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Measuring Community Resilience to Disaster 

Aaron Wesley 

Dr. Timothy Matisziw, Thesis Supervisor 

 

ABSTRACT 

 

 Although geographic studies of disaster vulnerability and resilience have been 

central to the formulation of federal emergency management policy, recent community 

resilience research has diverged significantly from the core foci of the discipline:  the 

importance of place, of scale, and the complexity of human-environment interactions.  

Three disconcerting trends in the literature can be observed.  First, there has been a 

heavy reliance on the tools of linear systems science to characterize and measure the 

human dimensions of resilience - dimensions which are increasingly examined in terms 

of their nonlinearity, dynamism and complexity in other scientific disciplines.  Second, 

most of the variables typically used as proxies for community resilience are not actually 

indicative of community-scale processes, but rather describe individual-scale behavioral 

and household-scale socioeconomic characteristics.  Third, the current practice of 

aggregating resilience indicators to large, heterogeneous geographic areas in order to 

communicate community-level resilience can actually mask and mischaracterize the 

local, place-specific variability of those indicators.  This thesis presents a rethinking of 

geography’s conceptual model of population disaster resilience and the methods used 
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to measure it at the community level.  Drawing on diverse theoretical linkages on the 

subject from across the social and natural sciences, and on the current perspectives and 

information requirements of local emergency managers, a more holistic and meaningful 

approach to measuring community resilience is proposed.  Specifically, in recognition of 

a need to integrate both expert and lay local perspectives into resilience calculations, a 

system for assimilating such qualitative data into quantitative analysis is adapted from 

complexity theory.  Also, in acknowledgement of the multiple levels at which resilience-

building processes may operate in human systems, and the unique ways disaster 

resilience can manifest in different places, a new framework for balancing multi-scalar 

indicators of community resilience for local-level analysis is proposed.  As a proof-of-

concept for the above approach, a community disaster resilience analysis is conducted 

at the neighborhood level in the City of St. Louis, Missouri.  Results indicate that 

analyses which factor in local knowledge of both hazards and unique protections against 

those hazards can explain observed community-level resilience to actual disasters better 

than analyses which rely solely on internal statistical techniques.  Results also show that 

the proposed method for analysis of qualitative expert assessments of local resilience 

indicators can unveil the complex structure of cause-effect influence among these 

variables and can reveal which community assets are most important to nurturing 

disaster resilience. 
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CHAPTER 1. INTRODUCTION 

Most people know enough about environmental hazards to want to protect the 

things they value against hazards’ effects.  But when faced with a variety of threats both 

natural and social in origin, most people are highly uncertain about which protections 

are necessary in order to be ready to face an extreme environmental event. And they do 

not know how the two – protection and readiness – interact.  One consequence of this 

is that most disaster preparedness insights, and the clearest assessment of a 

community’s deficiencies in protection and readiness, are often observable only after 

disaster strikes - even though much a priori knowledge about the number and nature of 

hazards exists.  There is much academic interest in making sense of the hazards to which 

populations are vulnerable and identifying the various protections which foster 

community resilience to their effects - and for good reason.  In light of the hazard-

magnifying effects of global climate change (IPCC 2013), and the increasing 

concentration of populations and infrastructure in large urban centers within hazard-

prone areas (NRC 2012), a high priority must be placed on research which reduces 

uncertainty about the processes and structures which lead to disaster resilience.  The 

research presented here attempts to accomplish this by critically examining theoretical 

and methodological issues in the study of community resilience, with the goal of 

providing a more holistic perspective and insight to disaster management policy. 

In the context of most geographical research, a natural hazard refers to physical 

environmental threats to people and places arising from the intersection of human and 
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natural systems (Cutter 2003; Cutter et al. 2003).  Vulnerability refers to a certain place’s 

potential for harm from natural hazards, as a function of exposure (spatial co-

occurrence), risk (frequency of occurrence), and severity (relative magnitude).  Hazard 

vulnerability, then, is defined in this thesis as the degree to which a particular location 

interacts with environmental threats in time and space.  There are several advantages to 

this conceptualization.  First, this definition is applicable across a range of spatial scales, 

from cells to individual organisms to entire ecosystems.  Second, when defined as such, 

hazard vulnerability exists everywhere given that threats to survival are present 

everywhere to some extent (Paul 2011).  All organisms and communities of organisms 

live with some degree of vulnerability, and then make choices, take risks, develop 

defenses, etc. to mitigate against environmental threats.  Third, vulnerability in this 

sense is a manageable concept to measure, involving the enumeration of the hazards a 

location is exposed to, as well as the spatiotemporal characteristics of those hazards 

that make them more or less of a threat.  Calculations of vulnerability could be as simple 

as a binary checklist of environmental hazards in a local ecosystem; conversely, they 

could combine detailed quantification of exposure, extent, frequency and severity into a 

complex algorithm.  Perhaps the most important advantage to this conceptualization of 

vulnerability is that it is segregated from the more complex concept of disaster 

resilience. 

In this thesis, natural disasters are defined as extreme environmental events, 

arising from natural hazards, which overwhelm a system’s capacity to absorb, respond 

to or recover from damage – often leading to a shift into a less productive or otherwise 
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unfavorable system state.  Resilience is considered here to be a scalable organic concept 

referring to all the defenses, resources, adjustments, capacities, connections and 

attributes which organisms or communities of organisms ‘put into play’ to plan for and 

mitigate against environmental hazards, absorb the effects of extreme events, and 

prevent lapse into an unfavorable state.  Resilience in this sense is a quality that appears 

at all levels of nested organic systems from individual cells (and even intracellular 

components) to individuals, communities and higher-order networks of communities.  

This definition of resilience highlights the vast integrative potential for disaster research; 

whether or not it is explicitly referenced as ‘resilience’, the phenomenon described 

above has been considered in business, biology, statistical physics, developmental 

psychology, computer science, and many other disciplines. 

However, along with all the interest in resilience comes the caveat that its 

components are not well understood or even defined, and that significant disagreement 

and uncertainty exist in how to measure resilience or what a resilient system looks like 

in the real world.  As later reviewed, emerging in the literature are common themes of 

various capacities (e.g., adaptive, learning, absorptive, resistive, coping, etc.) as well as a 

sense of a need for structured self-organization and strategic connectedness.  Yet, these 

qualities seem to emerge and manifest themselves in very different and even surprising 

ways in different places, an observation which has undoubtedly contributed to 

geographers’ attraction to the subject. 

In light of the above, the task of defining the term community should be 

approached with a healthy sense of caution.  Is it better to include the descriptor 
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‘geographically bounded’ in the definition, since this conforms well to dominant 

conceptualizations of space within geography and the modalities of its cartographic 

discourse (Norris et al. 2007)?  Or, should the unbounded and open nature of 

communities in today’s hyper-connected, globalized world be stressed (Wilson 2012)?  

Would a homogeneity-oriented characterization of a group of people united by shared 

interests, collective experience and common goals be charitable (Kulig 2000)?  Or would 

this unfairly preclude the existence of competing networks of power, actors and interest 

groups with divergent aims, or a complex heterogeneity of sometimes incompatible 

worldviews (Allen 2003)?  Researchers who choose a certain definition of community 

over another are both right and wrong for reasons rarely acknowledged: while all 

researchers operationalize ‘community’ according to their own conceptual orientation 

and in accordance with their studies’ research goals, the fundamentally place-specific 

nature of how communities manifest necessitates reevaluation and reinterpretation of 

the definition for different place contexts and assures that no single definitions will be 

universally applicable or acceptable.1  With that caveat, the definition of community 

used in this thesis - a population living within a self-delineated or historically 

distinguishable local area who can reasonably be expected to come together to solve 

problems – is less of a normative statement and more of an invitation for the reader to 

explore the place-based rationale for this choice. 

                                                      
1
 A significant portion of this thesis explores how the nascent discipline of complexity science deals with 

concepts that resist discrete, unambiguous or authoritative definition, or that emerge differently at small 
scales or in different parts of a system.  
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There exists a long and rich history of research spanning many disciplines which 

has informed the emergency management policy community about the characteristics 

of natural hazards and the populations exposed to them.  The pervasiveness, complexity 

and scale-invariance of human system interaction with extreme environmental events 

has fascinated and challenged an impressively diverse set of disciplines.  For instance, 

psychologists have studied disaster-induced psychological trauma in individuals (Kutak 

1938), sociologists have sought to explain a farm family’s decision to settle on 

floodplains (Chan 1995), geographers have analyzed differences in community-level 

evacuation route accessibility in a city (Cova and Church 1997), economists have 

modeled the regional effects of a volcanic eruption shutting down the world’s busiest 

airport (Budd et al. 2011), and climatologists have attempted to predict climate 

change’s impact on global storm intensity zones (IPCC 2013). 

