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Measuring Community Resilience to Disaster
Aaron Wesley

Dr. Timothy Matisziw, Thesis Supervisor

ABSTRACT

Although geographic studies of disaster vulnerability and resilience have been
central to the formulation of federal emergency management policy, recent community
resilience research has diverged significantly from the core foci of the discipline: the
importance of place, of scale, and the complexity of human-environment interactions.
Three disconcerting trends in the literature can be observed. First, there has been a
heavy reliance on the tools of linear systems science to characterize and measure the
human dimensions of resilience - dimensions which are increasingly examined in terms
of their nonlinearity, dynamism and complexity in other scientific disciplines. Second,
most of the variables typically used as proxies for community resilience are not actually
indicative of community-scale processes, but rather describe individual-scale behavioral
and household-scale socioeconomic characteristics. Third, the current practice of
aggregating resilience indicators to large, heterogeneous geographic areas in order to
communicate community-level resilience can actually mask and mischaracterize the
local, place-specific variability of those indicators. This thesis presents a rethinking of
geography’s conceptual model of population disaster resilience and the methods used
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to measure it at the community level. Drawing on diverse theoretical linkages on the
subject from across the social and natural sciences, and on the current perspectives and
information requirements of local emergency managers, a more holistic and meaningful
approach to measuring community resilience is proposed. Specifically, in recognition of
a need to integrate both expert and lay local perspectives into resilience calculations, a
system for assimilating such qualitative data into quantitative analysis is adapted from
complexity theory. Also, in acknowledgement of the multiple levels at which resilience-
building processes may operate in human systems, and the unique ways disaster
resilience can manifest in different places, a new framework for balancing multi-scalar
indicators of community resilience for local-level analysis is proposed. As a proof-of-
concept for the above approach, a community disaster resilience analysis is conducted
at the neighborhood level in the City of St. Louis, Missouri. Results indicate that
analyses which factor in local knowledge of both hazards and unique protections against
those hazards can explain observed community-level resilience to actual disasters better
than analyses which rely solely on internal statistical techniques. Results also show that
the proposed method for analysis of qualitative expert assessments of local resilience
indicators can unveil the complex structure of cause-effect influence among these
variables and can reveal which community assets are most important to nurturing

disaster resilience.
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CHAPTER 1. INTRODUCTION

Most people know enough about environmental hazards to want to protect the
things they value against hazards’ effects. But when faced with a variety of threats both
natural and social in origin, most people are highly uncertain about which protections
are necessary in order to be ready to face an extreme environmental event. And they do
not know how the two — protection and readiness — interact. One consequence of this
is that most disaster preparedness insights, and the clearest assessment of a
community’s deficiencies in protection and readiness, are often observable only after
disaster strikes - even though much a priori knowledge about the number and nature of
hazards exists. There is much academic interest in making sense of the hazards to which
populations are vulnerable and identifying the various protections which foster
community resilience to their effects - and for good reason. In light of the hazard-
magnifying effects of global climate change (IPCC 2013), and the increasing
concentration of populations and infrastructure in large urban centers within hazard-
prone areas (NRC 2012), a high priority must be placed on research which reduces
uncertainty about the processes and structures which lead to disaster resilience. The
research presented here attempts to accomplish this by critically examining theoretical
and methodological issues in the study of community resilience, with the goal of
providing a more holistic perspective and insight to disaster management policy.

In the context of most geographical research, a natural hazard refers to physical

environmental threats to people and places arising from the intersection of human and



natural systems (Cutter 2003; Cutter et al. 2003). Vulnerability refers to a certain place’s
potential for harm from natural hazards, as a function of exposure (spatial co-
occurrence), risk (frequency of occurrence), and severity (relative magnitude). Hazard
vulnerability, then, is defined in this thesis as the degree to which a particular location
interacts with environmental threats in time and space. There are several advantages to
this conceptualization. First, this definition is applicable across a range of spatial scales,
from cells to individual organisms to entire ecosystems. Second, when defined as such,
hazard vulnerability exists everywhere given that threats to survival are present
everywhere to some extent (Paul 2011). All organisms and communities of organisms
live with some degree of vulnerability, and then make choices, take risks, develop
defenses, etc. to mitigate against environmental threats. Third, vulnerability in this
sense is a manageable concept to measure, involving the enumeration of the hazards a
location is exposed to, as well as the spatiotemporal characteristics of those hazards
that make them more or less of a threat. Calculations of vulnerability could be as simple
as a binary checklist of environmental hazards in a local ecosystem; conversely, they
could combine detailed quantification of exposure, extent, frequency and severity into a
complex algorithm. Perhaps the most important advantage to this conceptualization of
vulnerability is that it is segregated from the more complex concept of disaster
resilience.

In this thesis, natural disasters are defined as extreme environmental events,
arising from natural hazards, which overwhelm a system’s capacity to absorb, respond

to or recover from damage — often leading to a shift into a less productive or otherwise



unfavorable system state. Resilience is considered here to be a scalable organic concept
referring to all the defenses, resources, adjustments, capacities, connections and
attributes which organisms or communities of organisms ‘put into play’ to plan for and
mitigate against environmental hazards, absorb the effects of extreme events, and
prevent lapse into an unfavorable state. Resilience in this sense is a quality that appears
at all levels of nested organic systems from individual cells (and even intracellular
components) to individuals, communities and higher-order networks of communities.
This definition of resilience highlights the vast integrative potential for disaster research;
whether or not it is explicitly referenced as ‘resilience’, the phenomenon described
above has been considered in business, biology, statistical physics, developmental
psychology, computer science, and many other disciplines.

However, along with all the interest in resilience comes the caveat that its
components are not well understood or even defined, and that significant disagreement
and uncertainty exist in how to measure resilience or what a resilient system looks like
in the real world. As later reviewed, emerging in the literature are common themes of
various capacities (e.g., adaptive, learning, absorptive, resistive, coping, etc.) as well as a
sense of a need for structured self-organization and strategic connectedness. Yet, these
qualities seem to emerge and manifest themselves in very different and even surprising
ways in different places, an observation which has undoubtedly contributed to
geographers’ attraction to the subject.

In light of the above, the task of defining the term community should be

approached with a healthy sense of caution. Is it better to include the descriptor



‘geographically bounded’ in the definition, since this conforms well to dominant
conceptualizations of space within geography and the modalities of its cartographic
discourse (Norris et al. 2007)? Or, should the unbounded and open nature of
communities in today’s hyper-connected, globalized world be stressed (Wilson 2012)?
Would a homogeneity-oriented characterization of a group of people united by shared
interests, collective experience and common goals be charitable (Kulig 2000)? Or would
this unfairly preclude the existence of competing networks of power, actors and interest
groups with divergent aims, or a complex heterogeneity of sometimes incompatible
worldviews (Allen 2003)? Researchers who choose a certain definition of community
over another are both right and wrong for reasons rarely acknowledged: while all
researchers operationalize ‘community’ according to their own conceptual orientation
and in accordance with their studies’ research goals, the fundamentally place-specific
nature of how communities manifest necessitates reevaluation and reinterpretation of
the definition for different place contexts and assures that no single definitions will be
universally applicable or acceptable.1 With that caveat, the definition of community
used in this thesis - a population living within a self-delineated or historically
distinguishable local area who can reasonably be expected to come together to solve
problems —is less of a normative statement and more of an invitation for the reader to

explore the place-based rationale for this choice.

A significant portion of this thesis explores how the nascent discipline of complexity science deals with
concepts that resist discrete, unambiguous or authoritative definition, or that emerge differently at small
scales or in different parts of a system.



There exists a long and rich history of research spanning many disciplines which
has informed the emergency management policy community about the characteristics
of natural hazards and the populations exposed to them. The pervasiveness, complexity
and scale-invariance of human system interaction with extreme environmental events
has fascinated and challenged an impressively diverse set of disciplines. For instance,
psychologists have studied disaster-induced psychological trauma in individuals (Kutak
1938), sociologists have sought to explain a farm family’s decision to settle on
floodplains (Chan 1995), geographers have analyzed differences in community-level
evacuation route accessibility in a city (Cova and Church 1997), economists have
modeled the regional effects of a volcanic eruption shutting down the world’s busiest
airport (Budd et al. 2011), and climatologists have attempted to predict climate
change’s impact on global storm intensity zones (IPCC 2013).

The interplay of natural and social systems that give rise to disasters have long
attracted the attention of academic geography in particular, which has always strove,
with varying degrees of success, to stake claim to studying phenomena that bridge the
social and natural sciences (not to mention that geographers are irresistibly drawn to
processes which demand considerable attention to scale). In fact, it was geographer
Gilbert White who is credited with establishing the academic credibility of and
stimulating widespread interest in hazards and disasters research in the years following
WWII (Quarentelli and Dynes 1977; Smith 2001). While the story of how the subject has

since attenuated into the work of other disciplines is certainly complex, it is fair to state



that research which attempts to make sense of hazards and extreme events is by now
ubiquitous across academia.

Yet, for all the interdisciplinary relevance the subject has found, a common
critique which arises in the current review literature is that hazards research could
benefit from more cross-disciplinary collaboration (Vogel et al. 2007; Miller et al. 2008;
Turner et al. 2010; Berkes and Ross 2013; Downes et al. 2013). It is observed that the
study of disaster commonly proceeds in a compartmentalized fashion, with researchers
in each field tending to adhere to in-house theories and methods, many of which can
claim decades-long traditions of scholarly development (Taylor 1984; Carrerra and
Guzzetti 1993; Alexander 1997; Teo et al. 2013). While many researchers recognize
both the inevitability of a certain amount of stovepiping in academia as well as the
benefits of theoretical maturation this process provides, it is contended that, at the very
least, there exists a strong, largely unrealized potential for trans-disciplinary
collaboration which includes cross-adaptation of theories and methods.

The normative argument that the above should be happening — that very
substantive progress in the subject could be enabled by an actively integrative element
—is, at least on paper, readily apparent within geography. On the one hand, those
involved in hazards and disaster research are apt to include appeals for future research
to be more integrative and inclusive of other professional viewpoints. On the other
hand, the current dominant paradigm of disaster research in geography specifically
codifies transdisciplinary linkages, as well as methodological pluralism (the willingness

to integrate multiple research methods and technologies) and multi-perspective



reflexivity (the willingness to learn from a variety of knowledge sources, both lay and
expert), as norms by which research should proceed (Cutter 2003, Miller et al. 2008).
Given the wide credence and citation these three foci currently enjoy, it would be an
ironic and understandably contentious assertion that the recent thread of community
disaster resilience research in geography has not successfully lived up to these norms.
Such an assertion is made in the present thesis.

The argument presented is threefold. First, it is asserted that methodologically,
the continued approach of aggregating and analyzing resilience variables with overly-
simplistic indices is in direct conflict with current multidisciplinary understandings of the
complex and interrelated nature of the components of resilience. To account for these
dynamics, a methodology from the field of industrial risk management can be adapted
for identifying the structure of complex cause-effect relationships inherent in index
variables, using a knowledge-based system. Second, it is argued that the majority of
variables currently used in geographic studies of community resilience are not
holistically indicative of community-level processes, but rather disproportionately
describe individual-level behavioral and household-level socioeconomic characteristics.
As such, a more multi-scalar approach to variable selection is proposed which captures
and balances individual- as well as community- and government-level processes and
characteristics, chosen from place-specific research of the community in question.
Third, based on multidisciplinary understandings of the fundamentally endogenous,
place-based nature of resilience, and taking into account the place-specific information

requirements of emergency managers, a paradigmatic shift away from the current



practice of aggregating resilience variables over large geographic areas in favor of local-
scale geographic analysis based upon a more realistic construct of a community is
proposed.

To illustrate the benefits of the developed approach, an analysis of community
resilience to disasters within the City of St. Louis, MO is conducted, utilizing indicators of
community resilience that not only represent the multiple facets of resilience but also
the multiple scales at which resilient characteristics and processes operate. Rather than
relying solely on internal multivariate statistics to evaluate or correct inter-influence of
study variables (a method which frames such influences as design errors, possibly
leading current studies to eliminate important explanatory variables), the proposed
approach seeks to account for and explore variable influence, including the structure of
complex cause-effect relations, using a knowledge-based rating system. Further,
methods from within complexity science are extended to extract perceived comparative
variable influence on the overall management goal of increased disaster resilience.

The aim of this research is not only to help bring the study of community
resilience in geography up to speed with its peers by bridging the gap between the
discipline’s emergent understanding of the complexity of the concept and the
methodological approach by which it is measured. It also seeks to bring the output of
disaster resilience research in geography (which has historically commanded strong
influence on policy) in line with the ongoing shift of focus in emergency management/
disaster preparedness from top-down, government-centered intervention policy which

focuses on fixing deficiencies to bottom-up, place-specific policy which focuses on



building on existing capacities and unique strengths. Ultimately this research is geared
to benefit local emergency management personnel, civic leaders and citizens who take

on the responsibility of fostering resilient characteristics within their communities.



CHAPTER 2. LITERATURE REVIEW

2.1 Hazards, Disasters and Vulnerability in the Social Sciences

Attempts to construct a concise history of hazards research which is both
comprehensive in scope and charitable to a wide-range of theories seems bound to fail.
In terms of scope, it has been noted that even the longest of scholarly reviews fails to
include all branches of thought where the topic receives treatment (Downes et al.
2013). In terms of theory, the number of active paradigms within hazards research is
probably at least as large as the number of importantly related yet less explored
theoretical linkages with other schools of thought. Even when limited to the urban
context and the scale of communities, a surprisingly broad body of literature can be
found. Yet, the story of the rise, maturation and widespread influence of hazards
research is also, in many ways, the story of the rise, maturation and widespread
influence of geographic theory in academia as well as in government decision-making.

For well over 60 years in America, scholarship across the social sciences has been
directed toward assessment of urban populations’ natural disaster vulnerability and in
answering, for the benefit of academic as well as government audiences, the
fundamental questions of ‘Who is vulnerable to extreme natural events?’ and ‘What
factors influence disaster vulnerability?’ While conceptual frameworks in the study of
vulnerability have evolved considerably throughout the post-war period, a sense of
urgency for actionable research in this area has increased greatly in recent years. An

illustration of the current relevance and complexity of the topic can be seen in the
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National Research Council’s (2012) report, commissioned by the U.S. intelligence
community, on the national security implications of increasingly frequent/intense
extreme weather events due to global warming. In this report, the NRC recognizes that
social, economic and political drivers of disaster vulnerability are not well understood,
calling for intensive place-based research into the interplay of these factors that
incorporates predictive models of all possible environmental hazards.

Disaster research in general in the social sciences prior to World War Il has been
regarded as sporadic, empirical and focused on singular events, garnering little attention
within the researchers’ respective disciplines and containing few theoretical
contributions or methodological prescriptions that would suggest further study was
promising.” Still, it is worth noting that these early contributions originated from across
the social sciences — a harbinger of the developments of the post-war period and in
today’s multidisciplinary disaster research climate. One of the first attempts to apply
accepted social science concepts to the study of a disaster was a dissertation in political
science by Samuel H. Prince (1925), which examined demographic changes in Halifax,
Nova Scotia following a devastating 1917 munitions depot explosion that leveled much
of the city. In the early 1930’s, W.M. Davis (1934) examined infrastructure damage in
the Los Angeles region caused by the 1933 Long Beach Earthquake and evaluated the

reconstruction recommendations made by a panel of California Institute of Technology

’An important exception is the human ecology paradigm presented by Barrows (1923), which provided
theoretic context for several schools of disaster research in the geographic tradition
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scientists.? In the field of psychology, much attention was paid to the trauma incurred
by U.S. military in the European trenches of WW | (Ferenczi 1921). Kutak (1938)
reviewed the psychological impacts of destruction in Louisville, Kentucky following
major flooding in 1937. Whatever the effect of these infrequent contributions on
scholarly interest in the study of disaster, sustained treatment on the topic was not
realized until after WW I, when Gilbert White and other geographers at the University
of Chicago, through an examination of flooding disasters, established a paradigm of
vulnerability which remained dominant until the 1980s (White and Kates 1978).
Influenced by the human-ecology paradigm in geography established by Barrows
(1923)*, White’s 1942 dissertation Human Adjustment to Floods® represented not only
the first theoretical examination of factors of disaster vulnerability but also heralded a
broad disciplinary shift toward behavioral science within geography. Influenced by the
‘interventionist’ environmental engineering policies enacted under The New Deal, as
well as the American pragmatic philosophy of John Dewey (1925),° White defined a
range of ‘adjustments’ humans can employ to mitigate effects of flooding, in order to
continue settling in flood-prone areas. These adjustments, he argued, took the form of
technological (e.g. hydraulic engineering, structure elevation) or policy (e.g. land use

code, flood insurance) fixes that guarded human lives and property from environmental

*Davis ended his article with the declaration: “Life is full of hazards, and we must take our chances among
them.”

*Barrows’ focus was explaining human adjustment, in the broadest sense, to the physical environment,
and advocated for a nomothetic approach within geography to establish universal laws of human-ecology
interaction

5Republished post-war in an expanded 1945 monograph

®Characterized by, above all, the epistemological idea that usefulness determines what counts as
knowledge (James 1977)
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hazards. Communities lacking the correct mix of adjustments against these hazards
were to be designated vulnerable to the extent that they are at spatial risk to flooding.
Also, in an implicit rejection of the existing ‘rational choice’ model of individual decision-
making behavior, White pointed out the apparently counterintuitive trend of residential
development in floodplains with few adjustments in place. White concluded his
dissertation by calling for new explanatory research into people’s settlement decision-
making’ and for a comprehensive federal policy of flood abatement taking into account
all possible adjustments.

To understand the immediate interest and long-term influence across academia
and in government of Human Adjustment to Floods, the broader social context of its
release deserves mention. The monograph was published during the post-war period of
high demand for the practical application of science and technology in urban and
regional planning. Also concurrently, as the U.S. military analyzed the human occupancy
of cities potentially targeted by Soviet nuclear missiles, there existed a high demand for
research that could inform federal policy for reducing the impact on infrastructure and
society of nuclear strikes. It has been argued that both the technophile social climate
and civil defense orientation of government helped jettison White’s research to the
forefront of the popular new area of disaster mitigation research (Quarentelli and Dynes
1977; Smith 2001).

Known variously as the behavioral or risks/hazard paradigm, the theory of

hazard adjustment was subsequently developed by White and his students Burton and

’A direct influence to Simon’s (1956) ‘bounded rationality’ theory in psychology
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Kates, who formed the core of a ‘Chicago School’ of disaster research in the geographic
tradition. Studies under this approach were broadly concerned with identifying the
distribution of environmental hazards, the range of adjustments available to individuals,
and how people perceive and make choices regarding hazards at the individual level
(Cutter et al. 2000). As such, adherents to the behavioral approach developed several
methodological foci. First, high importance was placed in gathering data on the
spatiotemporal characteristics of environmental hazards, in order to both model their
interaction with population and to quantify their effects (White and Haus 1975;
Friedman 1975). Second, a strong commitment to physical and managerial control,
aimed at containing hazard impacts through environmental engineering and land use
policy, was maintained (White et al. 1978). Third, government-led emergency response
planning was urged as a mitigation tactic (Quarantelli 1979). Finally, analysis of
settlement decision by the individual and policy decision by government officials was
recommended under the lens of the bounded rationality theory of behavioral science, in
order to understand how information about hazards and risk are processed and acted
upon (Dynes 1970; Mileti et al. 1977). Throughout the development of the behavioral
approach, the terms risk and hazard were synonymous with the spatiotemporal
distribution of extreme environmental events. Although vulnerability assessment under
the behavioral paradigm was seen primarily as a qualitative/inductive process based on
measuring human occupancy of hazard zones and measuring the extent of adjustments
in place, White maintained that the basic theoretical rationale was that hazards are

derived from interaction between nature and society, strongly affected by feedback in
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the form of adjustments (White et al. 1978). Methodologically, practitioners of the
behavioral paradigm were highly concerned with mapping locations of hazard zones to
delineate risk, and cataloguing adjustments made at particular locales through detailed
case studies (Friedman 1975). Meta-analyses of these studies were in turn used to
determine patterns of adjustments and provide indicators of their effectiveness in
dealing with disaster events. The dominant method for assessing individual and official
decision-making behavior took the form of surveys, aimed at correlating demographic
data with settlement decisions/policy (Dynes 1970).

Beginning in the 1970’s, a series of radical critiques to the behavioral approach
arose from across the social sciences, challenging White’s techno-centric approach and
the validity of a theory of vulnerability based solely on exposure to extreme natural
events without consideration for social, economic or political factors. In his seminal
paper “Taking the Naturalness Out of Natural Disasters”, O’Keefe (1976) headed the first
strong attempt to refocus the field on the human drivers of vulnerability. He argues
that political and economic struggles in any form are ‘force multipliers’ which increase
vulnerability of certain populations and amplify the effects of disasters. Explaining that
these struggles tend to limit options for adjustment (thus limiting certain populations’
ability to cope with disaster), he called for future research to account for barriers to
human agency in vulnerability assessments. Critiques by Waddell (1977) and Torrey
(1979) followed, each questioning White’s causal mechanism (environmental processes)

of hazard — they sought to replace geophysical characteristics with a ‘geography of
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social relations’ as the governing factor of spatial extent and occurrence interval of
disasters.

These initial critical works established what was called the political-economic or
political-ecology approach to vulnerability, which was subsequently developed primarily
by social science researchers with experience working in least-developed/ Third World
countries or economically/politically disadvantaged communities in the U.S. Themes of
critique of the adjustments paradigm can be easily discerned. First, political ecologists
point to the over-exaggeration of the role of the individual in adjustments writings,
which artificially forces studies to ignore larger political, economic or cultural factors.
Second, the adjustments paradigm was seen as lacking appreciation for historical or
structural features of society which may limit individual adjustment choice. Political-
ecology is seen as well positioned to offer insights into these limiting structural features
because of the presence of Marxist geographic theory (Paul 2011), which offered
explanatory linkages between disaster vulnerability and the spread of global capitalism.8
Waddell (1983), for example, argued that disasters function to reinforce the gap
between rich and poor by accelerating economic marginalization and forcing inadequate
adjustment choices. Susman et al. (1983) attempted to prove that governmental
adjustments tend to be funneled to upper-class communities using a case study of
differential damage to Guatemala City after a 1977 earthquake, which the authors

dubbed a ‘classquake’.

& Structural Marxists, especially in the geographic tradition of Louis Althusser, sought to evaluate how
different levels of social formation manifested themselves in different levels of social inequality — uneven
effects of disasters provided evidence for this position and resulted in interest by Marxist thinkers
(Benton 1984).
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As a fundamentally critical endeavor, the political-ecology approach did not seek
to offer significant methodological alternatives or policy prescriptions.9 However, as
Marston (1983) notes, political-ecology’s important contribution to disaster research lay
in its success in broadly validating the social, economic and political as factors to
vulnerability, and in its alternative explanation of human behavior in relation to societal
structures. As will be seen, all subsequent theoretical contributions to disaster research
put one or all of these factors in context. However, this is not to suggest that social
considerations were completely missing from disaster research prior to the politic-
ecology paradigm. In fact, many researchers in the field of sociology have been engaged
in disaster research since the late 1960s, most notably in the disaster behavior tradition
of Dynes (1970), Quanterelli (1978) and Drabek (1986). According to Dynes (1970),
disasters “represent types of uncertainties in which elemental forms of social processes
are revealed...They provide the opportunity to observe the emergence of social
structure under stressful conditions.” Their approach was focused on behavioral
aspects, in the vein of the molar/perception school of social psychology, in order to
model individual behavior based on hazard perception. It may seem that a high
potential for collaboration existed between researchers in both the sociological and
political-ecology traditions, but as Alexander (1997) has shown, sociological
developments in disaster behavior occurred in relative isolation. Indeed, a theme of

compartmentalization in disaster studies across several disciplines, which complicates

° A notable exception was Emel and Peet (1989), who advocated for more qualitative vulnerability
assessments based on class/social issues, and recommended mitigation solutions based on redistribution
of wealth and resources in society, rather than rely on science and technology to control nature.

17



efforts of synthetic literature review, developed in the 1970s/1980s and continues to
the present day. For example, the field of emergency medicine, stimulated by funding
from the U.S. Centers for Disease Control in the early 1980s, began producing research
on the characteristics of post-disaster medical emergencies in the built environment,
with the aim of identifying trends of disaster-related medical vulnerabilities and
recommending medical relief adjustments (Alexander 1997). However, as Taylor (1984)
has shown, these efforts were isolated from a strong concurrent disaster research
culture in the fields of architecture and civil engineering, which were producing very
detailed knowledge of the performance of urban infrastructure during many types of
disasters. While mutual incomprehension and the tendency to assert disciplinary
relevance/identity have been blamed for a lack of interdisciplinary collaboration in
vulnerability study (Carrerra and Guzzetti 1993), the problem of bridging these gaps
remains to be solved.

Beginning in 1990, conceptual frameworks for studying vulnerability which
included social, political and economic considerations developed rapidly in the social
sciences. First, a ‘hazards-in-context’ approach, developed by Mitchel et al. (1989) and
Palm (1990), was an attempt to expand White’s behavioral and environmental approach
to include social and political factors, by placing individual choice as the end product of
a complex, multi-scale network of social/political power relations. Palm (1990)
identified three scales — micro (individual/household), meso (emergency managers,
insurance companies etc.), and macro (the State) — through which information about

environmental hazards and adjustments are filtered. She demonstrates that
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political/social biases at the meso and macro level produce vulnerabilities at the micro
scale by perpetuating misinformation™®.

The next theoretical model of vulnerability in the social sciences, known as the
pressure-release model, was devised by Blakie et al. (1994) and extended the causality
critique of political ecology. The concept proposed was a progression of vulnerability
from root social causes (poverty, lack of resources) to ‘dynamic pressures’ (population
growth, inflation) to unsafe conditions (inadequate building codes, lack of emergency
response plans) and finally to the disaster event itself. As a fundamentally human-
centered approach, this model encouraged research to uncover all types of social,
political and economic pressures that interact at the individual scale to create
vulnerability.

