2-3） 

The important contribution of equation 2-4, which defines the flowrate Q 

through the fabric, is that it gives a universal hydraulic relationship to all kinds of fabric 

so that it is not necessary to develop an individual one. 

                                         
gHenddCQ nm 2)(1 

                                      
（Eqn. 2-4）

 

The fouling mechanism of a woven fabric membrane, when treating kaolin 

suspension, was investigated by Muhammad [52] with and without the use of a ferric 

coagulant that was produced using an electrochemical cell. The investigation was 

carried out at different kaolin concentrations and crossflow velocities (CFV). Without 

coagulation, the process performance showed that the flux decline with time proceeded 

exponentially. The effect of CVF on the permeate flux was clear, particularly, when the 

crossflow velocity was increased to 2 m/s. The fouling mechanism investigation showed 

that membrane fouling proceeded in accordance with the standard law of filtration, 

which is attributed to the infiltration of colloidal particles into the pores of the 

membrane[52]. With coagulation, membrane fouling was found to proceed according to 

the classical cake filtration model (Figure 2-6).  
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Figure 2-6 Cake filtration model 

2.9 Chemical Treatment 

2.9.1 Coagulation 

Coagulation was originally used for removal of colloidal matter and color, but its 

purpose has been expanded to remove some of the organic material that may generate 

DBPs upon chlorination. With coagulation as a conventional treatment process already 

in widespread use in surface water treatment facilities, it seems a logical focus for study 

in efforts to reduce THM and HAA formation. Since the beginning of concern about and 

regulation of trihalomethanes, maximizing the effectiveness of the traditional 

coagulation process for removal of organic precursors has been of interest [53]. 

Although the removal mechanism for comparatively large colloidal material involves 

physical processes of destabilization [54], most organic molecules are considered to be 

dissolved and as such not removable by these processes. Instead, organics have been 

generally considered to be removed by co-precipitation [55]; here, the molecules either 

adsorb onto the polymeric compounds generated when coagulants are added to water 

or become associated with other molecules in the solution that adsorb the organics. 
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Coagulation has been practiced and studied in water treatment for many 

decades, well before the discovery and regulation of disinfection byproducts as 

potentially harmful compounds [56]. Earlier interest was in more efficient removal of 

particulate matter prior to filtration that could not easily be removed by sedimentation 

alone and also ways in which the color naturally present in some water sources might be 

removed; this color was the result of dissolved organic molecules, some of which would 

later be identified as potential precursors to DBPs. 

Coagulation, if properly designed and operated, can be effective at helping to 

remove particles of 1 μm or less in diameter [54] early in treatment. Presumably 

because of the high effectiveness of particulate removal by coagulation, little data exists 

describing removal of particle-bound organics [55]. More importantly from what would 

become an interest in DBP precursor removal, it was shown by many that color is also 

effectively removed by coagulation with metal coagulants such as ferric chloride or 

aluminum sulfate, although perhaps by a chemical precipitation mechanism associated 

with coagulant addition rather than the physical processes which govern particulate 

coagulation. [56-58] As might be expected based on the fact that the organic molecules 

most associated with color tend to be large and more hydrophobic in nature, it was 

soon found that these larger organics are the compounds most effectively removed by 

coagulation[59]. 

Because of its prior effectiveness in reducing concentrations of organic 

molecules associated with color, coagulation emerged as a likely technology to help 

with reducing TTHM formation. In 1977, Narkis and Rebhun [60] found that coagulation 
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was most effective at reducing humic and fulvic acids in solution at a lower pH; the 

changes in ionization of the compounds formed by the coagulant in solution and 

dissociation of organic functional groups resulted in more effective and efficient 

removal. 

2.9.2 Softening 

Coagulation is not the only type of process that may remove dissolved organics 

through a sedimentation process. For facilities already interested in water softening for 

other reasons, some removal of DBP precursors has been noted in conjunction with the 

involved chemical precipitations. It has been observed that softening may interact with 

DBP precursors differently than does coagulation, although both types of treatment 

have been shown to have a similar potential for effectiveness overall [59]. Liao and 

Randtke [61] showed that the primary mode of removal of organic molecules during 

lime softening was co-precipitation; that is, that organics were being removed through 

adsorption to the softening precipitate as it was forming rather than as a separate 

precipitation or coagulation effect. 

Softening processes may be operated such that only calcium or both calcium and 

magnesium are removed. Calcium is typically precipitated as CaCO3, while magnesium 

forms Mg(OH)2. Calcium carbonate is known to be a less-effective adsorbent than 

magnesium hydroxide because of its solid structure and several studies have 

demonstrated greater removal of dissolved organics with increased magnesium 

precipitation; however, calcium carbonate alone does appear to remove at least some 

DOC [62]. Kalscheur et al. [63] confirmed that observed decreases in DOC 
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concentrations do indeed parallel decreases in both TTHM and HAA9 formation 

potential, although the similarities are less pronounced in high-bromide waters due to 

increased formation of bromine-substituted DBPs. Bob and Walker [64] extended the 

investigation of calcium vs. magnesium effectiveness further by selecting lime with 

varying levels of magnesium content to use in softening experiments and found that 

magnesium impurities in lime may even assist with removal of organics, and particularly 

those organics responsible for THM formation. 

2.9.3 Adsorption (Activated Carbon) 

Adsorption is the adhesion of atoms, ions, or molecules from a gas, liquid, or 

dissolved solid to a surface. Similar to surface tension, adsorption is a consequence of 

surface energy. In a bulk material, all the bonding requirements (ionic, covalent, or 

metallic) of the constituent atoms of the material are filled by other atoms in the 

material. However, atoms on the surface of the adsorbent are not wholly surrounded by 

other adsorbent atoms and therefore can attract adsorbents. The exact nature of the 

bonding depends on the details of the species involved, but the adsorption process is 

generally classified as physisorption (characteristic of weak van der Waals forces) or 

chemisorption (characteristic of covalent bonding). It may also occur due to electrostatic 

attraction. [65] 

Activated carbon has been used in drinking water treatment to adsorb taste and 

odor-causing compounds from solution. However, it may also be used to remove 

dissolved organic material, particularly some organics not removed by coagulants. There 

are two categories of activated carbon: powdered activated carbon (PAC) and granular 
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activated carbon (GAC). As the name imply, the distinction between these two is based 

on size. GAC is often used in filter media or in a separate packed-bed contactor due to 

its larger size while PAC is typically added to a basin like other solid chemical and settled 

or filtered out of solution. Generally, the smaller size of activated carbon, the shorter 

pore length of it, and thus the equilibrium adsorption can be reached more quickly. [66] 

Both PAC and GAC are currently used in water treatment because of their relative 

advantages and disadvantages for specific facilities. 

The effectiveness of activate carbon adsorption is known to be influenced by a 

few properties, both of the carbon itself and of the solution from which DOC removal is 

desired. Activated carbon is known to be more effective at a lower pH[67], with pH 

values as low as 3.5 and 3.0 clearly more effective than a pH of 7.0 or 9.0. [68] It has 

been suggested that this pH dependence may be related at least as much to the organic 

molecules themselves, some of which contain weakly acidic functional groups that 

become less charged and thus more hydrophobic with decreasing pH as it is related to 

the carbon itself. [69] Limited adsorption of organic matter has been found in low ionic 

water [70, 71]; these researchers have suggested divalent ions such as Ca2+ and Mg2+ in 

solution become associated with functional groups and facilitate better adsorption to 

the carbon’s surface sites. Properties of activated carbon itself are also important. Pore 

size distribution may effect removal efficiency[68, 72], as molecules must be able to 

access the available surface area; however, adsorptive properties have been shown not 

to be solely a function of the pore size distribution. Surface acidity also affects polarity 

of the surface, in turn affecting how well a carbon may remove more hydrophobic 
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structures such as aromatic rings. For PAC, allowing sufficient contact time to reach 

approximate equilibrium with organics in the water is also key; 30 minutes has generally 

been found sufficient for at least the initial rapid adsorption of smaller molecules. [73, 

74] 

As noted by Bishop et al. [75], different activated carbons can have very different 

efficiencies at removing organic matter, and this efficiency is difficult to accurately 

predict from standard measurements of carbon properties. As would be expected, 

studies of organic matter adsorption have shown that all activated carbon is not equally 

effective at removing DOC [74]; however, properties such as pore size and surface 

charge do appear to at least influence effectiveness[72]. It also should be noted that 

effectiveness of adsorption processes can very much be a function of adsorbent vs. 

adsorbing-species concentrations, which can vary even at the same location as a 

function of time [76]. Additionally, humic and fulvic acids from different sources have 

been found to be removed to different extents by the same carbons [68, 69], perhaps 

because of differing amounts of carboxyl functional groups. Consequently, considerable 

variation has been reported in effectiveness of activated carbon for removal of DBP 

precursors and the dosages required to be able to observe such removal[67].  
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3. MATERIALS AND METHODS 

3.1 Water Samples 

Samples of raw water, water in intermediate treatment stages, and water from 

distribution system were collected from certain facilities under study. Sampling 

locations within a treatment facility were selected to be before and/or after major 

treatment processes, with the objective of determining the effect, if any, that phase of 

treatment may have had on water quality and disinfection byproduct precursor 

concentrations. The primary facility studied is in Vandalia, MO. 

3.1.1 Vandalia Water Treatment Facility 

The Vandalia treatment process starts at Vandalia Reservoir where copper 

sulfate (now EarthTec) is added seasonally (Figure 3.1). The influent pump station then 

moves water to the mechanical treatment process at a rate of X gallons per minute. The 

initial stage of the process includes the first-stage rapid mix, flocculation, and 

sedimentation, where an additional copper sulfate, a coagulant (aluminum sulfate, 

alum), and the powder activated carbon (Calgon WPH) is added. Next the second-stage 

rapid mix, flocculation, and sedimentation process begins with the addition of quick lime 

(CaO), of the polymer Sternpak, and with some chlorine, and then fluoride and more 

chlorine is added just before granular filtration. Contact time is achieved through a 

clearwell. The high service pumps then send the water to an on-site 1.0 million gallon 

(MG) storage tank before it enters to the Vandalia distribution systems. The storage 

time of the 1.0 MG tank is approximately 3 days. 
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Figure 3.1: Schematic of the Vandalia drinking water treatment process 

The water used in this research was from Vandalia Reservoir or from the primary 

sedimentation (before the lime and first stage of chlorine is added).  

3.1.2 Synthetic River Water 

Due to the large demand (100 L per run) of raw water, it seems to be difficult to 

use real river water every time. As a result, simulated water with high turbidity and 

organic (similar to river water) is required. 

Parallel experiments are being used in the determination of simulated water. 

The two main purposes for simulated water are to add the turbidity and add the organic 

dose in water. The reason for this phase of tests is to make sure the simulated water has 

similar turbidity, TOC and UV254 as common raw waters (i.e. river water) in a drinking 

water treatment plant.  

Kaolin clay is widely used in making water of high. Humic acid is a principal 

component of humic substances, which are the major organic constituents of soil 
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(humus), peat, coal, many upland streams, dystrophic lakes, and ocean water. [77] It is 

produced by biodegradation of dead organic matter. It is not a single acid; rather, it is a 

complex mixture of many different acids containing carboxyl and phenolate groups so 

that the mixture behaves functionally as a dibasic acid or, occasionally, as a tribasic acid. 

Humic acids can form complexes with ions that are commonly found in the environment 

creating humic colloids. Humic and fulvic acids (fulvic acids are humic acids of lower 

molecular weight and higher oxygen content than other humic acids) are commonly 

used as a soil supplement in agriculture, and less commonly as a human nutritional 

supplement[78]. In this experiment, only humic acid was used to make the synthetic 

water; that means it only modeled the DOC amount in the water, not necessarily 

modeled the chemistry conditions in the water. 

Different dose of the two chemicals are added into water and 3 hours later, the 

solutions are tested as well as blank samples to see the turbidity, TOC and UV254 

values. The one with closest parameters as river water was used in the followed 

experiment. The specific amount chemicals using in the experiment will be discussed in 

Chapter 5. 

3.1.3 Water sample and chemical sample collection 

Water that had been used in this research included water from Missouri River, 

Vandalia Water Treatment Plant (their source water and the water from different part 

of process). Chemicals used in the research were provided by several water treatment 

plants, including lime from Columbia, aluminum chloride from Vandalia, activated 
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carbon from Vandalia, polyaluminum chloride from Hamilton, aluminum sulfate from 

Monroe City, ferric chloride from Trenton, etc.  

3.2 Analytical Methods 

3.2.1 Turbidity 

There are several practical ways of checking water quality, the most direct being 

some measure of attenuation (that is, reduction in strength) of light as it passes through 

a sample column of water. Standard Method 2130B (APHA, et al., 1998) was followed to 

measure turbidity using a Hach 2100P turbidimeter. 

3.2.2 Total Organic Carbon or Dissolved Organic Carbon 

To quantify the amount of natural organic matter in a water source, dissolved 

organic carbon (DOC) analysis is performed (Standard Method 5310 B: high temperature 

combustion method (APHA, et al., 1998)). Non-purgeable organic carbon (NPOC) 

analysis was performed on a Shimadzu TOC-Vcpn instrument with an ASI-V auto sampler 

and reported as DOC. The NPOC procedure adds 2N hydrochloric acid to the sample and 

then purges it for 1 min with zero-air (no carbon) to volatilize any carbonates that may 

have been present in the sample. Water sample is filtered by 4.7 cm glass fiber filter 

(WHATMAN) before being tested for DOC. DOC was mainly tested in the experiment 

introduced in Chapter 4 and Chapter 6 and TOC was mainly tested in the experiment 

described in Chapter 5 
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3.2.3 UV254 

Samples were collected for determination of their absorbance of light at 254 nm 

(UV254) following Standard Method 5910 B. Samples were transferred to a 1-cm quartz 

cuvette using a syringe and filtered prior to measurement using a 0.45-μm syringe filter. 

UV254 absorbance values were obtained using a Hach DR/5000 spectrophotometer in 

the plant’s laboratory; for all other samples, a Varian Cary 50 Conc UV-Visible 

Spectrophotometer in the university’s laboratory was used.  

3.2.4 THM Species 

The samples collected for TTHM analysis were analyzed with a Varian 3800 gas 

chromatography (GC) system equipped with a Saturn 2000 mass spectrometer (MS) for 

detection. An analysis method similar to that described by EPA method 524.2 and 

Standard Method 6232 C was used. For samples taken in the field and brought back to 

the laboratory for analysis, a 40-mL water sample was collected, of which approximately 

5 mL was used for each analysis. Samples with no headspace were loaded on an 

autosampler which sent each sample to a purge and trap system for concentration of 

the volatile TTHM species before carrier gas carried them to the GC. 

