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CHAPTER I 

 

LITERATURE REVIEW 

 

CONSUMER PURCHASING TRENDS 

The inflation in food prices throughout time, coupled with a consistently turbulant 

national economy, has had a significant impact on the food puchasing decisions of many 

American families. People with higher incomes devote more of their paycheck to the 

purchase of meat products than do lower income consumers (Regmi, 2001). As people 

improve their economic status, they diversify their diets and begin to demand higher 

quality and more convenient products (Regmi, 2001). In addition to income, other factors 

contribute to the type and quantity of meat that consumers purchase, including 

preference, leisure time available to prepare food, and, most importantly, relative prices 

of foods (Regmi, 2001).  

Sixty-one percent of Americans claim to be sensitive to the recent increase in 

food prices, and that the high cost has caused them to change their puchasing patterns 

(McCarty, 2011). Consumers are cutting expenditures where possible, and beef is often 

on the “chopping block”. In 2011, 25.6 billion pounds of beef was consumed in the 

United States (USDA ERS, 2012), with a per capita intake of 57.4 lbs (USDA ERS, 

2012); this is a 9% decline from 62.9 lb in 2001 and a 21% decline from the 72.9 lb per 

capita intake in 1981 (USDA, 2010). Many price sensitive consumers are “trading out”, 

or substituting other foods, like poultry, completely in place of higher priced beef 

products (McCarty, 2011). The improved efficiency in the poultry industry makes poultry 
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relatively a low-priced option when compared to beef (Chalfant, et al., 1988). Customers 

may also choose chicken due the desire to consume less saturated fat and cholesterol 

(Moschini and Meilke, 1989). Other customers are  “trading down”, or opting for lower-

priced foods; for example, choosing ground beef in place of whole muscle cuts (McCarty, 

2011).  

Ground beef is the most commonly purchased form of beef in the United States, 

due to both its relatively low price and variety of uses. Approximately 42% of beef is 

consumed as ground beef (Davis and Lin, 2005) and approximately 75% of American 

consumers eat ground beef at home during a 7-day period (Taylor, et al., 2007). Fourteen 

percent of linear footspace in self service retail meat cases is devoted to ground beef, up 

from 12% in 2008. Meanwhile, whole muscle beef cuts command a smaller portion of 

retail cases, with 28% of footspace in 2008, down from 30% in 2004 (Meat Retail Case 

Study, 2010). The price of ground beef has increased in comparison to whole muscle beef 

cuts, accordingly. In May, 2011, the price of steak had increased by 6.3% and ground 

beef by 13.6% in comparison to May 2010 (McCarty, 2011). Due to the increase in 

demand and price of ground beef, increased research in ground beef is also necessary to 

ensure a quality product to consumers.  

 

LIPID OXIDATION 

Lipid oxidation is the major, non-microbial cause of quality deterioration in 

ground beef. Lipid oxidation that occurs in the membrane and can result in a decrease in 

fluidity, impair membrane function and deactivate receptors and enzymes within the 

membrane (Baron and Anderson, 2002). Lipid oxidation can also lead to the development 
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of off odors and flavors, as well as changes in color and texture, which can all lead to 

consumer rejection and shortened shelf life (Erickson, 2002). Furthermore, lipid 

oxidation results in the degradation of polyunsaturated fatty acids (Morrissey, et al., 

1994) and can reduce the nutritional value of lipids (Ladikos and Lougovois, 1990) 

because vitamins, can act as antioxidants and are depleted during the process of lipid 

oxidation (Gordon, 2001). Although lipid oxidation in meat results in many negative 

consequences, it also contributes to the development of desirable cooked meat flavors 

(Farmer, 1994). 

 

Fatty Acid Profile Impacts Lipid Oxidation  

Lipids in animals are, for the most part, quite saturated. The phospholipid portion 

of intramuscular lipids, however, is considerably more unsaturated, and is a substrate for 

much of the oxidative reactions that occur in meat (Lillard, 1987).  In beef Longissamus 

dorsi (LD), 44.4% of fatty acids are polyunsaturated, while only 3.5% of triglycerides are 

polyunsaturated (Hood, et al., 1971). In poultry, 41.4% and 43.5% polyunsaturated 

phospholipids are found in the breast and leg, respectively (Pikul, et al., 1984), similar to 

the degree of unsaturation of phospholipids in beef LD muscle. In this study, 

thiobarbituric acid reactive substances (TBARS) was conducted on fat collected from 

various parts of the chicken and showed that 90% of lipid oxidation resulted from the 

phospholipid portion of the lipid (Pikul, et al., 1984). This indicates that low-fat meats 

are still highly susceptible to lipid oxidation because the fat that was removed is 

predominantly triglycerides. The amount of phospholipids present in cell membranes, 

which are more prone to oxidation, remained relatively stable (Monahan, 2000). 
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Dietary Unsaturated Fats  

Differences in diet can significantly alter the fatty acid composition in animals, 

with the effect of dried distiller’s grains with solubles (DDGS) playing a significant role 

in the industry today. With the increased demand for ethanol and the resulting expansion 

of the biofuels industry, the use of ethanol co-products in livestock rations has become 

common practice. The inclusion of distillers grains at 30% in steer rations results in 

improved average daily gain and efficiency of gain, and tended to be increase hot carcass 

weight, fat thickness and yield grade (Al-Suwaiegh, et al., 2002), making DDGS 

attractive to beef farmers. However, the effect of DDGS on meat quality can be 

detrimental. The inclusion of DDGS compared to wet distiller’s grains resulted in 

increased levels of linoleic acid (C18:2n-6), a polyunsaturated fatty acid, which 

contributed to an increase in lipid oxidation (Gill, et al., 2008). Additionally, DDGS 

included at 20% resulted in more total polyunsaturated fatty acids in the Longissamus 

dorsi when compared to the control (dry-rolled corn and soybean meal) diet (Koger, et 

al., 2010). The most prevalent phospholipid that contributes to cooked meat rancidity is 

phosphatidyl ethanolamine (Keller, and Kinsella, 1973).  

 

Lipid Oxidation Mechanism  

Oxidative rancidity can result from several different pathways, including 

hydrolytic, photo-oxidative and enzymatic, but the most important mechanism is by way 

of oxidation (Shahidi and Pegg, 2012), because it leads to the deterioration of foods 

containing unsaturated lipids. Oxidative rancidity occurs due to the reaction of 

unsaturated fatty acids, which are present in both phospholipids and triacylglycerols, with 
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oxygen in a free radical chain mechanism (Gray, 1978). Initiation occurs when a 

hydrogen atom is abstracted from the unsaturated fatty acid chain (LH), creating a lipid-

free radical (L*). The hydrogen radical can be lost in the presence of several catalysts, 

including trace metals, heat, light (Frankel, 1984) or by a hydroxy radical (HO*) or 

perferryl ion (Fe2+O2) (Love, 1987). The lipid-free radical is attacked by diatomic 

oxygen, resulting in the production of a lipid peroxy radical (LOO*) in the propagation 

step (Frankel, 1984). The propagation step will continue, with radicals abstracting 

hydrogens from other unsaturated lipids, until two radicals react. Peroxy radicals (in 

addition to other primary lipid oxidation products) can abstract a hydrogen radical from 

another unsaturated fatty acid to continue the reaction into the termination step to 

produce hydroperoxide (LOOH) (Pearson, et al., 1977), or antioxidants can react with the 

LOO* to form stable radicals that are unable to react (Frankel, 1984), therefore halting 

lipid oxidation.  If an antioxidant is not present, hemolytic cleavage of hydroperoxide 

often occurs, forming alkoxy radicals (LO*), which can reenter the propagation phase 

(Frankel, 1984). Due to the rapid and uncontrolled nature of the lipid oxidation chain 

reaction mechanism, the steps are variable in sequence. The initiation, propagation and 

termination steps may occur as follows (Frankel, 1984): 

Initiation: LH + Initiator → L*  
Propagation: L* + O2 → LOO* 

  LOO* + LH → LOOH + L* 
Termination: LOO* + H* → LOOH 
  L* + L*  → LL 
  

The propagation step continues until two radicals react to form a product that is incapable 

of initiating or propagating (Monahan, 2000) in the termination step. Hydroperoxides 

(LOOH) are colorless, tasteless and odorless molecules (Paquette, et al., 1985) that are 

[1] 
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often further broken down into compounds in the termination step that, even at 

concentrations below 1ppm, can result in altered flavor and odor profiles (Frankel, 1984). 

Flavors and aromas can change as a result of the accumulation of secondary volatiles, 

including aldehydes, ketones and epoxides (Ladikos and Lougovois, 1990). Lipid 

oxidation products include ketones, epoxides, and most importantly, aldehydes; namely, 

n-alkanal, trans-2-alkenal, 4-hydroxy-trans-2-alkanal, and malonaldehyde (Esterbauer et 

al., 1991). The products of aldehyde breakdown have a low threshold for off-odors, and 

therefore play a major role in the accumulation of undesirable odors in cooked meats 

(Shahidi and Pegg, 1994). These secondary products of lipid oxidation can result in 

acceleration of myoglobin oxidation (Faustman, et al., 1999). In order to retard the 

oxidation of lipids, several actions can be taken, including the prevention of oxygen 

exposure by vacuum, storing meat in lower temperatures, as well as the inclusion of 

antioxidants (Pokorny, 2001).  

The rate of lipid oxidation is highest in an environment of low oxygen partial 

pressure (Renerre, 2000). Grinding meat can increase oxidation by disrupting the cell 

membrane and increasing the exposure of the lipids to catalysts (Erickson, 2002); it also 

increases surface area and mixes in oxygen (Gray, 1996). Different muscles in the chuck 

have variable susceptibilities to autoxidation. For example, the Infraspinatus is more 

prone to autoxidation than both the Supraspinatus and Serratus ventralis, as indicated by 

TBARS (McKenna, et al., 2005). 
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Lipid Oxidation Initiators 

Heme proteins were first found to be lipid oxidation initiators by Younathan and 

Watts (1960). As ferrous myoglobin is oxidized to metmyoglobin, a superoxide anion 

(O2-*) is also formed, which is rapidly converted to hydrogen peroxide by dismutation 

and protonation (Monohan, 2000). The hydrogen peroxide can react with metmyoglobin, 

forming a pro-oxidant ferryl myoglobin state (Baron and Anderson, 2002). This product 

is a powerful catalyst of lipid oxidation (Faustman, et al., 2010). Myoglobin (heme-iron) 

and non-heme iron can both serve as pro-oxidants, although heme iron is the most 

important promoter of lipid oxidation (Rhee, 1987). Metals with two or more valences 

can also catalyze lipid oxidation by promoting hydroperoxide breakdown (Cross, et al., 

1987). Iron, copper, cobalt and manganese are examples of metals with oxidation 

potential; iron, however, has the highest concentration in muscle (Love, 1987). For 

example, beef Longissimus dorsi has concentrations of 17.2 ppm iron, 0.102 ppm cobalt 

and 0.298 ppm manganese (Nour, et al., 1983).  