A few human geographers in the place-based tradition, sensing a lack of place-
specific study in either the pressure-release or hazards-in-context approaches, began
seeking to bridge the behavioral and political-ecology paradigms in a conceptual
framework known as hazards-of-place. Influenced by Hewitt and Burton’s (1971)
definition of vulnerability as the totality of hazards that could affect a particular
ecological system, Cutter and Solecki (1989) proposed combining all-hazards research
with studies of place-specific social and political structures to create ‘hazardscapes’ or
‘riskscapes’. The goal was to synthesize environmental hazards with human systems at
various geographic scales in a manner that allowed for the integration of data for

guantified place-based vulnerability assessments (Cutter 2000). While hazardscapes

10 o . . . . . . .
For example, insurance companies can manipulate information about geophysical risk in order to
artificially increase an individual’s perceived risk
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were initially described in static language, subsequent development has provided a
more fluid and dynamic view, in which both hazards and vulnerability undergo constant
and complex spatiotemporal change (Khan and Crozier 2009). The idea of hazardscape
in the geographic tradition is now concerned with identifying aspects of process, people
and place (which geographers have always been attune) which shape hazards and
human vulnerability. A salient characteristic of the hazards-of-place paradigm is its
explicit goal of combining the strengths of earlier adjustments research (i.e., scientific
data collection) and political-ecology (i.e., explanation of socioeconomic processes).
Proponents of the hazards of place approach contend that it allows for empirical
examination of patterns of environmental hazards while directly accounting for the
interplay of quantified social, economic and political factors. Especially significant to the
rise in popularity of this approach was Cutter’s early recognition of geospatial
technologies as key tools in evaluating hazards, analyzing population characteristics and
communicating issues of risk and vulnerability to decision makers.

With rapid advances of the aforementioned geospatial technologies such as
geographic information systems (GIS) and remote sensing in the last decade, social
scientists have been presented with increasingly sophisticated tools to visualize
environmental hazards, map risks/vulnerabilities, and model disaster impacts (Vogel et
al. 2007). The hazards-of-place paradigm, with its emphasis on local empirical research,
has provided disaster vulnerability experts the theoretical underpinnings for applied
research in this area. Aiming to enable researchers to leverage geospatial technologies

in their research while remaining amenable to accepted standards of scientific praxis,
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researchers have recently proposed and developed guidelines for an applied ‘science of
vulnerability’ (Cutter 2003; Vogel et al. 2007). Adhering to and acknowledging the basic
critiques of spatial science,™ a science of vulnerability would incorporate foci that may
mitigate against some of the perceived counterproductive effects of scientific praxis.
These foci include (Cutter 2003):

- Multiperspective reflexivity — the ability to learn from a variety of knowledge
sources, both expert and lay, in a place-based all-hazards approach

- Transdisciplinary linkage — the ability to actively seek connections across the
social and natural sciences (including health and engineering disciplines)

- Methodological pluralism — the ability to integrate multiple research methods
and technologies in recognition of place-specific variability of vulnerability

As an explicitly pragmatic applied approach, vulnerability science has developed to
encourage the exploitation of geospatial technologies for analysis and visualization of
hazards data, with the purpose of helping emergency management officials understand
vulnerabilities of places and enact more effective mitigation policies (Tobin and Montz

2004; Rufat 2012).

2.2 Evaluating Resilience

While the academic debate described above dealt primarily with defining what
exactly makes populations vulnerable to environmental hazards, the concept of
resilience explores the characteristics of systems, both physical and organic, which

seem to protect against the harmful effects of extreme environmental events. Possibly

" What Cutter calls the ‘vulnerabilities of science’ — the bias of the supposedly objective observer, the
social construction of science and scientific practice, the tendency of the dominant modes of scientific
discourse to exclude certain perspectives and knowledge sources, etc.
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due to the antonymic coupling assigned to the two terms in English semantics,
‘vulnerability’ and ‘resilience’ may seem simple opposites on a scale of disaster
readiness. Though related, the two concepts are often understood to refer to different
processes, with the study of resilience undergoing mostly separate development in
several different disciplines.

A very general way to capture the tone of the development of resilience thinking
across the social and natural sciences may be a shift from focusing mostly on deficits,
weaknesses and vulnerabilities (whereby system agents are acted upon by extreme
events), to an inclusion of focus on adaptation, anticipation of change and learning
(whereby system agents are proactive and preemptive in dealing with environmental
threats). Key traditions of inquiry into the resilience concept as it relates to human

systems and communities are now reviewed.

2.2.1 Psychological Sciences

In the 1970’s, case studies examining differences in individual’s responses to
environmental shocks, including disasters, prompted a longstanding theoretical
tradition of resilience thinking in the fields of developmental and social psychology. This
tradition had early on rejected notions of inherent or genetic ‘invulnerability’ to
environmental shocks, as well as focus on deficits of the individual (the so-called risk
paradigm of developmental psychology of Boyden and Cooper (2007) and Johnson and
Wielchelt (2004)). Instead, this branch has focused on identifying strengths and

enabling the development of social competencies and internal coping mechanisms
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identified as ‘functional resilience’ by Howard et al. (1999) and Luthar and Zelazo (2003).
A lasting hallmark of the psychological approach, contributed by eminent
psychopathologist Norman Garmezy, is that an individual’s level of functional resilience
does not have to be exceptional or optimal in order to successfully navigate a crisis; it
just has to be relatively better than others experiencing the same level of environmental
shock (Garmezy 1991; Rutter 2012). Social psychology, as a sub-discipline which seeks
to bridge individual-level psychological processes with the development of social
structures, has in the last three decades explored the components and processes of
community resilience. This body of research often focuses on the family and the
neighborhood (Downes et al. 2013), and broadly defines resilience as a dynamic process
encompassing positive adaptation within the context of significant adversity (Luther et
al. 2000). Dimensions of community resilience identified in social psychology include:
strategic self-organization (Sherrieb et al. 2010), strong people-place connection
(termed place identity by Putnam (2000)), mechanisms for information sharing, strategic
social networking (Obrist et al. 2010), connection to government entities (Ungar 2011),
economic diversification (Attaran 1986), and others. Though there may seem significant
theoretic overlap between resilience thinking in ecology and social psychology, there
was in fact little cross-reference between these disciplines in last decades of the 20t
century, and each remained somewhat compartmentalized in their research (Berkes and
Ross 2013). By the mid-1990s, a natural disaster-specific strand of resilience thinking
had emerged within social psychology which was primarily focused on examining how

urban communities, especially at the neighborhood level, engaged in resilience-building
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activities (Paton and Johnston 2001). For the resilience-building process to be
successful, this research identifies three key qualities. First, the process should be
intentional, strategic and collective (Norris et al. 2008). Second, it should be emergent
from within the community, not primarily motivated or driven by outside actors (Clark
2006). Third, it should assume and be able to cope with continual environmental

change, as well as with uncertainty, unpredictability and surprise (Goldstein 2009).

2.2.2 Physics and the Physical Sciences

Often overlooked in the social sciences, there exists in physics a strong tradition
of inquiry into the nature of extreme natural events and the quantitative components of
resilience. Breakthrough discoveries of the statistical properties of simulated non-
equilibrium systems in the 1980s, which described the apparent self-organizing behavior
and certain universal statistical similarities of such systems (including critical points,
fractal geometries and scale-invariant functions), enabled physical scientists in many
disciplines to develop theoretic models of complex/nonlinear systems. Crucially, these
new discoveries provided the mathematical basis for viewing extreme events and phase
shifts as natural and ubiquitous in ‘the real world’. Findings of lab experiments in so-
called self-organizing criticality (SOC), which actually involved statistical modeling of
‘avalanches’ occurring in piles of sand, soon found wide application in describing the
characteristics of extreme events in many identified complex physical and
socioeconomic systems, including: distribution of earthquakes (Schotz 2002), sudden

fluctuations in financial markets (Cont and Bouchaud 2000), traffic jams (Helbing 2001),
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the spread of epidemics (Stollenwerk 2005), behavior of forest fires (Song et al. 2001)
and many others. While some disciplines such as seismology have tended to apply SOC-
inspired theory to explaining the extreme event hazards in systems, others such as
computer science and network science also study what makes systems and system
components resilient to the effects of extreme events, phase shifts or system failures. In
computer science, for example, the assumption or expectation of extreme disruptive
events inherent in SOC-related theory has given rise to research in fault-tolerant
systems (also called graceful degradation), which has resulted in robust computer
system configurations that can cope with various types of failure or error (Carlson and
Doyle 2002). In the network sciences, some researchers have studied how the outcome
of a disruptive event (i.e. a targeted or untargeted attack) on a system relates to the

structure of connections among system components (Matisziw et al. 2012).

2.2.3 Ecology and Social-Ecological Systems Theory

Though the word resilience appeared earliest in academic discourse from within
psychology (in reference to now-defunct theories for preventing psychological trauma in
people believed to possess a genetic risk to psychopathologic mal-adaption), most
scholars in both the social and natural sciences now agree that the current
understandings of resilience are derivative from ecology (Waller 2001; Moser 2008;
Boon et al. 2012), especially the work of C.S. Holling beginning in the 1970s. By Holling’s
time, traditions of linear thinking about ecological systems, the hallmark of which

involved organisms bound to a single stable state, had begun to give way to influential
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new complexity theory, which asserted nonlinear relationship between system
variables, multiple possible/alternative system states (which constituted attractors to
system variables), unpredictable system perturbations, and emergence, or the self-
organizations of system components (Zadeh 1976).

Holling et al. (2002) asserts that both current and alternative system states were
never static and underwent constant change, based upon their research on how
ecosystems with a certain biologically-favored function, structure, identity and/or
feedbacks were able to retain those elements subject to various perturbations. He used
the term resilience to describe the capacity for biological systems to remain within the
thresholds necessary to retain such favored elements, while at the same time adapting
to ever-changing environmental conditions (Pendall et al. 2010). Though Holling’s initial
inspiration for theorizing about resilience were the complex ecosystems of boreal
forests, with their disturbance mechanisms, species regime shifts, and cycles of renewal,
his influential work quickly prompted interest in conferring his theorized principles of
ecological resilience to human systems (Gunderson 2000; Bhamra et al. 2013;). The
resulting multi-disciplinary study of social-ecological systems (SES) examines the
feedback loops and interdependencies of linked human and natural systems,
particularly in order to identify and explain the various behaviors, structures,
relationships and processes that humans employ to build resilience to socio-ecological
hazards.

A common thread which runs through the elements of resilience identified under

the SES paradigm is the importance of adaptation to change, a quality seen by ecologists
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as crucial to the navigating continuous cycles of renewal and recurrent disturbance
mechanisms. While some adaptive capacities of human systems are identified as
physical qualities or structural characteristics (which may be seen as resistant to the
effects of disturbance mechanisms and environmental hazards), the SES perspective
highlights capacities in terms of the strategic behaviors, choices and relationships
established by humans which enable direct interaction with hazards while lessening the
risk of those hazards pushing human systems into an unfavorable state. This is in line
with ecology’s assumption of inevitable interaction between organic systems and
environmental hazards. Further, this view provides SES scholars theoretical space for
explaining certain human behaviors which had heretofore seemed enigmatic (especially
in academic psychology), such as intentional settlement in flood-prone areas (James and
Hall 1986), willingness to allow infrastructure to fail during an extreme event (Brinn and
Greaves 2003), and ‘giving up density’ in certain resources as a tradeoff to exploit new
resources (Morgan and Brown 1995).

The SES paradigm devotes considerable attention to the adaptive renewal cycle,
a heuristic model meant to depict the cyclic patterns of biological potential, growth,
disturbance and reorganization which defines the SES conceptual model of ecological
systems. Figure 1 depicts the adaptive renewal cycle, showing how biological agents
adjust their strategies during four conceptual stages, and how the level of agent

connectedness and potential relate to these four stages. Recognizing that multiple
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Figure 1. The adaptive renewal cycle within the Socio-Ecologic Systems (SES) paradigm
depicts 4 thematic Quadrants (and related biological strategies) and shows the
relationship with ‘connectedness’ (x axis) and ‘potential’ (y axis) (Berkes et al. 2003)
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Figure 2. The structure of feed-back and feed-forward influences among multi-level
renewal cycles constitutes one of the mechanisms by which complexity is introduced
into such systems. Nested cycles at the micro, meso and macro level may be
interpreted as representing individual-, community- and government-level processes,
respectively (Berkes et al. 2003)

28



cycles of growth, disturbance and reorganization may be acting on an ecological
simultaneously (but at different spatiotemporal scales), SES theory uses another
heuristic depicting multi-scalar structures of adaptive renewal cycles. Operating
simultaneously, the processes at each scale are assumed to influence each other
through feedback loops. Figure 2 depicts these nested structures and feedback loops, at
a micro, meso and macro scale (interpreted here as perhaps representing the individual,
community and government level within a human socio-ecological system) which can be
associated with fast, medium and slow change, respectively. SES identifies a crucial
consequence of this nested feedback structure as the idea of panarchy, in which system
agents/processes at one scale may influence (or be influenced by) agents/processes at
other scales; this being one of the mechanisms by which non-linearity, uncertainty and
surprise are introduced into complex systems.

Scholars across several disciplines have attempted to formalize the properties
which distinguish complex systems from other types of conceptual models within
broader systems science, often operationalizing the properties to suit the researchers’
discipline (Zadeh 1976; Sterman 2000; Larsen-Freeman and Cameron 2008;). Berkes et
al. (2003) identify five attributes of complex systems in the context of SES theory:

1) Non-linearity: The various (and often unpredictable, counter-intuitive or
surprising) co-influence among system variables at different levels (nested feedback and
feed-forward relationships) necessitate descriptive techniques that combine qualitative,
possibilistic statements with quantitative, probabilistic ones. As such, mathematical

equations which describe complex systems rely on differential calculus to enumerate
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many possible stability domains or attractor states which could manifest given current
known system conditions.*?

2) Uncertainty: As a consequence of the non-linear mathematics of complex
systems, information regarding the changes in system conditions cannot produce
quantitative/probabilistic measures of 1) which attractor state/stability domain the
system is heading towards, 2) the rapidity which the system is moving towards such
state, or 3) the proximity in space or time to that state. This leads to inherent
uncertainty and surprise concerning the magnitude of condition parameter changes
and/or timeframe which could initiate a shift in system states.

3) Emergence: Within complexity science, system agents are not theorized to
passively experience changes to system conditions. Further, the (seemingly) random
physical forces which elicit changes in systems (either reinforcing the current stability
domain or pushing the system toward another attractor state) are not understood to
lead to random or unstructured relationships among system agents. Instead, changes in
system conditions are theorized to provide a platform for, or to enable, structured
behaviors and connections among agents manifesting in patterns of accumulating
change. Further, it appears to complexity scientists that this structured, accumulating
change (which is taken to be synonymous with growth) is directed or oriented toward a
certain stability domain — most often the system’s current domain. Resilience can be

understood to be an emergent property within a system, or an aggregate of emergent

2 pifferential equations, in this sense, start from current conditions and work ‘forward’ (on the left side of
the equal sign), generating possible ‘stability domains’ which the system could move toward. A related
tool within complexity science is the Fourier Transformation, which starts from current conditions and
works ‘backward’ (on the right side of the equal sign’), enumerating all possible (theoretically infinite)
equations which could make up and therefore lead to the current conditions.
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properties, directly referring to behaviors and connections among system agents that
serve to sustain/exploit the current stability domain during ‘normal’ conditions, or seek
to preserve as many structures of accumulating change (growth) as possible during
periods of (sometimes rapid, unforeseen or disruptive) shifts to other stability domains.
In this way, SES theory uses emergent resilience as a scaling concept to make the
seemingly infinite complexity of complex systems more manageable: it is simply an
overall characterization of 1) the extent to which agent behaviors and agent
interconnections are oriented to the current stability domain or another attractor state

'13) "and 2) to what extent such behaviors

(answering the question ‘Resilience for what?
and connections are configured to mitigate certain system forces (e.g. disturbance
mechanisms, environmental hazards) which threaten built-up growth structures or push
the system toward an unfavored state (answering the question, ‘Resilience to what?’**).
Crucially, Berkes et al. (2003) asserts that as a consequence of the nonlinearity and
uncertainty properties of complex systems, characterizations of resilience must
necessarily be qualitative. Resilience is seen to emerge at different levels of systems as
a tentative and constantly evolving defense against an uncertain future.

4) Self-Organization: SES theorists operationalize an interesting finding from
statistical physics on the overall behavior of highly dynamic, nonlinear (complex)
systems — that such systems seem to organize spontaneously and automatically around

so-called critical point attractors (Bak et al. 1987) — by asserting that all emergent

processes are also self-organized. Critical point attractors are interpreted as critical

B Carpenter et al. 2001
“ Ibid.
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points of instability (or opportunity) which system agents (through emergent processes)
will automatically organize around within the aforementioned adaptive renewal cycle
(Figure 1). Moreover, SES theorists extend finding from physics and control theory that
self-organizing behavior in simulated dynamic systems occurs regardless of the
parameterization of system variables — such behavior seems to emerge whether
variables are finely tuned throughout a simulation or even reset to random values. SES
scholars take this to mean that self-organizing behavior is inherently natural behavior
which occurs outside the confines of rigidly controlled laboratory experiments.

5) Scale: An important consequence of the concept of nested, multileveled
systems, each with their own emergent properties and each influencing processes at
other levels, is that analysis of such systems should be conducted simultaneously at
different scales, including the micro, meso and macro levels. In discussing scale in
complex systems, SES theory returns to the core focus of the paradigm: how human
social systems are affected by and influence natural systems (and vice versa), and how
humans can achieve environmental management outcomes and build resilience to
natural hazards. When problems of biodiversity conservation, for example, are
considered, it becomes apparent that solutions at the genetic level can be quite
different than those at the species or ecosystem level, and that actions taken at each
level influence all others through feedback loops (Gunderson and Holling 2002). This
finding highlights the importance of multi-scale analysis for effective policy and

management decisions.
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2.2.4 The Shift of Focus From Community Vulnerability to Community Resilience

As previously reviewed, inquiry into human disaster resilience began within
ecology and resource management in the 1970s, drawing inspiration from observations
on how systems of organisms cope with and respond to environmental disturbance
mechanisms (i.e. hazards) and/or overwhelming extreme events (disasters) (Paul 2011).
Spurred by early concern for the potentially negative biodiversity effects of climate
change, this research, proceeding under a systems theory praxis, attempted to describe
and model the various preventative and alleviative structures deployed by an ecologic
system to prevent failure as a result of interaction with an extreme event (Holling 1973).
Led by Holling (who argued that resilience, coming from the Latin resilio meaning ‘to
bounce back’, was the appropriate overarching term), ecological resilience enjoyed
continued theoretical development through the 1990s, when its focus on biophysical
attributes such as functional diversity, component redundancy and damage resistance
mechanisms began garnering attention of the larger hazards research community.

The policy recommendations of this research community had, until the late 20"
century, followed the general top-down theme of encouraging government-led
interventions into the drivers of vulnerability (Paul 2011). This focus on vertical hazard
adjustments, originally championed by Gilbert White (1945) and embraced in
government during the ‘Civil Defense’ era of the 1950s and 1960’s, was further
stimulated in the 1990s by several major national and international disaster mitigation
initiatives, which challenged governments at all levels to reduce populations’ risk to

death, injury and economic loss from natural disasters. Most notably, the UN General
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Assembly’s declaration of the 1990s as the International Decade for Natural Disaster
Reduction (IDNDR) prompted a broad refocusing of research agendas toward supporting
official organization and administration of economic development, hazard
preparedness, and response/recovery programs (Montz et al. 2003). In this
atmosphere, US government interest and funding of hazards/vulnerability research
(with its strong tradition of identifying opportunities for government-led adjustments)
outpaced related work in the ecologic resilience tradition (which focused on what makes
organisms resilient to extreme events) (Paul 2011).

However, in the wake of Hurricane Katrina in 2005, the emergency management
policy community has recently shifted its focus to identifying and analyzing factors
which generally make communities more resilient to any environmental hazard. As
evidenced in the National Science and Technology Council’s 2005 reports on the ‘Grand
Challenges of Disaster Reduction’, this policy realm is focused on characterizing and
fostering community resilience, under the assumption that if resilience can be
increased, communities will be more likely to withstand or recover from an extreme
event. At the federal level in the United States, this shift has found institutional
acceptance in the creation of the Office of Resilience within the National Security
Council. Here can be discerned an ‘official’ opinion, at least in federal emergency
management policy circles, of the direction hazards research should take - instead of
research which is oriented to fixing vulnerabilities, federal policymakers are currently
preferential to research which can help build resilience (Cutter et al. 2010). Many

academics whose publications are directed at policy audiences have duly noted this
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emerging trend and have refocused their research agendas accordingly, to the point
that resilience research is currently viewed as particularly trendy (Manyena 2006;
Pendall et al. 2009; Reghezza-Zitt et al. 2012). This has in turn brought previous
paradigms of community resilience, such as the socio-ecological resilience perspective
of Holling, back onto the radar of geography, with new conceptual frameworks of
community disaster resilience commonly integrating concepts such as redundancy,
coping capacity and adaptive learning (Tierney and Bruneau 2007; Gunderson 2010).

It is worth noting that the concept of community disaster resilience is
approached differently between the quantitatively-oriented researchers and human
geographers (influenced by political ecology, sociology, etc.). In what may be termed a
structural paradigm of resilience within the quantitative camp, community resilience is
often defined as an outcome of aggregated baseline system states which, if present in a
community, tend to create resistance to system disruption and/or allow efficient return
to normalcy. This research is often concerned with benchmarking, for example, a
community’s road infrastructure redundancy to characterize evacuation potential, or
analyzing a local EMT district’s medical supply contingency plans. This structural
approach often heavily utilizes spatial data in a GIS environment, sometimes including
data from remote sensing systems to infer system states. On the other hand, the
human geography camp may be seen to take on a more functional view, often framing
community disaster resilience as a multi-scale process (systems within systems) which
continually effect resilience. As a paradigm which focuses on process rather than

outcome, this functional approach often analyzes the spatiotemporal change of
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demographic variables which are known to influence resilience, such as community

diversity and employment sector dependence.

Table 1. Differences between two broad paradigms of disaster resilience

Resilience is framed as an outcome Resilience is framed as a process
Focused on benchmarking system Focused on analyzes multi-scale
states (redundancy, contingency, etc) processes (systems within systems)

that affect community resilience that affect community resilience

Often utilizes remotely-sensed
environmental data and spatial
statistics in a GIS environment

Often utilizes demographic variables
as indicators of resilience

Common in urban planning, Common in geography, social
architecture & civil engineering psychology & ecology

A new integrative conceptual framework of community resilience, pioneered by
researchers at the Hazards and Vulnerability Research Institute at the University of
South Carolina, has been proposed to bridge the theoretical gap between the structural
and functional viewpoints (Cutter et al. 2010). Termed the Disaster Resilience of Place
(DROP) model, it places emphasis on the antecedent conditions of a community’s social,
natural and built environments, which can in turn be analyzed as ‘systems within
systems’ that are continually evolving. When these baseline antecedent conditions
interact with a hazard event, the characteristics of a community’s short-term coping
mechanisms and long-term absorptive capacity, which themselves can be analyzed as

system states, determine whether and to what extent the hazard event becomes a
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disaster. The DROP model places importance, regardless of the actual outcome of the
hazard event, on whether or not a community demonstrates learning behavior from the

event in the form of mitigation and preparedness measures. This

Figure 3. Heuristic Representation of Disaster Resilience of Place (DROP) Model
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Source: Hazards & Vulnerability Research Institute, Cutter et al. (2005)

creates either a positive or negative feedback loop in which the strength or weakness of
mitigation and preparedness becomes part of the antecedent conditions to be tested by
the next extreme event.

The DROP model has provided an exciting chance to integrate methods and
perspectives from across the social and natural sciences to characterize community
disaster resilience, as it recognizes the existence and importance of complex feedback
mechanisms among the various components of resilience. However, recent applied
research which identifies the DROP model as its conceptual framework often selects
measurement methods (such as simple additive/aggregate indices) which fail to account

for mutual influence and cause-effect relationships among these components. Such
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studies are also prone to relying disproportionately on individual-level variables, often
derived from Census data in the United States, to represent community-level processes,
qualities or dynamics. Further, there exists in current geographic community resilience
research a tendency to select study units which aggregate variables to large,
heterogeneous spatial units, a practice which may hide or mischaracterize the
variability of resilience within specific places. Each of these identified methodological

shortcomings will be examined individually.

2.3 Geographic Indices of Resilience

Conceptual models such as indices of socioeconomic and environmental
variables serve an important role in helping many disciplines to understand natural
hazards, disasters and resilience (Tate 2012). In cases where many variables can be
identified to make up the process to be modeled, aggregated or additive indices have a
long tradition of use in the social and natural sciences (Parris and Kates 2003). Figure 4
depicts an example of a composite index with two sub-indices (Social and Economic)
and example component indicators/variables. However, the dominant methodological
choices for constructing and analyzing such indices does not take into account the
interrelationships and co-influence among the demographic and socioeconomic
variables commonly utilized in resilience studies (Hiete et al. 2012; Rufat 2013). In fact,
the most common forms of index construction (additive indices of the deductive,
hierarchic and inductive form as shown in Figure 5) retain the mathematical assumption

of independence among variables (Jones and Andrey 2007;
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Figure 4. Example of composite index construction
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Figure 5. Structure of 3 Common Additive Indices (Tate 2012)
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a) The deductive index assumes that component variables are ontologically discrete,
independent of each other, and collectively representative of all system processes.
Variables can be thought of as building blocks which, when assembled, comprise
100% of the system being analyzed

b) The hierarchical index assumes the same as the deductive, with the addition of
categorizing sub-indicators into composite categories.

c) The inductive index assumes that some system variables may exhibit collinear
statistical properties, and attempts to decorrelate an initial set of variables into a
smaller set of factors which are as statistically distinct as possible.
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Hiete et al. 2012). As an analytic tool with a long history of use within systems science,
the basic additive index attempts to model the totality of processes within a system by
compiling all identifiable system variables (sometimes sorted into distinct categories)
into an aggregate index (Jones and Andrey 2007). Table 2 depicts stages necessary to
construct and analyze an additive index, along with the options geographers commonly

select for such indices in current disaster resilience research.

