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ABSTRACT

Currently, the state-of-the-art image classification algorithms outperform the best

available object detector by a big margin in terms of average precision. We therefore

propose a simple yet principled approach to leverage object detection through image

classification on supporting regions specified by a preliminary object detector. Using

a simple bag-of-words model based image classification algorithm, we leverage the

performance of the deformable model objector by 5% in average precision, leading to

a best known results on the standard PASCAL 2007 dataset.
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Chapter 1

Introduction

To achieve the goal of automatic image understanding, computers should be able to

recognize what objects are in an image and to locate where they are. If we give

each class of objects a name(the class label), the task of recognizing what objects are

in an image is called image classification. That is for each object class, predicting

presence/absence of an example of that class in the image [12, 13]. The task of

locating each object of a specific class is called object detection. It is widely accepted

that the location of an object can be represented as a bounding box, according to the

prestigious and influential PASCAL Visual Object Challenge (VOC) [12, 13]. Usually

the object detection is regarded as a more difficult than image classification because

object detection requires predicting not only the presence/absence of each object class

but also the location of each instance. The results of the most recent PASCAL VOC

support this argument [13]: in terms of average precision (AP), the winner of the

image classification task [23, 20] achieve an mean AP of 81%; the winner of object

detection task [15, 30, 1, 24] achieve an mean AP below 40%.

This big performance gap forces us to speculate: can we use the much better

performed image classification to improve the object detection?

Furthermore, the available labeled training image data are quite unbalanced for
1



image classification and object detection. Since most of the state-of-the-art image

classification and object detection algorithms are supervised learning based, the quan-

tity and the quality of the labeled data affect the performance heavily. This is another

reason that we can achieve acceptable performance for image classification but not

for object detection. We can easily tell the labor difference between annotating an

image for image classification purpose and annotating an image for object detection

purpose: for image classification, annotators only need to check a list of Yes/No check

boxes of relevant object categories; for object detection, annotators have to label ev-

ery instance of each object category with bounding boxes of various scales and aspect

ratios. This labor difference is more salient for large scale image dataset: In the

standard large scale ImageNet dataset [10], there are 14, 197, 122 images of 21, 841

synsets (object categories) labeled for the image classification task. Among these

large number of images with categorical labels, bounding box labels are only avail-

able for around 3, 000 popular synsets, of which the average number of bounding-box

labeled images is merely 150 image per category [10]. We can save huge amount of

human labor if we can train or improve an object detector with image data labeled

for image classification.

Therefore, building an image classification leveraged object detector is quite de-

sirable from the perspectives of performance as well as practical application cost.

However, there are several factors we need to consider in order to apply the avail-

able image classification algorithms to object detection. First, simply applying the

state-of-the-art image classification algorithms [19, 21, 2, 3, 29, 25, 23, 26, 27] to each

scanning window is in feasible due to the speed issue. Most of the aforementioned

image classification algorithms [19, 21, 29, 25, 23, 26] uses one or several key classic

components including BOW model of large size codebook, spatial pyramid matching

(SPM), and feature pooling, which make the feature extraction very slow compared

with the modern sliding window based detectors [4, 14, 30, 11] Usually a sliding win-

2



Figure 1.1: Supporting regions in the image-classification leveraged object detector. The red
rectangular boxes are detection results from a preliminary object detector. Green regions are created
by subtraction of two boxes. Both the magenta regions and green regions are called supporting
regions, which will be the input for classification algorithm.

dow based object detector will scan hundreds of thousands sliding windows in order

to detect every instances in the image. If we directly apply image classification algo-

rithms to each scanning window, object detection in an image is equivalent to classify

hundreds of thousands images. Second, if we apply image classification to selected

candidate regions as what is done in [24], , the selective search on over segmented

superpixels, the image classification algorithm should be robust to region cropping

and clipping and should remain discriminative.

We therefore propose a simple yet principled approach to leverage object detection

through image classification on supporting regions specified by a preliminary object

detector. Using a simple bag-of-words model based image classification algorithm,

we leverage the performance of the deformable model objector by 5% in average

precision, leading to a best known results on the standard PASCAL 2007 dataset.

An illustration of our idea is shown in Figure 1.1.

3



Chapter 2

Classification Leveraged Object
Detector (CLOD)

This chapter describes the algorithm for our classification leveraged object detector.

First, we talk about how to generated the detection bounding boxes using deformable

part models and enhanced HOG-LBP features in Section 2.1. Then, the detailed clas-

sification algorithm is illustrated in Section 2.2. Section 2.3 talks about the context

information used to boost the detection performance. Finally, how to combine the

classification and detection to form CLOD is illustrated in Section 2.4.