Higher levels of iron can lead to increased rates of lipid oxidation (Faustman, et 

al., 1992). This contributes to increased lipid oxidation, catalyzed by heme iron. The 

catalytic ability of iron is increased significantly during cooking, as the iron becomes 

more available because of the denaturation of the protein moiety (St. Angelo, 1987). 

Additionally, non-heme iron has been found to act as a catalyst in accelerating lipid 

oxidation in cooked meats (Love, 1974). The physical disruption of cells and cell 

membranes by grinding can also increase lipid oxidation, and therefore, the incidence of 

off-odors (St. Angelo, 1987).  Metal chelators, like phosphates and citrate, can bind 

metals and prevent or retard lipid oxidation (AMSA, 2012).  
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Factors that Influence Lipid Oxidation in Meat 

The rate of lipid oxidation can be decreased and increased by a variety of extrinsic 

factors. Environmental conditions, including oxygen concentration, temperature and 

light, impact meat significantly in terms of lipid oxidation. Lipid oxidation increases as 

temperature increases; therefore, refrigeration and freezing are effective in slowing lipid 

oxidation in comparison to ambient temperature (Monahan, 2000). In addition, 

temperature abuse during processing can be detrimental to meat in terms of both lipid and 

microbial deterioration, even if sufficient refrigeration occurs after processing (Mielche, 

1995). Additionally, during meat preparation and processing, non-meat ingredients are 

added to the system. Many of these non-meat ingredients are pro-oxidant in nature, most 

notably sodium chloride (table salt). This lipid oxidation promoter likely increases lipid 

oxidation by releasing iron from the heme proteins, therefore allowing them to initiate 

lipid oxidation (Kanner, et al., 1991). Alternatively, phosphates are commonly added to 

processed meat products to improve water-binding capacity, but they are also effective in 

inhibition of lipid oxidation through metal chelation (Tims and Watts, 1958). 

 

ANTIOXIDANTS IN MEAT 

Oxidation can be prevented by including an antioxidant in the system. 

Antioxidants donate hydrogen atoms to free radicals, therefore making them unreactive 

and stopping the lipid oxidation chain reaction (Monahan, 2000). Many endogenous 

antioxidants exist, including both enzymatic antioxidants, including catalase, glutathione 

peroxidase and superoxide dismustase, which are denatured and deactivated during the 

cooking process, as well as non-enzymatic antioxidants, which are still active after 
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cooking (Monahan, 2000). Non-enzymatic antioxidants of importance include lipid-

soluble tocopherols and tocotrienols, as well as β carotene and histidine containing 

dipeptides (Chan, et al., 1994).  

Alpha-tocopherol is a powerful, endogenous and fat-soluble antioxidant that 

resides in skeletal muscle, with concentrations in beef top round of 3.4 mg/kg (Decker, et 

al., 2000).   Concentrations of α-tocopherol can be increased through dietary 

supplementation in beef cattle in the form of vitamin E. Vitamin E supplementation 

increased α-tocopherol concentrations and delayed both lipid and oxymyoglobin 

oxidation in raw ground beef (Faustman, et al., 1989). Pasture-fed cattle often have 

higher concentrations of both α-tocopherol and β-carotene compared to grain-fed cattle; 

these antioxidants delayed pigment and lipid oxidation, resulting in enhanced color 

retention, which was quantified by a* value (Insani, et al., 2008). With a high 

concentration of α-tocopherol, metmyoglobin was less able to promote oxidation, 

resulting in lower TBARS (Lynch and Faustman, 2000). Another group tested the effect 

of treating the Longissamus lumborum with mineral oil containing D-α-tocopherol to 

determine whether oxidation would be further prevented with exogenous antioxidants. 

They found that α-tocopherol from the diet was much more effective in retarding lipid 

oxidation than exogenous α-tocopherol (Mitsumoto, 1993).  

Although endogenous antioxidants do exist in beef, lipid oxidation is not reduced 

enough to meet the needs of the meat industry (Decker and Mei, 1996); therefore, the 

addition of antioxidants is often used to slow lipid oxidation in processed meat products. 

BHA (butylated hydroxy anisole), BHT (butylated hydroxy toluene), spice extracts and 

vitamin E are often included in processed meat products because of their usefulness in the 
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retardation or inhibition of metmyoglobin formation (AMSA, 2012).  

 

MYOGLOBIN AND MEAT COLOR 

Myoglobin is a sarcoplasmic, heme protein that is responsible for the majority of 

color in meat. Myoglobin content in meat depends on several factors, including animal 

age, sex and diet. Typical iron content in beef is 2-5 mg/g in beef (Livingston, and 

Brown, 1981), with more myoglobin accumulation in older animals. In the living animal, 

myoglobin binds oxygen and delivers it to the mitochondria (Wittenberg and Wittenberg, 

2003). In a well-bled carcass; however, myoglobin provides 90-95% of the iron present 

in meat (Renerre, 2000). The blood pigment hemoglobin also provides color, contributing 

to 20–30% of the total pigment present (Fox, 1966). Cytochromes are essential for 

electron transport for respiration in living animals and also contribute to meat color, but 

at a much lower level (Renerre, 2000).  

 

The Myoglobin Molecule and its Chemical States 

Myoglobin has 8 α-helices and contains a protein moiety and a prosthetic group in 

its hydrophobic pocket, which is responsible for stabilizing the molecule and binding 

oxygen. Myoglobin also has a centrally located iron atom, which can form six bonds; 

four bind pyrrole groups and one with proximal histadine. The 6th position bond can 

reversibly bind a ligand (Mancini and Hunt, 2005). The iron atom can exist in either an 

oxidized (Fe3+) or reduced (Fe2+) form (Cornforth and Jayasingh, 2004).  
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Figure 2. Ferric (Fe3+) myoglobin structure. Photo courtesty of the Graduate School of 

Pharmaceutical Sciences, Chiba University.  

 

The presence of a ligand at the sixth position and the charge of the iron determine 

the form of the myoglobin and the resulting color of the meat (Mancini and Hunt, 2005). 

Three major chemical forms of myoglobin are responsible for meat color, including two 

in the ferrous (Fe2+) state, deoxymyoglobin and oxymyoglobin, and one in the ferric 

(Fe3+) state, metmyoglobin. The 6th position on the iron atom can bind diatomic oxygen 

(oxymyoglobin), water  (metmyoglobin) or can remain unbound (deoxymyoglobin) 

(AMSA, 2012).  Deoxymyoglobin is dark purple, oxymyoglobin is very bright red and 

metmyoglobin is characterized by a brown hue. Deoxymyoglobin is converted to 

oxymyoglobin as it is exposed to oxygen; the heme iron reversibly binds that oxygen in a 

process called blooming (Renerre, 2000). As oxygen becomes depleted through various 

cell processes or by vacuum, oxymyoglobin is converted into deoxymyoglobin (AMSA, 

2012). Regardless of the chemical state of myoglobin (ferrous or ferric) state in fresh 

meat, upon cooking, the myoglobin is oxidized and denatured, forming a hemichrome, 

which exhibits a tan color (Claus, 2007).   
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Conversion of Ferrous Myoglobin to Metmyoglobin  

Oxidation of the iron within the heme group in any of the two ferrous (Fe2+) 

forms results in the production of metmyoglobin (Mancini and Hunt, 2005). Although 

oxidation of oxymyoglobin to metmyoglobin may occur, the oxidation of 

deoxymyoglobin is more thermodynamically feasible (AMSA, 2012). Oxidation occurs 

as the iron is reduced to Fe3+ and binds a water molecule (Faustman, et al., 2010). A layer 

of metmyoglobin forms between the oxymyoglobin and deoxymyoglobin layers, which 

can significantly discolor the surface of meat (AMSA, 2012). As the metmyoglobin 

becomes thicker, the oxymyoglobin layer becomes thinner, resulting in the appearance of 

meat discoloration (Kropf, 2008). The rate of metmyoglobin accumulation is dependent 

on many factors, including pH, muscle type, sex, and live animal diet as well as 

environmental factors, which include temperature, oxygen availability, lighting and 

storage of meat (Renerre, 2000). The rate of ferrous myoglobin oxidation increases as pH 

decreases (Faustman, 1989).  Ferrous myoglobin to metmyoglobin conversion varies 

dramatically between muscles. For example, the Infraspinatus and Supraspinatus 

accumulate metmyoglobin at a much faster rate in comparison to the Longissamus 

lumborum and the Longissamus thoracis, as determined by reflectance spectroscopy 

(McKenna, et al. 2005).  

 

Oxidation of Myoglobin by Lipid Oxidation Products  

The interrelatedness of lipid oxidation and myoglobin oxidation is well 

documented, although the pathway that describes the oxidation of myoglobin by lipid 

oxidation is not well understood. The concentration of oxymyoglobin, as well as L* and 
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a* objective color values is strongly correlated with lipid oxidation, quantified in TBARS 

(Zakrys, et al., 2008). Additionally, antioxidant inclusion in meat processing retards both 

lipid and myoglobin oxidation, further proving the connection between the two 

mechanisms (Decker, et al., 2000). Free radicals produced during lipid oxidation can lead 

to the damage of myoglobin and hemoglobin, resulting in color loss in meat (Haurowitz, 

et al., 1941). Additionally, αβ-unsaturated aldehydes (nonenals and pentanals) are highly 

pro-oxidative secondary products of lipid oxidation. They significantly accelerate the 

conversion of ferrous myoglobin to metmyoglobin in muscle (Lynch and Faustman, 

2000). These aldehydes can also decrease myoglobin stability by covalently attaching to 

the oxymyoglobin molecule (Lynch and Faustman, 2000). In order to slow both lipid 

oxidation and pigment oxidation, the formation of metmyoglobin must be prevented so 

that lipid oxidation catalysts are not synthesized, and lipid oxidation must be prevented so 

that the oxidation intermediates cannot damage heme pigments (Greene, 1969).  

 

Metmyoglobin Reducing Enzyme  

Meat purchasing decisions are influenced by color more than any other quality 

factor (Smith, et al., 2000), and brown, discolored meat is highly discriminated against by 

consumers (Hood and Riordan, 1973). The formation of metmyoglobin results in meat 

discoloration and a deviation from the bright red color that consumers prefer in their 

meat. If formed, metmyoglobin can be reduced by an enzyme called NADH-cytochrome 

b5 reductase (Arihara, et al., 1989), more commonly known as metmyoglobin reductase. 