Table 2. Stages of Additive Index Construction

Vulnerability/Resilience dimensions to

Conceptual include and their literature SoVi(Cutter et al. 2005), DROP
Framework P Model (Cutter et al. 2008)
justifications
Structural Design Organization of indicators within index PCA-Corrected Hierarchical
Analysis Scale Geographlc_ ag.gregatlon level of US Counties or C(?nsus MSA
indicators geographies
Variable/Indicator Variables and their proxy indicators Majority based on decennial
Selection used to populate sub-indices Census and ACS data
Multivariate statistics; PCA
Measurement Error | Discuss accuracy and precision of data used to eliminate collinear
variables
Transformation Proxy indicator representation Varies

/manipulation into variables

. .. Standardization of variables to a . .
Normalization Indicators normalized to [0-1]
common measurement scale

Weightin Definition of importance of each Equal Indicator Weighting
ghting variable and each sub-index Preferred
Aggregation Combination of sub-indices into Equal Sub-Index Aggregation
geres composite index Preferred
Representation Mapping analysis results Regional-Level Maps

Note: Since variable independence is assumed in additive indices, a stage for identifying and
accounting for variable inter-influence is rarely prescribed, and usually omitted in geography.
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When utilizing any form of additive index, researchers are free to decide to correct for,
ignore, or otherwise account for the statistical similarity (co-linearity) inherent in
component variables (although the dominant standards of rigorous scientific discourse
dictate correcting co-linearity through internal multivariate statistical methods). In the
case of the inductive additive index, statistical similarity among variables is addressed
most often by eliminating variables not retained in the 1* component of a principle
component analysis (PCA). The eliminated variables are assumed to be redundant, and
therefore less-informative and non-essential to the overall system model (Tate 2012).
While such approaches have proven sufficient in modeling physical systems and
mechanical processes, the extension of the same methodology to model human systems
has been identified as highly problematic by researchers in the social sciences (Zadeh
1976, Barnett 2008), many of whom argue human systems are better described by the
principles of complexity science (the study of highly dynamic, nonlinear, and complex
systems). As mentioned, within complexity science, variables in dynamic systems are
assumed to interact in non-linear (or even chaotic) ways, especially when examined at
small (local) scales (Stern 2000, Berkes et al. 2003). Consequently, the interactions
among many types of dynamic system variables resist quantitative description.
Complexity scientists have explored ways to use qualitative or semantic descriptions in a
knowledge-based approach to model these types of variable interactions (e.g. Zadeh
1976). Further, complexity science identifies an emergent (self-organizing) property of
variables in such systems, one consequence of which is that variables cannot be

assumed to be redundant, non-essential or non-informative based on solely their
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covariance (Berkes et al. 2003), which is the statistical property used in a PCA analysis
(Abdi and Williams 2010). Also, complexity science observes that system variables may
not be ontologically pure, unambiguously distinguishable from one another, or able to
be parsed into discrete categories.

Lack of account for variable inter-influence when using additive indices to
analyze disaster resilience in human systems demonstrates a lack of connection with
multidisciplinary understandings of the complexity and non-linearity of the components
of resilience, especially as illustrated within the SES paradigm of ecology. Luckily,
methodological tools can be found within complexity-inspired disciplines which attempt
to take into account the extent of variable interrelationships/co-influence,
accommodate uncertain, vague or qualitative data, and integrate expert knowledge.
One such tool is the Decision-Making Trial and Evaluation Laboratory (DEMATEL)
method for uncovering both cause-effect relations and the most influential indicators
among a large set, based on expert-system evaluation of indicators and applications of
digraphs (Fontela and Gabus 1976). The core of the DEMATEL approach is to quantify
complex indirect relations among variables based on perceived direct relations.
Another is the analytical hierarchy process (AHP) (Saaty 1980, Zahedi 1986). Based on a
digraph method complimentary to DEMATEL but geared toward capturing indicator
preference in the expert-system phase (Hiete et al. 2012, Wu et al. 2012), AHP has
proven useful for providing index weights based directly off expert opinion (Saaty 2001,
Saaty 2008). Methods such as these not only account for feedback relations among

variables, but they also provide decision makers with information about the causal
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nature of certain variables. This is a crucial aspect, because emergency management
policy is more likely to have an impact if directed toward causal variables, or those
which exert the most influence (Hiete et al. 2012). Further, these methods do not rely
solely on the internal statistical nature of index variables to determine their information

potential, and it eliminates the risk of rejection of important variables via a PCA analysis.

2.4 Accounting For Uncertainty in Measures of Community Resilience

Complexity science and complexity-inspired academic paradigms have generally
tended to resist absolute or rigid definitions of the phenomena they seek to describe.
This is because the phenomena studied are ontologically vague and resist discrete
classification. Consider four proverbial dimensions of human society — social, economic,
political and cultural. Complexity scientists see these terms as fuzzy, in the sense that it
is difficult to unambiguously assign the many identifiable components of human society
into these four dimensions (to which dimension would one assign the component of
religion, for example?). Add to this the complicating factor that complexity science sees
components influencing each other through feedback mechanisms, and one begins to
see the problem of crisp classification. There have been many different approaches to
address this problem. Lofti Zadeh, an influential computer scientist, created a
complexity-inspired system to transform quantitative variables into linguistic (natural
language) ones, and characterized the relations between variables using conditional
statements he termed fuzzy membership functions. Formulated during a period of high

academic angst over the inability of control theory, mechanistic systems science or even
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the laws of thermodynamics to explain human social systems, Zadeh’s (1976) proposed
framework stimulated immediate interest in the quantitative disciplines, and now
enjoys widespread application in the applied social sciences (especially in business
intelligence-related fields such as supply chain management). SES theorists in ecology,
who as demonstrated above tend to gravitate toward and communicate their worldview
through heuristic models (see Figures 1 and 2 depicting the adaptive renewal cycle),
tackle the issue by deconstructing concepts which are difficult to quantitatively define,
or which are affected by feedback, into constituent scale levels. Importantly, SES
theorists stress that the problem of ontological vagueness and complex feedback
relations can be effectively addressed within a heuristic context only if there is
balanced, simultaneous and holistic analysis conducted at all scale levels of the
deconstructed concept (Berkes et al. 2003).

What does all this have to do with community resilience? As it turns out, both
‘community’ and ‘resilience’ are ontologically vague terms with many undefined or
(quantitatively) undefinable components; put together, they signify a particularly
troublesome concept to concisely, unambiguously or authoritatively define. Many
‘paradigms’ of definition of these terms exist in academia, and some reviewers dedicate
whole articles to plotting the lineage of their usage among different disciplines (e.g.
Manyena 2006, Brand and Jax 2007). Nonetheless, a standardized definition of
resilience, community, or community resilience has not materialized. A palpable sense

of frustration over this situation often arises in the literature:
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Despite more than three decades’ worth of collective research experience on the
concept, resilience still means different things to people in different fields ... The
result is a confused lexicon of meanings and approaches to understanding
resilience to external shock or natural hazards.

—Zou et al 2012 p.22

Looking back, one wonders if perhaps the social and psychological sciences

should have created their own language, free from inherited meanings, but the term
[resilience] is probably here to stay... The concept of “community resilience” raises the
same concerns.

— Norris et al 2008 p.128

...The definition of resilience, however, should be independent of the object of

analysis and, in the interest of facilitating the formulation of compatible policy goals in
both the public and private sector ... the same definition should be used in all decision-
making processes. Establishing a uniform definition is critically important.

— Argonne National Laboratory 2012 p.11%

The difficulties arise when, little by little, the polysemy [of resilience] seems to
legitimize a semantic blur that creates theoretical and operational dead ends. In view of
occasional contrary injunctions, the concept ends up being “inoperative”, being reduced
to some sort of unattainable discursive utopia to the point where some researchers have

considered the concept too vague to be used in order to prevent disaster.
Reghezza-Zitt et al 2012, ‘What Resilience is Not: Uses and Abuses’, p.1
Even though a completely satisfactory solution to the ontology problem is not
provided by either fuzzy sets or scalar heuristics (Markusen 1999; Wilson 2012), some
type of conceptual abstraction is probably necessary to reduce the complexities of
concepts such as communities and community resilience, especially to facilitate

research which attempts to measure these concepts (Tate 2012). A tentative parallel

can also be drawn between the additive index and the heuristic approach of SES, in that

> After chiding academia for not coming up with an authoritative definition, and after an impressively
broad review of definitions in the literature, Argonne scientists come up with a rather underwhelming
official one: “The ability of an entity - asset, organization, community, region - to anticipate, resist, absorb,
respond to, adapt to, and recover from a disturbance.” Policymakers may still wonder if the referenced
‘ability’ is an inherent attribute or the result of a process. They may also take ‘disturbance’ to mean
singular, fast-onset extreme events, and ignore slower-onset disturbance mechanisms in policy decisions.
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they both have the effect of deconstructing the larger concept of community resilience
into smaller components which can be analyzed by themselves or deconstructed to
further levels. The main difference is that geographers often deconstruct resilience into
categorical dimensions (Social, Economic, Institutional, etc.), whereas SES ecologists
deconstruct it into scalar ones (micro/meso/macro, or individual/ community/
ecosystem, etc.). Thus, an opportunity may exist for better integrating the human
dimensions of resilience while better accounting of the multiple levels at which resilient
characteristics and processes operate. This is a needed improvement, as the
recommended balancing of multi-scale resilience indicators is currently lacking in
geography. Current geographic studies which, as mentioned, tend to operationalize
Cutter et al.’s DROP (2008) or SOVI (2003) conceptual models, disproportionately rely on
individual and household-level variables gleaned from Census data. Figure 6 shows an
example from Cutter et al.’s (2010) highly cited additive index of resilience indicators
based on the DROP model; highlighted are variables judged to represent individual or
household-level qualities (19 out of 36 variables). It should be noted that eight of the
remaining variables do reflect more meso-level, community-scale characteristics; but
these focus on structural and institutional indicators (e.g. the ‘Evacuation Potential’
indicator of ‘principles arterial miles per community’ and the ‘Social Capital — Advocacy’
indicator of ‘number of social advocacy organizations per 10,000 population). Less
attention is paid to larger-scale, government-initiated processes, or the locally-felt
benefits of large-scale business activities which may boost the level of resilience of

several communities. Least represented of all are community-level variables actually
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indicating collective, self-organized action undertaken by and for community inhabitants
in response to the perceived specific environmental hazards and threats.™® Though it
may necessitate sourcing and integrating a diverse set of place-based indicator data, a
more balanced and multi-scalar approach to variable selection would enhance applied

community resilience studies in geography.

® These are probably the least-represented because they are the most place-dependent. They arise from
the historic, cultural, and every other human context of specific communities, are applied to counter
place-specific environmental hazards, and exhibit wide spatial variability between communities in
different contexts. Consequently, they are the least likely to ‘scale up’ to larger-area levels of resilience
analysis, such as this example (Cutter 2010) which characterized the community resilience of counties in
the Southeastern U.S. The authors of the index ran into the same problem when considering how to
include the ‘Ecological’ dimension of resilience as recommended in the DROP model (with candidate
variables including wetland acreage, percent impervious land cover, biodiversity, erosion rates, number of
coastal defense structures, etc.). In the end, the authors did not include an ‘Ecological’ dimension, stating
that the wide physical variability of the large study area made many ecological indicators inapplicable
(Cutter 2010). More problems associated with large-scale resilience studies are explored in the next
section.
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Figure 6. Community resilience indicators utilized by Cutter (2010)

Cafegory I Variable ] Effect on | Jushificafion Thafa Somrce
Reulience Scale of Indicator
¢
%‘- Rano of the pct. populanon wnth HNegaove Noms et al. 2003 U5, Census 2000
equity cr.al.‘lo mwﬁgnmﬁpq. Momow 2008 Indiv.fHH
Age Pemcent non-elderly popul Posifive Momow 2008 ULS. Census 2000 |I"Idi'\.l’.fHH
Transporiation Percent populahon with a vehicle Positrve Therney 2000 ULS. Census 2000 Indi
access ndiv./HH
Commumcaton | Percent populanon with a relephone Poaove Colten etal 2008 | U.S. Census 2000 Indiv.,-"HH
Por Mormow J0US UsS. G 2000 B
m% . popalizas oot e m Indiv./HH
T aeer— s T e G T | US T 0 _
semsary, physical, or mental Indiv./HH
| Health coverape | Percent populafion with health Positive Heinz Center 2002 | U S Census JO00 Indiv ,"rHH
INSUTAnCe COVETAZe §
Economic Resihence
Housing capial | Percent bomeownership Poaove Nommsetal 2008 | US. Census2000 -
Cuner eral. 20033 Indiv./HH
wwﬂ Fosune Tieroey U5, Census 2000 Indiv./HH
L Compated Tom | .
ome and cosfBcient Positive Nomis et al. 2008 Umzm Community
Simgle sector Permcent population not employed in Positive Berke & US. Census 2000 Indi fHH
unplu;'mml farming fishing, forestry Campanella 2006 naiv.
i & EXTACOVE i i Adzer 2000
Employment Pﬂr__egtfclmlklabnrﬁmu Positrve NER.C 2004 ULS. Census 2000 Indi\r.!HH
Business size % to small busmesses Ponove Norns et al. 2008 Busmess : :
Pamerzs (NAICS) Institutional
Health Access Number of physicians per 10,000 Positive Norns etal. 2008 | US. Census 2000 Indiv.fHH
populaticn
fional Resilrence
Mitigation Percent population coversed Posit Burby et al. 2000 FEMA H
uumh:mdmilir:glmpl:,: e Godschalk 2007 e Indiv./HH
Flood coverage Percent housing units covered by Poaifve Burby et al. 2000 ‘bsa nfipstat com Indi erH
Mumcrpal = expenditares Po Syives 3007 USA Countle -
m;rﬂ snve ] 7]
VIS fire. police. EMS 2000 Government
Smganon pamc m Fosiove Godshalk 2005 | FEMA.fov .
Community Rating System for Flood Indiv./HH
Polical Humber of governments and special | Hegative Fomss et al. J008 U5, Census 00T Government
Previcus Humber of paid disaster declarations | Positive Cumer et al FEMA gov
disaster 20082 Government
]
%—Wﬁ o E T B e e e :
Citizen Corps programs Community
fisgacion ol
. Percent population in Storm Feady Fomitive P Stonzeady noad. i
c o gov Community
Infrasormcire Resilience
Housing type Percent housing units that are not Poaifive Cutter et al. 2003 ULS. Census 2000 B
snchils hasnas Indiv./HH
Ehﬂﬂlc_zﬂx Percent vacant renfal umts Fositive i) TS, Census JHA |I"Idi'\.|’.,||fHH
capacity population ¥ e Scanlon 2007 : :
- o abd com Institutional
ATcess] Frinciple anenal miles per square Positive NRC 3005 GI5 denved Gom .
evacuation mile Hational Adas.gov Community
potential
Housing age Percent housing units not bailt Positive §alen T95% City and County i
‘before 1970 and after 1994 Databook 2007 Commumty
Sheltenng needs | MNumber of hotels/motels Square Positive Tiemmey 2009 County Business N R
mile ks pe Pamerns (NAICS) Institutional
2006
Recovery mﬂ'ﬂ'nbu of public schools per square | Posiive llloou:n ngms Cmas usgs.gov Institutional
Communy Caputal
&t international Bon i e Momow 2008 Census.Eov P
pieeir S g e w £ Community
Place Percent population borm in a state Positve Vale & US. Census J000 | Indiv J"HH
atachment that siill resides in that state i 1la 2005 "
Pohncal Percent voter paricipation in the Positive M 2008 and
enpa t 3004 election " e Dc{::yﬁnnk 3007 Indiv./HH
1l capital- Nusmber of relimous adberents per Positive Morrow 2002 Asm, of Relipion )
relipion 10,000 populanon Murphy 2007 Data Archives Community
Social capital = | Number of civic ofganizations per Positive Morrow 2008 County Business
avic 10,000 population Murphy 2007 Patterns (NAICS) Institutional
mvolvement 2006
Social capital - | Mumber of social advocacy Positive Murphy 2007 County Business
organizanens per 10,000 populaton lﬁ?ﬂ (HAICS) Institutional
Innowvation Percent population employed 12 Positive Nomsetal 2008 | USDA Economic -
creative class Research Service Community

48

36 Total Indicators: Individual/Household: 19(53%) Government/Institutional: 9 {25%) Community: 8 (22%)




2.5 The problem of scale

What is the proper scale of analysis for an assessment of community resilience?
Judging from the wide-ranging literature on disaster resilience, there is little agreement
on this issue. Every areal unit of analysis from a country down to city Census blocks has
been used as the geographic unit of analysis in research on community-level resilience
(Godschalk 2003; Chan and Wong 2007, Norris et al. 2007; Ebert et al. 2009; Downes et
al. 2013). A typical approach is to characterize community disaster resilience at the
regional level, spatially aggregating study variables into counties or U.S. Census
metropolitan statistical area (MSA) geographies (an example of which is highlighted in
Figure 7). Without much rationale for this choice of areal unit of analysis, the output of
many studies is simply maps purporting to show the level of community disaster
resilience over relatively large areas. While it may be difficult to pinpoint the rationale
behind these assumptions, there should be little doubt that the outcome is important
for stakeholders in emergency management and disaster preparedness who look to
academia for advice on the best way to confront the issue of community disaster
resilience (Cumming et al. 2006). Either the spatial scale chosen to characterize
community provides an acceptable level of actionable information or it does not.
Likewise, either the chosen scale reflects the current and probable future scale of
community resilience intervention, or it does not. As previously noted, there has been a
change of tone of federal-level emergency management policy and a shift of focus from
social vulnerability to community resilience. It is also observed that researchers and

professionals outside of geography who publish articles on the subject of community
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Figure 7. Example of community resilience research with large, heterogenous study
units
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This map of nation-wide community resilience at the Census Metropolitan Statistical Area (MSA)
level, based on the Resilience Capacity Index (RCl) conceptual framework (UC Berkley 2013),
utilizes a composite index of ‘Socio-Demographic’, ‘Community Connectivity’ and ‘Regional
Economic’ indicators. The map portrays the St. Louis MO-IL MSA (consisting of St. Louis City, St.
Charles, Jefferson and St. Louis counties in Missouri, as well as Jersey, Calhoun, Macoupin,
Madison, St. Clair and Monroe counties in lllinois) as having a ‘Very High’ level of community
resilience. This portrayal, and derivative interpretations of the map, suffer greatly from the
ecological effect, a type of mathematical fallacy in which aggregate-level statistics cannot be
used to characterize lower-level components. An analytic conclusion that communities in St.
Louis City, MO and East Saint Louis, IL, being part of the larger MSA, are also very highly
resilience is untenable both logically and in point of fact. Likewise, a conclusion that most
communities in southern California exhibit very low levels of resilience would be equally
unsound. Though most geographers would probably agree this approach conceals and
mischaracterizes the spatial variability of indicators within the St. Louis MSA, large-area
aggregation of resilience indicators is still common practice in the discipline. Not only is there
risk that misinformation associated with the spatial aggregation could attenuate into the policy
decisions of state and federal-level emergency managers, the scale of analysis does not match
the local-level and place-specific qualities of community resilience. In the worst case, the map
may lead policy makers to ignore areas with the highest need; in the best case, it probably
doesn’t tell policy makers anything they don’t already know.
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disaster resilience are increasingly choosing a local spatial scale in their studies. Downes
et al. (2013) systematically examines the spatial scales of 106 recent community
resilience studies spanning 35 social science disciplines, finding that 46.6% were
conducted at the local scale, 21.9% regional, 26.0% national/continental, and 5.5% at a
global scale. This thesis’ examination of recent community vulnerability/ resilience
studies outside of geography (e.g. in public health, emergency management, civil
engineering and regional planning, etc.) concurs with this assessment (c.f. Morrow 1999,
Kulig 2000, Kendra and Wachtendorf 2007, Wolf et al. 2010, Geis 2000, Hall and Zautra
2010, Jabeen et al. 2010, Flanagan et al. 2011, Boon et al. 2012, Teo et al. 2013, Cohen
et al. 2013, Chandra et al. 2013). This pattern lends credence to the argument that the
future scale of community resilience intervention will be local and the dimensions of
resilience studied will be place-specific.

A more a fundamental justification against large-scale community resilience
studies can be found in early work in physics. Nearly a century ago, the field of statistical
physics provided the mathematical argument against large-scale characterization of
local-scale phenomena. This occurred as an important early discovery from the
tradition of physical systems science, in the observation that system component
variables tend to display increasing levels of random interaction as one examines the
system at smaller scales, which may lead to wide local variations in both the attributes
of variables and the relationships between variables. For example, while a global
pattern of energy balance may exist where incoming radiation from the sun is equaled

by emittance from the planet, there are extreme local variations on energy budget.
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From this, climatologists know better than to infer the state of the global energy budget
by studying data from just a few sites; conversely, they would not attempt to infer the
characteristics of specific locations using only data aggregated at large spatial scales. By
the 1950’s, this latter concept was codified as the ‘ecological effect’ to the statistical
analysis of data in the social sciences (most notably by Robinson 1950 and Durkheim
1951). The essence of the ecological effect is that characteristics of individuals, or
individual locations, cannot be inferred from aggregated data, and that correlations
between variables can be different depending on the scale at which they are analyzed
(Subramanian et al. 2009). Practical examples of this effect and the dangers of making
assumptions based on it abound in the social and natural sciences literature (Blakely and
Woodward (2000) provides illustrations in epidemiological research). For example,
while the sum total of economic indicators in a given country may point to a net gain in
standards of living, there probably exist pockets of quite substandard living conditions,
as well as superior conditions and anywhere in between. In this situation, if one is
tasked with reporting on the state of community standard of living for a particular
location, it would seem unwise to use data aggregated to large-area spatial units, owing
to the inherent variability of individual communities within each unit. Unfortunately, as
evidenced by Figure 7 above, these methods are currently employed in some
geographic studied which measure community disaster resilience (see also the scale
chosen in Borden et al. 2007, Cutter et al. 2010). Based on the above findings, a

paradigmatic shift toward the study of specific small-scale localities is needed to bring
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geographic studies of community disaster resilience in line with the current and future
information needs of emergency managers.

Neither an abandonment of the additive index as an analytic tool*’, nor a
wholesale embrace of complexity science is recommended here. When community
resilience analyses are produced and handed to emergency managers, simple
aggregated indices of readily available socioeconomic data can in fact lead to saved lives
and property during a disaster. Likewise, an analysis of processes that lead to
community resilience based purely on current understandings of complexity science
would almost certainly fall short of the emergency management community’s
expectation of clear, actionable information —in the worst case, it could actually lead to
inaction (Markusen 1999). What is recommended is a balanced approach that attempts
to integrate key findings and methods from the wide range of disciplines discussed in
this review, thus better aligning with the current geographic ideals of transdisciplinary
linkage, methodological pluralism and multi-perspective reflexivity. The aim is to
provide emergency managers a more holistic understanding of issues such as disaster
vulnerability and resilience, thereby reducing the uncertainty in the question of which
communities are more or less resilient; an uncertainty which may have heretofore been
elevated by geography’s adherence to methods derived from a linear-oriented

conceptual framework.

7 In fact, a modified weighted index to measure disaster resilience for St. Louis City neighborhoods will be
used in this thesis, but will employ methods to characterize the complex influence among variables and to
integrate local expert knowledge into the variable weighting procedure.

53



CHAPTER 3. METHODOLOGY

In view of the above findings and recommendations, a new approach to
measuring community disaster resilience is proposed. The utility of the developed
approach is then demonstrated with an analysis of community resilience conducted at
the neighborhood level in the City of St. Louis, Missouri. The methods outlined here
represent a novel attempt at operationalizing concepts from complexity science and
non-linear systems theory toward measuring disaster resilience at the community level
within an urban context.’® More importantly, the chosen approach is intended to
adhere more explicitly to promote the geographic objectives of transdisciplinary linkage,
methodological pluralism, and multi-perspective reflexivity.

This thesis advocates a place-specific framing of community resilience studies,
both in terms of scale as well as in indicator and variable development. It also proposes
that some measurement tools within complexity science are applicable to the
measurement of community resilience. While the selection of methods here reflects
this stance, they are by no means meant as normative, nor can they be assumed to scale
up to broader levels of analysis or be applied to other places without significant and

thoughtful modification. Measuring community resilience to disaster, perhaps more so

'8 Current research in the discipline shows an emergent similarity to the complexity paradigm but does
not self-identify as such and applies some methods seen as ill-advised by complexity science. Rufat (2013),
for example, distrusts the simple additive matrix, but also relies solely on the internal statistics of his data
to uncover clusters of vulnerable groups in a specific place. He was left to explain the drivers of
vulnerability as ‘the machine’ defined them. This application of remote sensing / spectral clustering
analysis methods should be encouraged, as it is clearly in the interests of methodological pluralism. But it
should be pointed out that unsupervised classification assumes no a priori knowledge of the study area
and trades this off for a high error potential. Rufat could have used methods which exploited his deep
expert knowledge of the study area (Lyon, France).
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than other qualities of human systems, requires methods that reflect the uniqueness of

the place and population studied.

3.1 Environmental Hazard Profile

The all-hazards approach to disaster mitigation stressed in recent research (c.f.
Cutter 2003) remains highly relevant and important, even though the scale of some
geographic studies precludes incorporation of place-specific environmental hazard
information. Therefore, in the context of small-scale resilience studies, it is proposed
here that a framework for the identification and characterization of environmental
hazards affecting a community of interest is included in all such resilience studies.
Luckily (and somewhat ironically), the United States federal government already utilizes
a good template for such place-based all-hazards profiles. The Federal Emergency
Management Agency (FEMA) has for decades provided incentives for local government
to conduct research on hazards in their jurisdictions and develop disaster mitigation
plans. For example, FEMA requires a written all-hazards mitigation plan for cities and
school districts applying for federal disaster mitigation grants and other assistance
programs. The required content for these plans, codified in the Stafford Act (42 U.S.C.
5165) and FEMA regulation 44 CFR 201, include: Community/County Profile (including
history, geography, demographics, governmental jurisdiction, etc.), Risk Assessment
(identifying and characterizing all environmental hazards known to exist within the
jurisdiction), City/County Capability Assessment (including health and public safety

infrastructure, emergency response capabilities, sheltering capacity, critical
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infrastructure assessment, etc.) and Mitigation Plan (identifying hazard mitigation goals,
objectives and strategy, key stakeholders, inter-agency coordination plans, etc.). Such
plans, where they exist, can provide important insight into the characteristics of
environmental hazards affecting certain cities, local leaders’ and residents’ perception
of those hazards, and the priorities for mitigation identified by the local government.
With this in mind, it is recommended here that, when available, all-hazard mitigation
plans submitted to FEMA by local jurisdictions are utilized in urban community resilience
studies for the purpose of producing a place-specific, locally sourced all-hazards profile.
Additionally, the comparative hazard assessment and perception information contained
in the mitigation plan, constituting a set of expert rankings, can be directly utilized to set
weights for environmental hazard variables in a vulnerability index. This practice would
be especially helpful in instances where the direct elicitation of expert rankings in

surveys or interviews proves impractical.