The interplay of natural and social systems that give rise to disasters have long 

attracted the attention of academic geography in particular, which has always strove, 

with varying degrees of success, to stake claim to studying phenomena that bridge the 

social and natural sciences (not to mention that geographers are irresistibly drawn to 

processes which demand considerable attention to scale).  In fact, it was geographer 

Gilbert White who is credited with establishing the academic credibility of and 

stimulating widespread interest in hazards and disasters research in the years following 

WWII (Quarentelli and Dynes 1977; Smith 2001).  While the story of how the subject has 

since attenuated into the work of other disciplines is certainly complex, it is fair to state 
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that research which attempts to make sense of hazards and extreme events is by now 

ubiquitous across academia. 

Yet, for all the interdisciplinary relevance the subject has found, a common 

critique which arises in the current review literature is that hazards research could 

benefit from more cross-disciplinary collaboration (Vogel et al. 2007; Miller et al. 2008; 

Turner et al. 2010; Berkes and Ross 2013; Downes et al. 2013).  It is observed that the 

study of disaster commonly proceeds in a compartmentalized fashion, with researchers 

in each field tending to adhere to in-house theories and methods, many of which can 

claim decades-long traditions of scholarly development (Taylor 1984; Carrerra and 

Guzzetti 1993; Alexander 1997; Teo et al. 2013).  While many researchers recognize 

both the inevitability of a certain amount of stovepiping in academia as well as the 

benefits of theoretical maturation this process provides, it is contended that, at the very 

least, there exists a strong, largely unrealized potential for trans-disciplinary 

collaboration which includes cross-adaptation of theories and methods. 

The normative argument that the above should be happening – that very 

substantive progress in the subject could be enabled by an actively integrative element 

– is, at least on paper, readily apparent within geography.  On the one hand, those 

involved in hazards and disaster research are apt to include appeals for future research 

to be more integrative and inclusive of other professional viewpoints.  On the other 

hand, the current dominant paradigm of disaster research in geography specifically 

codifies transdisciplinary linkages, as well as methodological pluralism (the willingness 

to integrate multiple research methods and technologies) and multi-perspective 
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reflexivity (the willingness to learn from a variety of knowledge sources, both lay and 

expert), as norms by which research should proceed (Cutter 2003, Miller et al. 2008).  

Given the wide credence and citation these three foci currently enjoy, it would be an 

ironic and understandably contentious assertion that the recent thread of community 

disaster resilience research in geography has not successfully lived up to these norms.  

Such an assertion is made in the present thesis. 

The argument presented is threefold.  First, it is asserted that methodologically, 

the continued approach of aggregating and analyzing resilience variables with overly- 

simplistic indices is in direct conflict with current multidisciplinary understandings of the 

complex and interrelated nature of the components of resilience.  To account for these 

dynamics, a methodology from the field of industrial risk management can be adapted 

for identifying the structure of complex cause-effect relationships inherent in index 

variables, using a knowledge-based system.  Second, it is argued that the majority of 

variables currently used in geographic studies of community resilience are not 

holistically indicative of community-level processes, but rather disproportionately 

describe individual-level behavioral and household-level socioeconomic characteristics.  

As such, a more multi-scalar approach to variable selection is proposed which captures 

and balances individual- as well as community- and government-level processes and 

characteristics, chosen from place-specific research of the community in question.  

Third, based on multidisciplinary understandings of the fundamentally endogenous, 

place-based nature of resilience, and taking into account the place-specific information 

requirements of emergency managers, a paradigmatic shift away from the current 



8 
 

practice of aggregating resilience variables over large geographic areas in favor of local-

scale geographic analysis based upon a more realistic construct of a community is 

proposed. 

To illustrate the benefits of the developed approach, an analysis of community 

resilience to disasters within the City of St. Louis, MO is conducted, utilizing indicators of 

community resilience that not only represent the multiple facets of resilience but also 

the multiple scales at which resilient characteristics and processes operate.  Rather than 

relying solely on internal multivariate statistics to evaluate or correct inter-influence of 

study variables (a method which frames such influences as design errors, possibly 

leading current studies to eliminate important explanatory variables), the proposed 

approach seeks to account for and explore variable influence, including the structure of 

complex cause-effect relations, using a knowledge-based rating system.  Further, 

methods from within complexity science are extended to extract perceived comparative 

variable influence on the overall management goal of increased disaster resilience. 

The aim of this research is not only to help bring the study of community 

resilience in geography up to speed with its peers by bridging the gap between the 

discipline’s emergent understanding of the complexity of the concept and the 

methodological approach by which it is measured.  It also seeks to bring the output of 

disaster resilience research in geography (which has historically commanded strong 

influence on policy) in line with the ongoing shift of focus in emergency management/ 

disaster preparedness from top-down, government-centered intervention policy which 

focuses on fixing deficiencies to bottom-up, place-specific policy which focuses on 
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building on existing capacities and unique strengths.  Ultimately this research is geared 

to benefit local emergency management personnel, civic leaders and citizens who take 

on the responsibility of fostering resilient characteristics within their communities. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Hazards, Disasters and Vulnerability in the Social Sciences 

Attempts to construct a concise history of hazards research which is both 

comprehensive in scope and charitable to a wide-range of theories seems bound to fail. 

In terms of scope, it has been noted that even the longest of scholarly reviews fails to 

include all branches of thought where the topic receives treatment (Downes et al. 

2013).  In terms of theory, the number of active paradigms within hazards research is 

probably at least as large as the number of importantly related yet less explored 

theoretical linkages with other schools of thought.  Even when limited to the urban 

context and the scale of communities, a surprisingly broad body of literature can be 

found.  Yet, the story of the rise, maturation and widespread influence of hazards 

research is also, in many ways, the story of the rise, maturation and widespread 

influence of geographic theory in academia as well as in government decision-making. 

For well over 60 years in America, scholarship across the social sciences has been 

directed toward assessment of urban populations’ natural disaster vulnerability and in 

answering, for the benefit of academic as well as government audiences, the 

fundamental questions of ‘Who is vulnerable to extreme natural events?‘ and ‘What 

factors influence disaster vulnerability?’  While conceptual frameworks in the study of 

vulnerability have evolved considerably throughout the post-war period, a sense of 

urgency for actionable research in this area has increased greatly in recent years.  An 

illustration of the current relevance and complexity of the topic can be seen in the 
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National Research Council’s (2012) report, commissioned by the U.S. intelligence 

community, on the national security implications of increasingly frequent/intense 

extreme weather events due to global warming.  In this report, the NRC recognizes that 

social, economic and political drivers of disaster vulnerability are not well understood, 

calling for intensive place-based research into the interplay of these factors that 

incorporates predictive models of all possible environmental hazards. 

Disaster research in general in the social sciences prior to World War II has been 

regarded as sporadic, empirical and focused on singular events, garnering little attention 

within the researchers’ respective disciplines and containing few theoretical 

contributions or methodological prescriptions that would suggest further study was 

promising.2  Still, it is worth noting that these early contributions originated from across 

the social sciences – a harbinger of the developments of the post-war period and in 

today’s multidisciplinary disaster research climate.  One of the first attempts to apply 

accepted social science concepts to the study of a disaster was a dissertation in political 

science by Samuel H. Prince (1925), which examined demographic changes in Halifax, 

Nova Scotia following a devastating 1917 munitions depot explosion that leveled much 

of the city.  In the early 1930’s, W.M. Davis (1934) examined infrastructure damage in 

the Los Angeles region caused by the 1933 Long Beach Earthquake and evaluated the 

reconstruction recommendations made by a panel of California Institute of Technology 

                                                      
2
An important exception is the human ecology paradigm presented by Barrows (1923), which provided 

theoretic context for several schools of disaster research in the geographic tradition  
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scientists.3  In the field of psychology, much attention was paid to the trauma incurred 

by U.S. military in the European trenches of WW I (Ferenczi 1921).  Kutak (1938) 

reviewed the psychological impacts of destruction in Louisville, Kentucky following 

major flooding in 1937.  Whatever the effect of these infrequent contributions on 

scholarly interest in the study of disaster, sustained treatment on the topic was not 

realized until after WW II, when Gilbert White and other geographers at the University 

of Chicago, through an examination of flooding disasters, established a paradigm of 

vulnerability which remained dominant until the 1980s (White and Kates 1978). 