2.1 Image Detection

Generic object detection is a fundamental challenge in computer vision research which

aims at localizing all the objects of interest in an image. Recent approaches have

been devoting major efforts to handling object deformations or speeding up an object

detector. One of the most influential methods in generic object detection is the

deformable part models (DPM) [15] and its extensions [16, 18, 30]

This section talks about one extension of deformable part models by integrating
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the enhanced HOG features and LBP features.

2.1.1 Enhanced HOG Features and LBP Featuers

As a dense version of the dominating SIFT [5] feature, HOG [4] has shown great

success in object detection and recognition [4, 16, 6]. Histograms of Oriented Gradi-

ents(HOG) has been widely accepted as one of the best features to capture the edge

or local shape information, while the Local Binary Pattern (LBP) operator [7] is an

exceptional texture descriptors. It has been widely used in various applications and

has achieved very good results in face recognition [9]. The LBP is highly discrimi-

native and its key advantages, namely its invariance to monotonic gray level changes

and computational efficiency, make it suitable for demanding image analysis tasks

such as human detection. HOG performs poorly when the background is cluttered

with noisy edges. LBP is complementary in this aspect. It can filter out noises using

the concept of uniform pattern [7]. We believe that the appearance of a human

can be better captured if we combine both the edge/local shape information and the

texture information.

In this section, we start by reviewing HOG. Then, the enhanced HOG features

and LBP features are described in details.

HOG Features

Let θ(x, y) and r(x, y) be the orientation and magnitude of the intensity gradient at

pixel (x, y) in an image. The gradient orientation at each pixel is discretized into one

of p values using contrast sensitive B1 or insensitive B2, definition,

B1(x, y) = round(
pθ(x, y)

2π
) mod p (2.1)

B2(x, y) = round(
pθ(x, y)

π
) mod p (2.2)
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Then define a pixel-level feature map F (x, y). Let b ∈ {0, . . . , p − 1} range over

orientation bins. The feature vector at (x, y) is

F (x, y)b =

 r(x, y) if b = B(x, y)

0 otherwise
(2.3)

Given F as a pixel-level feature map for a w× h image, let k > 0 be a parameter

specifying the side length of a square image region. We could define a dense grid of

rectangular ”cells” and aggregate pixel-level features to obtain a ceil-based feature

map C, with feature vectors C(i, j) for 0 ≤ i ≤ b(w− 1)/kc and 0 ≤ j ≤ b(h− 1)/kc.

This aggregation provides some invariance for small deformations and reduces the

size of a feature map.

Gradients are invariant to changes in bias and invariance to gain can be achieved

by normalization. According to [4], four different normalization factors that feature

vector C(i, j). The factors are defined as Nδ,gamma with δ, γ ∈ {−1, 1}

Let Tα(v) denote the element-wise trunction of a vector v by α. The HOG feature

map is defined as

H(i, j) =



Tα(C(i, j)/N−1,−1(i, j))

Tα(C(i, j)/N+1,−1(i, j))

Tα(C(i, j)/N−+,+1(i, j))

Tα(C(i, j)/N−1,+1(i, j))


(2.4)

In this thesis, HOG features use p = 9 contrast insensitive gradient orientations,

k = 8, and truncation α = 0.2, which would lead to a 36-dimensional feature.

Enhanced HOG Features

The HOG features in the above section only use contrast insensitive gradient orien-

tations, while in fact the contrast sensitive gradient would also contribute to capture
6



more information. Let p = 18 in equation (2.2), and the total number of HOG

dimension would be 4×(9 + 18) = 108.

In practice, we use an analytic projection of these 108-dimensional vectors, defined

by 27 sums over different normalizations, one for each orientation channel of F , and

4 sums over the 9 contrast insensitive orientations, one for each normalization factor.

Therefore, the enhanced HOG feature would be 31 dimenional feature vector.

LBP Features

The local binary pattern(LBP) operator was first introduced as a complementary

measure for local image contrast [7]. The original LBP operator forms labels for the

image pixels by thresholding the 3 × 3 neighborhood of each pixel with the center

value and considering the result as a binary number. The histogram of these 28 = 256

different labels can be used as a descriptor.