3.2 Combined Environmental and Socioeconomic Vulnerability Index

Though most community resilience paradigms now focus more on assets and
strengths as opposed to deficits or weaknesses (which are generally framed in terms of
adverse socioeconomic conditions), the vulnerability which these deficiencies can create
inside communities should not be ignored. In particular, following decades of work by
critical social theorists demonstrating that disadvantageous socioeconomic conditions
amount to hazards, geographers are rightly hesitant to cease accounting for social

vulnerabilities, especially in the urban context (Rufat 2103). Therefore, it is
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recommended that a vulnerability analysis phase be included in urban community
resilience studies, to combine environmental and socioeconomic hazards. Place-specific
environmental hazards data should preferably be gleaned from local expert knowledge
sources, as in the FEMA hazard mitigation plans referenced above. For socioeconomic
indicators and representative variables of vulnerability, a plethora of data sources exists
(King 2001, Flax et al. 2002, Cutter et al. 2003, Adger et al. 2004, Cardona 2005).
However, the selection of socioeconomic indicators and variable data should also take
advantage of the reporting of local experts, such municipal departments of health or
public safety, which often reveals the unique stressors and challenges faced by

communities in the area studied.

3.3 Resilience Index

An apparent, yet unexplained, methodological inconsistency in the shift of focus
from vulnerability to resilience in community disaster research is that the same
indicators and variables used to populate vulnerability indices are also commonly used
to populate resilience indices (see, for example, the variables utilized by Cutter et al.
2003 and Cutter et al. 2008). Given that the components of resilience are not typically
identical to (or opposites of) the components of vulnerability, a new system for
constructing separate vulnerability and resilience indices and apportioning indicators
into each is proposed. The principle followed for apportioning indicators is: if a certain
variable can be viewed as more of a deficiency, or as a process working against a

populations’ ability to cope with extreme events, it will be included in the vulnerability
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index. If the variable can be viewed more as a quality or process (especially an
endogenous, emergent process or intentional/collective action) which increases
community capacity to cope with extreme events, it will be included in the resilience
index. This dual vulnerability-resilience approach has advantages beyond that of
adhering to multidisciplinary recommendations for separating these concepts in the
analysis phase. It will also allow both metrics, once populated with variables and
parameterized, to be juxtaposed to characterize the relative agreement between the
degree of risk a community faces and the amount of resilience capacity put into play.
Therefore, a study conducted by this method can provide a characterization of both
absolute resilience (in a map depicting resilience ‘scores’ alone) and, more importantly,
relative resilience (rendered as a weighted suitability surface).

Also proposed in this thesis is a resilience index structure that divides indicators
into the sub-scales at which they can be perceived to operate: the micro (individual /
household), meso (neighborhood), and macro (government/institutional) levels. This
practice not only enables the balancing of multi-scalar resilience components as
recommended in the literature, but also permits emergency managers and community
leaders to analyze study outputs, such as thematic maps, according to their
organizational focus and/or level of jurisdiction. Indicators chosen to populate each
sub-level of the multi-scale resilience index can be sourced from a variety of studies that
have examined the dimensions of community resilience, including those focused on
business management (Bhamra et al. 2011), environmental science (Bahadur et al.

2013), public health (Cohen et al. 2013), social psychology (Windle 2011), econometrics
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(Chan and Wong 2007), geography (Renschler et al. 2010) as well as others. As in
vulnerability indices, variables chosen to represent resilience indicators should

whenever possible include place-specific data sourced from local expert reporting.

3.4 Determining Indicator Weights

Weighting of indicators in vulnerability and resilience indices has received a
variety of treatments in the literature, from equal-weighting schemes, to knowledge-
based ranking of individual indicators, to weighting schemes based on internal
multivariate statistics of indicators (Ratick and Osleeb 2011). However, Cutter et al.
(2010) argues for standardization of equal indicator weighting given that method’s
transparency and ease of understanding may be untenable due to the potential for
knowledge-based rankings to unveil indicator importance or preference for
management purposes. At the local scale at which this resilience study is performed,
and considering the level of enthusiastic stakeholder buy-in which such studies can
elicit, this potential is considered to be high. Therefore, a method for integrating local
expert knowledge and lay opinions of vulnerability and resilience indicator importance,
for the purpose of defining indicator weights, is warranted. The knowledge-based
approach has advantages over statistical methods in that perceived relations are taken
into account, whereas multivariate statistical methods are only able to evaluate the
relative importance between indicators inherent in the analyzed data (Nardo et al.
2005a). Also, relational statistics, especially when applied to variables in human

systems, are at risk to spurious correlations (Hiete et al. 2011).
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The analytic hierarchy process (AHP) can be extended to set weights for
individual indicators in both vulnerability and resilience indices based on qualitative
pair-wise comparison of indicators in a digraph. AHP is a robust decision support tool
originally developed within industrial engineering for using expert ratings to select
preferred means from a set of alternatives to achieve a normative production outcome
(Saaty 2008). Here, the AHP approach can be used to define the relative importance of
study indicators within an index; however, in this case the purpose is not to identify and
select out the most dangerous threat in the vulnerability index or most important
protection in the resilience index, but to retain the information regarding relative
indicator importance for the purpose of defining weights. In this context, the
‘aggregation of individual judgments’ approach to AHP (Aczel and Saaty 1983, Wu et al.

2010) is operationalized as follows:

A pairwise indicator comparison matrix (or a set of matrices if the there are two
or more sub-levels in the index to be weighted) is constructed. Indicators within their
respective sub-scale are assessed against each other as to their importance or relative
contribution to resilience within their respective subscale. The scale of quantified

judgment of comparative importance can be set from 1.0-9.0 according to Table 3.

Table 3. Quantitative Scale for Indicator Comparisons (Wu et al. 2010)

Verbal Judgment of i-j Comparison Numerical Rating

Of Overwhelming Importance 9
Much More Important

Of Moderately More Importance
Slightly More Important

Of Equal Importance

(S2 B <) IR NI 0o}
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Slightly Less Important

Of Moderately Less Importance
Much Less Important
Insignificant by Comparison

P N WD

Given a set of indicators indexed i and j, let Cy, C,, ..., C, represent the set of
indicators in a certain sub-index (such as the Socioeconomic sub-index of the
vulnerability index) and aj; represent a quantified judgment on a pair of indicators C; and
C;. The pairwise comparison matrix with n indicators is presented below, where a;;, for
instance, means the quantified judgment between C; on the first row and C, on the

second column:

1 ai; ... A1n

a 1 .. a
A=lag) = "2 . = ()

an1 an2 Anmax

To compute the importance for each indicator in terms of its comparative
contribution to the overall goal, AHP consists of three steps. First, values in each
column of the pairwise comparison matrices are summed. Second, the number of
quantified judgments aj; in the pairwise comparison matrix is divided by its column total,
which results in the normalized pairwise comparison matrix. Third, the average of the
elements in each row of the normalized pairwise comparison matrix is calculated. As a
result, these averages represent the weights of the indicators.

As a validation measure, AHP uses a consistency ratio to evaluate the
consistency of the pairwise judgments (Zahedi 1986). The first step is to use the
pairwise comparison matrix as shown in Eq. 1 to multiply the weights of the indicators,

specified as an nx1 matrix, computed in the third step of the above procedure. This
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results in a weighted sum vector for each indicator. Next, the weighted sum vectors are

divided by the corresponding weights for each indicator. Third, the average of these

values, denoted as Anay, is calculated. The consistency index (Cl) is then computed by:
Cl = (Amax —m)/(n— 1) (2)

where n is the number of indicators. Finally, the consistency ratio (CR) is computed as

CR = CI/RI, where Rl is the random index of a randomly generated pairwise comparison

matrix. Table 4 provides Rl values with different n. When CR is less than 0.10, the matrix

is considered to be consistent.

Table 4. Rl Random Index Values for Various n
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EI 0.58 0.90

3.5 Combining Vulnerability and Resilience Indices

When the separate vulnerability and resilience indices are calculated, there
results two separate spectrums of scores for vulnerability per community and resilience
per community. Since each index consists of different numbers of variables with
different weighting schemes (yet are expected to be normally distributed), it makes
sense to analyze these datasets using defined standard deviations as a common scale.
For example, in the sample distribution datasets in Figure 8, both vulnerability and

resilience datasets are normally distributed with fewer extreme scores.
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Figure 8. Sample Vulnerability and Resilience Index Score Distributions and Statistics
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In this case, defining categories of community index scores based on standard
deviations around the mean of the datasets can produce categories to facilitate
comparison and combination of the two datasets.” If categories of ‘Very High’, ‘High’,
‘Medium’, ‘Low’ and ‘Very Low’ are chosen, the datasets can be classified in a confusion

matrix as shown in Table 5, with the output being final relative resilience categories.

¥ For example: ‘Very Low’= Less Than -1.5 Std.Dev; ‘Low’= Between -1.5 and -.5 Std.Dev; ‘Medium’=
Between -.5 and .5 Std.Dev; ‘High’= Between .5 and 1.5 Std.Dev; ‘Very High’= More Than 1.5 Std.Dev
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Table 5. Sample Confusion Matrix to Convert Vulnerability and Resilience

Very High
High
Medium

Low

VULNERABILITY

Very Low

Categories to Final Relative Risk Categories

RESILIENCE
Very Low Low Medium High Very High
Critically High Risk High Risk Medium risk Medium Risk
High Risk Medium Risk Medium risk Low Risk
High Risk Medium Risk Medium Risk Medium risk Low Risk
Medium Risk Medium Risk Medium Risk Low Risk
Medium Risk Medium Risk Low Risk Negligible Risk

3.6 Validation Methodology

Internal and external validation of models of social processes is crucial in

establishing the reliability and explanatory power of these models. Models based on

additive indices may be viewed as internally sensitive to the parameters chosen for each

step of index construction. Therefore, attention should be paid to how each step of the

index construction process (indicator selection, analysis scale selection, adjustment for

data error/undercounts, normalization, variable transformation and weighting)

influences the outcome of analysis. It has been shown that the sensitivity of additive

index parameterization differs with each type of index type. For example, Tate (2012)

applies variance-based global sensitivity analysis (Monte Carlo simulation®®) to the most

common additive index types using vulnerability/resilience data for different geographic

locations, in order to uncover the nature of sensitivity inherent in each index type.

Results showed that the hierarchical index model is highly affected by changes to

20 . . e e . .

A Monte Carlo simulation measures a model’s sensitivity to small changes in one or more of its
parameters, by running many thousands of model simulations with incremental modifications and
collecting resulting statistics.
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variable weighting parameters, slightly affected by changes to variable transformation
parameters, and negligibly affected by other construction steps (see Figure 9 below). As
a consequence, Tate recommends additional methodological scrutiny at the variable
weighting stage of hierarchical index design. Though not included in Tate’s analysis, the
step of choosing weights for sub-indices within a hierarchical index is assumed to also

highly affect the outcome of analysis.

Figure 9. Sensitivity Analysis Comparison of 3 Common Additive Indices (Tate 2012)
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Normalization |] Normalization [Jij
Factor retention —
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In the context of the proposed index construction methodology, sub-index
weighting has received the least methodological attention, and therefore must be
assumed to contribute the most uncertainty to the model. However, Monte Carlo-type
sensitivity analysis of small weighting changes may be unnecessary here, since
emergency managers are unlikely to make small changes to the weighting scheme of the

proposed sub-indices.?! Also, absolute changes to a community’s vulnerability/resilience

' For example, when choosing weights for the ‘environmental’ and ‘socio-economic’ sub-indices within
the vulnerability index, it is assumed emergency managers will opt for multiples of 5 or 10 — such as
applying a 40% weight to ‘environmental’ and 60% to ‘socio-economic’. However, it is also assumed that
the chosen weights may vary dramatically in different study areas, according to local conditions and the
viewpoints of officials. For example, in a disaster-prone yet socially stable and prosperous area, the
‘environmental’ sub-index may be weighted 80% whereas the ‘socio-economic’ only 20%.
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scores in the proposed dual-index approach are less important than changes to the
resulting ‘relative resilience’ information categories each community falls into.
Therefore, sensitivity analysis here will focus on how reasonable changes to sub-index
weighting schemes in the vulnerability and resilience indices result in different
categorization of communities in the final relative resilience matrix (see the proposed
Confusion Matrix in Table 5 above). Since the objective of the proposed relative
resilience categorization is to highlight communities with the most critical levels of risk
(high vulnerability combined with low absolute resilience) in order to help prioritize
mitigation efforts, the changes in total community population in high-risk categories

after various sub-index weighting schemes will be presented.

3.7 Evaluating Indicator Interaction, Cause-Effect Relationships and Key
Indicators For Targeted Mitigation Strategies

Once a model of community resilience has been built and validated, and after
resilience scores for communities across a study area have been calculated, converted
to information categories and mapped, disaster mitigation officials may still be quite
uncertain about which indicators to target in order to increase the resilience of certain
high-risk communities (those with high vulnerability and low resilience). After all, the
final classification of a particular community’s resilience is based on the interaction of
quite a large set of variables?, each representing a real-world social process which

exerts a certain amount of causal influence on other variables as well as the overall level

?2 Index-based resilience research in particular tends to include a high number of variables. Even in studies
using the inductive approach to index construction, whereby a set of candidate study variables is whittled
down through PCA analysis, the number of variables used can be in the dozens (c.f. Cutter 2007)
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of community resilience. For a mitigation effort to be maximally effective, it should be
targeted at variables which not only are considered the most important to overall
resilience, but also exert strong positive influence on other resilience indicators. Since
the task of trying to think about how each variable influences all others would quickly
become overwhelming, some tool for the structured analysis of these influences is

required.

The DEMATEL method, extended for defining influence among resilience
indicators by Hiete et al. (2011), is argued to be a promising tool for distinguishing the
importance of resilience indicators, with the objective of communicating most
influential resilience variables to decision makers. DEMATEL can be viewed as
complimentary to AHP in an indicator analysis because it 1) shows how strongly each
variable is related to all others, and 2) defines the nature of variable inter-influence by
distinguishing between cause-and-effect indicators. This characterization of the
indicators provides useful information for disaster management. If a mitigation effort is
targeted at influencing an indicator which is both highly related to all others and of a
causal nature, the overall policy impact is expected to be higher (Hiete et al. 2011).
Similarly to AHP, the starting point of the DEMATEL method is a digraph, the direct
relation matrix M, which is a square matrix of n x n where n is the total number of
indicators in the index to be analyzed.23 To populate M, an analyst estimates the degree

of direct influence between the different resilience indicators based on pair-wise

2 As opposed to AHP, in which indicators are only compared with others within their respective sub-levels
in separate digraphs, a DEMATEL analysis compares all variables in an index simultaneously in one digraph
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comparisons. The scale for quantification of influence may consist of integers which
represent influence levels from low to high (such as 0 = none or negligible influence, 1 =
low influence, 2 = medium influence, 3 = high influence, 4 = very high or controlling
influence). Within M, the i row represents the quantified influence of indicator i on
each indicatorj=1, ..., n. Since indicators are assumed not to influence themselves,

all principal diagonal elements of M are set equal to zero.

Based on the methodology described by Fontela and Gabus (1976), M can be

normalized as in Eq. 2.

N = M

(3)

max[maxi=1, o, nE mij,maxi=1,., 50, mi ,j]

The normalized direct relation matrix N is then used to calculate the total direct—
indirect relation matrix T, depicting the direct and indirect influence among the
indicators. The normalization of N ensures convergence of T. For normalization,
besides the maximum value of the row- and column-wise sums, the maximum value of
just the row-wise sums can be used (Hu et al. 2009).

T =lim, (N +N?+--+N") =N(d—N) ! (4)

Row- and column-wise summation of the elements of T gives the degree of
dispatching P; or the degree of receiving R; which represent the total direct and indirect
influence an indicator exerts on or receives from the other indicators (Tamura and
Akazawa 2005).

Ry =XiL1ti; (5)

=21 ti (6)
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Furthermore, for each indicator the position value s*; and the relation value s7;

can be derived from the total direct—indirect relation matrix T as follows:
st =P, +R; (7)
st =P +R; (8)

The position value s+i measures how strongly an indicator i is related to all
others. Indicators with low position values s+i are neither strongly influenced by others
nor do they influence other indicators to a considerable extent. The opposite is true for
those with high s+i values. The relationships captured by the positional values are
therefore similar to those of internal statistical methods such as Pearson’s correlation
coefficient. However, its data-independence and exploitation of local knowledge allow
the positional value to communicate perceived and directed influences, which may

prove useful in a management context.

The relation values s—i allow for distinguishing between cause and-effect group
indicators. Indicators of the cause group influence others more than they are influenced
themselves (therefore having positive net influence: s; > 0), whereas the effect group of

indicators are defined as s7; < 0 (negative net influence).

By plotting s*; and s”; against each other, comparative assessment of the overall
structural cause—effect relationships among indicators can be visualized in a causal
diagram (Figure 10). As noted, mitigation policies directed at indicators exhibiting both
high positional and relational values are expected to be more effective. Another way of
visualizing the results of a DEMATEL analysis is by constructing an impact-relation

network diagram from the total direct—indirect relation matrix T. All impact-relations
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can be shown simultaneously linked with directional arrows; or, using an arbitrary

threshold value s+i/s-j, one can simplify the network diagram to show only the most

‘important’ impact relations (Li and Tzeng 2009, see Figure 11).

Figure 10. Example Casual Diagram Output from a DEMATEL Analysis.
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NOTE: Relational and positional values obtained from Eq. (7) and (8) are plotted against each
other. In this example, variables A2, E7 and A1l have higher positional and relational values,
signifying they are each related strongly to other variables and they each exert causal influence
on a large number of other variables. Focusing on A2, E7 and/or Al in mitigation efforts is
expected to have a broader impact on the goal of increasing community resilience (Hiete et al.

2012).
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Figure 11. Directed-impact relations among variables from the T matrix can also be
visualized in a network diagram. Below is an example diagram simplified with a
threshold value of S-]/s+j in order to show only the most important relations (Hiete 2012)
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CHAPTER 4. APPLICATION TO ST. LOUIS, MISSOURI

4.1 Study Area and Units of Analysis

“St. Louis is a city of neighborhoods.”
— St. Louis City Department of Health (2012), Understanding Our Needs

Many data-intensive community resilience studies, as well as other public policy-
related research, use U.S. Census geographies such as tracts or postal zip codes as
proxies for communities or urban neighborhoods (Krieger 2006). The advantages to
that approach are, first, that Census tracts are designed to have similar populations
which facilitates ease of comparing geographic differences, and second, that analysis at
the Census tract level can be easily scaled up to larger Census geographies (Flanagan et
al. 2011). However, an assumption in a community resilience study that Census tracts
constitute distinct, self-identified communities, or that populations in those tracts can
be reasonably expected to come together to solve problems, may be untenable.
Therefore, this research will spatially define communities in St. Louis as St. Louisans do —
as neighborhoods. The rich history of St. Louis as an important gateway transit hub, as a
show city for the combined 1904 Olympic Games and World’s Fair, and as the site of
many interesting architectural and urban design experiments may be too broad to cover
here. However, one result of the city’s cultural heritage is that many of its residents
identify strongly with distinct neighborhoods. The city of St. Louis municipal

government recognizes 79 neighborhoods, each with its own formative history and
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unique character. As such, official St. Louis neighborhood geographies will be utilized

here (STL Planning Dept. 2010).

Figure 12. Study Area and Analysis Units- St. Louis City Neighborhoods (STL Planning Dept. 2010)
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4.2 Data Sources

Selection of environmental hazards variables, and expert knowledge-based index
weights for these variables in the vulnerability index, will be derived from the most
recent (2009) St. Louis City Hazard Mitigation Plan (EW Gateway 2010b). East-West
Gateway Council of Governments (EWG), a formal planning and coordination body
made up of representatives from St. Louis-area municipal governments and school
districts, takes on the responsibility of producing and submitting the Hazard Mitigation
Plan to SEMA and FEMA on behalf of its constituent jurisdictions. Within this role, E-W
Gateway also acts as the official public clearinghouse for all hazard, community profile,
asset and mitigation planning data assembled for the FEMA report (EW Gateway 2010a).
Before undertaking hazards data collection and research, EWG elicits input from
members of constituent government agencies, local universities, and the general public
(through a series of workshops and orientation meetings meant to gather mitigation
issues, goals, priorities and ideas) (EW Gateway 2010a). Therefore, the hazards data,
research methodology, risk assessments and mitigation priorities retained in EWG’s
Hazard Mitigation Plan represent a fusion of both expert and lay local knowledge of
environmental hazards in the St. Louis metropolitan area. The St. Louis City section of
the 2009 plan, including local emergency management officials’ quantitative assessment
of environmental hazard risks, is therefore utilized here to form a hazard profile of St.
Louis City neighborhoods and to set weights for hazard variables within the

environmental sub-index of the overall vulnerability index (see Tables 6 and 11 below).
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Socioeconomic vulnerability indicators are selected after consideration of local
expert reporting of the main social stressors affecting populations in the City of St.
Louis. Comprehensive socioeconomic threat data is published every three years by
epidemiologists at the City of St. Louis Department of Health in the multi-volume report
Understanding Our Needs (STL Dept. Health 2012). Though written by public health
professionals, approximately half of this publication deals with deficiencies and
vulnerabilities brought out by adverse socioeconomic conditions. Understanding Our
Needs discusses conditions such as racial polarization, outmigration, poverty, teen
pregnancy, crime, residential/business vacant space, hospital access, insurance
coverage, public school quality, welfare recipients and many others. Therefore,
indicators of social vulnerability from this publication are used to supplement other
commonly used or recommended indicators in the disaster vulnerability literature (e.g.
indicators of inequitable food access, English-language deficiency, low evacuation
accessibility, infrastructure fragility, populations with functional disabilities, etc.). Data
and variables used to represent chosen vulnerability indicators for this study are
sourced primarily from the U.S. Census Bureau’s American Community Survey 2011, as
well as Missouri Department of Transportation, St. Louis Metropolitan Police
Department, St. Louis City Departments of Planning, Urban Design and Health, National
Association of Charter School Authorizers and The Reinvestment Fund. Since a multitude
of variables exist that could denote resilience-boosting processes or qualities at each
sub-level, they will be selected based on the author’s expertise of the study area and

publically-available data. Variables comprising the socio-economic sub-index of the

75



overall vulnerability index are weighted using the AHP method described in Section 3.4,
taking into account the perceived severity of these threats noted or implied in
Understanding Our Needs, as well as the author’s personal experience with social

threats in the study area.

4.3 Data Preparation

Two neighborhoods within the City of St. Louis have no residential population
(defined as civilian, non-institutionalized population) according to the ACS 2011.
Kosciusko, constituting industrial and commercial land use, and has no reported
residential population at all; North Riverfront contains a large institutionalized
population (in the St. Louis City Correctional Facility) but no other reported residential
population. It is certainly important to consider the disaster vulnerability/resilience of
business entities and institutions within places such as Kosciusko and North Riverfront;
however, since this thesis focuses primarily on qualities of people and processes in

residential communities, these neighborhoods are omitted from analysis.

Since no Census-published data are available at the spatial scale of official St.
Louis City neighborhoods, significant data preparation and restructuring is necessary to
forge a correspondence between ACS 2011 geographies and the neighborhood analysis
units. In consultation with demographers in the Research Division of St. Louis City
Department of Planning, a system for redistributing data obtained in different Census
areal units (such as block groups, tracts or postal zip codes) to neighborhood

geographies was developed, using a relational database in a zonal GIS environment.
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This process (known as dasymmetric mapping — see Matisziw et al. 2008) can
redistribute a certain proportion of tabular Census data (originally aggregated to block
group, tract or zip code geographies) to neighborhood geographies based on the level of
geometric intersection of these geographies. To account for the effects of the
modifiable areal unit problem (MAUP), land use information on the locations of
residential parcels is used to denote where within a Census geography the populations
likely reside. In this application of dasymmetric mapping, there results a small residual
of data that could not be allocated to the parcels since Census-developed Tiger/Line and

St. Louis City-developed neighborhood spatial datasets not aligning exactly.

Once indicator variable data is prepared for both the vulnerability and resilience
index, variables are reclassified to a value in the range [0, 1] with 0.0 representing the
lowest and 1.0 as the highest vulnerability or resilience, respectively. In general, human
variables representing counts of people or physical/spatial variables represented by land
area were normalized by neighborhood population or land use totals. Variables
representing road distances from neighborhoods to critical services or evacuation points
are normalized by maximum observed distance values. Binary variables representing
the presence or absence of a certain quality (such as an active neighborhood

association) are coded as [0, 1] accordingly.