Metmyoglobin reductase may extend the shelf life of fresh meat (Renerre, 2000). This 

enzyme can reduce metmyoglobin to myoglobin, but is NADH-dependent and must be in 
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the presence of either ferrocyanide or cytochrome b5 (Arihara, et al., 1989). Reddy and 

Carpenter (1991) showed that muscles with higher metmyoglobin reducing activities are 

also often characterized as the most color stable. The importance of this enzyme in meat 

color stability is a topic of debate. According to Ledward, metmyoglobin reductase is of 

high importance in determining meat color stability (1985). O’Keeffe and Hood, 

conversely, have shown that meat color stability is more dependent on oxygen 

consumption rate, which is determines the ability of oxygen to penetrate the exposed 

muscle. Other researchers have concluded that both of these pathways are of importance 

to color stability, and that low color stability muscles have a low proportion of reducing 

ability in comparison to the oxygen consumption rate (McKenna, et al., 2005). 

 

CONSUMER ACCEPTABILITY OF COLOR CHANGE IN MEAT 

Consumer behavior and purchasing patterns are determined by their needs and the 

food available to meet those needs (Troy, 2010). Additionally, consumers purchase based 

on “quality cues”, which can include both intrinsic factors like color and visible fat, as 

well as extrinsic factors, including price, brand and product origin (Troy, 2010). 

Consumers use the intrinsic cue of brown color development as an indicator of quality 

deterioration in fresh meats. Meat purchasing decisions are influenced by color more than 

any other quality factor because consumers use discoloration as an indicator of freshness 

and wholesomeness (Smith, et al., 2000). Additionally, consumers prefer a cherry-red 

lean color, and deviations from this can also result in discrimination (Liu, et al. 1995). 

Perception is based on experiences, in addition to the visual, flavor and odor attributes 

(Troy, 2010). Since consumers cannot assess odor and flavor on packaged meat, color 
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analysis becomes more important in their purchasing decisions (Faustman and Cassens, 

1990). At the point of sale, meat color is the most important factor in determining quality 

(Troy, 2010). Consumers prefer bright red (oxymyoglobin) patties to purple 

(deoxymyoglobin) and preferred purple to brown (metmyoglobin), but this preference 

and likelihood to purchase did not impact the resulting taste satisfaction (Carpenter, 

2001). Green, et al. found that meat discoloration results in consumer rejection when 

metmyoglobin concentration reaches 30-40% (1971). Hood, et al. showed that consumers 

begin to discriminate at an even lower concentration of metmyoglobin (1973). When 

discolored meat with 20% surface metmyoglobin is sold alongside bright red beef, the 

discolored beef is highly discriminated against; the sales ratio of the discolored beef in 

comparison to the bright red beef is 1:2 (Hood, et al., 1973), indicating significant 

discrimination. Discolored meat, therefore, often must be discounted or ground in order 

to be saleable (Liu, et al., 1995). Nearly 15% of retail beef is discounted in price due to 

surface discoloration, leading to annual meat industry revenue losses totaling 

approximately $1 billion (Smith, et al., 2000).   

 

FLAVOR VOLATILES IN MEAT 

Off-flavor is used to describe unpleasant odors and tastes resulting from the 

deterioration of foods, with severe deterioration resulting in rancidity (Pegg and Shahidi, 

2012). More than 1,000 volatile compounds, which contribute to odor and flavor, have 

been identified in meat (Bailey, 1989), and certainly many more are still undiscovered. 

The ability to detect and identify the accumulation of meat odors and off-odors varies 
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from person to person. Over 1,000 olfactory receptor genes exist in humans that enable us 

to detect these odors, sometimes at concentrations as low as 0.01ppb (Baigrie, 2003).  

The cooking process involves significant changes within meat, with many 

reactions occurring in the lipid portion, specifically fatty acids, triglycerides and 

phospholipids, which are degraded oxidatively and hydrolytically (Bailey, 1989). The 

“brothy” or “meaty” flavor associated with cooked meat is the result of many reactions 

between amino acids, peptides, glycopeptides, proteins, sugars, sugar phosphates, 

nucleotides, nucleosides, purines and pyrimidines in the Malliard reaction (Bailey, 1989), 

which also results in the brown, cooked color of meat. The lipid components, after 

cooking, are responsible for the flavors that make beef smell and taste different from 

other red meats (Hornstein and Crowe, 1960). The interaction between the lipid and 

water-soluble fractions of meat produce many intermediate products that contribute to the 

flavor of beef (Bailey, 1989). The accumulation of off-odors can be the result of 

microbial contamination as well as oxidative rancidity (Shahidi and Pegg, 2012), with the 

latter being the main contributor to Warmed-Over Flavor (WOF). Freshly cooked beef 

contains many flavor volatiles, 80% of which are high molecular weight aldehydes 

(Bailey, 1980). Products of aldehyde breakdown are of interest because of their 

contribution to off-odors; most notably, WOF. 

 

Warmed Over Flavor (WOF) and Meat Flavor Deterioration (MFD)  

WOF is generally characterized as an old, stale, or rancid odor and is often 

compared to the smell of paint or wet cardboard, and was first characterized by Tims and 

Watts (1958). The development of WOF is the result of lipid oxidation that occurs in pre-
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cooked and refrigerated meat within 48 hours of cooking (Cross, et al, 1987), and can 

lead to a significant deterioration in flavor (Love, 1987). Other researchers have found 

that protein degradation is partly responsible for this deterioration in meat flavor 

described by Love in 1987. For this reason, Meat Flavor Deterioration (MFD) is also 

used to describe this loss in meat quality (Shahidi and Pegg, 1994).  

WOF is an issue for restaurants and airlines that serve reheated, pre-cooked 

meats, and it is also responsible for consumer dissatisfaction with leftovers (St. Angelo, 

1987). Additionally, the increase in demand for ready-to-eat, convenient meat entrees has 

made the prevention or retardation of WOF development a topic of interest for meat 

scientists (Cross, et al., 1987). The susceptibility of meat to WOF, caused by lipid 

oxidation, is dependent on many factors, including the species, the diet fed, the type of fat 

utilized (subcutaneous, body cavity, intramuscular, etc.) and meat handling, both pre- and 

post-processing (Cross, et al., 1987). Antioxidants are often utilized in the retardation of 

WOF (St. Angelo, 1987), although endogenous, antioxidant enzymes are denatured and 

disabled during the cooking process (Monahan, 2000). WOF is highly correlated with the 

concentrations of several lipid oxidation secondary products, including pentanal, hexanal 

and 2,3-octanedione in chicken, turkey and beef (St. Angelo, 1987).  

Off-odors become apparent at TBA values of 1-2 mg TBA/kg in beef (Zipser and 

Watts, 1962). Although malonaldehyde does not contribute to WOF, TBARS and hexanal 

concentrations are highly correlated (R2=0.804) in pork (Fernando et al., 2003) and 

(R2=0.994) in turkey (Brunton, et al., 2000). In addition to the development of off-odors 

in pre-cooked and reheated meat, WOF can also occur at a similar rate in raw meat when 

muscles are ground. Cell membranes are disrupted during grinding and heme iron, which 
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is a catalyst for lipid oxidation, becomes more available (Judge and Aberle, 1980) and 

this rancid WOF is not destroyed by cooking (Green 1969).  

 

DETERMINATION OF MEAT COLOR BY CONSUMER PANEL 

Sensory panels are useful in tracking visible changes in lean color and percent 

discoloration. Panels are comprised of either ‘trained’ or ‘untrained’ panelists. A ‘trained’ 

panel is usually exposed to materials before the evaluations that help the panelist select 

the most representative color or percent discoloration for a particular sample (Rhee, 

1997).  Panelist color and percent discoloration evaluation should be analyzed since 

consumers make the ‘purchase’ or ‘no purchase’ decision, often based solely on 

appearance (Faustman and Cassens, 1990). In addition to color and percent discoloration 

by sensory panel, asking the panelists to decide to ‘purchase or ‘not purchase’ based on 

appearance is also useful in determining consumer acceptance.  

 

DETERMINATION OF OXYMYOGLOBIN IN MEAT 

Oxymyoglobin and deoxymyoglobin content in meat is converted to 

metmyoglobin over time, as the heme iron is oxidized from Fe2+ to Fe3+. This process 

results in an increase in discoloration, which can lead to customer discrimination (Liu, et 

al. 1995). The quantification of oxymyoglobin concentration over time is important in 

determining the rate of discoloration, and rate of discoloration can be used to compare 

ground beef blends, for example. A rate of oxymyoglobin deterioration that is less severe 

means that a particular blend or certain environmental conditions result in longer color 

retention, and therefore, less consumer discrimination. Oxymyoglobin content 
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determination quantifies all non-oxidized (Fe2+) myoglobin; i.e., everything except 

metmyoglobin (Fe3+) (Krzywiki, 1982). Therefore, all Fe2+ forms, namely oxymyoglobin 

and deoxymyoglobin, are pushed to the oxymyoglobin state. A phosphate buffer (pH 6.8) 

is added to homogenized meat to prevent additional oxidation to the metmyoglobin state. 

Absorbance is read on a spectrophotometer at 418nm, which is the maximum absorbance 

of oxymyoglobin.  

 

DETERMINATION OF MEAT COLOR BY MINOLTA CHROMAMETER 

Objective meat color measurement is important in determining rates of 

discoloration and can be compared to consumer color analysis and pigment 

concentrations. Color is described in three ways, by lightness (known as value), 

saturation (known as chroma) and hue. The Commission Internationale de l’Eclairage 

(CIE) introduced ‘color space’, which measures color in terms of L*, a* and b*, or 

CIELAB (Berardesca, 1995). L* measures darkness (-L*) to lightness (+L*), a* measures 

greenness (-a*) to redness (+a*) and b* measures blueness (-b*) to yellowness (+b*). All 

three lines are continuous and perpendicular to each other, creating a color sphere that 

was inspired by the Munsell color space (Berardesca, 1995). A chromameter has 

photodiodes that contain red, blue and green sensitive cones in the central foveola, 

simulating the human eye. The chromameter shines light on the sample, and is reflected 

back into the instrument and sent through the photodiodes. The light is transformed into 

electrical signals when it reaches the sensors. The signals are calculated into color values 

for L* a* and b* (Berardesca, 1995). These values can be compared across time, 

experimental unit, etc. to determine color, color retention, and rate of fading. 
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DETERMINATION OF MEAT COLOR BY REF. SPECTROPHOTOMETRY 

Consumer panels are useful in detecting visible changes in color and percent 

discoloration in meat, but if subtle changes need to be documented, more sensitive 

measurement devices should be utilized (Krzywicki, 1979). Reflectance 

spectrophotometry is a method for the quantitative determination of meat pigments. This 

method is often preferred to CIE determination because a direct relationship can be made 

between subjective consumer analysis and actual changes in the relative concentrations of 

meat pigments (Hood and Riordan, 1973). Reflectance spectrophotometry is determined 

by the reflectivity of the sample, and expressed as K/S, where K and S are constants for 

absorption and scattering coefficients, respectively (Kubelka, 1948). Reflectance (R∞) is 

measured at two specific absorption points, the first at 525 nm, which is isobestic 

(linearly related) for all three forms of myoglobin.  The conversion of the absorbance at 

525 nm to K/S values determines total pigment present in the sample (Hood and Riordan, 

1973). The second absorption is read at 572 nm, which is isobestic for oxymyoglobin and 

reduced myoglobin. In order to determine the concentration of metmyoglobin, the ratio of 

(K/S)572 to (K/S)525 nm is calculated (Hood, 1973) using the following formula: 

K/S = (1-R∞)2 
 2R∞ 

 K/S ratios are determined for both 0% and 100% metmyoglobin with the inclusion of a 

reducing agent, sodium hydrosulfite and an oxidizing agent, potassium ferricyanide, 

respectively. The two ratios are used to find a linear relationship, which can then be used 

to determine metmyoglobin concentrations between 0% and 100% metmyoglobin 

(Stewart, 1965). This method is preferred to chemical analysis of oxymyoglobin content 

because the sample is not destroyed during analysis, and therefore can be used to track 

[1] 
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metmyoglobin formation during days of storage. Consumers reject or downgrade ground 

beef for purchase when metmyoglobin content exceeds 40%, as determined by 

reflectance spectrophotometry (Greene, et al., 1971), which would correspond to a 

change in (K/S)572/(KS)525 of 1.20 (Hood, 1975).   