Then, the LBP operator was extended to use neighborhoods of different sizes and

a definition of uniform patterns, which is used to reduce the length of the feature

vector and implement a simple rotation-invariant descriptor [7]. Those patterns that

hold less than u 0 − 1 transitions are called uniform patterns. We use the notation

LBP u
n,r to denote LBP feature that takes n sample points with radius r, and the

number of 0−1 transitions is no more than u. In the computation of the LBP labels,

each uniform pattern has a separate label and all the non-uniform patterns are labeled

with a single label. LBP features are the histogram of LBP labels.

In this thesis, we use LBP 2
8,1: there are total of 28 = 256 patterns , 58 of which

are uniform patterns. Therefore, the LBP feature would be a 59 dimensional feature

vector

7



PCA on HOG-LBP Features

The concatenated HOG-LBP is a 31+59=90 dimensional feature vector, which leads

to that the detection speed is almost 2 times slower than the detection speed using

only HOG features. However, speed issue is key problem in a exhaustive mult-scale

sliding window search detection algorithm .

In this thesis, Principal Components Analysis(PCA) is used to reduce the HOG-

LBP features to 40 dimensions without much loss of information. Another advantage

of PCA is that it helps to highlight the similarities and differences.

2.1.2 Deformable Part Models

Sliding Window

For the sliding window detection approach, each image is densely scanned from the top

left to the bottom right with rectangular sliding windows. For each sliding window,

certain features such as edges, image patches, and wavelet coefficients are extracted

and fed to a classifier, which is trained offline using labeled training data. The

classifier will classify the sliding windows, which bound people, as positive samples,

and the others as negative samples.

In this thesis, we apply the sliding window to different scales of original images, the

feature is PCA reduced HOG-LPB feature(40 dimensional vector) and the classifier

is called deformable part models [14]

Deformable Part Models (DPM)

A DPM object detector [14] consists of a coarse root filter and several higher res-

olution part filters. Here ”filter” means a set of weights. The score of a DPM at

a particular position and scale within an image is the score of the root filter at the

given location plus the sum of its part filters minus a deformation cost measuring the
8



deviation of the part from its ideal location relative to the root filter:

score(p0, ..., pn) =
n∑

i=0

F ′
i ∗ φ(H, pi)−

n∑
i=1

di ∗ φd(dxi, dyi) + b (2.5)

where

(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi) (2.6)

gives the displacement of the i-th part relative to its anchor position and

φd(dxi, dyi) = (dx, dy, dx2, dy2) (2.7)

are deformation features. In Eq.(2.5), subindex 0 means the root while i = 1...n

means the part; pi = (xi, yi, li) specifies the level and position of the i-th filter ; F ′
i is

the filter weights reshaped in a row-major order; φ(H, pi) is the feature map at pi; di

is a 4 dimensional weight vector of displacements; b is a real valued bias term.

The Eq.(2.5) can be expressed as:

score(p0, ..., pn) = β ∗ φ(H, z) (2.8)

where β is a vector of model parameters

β = (F ′
0, ..., F

′
n, d1, ..., dn, b) (2.9)

and Φ is a vector:

Φ(H, z) = (φ(H, p0), ..., φ(H, pn)− φd(dx1, dy1), ...,−φd(dxn, dyn), 1) (2.10)

The Eq.(2.8) indicates that the DPM parameters can be learned with a latent

9



SVM framework:

fβ(x) = max
z∈Z(x)

β ∗ Φ(x, z) (2.11)

where z are latent values, the set Z(x) defines the possible latent values for an example

x

2.2 Image Classification

One of the state of the art image classication systems consist of two major parts: bag-

of-features (BoF) [31] and spatial pyramid matching (SPM) [21]. SPM approach

based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image

classification performance. Wang et.al. [25] present a simple but effective coding

scheme called Locality-constrained Linear Coding (LLC) in place of Vector quanti-

zation (VQ) coding in traditional SPM so that LLC with linear classifier performs

remarkably better than the traditional nonlinear SPM.

2.2.1 Bag of Features (BoF)

Bag-of-Features approach is motivated by analogy to learning methods using the

Bag-of-Words representation for text categorization [32]. This idea of clustering

descriptors of image patches has demonstrated impressive levels of performance [33,

34]. Usually a BoF framework contains following steps:

1. Extracting descriptors of image patches. Most used descriptors for image

classification is SIFT [5].

2. Constructing a vocabulary(or dictionary) using clustering methods, where k-

means is widely used due to its efficiency and scalability.

3. Assigning patch descriptors to a set of clusters (a vocabulary) with a vector

quantization algorithm.