4.4 Vulnerability Indicators and Index
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Table 6. Framework of Vulnerability: ‘A Set of Threats’

DIMENSION 1} HAZARD INDICATOR PROXY VARIABLE JUSTIFICATION DATA SOURCE
i EARTHQUAKE LIQUEFACTION POTENTIAL AREASFROM 7.8 i USGS 2012, EW GATEWAY
MMI NEW MADRID EARTHQUAKE EVENT 2013
URBAN HEAT ISLAND POTENTIAL — EPA-APPD, EW GATEWAY
) EXTREME HEAT IMPERVIOUS LULC ) 2013
. FLOOD RIVERINE, FLASH, AND L&D#327 FAILURE . FEMA 2013, EW GATEWAY
ENVIRONMENTAL PREDICTED FLOOD AREA 2013
INDUSTR. POLLUTANT ENVIRONMENTAL HEALTH HAZARD INDEX
) EXPOSURE CATEGORY AREAS ] EW GATEWAY 2013
TORNADO + WIND/HAIL INVARIABLE — WEIGHTED BY EXPERT RISK
) STORM ASSESSMENT ] EW GATEWAY 2013
INVARIABLE — WEIGHTED BY EXPERT RISK
- EXTREME COLD ASSESSMENT - EW GATEWAY 2013
V1 AGING STRUCTURES 9% HOMES BUILT BEFORE 1940 MILETI 1999 ACS 2011
AVERAGE ANNUAL VIOLENT & MAJOR
V2 PUBLIC SAFETY THREAT PROPERTY CRIMES 20072011 SHAW-TAYLOR 1999 SLMPD 2013
ECONOMIC INSTABILITY — POVERTY RATE (% POP BELOW POVERTY
V3 INSUFFICIENT INCOME LEVEL) HARKNESS 2007 ACS 2011
V4 UNEMPLOYMENT RATE % UNEMPLOYED TIERNEY 2007 ACS 2011
VULNERABLE HOUSEHOLDS — % FAMILIES WITH SINGLE FEMALE HEAD OF
V5 SINGLE MOTHER HH HOUSEHOLD WITH DEPENDENT CHILDREN MORROW 1995 ACS 2011
VULNERABLE HOUSEHOLDS — 9% ELDERLY WHO ARE DISABLED AND LIVING
V6 SPECIAL NEEDS ALONE HEINZ CENTER 2002 ACS 2011
v7 ECONOMIC INSTABILITY — % LONG-TERM VACANT COMMERCIALLY- ST LOUIS CITY 2012 ST. LOUIS DEPT OF PLANNING
$0CIO COMMERCIAL VACANCY ZONED PROPERTIES (STRATEGIC LAND USE) ’ 2012
_ Y . -
ECONOMIC Vs ECONOMIC INSTABILITY % LONG-TERM VACANT RESIDENTIALLY. ST. LOUIS CITY 2012 ST. LOUIS DEPT OF PLANNING
RESIDENTIAL VACANCY ZONED PROPERTIES (STRATEGIC LAND USE) 2012
% OF NEIGHBORHOOD WITHIN LIMITED
V9 INEQUITABLE FOOD ACCESS SUPERMARKET ACCESS AREAS (LSA) TRF 2013 TRF 2013
V10 POOR SCHOOL QUALITY SERVICE GAP IN MISSOURITIER 1 K-12 NACSA 2009 NACSA 2009
SCHOOLS
LIMITED ENGLISH % ESL + NON-ENGLISH SPEAKING
Vi1 PROFICIENCY POPULATION MORROW 2008 ACS 2011
PRINCIPAL ARTERIAL MILES PER
V12 EVAC. POTENTIAL — ACCESS NEIGHBORHOOD NRC 2006 MODOT 2013
DRIVE TIME FROM NEIGHBORHOOD
Vi3 EMERGENCY MEDICAL CENTROID TO NEAREST ER_EQUIPPED AUF DER HYDE AND GIS DERIVED FROM MODOT,

ACCESSIBILITY

HOSPITAL

SCANLON 2007

STATE OF MO PUBLIC HEALTH

Table 7. Digraph Structure for AHP Assessment of Socio-economic Vulnerability Sub-Index

1D

s1 |s2 |s3 |sa |ss5 [s6 [s7 [s8 |s9 [s10 |s11 |s12 |s13

51

52

53
55
56
57
59
510

511
512

0

513

Note: AHP assessment is used to set indicator weights in the Socio-Economic sub-level of the vulnerability
index (indicators in the Environmental sub-index are weighted separately using already-available
quantified expert judgments from the St. Louis Hazard Mitigation Plan shown in Table 11). Each cell is
filled in with a quantified judgment of the level of threat of indicator i (row) as opposed to indicator j

(column), as described in Section 3.4, using the scale in Table 3.
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4.5 Resilience Indicators and Index

Table 8. Framework of Resilience: ‘A Set of Protections’

LEVEL D INDICATOR VARIABLE JUSTIFICATION DATA SOURCE
11 CIVIC PARTICIPATION 9% CENSUS 2010 PARTICIPATION CUTTER 2010 US CENSUS BUREAU 2011
’
12 EDUCATIONAL ATTAINMENT % POPULATION HAVING AT LEAST SOME COLLEGE UNDP 1990 ACS 2011
EDUCATION
AVE HH GOV ASSISTANCE DOLLARS PER HHS IN BIANCHI ET AL
13 LOW INCOME BUFFER POVERTY 1982 ACS 2011
% CIVILIAN POP COVERED BY ANY TYPE OF
NOVDUALS 14 INSURANCE COVERAGE HEALTH INSURANCE PLAN DORFMAN 1979 ACS 2011
% HOMEOWNERS NOT SEVERELY COST- BIANCHI ET AL
HOUSEHOLD I5 HH ECONOMIC SECURITY BURDENED 1082 ACS 2011
16 | HHFOOD SECURITY & URBAN ECOLOGY PRIVATE GARDENS AS % OF TOTAL HHS TRF 2013 AGRIMISSOURI 2013
ELDERLY + DISABLED POPULATION MCGUIRE ET AL
17 CONNECTIVITY # SLAAA FUNCTIONAL NEEDS REGISTRANTS 2007 SLAAA 2013
18 EMERGENCY MOBILITY % HH WITH A CAR TIERNEY 2007 ACS 2011
VALE &
9
19 PLACE ATTACHMENT % HH RESIDING >10 YEARS CAMPANELLA 2005 ACS 2011
COMMUNITY INVOLVEMENT - STEWART ET AL
N1 RESIDENTIAL ACTIVE NEIGHBORHOOD ASSOCIATION 2009 SLACO 2013
COMMUNITY INVOLVEMENT - PLACE TIDBAL AND
N2 ATTACHMENT / FOOD SECURITY ACTIVE COMMUNITY GARDEN KRASNEY 2007 GATEWAY GREENING 2013
COMMUNITY INVOLVEMENT — STEWART ET AL
N3 ECONOMIC PRESERVATION & ACTIVE NEIGHBORHOOD BUSINESS ASSOCIATION 2009 SLACO 2013
DEVELOPMENT
Na COMMUNITY IDENTITY & PLACE HISTORIC PLACE OR DISTRICT (NRHP REGISTRY) FLANAGAN ET AL NRHP 2013, EW GATEWAY
ATTACHMENT INSIDE NEIGHBORHOOD 2011 2012, MSDIS, 2013
CIVIC PARTICIPATION / POLITICAL ACTIVE WARD ASSOCIATION — POLITICAL STEWART ET AL
NS ENGAGEMENT PARTISAN ORGANIZATIONS 2009 ST. LOUIS CITY HALL
COMMUNITY N6 NEIGHBORHOOD RACIAL DIVERSITY GINI COEFFICIENT — ‘WHITE’,’BLACK’, "OTHER' NORRIS ET AL 2008 ACS 2011
GINI COEFFICIENT - ‘0-14','15-34',"35-54’,55-
(NEIGHBORHOOD) N7 NEIGHBORHOOD AGE EQUITY 24 75 ’ ’ MORROW 2008 ACS 2011
GINI COEFFICIENT — 6 CATEGORIES (BELOW
N8 NEIGHBORHOOD INCOME DIVERSITY POVERTY, LOW, LOW-MEDIAN, HIGH-MEDIAN, DORFMAN 1979 ACS 2011
HIGH, WEALTHY
GINI COEFFICIENT — ‘BUSINESS SCIENCE &
No NEIGHBORHOOD OCCUPATIONAL ARTS’,’SERVICE’, ‘SALES & OFFICE’, BOLLMAN ET AL ACS 2011
DIVERSITY "MANUFACTURING & EXTRACTION’, 2006
'TRANSPORTATION
ECONOMIC RESILIENCE — BUSINESS SIZE GINI COEFFICIENT — BUSINESS SIZES ‘1-19’,'20- GARMESTANI ET AL
N10 DIVERSITY 09’ 100 2006 ESRI BUSINESS ANALYST 2013
ECONOMIC RESILIENCE — INNOVATIVE % POP EMPLOYED IN STEM-RELATED MCGRANAHAN &
Ni1 POTENTIAL OCCUPATIONS WOJAN 2007 BLS 2012, ACS 2011
G1 ELECTED OFFICIAL CONNECTIVITY ACTIVE WARD ASSOCIATION — ALDERMAN TWIGG 2007 ST. LOUIS CITY HALL 2013
CITY PLANNING DEPT ‘DEVELOPMENT PLAN’ OR ST. LOUIS DEPT OF PLANNING,
G2 Gg:&s[\'o“gEMNETNETC;ESQAT'C CITY URBAN DESIGN DEPT ‘IMPROVEMENT GODSCHALK 2003 ST. LOUIS DEPT OF URBAN
PROJECT’ DESIGN 2013
GOVERNMENT EXTREME STATE OF MO, UNITED WAY
G3 TEMPERATURE MITIGATION EFFORT WARMING AND COOLING SHELTER EW GATEWAY 2009 2013
GOVERNMENT EMERGENCY FOOD STATE OF MO, UNITED WAY
G4 MITIGATION EFFORT EMERGENCY SUPPLEMENTAL FOOD SITE TRF 2013 2013
GOVERNMENT GENDER-BASED STATE OF MO, UNITED WAY
GOVERNMENT & G5 EMERGENCY MITIGATION EFFORT WOMEN AND CHILDREN CRISES CENTER MORROW 1999 013
INSTITUTIONAL CITY OF ST LOUIS PLANNING
GOVERNMENT- STEWART ET AL
G6 PROVIDEDMULTIPURPOSE SPACE GOVERNMENT-MAINTAINED OPEN SPACE 2009 DEPT 2013£§¥\; GATEWAY
G7 | INST. EMERGENCY HEALTH MITIGATION COMMUNITY HEALTH CENTER CUTTER 2010 STLOUIS CITY DEPT OF
HEALTH 2013
INST. NON-PROFIT/CIVIC
G8 REPRESENTATION # OF CIVIC ORGS PER 10,000 POPULATION MURPHY 2007 NAICS 2012
# OF CONSUMER SAVINGS BANKS WITHIN LONGSTAFF ET AL
G9 INST. CAPITAL DEVELOPMENT NEIGHBORHOOD 5010 FDIC 2013
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Table 9. Digraph Structures for AHP Assessment of Resilience Sub-Indices

Individual /
Household

Neighborhood /

. N1 [ N2 [ N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | N11
Community

N1 0

N2 0

N3 0

N4 0

N5 0

N6 0

N7 0

N8 0

N9 0

N10 0

N11 0

Government /

. Gl | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9
Institutional

G1 0

G2 0

G3 0

G4 0

G5 0

G6 0

G7 0

G8 0

G9 0

Note: AHP assessment is used to set indicator weights in each of three sub-levels of the resilience index
(referenced above as A., B. and C.). Each cell is filled in with a quantified judgment of the importance of i
(row) vs j (column), as described in Section 3.4, using the scale in Table 3.
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Table 10. Digraph Structure for DEMATEL Analysis of Resilience Indicators
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NOTE: DEMATEL analysis is used to both quantify relationships/influences among resilience indicators and
to reveal which indicators are of a more causal nature and therefore more important in a management
context. Each cell is filled in with a quantified judgment of the amount of influence i (row) exerts on j
(column), with 0.0 = no or negligible influence, 1.0 = low influence, 2.0 = medium influence, 3.0 = high
influence, and 4.0 = very high or controlling influence. The results of DEMATEL are useful after each
neighborhood’s relative resilience has been calculated, because it can help answer the question: “Which
indicators would have the highest impact on overall resilience if they were strengthened?” Mitigation
strategies for neighborhoods with low relative resilience scores are better directed at these high-impact
indicators.
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4.6 Validation Datasets

Although the concept of population disaster resilience has sometimes been
described more in terms of its intangibility than its observability, external validation of a
resilience model using empirical evidence of actual disaster resilience may yet be
possible. Such validation can be conducted for St. Louis, using publically-available data
on disaster-related deaths and requests for assistance. The dataset representing
observations of disaster resilience is comprised of 18 geo-coded occurrences of heat-
related fatalities during the intense heat wave which affected the St. Louis area in
summer 2012 (St. Louis Post-Dispatch 2012). Geographically-weighted regression was
conducted using aggregated heat fatalities per neighborhood as the dependent variable,
and relative resilience score as the explanatory variable. Likewise, relative resilience
scores of neighborhoods may also be evaluated as an explanatory variable for recent
population change (outmigration) of St. Louis neighborhoods. Supplementing this study
area-wide validation, other datasets representing observed disaster resilience in more
specific areas can be used, such as resident requests for assistance from St. Louis City
Emergency Management Agency (CEMA) following windstorms in north St. Louis in 2011
(St. Louis CSB 2013).

Since this thesis argues that the proposed methods for modelling community
resilience — which are based primarily on assessments of local knowledge as opposed to
internal statistics — can explain observed resilience better than current simple additive

index techniques, a comparison will be made between this study’s output
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characterization of relative community resilience and an analysis using data and index

methods similar to the dominant geographic approach.
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CHAPTER 5. RESULTS

5.1 Hazard Profile, Vulnerability Index and Sub-Index Weights

Table 11. Results of Environmental Hazard Assessment from City of St. Louis Mitigation

Plan with Calculated Weights for Vulnerability Index (EW Gateway 2010a)

. . . . Risk Priority Index
Hazard Frequency Magnitude Warning Time Severity Score Rank Weight
Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Likely 3 Critical 3 6-12 hours 3 Critical 3
Earthquake o o 14 1 0.224
Possible 2 Limited 2 12-24 hours 2 Limited 2
Unlikely 1 Negligible 1 24+ hours 1 Negligible 1
Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Tornado + Likely 3 Critical 3 6-12 hours 3 Critical 3
Wind / . o o 11 2 0.176
Hailstorm Possible 2 Limited 2 12-24 hours 2 Limited 2
Unlikely 1 Negligible 1 24+ hours 1 Negligible 1
Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Extreme . - ..
Likely 3 Critical 3 6-12 hours 3 Critical 3
Heat + ] . 10.5 3 0.168
Drought Possible 2 Limited 2 12-24 hours 2 Limited 2
Unlikely 1 Negligible 1 24+ hours 1 Negligible 1
Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Likely 3 Critical 3 6-12 hours 3 Critical 3
Flood ] 10 4 0.16
Possible 2 Limited 2 12-24 hours 2 Limited 2
Unlikely 1 Negligible 1 24+ hours 1 Negligible 1
Extreme Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Cold + Likely 3 Critical 3 6-12 hours 3 Critical 3 9 s 0.144
Winter Possible 2 Limited 2 12-24 hours 2 Limited 2 '
storm Unlikely 1 Negligible 1 24+ hours 1 Negligible 1
Industrial Highly likely 4  Catastrophic 4 Minimal 4 Catastrophic 4
Accident / Likely 3 Critical 3 6-12 hours 3 Critical 3 g 6 0.128
Pollutant Possible 2 Limited 2 12-24 hours 2 Limited 2 |
Exposure* . . -
Unlikely 1 Negligible 1 24+ hours 1 Negligible 1

*Industrial Accident / Pollution Exposure hazard was added by the current author due to EWG’s intended
inclusion of this hazard in the 2015 Hazard Mitigation Plan. This hazard’s characteristics were assessed by
the author using EWG’s 2012 Health Hazard Index dataset and accompanying report (see Appendix for a
map of the index per block group overlaid with St. Louis neighborhoods).

NOTE: Each hazard indicator’s Index Weight is calculated as its Risk Score divided by the Risk Score
column total (62.5), which ensures all indicator weights sum to 1.0.
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Table 12. Results of AHP Assessment of Socio-Economic Vulnerability Indicators
(See Table 6 in Chapter 4 for List of Socio-Economic Indicators and Variables)

1D INDICATOR WEIGHT
‘Wulnerable Househalds - Single

53 Mlather With Children 0.11216

S510 Foor School Guality 0.10621

52 Frublic: Safety Threat 0.10565
Economic Instability -

53 Inzufficient Income 0.03761

S4 Unemployment Fate 0.08734
Economic Instability -

58 Fezidential Vacancy 0.08170

‘Wulnerable Households -

56 Special Meeds Elderly 0.07511
Economic Instability -

57 Commercial Vacancy 0.06827

59 Inequitable Food Access 006090

Emergency Medical

513 Auccessibility 0.05385

S12 Evacuation Patential 0.05110

51 Aging Structures 0.05094

511 | Limited Englizh Proficiency 0.04315

Figure 13. Distribution and Standard Deviation Categories of Vulnerability Index

Very Low Low Medium High  VeryHigh
[ I I I
w o o w - Minimum: 0.18609
4 @ =2 =2 S 2 )
:6. :?-: u,t:-': % g Maximum: 0.46066]
= = o o o Sum: 26.22048
Mean: 0.34052
9 3 Median: 0.35746
= Standard Deviation: 0.06947
=
S 24
= Standard
g Deviation Standard Dev.
o | Break Mean category Break
I
0 T T . T : 1
0.186093 0.254737 0.323381 0.392025 0.460669

<Llow VULNERABILITY INDEX SCORE High—>
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Figure 14. Map of Neighborhood Hazard Vulnerability

Hazard Vulnerability of St. Louis Neighborhoods

19. Grawos Park
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A.

5.2 Absolute Resilience Index and Sub-Index Weights

Table 13. Results of AHP Assessment of Resilience Index Sub-Levels

INDIVIDUAL / HOUSEHOLD * NEIGHBORHOOD / COMMUNITY : GOVERNMENT / INSTITUTIONS
ID Indicator Weight ID Indicator Weight ID Indicator Weight
12 Educational |1 c195 N6 Income Equity | 0.1295534 G7 Emergency Health& | , 1010593
Attainment Medical Mitigation
Gender-Based
Insurance . . .
14 0.14637 N7 Racial Diversity | 0.1244979 G5 Emergency 0.128999
Coverage L
Mitigation
Househqld Community Non-Profit Services
15 Economic 0.12875 N1 Involvement - 0.1040401 G8 . 0.1269411
. . Rk Representation
Security Residential
. Extreme
Low Income Occupational
13 0.12401 N9 . . 0.102836 G3 Temperature 0.1245115
Buffer Diversity o
Mitigation Effort
Elderly &
17 Disabled 1 11575 N10 BusinessSize | 1977915 61 Hected Official 1 ;1594313
Population Diversity Connectivity
Connectivity
Community
Emergency Emergency Food
18 . 0.09271 N3 Involvement - 0.0946334 G4 o 0.1042028
Mobility ) Mitigation Effort
Business
Household Innovative §ovgrnment- )
16 . 0.08125 N11 . 0.0855975 G6 Maintained Multi- | 0.0827076
Food Security Potential
Purpose Space
Pl E i
19 ace 0.07998 NS AgeEquity | 0.0848898 G2 conomic 0.0819812
Attachment Development Effort
Civi Political
1 e 0.06694 NS olttica 0.0739333 G9  |Capital Development| 0.0808962
Participation Engagement
N2 Place Attachment | 0.0527448
Community
N4 . 0.0494823
Identity
Figure 15. Distribution and Standard Deviation Categories of Resilience Index
Very Low Low Medium High Very High
Y 1 1 N
= i b4 o4 =3 [Minirmum: 0.20739
6 & = = I
é = = 1 = Maximum 0.59010
L] - wy oy
s o =3 o o =1 Sum;: 31.64815
g Mean 0.41101
] Median: 0.41185
= a4
o Standard Deviation: 0.07340
3
E 3t
£ Standard Standard Dev.
O il o Category Break
O 2 Deviation Mean
Break
1+
0 T T T
0.207399 0.303076 0.398753 0.494430 0.590107
<Llow  RESILIENCE INDEX SCORE  High—>
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Figure 16. Map of Neighborhood Absolute Resilience

Absolute Resilience of St. Louis Neighborhoods

19. Gravais Park.
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5.3 Confusion Matrix and Relative Resilience Classifications

Very High

High

Medium

VULNERABILITY

Low

Very Low

Table 14. Neighborhood Classified by Vulnerability/Resilience

RESILIENCE
Very Low Low Medium High Very High
18,37,60 59 NONE
17,19, 64 16, 22,24,29,50 | 1,28,30,32,36, NONE
67,77 65
55,72, 54 33,54,56,57,58, |3,5, 23, 34,40, 48, | 15, 21, 25, 27,31, 39,63
68,69,70 52,78 35,41,49, 66
73,76 43 12,51 4,11,26,42, 46,
a7
NONE NONE 6,7,8,13,14,45

NOTE: See Table 5 in Chapter 3 for classification labels for relative resilience

Figure 17. Distribution of Neighborhoods in Relative Resilience Categories
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Figure 18. Map of Neighborhood Relative Resilience (Pre-Validation Classification)

Relative Resilience of St. Louis Neighborhoods
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protection against the effects
of disaster (as measured by a
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13-variable Vulnerability Index).
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5.4 DEMATEL Results and Indicator Influence Diagram

Table 15. DEMATEL Matrix N (Normalized Direct Relation Matrix)

1D 11 12 13 14 15 16 17 18 19 N1 N2 N3 N4 N5 N6 N7 N8 N9 NIO N11 GI G2 G3 G4 G5 G6 G7 G8 G9

11 0| 0.2] 0.4 04 02 0.2 0.4 0] 02| 04 02 02 0.2| 0.4 02 02 02| 04| 02 04| 02| 06| 0.6 06/ 06| 0.2 0.6 0.6/ 0.4
12 1 0| 0.8 1 1| 0.8 0.6] 1| 0.6/ 0.8 0.8/ 0.6 0.2 0.8 0.8/ 0.6 0.4 0.8 1| 0.8/ 0.6/ 0.6 0.4 04| 0.4| 0.4| 04| 04| 0.8
13 0.6 0.6 0l 06| 06/ 0.2 0.4| 04| 0.4 04| 02| 04 0.2 04| 04 04| 02| 04| 0.4 04| 04| 06( 0.4 04| 04 0.2 04| 08| 0.4
14 0.4] 0.4| 0.6 0| 0.4 02 04| 02| 02[ 02f 02 0.2 0.2 04 04| 0.2 02 04 0.2 0.2 04| 04 04| 0.4 04| 02 04| 06| 0.4
15 0.6 0.6/ 0.4| 0.8 0l 08| 06| 0.6/ 0.6/ 06| 0.6/ 0.4| 02| 04 0.6/ 04| 04 04| 04| 04| 04 0.4 04| 04| 0.4/ 0.2| 04| 0.6/ 0.4
16 0.4 0.2 0.2 0.4 0.4 0] 0.2 0.2 0.6/ 0.4 0.8 02 02 0.2 0.2 02 02 0.2 0.2 04 02 02| 0.2 02| 02 0.2] 0.2 0.4 04
17 0.6/ 0.2 02 0.4 0.4 0.2 0] 02| 04/ 04| 04| 02| 02 04 0.2 02| 04/ 02/ 02| 02| 02| 04/ 04| 04| 0.2 02 04| 04| 0.2
18 0.2| 0.6 04| 0.4 0.4| 04| 0.2 0] 0.2 0.2 0.2 0.2 0] 0.2 02 02 0.2] 02| 04 02 0.2 0.2] 02 02| 0.2 0] 0.4 04 04
19 0.6/ 04| 04 06| 0.6/ 0.6] 0.6 0.2 0 0.6| 04| 04/ 04| 06| 0.2 02[ 04| 02| 0.2| 04| 04| 04| 0.2 02| 02 04| 02| 0.2 04
N1 0.6/ 0.4| 04| 04| 0.2| 0.2] 0.6 0.2| 0.6 0| 0.6 1| 0.4 0.8/ 0.4 04 04| 0.4 04| 04 1| 0.8/ 0.4 0.4 04 04| 0.4| 0.6 0.4
N2 0.4| 0.2 02( 02| 0.2| 0.8] 04| 02| 0.6] 0.6 0| 04/ 02 04| 0.2] 02| 02 02| 02| 02| 04f 04| 0.2 02| 02 04| 0.2 0.4 0.2
N3 0.2 02| 02 02| 0.2] 0.2 0.2 0.2] 0.4 0.8] 04 0| 0.4 04 04| 04| 02| 04/ 06| 04| 06| 08 08 0.2 02| 04 02 04| 0.6
N4 0.4| 02| 02( 02| 0.2| 0.2 0.2 0.2 0.4 0.6 04| 0.4 0| 0.2 02 02| 02| 02| 02 02| 02| 06| 02 02/ 02| 04| 02 02 0.2
N5 0.8] 0.4 04 02| 0.2 02| 04| 0.2 04| 04 02| 0.4 0.4 0] 0.2 0.2 0.2 0.2 0.2] 0.2 1| 0.6 0.2| 0.2 0.2 0.2] 0.2 0.4 0.2
N6 0.4 0.6 06[ 06| 0.6/ 0.4| 02 0.2 0.4 0.6 06/ 0.6/ 0.2| 0.6 0| 1| 0.6 1| 0.8 08| 0.6/ 0.6 0.6 06/ 0.6/ 0.2 0.4 0.8 0.8
N7 0.6/ 0.6 0.6/ 06| 0.6/ 0.4] 0.4 04| 0.6 0.6 0.6/ 04| 0.2| 0.6] 0.8 0] 04| 08 06/ 06/ 0.6/ 0.6 0.4 04| 0.4 0.2 0.4 0.8 0.6
N8 0.4 04| 02( 04| 04| 0.2 06/ 02| 04| 04| 04| 04| 0.2| 04| 04/ 02 0] 04| 04| 04 04| 0.2 04| 04 04| 0.2 04| 06| 0.4
N9 0.2| 04| 04 06| 0.6/ 04| 04 0.2 04| 04| 04 04| 0.2| 0.2 0.8 0.6/ 0.6 0] 0.8] 0.6 06/ 06| 0.2| 0.2 0.2 0.2 0.2 0.4 0.6
N10 0.2| 02| 02 02| 0.4| 04| 02 02| 0.6 04| 02 08 0.2| 0.2| 04/ 04| 0.4| 0.4 0| 0.4| 04| 08/ 02 0.2| 0.2 02[ 02| 04| 0.6
N11 0.4 04| 02 04| 04| 02| 02 04| 02| 0.2 02/ 04| 0.2| 04| 06/ 04| 0.4 0.6 0.4 0| 0.4| 04| 02 02| 02| 0.2] 02 02| 0.4
Gl 0.4| 0.2 04 02| 0.2| 0.2| 06/ 0.2 0.4 0.8/ 04| 06| 04| 0.6 02 04| 0.4 04/ 04| 0.2 0| 0.8] 02 02| 0.2| 0.2 0.2 04| 0.2
G2 0.2 0.2 02 02| 0.2 0.2] 0.2 0.2] 0.4 04| 04 04| 0.2 0.2] 02 02/ 02| 0.2 0.2 0.2 0.6 0] 0.2 02 0.2] 0.2 0.2 04| 0.4
G3 0.2] 0| 0| 0.2 0| 0| 0.8] 0.2 02| 0.2 0| 0 0] 0.2 02 02| 0.2] 0.2] 02 02| 0.2 0.4 0| 0.6 0.6 02| 0.6] 0.4 0.2
G4 0.2] 0| 0 0| 0] 0.2[ 0.2 0] 0.2 0.2] 0.2 0 0] 0.2 02 02 0.2] 02| 02 02 02| 0.2] 0.6 0] 0.6 0.2 0.6 0.4 0.2
G5 0.2 0.2 02 02| 0.2 0.2 0| 0] 0.2 0.2 02 0.2 0| 0.2 02 02 0.2 02| 02 02| 0.2 0.4| 06| 0.8 0] 0.2 0.8 0.6/ 0.2
G6 0.2| 0.2] 0.2 0| 0| 0.2 0| 0] 0.4] 04| 06( 02| 04| 0.2 02 02 02| 02 02 02| 02| 04 04 02| 0.2 0] 0.2 0.2[ 0.2
G7 0.2 02| 02 02| 0.2| 0.2 0.2 0.2] 0.2 0.2 0.2 0.2 0| 0.2 02 02| 0.2 02| 02 02| 0.2| 04| 06/ 06| 0.6] 0.2 0] 0.6] 0.2
G8 0.4| 04| 04| 04| 04| 04| 06/ 02 0.2 04 02 02| 0.2| 04| 04/ 04 04| 04| 04 02/ 02| 0.6 0.4 04 04| 02| 04 0] 0.2
G9 0| 0.2| 0.2 0| 0.2 02 02| 0.2 0.2 0.2 0| 0.2 0| 0.2 02 02 0.2 02| 02 02| 02| 0.2] 02 02| 0.2 0] 0.2] 0.2 0|