Influenced by the human-ecology paradigm in geography established by Barrows 

(1923)4, White’s 1942 dissertation Human Adjustment to Floods5 represented not only 

the first theoretical examination of factors of disaster vulnerability but also heralded a 

broad disciplinary shift toward behavioral science within geography.  Influenced by the 

‘interventionist’ environmental engineering policies enacted under The New Deal, as 

well as the American pragmatic philosophy of John Dewey (1925),6  White defined a 

range of ‘adjustments’ humans can employ to mitigate effects of flooding, in order to 

continue settling in flood-prone areas.  These adjustments, he argued, took the form of 

technological (e.g. hydraulic engineering, structure elevation) or policy (e.g. land use 

code, flood insurance) fixes that guarded human lives and property from environmental 

                                                      
3
Davis ended his article with the declaration: “Life is full of hazards, and we must take our chances among 

them.” 
4
Barrows’ focus was explaining human adjustment, in the broadest sense, to the physical environment, 

and advocated for a nomothetic approach within geography to establish universal laws of human-ecology 
interaction 
5
Republished post-war in an expanded 1945 monograph 

6
Characterized by, above all, the epistemological idea that usefulness determines what counts as 

knowledge (James 1977) 
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hazards.  Communities lacking the correct mix of adjustments against these hazards 

were to be designated vulnerable to the extent that they are at spatial risk to flooding.  

Also, in an implicit rejection of the existing ‘rational choice’ model of individual decision-

making behavior, White pointed out the apparently counterintuitive trend of residential 

development in floodplains with few adjustments in place.  White concluded his 

dissertation by calling for new explanatory research into people’s settlement decision-

making7 and for a comprehensive federal policy of flood abatement taking into account 

all possible adjustments. 

To understand the immediate interest and long-term influence across academia 

and in government of Human Adjustment to Floods, the broader social context of its 

release deserves mention.  The monograph was published during the post-war period of 

high demand for the practical application of science and technology in urban and 

regional planning.  Also concurrently, as the U.S. military analyzed the human occupancy 

of cities potentially targeted by Soviet nuclear missiles, there existed a high demand for 

research that could inform federal policy for reducing the impact on infrastructure and 

society of nuclear strikes. It has been argued that both the technophile social climate 

and civil defense orientation of government helped jettison White’s research to the 

forefront of the popular new area of disaster mitigation research (Quarentelli and Dynes 

1977; Smith 2001). 

Known variously as the behavioral or risks/hazard paradigm, the theory of 

hazard adjustment was subsequently developed by White and his students Burton and 

                                                      
7
A direct influence to Simon’s (1956) ‘bounded rationality’ theory in psychology 
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Kates, who formed the core of a ‘Chicago School’ of disaster research in the geographic 

tradition.  Studies under this approach were broadly concerned with identifying the 

distribution of environmental hazards, the range of adjustments available to individuals, 

and how people perceive and make choices regarding hazards at the individual level 

(Cutter et al. 2000).  As such, adherents to the behavioral approach developed several 

methodological foci.  First, high importance was placed in gathering data on the 

spatiotemporal characteristics of environmental hazards, in order to both model their 

interaction with population and to quantify their effects (White and Haus 1975; 

Friedman 1975).  Second, a strong commitment to physical and managerial control, 

aimed at containing hazard impacts through environmental engineering and land use 

policy, was maintained (White et al. 1978).  Third, government-led emergency response 

planning was urged as a mitigation tactic (Quarantelli 1979).  Finally, analysis of 

settlement decision by the individual and policy decision by government officials was 

recommended under the lens of the bounded rationality theory of behavioral science, in 

order to understand how information about hazards and risk are processed and acted 

upon (Dynes 1970; Mileti et al. 1977).  Throughout the development of the behavioral 

approach, the terms risk and hazard were synonymous with the spatiotemporal 

distribution of extreme environmental events.  Although vulnerability assessment under 

the behavioral paradigm was seen primarily as a qualitative/inductive process based on 

measuring human occupancy of hazard zones and measuring the extent of adjustments 

in place, White maintained that the basic theoretical rationale was that hazards are 

derived from interaction between nature and society, strongly affected by feedback in 
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the form of adjustments (White et al. 1978).  Methodologically, practitioners of the 

behavioral paradigm were highly concerned with mapping locations of hazard zones to 

delineate risk, and cataloguing adjustments made at particular locales through detailed 

case studies (Friedman 1975).  Meta-analyses of these studies were in turn used to 

determine patterns of adjustments and provide indicators of their effectiveness in 

dealing with disaster events.  The dominant method for assessing individual and official 

decision-making behavior took the form of surveys, aimed at correlating demographic 

data with settlement decisions/policy (Dynes 1970). 

Beginning in the 1970’s, a series of radical critiques to the behavioral approach 

arose from across the social sciences, challenging White’s techno-centric approach and 

the validity of a theory of vulnerability based solely on exposure to extreme natural 

events without consideration for social, economic or political factors.  In his seminal 

paper “Taking the Naturalness Out of Natural Disasters”, O’Keefe (1976) headed the first 

strong attempt to refocus the field on the human drivers of vulnerability.  He argues 

that political and economic struggles in any form are ‘force multipliers’ which increase 

vulnerability of certain populations and amplify the effects of disasters.  Explaining that 

these struggles tend to limit options for adjustment (thus limiting certain populations’ 

ability to cope with disaster), he called for future research to account for barriers to 

human agency in vulnerability assessments.  Critiques by Waddell (1977) and Torrey 

(1979) followed, each questioning White’s causal mechanism (environmental processes) 

of hazard – they sought to replace geophysical characteristics with a ‘geography of 
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social relations’ as the governing factor of spatial extent and occurrence interval of 

disasters. 

These initial critical works established what was called the political-economic or 

political-ecology approach to vulnerability, which was subsequently developed primarily 

by social science researchers with experience working in least-developed/ Third World 

countries or economically/politically disadvantaged communities in the U.S.  Themes of 

critique of the adjustments paradigm can be easily discerned.  First, political ecologists 

point to the over-exaggeration of the role of the individual in adjustments writings, 

which artificially forces studies to ignore larger political, economic or cultural factors.  

Second, the adjustments paradigm was seen as lacking appreciation for historical or 

structural features of society which may limit individual adjustment choice.  Political-

ecology is seen as well positioned to offer insights into these limiting structural features 

because of the presence of Marxist geographic theory (Paul 2011), which offered 

explanatory linkages between disaster vulnerability and the spread of global capitalism.8  

Waddell (1983), for example, argued that disasters function to reinforce the gap 

between rich and poor by accelerating economic marginalization and forcing inadequate 

adjustment choices.  Susman et al. (1983) attempted to prove that governmental 

adjustments tend to be funneled to upper-class communities using a case study of 

differential damage to Guatemala City after a 1977 earthquake, which the authors 

dubbed a ‘classquake’. 

                                                      
8
 Structural Marxists, especially in the geographic tradition of Louis Althusser, sought to evaluate how 

different levels of social formation manifested themselves in different levels of social inequality – uneven 
effects of disasters provided evidence for this position and resulted in interest by Marxist thinkers 
(Benton 1984).  
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As a fundamentally critical endeavor, the political-ecology approach did not seek 

to offer significant methodological alternatives or policy prescriptions.9  However, as 

Marston (1983) notes, political-ecology’s important contribution to disaster research lay 

in its success in broadly validating the social, economic and political as factors to 

vulnerability, and in its alternative explanation of human behavior in relation to societal 

structures.  As will be seen, all subsequent theoretical contributions to disaster research 

put one or all of these factors in context.  However, this is not to suggest that social 

considerations were completely missing from disaster research prior to the politic-

ecology paradigm.  In fact, many researchers in the field of sociology have been engaged 

in disaster research since the late 1960s, most notably in the disaster behavior tradition 

of Dynes (1970), Quanterelli (1978) and Drabek (1986).  According to Dynes (1970), 

disasters “represent types of uncertainties in which elemental forms of social processes 

are revealed…They provide the opportunity to observe the emergence of social 

structure under stressful conditions.”  Their approach was focused on behavioral 

aspects, in the vein of the molar/perception school of social psychology, in order to 

model individual behavior based on hazard perception.  It may seem that a high 

potential for collaboration existed between researchers in both the sociological and 

political-ecology traditions, but as Alexander (1997) has shown, sociological 

developments in disaster behavior occurred in relative isolation.  Indeed, a theme of 

compartmentalization in disaster studies across several disciplines, which complicates 

                                                      
9
 A notable exception was Emel and Peet (1989), who advocated for more qualitative vulnerability 

assessments based on class/social issues, and recommended mitigation solutions based on redistribution 
of wealth and resources in society, rather than rely on science and technology to control nature.   
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efforts of synthetic literature review, developed in the 1970s/1980s and continues to 

the present day.  For example, the field of emergency medicine, stimulated by funding 

from the U.S. Centers for Disease Control in the early 1980s, began producing research 

on the characteristics of post-disaster medical emergencies in the built environment, 

with the aim of identifying trends of disaster-related medical vulnerabilities and 

recommending medical relief adjustments (Alexander 1997).  However, as Taylor (1984) 

has shown, these efforts were isolated from a strong concurrent disaster research 

culture in the fields of architecture and civil engineering, which were producing very 

detailed knowledge of the performance of urban infrastructure during many types of 

disasters.  While mutual incomprehension and the tendency to assert disciplinary 

relevance/identity have been blamed for a lack of interdisciplinary collaboration in 

vulnerability study (Carrerra and Guzzetti 1993), the problem of bridging these gaps 

remains to be solved. 