10



2.2.2 Spatial Pyramid Matching (SPM)

The BoF method represents an image as a histogram of its local features. It is

especially robust against spatial translations of features, and demonstrates decent

performance in whole-image categorization tasks. However, the BoF method disre-

gards the information about the spatial layout of features, hence it is incapable of

capturing shapes or locating an object.

By overcoming this problem, one particular extension of the BoF model, called

spatial pyramid matching (SPM) [21], has made a remarkable success on a range of

image classification benchmarks like Caltech101 [35] and PASCAL07 [12], and was

the major compo nent of the state-of-the-art systems

SPM partitions an image into 2l × 2l segments in different scales l = 0, 1, 2,

computes the BoF histogram within each of the 21 segments, and finally concatenates

all the histograms to form a vector representation of the image. In the case where

only the scale l = 0 is used, SPM reduces to BoF.

2.2.3 Locality-constrained Linear Coding (LLC)

The traditional SPM approach based on bag-of-features (BoF) requires nonlinear

classifiers to achieve good image classification performance. Based on [25], LLC and

with linear classifier performs remarkably better than the traditional nonlinear SPM.

LLC uses the following criteria:

min
C

N∑
i=1

‖xi −Bci‖2 + ‖di � ci‖2 (2.12)

Where xi is the local descriptors extracted from an image; B is a pretrained dic-

tionary(or codebook); ci is the code for xi and L1 norm of ci is 1; � denotes the

11



element-wise multiplication; di is the locality adaptor, which can be defined as

di = exp(
dist(xi, B)

σ
) (2.13)

where dist(xi, B) = [dist(x1, b1), ..., dist(xi, bM)]T , and dist(xi, bj) is the Euclidean

distance between xi and bi. σ is used for adjusting the weight decay speed for the

locality adaptor LLC incorporates locality constraint instead of the sparsity constraint

due to that.

Compared with traditional sparse coding, Eq.(2.12) incorporates locality con-

straint instead of the sparsity constraint, which leads to better reconstrution, local

smooth sparsity and analytical solution.

2.3 Context Information

Inspired by [15], we implemented a simple but powerful procedure to boost the

performance: Let (D1, ..., Dk) be a set of detections obtained using k different models

(for different object categories) in an image I. Each detection Di = (B, s) is defined

by a bounding box B = (x1, y1, x2, y2) and a score s. We define the context of I in

terms of a k-dimensional vector f1(I) = (α(s1), ..., α(sk)) where si is the score of the

highest scoring detection in Di , and α(x) = 1/(1+ exp(2x)) is a logistic function for

renormalizing the scores.

In our framework , we would have a classification score related to each detection

box. Then we apply the same procedure as above so that we could get f2(I). So our

context information for each box is a 46 dimension length feature: [α(di), α(ci), x1, y1, x2, y2, f1(I), f2(I)]

12



2.4 Classification Leveraged Object Detector(CLOD)

In this section, we first define the supporting regions for classification as the Figure1.1

described. Then, we give the workflow as to how this classification procdure worked

with the detection procedure.

2.4.1 Supporting Region for Classification

In this section, we will format our framework. Let Di be the detection candidate

boxes, i is from 1 to N for a single image. We sort the boxes so that the detection

score of Di is larger than Dj, if i < j. Let B be the background region,

B =
N⋂
i=1

Di (2.14)

If there is no missing detections, the classification score of B would satisfy

fc(B) < 0 (2.15)

Then i is from 1 to N , that is, the boxes we want to classify are from high detection

score to low detection score.

Sk = B ∪
(⋃
i>k

(Dk ∩Di)
)

(2.16)

= B ∪
(
Dk −

⋃
i>k

(Dk ∩Di)
)

(2.17)

This equation means the classification region for detection box k will only be

affected by the the boxes whose detections scores are higher.

As we have mentioned above, there may be misdetection in the image, this would

affect our results a lot. So we define a backbround region like
13



Figure 2.1: Workflow for classification leveraged Object Detector. Given the ground truth bound-
ing boxes, we train one DPM detector as it is shown in the first row and we train one classification
classifier as it is show in the second row. The supporting regions are obtained via subtraction of
the detection bounding boxes, then the support regions are feed into the classification classifier to
further decide whehter the original detection boxes contains target or not

Bi = Dc
i ∩ (

N⋂
i=1

Di)−Di (2.18)

In this equation, Dc
i is the box Di with an extra margin.