 

DETERMINATION OF LIPID OXIDATION IN MEAT BY TBARS 

The Thiobarbitruic Acid Reactive Substances (TBARS) test is one of the most 

common methods of lipid oxidation measurement. Malonaldehyde is a secondary product 

of lipid oxidation, and is produced as a result of polyunsaturated fatty acid breakdown 

(Shahidi and Zhong, 2005). Malonaldehyde is often selected for oxidative deterioration 

measurement because it can be detected early as oxidation occurs and because the test is 

very sensitive (Cesa, 2004). Malonaldehyde is heated with an acid solution and 2, 2-

thiobarbituric acid (TBA) molecules, which react in a condensation reaction to form a 

chromophore (Sinnhuber and Yu, 1977). TBA may also form a chemophore with an 

identical absorbtion maxiumum (Shahidi and Pegg, 1994) with other secondary products 

of lipid oxidation, in addition to malonaldehyde (Devasagayam, 2003). For this reason, 

this test is referred to as Thiobarbituric Acid Reactive Substances (TBARS), instead of 

TBA value (Shahidi and Pegg, 1994). 

The amount of TBARS is determined by finding the concentration of the 

chemophore, which has an absorbance maximum of 532nm (Sinnhuber and Yu, 1977). A 

higher concentration of TBARS, and therefore a higher degree of lipid oxidation, will 

result in a darker pink hue (Shahidi, 2005). The resulting pale to bright pink solution is 

read at 532 nm on a spectrophotometer, and samples should be compared with a standard 
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curve. The reaction of 2-thiobarbituric acid and malonaldehyde occurs as follows (Oxford 

Biomedical Research, 2012): 

 

 

 

Figure 2. Chemical reaction between TBA and malonaldehyde. Figure courtesy of 

Oxford Biomedical Research.  

 

DETERMINATION OF LIPID OXIDATION IN MEAT BY PEROXIDE VALUE 

Peroxide value is a measurement of the total hydroperoxide present at the time of 

analysis. Lipid oxidation involves constant hydroperoxide formation as a primary product 

and its subsequent decomposition into secondary products (Shahidi, 2005); therefore, 

peroxide value is a good indicator of the onset of lipid oxidation. Three methods of 

peroxide determination are primarily used, the most often utilized procedure is the 

idometric procedure described by Lea (1952). Peroxides can be measured by their ability 

to liberate iodine from potassium iodide (KI). The sample to be analyzed is dissolved in a 

solvent and excess KI is added. The reaction occurs as follows: 

 
ROOH + KI!→ ROH + KOH + I2 

 

Therefore, the amount of peroxides present can be determined by finding the amount of 

liberated I2 present. The solution is titrated with sodium thiosulfate until colorless. The 

sodium thiosulfate reacts with the I2 to form a colorless I-. A simple calculation using the 

amount of sodium thiosulfate that was titrated will determine the amount of liberated I2, 

[2] 
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and therefore, the amount of hydroperoxides present in the sample (McClements, 2003).  

 

DETERMINATION OF OFF-ODORS IN MEAT BY SENSORY PANEL 

Sensory panels are useful in describing and quantifying undesirable odors in raw 

and cooked meat. Panels are comprised of either ‘trained’ or ‘untrained’ panelists. A 

‘trained’ panel is exposed to materials before the evaluations that help the panelist 

describe the specific odors that they are expected to encounter. Off-odor descriptors may 

include ‘fruity’, ‘sour’, ‘putrid’ (Rhee, 1997), or ‘rancid’ (Greene, 1969). Strawberry 

yogurt is often used to reinforce the ‘fruity’ off-odor and buttermilk is used for the ‘sour’ 

off odor, for example (Rhee, 1997).   Quantification is generally described in terms of 

flavor intensity, and can be accomplished with a hedonic scale. In this case, panelists are 

asked to smell the sample and assign to it a value (generally 0-10) that matches the its 

degree of intensity of that particular descriptor (Melton, et al., 1987). Odor intensity scale 

markers can be created with vials containing increasing concentrations of vanilla, (0% 

vanilla = 0, 100% vanilla = 10) (Rhee, 1997). Off-odor determination is often conducted 

in the following manner: the meat sample is placed in a glass petri dish with a watch 

glass covering the dish to accumulate volatiles. Panelists lift the watch glass and sniff the 

sample to evaluate off-odors (Rhee, 1997). Panelists record the off-odor(s) that they 

identify and odor intensity on the hedonic scale. 

 

IDENTIFICATION AND QUANT. OF FLAVOR VOLS IN MEAT BY SPME 

The identification and quantification of flavor volatiles was accomplished with 

the solid-phase microextraction (SPME) analytical technique, which was developed by 
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Arthur and Pawliszyn (1990). The analysis of volatiles in the headspace is important 

because consumers can detect those same volatiles while they eat; they stimulate 

olfactory sensors and are perceived as off-odors (Linforth and Taylor, 1993). Flavor 

volatiles are extracted from meat by converting them from the gaseous or liquid phase 

into an immobilized, solid phase for quantification (Steffen and Pawliszyn, 1996). The 

SPME device utilizes a fused silica fiber, which should be selected specifically for the 

volatiles of interest (Steffen and Pawliszyn, 1996). The SPME needle pierces the septum 

and the fiber is extended into the headspace above the sample. The flavor volatile 

analytes are absorbed and concentrated into the stationary phase within the fiber, and the 

fiber is subsequently placed into the injection port of the gas chromatograph (Kataoka, 

2000). Desorption of the analyte and subsequent quantification occurs in the gas 

chromatograph (Kataoka, 2000). SPME is fast, inexpensive, solvent-free and easy to 

conduct, and is therefore widely utilized for volatile analysis (Yang and Peppard, 1994).  

 

BEEF MUSCLE PROFILING PROJECT 

  The Cattle Fax organization found that beef ribs and loins increased 3-5% in 

value and the wholesale value of chucks, rounds and trimmings decreased 25-26% in 

value during a five year period, from 1993-1998 (Von Seggern, et al., 2005). In response, 

the Cattle Fax organization concluded that research needed to be conducted on chucks 

and rounds to find a way to increase demand for those ‘underutilized’ cuts (Von Seggern, 

et al., 2005). In order to accomplish this, physical and chemical analyses were conducted 

on more than 5,000 muscles across 142 beef carcasses to create a database of muscle 

characteristics. Objective color, expressible moisture, proximate composition, emulsion 
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capacity, pH, total collagen content, total heme-iron concentration, and Warner–Bratzler 

shear force were conducted on each of 39 muscles located in the chuck and round. This 

information can help find the best use for each muscle, based on its characteristics 

(Redson, 2011) and can also help meat retailers make a more informed decision about 

muscle inclusion in value added products (Von Seggern, et al., 2005). 

 

Response to the Beef Muscle Profiling Project 

 This new information has lead to the isolation of 13 new “Value Cuts” (Redson, 

2011), and is partially responsible for the increase in carcass value by and estimated $50-

$70 per head (Von Seggern, et al., 2005). These value cuts are single muscle cuts that fall 

between premium steaks and ground beef in both quality and price (Redson, 2011). These 

cuts include the Petite Tender, Petite Tender Medallions, Flat Iron and Ranch Steak 

sourced from the shoulder clod, the Western Griller Steak, Western Tip, Sirloin Tip Side 

Steak and the Sirloin Tip Center Steak from the round, and the Boneless Country-Style 

Beef Chuck Ribs, Sierra Cut, America’s Beef Roast, Denver Cut and the Delmonico 

Steak from the chuck roll (Redson, 2011). A culinary team created recipes and optimal 

cooking conditions and consumer panels determined responses to recipes, names and 

taste (Redson, 2011). In response to an aggressive marketing campaign, 81 million 

pounds of the flat iron steaks, a value cut, were used in foodservice in 2010, in 

comparison to 21 million pounds of porterhouse steaks and 40 million pounds of T-bone 

steaks in the same year (Technomic, 2010). 39 million pounds of petite tenders and 26 

million pounds of ranch steaks were also used in the foodservice industry in 2010 

(Technomic, 2010). 
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Economic Impact 

The decline in the United States economy from 2008 through 2010 resulted in a 

change in consumer behavior and has had a significant impact on the beef industry. This 

economic uncertainty has caused consumers to be more price conscious; for this reason, 

many beef consumers are “trading down” from higher priced steaks and roasts to lower 

cost items, such as ground beef (McCarty, 2011). In August of 2013, the national, 

averaged price of ground beef was US $1.57 per kilogram, while choice sirloin steak was 

US $3.00 per kilogram (USDA-ERS, 2013). Although these prices vary by geographical 

location, this price spread has attracted consumers to ground beef and away from whole 

muscle steaks and roasts across the country. Due to this increase in demand for ground 

beef, the price of ground beef had increased by 13.6% from May 2010 to May 2011 in 

comparison to steak, which had only increased by 6.3% (McCarty, 2011). 

In addition to the increase in demand for ground beef, the meat industry is currently 

working to increase the value of the chuck by developing new “value cuts” for individual 

sale and excluding them from the ground beef mix (Redson, 2011). In August of 2013, 

wholesale beef was worth US $1.34 per kilogram, while retail beef was worth US $2.45 

per kilogram, yielding a wholesale to retail spread of US $1.11 per pound (USDA, 2013). 