3.2.5 Chlorine Residual 

A  Hach DR/2400 spectrophotometer was used for these measurements. 

Duplicate or triplicate measurements of free chlorine residual were taken, with the 

average of the two values in best agreement recorded. For samples containing a free 

chlorine residual of greater than 2.0 mg/L, a fresh aliquot was diluted with DI water such 
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that the measured concentration fell within the 0.02-2.0 mg/L range and the original 

concentration calculated for reporting or use in chlorine demand determination, as 

appropriate. 

3.2.6 Quality Assurance 

All the parameters were tested triplicate. Average was taken if the range of the 

three results were within 5%; otherwise, another test was conducted. Calibration curve 

for TOC was generated at range from 0 to 10 mg/L. With each run of TOC (DOC), a 

sample of the standard solution (10 mg/L) and a blank sample (0 mg/L) were tested by 

side to make sure the calibration curve was still valid. Turbidimeter was calibrated by its 

program every two months.   

For data collected in Chapter 5, five to seven samples were taken at every 20 or 

30 minutes. Results show the average with the error bars showing the maximum and 

minimum number. 

3.3 Statistical Methods 

To compare two entities experimentally and deciding whether differences that 

are found are likely to be genuine or merely due to chance, the method of statistical 

inference called significance testing (equivalently hypothesis testing) was conducted. 

Suppose a particular result is produced by making some experimental modification to a 

system, one needs to determine whether the result is easily explained by mere chance 

variation or whether it is exceptional, pointing to the effectiveness of the modification. 
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To make this decision, one must produce a relevant reference distribution that 

represents a characteristic set of outcomes which could occur if the modification was 

with or without effect. The actual outcome may then be compared with this reference 

set. If it is found to be exceptional, the result is called statistically significant. [79] 

In this research, an experiment was performed on a settling tank by taking 

samples from tank A with our design of inclined fabric settling screen followed by 

samples from an unmodified tank B which is without the design. What evidence does 

the data provide that method A gives higher removal rate that method B? To answer 

this question, one should properly plot the data from the outlet and calculate the 

averages obtained for methods A and B. Because of the considerable variability in the 

two tanks, one may worry about whether it could be reasonably claimed that method A 

is better or whether the observed difference in the averages could just be a chance 

event. Comparison with the t Test was used to determine the difference. Writing δ for 

the difference in means ηA-ηB on the NIID assumption of random sampling from a 

normal population, the quantity calculate from equation 3.1 would be distributed as t 

with ν = nB + nA – 2 of degrees of freedom. Then Pr (%) could be generated and the 

result obtained could be found from the randomization distribution. [79] In this 

research, all the results of t Test were generated in the Microsoft Excel program. 

(𝑦𝐴−𝑦𝐵)−𝛿

𝑠√
1

𝑛𝐴
+

1

𝑛𝐵

      (Eqn.3.1) 

Compute from the data some relevant criterion (statistic) to test a particular 

hypothesis of interest against some alternative hypothesis.  
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Statistic:  (e.g., ybarB - ybarA)    (Eqn. 3.2) 

Null hypothesis:  yB - yA = 0     (Eqn. 3.3) 

 Alternative Hypothesis:  yB ≠ yA (two-tail) or   yB - yA > 0 (one-tail)         (Eqn. 3.4) 

Refer the criterion to an appropriate reference distribution, which shows how 

the criterion would be distributed if the tested hypothesis were true.  

Calculate the probability that a discrepancy at least as large as the one that 

occurred would occur by chance if the null hypothesis were true.  

In this research, 95% significance level was assumed and the probability tail is 

the main variable of interest.  If it is sufficiently small (<0.05), we can discredit the null 

hypothesis and assert that a statistically significant difference has been obtained. [79] 
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4. MATERIAL CHARACTERISTICS TEST AND THEIR FEASIBILITY 
ANALYSIS 

4.1 Introduction 

The fabric screen presented here combines the inclined plate settler with fabric 

material instead of the traditional steel/plastic. Apart from adding more surface area by 

50% to 500% depending on the number of layers, it allows water to go through the 

material so that the material itself plays the role of a filter which can separate solids 

from water and enhance the sediment process. For each layer of the fabric, the up side 

provides more surface area while the down side stops solids from going through. The 

cost of fabric is low, and it is easy to maintain or change. The choice of fabric material is 

important for reasons. First, it should allow water easily pass through while it can 

intercepts some solids. Second, the material itself should not introduce additional 

pollutants to the water being treated. For the materials chosen for the proof of concept, 

several material tests have been done. 

4.2 Material and Method 

4.2.1 Fabrics Considered 

As a proof of concept, six fabrics were acquired from the Hanes Product List. 

They can be classified into the three categories, polyester, polypropylene, and a 50/50 

blend of polyester and rayon. The specific characteristics of the fabric selected are 

shown in Table 4-1. Their characteristics are described by weight, thickness, air 



 

42 
 

permeability, tensile strength, and micron rating. The unit of weight is oz/yd, which 

stands for ounce per yard, being equal to 0.031 kilograms per meter (kg/m). Thickness is 

in mils, where 1 mil equals one thousandth of an inch. Air permeability has units of cubic 

feet per minute per foot (cfm/ft), which equals to 0.001548 square meters per second 

(m2/s). Tensile strength is expressed by md*cd, meaning both machine directions and 

cross directions. A micron rating for a fluid filter is a generalized way of indicating the 

ability of the filter’s media to remove contaminants by the size of particles it is exposed 

to. A filter that is marked or rated “10 microns” has some capability to capture particles 

as small as 10 micrometers (the average size of a floc particle is around 100-1000 

micrometers). 

Table 4-1 Fabric Information 

Product ID Fiber 
Weight 
(oz/yd) 

Thickness 
(mils) 

Air Perm 
(cfm/ft) 

Tensile 
(md*cd) 

Micron 
Rating 

Pureflo 50 Polyester 0.5 5 957 9*5 300 
Pureflo 75 Polyester 0.75 7.4 800 18*17 200 
Surefil 50 Rayon/Polyester 0.5 5 966 6*3 100 
Surefil 70 Rayon/Polyester 0.7 7.5 690 12*4 70 

Regiment 50 Polypropylene 0.5 5 707 8*8 85 
Polyfab 500 Polyester 5 unknown unknown unknown unknown 

 

Polyester is a category of polymers which contain the ester functional group in 

their main chain.  The main characteristics of polyester fabric include being strong, 

durable, resistant to stretching and shrinking, resistant to most chemicals, wrinkle 

resistant, mildew resistant, and abrasion resistant. In the case when polyester 

composites are immersed in water, the voids and cracks in the material would be 

gradually filled with water molecules, and the capillarity effect would encourage the 

water penetration. This would increase the mass weight of the material. Prolonged 
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immersion would induce chemical reaction between the water molecules and the fiber 

as well as the matrix causing some elements to leach and dissolve in the water; this 

would cause the decline of the mass weight. Rayon is a manufactured fiber composed of 

regenerated cellulose, in which substituents have replaced not more than 15% of the 

hydrogen of the hydroxyl groups. Its main characteristics include being highly absorbent, 

soft and comfortable, easy to dye, and able to drape well. Polypropylene is a 

thermoplastic polymer made from the propylene monomer. It is rugged and unusually 

resistant to many chemical solvents, bases and acids. Polypropylene is normally tough 

and flexible, especially when copolymerized with ethylene. Its main characteristics 

include being abrasion resistant, resistant to deterioration from chemicals, mildew, 

perspiration, rot and weather, thermally bondable, stain and soil resistant, and 

structurally strong. Compared to polyester, it is more hydrophobic, meaning that it does 

not absorb as much water. It also has a much lower melting point and is less UV 

resistant than polyester. 

4.2.2 Determination of Fabric performance 

Fabric performance with solids. One of the functions that the fabric inclined 

screen plays in the water treatment process is to remove particles as a filter when water 

is going through it. With no pressure other than the water flow, the fabric should have a 

permeability that minimizes head loss. Lime solids (sludge) collected from a local 

drinking water treatment process was used in this experiment to test the ability of the 

fabrics to filter drinking water solids out of the water.  
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The equipment used in this experiment is shown in Figure 4-1. The procedure 

starts with the need to weigh the fabric and record that number as m1. Weigh a glass 

filter and record that number as m2. Dilute the sludge of the rate of 1:20 into the water. 

Measure 100 mL of the diluted suspension and put it into the first funnel and wait for it 

to naturally go through the fabric (using only gravity). After almost all the water is in the 

second funnel, turn on a vacuum pump to pull the water going through the glass filter. 

Remove the fabric and filter and place them into the oven and at 105 oC for 24 hours (or 

until completely dry). Weigh the fabric and filter as mt1 and mt2 respectively. Since the 

expectation is that whatever is not captured by the fabric will be captured by the glass 

fiber filter, calculate the removal rate of the fabric as 

              Percent Removal = (mt1-m1) / [(mt1-m1) + (mt2-m2)]                       (eqn.4.1) 

 

Figure 4-1 Equipment used in determination of fabric performance with solids 
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Fabric endurance in solution. The purpose of the introduction of the fabric 

inclined settling screen is to help enhance solids removal thereby reducing particles that 

may react with disinfectant added later in the process. It is essential that the material 

itself is unreactive and does not introduce additional pollutants/chemicals into water. 

Jar testing is used to determine the endurance of fabric diluted coagulant solutions 

(indicative of the environment at a drinking water treatment facility). The coagulants 

used include aluminum sulfate, sodium aluminate, and ferric chloride. The 

characteristics color and preferred pH range of each coagulant are shown in Table 4-2.  

Table 4-2 Coagulant Information 

Coagulant Color pH 

Aluminum sulfate Transparent 4-6 
Sodium aluminate Transparent 10-12 
Ferrous chloride Orange 4-6 

 

In this experiment, the coagulant solution was prepared as 10 mL (milliliters) of 

coagulant into 1.0 L of deionized water, which was much higher than the real usage in 

treating the water. If it does not react with the fabric under this high concentration, it is 

assumed it will not react with fabric under normally used concentration. A 20 

centimeter (cm) by 20 cm swatch of each material was placed in individual 250 mL glass 

jar filled with 200 mL water/coagulant solution and the jar was capped. After  24 hours, 

a 10 mL water sample was immediately tested for turbidity and then 100 mL water 

sample was  filtered through a 0.45 µm glass fiber filter disk (FisherBrand 09-719-2E), 

and tested for DOC and UV254. This process was repeated for another 24 hours test with 

a new diluted coagulant solution. The percent reduction is calculated as the original 
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leaching solution concentration (c1) minus the concentration after leaching (c2) and then 

divided by the original concentration (eqn. 4.2). 

                                   Percent reduction = (c1-c2)/c2*100%                            (Eqn. 4.2) 

4.2.3 Chemical Analysis 

Turbidity. There are several practical ways of checking water quality, the most 

direct being some measure of attenuation (that is, reduction in strength) of light as it 

passes through a sample column of water. This turbidity was measured following 

Standard Method 2130B (APHA, et al., 1998) using a Hach 2100P turbidimeter. 

TOC or DOC. TOC means total organic carbon and DOC means dissolved organic 

carbon. Treated water samples from each of the jars are filtered through a 0.45 µm glass 

fiber filter disk (FisherBrand 09-719-2E) is ready to be analysis with DOC. To quantify 

the amount of natural organic matter in a water source, TOC and DOC analysis was 

performed (following theStandard Method 5310 B: high temperature combustion 

method (APHA, et al., 1998) on a Shimadzu TOC-Vcpn instrument with an ASI-V auto 

sampler.  

UV254. Measurements of ultraviolet light absorbance at 254 nanometers indicate 

aromatic organic content (Standard Method 5910 B). Treated water samples from each 

of the jars are filtered through a 0.45 µm glass fiber filter disk (FisherBrand 09-719-2E), 

poured into a 1 cm quartz cell or cuvette (Fisher Scientific #14385902C), and then run 

on a UV-Visible Light Spectrophotometer (Cary 50) at a wavelength of 254 nm. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Fabric Performance with Solid 

Fabric filtration efficiency can be expressed by percent reduction (equation 4-1). 

Single, double, and triple layers of fabrics have been tested respectively on four of the 

fabric sample (Figure 4-2): Pureflo 75, Polyfab 500, Surefil 70, and Regiment 50. It is 

expected that as the number of layers increase that the percent removal will also 

increase. Since multiple samples were tested the results shown are the average 

numbers while the error bars are the maximum and minimum numbers obtained from 

the tests. 

 
Figure 4-2. Percent removal of particles through different layers of fabric filter 

The percent removal of pureflo 75, surefil 70, and regiment 50 increased with 

the increase of layers. For pureflo 75 and surefil 70 the triple layer provides the best 

filtration efficiency at 95% and 73% respectively. However, the performance difference 

between single layer and double layer appeared to be limited, with a 10% improvement 
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for pureflo 75 and a 5% improvement for surefil 70. For regiment 50 filtration efficiency 

improved a lot from the single layer to the double layer (40% improvement) while it did 

not change much from double to triple layer (3% improvement). For polyfab 500 the 

triple layer at 55% performs worse than the single layer (75%). 

According to the micron rating shown in table 4-1, surefil should have the better 

ability to remove contaminants (as small as 70-100 micrometers) than pureflo does (as 

small as 200-300 micrometers). However, the size of lime solids used in this test was 

approximately 500 micrometers, which can be stopped by both materials. In this case, 

the percent removal of pureflo and surefil was close to each other. 

Figure 4-3 shows the percent reduction of different fabrics in different thickness. 

The percent removal increased from 39% for pureflo 50 to 55% for pureflo 75 as well as 

from 35% for surefil 50 to 53% for surefil 70 because of the thickness increases. At the 

same time, pureflo 50 and surefil 50 has similar filtration efficiency at the same 

thickness. 

 
Figure 4-3. Percent removal of particles through different thickness of materials 

0%

10%

20%

30%

40%

50%

60%

70%

80%

Single layer Double layer

P
er

ce
n

t 
R

em
o

va
l

Fabric Layre

Pureflo 50 Pureflo 75 Surefil 50 Surefil 70



 

49 
 

Overall, the results fluctuated somehow due to the uneven surface of the fabric. 

These tests confirm that the fabrics stop some of the particles so that it is feasible to use 

it in the settling screen design. However, it is worth mentioning that it took a long time 

for water to go through regiment 50 (approximately 5 minutes compared to others of 10 

to 20 seconds) likely due to its hydrophobicity. 