2.4.2 Workflow for Classification Leveraged Object Dectec-
tor

For our Classification Leveraged Object Detector (CLOD), as shown in Figure 2.1,

first we use the deformable part models to train a detection model for a detection

dataset. Then we crop the ground truth in the dataset to form a cropped ground truth

dataset, which is used for training a classification model. Later, we will explain why we

choose this cropped ground truth dataset for the classfication model in Section 3.1.1.

With trained object detection model and classification model, we first apply the

detection model to achieve detection candidate boxes. Then, each candidate box is

14



given a supporting region for classification as we have defined in Section 2.4. Now,

we can apply the classification model to those supporting regions, and we could get

a classification score to help us rescore the original detection boxes
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Chapter 3

Experiments and Discussion

3.1 Experiments and Discussion

To demonstrate the advantage of our approach, we adopt the very challenging PAS-

CAL Visual Object Challenge 2007 (VOC2007) datasets [12]. First, we give a detailed

description of VOC2007 dataset and the cropped dataset for our CLOD framework.

Then, we evaluate our classification algorithm on PASCAL VOC2007. After that

we compare the CLOD performance with the state the art detection peformance on

PASCAL2007. Finally, the context information is incorporated into our framework

to get the best performance mean AP 39.5%

3.1.1 Datasets and Metrics

PASCAL VOC2007 dataset

PASCAL VOC2007 datasets [12] has 20 categories, containing 9,963 images and

24,640 objects. This dataset is divided into “train”, “val”and “test” subsets, which

contains 2501, 2510 and 4592 images respectively. Parameters of the algorithm are

16



plane bike bird boat bottle bus car cat chair cow
Train 151 176 243 140 253 155 625 185 400 136
Val 155 177 243 150 252 114 625 190 398 123
Test 285 337 459 263 469 213 1201 358 756 244

table dog horse motor person plant sheep sofa train tv
Train 103 253 182 167 2358 248 130 124 145 166
Val 112 257 180 172 2332 266 127 124 152 158
Test 206 489 348 325 4528 480 242 239 282 308

Table 3.1: Statistics of ground truth bounding boxes

tuned via training on “train” set and evaluating on “val” set. The final model is

trained on “train” + “val” sets and is applied on the “test” set to obtain the final

results. This dataset are extremely challenging since the objects vary significantly in

size, view angle, illumination, appearance and pose.

For the detection task, we do a staticstics of ground truth bounding boxes, as it

shown in Table 3.1.

Region-level Dataset

Notice the the classification is applied on the supporting regions instead of the the

whole image as it is shown in Section 2.4, so a region level (achieved by cropping

the bounding boxes from the dataset) seems necessary for a satisfied classification

classifier in CLOD.

We prepare a region-level dataset by cropping the detection ground truth boxes

according the detection annotations. This cropped dataset also contains “train”, “val”

and “test” subsets. The positive examples are the ground truth bounding boxes, as

shown in Table 3.1, while the negative examples are the ground truth bounding boxes

from other categories. Although the Table 3.1 contains the “test” subsets, “test”

subset is only to evaluate the final region-level classification classifier.

There is also another way to get classification classifiers: we can use detection

false alarm boxes as the negative and the ground truth boxes as the positive. Notice
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that the false alarms boxes here are applied the supporting region technique, so that

the false alarm does not have any part of the ground truth. In this way each category

has a different kmeans codebook while features from other categories are not taken

into consideration. For this task, the positive examples are the sum of ground truth

in “train” and “val” in the Table 1, while negative examples are a random selection

from the false alarms from the detection boxes in the “trainval” dataset. Remember,

here each negative sample is changed by our CLOD methods. The number of negative

samples is 2 times of the number of positive samples.

Metrics

Average Precision (AP) For the VOC2007 Challenge, the interpolated average preci-

sion [37] was used to evalute both classification and detection.

For a given task and class, the precision/recall curve is computed from a methods

ranked output. Recall is defined as the proportion of all positive examples ranked

above a given rank. Precision is the proportion of all examples above that rank which

are from the positive class. The AP summarises the shape of the precision/recall

curve, and is defined as the mean precision at a set of eleven equally spaced recall

levels [0, 0.1, ..., 1]:

AP =
1

11

∑
r∈0,0.1,...,1

Pinterp(r) (3.1)

The precision at each recall level r is interpolated by taking the maximum precision

measured for a method for which the corresponding recall exceeds r:

Pinterp(r) = max
r̂:r̂≥r

p(r̂) (3.2)