If the practice of isolating certain muscles from the chuck is adopted by meat processors, 

the price of beef in a retail setting would likely change, as will the wholesale/retail 

spread. According to Von Seggern et al., if half of the 5-year increase in price were to be 

assigned to the beef chuck, then beef carcasses will have gained an extra US $50-

$70/head in value, partially due to this initiative (2005). This increase in beef chuck value 

is impressive; however, several indirect consequences of this practice may exist. Firstly, 
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the removal of muscles from the chuck for individual retail sale will reduce the total 

amount of ground beef available for retail sale. With the increase in demand for ground 

beef, this could result in a supply issue. Additionally, those muscles that have been 

selected for use as steaks have specific color and oxidative stabilities and functional 

characteristics (Von Seggern, et al., 2005). Meat processors may be concerned that 

removing these muscles may result in ground beef with less days of shelf life, and lead to 

customer rejection. Therefore, further research regarding the impact of removing certain 

muscles from ground chuck must be conducted to ensure a quality ground beef product to 

the consumer. 
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CHAPTER 2 

 

BEEF CHUCK MUSCLE ISOLATION HAS NO EFFECTS ON 

PREMIUM GROUND BEEF PROGRAMS 

 

ABSTRACT 

This experiment evaluated whether isolating certain muscles from the chuck for 

retail sale and excluding them from the ground beef mix changes the number of days that 

ground chuck is acceptable to consumers. Chucks were harvested from twenty-four beef 

steers, and were allocated to either a traditional or an innovative method. Resulting 

ground beef patties were stored in retail simulation conditions for 7 d to determine color 

and oxidative stability. Raw patties were analyzed for thiobarbituric acid reactive 

substances (TBARS), oxymyoglobin concentration, objective color by Minolta 

colorimeter, and by a trained sensory panel for odor, color and percent discoloration. No 

differences (P > 0.05) were observed between traditional and innovative style patties for 

TBARS, sensory odor or color, or oxymyoglobin concentration. Minolta Chromameter 

readings revealed more substantial fading (P<0.05) in traditional patties compared with 

the innovative style patties. This study demonstrated that removing certain muscles from 

the ground chuck mix does not result in any detrimental consequences in resulting ground 

chuck patties.  

 
"
"
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INTRODUCTION 
 

From 1993 to 1998, the price of chucks and rounds dropped 25-26%, prompting 

research to increase the value of these “underutilized” cuts (Von Seggern, et al., 2005). 

The success of the Beef Muscle Profiling Project led processors to isolate muscles from 

the chuck for individual sale and gain an approximate US $50 to $70/head in market 

value (Von Seggern et al., 2005).  One of the consequences of this practice is the 

decrease in ground chuck available for premium grinds.  

Ground beef is the largest percentage of all beef items consumed at home or sold 

into foodservice (Lundeen, 2011). Approximately 42% of beef is consumed as ground 

beef (Davis and Lin, 2005). Fourteen percent of linear footspace in self service retail 

meat cases was devoted to ground beef in 2010, up from 12% in 2008. Additionally, 

whole muscle beef cuts commanded 28% of footspace in 2010, down from 30% in 2004 

(Meat Retail Case Study, 2010). This increase in demand for ground beef was a result of 

the poor economic situation, which has caused many consumers to “trade down” from 

higher priced steaks and roasts to lower cost items such as ground beef (McCarty, 2011). 

Due to the change in consumer purchasing patterns, the price of ground beef has 

increased in comparison to whole muscle beef cuts. In May, 2011, the price of steak had 

increased by 6.3% and ground beef by 13.6% in comparison to May 2010 (McCarty, 

2011). 

In addition, differences exist in functional characteristics, such as color, heme-

iron content and pH, between the most popular chuck muscles being utilized as steaks 

(Von Seggern et al., 2005). Using muscles with different color stabilities in ground beef 

can dramatically affect shelf life as determined by discoloration and oxidation (Raines, et 
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al., 2010).  At the point of sale, meat color is the most important factor in determining 

quality (Troy, 2010); therefore, a change in the rate of discoloration can greatly impact 

consumer-purchasing decisions. Nearly 15% of retail beef is discounted in price before it 

can be sold due to surface discoloration, leading to annual revenue losses in the meat 

industry totaling approximately US $1 billion (Smith, et al., 2000). Therefore, meat 

retailers are interested in the impact of excluding muscles on the days of viable shelf life 

of the resulting ground beef. 

The objective of this study was to determine the impact of removing high value 

muscles from ground chuck on the overall odor and color stability of ground chuck at 

four different retail storage time periods. 

 

MATERIALS AND METHODS 

Ground Beef Manufacture 

Twenty-four beef steers were slaughtered at the University of Missouri-Columbia 

in groups of six. Right chucks were assigned to a traditional method (TRA) and left 

chucks to an innovative method (INN). TRA included trim from the neck and shank, half 

of the clod (IMPS 114) and half of the chuck roll (IMPS 116A).  INN included trim from 

the neck and shank, half of the clod heart (IMPS 114E), half of the chuck eye roll (IMPS 

116D), and excluded the Infraspinatus (IMPS 114D), Supraspinatus (IMPS 116B), Teres 

major (IMPS 114F) and Serratus ventralis (IMPS 116G). During fabrication, muscle and 

ground beef weights were collected for use in economic analysis.  Resulting ground beef 

patties were placed on Styrofoam® trays, overwrapped with polyvinyl chloride (PVC) 
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and displayed under florescent lights at approximately 4oC for up to 7 days following 

fabrication to determine color and oxidative stability.  

Fat Determination 

 Fat percentage determination, using the CEM procedure (CEM SMART Trac 

system, Matthews, NC, USA), described in Dow et al. (2011) was conducted in triplicate.  

Briefly, 3.75 – 4.5 g of sample was dried in between two pads, wrapped in TRAC paper, 

and packed into the bottom of the CEM TRAC tube.  Fat percentage was determined on a 

dry weight basis using nuclear magnetic resonance and converted to a wet weight basis. 

 

Determination of Lipid Oxidation 

Patties were pulled on days 2 and 6 after fabrication to determine the degree of 

lipid oxidation using the thiobarbituric acid reactive substances (TBARS) extraction 

method, described by Pegg (2001). Briefly, 5 g of ground meat, 2.5 mL antioxidant 

solution, 50 mL TCA reagent and 50 mL distilled water was homogenized. The slurry 

was filtered, and a 5 mL aliquot was pipetted into a 50 mL centrifuge tube. 5 mL 

thiobarbituric acid (TBA) reagent (0.02M TBA in distilled water) was added to the 

solution and the tube was capped and vortexed for 3 sec. The tubes were placed in a 

boiling water bath for 35 min, removed, and placed promptly in ice for 5 min. The 

sample was transferred into a cuvette and absorbance was read at 532 nm using a 

spectrophotometer. A standard curve and malonaldehyde recovery were conducted and 

the following calculation was used to determine mg TBARS/kg meat: 

 

% recovery of TBARS = 100 x Asp/Atmp [3] 
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where Asp is the absorbance of the spiked food sample (corrected) and Atmp is the 

absorbance of the corresponding TMP dilution. The resulting percent recoveries are 

averaged and used in determining the TBA value. 

To find TBA Value, K (constant) must be determined using the following calculation:  

 

K = (((mol MA/5mL)/A532)x(MA mol. weight)x(DF)x(106)x(100/% recovery))/m 

 

where (mol MA/5mL)/A532 = 1/slope of the standard curve, MA mol. weight = 72.03 

g/mol, DF = dilution factor = 5mL/100mL and M = sample mass.  

TBA Value is now determined using K (constant) derived from Equation 1 and the 

absorbance read on the spectrophotometer. 

TBA Value = K x A532 

TBA Value = mg malonaldehyde/kg sample 

 

Oxymyoglobin Concentration Determination 

Oxymyoglobin concentration was determined on days 1, 3, 5 and 7 as described 

by Faustman and Phillips (2001). Briefly, 15g sample was ground in a Waring blender 

with approximately 50mL of liquid nitrogen until the sample was completely pulverized. 

Three grams of powdered sample were placed back in the blender with 30mL myoglobin 

buffer (40 mM potassium phosphate) and the mixture was blended until homogenous. 

The sample was placed in centrifuge bottles and incubated at 4°C for 1 hour. The 

centrifuge bottles were centrifuged at 15,000 rpm for 30 minutes. The sample was filtered 

[4] 

[5] 
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and transferred into a cuvette. The spectrophotometer was read at 418 nm and mg ferrous 

myoglobin/g of sample was determined with the following calculation: 

Molar Concentration of Myoglobin = Abs418/(ε*b)  

where ε is 128000 and b is the cuvette pathlength.  

  
Myoglobin (g/L) = Molar Conc. of Myoglobin* Molecular Weight of Myoglobin 

 
where the Molar Concentration of Myoglobin was derived from Equation 2 and the 

Molecular Weight of Myoglobin is equal to 16946 grams/mole (beef).  

 

Flavor Volatile Analysis 
 

Flavor volatile analysis was conducted on cooked patties on days 1, 3 and 7 as 

described by Fernando et al. (2003) with some revisions. Patties were cooked in an 

impingement oven (Blodgett Combi Oven, Model 00S8E/AA; Burlington, VT, USA) at 

204°C for 7 min. Cooked patties were mashed and 5 g sample was weighed into 10 mL 

auto-SPME sample vials (Supelco, Bellefonte, PA, USA) and 100 µL internal standard 

(2-methyl pentonal in distilled water) was added. Sample order was randomized before 

each analysis and duplicates were run in the same sequence. Aluminum vial caps 

containing Teflon-lined septa (Supelco) were crimped. The vials were heated on a 

hotplate to 70°C for 30 min and then allowed to return to room temperature. A Varian 

3400CX gas chromatograph (Varian Associates, Walnut Creek, CA, USA), equipped 

with a Varian 8200 auto sampler in the SPME mode containing a 50/30 µm 

DVB/CAR/PDMS stableflex SPME fiber (Supelco) was used to analyze the flavor 

volatile content in the headspace. An absorption time of 20 min and desorption time of 3 

min in the splitless mode was used for this purpose. The gas chromatographic column 

[6] 

[7] 
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used was a DB-5 column. Column flow (He) and split flow were 1 and 100 mL/min, 

respectively, at 10 psi column head pressure. Injector and detector (FID) temperatures 

were maintained at 250°C and 275°C, respectively. The column temperature was 

maintained at 35°C for 3 min and raised to 220°C at 5°C/min, then to 250°C at 10°C/min 

and held at 250°C for 2 min. The data were processed using a Varian Star (Varian 

Associates) chromatographic workstation. Quantitative estimation of flavor volatile 

concentration was achieved using an internal standard method. A Varian GC 3400CX 

(Varian Associates), equipped with a 1078 programmable injector connected to a Varian 

Saturn 2000 Mass spectrometer with an ion trap detector was used for GC-MS analysis. 