4.3.2 Fabric Endurance in Solution (Turbidity and DOC values) 

Table 4-3 and 4-4 respectively show the reduction of turbodity and DOC of 

different material existing in diluted solution of aluminum sulfate, sodium aluminate, 

and ferric chloride for 48 hours.  Percent reduction, based on equation 4-1, was 

expected to be positive for it meant the fabric itself has some functions of cleaning the 

water, or at least does not release additional pollutant to the water. On the other hand, 

negative numbers (highlighted in red) meant that the fabric added some turbidity or 

TOC to the water, which was not wanted in our next step of experiment. Materials with 

negative results were ruled out after these test.  

Table 4-3 Reduction of Turbidity of Different Material and Coagulant Solutions 

 Aluminum sulfate Sodium aluminate Ferrous chloride 

Pureflo 50 0.581 0.788 -0.174 

Pureflo 75 0.548 0.212 -0.043 

Polyfab 500 0.548 0.727 0.130 

Surefil 50 0.677 0.500 -0.130 

Surefil 70 0.484 0.689 -0.069 

Regiment 50 0.581 0.470 0.217 
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Table 4-4 Reduction of TOC of Different Material and Coagulant Solutions 

  Aluminum sulfate Sodium aluminate Ferrous chloride 

Pureflo 50 0.371 -1.041 0.120 

Pureflo 75 0.355 -0.369 0.224 

Polyfab 500 0.233 -0.246 0.499 

Surefil 50 -0.526 0.612 0.267 

Surefil 70 -0.407 0.510 0.348 

Regiment 50 0.200 0.683 0.170 

 

In this case, we discarded all the negative numbers in the table when we made 

the figures for we are only interested in the materials giving the positive number and 

the material chosen for next step of experiment would be among those. Materials with 

positive results were used to make incline settling screens in next a few steps of 

research.  

In most case as can be seen from Figure 4-4, turbidity got lower after 48 hours of 

incubation with the fabrics in sodium aluminate and ferric chloride, likely because the 

pores of the materials can adsorb some suspended particles and settling of the particles 

occurs in the jars themselves. 
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Figure 4-4 Percent Reduction of Turbidity of Different Material and Coagulant Solutions 

TOC values (figure 4-5 provides performance numbers) indicate the 

concentration of organics in water. The three polyester (polyfab 500, pureflo 75, and 

pireflo 50), were affected sodium aluminate the most for the reduction of TOC is a 

negative number (in figure 4-5, 0 stands for negative as mentioned before) while they 

performed well in other coagulant. On the contrary, sodium aluminate rarely reacts with 

the two rayon materials (surefil 50 and surefil 70) while other coagulants were greatly 

affected by the two materials. As to polypropylene (regiment 50), it did an excellent job 

in every condition. It added few (and probably removed some) organic chemicals into 

the water according to the result of TOC test. But it is worth mentioning that this 

material is so hydrophobic that it does not absorb much water which is a possible 

reason for this result. These results suggest that the polyester (polyfab 500, pureflo 75, 

and pureflo 50) can be used in water process using ferric chloride and aluminum sulfate 
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while rayon materials (surefil 50 and 70) can be used in sodium aluminate and ferric 

chloride. 

 
Figure 4-5 Percent Reduction of TOC of Different Material and Coagulant Solutions 

In the point of view of pH, both aluminum sulfate and ferrous chloride are acid 

while sodium aluminate is basic. So it can be generalized that polyfab 500 and pureflo 

75are safe to be used in acidic or neutral conditions while surefil 70 are good for basic 

condition. The regiment material rarely react with any solutions, which is qualified for all 

the condition but in practice, it is limited for its hydrophobicity. It is hard for water to 

pass through and may cause huge head loss. 

4.3.3 Fabric Performance in Different Coagulant Solutions 

Tables 4-5, 4-6, and 4-7 show the results of parameters after the material 

contact with the solution for 24 and 48 hours in aluminum sulfate, sodium aluminate, 
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and ferrous chloride respectively. Again positive numbers were expected. Negative 

numbers were discarded (expressed as 0) when being plotted on figures for the 

materials with negative results were no longer used in the next sets of experiment. 

For the aluminum sulfate (Table 4-5) all fabrics show turbidity contributions 

during the first 24 hours. This is likely an acclimation/ripening to the environment. The 

surefil product (rayon/polyester blend) did not perform well in this environment. 

Table 5 Reduction of Select Water Parameters in Aluminum Sulfate 

 
turbidity 

(NTU)/24 h 
turbidity 

(NTU)/48 h 
TOC 

(mg/L)/24 h 
TOC 

(mg/L)/48 h 
UV254/24 h UV254/48 h 

Pureflo 50 -0.818 0.581 0.048 0.371 0.001 0.056 

Pureflo 75 -0.455 0.548 0.303 0.355 0.011 0.386 

Polyfab 500 -0.455 0.548 0.339 0.233 -0.003 0.407 

Surefil 50 -1.545 0.677 -2.096 -0.526 -3.792 -1.075 

Surefil 70 -0.727 0.484 -1.842 -0.407 -3.092 -1.007 

Regiment 50 -0.091 0.581 0.338 0.200 0.024 0.058 

 

As can be seen from the Figure 4-6 that the liquid’s turbidity gets higher after 24 

hours’ time period but starts to get lower after 48 hours’ period of exist of fabrics. It is 

mainly because the pores of the materials that can adsorb some suspended particles. 

The two rayon materials (surefil50 and surefil70) seem to affect the water 

quality the most (Figure 4-6, TOC and UV254 number for surefils were all negative) in 

aluminum sulfate. But the effect did become less obvious (Table 4-5) in another 24 

hours. This may indicate that after a certain time of period, it will not affect the water 

quality any more. So before the running of the tank, it is suggested to leach the 

materials into the water for some time (according to this test, the time period should be 
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longer than 48 hours). As to the three polyesters (polyfab500, pureflo75 and pureflo50) 

and the polypropylene (regiment50), they perform well in aluminum sulfate. 

 
Figure 4-6 Percent Reduction of Select Parameter in Aluminum Sulfate 

For the aluminum sulfate (Table 4-6) all fabrics show TOC contributions during 

the first 24 hours. This is likely an acclimation/ripening to the environment. The pureflo 

and polyfab products (polyester) did not perform well with respect to TOC in the this 

environment. 

Table 6 Reduction of Select Water Parameters in Sodium Aluminate 

  turbidity(NTU)/24 h turbidity(NTU)/48 h TOC(mg/L)/24 h TOC(mg/L)/48 h 

Pureflo 50 0.593 0.788 -0.520 -1.041 

Pureflo 75 0.846 0.212 -0.375 -0.369 

Polyfab 500 0.759 0.727 -0.124 -0.246 

Surefil 50 0.543 0.500 -0.507 0.612 

Surefil 70 0.562 0.689 -0.195 0.510 

Regiment 50 0.747 0.470 -0.141 0.683 
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The fabric performance in the sodium aluminate solution (figure 4-7) appears 

almost opposite to alum; with the three polyester (polyfab 500, pureflo 75, and pureflo 

50) affecting the water quality the most during the first 24 hours, but the effect 

becomes less obvious in another 24 hours (but still very high) while the two rayon 

materials (surefil 50 and surefil 70) perform better. The polypropylene (regiment 50) is 

still the best one and is not affected much by the coagulant solution. The turbidity 

tendency is all good but this parameter is not as important as TOC. 

 
Figure 4-7 Percent Reduction of Select Parameter in Sodium Aluminate 

For the ferric chloride solution fabric performance (Table 4-7) all fabrics show 

turbidity contributions and some show TOC contributions during the first 24 hours likely 

due acclimation/ripening to the environment. Because of the color of ferric, it was hard 

to eliminate the interference when testing the UV254. As a result, only turbidity and TOC 

concentrations have been tested. 
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Table 4-7 Reduction of Select Water Parameters in Ferrous Chloride 

  turbidity(NTU)/24 h turbidity(NTU)/48 h TOC(mg/L)/24 h TOC(mg/L)/48 h 

Pureflo 50 -0.512 -0.174 -0.106 0.120 

Pureflo 75 -0.435 -0.043 0.361 0.224 

Polyfab 500 -0.217 0.130 0.361 0.499 

Surefil 50 -0.435 -0.130 -1.480 0.267 

Surefil 70 -0.391 -0.609 -0.931 0.348 

Regiment 50 -0.043 0.217 0.524 0.170 

 

The blank solution has a TOC greater than alum but much lower than sodium 

aluminate. The tendency of the TOC is similar to alum as can be found in Figure 4-8. In 

the first 24 hours, water quality is severely affected by the two rayon materials 

(surefil50 and surefil70). But after the second 24 hours, the percent reduction of all the 

materials became positive, which meant the materials have a positive effect to water 

quality.  

As to turbidity, almost all the data were negative probably due to the color in the 

samples. But in real treatment process, the dosage of the coagulant will be far less than 

was used in this test so that we don’t need to worry about this issue. 

Regiment 50, as with all the other results, performed well again in this coagulant 

for the same reason that it is hydrophobic. 
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Figure 4-8 Percent Reduction of Select Parameter in Ferrous Chloride 

4.4 CONCLUSION 

Conceptually the fabric inclined screen adds additional surface area for solids to 

settle on as well as play a role of filter to stop some particles from going through. Use of 

the fabric screen was determined to be feasible through material testing. All of the 

material provided successfully removed 40%-90% of particles in the test of the fabric’s 

filtration efficiency. But one (regiment 50, a polypropylene product) had difficulty letting 

water go through because of its hydrophobicity. In the test of their endurance in dilute 

coagulant solutions, the polyester (polyfab 500, pureflo 75 and pureflo 50) may be more 

appropriately used in acidic or neutral environment while the rayon/polyester blend 

(surefil 50 and surefil 70) were better in basic/alkaline conditions. Regiment 50 is the 

only one that did not react (release turbidity or TOC) in any conditions. Over an 
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extended period of time, some of the material even adsorbs some pollutant due to its 

loose structure and large surface area.  
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5. CONTINUOUS FLOW TESTING OF FABRIC SCREENS 

5.1 Introduction 

In the United States, more than 94 percent of the nation’s 156,000 public water 

systems serve fewer than 10,000 persons. These systems are classified as very small (0-

500), small (501-3,300) or medium (3,301-10,000) by the United States Environmental 

Protection Agency (EPA) and face unique financial and operational challenges in 

supplying drinking water that meets EPA standards. These water systems do not have 

the large customer base needed to provide the necessary financial assistance and 

cannot easily develop or access the technical, managerial and financial resources 

needed to comply with the increasing number of EPA regulations and rising customer 

expectations [20].  

The inclined plate settler has industrial origins [41]. Closely spaced inclined plate 

systems for water treatment resulted from a search for high-rate treatment processes 

compact enough to be economically housed against winter weather in the 1950s in 

Sweden. Inclined tube system was spawned in the United States in the 1960s. The most 

recent developments have involved combining inclined settling with ballasting of floc to 

reduce the plant footprint further [42]. Individual modules of inclined plate or tube 

settlers can be constructed of appropriate materials. Inclined surfaces may be contained 

within a suitably shaped tank for countercurrent, concurrent, or cross-flow 

sedimentation. Adequate flocculation is a prerequisite for inclined settling if coagulation 

is carried out. The angle of inclination of the tubes or plates depends on the application, 
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the tendency for self-cleaning, and the flow characteristics of the sludge on the inclined 

surface. Self-cleaning occurs when the angle of inclination is great enough, typically 

more than 50o to 60o [43]. Demir [44] found for inclined plates fitted at the end of a 

pilot horizontal-flow settler the optimum angle is about 50o, with this becoming more 

pronounced as the surface loading rate increases. The main objective in inclined settler 

development has been to obtain settling efficiencies close to theoretical. Metso's 

lamella principle using several parallel inclined plates to maximize the available area for 

any available floor area. In this way, the size and cost of the gravity settler can be 

minimized by matching the thickening and clarifying requirements more closely. The 

two basic criteria for gravity settling equipment are good clarity of the overflow liquid 

and maximum density of the underflow solids discharge. The area needed to clarify a 

suspension is often greater than that needed for thickening. This means that in a 

cylindrical thickening tank, the lower section with rakes and drive mechanism can be 

oversized. 

The fabric screen presented here combines the inclined plate settler with fabric 

material instead of the traditional steel/plastic. Apart from adding more surface area by 

50% to 500% depending on the number of layers, it allows water to go through the 

material so that the material itself plays a role of filter which can separate solids from 

water and enhance the sedimentation process. For each layer of the fabric, the up side 

provides more surface area while the down side stops solids from going through. The 

cost of fabric is low, and it is easy to maintain or change. 
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In an effort to develop a methodology for determination of optimal use of fabric 

screens for reducing the amount of DBPs formed in the distribution systems several 

fabric materials were selected and tested. Appropriate strategy considerations for 

improving treatment plant performance were based on their coagulant type and dose, 

and on the characteristics of the fabric. The systems most likely to make use of this 

technology are ones which have finished water trihalomethane (THM) and/or haloacetic 

acid (HAA) levels in excess of forthcoming Stage 2 Disinfectants and Disinfection By-

Products (DDBP) drinking water standards.  

A THM formation reaction is described in equation 5-1. [80] Strong formation 

depends on water temperature, pH, organic content and chlorine dosage while weaker 

formation depends on water age of residence time and bromide concentration. Among 

these, pH, organic content, chlorine dosage, and water age (storage and system 

residence) are the parameters that are under operational control. In contrast, water 

temperature and bromide concentration cannot be controlled. As a result, one of the 

THM reduction methods is to enhance coagulation and sedimentation. The effects of an 

enhanced sedimentation approach, using inclined fabric settling plates, should be 

included in the considerations. [80] 

TTHM, μmoles L⁄ = 0.00309 ∗ (UV254 ∗ TOC)
0.44 ∗ Cl2

0.409 ∗ RXN0.265 ∗ TEMP1.06 ∗ (pH − 2.6)0.715 ∗ (Br + 1)0.0358  

(Eqn. 5-1) 

UV254 = UV absorbance at 254 nanometers, cm-1 

TOC = Total organic carbon, mg/L 

Cl2 = Chlorine dosage, mg/L 

RXN = Coefficient related to water age 

TEMP = Water temperature, °C 

pH = Water pH, s.u. 

Br = Bromide, mg/L 
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5.2 Material and Methods 

5.2.1 Flow through the fabric 

The Bernoulli equation (equation 5-2) can be used to describe the water passing 

through an arbitrarily selected opening in the fabric. Taking the fabric characteristics 

(opening shape, opening size in both vertical and horizontal direction, weave depth in 

both direction, total numbers of opening below the water surface along the vertical 

direction, etc.) into consideration, the discharge (q) can be determined based on what is 

known as orifice discharge equation (equation 5-3), where C is the coefficient of 

discharge, ranging from 0.61 to 0.98 according to the shape of the orifice. A simple 

horizontal channel can be designed to check the flow rate before and after water passes 

through the fabric (Figures 5-1 and 5-2). 