Beginning in 1990, conceptual frameworks for studying vulnerability which 

included social, political and economic considerations developed rapidly in the social 

sciences.  First, a ‘hazards-in-context’ approach, developed by Mitchel et al. (1989) and 

Palm (1990), was an attempt to expand White’s behavioral and environmental approach 

to include social and political factors, by placing individual choice as the end product of 

a complex, multi-scale network of social/political power relations.  Palm (1990) 

identified three scales – micro (individual/household), meso (emergency managers, 

insurance companies etc.), and macro (the State) – through which information about 

environmental hazards and adjustments are filtered.  She demonstrates that 
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political/social biases at the meso and macro level produce vulnerabilities at the micro 

scale by perpetuating misinformation10. 

The next theoretical model of vulnerability in the social sciences, known as the 

pressure-release model, was devised by Blakie et al. (1994) and extended the causality 

critique of political ecology.  The concept proposed was a progression of vulnerability 

from root social causes (poverty, lack of resources) to ‘dynamic pressures’ (population 

growth, inflation) to unsafe conditions (inadequate building codes, lack of emergency 

response plans) and finally to the disaster event itself.  As a fundamentally human-

centered approach, this model encouraged research to uncover all types of social, 

political and economic pressures that interact at the individual scale to create 

vulnerability. 

A few human geographers in the place-based tradition, sensing a lack of place-

specific study in either the pressure-release or hazards-in-context approaches, began 

seeking to bridge the behavioral and political-ecology paradigms in a conceptual 

framework known as hazards-of-place.  Influenced by Hewitt and Burton’s (1971) 

definition of vulnerability as the totality of hazards that could affect a particular 

ecological system, Cutter and Solecki (1989) proposed combining all-hazards research 

with studies of place-specific social and political structures to create ‘hazardscapes’ or 

‘riskscapes’.  The goal was to synthesize environmental hazards with human systems at 

various geographic scales in a manner that allowed for the integration of data for 

quantified place-based vulnerability assessments (Cutter 2000).  While hazardscapes 

                                                      
10

For example, insurance companies can manipulate information about geophysical risk in order to 
artificially increase an individual’s perceived risk 
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were initially described in static language, subsequent development has provided a 

more fluid and dynamic view, in which both hazards and vulnerability undergo constant 

and complex spatiotemporal change (Khan and Crozier 2009).  The idea of hazardscape 

in the geographic tradition is now concerned with identifying aspects of process, people 

and place (which geographers have always been attune) which shape hazards and 

human vulnerability.  A salient characteristic of the hazards-of-place paradigm is its 

explicit goal of combining the strengths of earlier adjustments research (i.e., scientific 

data collection) and political-ecology (i.e., explanation of socioeconomic processes).  

Proponents of the hazards of place approach contend that it allows for empirical 

examination of patterns of environmental hazards while directly accounting for the 

interplay of quantified social, economic and political factors.  Especially significant to the 

rise in popularity of this approach was Cutter’s early recognition of geospatial 

technologies as key tools in evaluating hazards, analyzing population characteristics and 

communicating issues of risk and vulnerability to decision makers. 

With rapid advances of the aforementioned geospatial technologies such as 

geographic information systems (GIS) and remote sensing in the last decade, social 

scientists have been presented with increasingly sophisticated tools to visualize 

environmental hazards, map risks/vulnerabilities, and model disaster impacts (Vogel et 

al. 2007).  The hazards-of-place paradigm, with its emphasis on local empirical research, 

has provided disaster vulnerability experts the theoretical underpinnings for applied 

research in this area.  Aiming to enable researchers to leverage geospatial technologies 

in their research while remaining amenable to accepted standards of scientific praxis, 
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researchers have recently proposed and developed guidelines for an applied ‘science of 

vulnerability’ (Cutter 2003; Vogel et al. 2007).  Adhering to and acknowledging the basic 

critiques of spatial science,11 a science of vulnerability would incorporate foci that may 

mitigate against some of the perceived counterproductive effects of scientific praxis.  

These foci include (Cutter 2003): 

∙ Multiperspective reflexivity – the ability to learn from a variety of knowledge   
   sources, both expert and lay, in a place-based all-hazards approach 
 

∙ Transdisciplinary linkage – the ability to actively seek connections across the 

social and natural sciences (including health and engineering disciplines) 
 

∙ Methodological pluralism – the ability to integrate multiple research methods 
and technologies in recognition of place-specific variability of vulnerability    

As an explicitly pragmatic applied approach, vulnerability science has developed to 

encourage the exploitation of geospatial technologies for analysis and visualization of 

hazards data, with the purpose of helping emergency management officials understand 

vulnerabilities of places and enact more effective mitigation policies (Tobin and Montz 

2004; Rufat 2012). 

 

2.2 Evaluating Resilience  

While the academic debate described above dealt primarily with defining what 

exactly makes populations vulnerable to environmental hazards, the concept of 

resilience explores the characteristics of systems, both physical and organic , which 

seem to protect against the harmful effects of extreme environmental events.  Possibly 

                                                      
11

 What Cutter calls the ‘vulnerabilities of science’ – the bias of the supposedly objective observer, the 
social construction of science and scientific practice, the tendency of the dominant modes of scientific 
discourse to exclude certain perspectives and knowledge sources, etc.   
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due to the antonymic coupling assigned to the two terms in English semantics, 

‘vulnerability’ and ‘resilience’ may seem simple opposites on a scale of disaster 

readiness.  Though related, the two concepts are often understood to refer to different 

processes, with the study of resilience undergoing mostly separate development in 

several different disciplines. 

A very general way to capture the tone of the development of resilience thinking 

across the social and natural sciences may be a shift from focusing mostly on deficits, 

weaknesses and vulnerabilities (whereby system agents are acted upon by extreme 

events), to an inclusion of focus on adaptation, anticipation of change and learning 

(whereby system agents are proactive and preemptive in dealing with environmental 

threats).  Key traditions of inquiry into the resilience concept as it relates to human 

systems and communities are now reviewed. 

 

2.2.1 Psychological Sciences       

In the 1970’s, case studies examining differences in individual’s responses to 

environmental shocks, including disasters, prompted a longstanding theoretical 

tradition of resilience thinking in the fields of developmental and social psychology.  This 

tradition had early on rejected notions of inherent or genetic ‘invulnerability’ to 

environmental shocks, as well as focus on deficits of the individual (the so-called risk 

paradigm of developmental psychology of Boyden and Cooper (2007) and Johnson and 

Wielchelt (2004)).  Instead, this branch has focused on identifying strengths and 

enabling the development of social competencies and internal coping mechanisms 
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identified as ‘functional resilience’ by Howard et al. (1999) and Luthar and Zelazo (2003).  

A lasting hallmark of the psychological approach, contributed by eminent 

psychopathologist Norman Garmezy, is that an individual’s level of functional resilience 

does not have to be exceptional or optimal in order to successfully navigate a crisis; it 

just has to be relatively better than others experiencing the same level of environmental 

shock (Garmezy 1991; Rutter 2012).  Social psychology, as a sub-discipline which seeks 

to bridge individual-level psychological processes with the development of social 

structures, has in the last three decades explored the components and processes of 

community resilience.  This body of research often focuses on the family and the 

neighborhood (Downes et al. 2013), and broadly defines resilience as a dynamic process 

encompassing positive adaptation within the context of significant adversity (Luther et 

al. 2000).  Dimensions of community resilience identified in social psychology include: 

strategic self-organization (Sherrieb et al. 2010), strong people-place connection 

(termed place identity by Putnam (2000)), mechanisms for information sharing, strategic 

social networking (Obrist et al. 2010), connection to government entities (Ungar 2011), 

economic diversification (Attaran 1986), and others.  Though there may seem significant 

theoretic overlap between resilience thinking in ecology and social psychology, there 

was in fact little cross-reference between these disciplines in last decades of the 20th 

century, and each remained somewhat compartmentalized in their research (Berkes and 

Ross 2013).  By the mid-1990s, a natural disaster-specific strand of resilience thinking 

had emerged within social psychology which was primarily focused on examining how 

urban communities, especially at the neighborhood level, engaged in resilience-building 
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activities (Paton and Johnston 2001).  For the resilience-building process to be 

successful, this research identifies three key qualities.  First, the process should be 

intentional, strategic and collective (Norris et al. 2008).  Second, it should be emergent 

from within the community, not primarily motivated or driven by outside actors (Clark 

2006).  Third, it should assume and be able to cope with continual environmental 

change, as well as with uncertainty, unpredictability and surprise (Goldstein 2009). 