Table 16. DEMATEL Matrix T (Total Direct-Indirect Matrix)

ID |11 12 13 14 15 16 17 18 19 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 G1 G2 G3 G4 G5 G6 G7 G8 G9

11 -0.273| 0.182| 0.304| 0.228| 0.189| -0.030| -0.274| 0.168| -0.082| 0.081| -0.075| 0.245| 0.203| 0.015| 0.018] -0.034| -0.227| 0.086| 0.049| 0.091| 0.064| -0.028| -0.647| -0.798| -0.679| -0.207| -0.779| -0.420| 0.216
12 0.367| -0.777| -0.185| -0.440| -0.549| -0.169| 0.234| -0.225| 0.248| 0.507| 0.314| 0.237| 0.494| 0.303| -0.512| -0.345| -0.197| -0.429| -0.345| -0.279| 0.341| 0.531| 0.279| 0.130| 0.090| 0.574| 0.166| -0.165| -0.366
13 0.327| -0.031| -0.237| -0.152| -0.234]| 0.276| 0.058| -0.046| 0.164| 0.461| 0.091| 0.406| 0.583| 0.230| -0.378| -0.236| -0.301| -0.317| -0.261| -0.255| 0.371| 0.502| -0.231| -0.471| -0.425| 0.283] -0.430| -0.214| -0.222
14 0.274| 0.062| 0.302| -0.314| -0.074| -0.146| -0.009| 0.028]| 0.084| 0.337| 0.109| 0.336| 0.538| 0.215| -0.240| -0.225| -0.287| -0.190| -0.222| -0.227| 0.336| 0.275| -0.441| -0.660| -0.585| 0.153| -0.626] -0.325| -0.081
15 0.478| 0.113| 0.192| 0.241| -0.365| 0.328]| 0.046| 0.191| 0.251| 0.357| 0.396| 0.169| 0.458| 0.178| -0.336| -0.371| -0.351| -0.384| -0.398| -0.212| 0.064| -0.070| -0.485| -0.641| -0.575| 0.171]| -0.575] -0.395| -0.225
16 0.284| 0.181| 0.197| 0.427| 0.330| 0.212] -0.139] 0.226| 0.148| -0.108| 0.374| -0.261| -0.026| -0.065| -0.095| -0.215| -0.237| -0.151| -0.241| 0.069| -0.369| -0.539| -0.386| -0.314| -0.263| -0.062| -0.274| -0.154| 0.016
17 0.347| 0.343| 0.383| 0.567| 0.498| 0.258| -0.487| 0.427| -0.028| -0.075| 0.065| -0.027| 0.066| 0.013| -0.007| -0.161| -0.221| -0.050| -0.066| 0.011| -0.224| -0.456| -0.766| -0.817| -0.784| -0.293| -0.763| -0.432| 0.087
18 0.397| 0.027| 0.123| -0.156| -0.258| 0.058| 0.126] -0.227| 0.325| 0.588| 0.350| 0.446| 0.638| 0.306| -0.552| -0.402| -0.310| -0.497| -0.314| -0.318| 0.383| 0.416| -0.250| -0.523| -0.479| 0.364| -0.357| -0.322| -0.177
19 0.317| 0.305| 0.330 0.579| 0.468| 0.392| -0.067| 0.305| -0.445| -0.243| -0.018| -0.321| -0.095| -0.013| -0.049| -0.218| -0.209| -0.116| -0.204| 0.043| -0.398| -0.593| -0.420| -0.311| -0.269| -0.176| -0.267| -0.241| 0.012
N1 -0.489| 0.027| -0.131] 0.083]| 0.135| -0.184| -0.108| -0.006| -0.495| -1.165| -0.537| -0.482| -0.857| -0.321| 0.398| 0.295| 0.208| 0.328| 0.294| 0.142| -0.405| -0.477| 0.380| 0.701]| 0.635| -0.489| 0.650| 0.441| 0.067
N2 0.013| 0.284| 0.195| 0.544| 0.514| 0.707| -0.196| 0.334]| -0.138| -0.549| -0.355| -0.604| -0.600| -0.266| 0.195| -0.020| -0.123| 0.085| -0.014| 0.140| -0.686| -0.885| -0.244| 0.032| 0.050| -0.347| 0.050] 0.095| 0.059
N3 -0.772| -0.274| -0.500| -0.343| -0.173| -0.292| -0.029| -0.246| -0.354| -0.516| -0.480| -0.840| -0.750| -0.395| 0.372| 0.374| 0.351| 0.309| 0.378| 0.151| -0.333| -0.113| 0.969| 1.050| 0.937| -0.192| 0.973| 0.553| 0.149
N4 -0.254| 0.099| -0.037| 0.187| 0.231| 0.150| -0.239]| 0.135| -0.224| -0.450| -0.167| -0.443| -0.785| -0.368| 0.258| 0.126| 0.048| 0.169| 0.123]| 0.138]| -0.567| -0.436| 0.146| 0.382| 0.366| -0.195| 0.367| 0.173| 0.089
N5 0.032| 0.193| 0.179| 0.218| 0.238| -0.074| -0.103| 0.176| -0.370| -0.490| -0.447| -0.388| -0.424| -0.517| 0.166| 0.081| -0.037| 0.145| 0.108| 0.028| -0.149| -0.308| -0.051| 0.170| 0.163| -0.443| 0.171] 0.177| 0.000
N6 -0.304| -0.715| -0.685| -1.058| -0.992| -0.710| 0.232| -0.946| 0.127| 0.428| 0.074| 0.279| 0.337| 0.178| -0.680| 0.157| 0.323| -0.064| -0.129| -0.169| 0.535| 0.848| 0.902| 0.812| 0.696| 0.581| 0.653| 0.302| -0.365
N7 0.086| -0.421| -0.313| -0.617| -0.656| -0.436| 0.231| -0.550| 0.184| 0.402| 0.153| 0.161| 0.390| 0.231| -0.288| -0.486| 0.027| -0.193| -0.285| -0.243| 0.400| 0.607| 0.408| 0.325| 0.263| 0.446| 0.292| 0.138| -0.397
N8 0.052| 0.028| -0.044| 0.016| 0.018]| -0.074| 0.065| -0.006| 0.013| 0.057| 0.034| 0.114| 0.131| 0.040| -0.046| -0.127| -0.303| -0.046| -0.022| -0.014| 0.017| -0.165| -0.208| -0.281| -0.257| -0.015| -0.276| -0.173| -0.027
N9 -0.280| -0.712| -0.710| -0.873| -0.849| -0.529| 0.432| -0.887| 0.174| 0.296| 0.098| 0.066| 0.235| 0.035| -0.192| 0.023| 0.418| -0.554| -0.144| -0.186| 0.372| 0.751| 0.970| 0.971| 0.815| 0.609| 0.884| 0.378| -0.398
N10 | -0.505| -0.429| 0.581| -0.533| -0.347| -0.193| 0.126| -0.444| 0.013| -0.220| -0.229]| -0.138]| -0.364| -0.244| 0.068| 0.156| 0.374| 0.041| -0.263| 0.016| -0.150| 0.234| 0.852| 0.998| 0.873| 0.121| 0.934| 0.481| -0.005
N11| -0.118| -0.565| -0.618| -0.846| -0.824| -0.598| 0.272| -0.626] 0.100| 0.323| 0.027] 0.231| 0.350| 0.182| -0.202| -0.004| 0.284| -0.095| -0.166| -0.480| 0.462| 0.769| 0.787| 0.703| 0.595| 0.571| 0.650| 0.174| -0.333
Gl -0.386| -0.015| -0.089]| 0.072| 0.147| -0.122| 0.036| -0.003| -0.433| -0.588| -0.468| -0.538| -0.734| -0.293| 0.283| 0.248| 0.237| 0.274| 0.235 0.051| -0.830| -0.352| 0.352| 0.687| 0.607| -0.457| 0.651| 0.460| -0.039
G2 -0.257| 0.019]| -0.066| 0.065| 0.114| 0.062| -0.061| 0.062| -0.161| -0.349| -0.150| -0.323| -0.438| -0.236| 0.132| 0.079| 0.073| 0.080| 0.061| 0.029| -0.227| -0.606| 0.175| 0.364| 0.331] -0.215| 0.356| 0.261| 0.077
G3 0.048| 0.289| 0.297| 0.377| 0.357| 0.075| -0.111| 0.458]| 0.002| 0.047| -0.052| 0.251| 0.144| -0.001| 0.083| -0.010| -0.197| 0.065| 0.142| 0.086| 0.056| -0.243| -1.260| -1.058| -0.928| -0.295| -1.012| -0.604| 0.265
G4 -0.096| 0.205| 0.158| 0.211] 0.303] 0.221| -0.352| 0.260| -0.017| -0.079| 0.012| 0.095| -0.051| -0.083| 0.181| 0.090| -0.093| 0.151| 0.194| 0.173| -0.054| -0.385| -0.612| -1.060| -0.570| -0.274| -0.675| -0.401| 0.264
G5 -0.071| 0.236| 0.241| 0.203| 0.270| 0.178| -0.463| 0.251| 0.027| 0.064| 0.067| 0.292| 0.109| -0.044| 0.061| 0.007| -0.213| 0.036| 0.118| 0.076| 0.055| -0.185| -0.687| -0.785| -1.091| -0.181| -0.761| -0.438| 0.202
G6 -0.346| 0.110| -0.053| 0.123] 0.203| 0.254| -0.312| 0.048| -0.178| -0.558| -0.036| -0.569| -0.544| -0.374| 0.328| 0.186| 0.111| 0.236| 0.172| 0.218| -0.608| -0.589]| 0.226| 0.425| 0.412| -0.471| 0.390| 0.192| 0.119
G7 0.030f 0.228| 0.252| 0.203| 0.234]| 0.169] -0.301| 0.328| 0.059| 0.122| 0.104| 0.295| 0.181| 0.005| -0.028| -0.067| -0.238| -0.046| 0.041| 0.014| 0.073| -0.126| -0.655| -0.840| -0.713| -0.122| -1.170| -0.429| 0.140
G8 0.195( 0.046| 0.128| 0.030| -0.014]| 0.020| 0.041| 0.007| 0.052| 0.228| 0.109| 0.169| 0.334| 0.109]| -0.158| -0.125| -0.135| -0.143| -0.121| -0.161| 0.080( 0.142| -0.362| -0.490| -0.440| 0.077| -0.470| -0.614| -0.150
G9 -0.064| -0.140| -0.136] -0.345| -0.229| -0.137| 0.136| -0.104| 0.117| 0.209| -0.023| 0.179| 0.142| 0.120| -0.156| -0.052| 0.050| -0.131| -0.078| -0.086| 0.214| 0.237| 0.140| 0.064| 0.042| 0.117| 0.071| -0.043| -0.285
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Table 17. Degree of Dispatching Pi, Positional and Relational Values for Resilience
Indicators Used in the DEMATEL Analysis

Indicator ID Indicator Pi Si+ Si -
11 Civic Participation -2.416 -3.385 -1.447
12 Educational Attainment -0.171 -1.275 0.933
13 Low Income Buffer -1.242 -2.346 -0.139
14 Insurance Coverage -1.603 -2.907 -0.299
15 Household Economic Security -1.752 -3.066 -0.438
16 Household Food Security -1.434 -2.319 -0.549
17 Elderly & Disabled Population Connectivity -2.591 -3.808 -1.374
18 Emergency Mobility -0.594 -1.505 0.318
19 Place Attachment -1.924 -2.762 -1.086
N1 Community Involvement - Residential -1.362 -2.246 -0.478
N2 Place Attachment -1.730 -2.392 -1.068
N3 Community Involvement - Business -0.036 -0.998 0.927
N4 Community Identity -0.977 -1.311 -0.644
N5 Political Engagement -1.557 -2.617 -0.498
N6 Income Equity 0.648 -0.729 2.025
N7 Racial Diversity -0.140 -1.417 1.136
N8 Age Equity -1.497 -2.675 -0.319
N9 Occupational Diversity 1.214 -0.186 2.614

N10 Business Size Diversity 0.643 -0.713 1.999
N11 Innovative Potential 1.004 -0.152 2.159
G1 Elected Official Connectivity -1.007 -2.183 0.170
G2 Economic Development Effort -0.750 -1.993 0.492
G3 Extreme Temperature Mitigation Effort -2.730 -3.849 -1.612
G4 Emergency Food Mitigation Effort -2.286 -3.520 -1.051
G5 Gender-Based Emergency Mitigation -2.426 -3.610 -1.242
G6 Government-Maintained Multi-Purpose Space -0.885 -1.254 -0.517
G7 Emergency Health & Medical Mitigation -2.256 -3.433 -1.080
G8 Non-Profit Services Representation -1.617 -3.161 -0.072
G9 Capital Development -0.173 -1.484 1.138
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Figure 19. Causal Diagram of Resilience Indicators Evaluated in DEMATEL Analysis

Low s;*, High s7 High s;*, High s;

= Causalvariables = Causalvariables

= Highly independent from effects of other = More influential
variables (notinfluenced by improvements = Higher impact on overall resilience
in other variables) yet exert strong influence = Best choice for targeting in
onothervariables mitigation efforts

= Second-best choice for targeting in
mitigation efforts

3
N9
25
N11
N10, NG 2
-
69 N7 1)
ul2 N3 1 2)'_
G2 6
8 35
G1 s3]
G8 0 -
13
15 " he - N1 5
* NS 16, N4 GO 0.5 g
w
G4 67 19 aN2 El =
7 G5 -
I
11
G3 -1.5
-2
-4.5 -4 -3.5 3 2.5 -2 -1.5 -1 0.5 0
Le + L P e High s;*, L i
e Positional Value s;* el
= Less influential yet are effected = Highly dependenton and
highly by other varizbles influenced by other variables
= Third-best choice fortargeting in = Least Important varizbles
mitigation efforts = Probablynot relevant to mitigation

93



CHAPTER 6. VALIDATION AND DISCUSSION

6.1 Internal Validation: Model Sensitivity to Sub-Index Weighting Scheme

Although it is at first tempting to interpret the results of the relative community
resilience analysis as-is, there is reason to believe that these results could be highly
dependent on the chosen sub-index weighting scheme (Tate 2012). As noted in Figure
14, the ‘Environmental’ and ‘Socio-Economic’ sub-indices of the vulnerability index were
weighted 40% and 60% respectively. The decision to give higher weight to socio-
economic hazards was guided by the City of St. Louis Hazard Mitigation Plan (EW
Gateway 2010a) and the City of St. Louis Public Health Department’s publication
Understanding Our Needs (STL Health Dept. 2012), both of which suggest that adverse
socio-economic conditions within the City tend to attenuate and magnify the effects of
extreme events. Likewise, as noted in Figure 16, the ‘Individual/Household’,
‘Neighborhood’ and ‘Government/Institution’ sub-indices of the absolute resilience
index were each given a weight of 33%. Less guidance was available in local expert
reporting for ranking relative importance of community protections against disaster at
the micro/meso/macro levels as represented by these three resilience sub-indices; a
balanced weighting scheme was therefore applied. However, it is reasonable that local
emergency managers in St. Louis may opt for different weighting schemes in either the
vulnerability or resilience indices, and it is therefore important to explore the

consequences of alternative weighting scenarios.
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The questions most relevant to disaster mitigation as it relates to sub-index
weighting are: ‘How do the higher risk classifications of neighborhoods change when
different weighting schemes are applied to each index?’ and ‘Are there neighborhoods
that consistently remain in higher risk classifications even when different weighting
schemes are applied?’ To further explore these questions, the final relative resilience
categorizations were recalculated using nine reasonable combinations of alternative
weighting schemes for each sub-index of the vulnerability and absolute resilience
indices. These weighting schemes are listed below in Table 18, with the original

baseline weighting scheme shown as reference.

Table 18. Baseline and Alternative Weighting Schemes Used In Sensitivity Analysis

Baseline and Alternative Sub-Index Weighting Schemes

Baseline Altl Alt2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt8 Alt9
. Environmental 40% 40% 40% 40% 50% 50% 50% 60% 60% 60%
Vulnerability
Sub-Indices
Socio-Economic 60% 60% 60% 60% 50% 50% 50% 40% 40% 40%
Individual/Household 33% 30% 40% 30% 40% 30% 30% 40% 30% 30%
Resilience
Sub-Indices Neightborhood 33% 40% 30% 30% 30% 40% 30% 30% 40% 30%
Government/Institution 33% 30% 30% 40% 30% 30% 40% 30% 30% 40%

During category recalculation, any changes to the high-risk categories were
recorded, with attention paid to neighborhoods which remain in these high-risk
categories across weighting scenarios. Table 19 below depicts changes to the high-risk
categories due to alternative weighting schemes, indicating the neighborhoods which

moved into or dropped out of these categories.
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Table 19. Changes to High-Risk Neighborhood Categorizations Due to Alternative
Weighting Schemes

L Alternative Weighting Schemes
Type of Categorization

Change Alt1 Alt 2 Alt3 Alt4 Alt5 Alt6 Alt7 Alt 8 Alt9
D F
rop.ped ron'1 - - 61 61 61, 62 61,71 61 61, 62,71
'Very High' to 'High'
J IH?rﬁizef,.Zﬁan. 74 74 55 55 74,55,72, 74,5572, 74,5572,
& ! 60 60 60, 59
or Lower
Raised F
(N aised From - 33 - 33 33 33 - 33 33

'Medium' to 'High'

The categorizations of four neighborhoods changed consistently (more than half
of the time) across weighting schemes. These particular neighborhoods have
vulnerability and resilience scores which are very near the chosen information class
boundaries (standard deviation breaks), and therefore their risk categorizations are
highly sensitive to the choice of weighting scheme.?* Choosing alternative weighting
schemes Alt 4 through Alt 9 results in neighborhood #61 (Carr Square) dropping from
the ‘Very High’ to ‘High’ risk classification. Those same schemes also result in
neighborhoods #74 (Baden) and #55 (Kingsway East) dropping from the ‘High’ to
‘Medium’ risk classification. Importantly, more than half of the alternative weighting
schemes result in neighborhood #33 (Peabody-Darst-Webbe) raising from the ‘Medium’
to the ‘High’ risk classification.

Although the low instances of neighborhoods changing classifications due to
alternative weighting suggests an acceptably low amount of classification uncertainty in

the model, it is still necessary to decide how to represent the few neighborhoods

" When an object to be classified falls close to, or directly on top of, a discrete information class
boundary, the object can be said to have a highly uncertain classification. This uncertainty may be
addressed using a fuzzy classification system with non-discrete information class boundaries (Zadeh
1976).
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identified as having greater sensitivity to weighting schemes. If left unchanged, the
relative resilience/risk categorizations (as rendered in Figure 18), which use the baseline
weighting scheme, would over-represent the risk in Baden, Carr Square and Kingsway
East; it would also mask the elevated risk in Peabody-Darst-Webbe. A map which uses
banded colors to portray the uncertainty of classification in these neighborhoods may
suffice to communicate this important information to decision makers (see Figure 20).
The most important mitigation information for St. Louis emergency managers to
be gleaned from the above sensitivity analysis is the list of neighborhoods which remain
within the same high-risk classifications despite variations in sub-index weighting.
These are the neighborhoods which can be described with greater certainty as being
threatened with particularly high levels of various hazards while possessing particularly
low levels of resilient characteristics. For example, no matter what weighting scheme
was applied, neighborhood #2 (Patch) and #75 (Riverview) were classified as ‘Very High’;
likewise, only two alternate weighting scheme choices challenged the ‘Very High’ risk
classification for neighborhoods #71 (Mark Twain) and #62 (Columbus Square). Seven
out of nine neighborhoods originally classified as ‘High’ risk were similarly classified in
that category across alternative weighting schemes: #19 (Gravois Park), #17 (Mount
Pleasant), #72 (Walnut Park East), #18 (Marine Villa), #60 (St. Louis Place), #37
(Midtown) and #64 (Near North Riverfront). Although this sensitivity analysis can help
highlight the neighborhoods which should be given high priority in disaster mitigation

strategies, information about which resilience characteristics should
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Resilience Classifications

Figure 20. Example Fuzzy Representation of Neighborhoods With Uncertain Relative

Relative Resilience of St. Louis Neighborhoods
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be targeted with such strategies is derived separately in analysis of DEMATEL results
(see Section 6.4).

While the internal validity of the proposed community resilience model is judged
to be acceptable in terms of the above sensitivity analysis of sub-index weighting, the
effect of individual variable weighting also contributes significantly to model uncertainty
(Tate 2012). Though beyond the scope of this study, important information about the
effects of alternative variable weighting may be uncovered through a Monte Carlo
simulation. However, because additional methodological scrutiny was given to variable
weighting through the proposed knowledge-based AHP weighting system, it is argued

that model sensitivity has been sufficiently addressed.

6.2 External Validation: Model Correlation to Observed Disaster Resilience

The additive indices used in this study were comprised of a large and very broad
set of variables meant to represent most of the vulnerable and resilient characteristics
of populations in the study area. As such, these indices are expected to capture the
general sense of a community’s protection against the effects of disaster, which may
arise from any number of environmental threats modeled. Indices which attempt to
construct a general/comprehensive model of disaster resilience may not neatly explain
how a community responds to a particular extreme environmental event. An
assumption that all modelled resilience characteristics come into play during all
disasters is probably not accurate, because communities may respond in very specific

ways, and by limited means, after an extreme event. The error of this assumption is
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compounded by the fact that resilience and vulnerability variables in this study
represent processes which operate on a variety of complex and dynamic spatial and
temporal scales. However, traditional statistical correlation analysis requires this
assumption when using the totality of the index to explain a dataset representing
observed resilience, even if that resilience could be better explained by a handful of
variables relevant to a specific extreme event. Even if strong statistical correlation is not
expected, there is still pertinent information to be gleaned from a spatial comparison of
modelled community resilience with datasets which show how communities interact in
the face of different types of extreme events.
6.2.1 Case #1: Extreme Heat-Related Fatalities

One study-area wide dataset representing St. Louis neighborhood interaction
with a slow-onset environmental hazard is a geocoded set of addresses where 18 heat-
related fatalities occurred within St. Louis City during an extreme heat wave and
accompanying intense drought in summer 2012 (see Figure 21). Heat-related deaths
were dispersed throughout the City, with only two (12%) occurring within
neighborhoods categorized as having ‘High’ or ‘Very High’ relative resilience. Sixteen
(88%) of heat-related deaths occurred in neighborhoods categorized as having
‘Medium’, ‘Low’ or ‘Very Low’ relative resilience. This suggests that the resilience model
utilized in this thesis has captured qualities and processes in high-resilience
neighborhoods which protect vulnerable populations from extreme heat. However,

heat deaths did not all cluster within neighborhoods identified as having the lowest
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Figure 21. Resilience Model Validation With Heat Death Data

Correlation of Summer 2012 Heat Deaths With
Neighborhood Relative Resilience Categories
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categories of resilience — the vast majority occurred in ‘Medium’ resilience
neighborhoods. This demonstrates that locations of deaths from extreme heat waves
may involve more factors than simply highest overall risk. The fact that all of the
deceased were over the age of 50 suggests that specific factors such as age and health
may have also accounted for the location of the death.

6.2.2 Case #2: Population Loss Due to Economic Shocks

An important part of the definition of disaster used in this study as it relates to
human social systems involves how an extreme environmental may overwhelm a
population’s coping mechanisms, push a social system into an unfavorable state, and
lead to some peoples’ decision to move elsewhere. While severe, fast-onset natural
disasters such as a tornado’s destruction of a city certainly have the potential to
instigate such change, it is also important to consider slower-onset extreme events
operating on longer time-scales, such as sudden economic shocks. The global financial
crisis of 2008 caused such a shock for consumer finances and household balance sheets,
precipitating a national mean household wealth decline of 15% and a median household
wealth decline of 39% (Federal Reserve Bank of St. Louis, 2013). In St. Louis, the loss of
financial security for households due to economic downturn probably contributed to the
observed sharp drop in population experienced by the city in the years immediately

following the crisis.”> The effect of this sudden population decline may have been

2> The nature of the financial crisis’ effects on St. Louis has not been studied. However, it is assumed here
that many St. Louisans experienced foreclosure and loss of jobs, and that socioeconomic conditions in the
City were worsened in general by the attenuating negative effects of the economic downturn.
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pronounced since it came on the heels of a hopeful period of post-millennial population
growth after more than 30 years of steady decline (see Figure 22). However, it is
expected that some neighborhoods within St. Louis weathered the financial crisis better
than others, and that the indicators of resilience included in this study may have helped
insulate these neighborhoods from the socioeconomic stressors instigating sharp
population decline.