𝐸 +
𝑃𝐴

𝛶
+

𝑣𝐴
2

2𝑔
= 𝐸 +

𝑃𝐵

𝛶
+

𝑣𝐵
2

2𝑔
+ ℎ1     (Eqn. 5-2) 

𝑞 = 𝐶𝑎√2𝑔ℎ       (Eqn. 5-3) 

Relationship between predicted and measured flow rate through different 

angles of fabric can be plotted according to the flow rate from flow meter 1 and 2. Also, 

upflow velocity can be calculated by v=Q/A and detention time can be calculated by 

t=Q/V. 
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5.2.2 Experimental Premise 

Performance of the fabric screen was compared side-by-side with to an identical 

chamber which does not contain a screen. The treatment studies were conducted using 

synthetic river water to quantify the efficiency of removing natural organic matter 

(precursors for DBP production) by measuring the percent reduction of dissolved 

organic carbon (DOC) and UV254 and comparing that to the reduction in the more 

commonly measured parameter turbidity.  

Synthetic river water: Each run would consume 100 liters of water; it was not 

realistic to use real river water in every run of the experiment. So synthetic water was 

used modeling the turbidity and TOC of the river water. 100 liters of tap water (in a 

Rubbermaid container) received 5g Kaolin Clay and 0.5g humic acid to create turbidity 

and organic precursors, respectively. The experiment of deciding the dosage of the 

synthetic water is shown in later chapter. 

Storage tank 

Pump 

Flow meter 1 
Settling tank 

Flow meter 2 

 

Storage tank 

Pump 
Elevated tank 

Flow meter 1 

Mixing tank Settling tank Flow meter 

 

Figure 5-1 Schematic of Phase 1 Experimental setup 

Figure 5-2 Schematic of Phase 2 Experimental setup 
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Bench-Scale Tank design: A tank was designed for modeling a water treatment 

process.  It contains a quick mixing chamber, a slow mixing chamber, and two settling 

chambers. One of the settling chambers has a fabric inclined settling screen fixed. By 

comparing the outlet water parameter from the two settling basins, the performance of 

the fabric settling screen can be determined. Performance of the fabric screen was 

compared side-by-side with a control chamber which does not contain a screen. The 

treatment studies were conducted using synthetic river water to quantify the efficiency 

of removing natural organic matter (precursors for DBP production) by measuring 

percent reduction of dissolved organic carbon (DOC) and UV254 and comparing that to 

the more commonly measure decrease in turbidity.  In the data that is presented o1 

stands for outlet of the chamber without fabric inclined plate and o2 for the chamber 

containing the screen. Three versions of the tank have been used in this experiment and 

they will be introduced in the later sections.  

Typical tank operation: Start the pumps to add in simulated water and chemical 

(coagulants) into the bottom of the quick mix chamber. Wait for the empty tank being 

full of water and set the time that the outlet has water to pull out as the time 0. Take 

sample from the inlet. Take samples from the sedimentation chamber without the fabric 

as outlet 1 and the sedimentation chamber with fabric as outlet 2 and label them at 

time 30. Take the sample of inlet as the inlet of outlets the next 30 minutes. Wait for 

another 30 minutes to take another group of samples. 

After the run is over, test the water samples for turbidity. Filter the samples and 

then test the parameters of TOC and UV254.  
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5.2.3 Data Analysis 

Turbidity: Standard Method 2130B (APHA, et al., 1998) was followed to measure 

turbidity using a Hach 2100P turbidimeter.  

UV254 analysis: UV254 absorbance measurements indicate aromatic organic 

content (Standard Methods 5910 B). Treated water samples are filtered through a 0.45 

µm glass fiber filter disk (FisherBrand 09-719-2E), poured into a 1 cm quartz cell (Fischer 

Scientific #14385902C), and then run on a UV-Visible Spectrophotometer (Cary 50) at a 

wavelength of 254 nm. 

TOC Analysis: To quantify the amount of natural organic matter in a water 

source, total organic carbon (TOC) analysis is performed (Standard Methods 5310 B: 

high temperature combustion method (APHA, et al., 1998)). TOC analysis was 

performed on a Shimadzu TOC-Vcpn instrument with an ASI-V autosampler.  

Data Analysis: From these results construct a percent reduction (equation 5-4) 

versus time curve. Equation 5-4 the variable c stands for the parameter from outlet 

while co stands for parameter from inlet. 

     Percent reduction = (c-co)/co*100%    (Eqn. 5-4) 

 

When percent reduction equals to 1, it means 100% removal. Time interval is 

every 30 minutes. 30 minutes is the point when the outlet 1 has water go out while 

outlet 2 has not due to the head loss caused by the fabric. In other words, 30 minutes is 

the hydraulic detention time. Since the current experiment lasts 3 hours, the fraction 
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removal trend will be over time. The expectation is that it should remain the same or 

even increase.  

The Improvement Amount is also defined in some experiment as “Percent 

reduction of outlet 2 – Percent reduction of outlet 1”. This is mainly used to compare 

the difference between one variable. 

Error bar is used to mark the maximum and minimum values observed. The 

average values are used to make the graph.  

A student t-test is used to determine whether there is a significant difference 

between sample results. 

5.3 Design of the Tank 

There were three versions of the design of the bench-scale tank. The first one is 

shown in Figure 5-3 and 5-4. The tank constituted has four parts. The central area was 

the quick mix chamber (128 cm3), where chemical and inlet water were added from the 

bottom. A mixer was required in this area. The outer area was the slow mix chamber 

(384 cm3), which ensured the water and chemical to react thoroughly with each other. 

The uneven flow and the pressure from the quick mix chamber would force the water to 

go further so that no mixers were required in this area. The last two parts were two 

sedimentation chambers (480 cm3 each, 960 cm3 total), one with an inclined fabric 

screen and the other without. In some sets of the experiment in this tank, the inclined 

fabric screen had not been fixed on; instead, a vertical screen was fixed on one side. The 
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purpose of the difference was to compare the water quality only with the difference of 

whether it went through the fabric while other conditions are the same. 

 

Figure 5-3 Stereogram of the tank 

 

 
Figure 5-4 Real Look of the Tank (version 1) 

After running the tank- for some time problems surfaced. Adjusting the structure 

of the tank was required and the aim of this modification was threefold. Firstly, quick 
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mixing time was to be reduced to 15-30 seconds. Secondly, slow mixing time was to be 

increased to 15-25 minutes on average. Finally, by extending the length of the settling 

chambers, settling time was to increase to 30 minutes so that most of the solids can be 

settled.  

The quick mixing chamber had been significantly reduced while the two settling 

chambers had been increased and a baffle was added to each chamber to force the 

water flow. (Figure 5-5) 

 

Figure 5-5 Real Look of the Tank (version 2) 

Design of inclined fabric plate screens was the major challenge in the research. A 

variety of ways to install the screens and the different forms of the screens themselves) 

may all cause imparity of the results.  

Magnets were used to help fix the screen in the tank. An important variable to 

be considered was the different angles to install the inclined screen. Labels on the tank 

were used to fix the prescribed angles. The screen itself also needed to be taken into 
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consideration. The thickness of the fabric, the layers of the material, and the pattern of 

the screens may all lead to different results. 

The third version of tank came soon after the second one because of the 

construction problem that the tank leaked a lot and was hard to fix. With the same 

concept in mind, the third version did some adjustment and the two settling tanks were 

moved parallel to each other.  

A 3900 in3 tank (Figure 5-6) was designed for modeling a water treatment 

process.  It contains a quick mixing chamber of 25 in3, a slow mixing chamber of 1235 

in3, and two settling chambers of 1320 in3 each (2640 in3 together). One of the settling 

chamber has a fabric inclined settling screen fixed by magnets. By comparing the outlet 

water parameter from the two settling basin, the performance of the fabric settling 

screen can be determined.  

 

Figure 5-6 Design of the set-up 

Performance of the fabric screen was compared side-by-side with a control 

chamber which does not contain a screen. The treatment studies were conducted using 
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synthetic river water to quantify the efficiency of removing natural organic matter 

(precursors for DBP production) by measuring percent reduction of dissolved organic 

carbon (DOC) and UV254 and comparing that to the reduction of the more commonly 

measured turbidity. Start the pumps to add in simulated water and chemical 

(coagulants) into the bottom of the quick mix chamber. Wait for the empty tank being 

full of water and set the time that the outlet has water to pull out as the time 0. Take 

sample from the inlet. Take samples from the sedimentation chamber without the fabric 

as outlet 1 and the sedimentation chamber with fabric as outlet 2 and label them at 

time 30. 

5.4 Results and Discussion 

5.4.1 Determination of Simulated Water 

Parallel experiments are being used in the determination of simulated water 

quality. The two main purposes for using simulated water are to add the turbidity and 

the organic dose in water. The reason for this phase of tests is to make sure the 

simulated water has similar turbidity, TOC and UV254 as common raw waters (i.e. river 

water) in a drinking water treatment plant.  

Kaolin clay is widely used in making water of high turbidity while humic acid does 

a good job in adding organics into water although the color can become an issue. 

Different doses of the two chemicals are added into water and 3 hours later, the 
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solutions are tested as well as blank samples to see the turbidity, TOC, and UV254 

values.  

From Figure 5-7 to 5-10 it is obvious that neither glucose nor starch added 

turbidity or organics into water. That is to say they were not to be chosen to make 

simulated water in this research. Kaolin Clay added a lot of turbidity into water but did 

not add any organics. On the other hand, humic acid added very little turbidity but a lot 

of organics into water. As a result, both Kaolin Clay and humic acid were chosen to make 

the simulated water. Synthetic river water used was made from 100 gallons of tap water 

(in a Rubbermaid container) mixed with 4g of kaolin clay and 0.15g of humic acid to 

create turbidity and organic precursors, respectively. 

 
Figure 5-7 Effects of adding Kaolin Clay to Water 
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Figure 5-8 Effects of adding Starch to Water 

 

 
Figure 5-9 Effects of adding Glucose to Water 
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Figure 5-10 Effects of adding Humic Acid to water 

5.4.2 Flow through the Fabric 

This experiment was conducted to verify the hydraulic relationship for filter 

fabric and to determine the coefficient of discharge (C = flow rate of outlet / flow rate of 

inlet). Tests were taken in the third version of the tank, where fabric was fixed on and 

flow rate of inlet and outlet was measured.  Inlet flow rate was adjusted to a certain 

level through pump; then flow rate of outlet was recorded when it came to steady state. 

Flow rate was generally increased and the result is illustrated in Figure 5-11. Using linear 

regression, the coefficient of discharge is equal to 0.972, with a correlation coefficient of 

0.9961. 
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Figure 5-11 Relationship between outlet and inlet measured flow rate through filter fabric 

5.4.3 Run in the first tank 

In the first tank, three runs were conducted with one layer of the screen and two 

parallel screens under the angle of 60o. The coagulant used was aluminum sulfate from 

Monroe City and sodium aluminate from Trenton City. Water parameters from the two 

outlets (outlet 1 is the one without the inclined fabric screen and outlet 2 is the one 

with the screen) were compared. The results are shown in the Appendix A on Figures 5-

12 to Figure 5-20. 

The results varied with time, but seemed similar between the two tanks. To 

verify this, the essential nature of a significance test is to compare two treatments using 

the following steps: 

Compute from the data some relevant criterion (statistic) to test a particular 

hypothesis of interest against some alternative hypothesis.  

Statistic:  (e.g., ybarB - ybarA)    (Eqn. 5-5) 

Null hypothesis:  yB - yA = 0     (Eqn. 5-6) 
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Alternative Hypothesis:  yB ≠ yA (two-tail) or   yB - yA > 0 (one-tail)         (Eqn. 5-7) 

Refer the criterion to an appropriate reference distribution, which shows how 

the criterion would be distributed if the tested hypothesis were true.  

Calculate the probability that a discrepancy at least as large as the one that 

occurred would occur by chance if the null hypothesis were true.  

This is the significance level.  If it is sufficiently small we can discredit the null 

hypothesis and assert that a statistically significant difference has been obtained. 

As can be seen from the result of T-test in Tables A1-A9 of Appendix B, a P tail of 

0.22, 0.71 and 0.84 for turbidity, of 0.80, 0.81 and 0.41 for TOC, and of 0.97, and 0.51 

and 0.99 for UV254 was found. All of the numbers are very high, therefore it can be 

inferred that the two means are not different. 

This result may be caused by the inadequate reaction time in slow mixing tank, a 

short sediment time, and the leaking of the screen. As it were, a second tank was 

designed and came into use after this. 

5.4.4 Run in the second tank 

Several comparisons have been made in the second tank, including different 

chemicals (or same chemicals from different source), and different angles of the inclined 

fabric settling screen.  

5.4.4.1 Comparison of the results using different source of coagulant 

In the first set of experiments, pureflo 50 was used as the fabric screen at a 55o 

inclination angle. Coagulant from two different treatment plants (polyaluminum 
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chloride from Hamilton and aluminum sulfate from Monroe City) was used and the 

results are listed in Tables 5-1 and 5-2 (Appendix A) and in Figures 5-21 and 5-22. 

Improvement rate of both experiments was compared in Figure 5-23. Figure 5-21 and 5-

22 indicated that the water quality from outlet 2 (the one fixed with the fabric screen) 

seemed to be a little better than outlet 1. But to verify this, t-test had been conducted 

assuming the same variables and the result of all turbidity, TOC, and UV254 are listed in 

Tables A-10 to A-15, Appendix B. The P tail of 0.18, 0.67, and 0.72 for turbidity, TOC, and 

UV254 respectively for the result of the experiment using polyaluminum chloride from 

Hamilton is observed. It indicated that the two methods are not significantly different. 