Where p(r̂) is the measured precision at recall r̂

Bounding Box Evaluation As noted, for the detection task, participants submitted

a list of bounding boxes with associated score (rank). Detections were assigned to
18



ground truth objects and judged to be true/false positives by measuring bounding

box overlap. To be considered a correct detection, the overlap ratio ao between the

predicted bounding box Bp and ground truth bounding box Bgt must exceed 0.5

(50%) by the formula

ao =
Bp ∩Bgt

Bp ∪Bgt
(3.3)

where Bp ∩Bgt denotes the intersection of the predicted and ground truth bounding

boxes and Bp ∪Bgt their union

3.1.2 Classification Classifier

In this section, we first tune the parameters of our classification algorithm using the

image-level dataset and compare the performance with other state-of-the-art classfi-

ication algorithm. Then we fix those parameters and apply the classification algo-

rithm in our CLOD framework to compare the image-level classifier and region-level

classifier.

Image-level classification

For our classification method, we choose dense SIFT and LBP as features and BoF+SPM+LLC

system. For both dense SIFT and LBP, we adopt a multi-scale technique, in which the

patch size for dense SIFT is 8×8, 16×16, 25×25, 36×36 and the patch size for LBP

is 12× 12, 16× 16, 20× 20, 24× 24. The stride for dense SIFT is 4 and LBP is using

50% overlap stride. After extracting the dense SIFT and LBP features, a codebook

is trained separately by kmeans. The codebook size for each feature is 10240 and

the spatial pyramid matching is using 1× 1, 1× 2, and 2× 3. Therefore, each image

would have a 184320-dimension feature. We can see the performance of our classi-

fication classifier on PASCAL VOC 2007 and compare it with other state-of-the-art

classification algorithms on Table 3.2.
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plane bike bird boat bottle bus car cat chair cow
INRIA Genetic 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6

SuperVec 79.4 72.5 55.6 73.8 34.0 72.4 83.4 63.6 56.6 52.8
INRIA 2009 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1
TagModal 87.9 65.5 76.3 75.6 31.5 71.3 77.5 79.2 46.2 62.7
CODC 82.5 79.6 64.8 73.4 54.2 75.0 87.5 65.6 62.9 56.4

our dSIFT+LLC 73.1 61.2 49.1 65.5 26.0 55.0 75.7 56.9 51.7 36.1
our dLBP+LLC 74.8 54.3 40.7 65.1 20.9 53.0 69.9 54.8 50.7 31.8
our dSIFT+dLBP 77.2 64.3 52.7 70.4 27.2 60.3 77.3 61.0 54.6 40.2

table dog horse motor person plant sheep sofa train tv mAP
INRIA Genetic 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4

SuperVec 63.2 49.5 80.9 71.9 85.1 36.4 46.5 59.8 83.3 58.9 64.0
INRIA 2009 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5
TagModal 41.4 74.6 84.6 76.2 84.6 48.0 67.7 44.3 86.1 52.7 66.7
CODC 66.0 53.5 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

our dSIFT+LLC 46.8 39.5 76.1 61.9 81.6 25.5 42.3 52.2 73.9 50.25 55
our dSIFT+LLC 40.8 42.6 72.9 46.8 80.3 22.2 34.8 43.7 72.7 39.06 50.6
our dSIFT+dLBP 53.8 46.9 77.2 62.4 84.0 26.8 44.1 54.2 77.2 51.4 58.2

Table 3.2: Classification Performance on PASCAL VOC 2007.

From the Table 3.2, we could see that our classifier is not the best one, but later

we will prove that even with this below-average classification classifier, our CLOD

approach would still be able to boost the detection a lot.

Region-level Classification

From Section 3.1.1, there are two kinds of region-level dataset.With the exact same

experiment setup, we train our region-level classifier on the “train” + “val” subsets

of the cropped ground truth dataset and support-region dataset. We evaluate it on

the “test” subset, the performance is listed in Table 3.3.

In Table 3.3, only the LBP feature is used due to the speed issue. We can see

that the image-level classifier is the worst and the region-level classifier from the pure

ground-truth-box set is the best. Since our CLOD actually applied the classification

on the supporting regions instead of the whole images, it is reasonable that the image-

level classifier does not work well. But it is quite interesting that the classifier from

the pure ground-truth-box dataset is better than the classifier from ground-truth-

false-alarms set. Recall that our classifiers from ground-truth-false-alarms set just
20



plane bike bird boat bottle bus car cat chair cow
Det 35.7 59.8 11.8 19.6 31.0 51.8 58.7 29.3 23.4 28.7