 

 2.2.2 Physics and the Physical Sciences 

Often overlooked in the social sciences, there exists in physics a strong tradition 

of inquiry into the nature of extreme natural events and the quantitative components of 

resilience.  Breakthrough discoveries of the statistical properties of simulated non-

equilibrium systems in the 1980s, which described the apparent self-organizing behavior 

and certain universal statistical similarities of such systems (including critical points, 

fractal geometries and scale-invariant functions), enabled physical scientists in many 

disciplines to develop theoretic models of complex/nonlinear systems.  Crucially, these 

new discoveries provided the mathematical basis for viewing extreme events and phase 

shifts as natural and ubiquitous in ‘the real world’.  Findings of lab experiments in so-

called self-organizing criticality (SOC), which actually involved statistical modeling of 

‘avalanches’ occurring in piles of sand, soon found wide application in describing the 

characteristics of extreme events in many identified complex physical and 

socioeconomic systems, including: distribution of earthquakes (Schotz 2002), sudden 

fluctuations in financial markets (Cont and Bouchaud 2000), traffic jams (Helbing 2001), 
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the spread of epidemics (Stollenwerk 2005), behavior of forest fires (Song et al. 2001) 

and many others.  While some disciplines such as seismology have tended to apply SOC-

inspired theory to explaining the extreme event hazards in systems, others such as 

computer science and network science also study what makes systems and system 

components resilient to the effects of extreme events, phase shifts or system failures. In 

computer science, for example, the assumption or expectation of extreme disruptive 

events inherent in SOC-related theory has given rise to research in fault-tolerant 

systems (also called graceful degradation), which has resulted in robust computer 

system configurations that can cope with various types of failure or error (Carlson and 

Doyle 2002).  In the network sciences, some researchers have studied how the outcome 

of a disruptive event (i.e. a targeted or untargeted attack) on a system relates to the 

structure of connections among system components (Matisziw et al. 2012). 

 

2.2.3 Ecology and Social-Ecological Systems Theory 

Though the word resilience appeared earliest in academic discourse from within 

psychology (in reference to now-defunct theories for preventing psychological trauma in 

people believed to possess a genetic risk to psychopathologic mal-adaption), most 

scholars in both the social and natural sciences now agree that the current 

understandings of resilience are derivative from ecology (Waller 2001; Moser 2008; 

Boon et al. 2012), especially the work of C.S. Holling beginning in the 1970s.  By Holling’s 

time, traditions of linear thinking about ecological systems, the hallmark of which 

involved organisms bound to a single stable state, had begun to give way to influential 
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new complexity theory, which asserted nonlinear relationship between system 

variables, multiple possible/alternative system states (which constituted attractors to 

system variables), unpredictable system perturbations, and emergence, or the self-

organizations of system components (Zadeh 1976). 

Holling et al. (2002) asserts that both current and alternative system states were 

never static and underwent constant change, based upon their research on how 

ecosystems with a certain biologically-favored function, structure, identity and/or 

feedbacks were able to retain those elements subject to various perturbations.  He used 

the term resilience to describe the capacity for biological systems to remain within the 

thresholds necessary to retain such favored elements, while at the same time adapting 

to ever-changing environmental conditions (Pendall et al. 2010).  Though Holling’s initial 

inspiration for theorizing about resilience were the complex ecosystems of boreal 

forests, with their disturbance mechanisms, species regime shifts, and cycles of renewal, 

his influential work quickly prompted interest in conferring his theorized principles of 

ecological resilience to human systems (Gunderson 2000; Bhamra et al. 2013;).  The 

resulting multi-disciplinary study of social-ecological systems (SES) examines the 

feedback loops and interdependencies of linked human and natural systems, 

particularly in order to identify and explain the various behaviors, structures, 

relationships and processes that humans employ to build resilience to socio-ecological 

hazards. 

A common thread which runs through the elements of resilience identified under 

the SES paradigm is the importance of adaptation to change, a quality seen by ecologists 
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as crucial to the navigating continuous cycles of renewal and recurrent disturbance 

mechanisms.  While some adaptive capacities of human systems are identified as 

physical qualities or structural characteristics (which may be seen as resistant to the 

effects of disturbance mechanisms and environmental hazards), the SES perspective 

highlights capacities in terms of the strategic behaviors, choices and relationships 

established by humans which enable direct interaction with hazards while lessening the 

risk of those hazards pushing human systems into an unfavorable state.  This is in line 

with ecology’s assumption of inevitable interaction between organic systems and 

environmental hazards.  Further, this view provides SES scholars theoretical space for 

explaining certain human behaviors which had heretofore seemed enigmatic (especially 

in academic psychology), such as intentional settlement in flood-prone areas (James and 

Hall 1986), willingness to allow infrastructure to fail during an extreme event (Brinn and 

Greaves 2003), and ‘giving up density’ in certain resources as a tradeoff to exploit new 

resources (Morgan and Brown 1995). 

The SES paradigm devotes considerable attention to the adaptive renewal cycle, 

a heuristic model meant to depict the cyclic patterns of biological potential, growth, 

disturbance and reorganization which defines the SES conceptual model of ecological 

systems.  Figure 1 depicts the adaptive renewal cycle, showing how biological agents 

adjust their strategies during four conceptual stages, and how the level of agent 

connectedness and potential relate to these four stages.  Recognizing that multiple  
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Figure 1. The adaptive renewal cycle within the Socio-Ecologic Systems (SES) paradigm 
depicts 4 thematic Quadrants (and related biological strategies) and shows the 
relationship with ‘connectedness’ (x axis) and ‘potential’ (y axis) (Berkes et al. 2003) 

 

 

Figure 2. The structure of feed-back and feed-forward influences among multi-level 
renewal cycles constitutes one of the mechanisms by which complexity is introduced 
into such systems.  Nested cycles at the micro, meso and macro level may be 
interpreted as representing individual-, community- and government-level processes, 
respectively (Berkes et al. 2003) 
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cycles of growth, disturbance and reorganization may be acting on an ecological 

simultaneously (but at different spatiotemporal scales), SES theory uses another 

heuristic depicting multi-scalar structures of adaptive renewal cycles.  Operating 

simultaneously, the processes at each scale are assumed to influence each other 

through feedback loops.  Figure 2 depicts these nested structures and feedback loops, at 

a micro, meso and macro scale (interpreted here as perhaps representing the individual, 

community and government level within a human socio-ecological system) which can be 

associated with fast, medium and slow change, respectively. SES identifies a crucial 

consequence of this nested feedback structure as the idea of panarchy, in which system 

agents/processes at one scale may influence (or be influenced by) agents/processes at 

other scales; this being one of the mechanisms by which non-linearity, uncertainty and 

surprise are introduced into complex systems. 

Scholars across several disciplines have attempted to formalize the properties 

which distinguish complex systems from other types of conceptual models within 

broader systems science, often operationalizing the properties to suit the researchers’ 

discipline (Zadeh 1976; Sterman 2000; Larsen-Freeman and  Cameron 2008;).  Berkes et 

al. (2003) identify five attributes of complex systems in the context of SES theory: 

1) Non-linearity: The various (and often unpredictable, counter-intuitive or 

surprising) co-influence among system variables at different levels (nested feedback and 

feed-forward relationships) necessitate descriptive techniques that combine qualitative, 

possibilistic statements with quantitative, probabilistic ones.  As such, mathematical 

equations which describe complex systems rely on differential calculus to enumerate 



30 
 

many possible stability domains or attractor states which could manifest given current 

known system conditions.12 

2) Uncertainty: As a consequence of the non-linear mathematics of complex 

systems, information regarding the changes in system conditions cannot produce 

quantitative/probabilistic measures of 1) which attractor state/stability domain the 

system is heading towards, 2) the rapidity which the system is moving towards such 

state, or 3) the proximity in space or time to that state.  This leads to inherent 

uncertainty and surprise concerning the magnitude of condition parameter changes 

and/or timeframe which could initiate a shift in system states. 

3) Emergence: Within complexity science, system agents are not theorized to 

passively experience changes to system conditions.  Further, the (seemingly) random 

physical forces which elicit changes in systems (either reinforcing the current stability 

domain or pushing the system toward another attractor state) are not understood to 

lead to random or unstructured relationships among system agents.  Instead, changes in 

system conditions are theorized to provide a platform for, or to enable, structured 

behaviors and connections among agents manifesting in patterns of accumulating 

change.  Further, it appears to complexity scientists that this structured, accumulating 

change (which is taken to be synonymous with growth) is directed or oriented toward a 

certain stability domain – most often the system’s current domain.  Resilience can be 

understood to be an emergent property within a system, or an aggregate of emergent 

                                                      
12

 Differential equations, in this sense, start from current conditions and work ‘forward’ (on the left side of 
the equal sign), generating possible ‘stability domains’ which the system could move toward. A related 
tool within complexity science is the Fourier Transformation, which starts from current conditions and 
works ‘backward’ (on the right side of the equal sign’), enumerating all possible (theoretically infinite) 
equations which could make up and therefore lead to the current conditions.   
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properties, directly referring to behaviors and connections among system agents that 

serve to sustain/exploit the current stability domain during ‘normal’ conditions, or seek 

to preserve as many structures of accumulating change (growth) as possible during 

periods of (sometimes rapid, unforeseen or disruptive) shifts to other stability domains.  