However, the P tail of turbidity, TOC, and UV254 for the one using aluminum sulfate 

from Monroe City is 0.004, 0.042, and 0.057 respectively. That means that the two 

methods are different. In other words, the settling tank with fabric inclined settling 

screen worked better than the one without. Figure 5-23 also brings the same conclusion 

for the improvement rate of TOC and UV254 of the water treated by aluminum sulfate 

from Monroe City was higher than it treated by the polyaluminum chloride from 

Hamilton. 
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Figure 5-21 Percent Reduction of parameters in Tank 2, 55o screen angle, Aluminum chloride from 

Hamilton, one screen, pureflo 50 

 

 

Figure 5-22 Percent Reduction of parameters in Tank 2, 55o screen angle, Aluminum chloride from 

Monroe City, one screen, pureflo 50 
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Figure 5-23 Improvement amount comparison (percent reduction by difference) between the usage of 

coagulant (Aluminum from Hamilton Vs Monroe City), tank 2, 55o, one screen 

5.4.4.2 Comparison of different angles 

In this set of experiments, pureflo 50 was used to make the fabric screen and 

was fixed in tank 2. Aluminum sulfate from Vandalia Water Treatment was used as the 

coagulant. The run was conducted using the angles of 55o and 70o. Turbidity and UV254 

was tested and the results are shown in Tables 5-3 and 5-4 (in Appendix A) and in 

Figures 5-24and 5-25. It seemed to be clear that the water quality from outlet of the 

settling chamber fixed with the fabric was better than the one without. T-test (Tables A-

16 to A-19, Appendix B) indicated the same conclusion for the P tail was 0.0002 and 

0.0001 for turbidity and UV254 respectively under 55o and 0.0027 and 0.0069 for 

turbidity and UV254 respectively under 70o. At 95% confident, the two methods are 

different.  
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Results of improving amount of different angles were shown in Figure 5-26. It 

seemed that the performance of the inclined fabric at 70o would be better than 55o 

based on the higher improvement rate. 

 
Figure 5-24 Percent reduction in two settling chambers under 55o screen angle with aluminum chloride 

from Vandalia as the coagulant 

 

 

Figure 5-25 Percent reduction in two settling chambers under 70o screen angle with aluminum chloride 

from Vandalia as the coagulant 
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Figure 5-26 Improvement amount comparison (Percent reduction by difference) between the different 

angle (55o Vs 70o screen angle), tank 2, aluminum chloride from Vandalia, one screen 
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were made by both thickness of the fabric materials and the fixed angles of the fabric 

screen. Pureflo was used as the fabric material but three different thicknesses were 

tested. Aluminum sulfate provided by Vandalia Water Treatment Plant was used as the 

coagulant. Table 5-5 shows other experiment conditions. 

Table 5-5 Sets of experiment been conducted in the third tank 
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Material 
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numerical results are listed in Appendix B. It can be noticed that all the percent 

reductions from outlet 2 were higher than outlet 1. Except for the turbidity data with 

pureflo 50 at a 60o inclination angle, and turbidity and UV254 data with pureflo 50 at a 

90o inclination angle, the t-tests indicated that the two methods used in all sets of 

experiment are different (at 95% confident level). It is safe to say the inclined fabric 

settling screen does have some positive effects on sedimentation enhancement. 

The improvement amounts of turbidity and UV254 of each run are listed in 

Tables 5-18 and 5-19; they are also illustrated in Figures 5-39 and 5-40. It is clear that 

the improving amount of turbidity and UV254 grows with the increase of thickness of 

material. As for turbidity, the improvement amount jumped from pureflo 50 to pureflo 

125, but moved slow from pureflo 125 to pureflo 200. The increase tendency for UV254 

was always slow. No obvious tendancy can be concluded with respect to angle. In 

application of regular inclined settling plates, the angle usually depends on the 

convenience of mechanical cleaning. To determine the best angle for this design, bench 

scale data is not sufficient. In chapter 6, it will be discussed more with the pilot scale 

system results. 
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Table 5-18 Comparison of improvement amount of different angles and different thickness of fabric material, 
turbidity 

screen angle  30o 45o 60o 90o 

 average 9.80% 8.81% 5.60% 2.46% 

pureflo 50 max 4.70% 9.21% 11.52% 3.20% 

 min 3.55% 3.44% 4.85% 1.48% 

 average 16.78% 13.63% 9.80% 14.59% 

pureflo 125 max 1.84% 1.95% 4.70% 2.43% 

 min 5.84% 4.19% 3.55% 3.17% 

 average 16.27% 13.31% 15.15% 18.11% 

pureflo 200 max 4.61% 8.64% 11.65% 9.40% 

 min 2.84% 4.50% 10.70% 4.95% 

 

Table 5-18 Comparison of improvement amount of different angles and different thickness of fabric material, 
UV254 

 screen angle   30o 45o 60o 90o 

  average 6.38% 8.56% 8.40% 1.47% 

pureflo 50 max 3.24% 6.90% 6.88% 1.48% 

  min 3.50% 6.65% 6.62% 1.40% 

  average 8.17% 8.73% 8.65% 7.56% 

pureflo 125 max 2.97% 3.15% 6.83% 1.88% 

  min 1.91% 6.37% 3.88% 1.22% 

  average 8.55% 8.76% 8.85% 9.77% 

pureflo 200 max 9.70% 22.66% 5.19% 3.21% 

  min 3.25% 3.52% 2.34% 3.44% 
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Figure 5-39 Turbidity improvement amount (Percent reduction difference) of different angles and 

different thickness of fabric material  

 
 

 
Figure 5-40 UV254 improvement amount (Percent reduction difference) of different angles and 

different thickness of fabric material  
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6. VANDALIA PROCESS ANALYSIS AND IMPROVEMENT 

6.1 Introduction 

The Vandalia treatment process starts at Vandalia Reservoir where copper 

sulfate (now EarthTec) is added seasonally (Figure 3.1). The influent pump station then 

moves water to the mechanical treatment process at a rate of X gallons per minute. The 

initial stage of the process includes the first-stage rapid mix, flocculation, and 

sedimentation, where an additional copper sulfate, a coagulant (aluminum sulfate, 

alum), and the powder activated carbon (Calgon WPH) is added. Next the second-stage 

rapid mix, flocculation, and sedimentation process begins with the addition of quick lime 

(CaO), of the polymer Sternpak, and with some chlorine, and then fluoride and more 

chlorine is added just before granular filtration. Contact time is achieved through a 

clearwell. The high service pumps then send the water to an on-site 1.0 million gallon 

(MG) storage tank before it enters to the Vandalia distribution systems. The storage 

time of the 1.0 MG tank is approximately 3 days. 

As part of the project, one of the aim is to help treatment plant like this to meet 

the stage 2 regulations. Several sets of experiment were conducted throughout the 

process to determine which part of the process can be improved. 

6.2 Materials and Methods 

Several sets of experiments were conducted to determine the improvement 

potential of the water treatment process in Vandalia. 
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6.2.1 Determination of the effects of coagulant (alum) and carbon 

Primary treatment is designed to remove organic and inorganic solids by the 

physical and chemical processes of coagulation and sedimentation. Both alum and 

activated carbon are added in the rapid mix tank of the primary process in Vandalia 

DWTP (Figure 6-1). A reduction of approximately half of the total organic carbon and UV 

absorbance at 254 nm is witnessed by the outlet of the primary sedimentation tank. In 

an effort to consider opportunities to improve performance of this system, one must 

first ask the question “what contribution does each chemical make to the observed 

decrease?” Therefore, jar testing would help in determining this. 

Four 2-Liter jars are each filled with 1 liter of raw water from the Vandalia DWTP. 

As shown in Table 6-1 the fourth jar is a blank sample. Alum of the same dosage of the 

DWTP is added in the first jar. Carbon of the same dosage of the DWTP is added in the 

second jar. Both alum and carbon are added in the third jar. The specific dosage of each 

chemicals in each jar is shown in Table 6-1. Once the chemicals are added the mixer 

speed is set at 200 rpm for 30 seconds, and then the speed is adjusted to 45 rpm for 20 

minutes. This simulates the rapid mix (coagulation) and slower mix (flocculation) stages 

of the treatment process. To simulate the sedimentation stage the mixer is turned off, 

and the solids settle for another 30 minutes. Samples of all the jars are taken for 

turbidity, DOC, and UV254 measurements. Removal rate is defined as following 

                                                    Removal Rate = (C4-Ci)/C4 * 100%                              (Eqn. 6-3) 
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Table 6-1 Chemical(s) added to each sample 

Sample Chemical(s) 

1 60 ug Alum 
2 30 mg Activated Carbon 
3 60 ug Alum & 30 mg Activated Carbon 
4 None (blank) 

 

6.2.2 Comparison of Three Types of Carbon 

Activated carbon (AC) is a form of carbon processed to contain many small, low-

volume pores that increase the surface area available for adsorption or chemical 

reactions. AC is most effective at removing organic compounds such as volatile organic 

compounds, pesticides and benzene. It can also remove some metals, chlorine and 

radon. As with any treatment system, it cannot remove all possible drinking water 

contaminants. The Vandalia DWTP over the past several years has used three different 

types of activated carbon: Hydrodarco B, Norbit, and Sabre series provided by the 

Hawkins Chemical Company. Although the current treatment reduces the TOC by 50%, it 

is expected that the dose of activated carbon used in Vandalia should yield an even 

greater reduction. Jar testing was used to compare the organic removal achieved by 

each of the different carbons. The more decrease there is, the more effective the 

respective carbon is. Various dosages were tested to determine the best dosage of each 

carbon, which may vary dependent on the carbon. The lowest dosage with the highest 

organics removal is expected to be the best option. 

Six jars were each filled with 1 liter of raw water from Vandalia DWTP. The first 

jar was a blank sample. Different dosages (one of the dosages should be similar to the 

one the DWTP is using) of each carbon from low to high are added in the remaining five 
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jars.  Once the carons were added the mixer speed was set at 200 rpm for 30 seconds, 

and then adjusted to 45 rpm for 20 minutes. The mixer was then turned off, and the 

carbon was allowed to setke for another 30 minutes. Samples of all the jars were taken 

and tested for turbidity, TOC, and UV254. 

Three types of activated carbon were used in this experiment, Sabre provided by 

Vandalia Water Treatment Plant, WPH, and Hydrodarco B as listed in Table 6-2. 

Table 6-2 Types of Carbon Using in the Experiment 

 Type 

carbon1 Sabre (from Vandalia) 

carbon2 WPH 

carbon3 Hydrodarco B 

 

6.2.3 Different Sequence of Addition of Coagulant and Carbon 

As mentioned in the former section, the combination of alum and activated 

carbon for improved reduction of organics was tested. To try to achieve a better result, 

jar tests were conducted to determine the influence of using different sequences of 

addition of the two chemicals. Six jars were prepared and filled with 1 liter of raw water 

from Vandalia DWTP. The first jar was a blank sample. Different dosages (10, 20, 30, 40, 

and 50 mg/L) were added in the remaining five jars with 30 mg/L being the actual 

dosage of Vandalia Water Treatment Plant.  After the chemicals were added in, the 

samples went through 30 seconds of quick mixing, and 10 minutes of slow mixing. Then 

60 uL/L alum was added in. The samples then went through 30 seconds of quick mixing, 

20 minutes of slow mixing, and 30 minutes of settling. TOC, and UV254 was tested after 

the filtration of each sample. The same procedure was repeated with the alum added 
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first and the addition of carbons 10 minutes later. The last set of experiments was 

adding the alum and activated carbon at the same time and went through30 seconds of 

quick mixing, 20 minutes of slow mixing, and 30 minutes of settling. 

6.2.4 Carbon Performance under Different pH 

The performance of activated carbon is also affected by pH conditions. The 

typical pH in water treatment plants varies from 6 to 10 depending on what coagulant 

they use. Jar tests were conducted to determine the most suitable condition for the 

Sabre carbon from Vandalia Water Treatment Plant. Five jars were prepared and filled 

with 1 liter of raw water from Vandalia DWTP. The pH of each jar was adjusted to 6, 7, 8, 

9, and 10. Activated carbon at 30 mg/L was added into each jar. The mixer speed was 

set at 200 rpm for 30 seconds, and then adjusted to 45 rpm for 20 minutes. The mixer 

was then turned off, and the carbon allowed to settle for another 30 minutes. Samples 

were taken from all the jars, filtered and the parameters of TOC and UV254 were tested. 

6.2.5 Contact Time 

An activated carbon sample must reach adsorption equilibrium to measure its 

total adsorptive capacity. Normally, a contact time of one hour is sufficient. However, 

applications involving viscous liquids, low temperatures, or impurities that are difficult 

to adsorb might require longer contact time. To determine the optimum contact time, a 

series of liquid samples should be exposed to the same carbon treatment dosage for 

different time periods using test conditions that match the plant process (impurity type, 

concentration, pH, temperature, etc.). 
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Simulated water was used in this experiment. Twelve jars were prepared with 1 

liter of simulated water and 30 mg of activated carbon added in each jar. Each jar 

started with quick mixing for 30 seconds. Then while going through the slow mixing 

phase, samples were taken at 0 min, 5 min, 10 min, 15 min, 20 min, 30 min, 45 min, 60 

min, 90 min, 120 min, 180 min, and 240 min from each jar. The samples were filtered 

and then tested for TOC and UV254. 

Contact time of two dosage of synthetic water (Table 6-3) were tested. The 

reason of choosing two dosage was that water quality changed a lot under different 

weather conditions. In summer, the source water (from river) usually has higher 

turbidity and organics content. 

Table 6-3 Two Types of Synthetic Water Samples 

  Kaolin Clay (g/L) Humic Acid (g/L) Model Season 

Water Sample 1 0.003 0.02 Winter 

Water Sample 2 0.016 0.08 Summer 

 

6.2.6 Kinetics of TTHM Formation 

It is known that the use of chlorine for disinfection purposes of drinking water 

leads to the formation of many by-products potentially harmful for human health. 

Among all the chlorinated by-products, trihalomethanes, which exhibit a potentially 

carcinogenic activity, are certainly the class of compounds that has been investigated 

most thoroughly during the last 20 years. Kinetics decides how quickly TTHM is formed 

and is expected to be second order. A TTHM versus time curve can indicate how much 
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of the formation would be in the storage tank. Both of these are important before 

further action is taken into the treatment process. 

The experiment was conducted with an initial concentration of chlorine higher 

than the chlorine demand of the sample (20-100% excess with respect to chlorine 

demand). Immediately after adding chlorine to the solution (250-500 ml), several vials 

(40 ml) were filled with the chlorinated solutions and sealed with TFE-lined screw caps 

to avoid volatilization of THM during the reaction time. At the end of each desired 

reaction time NH4Cl was added to stop the reaction and chlorine and THM 

concentrations were analyzed. Two typical time points in this project were the contact 

time of the secondary treatment process and of the storage tank/clearwell of the DWTP. 

Contact time can be calculated through Volume divided by Typical flow rate. 