CLOD-I 36.4 59.8 11.8 19.6 31.0 51.8 58.8 29.3 23.6 28.7
CLOD-Rg 37.0 60.1 12.2 20.6 31.9 53.4 59.6 32.3 24.0 31.4
CLOD-Rf 36.5 59.9 12.0 20.0 31.1 52.3 58.7 30.4 23.5 29.5

table dog horse motor person plant sheep sofa train tv mAP
Det 26.0 15.5 60.1 50.5 44.1 13.3 27.7 37.6 48.8 45.3 35.9

CLOD-I 26.0 15.5 60.1 50.5 44.1 13.5 27.7 37.6 48.8 45.3 36.0
CLOD-Rg 29.8 17.2 61.7 53.0 44.4 15.1 27.8 40.6 49.8 45.3 37.3
CLOD-Rf 26.6 16.5 60.6 51.0 44.2 14.4 27.7 37.8 48.9 45.7 36.3

Table 3.3: Comparison of CLOD with different type of classification classifiers. Det means the
performance of preliminary detection resutls. CLOD-I means CLOD using classification classifiers
trained on image-level set. CLOD-Rg means CLOD using classification classifiers trained on region-
level pure ground-truth-box set. CLOD-If means CLOD using classification classifiers trained on
region-level ground-truth-false-alarms set.

used twice times negative samples as the positive samples, while the classifier from

pure-ground-truth-box set has almost 20 times the number of negative examples. The

reason why negative samples for the classifiers from the ground-truth-false-alarms set

are much less is mainly the time consideration. For the classifier from the cropped

dataset, we need extract features from 12,608 images (total sum of the ground truth

in “train” and “val” set), while for the classifier from the false alarms, there would

be almost 12, 608 × 20 = 252160 images because each classifier would have different

negative samples. What’s more, the classifier from the ground-truth-false-alarms

set requires 20 times more k-means than the the classifier from the pure-ground-

truth dataset. Therefore, by taking all of the above into consideration, we choose

the classification classifier from the pure-ground-truth dataset as our classification

classifier in our CLOD framework.

3.1.3 Supporting Regions

From Section 2.4, the supporting regions are defined as the subtractions of bounding

boxes from detection classifiers. In fact given different detection threshold, there will

be different number of detection bounding boxes. In most of the object categories, if

the detector threshold is set to -1.1, usually we would have more than 10,000 detection
21



plane bike bird boat bottle bus car cat chair cow
Box Num 2326 1763 1524 999 1225 1660 2657 1354 1204 2212

table dog horse motor person plant sheep sofa train tv
Box Num 2254 1844 1466 858 8132 923 715 756 844 1164

Table 3.4: Detection box number for classification.

candidate boxes for each category, which is too large to adopt any complicated and

time-consuming classification algorithm. To reduce the candidate boxes for each class,

we set threshold to -0.95 for all the categories, which would lead most categories to

contain less than 2,000 candidate boxes. The details can be see from Table 3.4. The

experiments show that even with this much less candidate boxes, we can still achieve

very good performance (mean AP = 39.5% ).

3.1.4 Leverage Detection with Classification and Context In-
formation

Now, we have already discussed the datasets and details for the CLOD framework.

In the Section 2.4, we showed that each box has a detection score and classification

score. Notice that the classfication score is not achieved by the whole bounding box

region but the supporting region. The Figure 3.1 compares the performance of using

detection scores, supporting region classification scores and their combination on the

PASCAL V0C2007 dataset.

From the Figure 3.1, we can see that if the detection curve is always far better

than the classification curve, classification score would not boost the performance

that much. But if the classification is similar or just a little worse than the detection

curve, then det+cls curve would have a large improvement compared to the detection

curve.

Also, you may notice that there is a big drop of the curve at the high recall part.

This is due to the fact that we just apply our classification to the detection boxes

whose detection scores are larger than -0.95. For the rest of detection boxes, we
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Figure 3.1: AP using detection scores, supporting region classification scores and their combina-
tion(PASCAL 2007 category 1-4).

simply apply -10 as the classification score.

For the context rescore, we choose number of positive examples as it is shown in

the Table 3.4 and the number of negative samples is 3 times the number of positive

examples for each category.

The Figure 3.2 shows the average precision for 20 categories in PASCAL VOC2007.