In this way, SES theory uses emergent resilience as a scaling concept to make the 

seemingly infinite complexity of complex systems more manageable: it is simply an 

overall characterization of 1) the extent to which agent behaviors and agent 

interconnections are oriented to the current stability domain or another attractor state 

(answering the question ‘Resilience for what?’13), and 2) to what extent such behaviors 

and connections are configured to mitigate certain system forces (e.g. disturbance 

mechanisms, environmental hazards) which threaten built-up growth structures or push 

the system toward an unfavored state (answering the question, ‘Resilience to what?’14).  

Crucially, Berkes et al. (2003) asserts that as a consequence of the nonlinearity and 

uncertainty properties of complex systems, characterizations of resilience must 

necessarily be qualitative.  Resilience is seen to emerge at different levels of systems as 

a tentative and constantly evolving defense against an uncertain future. 

4) Self-Organization: SES theorists operationalize an interesting finding from 

statistical physics on the overall behavior of highly dynamic, nonlinear (complex) 

systems – that such systems seem to organize spontaneously and automatically around 

so-called critical point attractors (Bak et al. 1987) – by asserting that all emergent 

processes are also self-organized.  Critical point attractors are interpreted as critical 

                                                      
13

 Carpenter et al. 2001 
14

 Ibid. 
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points of instability (or opportunity) which system agents (through emergent processes) 

will automatically organize around within the aforementioned adaptive renewal cycle 

(Figure 1).  Moreover, SES theorists extend finding from physics and control theory that 

self-organizing behavior in simulated dynamic systems occurs regardless of the 

parameterization of system variables – such behavior seems to emerge whether 

variables are finely tuned throughout a simulation or even reset to random values. SES 

scholars take this to mean that self-organizing behavior is inherently natural behavior 

which occurs outside the confines of rigidly controlled laboratory experiments. 

5) Scale: An important consequence of the concept of nested, multileveled 

systems, each with their own emergent properties and each influencing processes at 

other levels, is that analysis of such systems should be conducted simultaneously at 

different scales, including the micro, meso and macro levels. In discussing scale in 

complex systems, SES theory returns to the core focus of the paradigm: how human 

social systems are affected by and influence natural systems (and vice versa), and how 

humans can achieve environmental management outcomes and build resilience to 

natural hazards.  When problems of biodiversity conservation, for example, are 

considered, it becomes apparent that solutions at the genetic level can be quite 

different than those at the species or ecosystem level, and that actions taken at each 

level influence all others through feedback loops (Gunderson and Holling 2002).  This 

finding highlights the importance of multi-scale analysis for effective policy and 

management decisions. 
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2.2.4 The Shift of Focus From Community Vulnerability to Community Resilience 

As previously reviewed, inquiry into human disaster resilience began within 

ecology and resource management in the 1970s, drawing inspiration from observations 

on how systems of organisms cope with and respond to environmental disturbance 

mechanisms (i.e. hazards) and/or overwhelming extreme events (disasters) (Paul 2011).  

Spurred by early concern for the potentially negative biodiversity effects of climate 

change, this research, proceeding under a systems theory praxis, attempted to describe 

and model the various preventative and alleviative structures deployed by an ecologic 

system to prevent failure as a result of interaction with an extreme event (Holling 1973).  

Led by Holling (who argued that resilience, coming from the Latin resilio meaning ‘to 

bounce back’, was the appropriate overarching term), ecological resilience enjoyed 

continued theoretical development through the 1990s, when its focus on biophysical 

attributes such as functional diversity, component redundancy and damage resistance 

mechanisms began garnering attention of the larger hazards research community. 

The policy recommendations of this research community had, until the late 20th 

century, followed the general top-down theme of encouraging government-led 

interventions into the drivers of vulnerability (Paul 2011).  This focus on vertical hazard 

adjustments, originally championed by Gilbert White (1945) and embraced in 

government during the ‘Civil Defense’ era of the 1950s and 1960’s, was further 

stimulated in the 1990s by several major national and international disaster mitigation 

initiatives, which challenged governments at all levels to reduce populations’ risk to 

death, injury and economic loss from natural disasters.  Most notably, the UN General 
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Assembly’s declaration of the 1990s as the International Decade for Natural Disaster 

Reduction (IDNDR) prompted a broad refocusing of research agendas toward supporting 

official organization and administration of economic development, hazard 

preparedness, and response/recovery programs (Montz et al. 2003).  In this 

atmosphere, US government interest and funding of hazards/vulnerability research 

(with its strong tradition of identifying opportunities for government-led adjustments) 

outpaced related work in the ecologic resilience tradition (which focused on what makes 

organisms resilient to extreme events) (Paul 2011). 

However, in the wake of Hurricane Katrina in 2005, the emergency management 

policy community has recently shifted its focus to identifying and analyzing factors 

which generally make communities more resilient to any environmental hazard.  As 

evidenced in the National Science and Technology Council’s 2005 reports on the ‘Grand 

Challenges of Disaster Reduction’, this policy realm is focused on characterizing and 

fostering community resilience, under the assumption that if resilience can be 

increased, communities will be more likely to withstand or recover from an extreme 

event.  At the federal level in the United States, this shift has found institutional 

acceptance in the creation of the Office of Resilience within the National Security 

Council.  Here can be discerned an ‘official’ opinion,  at least in federal emergency 

management policy circles,  of the direction hazards research should take - instead of 

research which is oriented to fixing vulnerabilities, federal policymakers are currently 

preferential to research which can help build resilience (Cutter et al. 2010).  Many 

academics whose publications are directed at policy audiences have duly noted this 
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emerging trend and have refocused their research agendas accordingly, to the point 

that resilience research is currently viewed as particularly trendy (Manyena 2006; 

Pendall et al. 2009; Reghezza-Zitt et al. 2012).  This has in turn brought previous 

paradigms of community resilience,  such as the  socio-ecological resilience perspective 

of Holling,  back onto the radar of geography,  with new conceptual frameworks of 

community disaster resilience commonly integrating concepts such as redundancy, 

coping capacity and adaptive learning (Tierney and Bruneau 2007; Gunderson 2010). 

It is worth noting that the concept of community disaster resilience is 

approached differently between the quantitatively-oriented researchers and human 

geographers (influenced by political ecology, sociology, etc.).  In what may be termed a 

structural paradigm of resilience within the quantitative camp, community resilience is 

often defined as an outcome of aggregated baseline system states which, if present in a 

community, tend to create resistance to system disruption and/or allow efficient return 

to normalcy.  This research is often concerned with benchmarking, for example, a 

community’s road infrastructure redundancy to characterize evacuation potential, or 

analyzing a local EMT district’s medical supply contingency plans.  This structural 

approach often heavily utilizes spatial data in a GIS environment, sometimes including 

data from remote sensing systems to infer system states.  On the other hand, the 

human geography camp may be seen to take on a more functional view, often framing 

community disaster resilience as a multi-scale process (systems within systems) which 

continually effect resilience.  As a paradigm which focuses on process rather than 

outcome, this functional approach often analyzes the spatiotemporal change of 
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demographic variables which are known to influence resilience, such as community 

diversity and employment sector dependence. 

 
 

Table 1. Differences between two broad paradigms of disaster resilience  
 

 

  

 A new integrative conceptual framework of community resilience, pioneered by 

researchers at the Hazards and Vulnerability Research Institute at the University of 

South Carolina, has been proposed to bridge the theoretical gap between the structural 

and functional viewpoints (Cutter et al. 2010).  Termed the Disaster Resilience of Place 

(DROP) model, it places emphasis on the antecedent conditions of a community’s social, 

natural and built environments, which can in turn be analyzed as ‘systems within 

systems’ that are continually evolving.  When these baseline antecedent conditions 

interact with a hazard event, the characteristics of a community’s short-term coping 

mechanisms and long-term absorptive capacity, which themselves can be analyzed as 

system states, determine whether and to what extent the hazard event becomes a 
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disaster.  The DROP model places importance, regardless of the actual outcome of the 

hazard event, on whether or not a community demonstrates learning behavior from the 

event in the form of mitigation and preparedness measures.  This 

 

Figure 3. Heuristic Representation of Disaster Resilience of Place (DROP) Model 

 

Source: Hazards & Vulnerability Research Institute, Cutter et al. (2005) 

 

 creates either a positive or negative feedback loop in which the strength or weakness of 

mitigation and preparedness becomes part of the antecedent conditions to be tested by 

the next extreme event. 