Figure 22. Abrupt Population Loss in St. Louis Following 2008 Financial Crisis
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To test this hypothesis, geographically weighted regression was conducted to
evaluate how well St. Louis neighborhood population change - as calculated from ACS
2011 and ACS 2012 5-year population estimates — can be explained by neighborhood

relative resilience scores. The spatial variable for geographic weighting was a fixed
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Figure 23. Resilience Model Validation With Post-Economic Shock Population Change

Correlation of 2006-2012 Population Change
With Neighborhood Relative Resilience Scores
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kernel at 6279 meters. In order to use a continuous variable for relative resilience
instead of categories, it was decided to use the difference between each
neighborhood’s raw vulnerability and absolute resilience index score (Vulnerability
Score — Resilience Score = Relative Resilience Score). Both the independent and
dependent variables are somewhat imprecise for the phenomenon under study. For
example, the ACS 2011 figure is a single estimate for years 2006-2010 while ACS 2012
estimates for years 2007-2011; therefore the dependent variable includes some
population change which occurred before the financial crisis. Also, as discussed earlier
in the rationale for using a semantic, category-based approach for vulnerability and
absolute resilience index comparison, using raw scores for comparison/quantification is
unwise since the separate indices are not in the same scale. Nonetheless, results of
regression (shown in Figure 23) indicate a significant correlation, with an r? coefficient of
.2016. Although the amount of variation explained by the regression is very low (and
expected, since it is assumed population change and relative resilience have a non-
linear relationship), there is interesting spatial variability in the amount of observed
versus expected population change, with the central business corridor including
Downtown, Downtown West and Midtown experiencing much higher growth vis-a-vis
their relative resilience scores. This may suggest that the more numerous or higher-
paying job opportunities in these central business district areas acted as a strong buffer
to population decline. Higher-than expected population loss clusters in areas of North
and South City, with most neighborhoods identified as having low relative resilience also

experiencing higher-than-predicited population decline. This may suggest that negative
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socioeconomic feedbacks associated with the economic downturn were intensified in
areas lacking the indicators of resilience in the chosen model.
6.2.3 Case #3. Resident Requests for Government Assistance after Windstorms

Some of the clearest evidence for a lack of (or an overwhelming of) household-
and community-level disaster resilience can be derived from data on household
requests for government financial and/or labor assistance following an extreme event.
A notable recent example of this occurred during the winter and early spring of 2011,
when a series of unseasonably powerful windstorms affected large portions of north St.
Louis, including an EF-0 strength tornado which occurred on New Year’s Eve 2010 (St.
Louis Post-Dispatch 2010). Between January and March 2011, 175 households made
telephone requests to St. Louis City Emergency Management Agency for various disaster
recovery-related services, including financial assistance for the repair or replacement of
damaged property, and for labor assistance to clean up personal property or repair roof
damage (STL Citizens Service Bureau 2013). According to St. Louis City records, most of
these callers cited lack of insurance as the reason for the request, though some cited
health-related issues which prevented them from making repairs themselves, or lack of
family contacts willing to help (STL Citizen Service Bureau 2013).

Even though the act of requesting disaster assistance from a municipal
government can be viewed as a type of resilient action (since it takes advantage of
government-level response/recovery resources), it suggests that sources of household

and community level resilience have been overwhelmed. Also, in this case, there was
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Figure 24. Resilience Model Validation With Storm-Related Requests For Assistance

Concentration of Windstorm-Related Resident
Requests For Assistance, January - March 2011
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no program of household disaster assistance, financial or otherwise, offered by the City
of St. Louis; the requests were eventually routed from the City Emergency Management
Agency office to a local non-profit disaster relief agency, Americorps St. Louis, which
provided free roof tarping and cleanup services.

Because the 2011 windstorms affected relatively few neighborhoods in North St.
Louis, geographically weighted regression was not performed to correlate neighborhood
relative resilience scores with number of requests for assistance per neighborhood.
However, a point density layer representing concentration of requests for assistance per
square kilometer was created, as shown in Figure 24 above. The density surface was
classified in 5 colors representing increases of 10 requests per square kilometer. As in
the occurrences of heat deaths shown in Figure 21, the important information for
emergency managers rendered in Figure 24 of disaster assistance requests is that, while
households in high-resilience neighborhoods (such as Central West End) are not likely to
request government assistance, the requests which do occur may not simply cluster in

neighborhoods identified as having the lowest resilience.

6.3 Model Correction for Validation Results

In fact, the external validation conducted here with three case study datasets
demonstrates that the original choice of categorization of neighborhood resilience may
have misrepresented the elevated risk in some of the neighborhoods categorized as
having ‘Medium’ relative resilience. This can be remedied simply by reassigning relative

resilience categories so that less neighborhoods fall under the ‘Medium’ category (see
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Figure 25). Only neighborhoods on the diagonal retain a ‘Medium’ (yellow)

classification, while neighborhoods in the row above are reclassified as ‘Low’ (orange)

and those below are reclassified ‘High’ (light blue).

Figure 25. Reclassification of Original Relative Resilience Categories
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Figure 26. Reclassified Relative Resilience Categories with Fewer ‘Medium’
Neighborhood Categorizations
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When these new categories are visualized (see Figure 26 above), better
agreement with the validation datasets can be observed. Also, the reclassification
requires neighborhoods in the new ‘Medium’ category to have matching vulnerability
and absolute resilience classifications, which is in line with the assumption that a certain
level of resilience may ‘cancel out’ the same level of vulnerability. However, the re-
categorized relative resilience classification trades better information about ‘Medium’
resilience neighborhoods for a substantially larger set of ‘Low’ resilience neighborhoods
for emergency managers to more closely monitor. In fact, the original categorization of
the lower resilience neighborhoods encompassed a population of 44,175 in 14
neighborhoods, equivalent to 14% of the total St. Louis population — a reasonable
amount of people for whom to plan mitigation strategies and emergency response
policies. The new categorization, on the other hand, encompasses 117,143 people in 32
neighborhoods, equivalent to 37% of the total city population. Nonetheless, it is
probably better to choose a representation which correlates better with observed levels
of disaster resilience, as represented by the validation datasets presented.

6.4 Spatial Patterns of High and Low Resilience in St. Louis

Whatever the choice of parameterization and representation decided in the
validation stage, there is clear spatial clustering of high and low relative resilience in St.
Louis neighborhoods. This was expected, since many of the indicators used in this study
had similarly clustered values (see Appendices A and B for maps of all individual
indicator variables in the vulnerability and absolute resilience indices). The final

clustering of high and low resilience neighborhoods also conforms to the narrative of
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public health officials and resident focus groups reported in St. Louis City Department of
Health’s publication Understanding Our Needs (STL Health Dept. 2012). This publication
describes North St. Louis as an economically depressed area suffering from high crime
and the effects of outmigration, as opposed to an affluent west and southwest section
of the city with wealthier households and less socioeconomic stressors.

Statistically significant groupings of neighborhoods with the same relative

resilience category can be identified by using the Local Moran’s | statistic, which

Figure 27. Significant Clustering of High and Low Relative Resilience Neighborhoods
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assesses categories of surrounding neighborhoods and their defined weights (in this
case, neighborhoods were weighted using their 2011 population) to evaluate clustering
of high and low resilience neighborhoods. This statistic also identifies neighborhoods
surrounded with significantly different categories of resilience. Results (see Figure 27)

indicate that much of the Southwest portion of the city had significant instances of high-
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resilience neighborhoods being surrounded by other high-resilience neighborhoods.
The opposite trend can be observed in the northern part of the city, with significant
instances of low-resilience neighborhoods surrounded by other low resilience
neighborhoods. Interestingly, there are two neighborhoods in North St. Louis identified
as having particularly high levels of resilience compared to their neighbors. This finding
may suggest the existence of a combination of important resilience-boosting processes
unique to these neighborhoods, and/or points to these neighborhoods being less
affected by negative influences from surrounding areas. The notion that the levels of
resilience in a particular neighborhood may influence those of surrounding

neighborhoods will be discussed in the next section.

6.5 Autocorrelation and Spatial Influence of Neighborhood Resilience

So far this chapter has mostly discussed the results of the relative resilience
calculation in terms of each neighborhood’s discrete resilience classification, not in
terms of how the spatial characteristics of each neighborhood might influence the level
of resilience in others. Likewise, the apportionment of variable data and calculation of
raw neighborhood scores for vulnerability and absolute resilience, as well as the final
categorization of relative resilience, operated on the assumption that each
neighborhood’s combined attributes do not exert any influence on their neighbors.

However, as components of complex, multi-scale social systems, neighborhoods

can be assumed both to exert influence on and receive influence from surrounding
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neighborhoods.?® These influence/feedback relations would be very difficult to model
based on a single, ‘snapshot’ studies of resilience using temporally-limited data; as in
the modelling of physical systems, it would be better to study the mechanics of how
socioeconomic relations change through time, in order to arrive at an empirically-based
model of how these feedback relations ‘work’ in the real world. However, even without
longitudinal data, observed spatial characteristics of neighborhoods, as measured by
various spatial clustering and geographic weighting statistics, can be used to further
modify the relative resilience model.

Spatial statistics, many of which were developed in line with Tobler’s Law that
‘things near each other are more alike than things far apart’, might be used to model
how the spatial attributes of communities influence their neighbors. For example, it
may be correct to assume that a positive feedback relationship exists between adjacent
neighborhoods with similarly high levels of resilience, such that both neighborhoods’
resilience is mutually sustained or even magnified by this connection. An opposite,
negative feedback relationship may exist between adjacent neighborhoods of low levels
of resilience. The strength of this feedback may depend on a number of factors, such as
the neighborhoods’ population, the distance between neighborhood centroids, the
amount of time each has had strong positive or negative resilience attributes, or the size
of the cluster of neighborhoods with similar levels of resilience, etc. Factors such as

neighborhood relationships and contiguity can be modeled as a spatial weights matrix,

*® These influence relationship, of course, are not limited to immediately bordering neighborhoods; they
should be assumed to radiate out with diminishing strength according to distance and the types of
dependencies and feedback relations on much broader spatial scales.
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which is similar to a digraph in that it estimates the strength of the spatial relationship
between neighborhood i and all other neighborhoods j that are within a specified spatial
relationship with each other, (i.e. based on centroid distance or edge contiguity, etc.). A
spatial weights matrix can be easily rendered as a 3-column table showing the
quantified distance- and/or contiguity-related weight between an ‘origin’ neighborhood
and its ‘destination’ neighborhoods, with the weights quantified as the inverse of the
number of neighbors(see Table 20 for part of the spatial weights matrix computed for
St. Louis neighborhoods, which shows weights for contiguous neighbors for
neighborhoods #1-5).

Table 20. Spatial Weights Matrix Computed for Neighborhoods #1-5

ORIGIN DESTINATION
. . WEIGHT
Neighborhood # | Neighborhood #
1 2 0.20
1 3 0.20
1 4 0.20
1 16 0.20
1 17 0.20
2 1 1.00
3 1 0.25
3 4 0.25
3 5 0.25
3 16 0.25
4 1 0.25
4 3 0.25
4 5 0.25
4 6 0.25
5 3 0.17
5 4 0.17
5 7 0.17
5 6 0.17
5 15 0.17
5 16 0.17

NOTE: Only contiguous neighborhoods were considered in this weights
matrix (For example, #2 Patch has only one contiguous neighborhood, #1 Carondelet)
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Suppose the spatial weights matrix shows ‘origin-destination weights’ W, based
solely on spatial (distance and contiguity) characteristics, but that these might be
further modified to reflect the relative magnitude of origin-destination neighborhood
influence based on the population of those neighborhoods.?’ A ‘population weight’ field
W, was already calculated for neighborhoods for use in the Local Moran’s | analysis
above (Figure 27), by dividing neighborhood population by the total St. Louis
population. The population weights W, for origin neighborhoods N; can be appended to
the spatial weights matrix. The inverse of W; can then be multiplied by the inverse of
the newly appended population weights W,. This results in a new ‘distance/population
weight’ W, for all Ni=>N; which has been scaled based on the Origin neighborhood’s
population. Normalizing W, by dividing each value by the highest weight results in a

‘normalized distance/population’ weight W,,.

” The following discussion of the new spatial influence measurement method includes notation for each
referenced element for the sake of clarity.
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Table 21. Normalized Distance/Population Weights Wy Calculated for Selected

Neighborhoods
ORIGIN
ORIGIN N; DESTINATION N O-D Distance Neighborhood O-D Distance / Normalized Distance /
Neighborhood # | Neighborhood # | Weight W, Population Population Weight W, | Population Weight W
Weight Wp
1 2 0.20 0.0289 6.922202604 0.0040388
1 3 0.20 0.0289 6.922202604 0.0040388
1 0.20 0.0289 6.922202604 0.0040388
1 16 0.20 0.0289 6.922202604 0.0040388
1 17 0.20 0.0289 6.922202604 0.0040388
2 1 1.00 0.0086 116.8137803 0.0681564
3 1 0.25 0.0111 22.51256101 0.0131352
3 4 0.25 0.0111 22.51256101 0.0131352
3 5 0.25 0.0111 22.51256101 0.0131352
3 16 0.25 0.0111 22.51256101 0.0131352
4 1 0.25 0.0285 8.76103352 0.0051117
4 3 0.25 0.0285 8.76103352 0.0051117
4 5 0.25 0.0285 8.76103352 0.0051117
4 6 0.25 0.0285 8.76103352 0.0051117
5 3 0.17 0.0362 4.603220031 0.0026858
5 4 0.17 0.0362 4.603220031 0.0026858
5 7 0.17 0.0362 4.603220031 0.0026858
5 6 0.17 0.0362 4.603220031 0.0026858
5 15 0.17 0.0362 4.603220031 0.0026858
5 16 0.17 0.0362 4.603220031 0.0026858

Wi represents the strength of the influence that Njexerts on each Nj, based on
population and spatial characteristics but not the type/magnitude of resilience influence
(positive or negative resilience); a value for N/’s relative resilience category will provide
this, if it shows a positive value for the higher resilience or a negative value for lower
ones. Relative resilience category values were already assigned positive/negative values
for the purposes of color mapping, with ‘Very Low’=-2.0, ‘Low’=-1.0, ‘Medium’= 0.0,
‘High’= 1.0 and ‘Very High’= 2.0. When these category numbers are appended to the
table for each origin neighborhood N,, they can be multiplied by the normalized
distance/population weights Wy, resulting in a set of directed resilience influences Ry

for all Ni=>N;.
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Table 22. Directed Resilience Influences Ry Calculated for Selected Neighborhoods

ORIGINN; |DESTINATION N; | Normalized Distance / N;Relative Directed
Neighborhood # | Neighborhood # | Population Weight W Resilience Resilience

Category Number |  Influence R;;

1 2 0.0040388 0 0

1 3 0.0040388 0 0

1 0.0040388 0 0

1 16 0.0040388 0 0

1 17 0.0040388 0 0

2 1 0.0681564 -2 -0.136312849

3 1 0.0131352 0 0

3 4 0.0131352 0 0

3 5 0.0131352 0 0

3 16 0.0131352 0 0

4 1 0.0051117 1 0.005111732

4 3 0.0051117 1 0.005111732

4 5 0.0051117 1 0.005111732

4 6 0.0051117 1 0.005111732

5 3 0.0026858 0 0

5 4 0.0026858 0 0

5 7 0.0026858 0 0

5 6 0.0026858 0 0

5 15 0.0026858 0 0

5 16 0.0026858 0 0

Summarizing the table by adding all R;; values for each Destination
neighborhood N;j results in a total incoming resilience influence T for each
neighborhood, representing the aggregate positive or negative resilience influences
directed at that neighborhood by all other neighborhoods (subject to the imposed
contiguity rule). If a neighborhood has a positive T value, it indicates that more
bordering neighborhoods have high (positive) relative resilience. A positive Tig
neighborhood can be said to benefit from a positive resilience feedback from its spatial
relationship with its neighbors, and this effect is magnified if bordering neighborhoods
have higher populations. The opposite is true for a neighborhood with negative Tz

values - It can be said to suffer from a negative resilience feedback given its close spatial
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relationship with low-resilience neighborhoods. Again, this negative feedback can be
magnified if surrounding low-resilience neighborhoods have high populations.

If certain neighborhoods have very high or very low Tig scores, it makes sense to
change their relative resilience category to reflect this new information. When T
values for St. Louis neighborhoods are graphed, the resulting normal distribution, with
fewer neighborhoods having very high positive or very low negative Tir values (see
Figure 28), suggests that standard deviational categories may again be appropriately
used to set thresholds of Tigvalues thus necessitating a relative resilience category
change. Using a +1.5 and -1.5 standard deviation threshold as a basis for categorization,
8 neighborhoods are identified as having very high negative incoming resilience
influence, and 9 neighborhoods are identified as having very high positive incoming
resilience influence.

Figure 28. Distribution and Standard Deviation-Based Categories of Incoming Resilience
Influence Tir

<-1.5 StdDev 1.5StdDev  >+1.5 StdDev
ey T—

0.089386831
0.072809470
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-0.358057299  -0.21 3:1*123735 -0.068_‘[390171 0.0761|43393 0.22087695
Total Incoming Resilience Influence T g
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Neighborhoods in the Very High Positive Tir category are bumped up to the next
higher relative resilience category. Neighborhoods in the Very Low Negative T
category are bumped down into the next lower relative resilience category. However,
the classification of the two neighborhoods identified in the Local Moran’s | analysis as
having significantly higher relative resilience than their neighbors were not changed,
since they are assumed to be somewhat insulated from the influence of surrounding
neighborhoods. These changes in neighborhood classification are shown in Figure 29,
and the resulting new relative resilience map with neighborhood population tables is

shown in Figure 30.

Figure 29. Changes to Relative Resilience Categories after Spatial Influence Analysis
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Figure 30. Map and Population Tables of Relative Resilience Categories after Spatial

Influence Analysis

4
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The new categorizations also correlate better with heat death and windstorms
request-for-assistance validation datasets. This increased accuracy is expected, because
the new categorizations are derived from the spatial qualities of the study area as well
as the attributes of the study units. Figures 31 and 32 demonstrate the increased
correlation between modelled and actual resilience in the validation datasets.

Figure 31. Correlation of Heat Death Data with Corrected Resilience Model
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Figure 32. Correlation of Windstorm-Related Requests for Assistance with
Corrected Resilience Model

Concentration of Windstorm-Related Resident
Requests For Assistance, January - March 2011
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Map shows density of residential requests for
financial or other assistance after several
powerful windstorms and a tornado moved
through north St. Louis City between January
and March 2011. Requests were primarily for
costs/labor for roof repair due to lack of
insurance or inability of resident to make repairs n Gate District
Source: St. Louis City Citizen's Information
Bureau 2013
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6.6 Comparison of Relative Resilience Model with Alternate Index-Based Model

It is expected that the proposed methods for characterizing community-level
resilience 1) will provide better information on resilience-building qualities and
processes for the purposes of targeted mitigation (because they account for and explore
cause-effect relations among resilience variables), and 2) that the results of analysis
using the proposed model (which relies on a knowledge-based system for index
construction) will be both significantly different than results of current index-based
approaches and also explain observed levels of resilience better than these alternate
methods.

This first expectation can only be validated by testing whether the results of the
proposed DEMATEL analysis make sense to emergency managers and community
leaders in St. Louis, and whether these results can help community stakeholders
prioritize mitigation efforts. Emergency management officials from the St. Louis City
Department of Public Safety and community organizers including St. Louis Association of
Community Organizations (SLACO) have expressed high interest in seeing the results of
the current analysis; it is hoped that, eventually, the results of this study will prove
useful for these stakeholders and beneficial for St. Louis neighborhoods.

The second hypothesis, however, can be tested by conducting an alternative
resilience analysis using data inputs and index construction methods similar to current
simple, statistically-corrected additive index approaches. Such an analysis was
conducted using a deductive additive index of 17 variables based on Cutter (2008)’s

BRIC (Baseline Resilience Indicators of Place) model. Only variables not expected to
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exhibit significant co-linearity in statistical testing were retained (for example, a variable
indicating the ‘percent population not in poverty’ was intentionally omitted due to its
expected similarity with another variable, ‘percent population employed’). An equal
weighting scheme was used for all variables, and standard deviation-based resilience
categories were assigned to neighborhoods based on the distribution of equal-weighted
index scores. The result of this single index was then rendered on a map for comparison
to the output of this study’s relative resilience classifications (Figure 33), and tested for
its ability to uncover statistically-significant groupings of high- and low- resilience

neighborhoods using Local Moran’s | (Figure 34).

Figure 33. Comparison of the Present Study’s Relative Resilience Classification
and the Alternate Classification
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Figure 34. Comparison of Statistically-Significant Clustering of Resilience
Classifications (Local Anselin Moran’s |) between the Relative
Resilience Model and Alternate Model
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The resulting spatial distribution of neighborhood resilience classifications in the

alternate model captures a general characterization of higher resilience in the

southwest and mid portions of the city, and lower resilience in the northern and

southern portions. This is expected since the variables used in the alternative analysis

were mostly representative of individual- or household-level socioeconomic

characteristics (as is the case in most index-based resilience research — see section 2.4),
and were likely to reflect the obvious differences in small-scale socioeconomic status

between certain parts of the City. However, the map of the alternate model suggests

that the lowest resilience occurs in the southern portion of the City, which is

contradicted by both the proposed model and by the expert and lay reporting of the

severity of community threats contained in Understanding Our Needs (STL Health Dept
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2012). In fact, if government official or community leaders were to rely on statistically
significant groupings of lower-resilience neighborhoods in the alternate model for
mitigation targeting, there is a chance the northern portion of the City could be
overlooked, since there are no such groupings there (Figure 34).

When validated against the datasets representing observed levels of community
disaster resilience, the alternate model offers significantly less explanatory power than
the proposed relative resilience model. In the case of heat death data (2012 heat wave),
the alternate model over-predicts the resilience level of some neighborhoods (as many
deaths occurred in neighborhoods characterized by the alternate model as having
‘Medium’ resilience as with ‘Low’), and the goodness-of-fit of distribution of heat deaths
per resilience classification does not approach the accuracy of the relative resilience
model (Figure 35). In the case of resident requests for assistance (2011 windstorms), the
alternate model makes little distinction in level of resilience of neighborhoods with high
or low concentrations of requests (the majority of all requests, as well as all the area
with the highest density of requests, fell in neighborhoods characterized as having
‘Medium’ resilience in the alternate model — see Figure 36). In the case of population
change (post-2008 economic shock), there was no significant difference in explanatory
power between the two models after geographically-weighted regression (relative
resilience model r’=.20, alternate model r’=.19).

The above alternative index analysis validates the usefulness of an index

structured and analyzed based on a local knowledge system (and accounting for spatial
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Figure 35. Coincidence of Heat Deaths and Resilience Classifications
Between Relative Resilience Model and Alternate Model
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Figure 36. Coincidence of Requests for Assistance and Resilience Classifications
Between Relative Resilience Model and Alternate Model
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influences) vis-a-vis an approach favoring internal statistical techniques. This is not to
suggest such statistical techniques are inapplicable; in fact, they may prove
complimentary in a resilience analysis. If, for example, both the knowledge-based
DEMATEL method and internal statistics identify certain variables as less informative or
relevant to the study, this creates a strong argument for the omission of such variables.
The creative integration of data-dependent analysis tools with knowledge-based ones
may hold promise for uncovering actionable information in datasets representing

complex social processes.

6.6 The Case for Resilience Model Validation and Correction

The above discussion, measurement and correction of the validity of the
proposed community resilience model was undertaken specifically to improve a model
which is meant to be as adaptive and malleable as possible. During the process, issues
with weighting sensitivity and neighborhood classification were discovered, and
solutions were implemented in order to present the best information to emergency
management decision makers. Also, a new method for quantifying the spatial influence
among adjacent neighborhoods was developed and utilized to further correct the
original relative resilience classification. The relative resilience model was further
proved to outperform an alternative community resilience model similar to those used
in current literature. Because such corrections are clearly vital to the utility of the
model, and would have gone unaddressed if validation were not undertaken, it is

surprising that most resilience studies skip this important step (Tate 2012; Tate 2013;
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Wolf et al 2014). While it is unclear why internal or external validation is not widely
practiced, the consequences for the intended audience of these studies are clear:
important information is lost, and the model’s effectiveness is blunted. For this reason,
it is recommended that validation of some type is always conducted on index-based
resilience models. This process does not need to be thought of as an attempt to

conclusively validate or invalidate the model, but rather as an attempt to make it better.

6.7 On Which Neighborhoods Should Emergency Managers Focus?

As a result of reclassifications to neighborhood relative resilience categories in
Sections 6.2 and 6.5, there more neighborhoods categorized as having low or very low
disaster resilience. Ten neighborhoods, with a combined population of 35,896 (11% of
the city total), are classified ‘very low’. Twenty three neighborhoods, with a combined
population of 85,333 (27% of the city total), are classified ‘low’. However, the increase
in population and number of neighborhoods identified as high-risk does not necessarily
translate to a more difficult mitigation task for emergency managers. The spatial
characteristics of clusters of high-risk neighborhoods, as well as the spatially influential
nature of identified resilience characteristics, may actually make mitigation efforts more
efficient. This is because the effects of disaster mitigation policy - which may include
efforts to boost any of the resilience indicators listed in Table 8 by government and
community leaders — can be expected to attenuate into surrounding neighborhoods due
to feedback relationships inherent in complex social systems. Well-chosen mitigation

tactics (see Section 6.7 for this study’s recommendations) directed at the contiguous
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cluster of ‘very low’ resilience neighborhoods in North St. Louis may positively affect
surrounding neighborhoods identified as having ‘low’ resilience. There is also reason to
believe that the strong resilience-boosting processes identified in central city
neighborhoods may positively affect the lower-resilience neighborhoods to the North.
Since this study used neighborhood population to help define their spatial
influence, it makes sense to also recommend that emergency mangers and community
leaders focus their attention on the higher-population neighborhoods. Of course, when
analyzed by population, there may be neighborhoods classified as ‘Low’ or even
‘Medium’ resilience which deserve attention due to their high population. Such is the
case in St. Louis for the Dutchtown neighborhood — its population of 14,991 make it by
far the most populace low-resilience neighborhood, and should be considered for
mitigation. To help with the spatial identification of high-population neighborhoods vis-
a-vis their resilience categories, it is useful to create a 3D visualization of St. Louis where
lower-resilience neighborhoods are extruded vertically by their population (see Figure

33).
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Figure 37. Example 3D representation of St. Louis neighborhood population and
resilience categorization

Lower-Resilience Neighborhoods
Extruded By Population

6.8 What Community Characteristics Should Emergency Managers Target?

Spatial analysis techniques have been used to lessen the uncertainty of which
neighborhoods should be given priority attention by emergency managers and
community leaders. However, without a way to distinguish the relative importance of
the large set of resilience indicators used in this study, these decision makers would be
very uncertain as to which of these community qualities and processes to address in
mitigation efforts. The results of the earlier DEMATEL analysis provide compelling
evidence for which indicators are of a more causal and influential nature and, as such,

are expected to strengthen overall community resilience more efficiently than others. At
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the end of DEMATEL, the total direct-indirect relationship matrix T (see Section 3.4) is
used to calculate a position value s+i (which measures how dependent an indicator is on
the values of other indicators, similar to Pearson’s r) and relation value s-i (which
measures an indicator’s causal influence on others) for each resilience indicator. When
s+i and s-i are plotted on a graph, a quadrant overlay can be used to visually distinguish
indicator which fall into 4 general categories, as depicted in Figure 19.