Volatiles were separated using a DB-5 fused silica capillary column. Helium carrier gas 

flow rate was 1mL/min and injector, transfer line and ion trap temperatures were 250, 

250, 150°C, respectively. Desorption time of SPME fiber at the injection port was 4 min 

in the splitless mode and the post desorption split flow was 100 mL/min. Identification of 

2,3 Octanedione was established using mass spectra comparison with the NIST 1992 and 

Wiley 5 libraries, retention indices of standards and literature values. 2,3 Octanedione 

was chosen as a flavor volatile of interest because its mushroom-like odor (Ulrich, et. al, 

2001) is an indicator of Warmed Over Flavor (WOF). 

 

Sensory Panel  

A team of eight, trained sensory panelists evaluated patty color, percent 

discoloration and patty odor on days 1, 3, 5 and 7 using the methods described by Rhee et 

al. (1997). Patties were placed in 15.24 cm diameter, glass petri dishes for thirty minutes 

before sensory evaluation at room temperature (21°C). Plastic watch glasses were placed 
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on each glass dish to trap the odor volatiles. Two minutes was timed between panelists to 

allow for the re-accumulation of volatiles. Panelists briefly lifted the watch glasses to 

sniff the patties and immediately recorded the off-odors detected.  Off-odor descriptors 

included ‘putrid’, ‘sour’ and ‘fruity’, and each descriptor had an 8-point intensity scale (0 

= no off odor, 7 = extreme off odor). Panelists assigned odor intensity for each descriptor 

to each patty.  References for each off-odor were available to panelists throughout the 

sensory evaluation.  Strawberry yogurt was a marker for a ‘fruity’ off-odor with an 

intensity of 6 and buttermilk had an intensity of 4 on the sour scale. Additionally, 

intensity markers were available to panelists at each evaluation, with 8 vials of increasing 

concentration of vanilla to water (0 – 100% water, 0% vanilla and 7 – 0% water, 100% 

vanilla). Following odor analysis, the watch glasses were removed and the patties were 

placed under a MacBeth lighting apparatus (Model EBX-22; 60W Incandescent bulb; 

Kollmorgen Corporation, Newburgh, New York, USA). Panelists evaluated percent 

discoloration based on an 8-point scale (0 = no discoloration, 1 = 1-12.5% discoloration, 

8 = complete discoloration).  Pie charts with increasing portions of discolored area were 

provided for panelists at each sensory evaluation as a percent discoloration visual aid. 

Panelists also evaluated lean color of the patties also under the MacBeth using a 

predetermined scale as described by Montgomery et al. 2003, where 1=dark brownish-

greenish gray, 2=light brownish-greenish gray, 3=light gray, 4=moderately dark red, 

5=slightly dark red, 6=cherry red, 7=moderately light cherry red, 8=very light cherry red.  
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Objective Color Determination 

External L*, a* and b* color values were measured on raw patties on days 1, 3, 5 

and 7 immediately before sensory panel evaluation using a Minolta Chromameter (Model 

CR-410, Minolta Camera Co., Ltd., Osaka, Japan; 5cm aperture, illuminant C). Three 

readings were collected for each patty and averaged to account for variation in the 

sample. The Minolta was calibrated on every data collection day, using polyvinyl 

chloride placed on a white calibration plate.   

 

Statistical Analysis 

Statistical analysis was performed using the MIXED procedure of SAS (Version 

9.2, SAS Inst., Cary, NC USA) with fat percentage as a covariate.  P < 0.05 was used to 

determine significance for meat characteristics. The model included the fixed effects of 

treatment and all relevant interactions. A t-test was used to determine differences in net 

value at the P < 0.10 level. 

 

RESULTS AND DISCUSSION 

Fat Content 

No differences in fat content were found between treatments (P > 0.05). The 

mean fat percentage for traditional patties was 17.7% and 17.3%, data not presented in 

tabular form, for innovative patties. The similarity in means between treatments was 

expected because all intermuscular fat was excluded from the grinds, leaving only 

intramuscular fat contribute to fat percentage.  Fat percentage was used as a covariate in 

all statistical analyses. 
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Oxymyoglobin Concentration  

The effect of cut-out on oxymyoglobin concentration is shown in Table 1. 

Oxymyoglobin concentration was not different (P > 0.05) between treatments, but 

content decreased with days of storage (P < 0.05). The decrease in concentration of 

oxymyoglobin by day of storage is due to the oxidation of oxymyoglobin to 

metmyoglobin. Our data agrees with the findings of Balentine, et al. (2006), who showed 

that oxymyoglobin decreased over storage. The concentration of oxymyoglobin has a 

direct and positive relationship with a* value (greenness to redness), as well as sensory 

panel acceptance. The decrease in oxymyoglobin content over time corresponds with the 

increase in percent discoloration and decrease in color score determined by the sensory 

panel, which also suggests an increased relative proportion of metmyoglobin over 

storage.  

 

Objective Color Determination 

The effect of cut-out on Minolta Chromameter L*, a* and b* readings is shown in 

Table 1. Objective color readings showed no differences (P > 0.05) between TRA and 

INN patties for L*, a* or b*. The a* values decreased throughout storage (P < 0.05), 

which is in agreement with the decreasing oxymyoglobin concentration during retail 

display. Color change from day 0 to all other days of storage for a* and b* was higher (P 

< 0.05) for TRA than for INN, indicating more substantial fading in TRA patties.  
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Sensory Panel  

The effect of cut-out on sensory panel color and percent discoloration is shown in 

Table 1. No differences were observed in patty percentage discoloration or color score 

between treatments on any days (P > 0.05), but patty percentage discoloration increased 

with days of storage (P < 0.05), while patty color decreased over storage (P < 0.05). The 

accumulation of metmyoglobin, with the deterioration of oxymyoglobin, has been well 

documented as the cause of undesirable color change in beef (Suman and Joseph, 2013; 

Mancini and Hunt, 2005). According to Mancini and Hunt (2005) consumers strongly 

discriminate against faded beef, and the visual assessment by consumers is the “gold 

standard” in determining consumer acceptability. Although a change in redness, indicated 

by a*, was detected by the Minolta Chromameter, a difference in percent discoloration or 

color score was not detected by the sensory panel. This shows that although a statistical 

difference may exist in rate of patty fading, it is not substantial enough to be detected by 

consumers.   

The effect of cut-out on sensory panel odor analysis is shown in Table 3. No 

differences (P > 0.05) were found on any days for ‘fruity,’ ‘putrid’ or ‘sour’ notes 

between INN and TRA patties in the sensory panel. ‘Fruity’ and ‘putrid’ notes were 

higher (P < 0.05) on day 7 compared to the other days of storage.  Both of the ‘fruity’ and 

‘putrid’ notes, which are likely more related to spoilage than oxidation, did not rise to a 1 

on the intensity scale, indicating that spoilage had not occurred during the length of this 

study. However, ‘sour’ notes, which reveal the development of the “wet cardboard” odor 

associated with Warmed Over Flavor (WOF) (Tims and Watts, 1958), increased with 

days of storage (P < 0.05), indicating the continued buildup of secondary products of 
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lipid oxidation throughout the study. These results were similar to those reported by Rhee 

et al. (1997), which showed no change in ‘fruity’ and ‘putrid’ odors from day 0 to 8, but 

an increase in ‘sour’ odors over storage. 

 

Lipid Oxidation 

The effects of cut-out on TBARS development are shown in Table 2. No 

differences (P > 0.05) in TBARS were observed between TRA and INN patties, with 

mean values of 0.10 and 0.09, respectively. These values are much lower than those 

reported by other researchers with similar shelf-life studies (Raines, et al. 2010; Rhee, et 

al. 1997) which may be due to different packaging and storage conditions.  Liu, et al., 

(1996) showed that when beef is aged for 14 days, TBARS levels at day 1 after grinding 

are above 1. Trim from this study was sourced at 3 d carcass aging and was never subject 

to temperature abuse. TBARS increased (P < 0.05) over storage between days 2 and 6, 

with mean values of 0.08 and 0.10, respectively. These results agree with Johnston, et al. 

(2005), who reported that TBARS increased (P < 0.05) in raw beef patties over a 6-day, 

refrigerated storage period. 

 

Flavor Volatile Analysis 

The effect of cut-out on 2,3 Octanedione concentration is shown in Table 3. 2,3 

Octanedione was chosen as a flavor volatile of interest because its mushroom-like odor 

(Ulrich, et. al, 2001) is associated with Warmed Over Flavor (WOF), and its 

accumulation is an indicator of lipid oxidation (St. Angelo, 1987). The concentration of 

2,3 Octanedione was not different (P > 0.05) between INN and TRA patties. 2,3 
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Octanedione content was higher on day 7 than days 1 and 3.  The accumulation of 2,3 

Octanedione over storage indicates the continued oxidation of lipids in that timeframe, 

confirming the lipid oxidation results found in the raw patties. These results agree with 

Spanier et al., who showed that TBARS was positively correlated with WOF descriptors 

over a four-day storage period (1992). Vinyl ketones like 2,3 Octanedione are detectable 

between 0.00002-0.007 ppm (Palm, 2002). 2,3 Octanedione had reached 0.016 ppm by 

Day 7; therefore, sensory panelists were likely detecting this WOF and characterizing it 

as a “sour” off-odor. 

 

Correlations 

Correlations between indicators of oxidative and color stability are shown in 

Table 4. Day 6 TBARS data was moderately and negatively correlated with the 

concentration of oxymyoglobin on day 7, indicating the conversion from ferrous 

myoglobin to metmyoglobin as TBARS increased over storage.  Additionally, day 2 

TBARS is negatively correlated with a* values on all days and Day 6 TBARS is 

negatively correlated with a* values on days 3, 5 and 7. These findings are supported by 

Zakrys et al. (2008) which found that TBARS is negatively correlated with 

oxymyoglobin content, and also with a* value. As oxymyoglobin is oxidized to 

metmyoglobin, due to lipid oxidation secondary products, a* value decreases as well.  

Furthermore, Day 3 oxymyoglobin content is negatively correlated with Day 5 a* 

value and tends to be negatively correlated with Day 3 a* value. This pattern is indicative 

of the conversion of oxymyoglobin to metmyoglobin, which results in a loss of the bright, 
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red color associated with oxymyoglobin. As the patty fades to brown metmyoglobin, the 

Minolta a* value drops in response.  