The DROP model has provided an exciting chance to integrate methods and 

perspectives from across the social and natural sciences to characterize community 

disaster resilience, as it recognizes the existence and importance of complex feedback 

mechanisms among the various components of resilience. However, recent applied 

research which identifies the DROP model as its conceptual framework often selects 

measurement methods (such as simple additive/aggregate indices) which fail to account 

for mutual influence and cause-effect relationships among these components.  Such 
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studies are also prone to relying disproportionately on individual-level variables, often 

derived from Census data in the United States, to represent community-level processes, 

qualities or dynamics.  Further, there exists in current geographic community resilience 

research a tendency to select study units which aggregate variables to large, 

heterogeneous spatial units,  a practice which may hide or mischaracterize the 

variability of resilience within specific places.  Each of these identified methodological 

shortcomings will be examined individually. 

 

2.3 Geographic Indices of Resilience 

Conceptual models such as indices of socioeconomic and environmental 

variables serve an important role in helping many disciplines to understand natural 

hazards, disasters and resilience (Tate 2012).  In cases where many variables can be 

identified to make up the process to be modeled, aggregated or additive indices have a 

long tradition of use in the social and natural sciences (Parris and Kates 2003).  Figure 4 

depicts an example of a composite index with two sub-indices (Social and Economic) 

and example component indicators/variables.  However, the dominant methodological 

choices for constructing and analyzing such indices does not take into account the 

interrelationships and co-influence among the demographic and socioeconomic 

variables commonly utilized in resilience studies (Hiete et al. 2012; Rufat 2013).  In fact, 

the most common forms of index construction (additive indices of the deductive, 

hierarchic and inductive form as shown in Figure 5) retain the mathematical assumption 

of independence among variables (Jones and Andrey 2007;  
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Figure 4. Example of composite index construction 

 

Figure 5. Structure of 3 Common Additive Indices (Tate 2012) 

 

a) The deductive index assumes that component variables are ontologically discrete, 
independent of each other, and collectively representative of all system processes. 
Variables can be thought of as building blocks which, when assembled, comprise 
100% of the system being analyzed 

 
b) The hierarchical index assumes the same as the deductive, with the addition of 
categorizing sub-indicators into composite categories. 

 
c) The inductive index assumes that some system variables may exhibit collinear 
statistical properties, and attempts to decorrelate an initial set of variables into a 
smaller set of factors which are as statistically distinct as possible.   
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Hiete et al. 2012).  As an analytic tool with a long history of use within systems science, 

the basic additive index attempts to model the totality of processes within a system by 

compiling all identifiable system variables (sometimes sorted into distinct categories) 

into an aggregate index (Jones and Andrey 2007).  Table 2 depicts stages necessary to 

construct and analyze an additive index, along with the options geographers commonly 

select for such indices in current disaster resilience research. 

 

Table 2. Stages of Additive Index Construction 

Stage Description Common Choice in Geography 

Conceptual 
Framework 

Vulnerability/Resilience dimensions to 
include and their literature 

justifications 

SoVi(Cutter et al. 2005), DROP 
Model (Cutter et al. 2008) 

Structural Design Organization of indicators within index PCA-Corrected Hierarchical 

Analysis Scale 
Geographic aggregation level of 

indicators 
US Counties or Census MSA 

geographies 

Variable/Indicator 
Selection 

Variables and their proxy indicators 
used to populate sub-indices 

Majority based on decennial 
Census and ACS data 

Measurement Error Discuss accuracy and precision of data 
Multivariate statistics; PCA 
used to eliminate collinear 

variables 

Transformation 
Proxy indicator representation 

/manipulation into variables 
Varies 

Normalization 
Standardization of variables to a 

common measurement scale 
Indicators normalized to [0-1] 

Weighting 
Definition of importance of each 

variable and each sub-index 
Equal Indicator Weighting 

Preferred 

Aggregation 
Combination of sub-indices into 

composite index 
Equal Sub-Index Aggregation  

Preferred 

Representation Mapping analysis results Regional-Level Maps 

Note: Since variable independence is assumed in additive indices, a stage for identifying and 

accounting for variable inter-influence is rarely prescribed, and usually omitted in geography.  
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When utilizing any form of additive index, researchers are free to decide to correct for, 

ignore, or otherwise account for the statistical similarity (co-linearity) inherent in 

component variables (although the dominant standards of rigorous scientific discourse 

dictate correcting co-linearity through internal multivariate statistical methods).  In the 

case of the inductive additive index, statistical similarity among variables is addressed 

most often by eliminating variables not retained in the 1st component of a principle 

component analysis (PCA).  The eliminated variables are assumed to be redundant, and 

therefore less-informative and non-essential to the overall system model (Tate 2012).  

While such approaches have proven sufficient in modeling physical systems and 

mechanical processes, the extension of the same methodology to model human systems 

has been identified as highly problematic by researchers in the social sciences (Zadeh 

1976, Barnett 2008), many of whom argue human systems are better described by the 

principles of complexity science (the study of highly dynamic, nonlinear, and complex 

systems).  As mentioned, within complexity science, variables in dynamic systems are 

assumed to interact in non-linear (or even chaotic) ways, especially when examined at 

small (local) scales (Stern 2000, Berkes et al. 2003).  Consequently, the interactions 

among many types of dynamic system variables resist quantitative description. 

Complexity scientists have explored ways to use qualitative or semantic descriptions in a 

knowledge-based approach to model these types of variable interactions (e.g. Zadeh 

1976).  Further, complexity science identifies an emergent (self-organizing) property of 

variables in such systems, one consequence of which is that variables cannot be 

assumed to be redundant, non-essential or non-informative based on solely their 
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covariance (Berkes et al. 2003), which is the statistical property used in a PCA analysis 

(Abdi and Williams 2010).  Also, complexity science observes that system variables may 

not be ontologically pure, unambiguously distinguishable from one another, or able to 

be parsed into discrete categories. 

Lack of account for variable inter-influence when using additive indices to 

analyze disaster resilience in human systems demonstrates a lack of connection with 

multidisciplinary understandings of the complexity and non-linearity of the components 

of resilience, especially as illustrated within the SES paradigm of ecology.  Luckily, 

methodological tools can be found within complexity-inspired disciplines which attempt 

to take into account the extent of variable interrelationships/co-influence, 

accommodate uncertain, vague or qualitative data, and integrate expert knowledge.  

One such tool is the Decision-Making Trial and Evaluation Laboratory (DEMATEL) 

method for uncovering both cause-effect relations and the most influential indicators 

among a large set, based on expert-system evaluation of indicators and applications of 

digraphs (Fontela and Gabus 1976).  The core of the DEMATEL approach is to quantify 

complex indirect relations among variables based on perceived direct relations.  

Another is the analytical hierarchy process (AHP) (Saaty 1980, Zahedi 1986).  Based on a 

digraph method complimentary to DEMATEL but geared toward capturing indicator 

preference in the expert-system phase (Hiete et al. 2012, Wu et al. 2012), AHP has 

proven useful for providing index weights based directly off expert opinion (Saaty 2001, 

Saaty 2008).  Methods such as these not only account for feedback relations among 

variables, but they also provide decision makers with information about the causal 
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nature of certain variables.  This is a crucial aspect, because emergency management 

policy is more likely to have an impact if directed toward causal variables, or those 

which exert the most influence (Hiete et al. 2012).  Further, these methods do not rely 

solely on the internal statistical nature of index variables to determine their information 

potential, and it eliminates the risk of rejection of important variables via a PCA analysis. 

 

2.4 Accounting For Uncertainty in Measures of Community Resilience 

Complexity science and complexity-inspired academic paradigms have generally 

tended to resist absolute or rigid definitions of the phenomena they seek to describe.   

This is because the phenomena studied are ontologically vague and resist discrete 

classification.  Consider four proverbial dimensions of human society – social, economic, 

political and cultural.  Complexity scientists see these terms as fuzzy, in the sense that it 

is difficult to unambiguously assign the many identifiable components of human society 

into these four dimensions (to which dimension would one assign the component of 

religion, for example?).  Add to this the complicating factor that complexity science sees 

components influencing each other through feedback mechanisms, and one begins to 

see the problem of crisp classification.  There have been many different approaches to 

address this problem.  Lofti Zadeh, an influential computer scientist, created a 

complexity-inspired system to transform quantitative variables into linguistic (natural 

language) ones, and characterized the relations between variables using conditional 

statements he termed fuzzy membership functions.  Formulated during a period of high 

academic angst over the inability of control theory, mechanistic systems science or even 
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the laws of thermodynamics to explain human social systems, Zadeh’s (1976) proposed 

framework stimulated immediate interest in the quantitative disciplines, and now 

enjoys widespread application in the applied social sciences (especially in business 

intelligence-related fields such as supply chain management).  SES theorists in ecology, 

who as demonstrated above tend to gravitate toward and communicate their worldview 

through heuristic models (see Figures 1 and 2 depicting the adaptive renewal cycle), 

tackle the issue by deconstructing concepts which are difficult to quantitatively define, 

or which are affected by feedback, into constituent scale levels. Importantly, SES 

theorists stress that the problem of ontological vagueness and complex feedback 

relations can be effectively addressed within a heuristic context only if there is 

balanced, simultaneous and holistic analysis conducted at all scale levels of the 

deconstructed concept (Berkes et al. 2003). 