A second-order model for the long-term formation of THM from the slowly 

reacting THM precursors (THMFP) is proposed according to the following expression 

(Hach Method 10224): 

                                                        Cl2 + THMFP = THM                                           (Eqn. 6-1) 

Therefore, the rate of THM formation is given by the following equation: 

                                               d[THM]/dt = k * [Cl2] * [THMFP]                               (Eqn. 6-2) 

where [THMFP] is the concentration of the slowly reacting THM precursors and 

[Cl2] is the concentration of chlorine at time t, k is the second-order rate constant of the 

long-term formation of THMs. 
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6.2.7 Pilot Scale System in Vandalia Water Treatment Plant 

Figure 6-1 is the treatment process in Vandalia. There is two options for 

locations of a pilot scale set-up: 1) between rapid mix #1 and primary sedimentation, or 

2) between rapid mix #2 and secondary sedimentation. Either way water will be 

pumped from after the flocculation chamber (after addition of chemicals) to the bottom 

pilot scale tank (around 25 gallon). Fabric inclined settling screens will be fixed at the 

outlet of the tank and samples will be taken from the outlet before it goes back to the 

sedimentation basin. Water quality parameters (such as turbidity, TOC, and UV254) will 

be tested for the samples to compare with the water quality in sedimentation chamber. 

 
Figure 6-1 Water Treatment Process in Vandalia Water Treatment Plant 

The pilot system (Figure 6-2) includes a rectangular tank of 25 gallon, a water 

pump, several fabric inclined settling screens, and some tubing. Water from flocculator 

#1 will be pumped to the rectangular tank, then go through the settling screens, and 

finally flow to the primary sedimentation process. Samples (around 200 mL each) from 
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outlet of the rectangular tank as well as from the outlet of the primary sedimentation 

basin will be collected and tested for turbidity, TOC, UV254, and formation potential on 

a daily basis. The pump can be run continuously or be started 1 to 2 hours before 

sample collection to receive steady state. Flow rate in the rectangular tank is calculated 

from the flow rate and volume of the flocculator to maintain a comparable residence 

time.  

Figure 6-2 Real look of the pilot scale system 

 

6.3 Results and Discussion 

6.3.1 Determination of the effects of coagulant (alum) and carbon 

Test results were shown in Figure 6-3 while Figure 6-4 indicated the removal rate 

of sample 1 to 3 (compared to 4, which is the blank sample). Figure 6-3 shows the raw 

water turbidity, TOC, and UV254 numbers and compares these measurements to those 

made after the selected treatments of alum (60 µg/L) and activated carbon (30 mg/L) 

both individually and together. Because of the powder activated carbon (PAC) does not 
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readily settle on its own, the presence of the PAC caused an increase in turbidity. 

However, then combined with alum both TOC and UV254 were reduced (Figure 6-4). 

 
Figure 6-3 Test Results of Four Samples 

 
Note: Removal rate of turbidity of sample 2 was -213%, which indicated that using activated 
carbon only added turbidity to water. It was discarded when the data was plotted. 

Figure 6-4 Percent Removal of Sample 1 to 3 
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density which kept it floating in the water while it removed TOC by 8% and UV254 by 

27%. It seemed that alum did a good job decreasing the turbidity and aromatic organic 

content (indicated by UV254); at the same time, the performance of activated carbon 

did not reach the expectation. When the two chemicals were combined, the removal 

rate of turbidity, TOC and UV243 was 53%, 41%, and 54% respectively. It indicates that 

alum still helped to capture most small particles into bigger ones but there was a little 

carbon remained floating in the water. The combined chemicals did a better job to 

remove organics for the percent reduction of TOC was 41% compared to 27% and 8%. 

UV254 number of the combined chemicals was similar to the one of alum, and both of 

them reached more than half. 

In a word, the combined chemicals helped more to remove organics while 

getting similar results of turbidity and UV243 as alum. However, activated carbon did 

not have significant effects on its own. 

6.3.2 Comparison of Three Types of Carbon 

Figure 6-5 shows the turbidity result of three carbons. The turbidity increases 

with the rise of activated carbon dosage with the WPH has the most significant increase 

rate and Hydrodarco B did not change much. It is because that the activated carbon is 

too light to settle with larger particles. The lighter the carbon is, the harder it is to settle. 

In real practice, coagulant is added to help sedimentation so turbidity is not an issue. 
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Figure 6-5 Jar Test Result of Different Carbon-Turbidity 

Figure 6-6 and figure 6-7 show the TOC and UV254 results for the jar test 

respectively. The three carbons have very similar trend with Sabre views the greatest 

removal rate and WPH sees the least. The difference, however is scant. And the removal 

rate of TOC is around 30% while one of UV254 is some 50%. The removal efficiency 

increases limitedly so there is no point to increase the dosage of activated carbon to 

expect better result of organic reduction. The possible reason for that is that there is 

limited organics that can be adsorbed by carbon in the Vandalia water so that after the 
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organics in water can be adsorbed by this kind of carbon any more. 
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Figure 6-6 Jar Test Result of Different Carbon-TOC 

 
Figure 6-7 Jar Test Result of Different Carbon-UV254 
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6.3.3 Different Sequence of Addition of Coagulant and Carbon 

Percent reduction is defined as [(c1 – ci) / c1]*100%, where c1 is the 

concentration of blank sample and ci stands for turbidity, TOC, and UV254. Figure 6-8 and 

Figure 6-9 shows the removal rate of TOC and UV254 respectively of the three different 

sequence. Reductions of both TOC and UV254 increase with the increase of carbon 

dosage but the slope is close to steady. The result also suggests that the percent 

reduction of the series of first adding alum being the highest while adding at the same 

time being the lowest.  At a dosage of 10 mg/L, the removal rate of TOC almost doubled 

when alum was added first than was observed with the other two conditions. However, 

percent reduction got closer when dosage of carbon is increased. From the result, 

sequence of addition of coagulant and carbon could be taken into consideration. 

 
Figure 6-8 TOC Percent Reduction of Different Sequence of Addition of Chemicals 
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Figure 6-9 UV254 Percent Reduction of Different Sequence of Addition of Chemicals 
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Figure 6-10 TOC and UV254 Data at Different pH Conditions 

6.3.5 Contact Time 
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Figure 6-11 Contact Time of Synthetic Water Sample 1 

 

 
Figure 6-12 Contact Time of Synthetic Water Sample 2 
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after primary sedimentation but before primary disinfection. 3 mg/L of chlorine was 

added at time 0. Total chlorine concentration started to decline from 3.0 mg/L to 1.02 

mg/L at first 24 hours and then slowed the decrease rate and reached 0 after 72 hours. 

TTHM concentration started to climb from the very beginning through the first 36 hours 

and reached 75.26 mg/L (the regulation level is 80 mg/L) and continue to increase to 

around 90 mg/L after 72 hours and became steady to almost 100 mg/L after 120 hours. 

According to this result, the 3-day (72 hours) storage tanks could be the issue of their 

DBPs problems. To fix this, the time water stays in the storage time should be reduced.  

 
Figure 6-13 Total chlorine concentration and TTHM concentration over time 
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outdoors. Water quality from source water changed every day thereby changed with 

the result of primary sedimentation. 3mg/L chlorine was added to samples after it being 

tested with turbidity, TOC, and UV254. TTHM was tested 24 hours after the addition of 

chlorine. The results of TTHM were combination of chloroform, bromodich, dibromoch, 

and bromoform. The second set of experiment was conducted from 3/22/2014 through 

3/30/2014. The only change was that two screens were fixed in the system parallel. 

Results of the first set of experiment is shown in Table 6-4. For most turbidity, TOC, 

UV254, and TTHM of screen angles of 30o, 45o, 60o, and 75o, have better results from 

the pilot system then the primary sediment. Exception are turbidity and TOC on 

3/13/2014, TOC and TTHM on 3/16/2014, and turbidity on 3/17/2014. Results of the 

second set of experiment is shown in Table 6-5. Except for turbidity, UV254, and TTHM 

on 3/26/2013, and UV254 on 3/27/2014, all the results indicated that water quality of 

the water samples collected in pilot outlet was better than it of primary sediment.  

Water quality in the treatment process changed daily so the results from primary 

sediment varies every day. To better compare the effects of the fabric inclined settling 

screen, percent reduction is again used here and the result is shown in Figure 14. As to 

turbidity, two-screen system has a better ability of turbidity removing than one-screen 

system under each angles. Similarly, two-screen system has better TOC removal under 

30o, 45o, and 75o, but under 60o, one-screen system has a better percent reduction. 

Percent reduction for UV254 in two-screen system is higher under 30o and 45o but lower 

under 60o and 75o. For TTHM reduction, two-screen system has better effect under 

most angles except 30o. 
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Anglewise, 60o seems to have comparatively the highest reduction rate while 75o 

has the least percent reduction. 30o and 45o screen(s) also have positive effect of 

removing turbidity, TOC, UV254, and TTHM. As mentioned before that the expectation 

of the settling screen is for it acting like some kind of filter to stop some particles from 

going through as well as providing more surface area for the settling of the particle 

having gone through the fabric. The reason for 75o to be less effective is possible 

because of the less surface area it provides. 

Table 6-4 Data of pilot scale system, one screen, from 3/10/2014-3/17/2014 

Date Data Source 
Screen 
Angle 

Turbidi
ty 

(NTU) 
TOC 

(mg/L) UV254 

24-hour 
TTHM 
(mg/L) 

T 
max 
(F) 

T 
min 
(F) 

Wind 
Speed 
(MPH) 

3/10/2
014 

Pilot System 
30 

0.23 6.307 0.0418 36.523 
71.1 38.0 7.3 

Primary Sediment 0.25 6.378 0.0477 42.532 

3/11/2
014 

Pilot System 
30 

0.33 5.963 0.0360 26.856 
80.2 32.0 9.2 

Primary Sediment 0.50 5.987 0.0372 30.265 

3/12/2
014 

Pilot System 
45 

0.28 4.574 0.0306 25.753 
41.6 27.7 13.2 

Primary Sediment 0.33 4.657 0.0395 28.654 

3/13/2
014 

Pilot System 
45 

0.39 4.975 0.0273 29.818 
61.7 24.6 6.0 

Primary Sediment 0.39 4.934 0.0371 35.245 

3/14/2
014 

Pilot System 
60 

0.26 4.671 0.0270 33.546 
62.2 35.3 10.6 

Primary Sediment 0.35 5.096 0.0296 34.123 

3/15/2
014 

Pilot System 
60 

0.31 5.034 0.0276 40.365 
71.0 28.6 7.4 

Primary Sediment 0.45 5.454 0.0378 50.066 

3/16/2
014 

Pilot System 
75 

0.32 5.234 0.0289 41.256 
40.2 19.8 15.8 

Primary Sediment 0.33 5.231 0.0293 40.265 

3/17/2
014 

Pilot System 
75 

0.37 5.149 0.0164 29.354 
47.8 16.3 4.1 

Primary Sediment 0.36 5.154 0.0189 30.685 
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Table 6-5 Data of pilot scale system, two screens, from 3/20/2014-3/27/2014 

Date Data Source 
Screen 
Angle 

Turbidi
ty 

(NTU) 
TOC 

(mg/L) UV254 

24-hour 
TTHM 
(mg/L) 

T 
max 
(F) 

T 
min 
(F) 

Wind 
Speed 
(MPH) 

3/20/
2014 

Pilot System 
30 

0.36 5.897 0.0478 40.347 
67.9 33.2 7.3 

Primary Sediment 0.54 6.012 0.0593 46.708 

3/21/
2014 

Pilot System 
30 

0.54 6.589 0.0511 40.973 
78.2 41.9 8.6 

Primary Sediment 0.87 6.765 0.0581 45.214 

3/22/
2014 

Pilot System 
45 

0.44 6.785 0.0522 42.353 
48.0 28.6 9.3 

Primary Sediment 0.79 6.953 0.0525 45.214 

3/23/
2014 

Pilot System 
45 

0.51 5.248 0.0436 29.934 
40.3 22.2 7.3 

Primary Sediment 0.54 5.563 0.0457 34.353 

3/24/
2014 

Pilot System 
60 

0.64 6.012 0.0508 48.692 
42.4 21.9 4.8 

Primary Sediment 1.05 6.359 0.0635 50.578 

3/25/
2014 

Pilot System 
60 

0.57 6.124 0.0525 29.896 
39.5 20.7 8.3 

Primary Sediment 0.97 6.578 0.0609 31.256 

3/26/
2014 

Pilot System 
75 

0.65 6.325 0.0565 39.327 
52.6 20.3 8.2 

Primary Sediment 0.64 6.383 0.0549 38.568 

3/27/
2014 

Pilot System 
75 

0.52 6.652 0.0643 40.487 
61.5 38.3 11.1 

Primary Sediment 0.56 6.653 0.0608 44.357 

 
Figure 6-14 Percent reduction of pilot system results of turbidity, TOC, UV254, and TTHM under 30o, 

45o, 60o, and 75o 
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6.4 Conclusion 

Several tests have been done to test the effectiveness of the process. Alum did a 

good job to remove turbidity and UV254. Combined chemicals of alum and activated 

carbon helped more to remove organics but activated carbon did not have significant 

effects on its own. The results of different sequencing of the addition of alum and 

carbon indicated that adding one after another had better effects than adding the two 

together. All the activated carbon tested had effects on turbidity, TOC, and UV254 

removal. But the removal efficiency increase was limited so that there appears to be no 

point to increase the dosage of activated carbon to expect better results of organic 

reductions. When the performance of activated carbon was tested under different pH, it 

showed that under acid conditions, activated carbon removes more TOC and UV254 

than under basic conditions. It can also be noticed that after 90 minutes, the decrease of 

TOC and UV254 gained with activated carbon became steady, so a contact time longer 

than 1.5 hours is adequate. The current contact time in Vandalia is nearly 4 hours so it is 

not an issue from this view. TTHM was tested after 3 mg/L chlorine had been added. At 

the first 72 hours, the TTHM value was under 80mg/L (regulated limit), but after that, it 

approached 100 mg/L. Therefore the control of contact time with the added chlorine is 

critical. Vandalia has a storage tank with 3-day detention time which creates some 

concerns. The pilot scale system with the designed inclined fabric settling screen(s), 

gave positive results of reduction of turbidity, TOC, UV254, and TTHM. It also indicated 

that a 60o angle has the best result while a 75o angle does not provide much 

improvement. 
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7. RECOMMANDATION AND OPPORTUNITY FOR FUTURE RESEARCH 

All the fabric materials used in this research are not NSF-61 approved. As a 

result, it cannot be used in real drinking water treatment process. But this research 

provides a foundation for determining the feasibility of selected material to function in 

this application. The same method may be used when the NSF-61 material is provided. 

During the bench scale experiment, only one dosage of each chemical was used. 

In the future, experiment can be conducted with different dosages of a chemical and 

compare the results of them. Five different dosage can be chosen (two smaller than, 

one equal to, and two larger than the original one) to conduct the experiment. 

Respective parameters (such as turbidity, TOC, and UV254) can be tested as the change 

of the dosage. Dosage with smallest results is the best. 