 

 The connection between myoglobin oxidation and lipid oxidation has been 

studied extensively and is well documented (Faustman and Cassens, 1990). Lipid 

oxidation secondary products (nonenals and pentanals) are highly pro-oxidative 

secondary products that have been shown to significantly accelerate the conversion of 

ferrous myoglobin to metmyoglobin in muscle (Lynch and Faustman, 2000). Likewise, 

the heme pigments myoglobin and hemoglobin are known to initiate the lipid oxidation 

process (Younathan and Watts, 1960). The increase in secondary lipid oxidation products 

over time indicates that these chemicals are accumulating and have the potential to 

promote myoglobin oxidation. Furthermore, those lipid oxidation products are often 

further broken down into compounds that, even at concentrations below 1ppm, can result 

in altered flavors and odors (Frankel, 1984). Additionally, the conversion of 

oxymyoglobin to metmyoglobin is also responsible for the degradation of desirable color, 

and the resulting decrease in consumer acceptability of meat over time. These processes 

were all observed in our analysis. As our lipid oxidation indicators increased over time, 

the oxymyoglobin content decreased in response, indicating a conversion to 

metmyoglobin. Furthermore, as lipid oxidation secondary products increased, the 

accumulation of off-odors also increased, visible in both the sensory panel and flavor 

volatile analysis. Finally, the increase in relative metmyoglobin content lead to a decrease 

in color score and an increase in percent discoloration, as well as a decrease in Minolta 

Chromameter a* value. The buildup of undesirable off-odors, coupled with the 



"
42"

degradation of acceptable patty color by day 7 results in a decline in consumer 

acceptability. In this study, both treatments exhibited normal degradation of oxidative 

and color stability, and none of our data indicate a difference in consumer acceptability 

between TRA and INN patties.  

 

CONCLUSIONS 

The exclusion of the Serratus ventralis, Supraspinatus, Infraspinatus and the 

Teres major, from the chuck did not have any detrimental impacts on the oxidative or 

color stability of the resulting ground chuck. The rate of fading detected within the TRA 

patties by the Minolta Chromameter occurred at a faster rate than the INN patties; 

however, this was not detected by the trained panel. It can be concluded that customers 

would also not be able to discern a difference between TRA patties and INN patties. 

Therefore, meat processors can safely exclude those higher priced, whole muscle cuts 

from the chuck without detrimental consequences on the resulting ground beef. Based on 

this information, meat processors can isolate those muscles for individual retail sale 

without an impact on consumer acceptability of the ground chuck.  
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         Table 1. 
          Color analysis on raw patties on days 1, 3, 5 and 7 after grinding.  

       Cut-out3 Day SEM p-value 
  Traditional1 Innovative2 1 3 5 7   Cut-out3 Day 
OxyMb 4 2.99 2.96 3.14 a 3.04 b 2.9 c 2.83 c 0.038 0.3402 <0.0001 
Panel Color 5 5.3 5.1 5.8 a 5.6 a 5.2 b 4.1 c 0.126 0.0916 <0.0001 
Panel Discoloration 6 2.1 2.3 0.9 d 1.4 c 2.2 b 4.4 a 0.127 0.1016 <0.0001 
L*  53.65 53.5 53.64 a 53.09 b 53.6 a 54 a 0.199 0.3949 0.0081 
L*diff 7 -0.03 -0.07 -0.01 b 0.34 a -0.04 b -0.51 c 0.112 0.7227 <0.0001 
a* 13.17 13.06 17.14 a 13.95 b 12 c 9.39 d 0.243 0.4887 <0.0001 
a*diff 7 6.61a 5.85b 2.25 d 5.48 c 7.54 b 9.65 a 0.23 0.0002 <0.0001 
b* 6.53 6.42 7.33 a 6.28 b 6.14 b 6.15 b 0.067 0.0561 <0.0001 
b*diff 7 1.33a 1.01b 0.38 c 1.37 b 1.61 a 1.33 b 0.085 0.0003 <0.0001 
Means within the same row followed by a different letter differ significantly (p<0.05). 

    
          1 Trim from neck and shank, half clod and half of chuck roll included in grind.      2 Trim from neck and shank, half clod heart and half of chuck eye roll were included in grind; Infraspinatus, Supraspinatus, Teres major and  
Serratus ventralis were excluded from the grind 

  
 

    3 Cut-out, traditional or innovative ground beef blend       4 Oxymyoglobin concentration (mg oxymyoglobin/g sample)       5 Panel Color: 1=dark brownish-greenish gray, 8=very light cherry red      6 Panel Discoloration: 1= 0% discoloration, 1 = 1-12.5% discoloration, 8 = complete discoloration 
   7 L*, a*, b* diff: Minolta Chromameter readings were taken on day 0 and compared with measurements from days 1, 3, 5 and 7 (Day n - day 0) 
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Table 2.  
       Thiobarbituric Acid Reactive Substances (TBARS) analysis on days 2 and 6 after grinding. 

    Cut-out3 Day SEM p-value 
Day of Storage Traditional1 Innovative2 2 6   Cut-out3 Day 
TBARS (mg TBA/kg sample) 0.10 0.09 0.08b 0.10 a 0.007 0.295 0.024 
Means within the same row followed by a different letter differ significantly (p<0.05). 

   
        1 Trim from neck and shank, half of clod and half of chuck roll included in grind. 

   2 Trim from neck and shank, half clod heart and half of chuck eye roll were included in grind; Infraspinatus, Supraspinatus, Teres major 
and Serratus ventralis were excluded from grind.  
3 Cut-out: traditional or innovative ground beef blend   
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Table 3.  
Sensory analysis on raw patties on days 1, 3, 5 and 7 and for flavor volatiles (2,3 Octanedione) on cooked patties on days 1, 3 and 7. 

   Cut-out3 Day SEM p-value 
Day of Storage Traditional1 Innovative2 1 3 5 7   Cut-out3 Day 
2,3 Octanedione (ppm) 0.011 0.012 0.009 b 0.010 b N/A 0.016 a 0.0004 0.697 <0.0001 
Sour Off-Odor Intensity (Score 0-7)c 1.0 0.9 0.2 d 0.6 c 1.3 b 1.6 a 0.056 0.449 <0.0001 
Fruity Off-Odor Intensity (Score 0-7) c 0.2 0.2 0.2 b 0.1 b 0.2 b 0.4 a 0.048 0.995 0.0096 
Putrid Off-Odor Intensity (Score 0-7) c 0.3 0.3 0.1 b 0.2 b 0.2 b 0.8 a 0.055 0.910 <0.0001 
Means within the same row followed by a different letter differ significantly (p<0.05). 

     
          1 Trim from neck and shank, half clod and half of chuck roll included in grind. 

      2 Trim from neck and shank, half clod heart and half of chuck eye roll were included in grind; from grind. Infraspinatus, Supraspinatus, Teres major and  
Serratus ventralis were excluded 

         3 Cut-out, traditional or innovative ground beef blend 
       4 Off Odor Intensity Scale: 0-7 (O = no off odor, 7 = extreme off odor) 
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Table 4.  
Correlations between the Concentration of Oxymyoglobin, Minolta a* Value and Concentration of TBA 
 

 
aMyoD3 aMyoD5 aMyoD7 ca*1 ca*3 ca*5 ca*7 bTBARSD2 bTBARSD6 

aMyoD1 0.25 0.42 0.4 0.25 -0.09 0.11 0.11 0.06 -0.13 

 
0.09 0.003 0.005 0.09 0.54 0.46 0.48 0.69 0.38 

aMyoD3 
 

0.52 0.34 -0.06 -0.27 -0.28 -0.12 0.09 0.15 

  
0.0002 0.02 0.67 0.06 0.05 0.43 0.53 0.3 

aMyoD5 
  

0.29 0.22 -0.15 -0.02 0.09 -0.08 0.07 

   
0.04 0.14 0.31 0.89 0.52 0.58 0.64 

aMyoD7 
   

0.1 0.17 0.24 0.25 0.1 -0.58 

    
0.48 0.25 0.1 0.09 0.49 <.0001 

ca*D1 
    

0.51 0.52 0.43 -0.28 -0.18 

     
0.0002 0.0002 0.003 0.05 0.22 

ca*D3 
     

0.76 0.56 -0.39 -0.45 

      
<.0001 <.0001 0.007 0.001 

ca* D5 
      

0.62 -0.45 -0.57 

       
<.0001 0.001 <.0001 

ca*D7 
       

-0.31 -0.47 

        
0.03 0.0008 

bTBARSD2 
        

0.36 

         
0.01 

bTBARSD6 
         

           
aMyo: Concentration of ferrous myoglobin (mg/g sample) on D (Day) 1, 3, 5 or 7. 
bTBARS: Concentration TBARS (mg TBA/kg meat) on D (Day) 2 or 6. 
ca*: Minolta Chromameter a* Value on D (Day) 1, 3, 5 or 7. 
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APPENDIX A: MATERIALS AND METHODS 
 
 

A.1 Myoglobin Determination 
 
According to Faustman and Phillips (2001).  
 
Faustman, C. and A. Phillips.  2001.  Measurement of discoloration in fresh meat. In: 

Current Protocols in Food Analytical Chemistry.   John Wiley & Sons, Inc., New 
York, NY, F3.3.1 –F3.3.13. 

 
Buffer Solution: 

5.44 g Potassium Phosphate per liter deionized water (40mM) 

 

Procedure:  

1. Grind ~15g of raw sample in a Waring blender with approximately 50mL of 

liquid nitrogen until the sample was completely pulverized.  

2. Place sample in a plastic Whirlpak® bag and move it to the freezer immediately 

until myoglobin determination. 

3. Weigh three grams of powdered sample into a weigh boat and place it into the 

blender with three times its weight (3 x 10 = 30mL) of myoglobin buffer (40 mM 

potassium phosphate). 

4. Blend the mixture until homogenous and move to centrifuge bottles and incubate 

at 4°C for 1 hour.  

5. Centrifuge the samples at 15,000 rpm for 30 minutes.  

6. Filter the sample through Whatman #1 paper and transfer it into a cuvette.  

7. Place the cuvette in the spectrophotometer and determine its absorbance at 418 

nm. 
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8. Myoglobin content (mg ferrous myoglobin/g of sample) was determined with a 

simple calculation as follows: 

Molar Concentration of Myoglobin = Abs418/(ε*b)  
 ε = 128000 
 b= Cuvette Pathlength 
  
Grams/Liter Myoglobin = Molar Concentration of Myoglobin* Molecular Weight of 
Myoglobin  
 Molecular Weight of Myoglobin = 16946 grams/mole (beef) 
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A.2 Lipid Oxidation (Thiobarbituric Acid Reactive Substances) 
 
Described by Pegg, 2001.  

Pegg, R.B. 2001. Spectrophotometric measurement of secondary lipid oxidation 
products.   In: Current Protocols in Food Analytical Chemistry.   (pp D2.4.1–
D2.4.18) New York:  John Wiley & Sons, Inc. 

 

Antioxidant Solution: 

Place 0.5 g propyl gallate and 0.5 g Ethylene Diamine Tetracetic Acid (EDTA) into a 
100mL volumetric flask, dissolve in a small volume of 1:1 ethanol/water solution on a 
hot plate to promote dissolving. Fill the flask to the 100mL mark with 1:1 ethanol/water. 
Prepare fresh daily. 
 