3.1.5 Discussion

Due to the complexity and time consuming classification algorithm, it is impossible

for us to evaluate all the supporting regions. For those detection boxes which don’t

have the classification score, we just assign a constant negative value to them, which
23



plane bike bird boat bottle bus car cat chair cow
Leo [30] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3
UCI2009 28.8 56.2 3.2 14.2 29.4 38.7 48.7 12.4 16.0 17.7
CMO [22] 31.5 61.8 12.4 18.1 27.7 51.5 59.8 24.8 23.7 27.2
INRIA2009 35.1 45.6 10.9 12.0 23.2 42.1 50.9 19.0 18.0 31.5
UoC2010 31.2 61.5 11.9 17.4 27.0 49.1 59.6 23.1 23.0 26.3

Det-Cls [23] 38.6 58.7 18.0 18.7 31.8 53.6 56.0 30.6 23.5 31.1
Oxford [1] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0
NLPR [28] 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0
Ver.5 [17] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6

MOCO [38] 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2
nms05 35.7 59.8 11.8 19.6 31.0 51.8 58.7 29.3 23.4 28.7

nms05+cls 37.4 60.3 12.5 21.0 31.7 54.0 59.8 32.9 24.1 32.3
nms05+contex 37.7 61.8 16.2 22.2 32.1 52.9 60.1 32.0 24.7 30.9

nms05+contex+cls 38.9 62.4 16.5 22.7 32.2 54.8 60.9 34.0 25.4 33.4
table dog horse motor person plant sheep sofa train tv mAP

Leo [30] 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
UCI2009 24.0 11.7 45.0 39.4 35.5 15.2 16.1 20.1 34.2 35.4 27.1
CMO [22] 30.7 13.7 60.5 51.1 43.6 14.2 19.6 38.5 49.1 44.3 35.2
INRIA2009 17.2 17.6 49.6 43.1 21.0 18.9 27.3 24.7 29.9 39.7 28.9
UoC2010 24.9 12.9 60.1 51.0 43.2 13.4 18.8 36.2 49.1 43.0 34.1

Det-Cls [23] 36.6 20.9 62.6 47.9 41.2 18.8 23.5 41.8 53.6 45.3 37.7
Oxford [1] 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1
NLPR [28] 24.3 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3 34.3
Ver.5 [17] 26.6 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4
MOCO [38] 29.1 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7

nms05 26.0 15.5 60.1 50.5 44.1 13.3 27.7 37.6 48.8 45.3 35.9
nms05+cls 31.5 18.1 62.6 54.1 44.6 15.3 28.9 42.0 50.3 45.7 38.0

nms05+contex 31.2 18.6 62.5 53.8 45.2 17.9 28.9 40.0 50.3 47.5 38.3
nms05+contex+cls 34.2 20.0 63.8 55.1 45.7 18.6 30.4 42.6 51.4 47.8 39.5

Table 3.5: Comparison with the state-of-the-art performance of object detection on PASCAL VOC
2007.
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Figure 3.1: AP using detection scores, supporting region classification scores and their combina-
tion(PASCAL 2007 category 5-8).

is not a good technique. In the future, we would design a more efficient classification

algorithm, even if this algorithm may not perform as well as the complex and time-

consuming classification algorithm. We can apply the complex and time-consuming

classification algorithm to the higher detection score boxes and the efficient classifica-

tion algorithm to lower detection score boxes. Currently, this classification algorithm

is just to help to rescore the detection boxes. But later, we would use the classification

algorithm to find the misdetections.
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Figure 3.1: AP using detection scores, supporting region classification scores and their combina-
tion(PASCAL 2007 category 9-12).
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Figure 3.1: AP using detection scores, supporting region classification scores and their combina-
tion(PASCAL 2007 category 13-16).
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Figure 3.1: AP using detection scores, supporting region classification scores and their combina-
tion(PASCAL 2007 category 17-20).
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Figure 3.2: AP for context and CLOD (PASCAL 2007 category 1-4). nms05 means DPM detector
performance; nms05+cls means CLOD on boxes from DPM detector; context means performance
of apply context to DPM detector; context+cls means apply CLOD to context rescored bounding
boxes.
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Figure 3.2: AP for context and CLOD (PASCAL 2007 category 5-8)
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Figure 3.2: AP for context and CLOD (PASCAL 2007 category 9-12)
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Figure 3.2: AP for context and CLOD (PASCAL 2007 category 13-16)
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Figure 3.2: AP for context and CLOD (PASCAL 2007 category 17-20)
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Chapter 4

Summary and Concluding Remarks

In this paper, we have proposed a simple but powerful object detector called Image-

classification Leveraged Object Detector. This detector needs a detection model and

a classification model for each class. Extensive experiments on PASCAL2007 has

shown the advantage of our approach. we achieved rank 1st for 9 categores and the

mean AP is 39.5%, which outperforms all other results.
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