All bench scale experiment was conducted with only one chemical. But in real 

water treatment process, it is more usual to have more than one chemicals to add (such 

as polymer, lime, coagulants, activated carbon, etc.). So in future research, it is 

suggested to conduct one run with multiple chemicals. For example, Vandalia add both 

activated carbon and alum in the primary process. Experiment using both of the two 

chemicals should be conducted to see the effect of the design. 

The pilot scale system was only tested at the Vandalia Treatment Plant. Since 

each facility tends to operate differently, the same system does not necessary work for 

another one without evidence provided. The concerns include different water quality 

(different river water has different chemistry composition, hardness of river water and 

groundwater is different from each other), and process unit design (the fabric settling 
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screens may more suitable for the process using coagulation and sedimentation). So the 

pilot system should be moved to other facilities and the same experiment conducted to 

find out the effectiveness at other locations. 

All runs in both bench scale and pilot scale system were 3-5 hours in duration. 

Tests with longer time should be conducted to see the effect when solids become 

attached to the screen. It may have a “bridge” effect and provide better “filter” 

performance or may add more head loss or turbidity to the water.  

How to clean the fabric screen(s) is also an interesting question to consider. It 

will be easier to remove the screens, physical scraping them or wash them by water, 

and then replace them. Clean in place seems to be unpractical if multiple layers of 

screens are used. 

All runs in both bench and pilot scale systems were conducted with only one or 

two layer(s) of the inclined fabric settling screens. Since experiments suggests that two 

layers works better than one, assumption is that more layers will work even better. 

More layers of screens are expected to be applied into real use. So experiment 

conducted with more layers of screens are suggested in the future. It should be 

answered by further experiment that how many layers of screens can be added on 

without causing huge headloss.  
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APPENDIX A. SOME FIGURES AND TABLES OF CHAPTER 5 

 

Figure A-1 (5-12) Tank 1, 60o screen angle, aluminum chloride from Monroe City, one screen, turbidity 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 

 

 

Figure A-2 (5-13) Tank 1, 60o screen angle, aluminum chloride from Monroe City, one screen, TOC 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 
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Figure A-3 (5-14) Tank 1, 60o screen angle, aluminum chloride from Monroe City, one screen, UV254 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 

 

 

Figure A-4 (5-15) Tank 1, 60o screen angle, aluminum chloride from Monroe City, two screens, Turbidity 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 
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Figure A-5 (5-16) Tank 1, 60o screen angle, aluminum chloride from Monroe City, two screens, TOC 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 

 

 

Figure A-6 (5-17) Tank 1, 60o screen angle, aluminum chloride from Monroe City, two screens, UV254 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 
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Figure A-7 (5-18) Tank 1, 60o screen angle, sodium aluminate from Trenton, one screen, Turbidity 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 

 

 

Figure A-8 (5-19) Tank 1, 60o screen angle, sodium aluminate from Trenton, one screen, TOC 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 
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Figure A-9 (5-20) Tank 1, 60o screen angle, sodium aluminate from Trenton, one screen, UV254 

measurements in outlet 1 (without screen) and outlet 2 (with screen) 

 

Table A-1 (5-1) Percent reduction in two settling chambers under 55o screen angle with aluminum chloride 
from Hamilton as the coagulant 

Time (min) NTU (o1) NTU (o2) TOC (o1) TOC (o2) UV254 (o1) UV254 (o2) 

30 0.68  0.78  0.21  0.25  0.13  0.17  

60 0.76  0.90  0.03  0.03  0.34  0.37  

90 0.86  0.96  0.05  0.07  0.37  0.38  

120 0.90  0.92  0.06  0.07  0.39  0.41  

150 0.93  0.98  0.18  0.22  0.32  0.34  

Average 0.82  0.91  0.10  0.13  0.31  0.33  

 
 

Table A-2 (5-2) Percent reduction in two settling chambers under 55o screen angle with aluminum chloride 
from Monroe City as the coagulant 

Time (min) NTU (o1) NTU (o2) TOC (o1) TOC (o2) UV254 (o1) UV254 (o2) 

30 0.89  0.97  0.07  0.16  0.38  0.48  

60 0.86  0.97  0.09  0.21  0.28  0.28  

90 0.88  0.94  0.14  0.21  0.05  0.15  

120 0.84  0.91  0.18  0.23  0.44  0.47  

150 0.88  0.91  0.21  0.25  0.38  0.42  

Average 0.87  0.94  0.14  0.21  0.31  0.36  
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Table A-3 (5-3) Percent reduction in two settling chambers under 55o screen angle with aluminum chloride 
from Vandalia as the coagulant 

Time 
(min) 

Decrease Rate o1 
turbidity  

Decrease Rate o2 
turbidity 

Decrease Rateo1 
UV254 

Decrease Rate o2 
UV254 

30 0.668 0.877 0.392 0.445 

60 0.677 0.833 0.411 0.453 

90 0.599 0.813 0.373 0.435 

120 0.725 0.833 0.393 0.440 

150 0.713 0.852 0.382 0.435 

Average 0.676 0.841 0.390 0.442 

 

Table A-4 (5-4) Percent reduction intwo settling chambers under 70o screen angle with aluminum chloride 
from Vandalia as the coagulant 

Time 
(min) 

Decrease Rate o1 
turbidity  

Decrease Rate o2 
turbidity 

Decrease Rateo1 
UV254 

Decrease Rate o2 
UV254 

30 0.382 0.606 0.137 0.215 

60 0.239 0.546 0.103 0.189 

90 0.143 0.434 0.040 0.121 

120 0.241 0.404 0.088 0.163 

150 0.292 0.461 0.098 0.173 

Average 0.259 0.490 0.093 0.172 

 

Table A-5 (5-6) Percent reduction in two settling chambers under 30o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 50 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 79.73% 88.72% 60.68% 69.57% 

60 70.89% 85.39% 55.66% 58.54% 

90 77.13% 85.49% 56.93% 62.95% 

120 75.88% 86.78% 60.48% 64.98% 

150 80.16% 86.40% 60.92% 70.55% 

average 76.76% 86.55% 58.93% 65.32% 

 

Table A-6 (5-7) Percent reduction in two settling chambers under 45o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 50 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 73.54% 91.56% 13.57% 29.03% 

60 76.45% 83.94% 32.92% 38.27% 

90 76.74% 83.08% 22.73% 35.26% 

120 74.42% 81.23% 29.12% 36.66% 

150 70.53% 75.90% 29.96% 31.87% 

average 74.33% 83.14% 25.66% 34.22% 
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Table A-7 (5-8) Percent reduction in two settling chambers under 60o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 50 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 38.75% 42.75% 11.17% 12.96% 

60 36.82% 53.94% 10.50% 20.51% 

90 85.51% 86.65% 16.02% 20.19% 

120 83.16% 83.91% 5.33% 20.61% 

150 75.57% 80.58% 4.41% 15.20% 

average 63.96% 69.56% 9.49% 17.89% 

 

Table A-8 (5-9) Percent reduction in two settling chambers under 90o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 50 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 84.83% 85.81% 47.11% 49.28% 

60 86.39% 89.20% 44.55% 47.50% 

90 83.84% 89.50% 44.52% 44.59% 

120 85.29% 87.17% 43.99% 45.35% 

150 83.09% 84.07% 52.61% 53.39% 

average 84.69% 87.15% 46.55% 48.02% 

 

Table A-9 (5-10) Percent reduction in two settling chambers under 30o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 125 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 75.30% 93.73% 28.68% 36.86% 

60 78.31% 89.25% 27.49% 33.75% 

90 72.32% 90.33% 24.70% 35.84% 

120 70.66% 88.54% 29.11% 36.51% 

150 69.37% 87.98% 27.50% 35.37% 

average 73.19% 89.97% 27.50% 35.67% 

 

Table A-10 (5-11) Percent reduction in two settling chambers under 45o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 125 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 73.84% 88.96% 20.30% 22.66% 

60 65.24% 80.82% 8.97% 18.09% 

90 64.81% 79.28% 8.11% 16.96% 

120 68.84% 82.37% 10.14% 22.02% 

150 72.98% 82.42% 12.03% 23.48% 

average 69.14% 82.77% 11.91% 20.64% 
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Table A-11 (5-12) Percent reduction intwo settling chambers under 60o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 125 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 79.73% 88.72% 59.62% 70.28% 

60 70.89% 85.39% 56.24% 61.00% 

90 77.13% 85.49% 58.43% 64.25% 

120 75.88% 86.78% 63.58% 70.09% 

150 80.16% 86.40% 56.99% 72.48% 

average 76.76% 86.55% 58.97% 67.62% 

 

Table A-12 (5-13) Percent reduction in two settling chambers under 90o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 125 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 59.44% 76.46% 18.15% 27.59% 

60 65.47% 79.82% 20.77% 27.10% 

90 65.44% 80.73% 19.47% 27.66% 

120 68.26% 79.68% 23.49% 30.47% 

150 64.01% 78.87% 27.75% 34.58% 

average 64.52% 79.11% 21.93% 29.48% 

 

Table A-13 (5-14) Percent reduction in two settling chambers under 30o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 200 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 76.01% 89.44% 9.04% 27.29% 

60 75.07% 89.51% 26.90% 32.84% 

90 66.07% 86.95% 22.78% 28.08% 

120 67.58% 84.21% 19.76% 25.47% 

150 58.81% 74.78% 22.85% 30.39% 

average 68.71% 84.98% 20.26% 28.81% 

 

Table A-14 (5-15) Percent reduction in two settling chambers under 45o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 200 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 83.01% 91.82% 34.46% 37.98% 

60 80.16% 91.60% 34.97% 38.82% 

90 76.60% 92.12% 28.88% 33.07% 

120 68.27% 90.22% 27.26% 36.89% 

150 83.86% 92.70% 13.09% 35.70% 

average 78.38% 91.69% 27.73% 36.49% 
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Table A-15 (5-16) Percent reduction in two settling chambers under 60o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 200 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 69.87% 96.67% 21.55% 29.88% 

60 75.86% 85.90% 19.01% 27.30% 

90 60.00% 77.70% 18.37% 25.44% 

120 79.00% 95.74% 34.56% 41.06% 

150 91.47% 95.91% 29.40% 43.43% 

average 75.24% 90.38% 24.58% 33.42% 

 

Table A-16 (5-17) Percent reduction in two settling chambers under 90o screen angle with aluminum chloride 
from Vandalia as the coagulant and pureflo 200 as the fabric material 

Time 
(min) 

Turbidity Decrease 
Rate O1 

Turbidity Decrease 
Rate O2 

UV254 Decrease 
Rate O1 

UV254 Decrease 
Rate O2 

30 63.99% 91.50% 14.61% 27.59% 

60 69.29% 85.32% 20.77% 27.10% 

90 67.34% 84.17% 15.94% 27.66% 

120 68.26% 81.42% 19.82% 27.49% 

150 64.01% 81.01% 24.48% 34.62% 

average 66.58% 84.68% 19.12% 28.89% 

 
 

 
Figure A-10 (5-27) Percent reduction in two settling chambers under 30o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 50 as the fabric material 
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Figure A-11 (5-28) Percent reduction in two settling chambers under 45o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 50 as the fabric material 

 

 
Figure A-12 (5-29) Percent reduction in two settling chambers under 60o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 50 as the fabric material 

 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Turbidity O1 Turbidity O2 UV254 O1 UV254 O2

P
er

ce
n

t 
R

ed
u

ct
io

n

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Turbidity O1 Turbidity O2 UV254 O1 UV254 O2

P
er

ce
n

t 
R

ed
u

ct
io

n



 

123 
 

 
Figure A-13 (5-30) Percent reduction in two settling chambers under 90o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 50 as the fabric material 

 

 
Figure A-14 (5-31) Percent reduction in two settling chambers under 30o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 125 as the fabric material 
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Figure A-15 (5-32) Percent reduction in two settling chambers under 45o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 125 as the fabric material 

 

 
Figure A-16 (5-33) Percent reduction in two settling chambers under 60o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 125 as the fabric material 
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Figure A-17 (5-34) Percent reduction in two settling chambers under 90o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 125 as the fabric material 

 

 
Figure A-18 (5-35) Percent reduction in two settling chambers under 30o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 200 as the fabric material 
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Figure A-19 (5-36) Percent reduction in two settling chambers under 45o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 200 as the fabric material 

 

 
Figure A-20 (5-37) Percent reduction in two settling chambers under 60o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 200 as the fabric material 
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Figure A-21 (5-38) Percent reduction in two settling chambers under 90o screen angle with aluminum 

chloride from Vandalia as the coagulant and pureflo 200 as the fabric material 
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APPENDIX B. T-TEST RESULTS 

Table B-1 tank 1, 60o, aluminum chloride from Monroe City, one screen, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 5.98 6.26 

Variance 0.12 0.32 

Observations 9 9 

Pooled Variance 0.22  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat -1.26  

P(T<=t) one-tail 0.11  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.22  

t Critical two-tail 2.12  

 

Table B-2 tank 1, 60o, aluminum chloride from Monroe City, one screen, TOC 

t-Test: Two-Sample Assuming Equal Variances  

  1 2  

Mean 5.09 4.98  

Variance 0.64 0.78  

Observations 9 9  

Pooled Variance 0.71   

Hypothesized Mean Difference 0.00   

df 16.00   

t Stat 0.26   

P(T<=t) one-tail 0.40   

t Critical one-tail 1.75   

P(T<=t) two-tail 0.80   

t Critical two-tail 2.12    

 

 

 

 

 

 

 



 

129 
 

 

Table B-3 tank 1, 60o, aluminum chloride from Monroe City, one screen, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  1 2 

Mean 0.04 0.04 

Variance 0.00 0.00 

Observations 9 9 

Pooled Variance 0.00  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat -0.04  

P(T<=t) one-tail 0.48  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.97  

t Critical two-tail 2.12   

 

Table B-4 tank 1, 60o, aluminum chloride from Monroe City, two screens, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 6.31 6.18 

Variance 0.47 0.59 

Observations 9 9 

Pooled Variance 0.53  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat 0.38  

P(T<=t) one-tail 0.36  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.71  

t Critical two-tail 2.12  
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Table B-5 tank 1, 60o, aluminum chloride from Monroe City, two screens, TOC 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 4.36 4.43 

Variance 0.22 0.38 

Observations 9 9 

Pooled Variance 0.30  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat -0.24  

P(T<=t) one-tail 0.41  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.81  

t Critical two-tail 2.12  

 

Table B-6 tank 1, 60o, aluminum chloride from Monroe City, two screens, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 0.02 0.02 