TCA Reagent Solution: 

Weigh 200 g Trichloroacetic Acid (TCA) in a beaker and dissolve crystals in a small 
volume of water. Add some water and 16mL of 85% phosphoric acid to a volumetric 
flask and swirl. Transfer TCA solution into the volumetric flask and fill to the mark with 
water. Can be stored at 4°C for up to 6 weeks. 
 

TBA Reagent Solution: 

Weigh 2.883 g Thiobarbituric Acid (TBA) to a 1L volumetric flask. Add some deionized 
water to the flask and dissolve crystals in water. When crystals are dissolved, fill the flask 
to the 1L mark. Prepare fresh daily. 
 
TMP Solution: 
 
Prepare a 20mM stock solution: dilute 0.335 mL TMP into 100mL water (store up to 3 
months at 4°C). From the stock solution, transfer 1mL to 100mL water to get a working 
solution (store up to 1 month at 4°C). 
 
 
Procedure: 

1. Homogenize 5 g of ground meat, 2.5 mL antioxidant solution and 50 mL TCA 

reagent for 2 minutes with a handheld blender. 

2. Add 50 mL distilled water to the mixture and homogenize for an additional 

minute. 
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3. Filter the slurry with a funnel lined with filter paper into a 100mL volumetric 

flask. 

4. Fill the flask to the mark with 1:1 TCA reagent/water.  

5. Pipet a 5 mL aliquot into a 50 mL centrifuge tube. 

6. Add 5 mL thiobarbituric acid (TBA) reagent to the solution; cap the tube and 

vortex for 3 seconds. 

7. Place the tubes in a boiling water bath for 35 minutes, then place them promptly 

in ice for 5 min.  

8. Transfer the sample into a cuvette and read the absorbance at 532 nm using a 

spectrophotometer.  

9. Zero the spectrophotometer with a reagent blank (5mL 1:1 TCA reagent/water 

and 5mL TBA) 

Standard Curve: 

10. Transfer a series of aliquots (0.5 to 5mL) of 0.2 TMP into 10 separate volumetric 

100mL flasks and fill each to the mark with 1:1 TCA reagent/water. 

11. Pipet 5.0mL aliquot from each volumetric flask into separate 50mL centrifuge 

tubes and add 5mL TBA. Cap the tube and vortex for 3 seconds. 

12. Place the tubes in a boiling water bath for 35 minutes, then place them promptly 

in ice for 5 min.  

13. Transfer the sample into a cuvette and read the absorbance at 532 nm using a 

spectrophotometer.  
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14. Repeat steps 1-4 with new homogenized food samples, adding 1.5, 3.0 and 4.5 

mL of 0.2mM TMP, respectively before step 2. In step 2, reduce the volume of 

distilled water accordingly. (Spiked samples) 

15. Add 1.5, 3.0 and 4.5 mL of 0.2mM TMP to three separate 100mL volumetric 

flasks and fill to the mark with 1:1 TCA reagent/water. (Diluted samples) 

16. Perform the TBA reaction and measure absorbance (steps 5-9) using the three 

spiked and the three diluted samples. 

17. Use the absorbance of the original (unspiked) food sample to correct for 

endogenous malonaldehyde content and then compare the spiked values to those 

in the TMP dilutions. 

% recovery of TBARS = 100 x Asp/Atmp 

Asp is the absorbance of the spiked food sample (corrected) 

Atmp is the absorbance of the corresponding TMP dilution 

The resulting percent recoveries are averaged and used in determining the TBA value. 

 

Determining K (constant) 

K = (((mol MA/5mL)/A532)x(MA mol. weight)x(DF)x(106)x(100/% recovery))/m 

• (mol MA/5mL)/A532 = 1/slope of the standard curve 
• MA mol. weight = 72.03 g/mol 
• DF = dilution factor = 5mL/100mL 
• M = sample mass 

 

TBA Value = K x A532 

TBA Value = mg malonaldehyde/kg sample 
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APPENDIX B: SAS CODES 
 

 
Fat content (covariate), TBARS (Thiobarbituric Acid Reactive Substances), Sensory 
Analysis, Oxymoglobin Content, and Minolta Chromameter L*, a* and b*. 
 
options ls=100 ps=70; 
data fat; infile 'e:\fatn.csv' dsd firstobs=2 missover; 
input tag$ co id fat; 
*proc print; 
/* 
proc mixed; 
class tag co; 
model fat =co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model moi = fat co; 
random tag; 
lsmeans co/pdiff; 
  */ 
proc sort; by tag co; 
 
data myoglobin; infile 'e:\myoglobinn.csv' dsd firstobs=2 missover; 
input tag$ co id CMYOD1A CMYOD3A CMYOD5A CMYOD7A; 
*proc print; 
proc sort; by tag co; 
data minolta; infile 'e:\minoltan.csv' dsd firstobs=2 missover; 
input tag$ co ID L1 L3 L5 L7 DLD1 DLD3 DLD5 DLD7 a1
 a3 a5 a7 DaD1 
DaD3 DaD5 DaD7 b1 b3 b5 b7 DbD1 DbD3 DbD5 DbD7 
; 
 
*proc print; 
proc sort; by tag co; 
run; 
data sensory; infile 'e:\sensoryn.csv' dsd firstobs=2 missover; 
input tag$ co ID OD1F OD1S OD1P OD3F OD3S OD3P OD5F OD5S OD5P
 OD7F 
OD7S OD7P PD1 PD3 PD5 PD7 CD1 CD3 CD5 CD7 
; 
*proc print; 
proc sort; by tag co; 
run; 



! 63#

 
data tbars; infile 'e:\tbarsf.csv' dsd firstobs=2 missover; 
input TAG$ CO ID D2TBAA D6TBAA ; 
proc sort; by tag co; 
run; 
*proc print; 
data all; merge fat myoglobin minolta sensory tbars; by tag co; 
*proc print; 
 
/*proc mixed; 
class tag co; 
model fat =co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CMYOD1A = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CMYOD3A = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CMYOD5A = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model PD1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model PD3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
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class tag co; 
model PD5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model PD7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CD1 = fat co; 
random tag; 
lsmeans co/pdiff; 
proc mixed; 
class tag co; 
model CD3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CD5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CD7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model L1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model L3 = fat co; 
random tag; 
lsmeans co/pdiff; 
proc mixed; 
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class tag co; 
model L5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model L7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model DLD1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model DLD3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model DLD5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model DLD7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model a1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model a3 = fat co; 
random tag; 
lsmeans co/pdiff; 
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proc mixed; 
class tag co; 
model a5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model a7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dad1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dad3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dad5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dad7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model b1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model b3 = fat co; 
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random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model b5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model b7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dbd1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dbd3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dbd5 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model dbd7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model CMYOD7A = fat co; 
random tag; 
lsmeans co/pdiff; 
run; 
*/ 
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proc mixed; 
class tag co; 
model OD1F = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD1S = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD1P = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD3F = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD3S = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD3P = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD5F = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD5S = fat co; 
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random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD5P = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD7F = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD7S = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model OD7P = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model D2TBAA = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model D6TBAA = fat co; 
random tag; 
lsmeans co/pdiff; 
 
 
Flavor Volatiles and Fat content (covariate). 
 
options ls=100 ps=70; 
data fat; infile 'e:\4172013\fatn.csv' dsd firstobs=2 missover; 
input tag$ co id fat; 
*proc print; 



! 70#

/* 
proc mixed; 
class tag co; 
model fat =co; 
random tag; 
lsmeans co/pdiff; 
  */ 
proc sort; by tag co; 
data vol; infile 'e:\4172013\vol.csv' dsd firstobs=2 missover; 
input TAG$ CO ID FVD1 FVD3 FVD7 ; 
proc sort; by tag co; 
run; 
*proc print; 
data all; merge fat vol; by tag co; 
*proc print; 
 
proc mixed; 
class tag co; 
model fat =co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model FVD1 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model FVD3 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model FVD7 = fat co; 
random tag; 
lsmeans co/pdiff; 
 
run; 
 

 
Correlations 

 
options ls=100 ps=70; 



! 71#

data fat; infile 'e:\SAS\4172013\fatn.csv' dsd firstobs=2 missover; 
input tag$ co id fat moi; 
*proc print; 
/* 
proc mixed; 
class tag co; 
model fat =co; 
random tag; 
lsmeans co/pdiff; 
 
proc mixed; 
class tag co; 
model moi = fat co; 
random tag; 
lsmeans co/pdiff; 
  */ 
proc sort; by tag co; 
 
data myoglobin; infile 'e:\SAS\myoglobinn.csv' dsd firstobs=2 missover; 
input tag$ co id CMYOD1A CMYOD3A CMYOD5A CMYOD7A; 
*proc print; 
proc sort; by tag co; 
data minolta; infile 'e:\SAS\minoltan.csv' dsd firstobs=2 missover; 
input tag$ co Code L1 L3 L5 L7 DLD1 DLD3 DLD5 DLD7 a1
 a3 a5 a7 DaD1 DaD3 DaD5 DaD7 b1 b3 b5 b7
 DbD1 DbD3 DbD5 DbD7 
; 
 
*proc print; 
proc sort; by tag co; 
run; 
data sensory; infile 'e:\SAS\4172013\sensoryn.csv' dsd firstobs=2 missover; 
input tag$ co code OD1F OD1S OD1P OD3F OD3S OD3P OD5F OD5S OD5P
 OD7F OD7S OD7P PD1 PD3 PD5 PD7 CD1 CD3 CD5 CD7 
; 
*proc print; 
proc sort; by tag co; 
data fvol; infile 'e:\SAS\4172013\vol.csv' dsd firstobs=2 missover; 
input TAG$ CO ID FVD1 FVD3 FVD7 
; 
proc print; 
proc sort; by tag co; 
data tbars; infile 'e:\SAS\4172013\tbarsf.csv' dsd firstobs=2 missover; 
input TAG$ CO ID D2TBAA D6TBAA 
; 
proc print; 



! 72#

 
proc sort; by tag co; 
run; 
 
 
data all; merge fat myoglobin minolta sensory fvol tbars; by tag co; 
*proc print; 
proc sort; by co; 
proc corr; 
var CMYOD1A CMYOD3A CMYOD5A CMYOD7A a1 a3 a5 a7
 DaD1 DaD3 DaD5 DaD7 b1 b3 b5 b7 DbD1 DbD3 DbD5
 DbD7 
PD1 PD3 PD5 PD7 CD1 CD3 CD5 CD7 OD1F OD1S OD1P OD3F
 OD3S OD3P OD5F OD5S OD5P OD7F OD7S OD7P 
D2TBAA D6TBAA FVD1 FVD3 FVD7; 
 
 
run; 

 
!
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