These quadrants and their associated interpretation are:

1) High Position / High Relation Values — indicators with the highest influence on

other indicators, and of a causal nature

2) Low Position / High Relation Values — indicators which exert high influence but

do not seem to be themselves influenced much (independent variables), and

also of a causal nature

3) Low Position / Low Relation Values — indicators which influence others only

weakly, yet seem to be mostly controlled by other indicators, making them of an

effect nature

4) High Position / Low Relation Values - indicators which exert little or no

influence on others, and seem to be merely effects of other indicators

These quadrants are listed in order of their constituent indicators’ relative
influential power. Increases in quadrant 1 indicators (high s-i/highs+i) are expected to
have the highest positive influence on all other indicators. This effect may be magnified
for quadrant 1 indicators because they are also expected to be receptive to positive
feedback sent out by other influential variables in other quadrants. Increases in
guadrant 2 indicators will have the same type of initial influential effect as quadrant 1,
but because they are more independent from received effects, these indicators

probably will not benefit from positive feedbacks from others. Increases in quadrant 3

indicators cannot be expected to have much of a positive effect on other indicators, yet
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they are receptive to received influence, so they may be boosted by increases to
indicators in quadrants 1 and 2. For quadrant 1 indicators, there is little evidence that
increases to their values would have any effect on other indicators, yet their values are
also highly dependent on those of other indicators; it can be assumed that quadrant 1
indicators will change according to the aggregate influence of all others, but will not
exert any meaningful influence.

The qualities of the above quadrant intensify toward the outer corners of each
guadrant (representing more extreme values), and diminish toward the center, so that
indicators nearer to the midpoint may not significantly demonstrate any of the
associated qualities. Based on these characterizations, quadrant 1 indicators should be
the first choice for targeting in resilience mitigation strategies, since they are highly
influential, of a causal nature and receptive to feedback. Interestingly, most of the
indicators in this quadrant included most of the diversity-related, community-level
characteristics, such as N9-Occupational Diversity, N10-Business Size Diversity, N6-
Income Equity, and N7-Racial Diversity. Other indicators significantly inside quadrant 1
include N11-Innovative Potential, G9—Institutional Capital Development, N3-Community
Involvement: Active Neighborhood Business Association, and 12-Educational Attainment.
There are no indicators that can be identified as of the quadrant 2 type (highly
independent variables), yet quite a few of the quadrant 3 type (those that exert less
influential but are receptive to incoming influence). These indicators are still highly
relevant to mitigation, yet should be considered secondary to those in quadrants 1 and

2. Quadrant 3 Indicators nearer to the extreme end include G3-Government Extreme
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Temperature Mitigation Effort, G4-Government Emergency Food Mitigation Effort, G5-
Government Gender-Based Emergency Mitigation Effort, G7-Institutional Emergency
Health Mitigation Effort, I1-Civic Participation, and I7-Elderly & Disabled Population
Connectivity. There are only two indicators which fall in quadrant 4 (highly dependent,
not influential) — thankfully so, because these indicators (N4-Community Identity:
Historic District and G6-Government Maintained Multi-Purpose Space) are not to be
considered very relevant to disaster mitigation and probably should not be included in
future research (Hiete et al. 2012).

The validity of the DEMATEL method is certainly bolstered by the above set of
guadrant 1 variables, which may rightly be considered true benchmark traits of strong
and resilient communities. However, they seem to also be some of the most difficult to
address and possibly the slowest to respond to improvement efforts. Yet, from the
emergency manager’s perspective, it may be encouraging that the most sought-after
traits for urban residential communities may also be considered crucial protections
against the effects of extreme events. This is because a very broad range of municipal
government policy, institutional attention and community action are already directed at
improving these particular conditions. At the government level, a certain amount of
responsibility for the growth of these indicators is institutionalized across common
municipal departments such as public health, education, economic development, and
others. Therefore, where community resilience is judged to be low, it should not be
considered the fault of a particular government office or community leader, nor is it the

responsibility of any one entity to remedy. In fact, traditional top-down mitigation
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which relies on government action will probably not be sufficient to address an issue
such as community resilience, an attribute which is both driven by and the result of
many interacting, multi-scale processes involving many types of actors, both social and
environmental. Resilience is, if nothing else, complex. Attempts to increase resilience at
the community level will probably only be effective if undertaken and supported equally
at the different scales complex processes operate (for example, at the household,
neighborhood, and government level).

This is not to suggest that government-led mitigation efforts are inherently less
influential, or that the above DEMATEL analysis of indicators leaves government
emergency management officials in St. Louis with few options to target. Even though no
‘Government’ indicators are present at the extreme end of quadrant 1, there are
indicators near the center of the graph (variables with uncertain levels of
influence/dependency but still may be highly relevant to resilience) which are quite
government-specific, such as G1-Official Ward Association and G2-Government
Economic Development Effort. Also, most of quadrant 3, as noted above, contains the
type of brick-and-mortar emergency relief services which governments are well-suited

to create, fund, and maintain.

6.9 Model Modifications, Alternative Methodologies and Future Directions for
Community Resilience Research

The methodologies used in this study were selected in part based on their
recognized adaptability and customizability, which was necessary since there are no

complexity-science oriented measurement tools designed to be applied to resilience
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research, and only a few hints of the applicability of the chosen tools. With little to help
guide (and nothing to constrain) this effort, many of the variable choices, index
structures, tool parameterizations and other methodological choices were based on
knowledge of the study area, examination of the data, and related examples in the
literature. Therefore, there are plenty of opportunities for modification of the proposed
techniques.

First and foremost, it must be noted that the spatial unit chosen to represent
‘community’ in this study was by no means meant to be normative. Based on a
combination of the author’s knowledge and local expert reporting of the social
characteristics of the city of St. Louis, individual city neighborhoods were selected to
represent communities. Neighborhoods were primarily chosen because of St. Louis’
unique history of neighborhood self-identification, and therefore the reasonable
expectation that residents within them would come together to solve problems in the
event of a disaster. However, there are a wide variety of other ways in which a city can
be partitioned into areal units of analysis, both larger and smaller than city
neighborhoods, which would fit this definition of ‘community’. Therefore, it is highly
encouraged that selection of spatial units in future community resilience research be
similarly guided by the unique characteristics of the area to be studied, not on any
universal spatial definition.

Next, the choices of resilience indicators, while reflective of many multi-scalar
gualities and processes which make up community resilience, are by no means

exhaustive. There are other indicators in the current literature which could have been
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applied (but were omitted due to data availability), and it is expected that additional
promising indicators of resilience will continue to be proposed as the academic debate
evolves. Itis important to also point out that variables which could be chosen to
represent these indicators are quite diverse, with many other possibilities than those
chosen here. Further, an improvement to the indicator/variable selection methodology
would be to find variables which represent each indicator at the household,
neighborhood and government scale. In this thesis, this was accomplished to a limited
extent (for example, variables related to the ‘Civic Involvement’ and ‘Political
Engagement’ indicators were found and used for each scale of the resilience index), but
increased scalar coverage for each indicator would be expected to further strengthen
the model.

Though the process of weighting variables and sub-indices received careful
methodological scrutiny and used a knowledge-based approach for better place-specific
accuracy, many modifications and improvements could be made to this step. First, only
one analyst (the author) contributed the AHP assessment to define vulnerability and
resilience variable weights. Commonly, in the business management context that AHP is
often used, multiple analysts contribute an assessment, and the multiple results are
averaged together before defining weights (Aczel and Saaty 1983). It is expected that a
more diverse fusion of expert judgments of the relative importance of various
vulnerability and resilience indicators would benefit this type of study. Undertaken in
quite a different way than individual variable weighting, sub-index weighting is judged

to be the most subjective step of the index construction methodology. Since there are
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generally few sub-indices used in disaster vulnerability/resilience studies, it may not be
necessary to utilize a knowledge collation tool such as AHP in order to set these weights;
however, as Tate (2012) shows, these weighting choices are likely to have the highest
effect on model output. While a balanced and somewhat conservative weighting
scheme was applied to sub-indices (and to the internal sensitivity validation stage), it
cannot be assumed that local emergency managers or community leaders would always
choose such an approach. It would therefore benefit further study to experiment with
the effect of more extreme sub-index weighting schemes on the model, especially to
show differences in final community relative resilience classifications for different
weighting schemes.

The proposed method to construct separate vulnerability/resilience indices and
combine them categorically using a confusion matrix is a highly customizable process. In
this study, since neighborhood vulnerability and absolute resilience scores were
normally distributed, grouping these neighborhoods by standard deviational categories
was viewed as appropriate. There are, of course, several other parametric and non-
parametric options for defining categories based on the observed distribution of
vulnerability/absolute resilience scores. Experimentation with categories based on
geometric mean, equal interval or natural data breaks (Jenks and Caspall 1971) could
yield different results which may be more appropriate for other types of observed
distributions. Different rules for defining categories must be made in the confusion
matrix, this time for the sake of assigning relative resilience classifications to

communities. Again, this is a subjective choice, made in view of the distribution of
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community vulnerability/absolute resilience category associations and considering the
information requirements of the intended audience. As was demonstrated in this
thesis, the ability of the model to convey information about certain neighborhoods and
its goodness-of-fit with validation data depends on how relative resilience is classified in
the confusion matrix. It is recommended that effects of the chosen relative resilience
classification scheme be carefully considered in future research.

Finally, while DEMATEL analysis is judged to be a highly effective tool for
providing information on indicators likely to be most effective in raising overall
community resilience, the effectiveness of its implementation depends on the quality of
its original knowledge-based indicator analysis. As in AHP weighting, only one
assessment of variable inter-influence was utilized for the DEMATEL analysis, yet it is
expected that a collation of multiple, diverse expert and lay opinions be attempted in
future research. This is not an easy task, since, in this thesis, a 29x29 matrix had to be
populated with quantified i—=j judgments. If multiple matrices are to be sourced for a
particular study area, a high level of community buy-in for the study, and perhaps focus
group sessions, would be necessary. Nonetheless, without a DEMATEL-like analysis,
emergency managers and community leaders would be at a loss to subjectively and
simultaneously prioritize a very large and complex set of indicators for mitigation
purposes.

As has been mentioned, disaster resilience is a relatively new and recently ‘hot-
button’ issue in academia (Norris et al. 2008, Reghezza-Zitt et al. 2012). As such,

methodologies proposed for examining the concept and measuring it at the community
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level are not quite mature, and in fact most current efforts utilize tools, such as additive
indices, which were originally designed for different applications. This study used a
hybridized and modified additive index methodology in order to integrate concepts
from complexity science-inspired disciplines. This fusion of methods was undertaken
not only because it was considered plausible but because it was expected to result in
better understanding of resilience than studies based on either pure linear indices or
the abstract heuristic techniques of complexity science. However, there are probably
conceptual frameworks and methodologies completely unrelated to indices or heuristics
which can offer explanations for some of the facets of community resilience. Many
opportunities for trans-disciplinary linkage and methodological pluralism are expected
to exist than those laid out here. As mentioned, observation-based empirical research
which studies community socioeconomic processes as they change through time may be
considered highly promising. Also, network-based models of the interaction of
important community actors, resources and power relations may hold strong
explanatory power for how clusters of high and low resilience came to exist, and how
outcomes of disasters are shaped by pre-existing socioeconomic relations. Since the
concept of community resilience is often portrayed as baffling, yet at the same time
highly important and of a high research priority, there are bound to be brand new
techniques developed to measure it. Just as the development of fuzzy logic was inspired
by the inability of positivist, linear-oriented methods to explain social systems in the
1960s and 1970s (Zadeh 1976), current frustration with the concept resilience may spur

important methodological innovation in the future. Itis important to look out for these
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developments, and actively integrate them into research. Efforts to measure
community resilience would benefit from being as adaptive, opportunistic and creative

as the components of the concept itself.
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CHAPTER 7. CONCLUSION

In this thesis, it is recommended that future community resilience research
recognize and take into account the inherently complex nature of resilience as it has
been described by various disciplines. Here, this complexity was addressed on several
fronts. The larger concept of community resilience was deconstructed into a multi-
scalar framework to allow for balanced analysis of resilience-building qualities and
processes at the levels which they operate. Promising knowledge-based techniques for
guantifying dynamic influences and cause-effect relationships in the chosen resilience
indicators were operationalized to set indicator weights in an index and to provide
information for the most effective mitigation strategies. A new method was introduced
for estimating positive and negative resilience feedback relationships among nearby
communities based on the interacting spatial characteristics of those communities.

As applied to neighborhoods in the city of St. Louis, Missouri, the resulting
community resilience model identified significant clusters of high and low resilience
neighborhoods, which were validated against datasets representing observed outcome
of extreme environmental and socio-economic events. Though successful in explaining
some aspects of community disaster resilience in St. Louis, this research is not intended
to endorse a specific set of optimal resilience measurement tools or suggest the
universal applicability of the chosen methods. Rather, the intent of this research was to

show that much of the uncertainty and frustration which has defined the recent
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academic debate over the concept of population resilience can be alleviated by a shift
away from linear-oriented conceptualizations and statistically-dependent measurement
methods in favor of any approach which attempts to integrate qualitative perspectives,
local knowledge and nonlinear system modelling procedures.

Evidence that this shift is presently occurring within geographic perspectives of
community resilience is increasing, as recent studies have: taken into account the
multiple spatial and temporal scales of resilience-building or resilience-degrading
community processes (Hoeflehner 2014; Lew 2014; Rodina 2014), adapted theories of
complex socio-ecological systems to conceptualize resilience (Bitterman and Bennett
2014; Engie and Quiroga 2014), argued for more local-scale, place-specific
characterizations of community resilience (Chan et al. 2014; Lazarus 2014), and utilized
local expert and lay perspectives of both hazards and community protections against
those threats (Bergren 2014; Kumari and Frazier 2014; Leichenko and Solecki 2014;
Walsh-Dilley et al. 2014).

With the increased multi-disciplinary attention afforded to the subject, the study
of resilience may be entering a renewed period characterized by a plurality of
methodological treatments and a fusion of diverse knowledge sources. Local
emergency management decision makers and community leaders stand to benefit from

the lessened uncertainty that such academic conversations can provide.
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APPENDIX B. INDICATORS OF VULNERABILITY

Indicators of Vulnerability

Ageing Residential Structures

Ageing Residential Structures variable
is defined as the percent of housing
units built before 1940.

Source: US Census Bureau ACS 2011
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Higher —

«~ Lower

Omitted Neighborhoods
City Parks

Indicators of Vulnerability

Public Safety Threat

0

Public Safety Threat variable is
defined as the 5-year average
incidence of serious personal (rape,

A and aggravated
assault) and property (burglary,
larceny, auto theft, and arson) crimes
per 10,000 residents, normalized by
the highest average in the dataset.
Source: St. Louis Metropolitan Police
Department 2007-2011
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Indicators of Vulnerability

Economic Instability - Poverty Rate

\ \ Economic Instability - Poverty Rate
k> \ variable is defined as the population
X with income below the individual

\ poverty line as a percent of the total
population whose poverty status can
be determined.
Source: US Census Bureau ACS 2011
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Indicators of Vulnerability

Unemployment Rate

Unemployment Rate variable is
defined as the civilian unemployed
population as a percent of the total
civikan labor force (aged 16+).
Source: US Census Bureau ACS 2011

Neighborhood Vulnerability
ja1/ 0n Standard Deviations of Vulnerabily Scores)
4 + Lower Higher —

o o & o
IS ©
A NS )

Omitted Neighborhoods
City Parks

146




Indicators of Vulnerability

Single Female Households With Dependent Children
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Single Ferales Living Alone With
Dependent Children variable is
defined as the number of famiies
headed by a single female with
dependent children as a percent of
total families

Source: US Census Bureau ACS 2011
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Indicators of Vulnerability

Disabled Elderly Living Alone

Disabled Elderly Living Alone
bl s dofined us the number

Ids with 2 single owner
over the age of 65 daiming
@sabiiy. 85  percont of e loa
number of household:
Source: US Gensus Bureau ACS 2011
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Indicators of Vulnerability

Vacancy of Commercially-Zoned Properties

Vacancy of Commercially-Zoned

Properties variable is delnod asthe

number of commercially-zor

desigted ong term Vaant under tho
Strategic Land Use Plan 2011 database,

Gity St Louls Planning Department.

Source: City of St. Louis 2011
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Vacancy of Residentially-Zoned Properties
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Vacancy of Residentially-Zoned

Properties variable is defined as the

proportion of residentially-zoned properties.

designated ong arm vacant under the
Strategic Land Use Plan 2011 database

Gity St Louls Planning Department.

Source: City of St. Louis 2011
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Inequitable Access to Healthy and Affordable Food Sources|

Indicators of Vulnerability

0

Inequitable Food Access variable is
defined as the percent of the residentially-
zoned portions of neighborhoods that fail
within Limited Supermarket Access Areas.
Source: US Department of Treasury / The
Reinvestment Fund 2013
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Indicators of Vulnerability

Inequitable Access to Quality Schools

A

Inequitable Access to Qualty Schools
variable is defined as the service gap

in Missouri Tier-1 schaols per neighbor-
hood (the number of seats that would
have to be added to neighborhood

schools rated Tier-1 in order to service

all school-age children within the neighbor-
hood), normaiized by the highest service

gap in the dataset.
Source: National Association of Charter
School Authorizers (NACSA) 2009
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Indicators of Vulnerability

Limited English Proficiency

Limited English Proficiency variable
is defined as the percent population
who speak no or very ittle Engiish at

home.
‘Source: US Census Bureau ACS 2011
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Inequitable Access to Evacuation Routes
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Inequitable Access to Evacuation
Routes variable is defined as the
number of miles of road rated
“Principal Arterial’ o higher per
neighborhood, including roads
sharing neighborhood borders,
normalized by the highest count of
miles in the dataset.

Source: Missouri Department of
Transportation 2013
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Indicators of Vulnerability

Inequitable Accessibility of ER-Equipped Hospitals

0

Inequitable Accessibility to ER
Equipped Hospitals variable i
defined as driving time in minutes

the neighborhood centroid to the
nearest ER-equipped hospital,
normalized by the highest time in

the dataset.
Source: Google Maps AP 2013
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APPENDIX C. INDICATORS OF RESILIENCE
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Indicators of Resilience

Civic Participation

Civic Participation is defined as
as the number of neighborhood
block groups retuming 66% or
more of Census 2010 surveys OR
Improving retum rates from 2000
Census by more than 10%.

Neighborhood Resilience
(In Standard Deviations of Resillence Scores)

@ Indicators of Resilience

Educational Attainment

Educational Attainment is defined as
the percent civilian population ovar
age 25 who report a level of education
of 'At Least Some Collega” or higher.
Source: US. Census Burea ACS 2011
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Indicators of Resilience

Low Income Buffer

Low Income Buffer is defined as

the ratio of total government
assistance income dollars to the
number of households in poverty,
nomalized by the siudy area average.
‘Source: US. Census Burea ACS 2011

Neighborhood Resilience
(In Stanaard Deviations of Resilence Scores)
<« Lower Higher — [ ]

o
e ]
‘:0 e < ,\*s‘)

N ©
& '.\‘? ) v_,'@

| Omitted Neighborhoods
| City Parks

Indicators of Resilience

Insurance Coverage

Insurance Coverage is defined as

‘the percent civilian population covered
under any type of health insurance plan,
normalized by the study area average,
Source: US. Census Burea ACS 2011
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@ Indicators of Resilience

Indicators of Resilience

Household Economic Security Household Food Security and Urban Ecology
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Indicators of Resilience
19

Household Place Attachment

Household Place Attachment is defined

as the percent of homeowners who had
moved into their current adaress prior to
the year 2000, normalized by the siudy

area average.

Source: ACS 2011
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Activa Neighborhood Association -
Residential is defined as the prasence
or abscence of an organized. neighbar-
hood specific group made up of residents
who address intemal community issues.
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Neighborhood Place Attachment and Community Involvement

0

Neighborhood Place Attachment and

Community Involvement is defined as the

ratio public community gardens to total

households, normalized by the study

area average.

Source: Gateway Greening 2013 and
ACS 2011
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Active Neighborhood Association -
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h or abscence of an organized, neighbor-
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residants or representatives from
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intermal community business issues.
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Indicators of Resilience

Community Identity and Place Attachment

0

is defined as the presence

within or immediately bordering the
neighberhood.
Source: NRHP 2013
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Neighborhood Civic and Political
Engagement is defined as the presence
or abscence of a poliical ward association
(& neighbor-hoed specific partisan politcal
action group of any political party) which
advacales for kocal civic engagement
andfor the local poitical interests of their
respective party.
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Indicators of Resilience

Neighborhood Racial Diversity

Neighborhood Racial Diversity is
definad as the Gini Coefficient of
three racial groups: White Only'.
‘Black Only', and 'All Others’,
normalized by the study area

erage.
Source: US Census Bureau ACS 2011
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Indicators of Resilience

Neighborhood Age Equity

Neighborhood Age Equily is defined
as tha Gini Cosfficient of five age
groups: Under 15',"15 to 34", 35 to
54','55 to 74', and 'Over 75,
normalized by the study area average.
Source: US Census Bureau ACS 2011
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Indicators of Resilience

Neighborhood Income Equity

A

Neighborhood Income Equity is
defined as the Gini Coefficient of

six househald Income groups:

‘Under $10K', '$10K to 526K,

'$25K to $50K', '$50K to §100K",
"$100K to $200K’, and Over $200K’,
normalized by the study area average,
Saurce: US Census Bureau AGS 2011
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Indicators of Resilience

Neighborhood Occupational Diversity

Neighborhood Occupational Diversity
is defined as the Gini Coeflicient of
five occupational categeries (for
civilian population over the age

of 16): ‘Business, Science & Arts’,
‘Service', ‘Sales & ice’, "Construction
and Extraction’, and ‘Transportation’,
narmalized by the study area average.
Source: US Census Bureau ACS 2011
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Indicators of Resilience

Neighborhood Business Size Diversity

Neighborhood Business Size Diversity
is defined as the weighted Gini
Coefficient of threa business size
categories: 1 to 48" (weighted 40%),
5010 199' (weighted 20%), and ‘Over
200" (weighted 40%), normalized by the
study area average.

Source: ESRI Business Analyst 2013
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Indicators of Resilience

Neighborhood Innovative Potential

A

Neighborhood Innovative Potential

is defined as the proportion of civiian
populatich over the age of 16 wha are
employed in a ‘Science, Technology,
Engineering and Math' (STEM) or STE}
~related occupation as defined by the
ACS 2011, nomalized by the study area
average.

Source: ESRI Business Analys! 2013

nce
(In Standard Deviations of Resiience Scores)
« Lower Higher —

& 6
PEIP- N

[ o
S
| | Omitted Neighborhoods
——
O e R | CityParks

154




E Indicators of Resilience
Elected Official Connectivity

A

Elected Official Connectivity is defined as
the presence or abscence of a ward
‘association organized or run by the
neighborhood's Alderman/Alderwoman,
which provides a direct platform for
‘community-government communication.
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E Indicators of Resilience
Government Extreme Temperature Mitigation Effort

Government Extreme Temperature
Mitigation Effort is defined as the
road distance from the neighborhoad
centroid to the nearest Warming!
Coaling shelter (funded by the State
of Missouri), normalized by the study
area average.

Source: State of Missouri 2013 and
ESRI Network Analyst
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E Indicators of Resilience
Government Emergency Food Mitigation Effort

Government Emergency Food
Mitigation Effort is defined as the
road distance from the neighborhoad
centroid o the nearest Emergency
Food Supplemental Site (funded by
the State of Missouri), normalized
by the study area average,

Source: State of Missouri 2013 and
ESRI Network Analyst
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@ Indicators of Resilience

Government Gender-Based Emergency Mitigation Effort

Government Gender-Based Emergancy
Mitigation Effort is defined as the
road distance from the neighborhaad
centroid to the nearest Women/
Chikdren Crisis Center (funded by the
State of Missouri), normalized by the
study area average.

Source: State of Missouri 2013 and
ESRI Network Analyst
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Indicators of Resilience
Availability of Government-Maintained Open Space
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Source: City of St. Louis and ACS 2011
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Indicators of Resilience

Instilutional Emergency Health
Mitigation Coverage is defined as the
road distance from the neighborhaad
centroid to the nearest non-profit
community health center with urgent-
care or primary-care capabilities,
nommalized by the study ares average,
Source: United Way/411 2013 and
ESRI Network Analyst
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Indicators of Resilience

1 Gt
-2
2 St e
ey
e
o v
2 i
Ui P
[y
. 0
e
St G
Norn Mo
Towe o St
e
1 W Pt y -
e s Institutional Non-Profit/ Civic Organization
= Prasence is defined as the number of
St non-prafit organizations registered as
Sret community services or ciic organizations
P located within a neighbarhood, normalized
Towsr Growt Bait by the study area average.
o Saurce: ESRI Business Analyst 2013
e Toum \
Ty
o]

Neighborhood Resilience
(In Standard Deviations of Resiience Scores)
« Lower Higher —

& 6
PEIP- N

€ )
o ?J.@ ,‘.3\ {g@

H
i

| Omitted Neighborhoods
| City Parks

156



i
i

Indicators of Resilience

Institutional Capital Development
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defined as the number of brick-and-
mortar banks registered as type
“Consumer Savings” or "Business”
within a neighborhood, normalized
by the study area average.
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