Variance 0.00 0.00 

Observations 9 9 

Pooled Variance 5E-06  

Hypothesized Mean Difference 0E+00  

df 2E+01  

t Stat 7E-01  

P(T<=t) one-tail 3E-01  

t Critical one-tail 2E+00  

P(T<=t) two-tail 5E-01  

t Critical two-tail 2E+00  
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Table B-7 tank 1, 60o, sodium aluminate from Trenton, one screen, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 9.58 9.21 

Variance 9.09 6.14 

Observations 5 5 

Pooled Variance 7.61  

Hypothesized Mean Difference 0.00  

df 8.00  

t Stat 0.21  

P(T<=t) one-tail 0.42  

t Critical one-tail 1.86  

P(T<=t) two-tail 0.84  

t Critical two-tail 2.31  

 

Table B-8 tank 1, 60o, sodium aluminate from Trenton, one screen, TOC 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 8.60 9.23 

Variance 1.46 3.71 

Observations 9 9 

Pooled Variance 2.59  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat -0.83  

P(T<=t) one-tail 0.21  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.42  

t Critical two-tail 2.12  
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Table B-9 tank 1, 60o, sodium aluminate from Trenton, one screen, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 1 2 

Mean 0.04 0.04 

Variance 0.00 0.00 

Observations 9 9 

Pooled Variance 0.00  

Hypothesized Mean Difference 0.00  

df 16.00  

t Stat -0.01  

P(T<=t) one-tail 0.50  

t Critical one-tail 1.75  

P(T<=t) two-tail 0.99  

t Critical two-tail 2.12  

 

Table B-10 Tank 2, 55o, Aluminum chloride from Hamilton, one screen, pureflo 50, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 
Decrease Rate of NTU 

of o1 
Decrease Rate of NTU 

of o2 

Mean 0.824956948 0.9089539 

Variance 0.010197265 0.006358737 

Observations 5 5 

Pooled Variance 0.008278001  

Hypothesized Mean 
Difference 

0  

df 8  

t Stat -1.459724147  

P(T<=t) one-tail 0.091244598  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.182489196  

t Critical two-tail 2.306004135  
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Table B-11 Tank 2, 55o, Aluminum chloride from Hamilton, one screen, pureflo 50, TOC 

t-Test: Two-Sample Assuming Equal Variances 

 
Decrease Rate of TOC 

of o1 
Decrease Rate of TOC 

of o2 

Mean 0.104610474 0.130110013 

Variance 0.007094727 0.009809651 

Observations 5 5 

Pooled Variance 0.008452189  

Hypothesized Mean 
Difference 

0  

df 8  

t Stat -0.438548599  

P(T<=t) one-tail 0.336295262  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.672590524  

t Critical two-tail 2.306004135  

 

Table B-12 Tank 2, 55o, Aluminum chloride from Hamilton, one screen, pureflo 50, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 
Decrease Rate of 

UV254 of o1 
Decrease Rate of 

UV254 of o2 

Mean 0.309303062 0.332366886 

Variance 0.010529742 0.008868583 

Observations 5 5 

Pooled Variance 0.009699163  

Hypothesized Mean 
Difference 

0  

df 8  

t Stat -0.370283365  

P(T<=t) one-tail 0.360391476  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.720782952  

t Critical two-tail 2.306004135  
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Table B-13 Tank 2, 55o, Aluminum chloride from Monroe, one screen, pureflo 50, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 Decrease Rate of NTU of o1 Decrease Rate of NTU of o2 

Mean 0.871427917 0.939710225 

Variance 0.000354844 0.001124979 

Observations 5 5 

Pooled Variance 0.000739911  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.969066187  

P(T<=t) one-tail 0.00206216  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.004124321  

t Critical two-tail 2.306004135  

 

Table B-14 Tank 2, 55o, Aluminum chloride from Monroe, one screen, pureflo 50, TOC 

t-Test: Two-Sample Assuming Equal Variances 

 Decrease Rate of TOC of o1 Decrease Rate of TOC of o2 

Mean 0.138253712 0.211164557 

Variance 0.003443389 0.001125615 

Observations 5 5 

Pooled Variance 0.002284502  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.411939319  

P(T<=t) one-tail 0.021189881  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.042379761  

t Critical two-tail 2.306004135  
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Table B-15 Tank 2, 55o, Aluminum chloride from Monroe, one screen, pureflo 50, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 Decrease Rate of UV254 of o1 Decrease Rate of UV254 of o2 

Mean 0.306535001 0.361203228 

Variance 0.023326459 0.019553009 

Observations 5 5 

Pooled Variance 0.021439734  

Hypothesized Mean Difference 0  

df 8  

t Stat -0.590330604  

P(T<=t) one-tail 0.28563183  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.057126366  

t Critical two-tail 2.306004135  

 

Table B-16 Tank 2, 55o, Aluminum chloride from Vandalia, one screen, pureflo 50, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 Decrease Rate o1 turbidity Decrease Rate o2 turbidity 

Mean 0.676274103 0.841495945 

Variance 0.002453278 0.000593944 

Observations 5 5 

Pooled Variance 0.001523611  

Hypothesized Mean Difference 0  

df 8  

t Stat -6.692685769  

P(T<=t) one-tail 7.69313E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.000153863  

t Critical two-tail 2.306004135  
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Table B-17 Tank 2, 55o, Aluminum chloride from Vandalia, one screen, pureflo 50, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 Decrease Rateo1 UV254 Decrease Rate o2 UV254 

Mean 0.390016744 0.441685941 

Variance 0.000198775 6.02564E-05 

Observations 5 5 

Pooled Variance 0.000129516  

Hypothesized Mean Difference 0  

df 8  

t Stat -7.178615487  

P(T<=t) one-tail 4.72024E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 9.44049E-05  

t Critical two-tail 2.306004135  

 

Table B-18 Tank 2, 70o, Aluminum chloride from Vandalia, one screen, pureflo 50, Turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Decrease Rate o1 turbidity  Decrease Rate o2 turbidity 

Mean 0.259366097 0.490127995 

Variance 0.007605789 0.006983706 

Observations 5 5 

Pooled Variance 0.007294747  

Hypothesized Mean Difference 0  

df 8  

t Stat -4.271977722  

P(T<=t) one-tail 0.001358442  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.002716883  

t Critical two-tail 2.306004135   
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Table B-19 Tank 2, 70o, Aluminum chloride from Vandalia, one screen, pureflo 50, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  Decrease Rateo1 UV254 Decrease Rate o2 UV254 

Mean 0.093053533 0.172349929 

Variance 0.001220647 0.001196735 

Observations 5 5 

Pooled Variance 0.001208691  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.606332954  

P(T<=t) one-tail 0.003459197  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.006918394  

t Critical two-tail 2.306004135   

 

Table B-20 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.767578018 0.865547113 

Variance 0.001394065 0.000181261 

Observations 5 5 

Pooled Variance 0.000787663  

Hypothesized Mean Difference 0  

df 8  

t Stat -5.519362676  

P(T<=t) one-tail 0.000280401  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.000560802  

t Critical two-tail 2.306004135   
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Table B-21 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.58933726 0.653167289 

Variance 0.000603253 0.002424912 

Observations 5 5 

Pooled Variance 0.001514082  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.593703369  

P(T<=t) one-tail 0.015964383  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.031928766  

t Critical two-tail 2.306004135   

 

Table B-22 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.743345236 0.831412224 

Variance 0.000632804 0.003191334 

Observations 5 5 

Pooled Variance 0.001912069  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.184427666  

P(T<=t) one-tail 0.006455582  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.0012911164  

t Critical two-tail 2.306004135  
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Table B-23 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.256594322 0.342196117 

Variance 0.005949795 0.001398485 

Observations 5 5 

Pooled Variance 0.00367414  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.232929534  

P(T<=t) one-tail 0.028020133  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.0056040265  

t Critical two-tail 2.306004135  

 

Table B-24 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.639612968 0.695647054 

Variance 0.058500318 0.039551298 

Observations 5 5 

Pooled Variance 0.049025808  

Hypothesized Mean Difference 0  

df 8  

t Stat -0.400138105  

P(T<=t) one-tail 0.349763402  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.699526804  

t Critical two-tail 2.306004135   
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Table B-25 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.094878065 0.178915815 

Variance 0.002241397 0.001276817 

Observations 5 5 

Pooled Variance 0.001759107  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.168095623  

P(T<=t) one-tail 0.006616278  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.013232555  

t Critical two-tail 2.306004135  

 

Table B-26 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.846881096 0.871491779 

Variance 0.000164307 0.000525949 

Observations 5 5 

Pooled Variance 0.000345128  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.094610957  

P(T<=t) one-tail 0.034758897  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.069517794  

t Critical two-tail 2.306004135   
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Table B-27 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 50 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.465543167 0.48022951 

Variance 0.001292268 0.001239178 

Observations 5 5 

Pooled Variance 0.001265723  

Hypothesized Mean Difference 0  

df 8  

t Stat -0.65270115  

P(T<=t) one-tail 0.266126302  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.532252603  

t Critical two-tail 2.306004135  

 

Table B-28 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.731906324 0.899667953 

Variance 0.001309934 0.000519931 

Observations 5 5 

Pooled Variance 0.000914932  

Hypothesized Mean Difference 0  

df 8  

t Stat -8.769365408  

P(T<=t) one-tail 1.12094E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 2.24189E-05  

t Critical two-tail 2.306004135   
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Table B-29 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.274979602 0.356658476 

Variance 0.000295948 0.000147736 

Observations 5 5 

Pooled Variance 0.000221842  

Hypothesized Mean Difference 0  

df 8  

t Stat -8.670776907  

P(T<=t) one-tail 1.21757E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 2.43514E-05  

t Critical two-tail 2.306004135   

 
 

Table B-30 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.69141239 0.827710145 

Variance 0.001772586 0.001362467 

Observations 5 5 

Pooled Variance 0.001567527  

Hypothesized Mean Difference 0  

df 8  

t Stat -5.443161923  

P(T<=t) one-tail 0.000306833  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.000613666  

t Critical two-tail 2.306004135   
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Table B-31 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.119097551 0.206410011 

Variance 0.002417509 0.000854097 

Observations 5 5 

Pooled Variance 0.001635803  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.41334923  

P(T<=t) one-tail 0.004588813  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.009177625  

t Critical two-tail 2.306004135   

 

Table B-32 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.767578018 0.865547113 

Variance 0.001394065 0.000181261 

Observations 5 5 

Pooled Variance 0.000787663  

Hypothesized Mean Difference 0  

df 8  

t Stat -5.519362676  

P(T<=t) one-tail 0.000280401  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.000560802  

t Critical two-tail 2.306004135   
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Table B-33 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.589722854 0.676203335 

Variance 0.000833002 0.00229785 

Observations 5 5 

Pooled Variance 0.001565426  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.45598451  

P(T<=t) one-tail 0.004309276  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.008618551  

t Critical two-tail 2.306004135   

 

Table B-34 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.645243028 0.791101667 

Variance 0.001046047 0.000263823 

Observations 5 5 

Pooled Variance 0.000654935  

Hypothesized Mean Difference 0  

df 8  

t Stat -9.011623169  

P(T<=t) one-tail 9.17808E-06  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 1.83562E-05  

t Critical two-tail 2.306004135   
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Table B-35 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 125 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.2192595 0.294823531 

Variance 0.001447872 0.00098892 

Observations 5 5 

Pooled Variance 0.001218396  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.422874234  

P(T<=t) one-tail 0.004524738  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.009049476  

t Critical two-tail 2.306004135   

 
 

Table B-36 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.687084876 0.849787068 

Variance 0.004997684 0.003724286 

Observations 5 5 

Pooled Variance 0.004360985  

Hypothesized Mean Difference 0  

df 8  

t Stat -3.895570866  

P(T<=t) one-tail 0.002286567  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.004573133  

t Critical two-tail 2.306004135   
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Table B-37 Result of decrease rate of two settling chamber under 30o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

  UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.202644872 0.288148084 

Variance 0.00457821 0.000818702 

Observations 5 5 

Pooled Variance 0.002698456  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.602524085  

P(T<=t) one-tail 0.015747015  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.03149403  

t Critical two-tail 2.306004135   

 

Table B-38 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.848748359 0.914088782 

Variance 0.000349094 5.34174E-05 

Observations 5 5 

Pooled Variance 0.000201256  

Hypothesized Mean Difference 0  

df 8  

t Stat -7.28245671  

P(T<=t) one-tail 4.2662E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 8.5324E-05  

t Critical two-tail 2.306004135   
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Table B-39 Result of decrease rate of two settling chamber under 45o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.277327921 0.364929397 

Variance 0.007837843 0.000502559 

Observations 5 5 

Pooled Variance 0.004170201  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.144879643  

P(T<=t) one-tail 0.032142989  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.064285977  

t Critical two-tail 2.306004135  

 

Table B-40 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

 Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.752393089 0.903846073 

Variance 0.0134741 0.00699105 

Observations 5 5 

Pooled Variance 0.010232575  

Hypothesized Mean Difference 0  

df 8  

t Stat -2.367311286  

P(T<=t) one-tail 0.022718354  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.045436708  

t Critical two-tail 2.306004135  
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Table B-41 Result of decrease rate of two settling chamber under 60o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.241450194 0.287082913 

Variance 0.004057812 0.004255094 

Observations 5 5 

Pooled Variance 0.004156453  

Hypothesized Mean Difference 0  

df 8  

t Stat -1.119141298  

P(T<=t) one-tail 0.14777699  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.29555398  

t Critical two-tail 2.306004135  

 

Table B-42 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, turbidity 

t-Test: Two-Sample Assuming Equal Variances 

  Turbidity Decrease Rate O1 Turbidity Decrease Rate O2 

Mean 0.665777179 0.846846003 

Variance 0.000601797 0.001780319 

Observations 5 5 

Pooled Variance 0.001191058  

Hypothesized Mean Difference 0  

df 8  

t Stat -8.295589548  

P(T<=t) one-tail 1.68E-05  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 3.35999E-05  

t Critical two-tail 2.306004135   
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Table B-43 Result of decrease rate of two settling chamber under 90o with aluminum chloride from Vandalia 
as the coagulant and pureflo 200 as the fabric material, UV254 

t-Test: Two-Sample Assuming Equal Variances 

 UV254 Decrease Rate O1 UV254 Decrease Rate O2 

Mean 0.19123234 0.288931898 

Variance 0.001560053 0.001028881 

Observations 5 5 

Pooled Variance 0.001294467  

Hypothesized Mean Difference 0  

df 8  

t Stat -4.293556319  

P(T<=t) one-tail 0.001319322  

t Critical one-tail 1.859548038  

P(T<=t) two-tail 0.002638644  

t Critical two-tail 2.306004135  

 
 

 