What does all this have to do with community resilience?  As it turns out, both 

‘community’ and ‘resilience’ are ontologically vague terms with many undefined or 

(quantitatively) undefinable components; put together, they signify a particularly 

troublesome concept to concisely, unambiguously or authoritatively define.  Many 

‘paradigms’ of definition of these terms exist in academia, and some reviewers dedicate 

whole articles to plotting the lineage of their usage among different disciplines (e.g. 

Manyena 2006, Brand and Jax 2007).  Nonetheless, a standardized definition of 

resilience, community, or community resilience has not materialized.  A palpable sense 

of frustration over this situation often arises in the literature: 
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Despite more than three decades’ worth of collective research experience on the 
 concept, resilience still means different things to people in different fields … The 

 result is a confused lexicon of meanings and approaches to understanding 
resilience to external shock or natural hazards.  

– Zou et al 2012 p.22 

Looking back,  one wonders if perhaps the social and psychological sciences 

should have created their own language, free from inherited meanings, but the term 

[resilience] is probably here to stay… The concept of ‘‘community resilience’’ raises the 

same concerns.  

 – Norris et al 2008 p.128 

…The definition of resilience, however, should be independent of the object of 
analysis and, in the interest of facilitating the formulation of compatible policy goals in 
both the public and private sector … the same definition should be used in all decision-

making processes. Establishing a uniform definition is critically important.    
– Argonne National Laboratory 2012 p.1115 

 
The difficulties arise when, little by little, the polysemy [of resilience] seems to 

legitimize a semantic blur that creates theoretical and operational dead ends. In view of 
occasional contrary injunctions, the concept ends up being “inoperative”, being reduced 

to some sort of unattainable discursive utopia to the point where some researchers have 
considered the concept too vague to be used in order to prevent disaster. 

Reghezza-Zitt et al 2012, ‘What Resilience is Not: Uses and Abuses’, p.1 
 

Even though a completely satisfactory solution to the ontology problem is not 

provided by either fuzzy sets or scalar heuristics (Markusen 1999; Wilson 2012), some 

type of conceptual abstraction is probably necessary to reduce the complexities of 

concepts such as communities and community resilience, especially to facilitate 

research which attempts to measure these concepts (Tate 2012).  A tentative parallel 

can also be drawn between the additive index and the heuristic approach of SES, in that 

                                                      
15

 After chiding academia for not coming up with an authoritative definition, and after an impressively 
broad review of definitions in the literature, Argonne scientists come up with a rather underwhelming 
official one: “The ability of an entity - asset, organization, community, region - to anticipate, resist, absorb, 
respond to, adapt to, and recover from a disturbance.” Policymakers may still wonder if the referenced 
‘ability’ is an inherent attribute or the result of a process. They may also take ‘disturbance’ to mean 
singular, fast-onset extreme events, and ignore slower-onset disturbance mechanisms in policy decisions.  
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they both have the effect of deconstructing the larger concept of community resilience 

into smaller components which can be analyzed by themselves or deconstructed to 

further levels.  The main difference is that geographers often deconstruct resilience into 

categorical dimensions (Social, Economic, Institutional, etc.), whereas SES ecologists 

deconstruct it into scalar ones (micro/meso/macro, or individual/ community/ 

ecosystem, etc.).  Thus, an opportunity may exist for better integrating the human 

dimensions of resilience while better accounting of the multiple levels at which resilient 

characteristics and processes operate.  This is a needed improvement, as the 

recommended balancing of multi-scale resilience indicators is currently lacking in 

geography.  Current geographic studies which, as mentioned, tend to operationalize 

Cutter et al.’s DROP (2008) or SOVI (2003) conceptual models, disproportionately rely on 

individual and household-level variables gleaned from Census data.  Figure 6 shows an 

example from Cutter et al.’s (2010) highly cited additive index of resilience indicators 

based on the DROP model; highlighted are variables judged to represent individual or 

household-level qualities (19 out of 36 variables).  It should be noted that eight of the 

remaining variables do reflect more meso-level, community-scale characteristics; but 

these focus on structural and institutional indicators (e.g. the ‘Evacuation Potential’ 

indicator of ‘principles arterial miles per community’ and the ‘Social Capital – Advocacy’ 

indicator of ‘number of social advocacy organizations per 10,000 population).  Less 

attention is paid to larger-scale, government-initiated processes, or the locally-felt 

benefits of large-scale business activities which may boost the level of resilience of 

several communities.  Least represented of all are community-level variables actually 
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indicating collective, self-organized action undertaken by and for community inhabitants 

in response to the perceived specific environmental hazards and threats.16  Though it 

may necessitate sourcing and integrating a diverse set of place-based indicator data, a 

more balanced and multi-scalar approach to variable selection would enhance applied 

community resilience studies in geography. 

                                                      
16

 These are probably the least-represented because they are the most place-dependent.  They arise from 
the historic, cultural, and every other human context of specific communities, are applied to counter 
place-specific environmental hazards, and exhibit wide spatial variability between communities in 
different contexts.  Consequently, they are the least likely to ‘scale up’ to larger-area levels of resilience 
analysis, such as this example (Cutter 2010) which characterized the community resilience of counties in 
the Southeastern U.S.  The authors of the index ran into the same problem when considering how to 
include the ‘Ecological’ dimension of resilience as recommended in the DROP model (with candidate 
variables including wetland acreage, percent impervious land cover, biodiversity, erosion rates, number of 
coastal defense structures, etc.). In the end, the authors did not include an ‘Ecological’ dimension, stating 
that the wide physical variability of the large study area made many ecological indicators inapplicable 
(Cutter 2010). More problems associated with large-scale resilience studies are explored in the next 
section.  
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2.5 The problem of scale 

What is the proper scale of analysis for an assessment of community resilience?  

Judging from the wide-ranging literature on disaster resilience, there is little agreement 

on this issue.  Every areal unit of analysis from a country down to city Census blocks has 

been used as the geographic unit of analysis in research on community-level resilience 

(Godschalk 2003; Chan and Wong 2007, Norris et al. 2007; Ebert et al. 2009; Downes et 

al. 2013).  A typical approach is to characterize community disaster resilience at the 

regional level, spatially aggregating study variables into counties or U.S. Census 

metropolitan statistical area (MSA) geographies (an example of which is highlighted in 

Figure 7).  Without much rationale for this choice of areal unit of analysis, the output of 

many studies is simply maps purporting to show the level of community disaster 

resilience over relatively large areas.  While it may be difficult to pinpoint the rationale 

behind these assumptions, there should be little doubt that the outcome is important 

for stakeholders in emergency management and disaster preparedness who look to 

academia for advice on the best way to confront the issue of community disaster 

resilience (Cumming et al. 2006).  Either the spatial scale chosen to characterize 

community provides an acceptable level of actionable information or it does not.  

Likewise, either the chosen scale reflects the current and probable future scale of 

community resilience intervention, or it does not.  As previously noted, there has been a 

change of tone of federal-level emergency management policy and a shift of focus from 

social vulnerability to community resilience.  It is also observed that researchers and 

professionals outside of geography who publish articles on the subject of community 
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Figure 7. Example of community resilience research with large, heterogenous study 
units 

 

 

This map of nation-wide community resilience at the Census Metropolitan Statistical Area (MSA) 
level, based on the Resilience Capacity Index (RCI) conceptual framework (UC Berkley 2013), 
utilizes a composite index of ‘Socio-Demographic’, ‘Community Connectivity’ and ‘Regional 
Economic’ indicators.  The map portrays the St. Louis MO-IL MSA (consisting of St. Louis City, St. 
Charles, Jefferson and St. Louis counties in Missouri, as well as Jersey, Calhoun, Macoupin, 
Madison, St. Clair and Monroe counties in Illinois) as having a ‘Very High’ level of community 
resilience.  This portrayal, and derivative interpretations of the map, suffer greatly from the 
ecological effect, a type of mathematical fallacy in which aggregate-level statistics cannot be 
used to characterize lower-level components.  An analytic conclusion that communities in St. 
Louis City, MO and East Saint Louis, IL, being part of the larger MSA, are also very highly 
resilience is untenable both logically and in point of fact.  Likewise, a conclusion that most 
communities in southern California exhibit very low levels of resilience would be equally 
unsound.  Though most geographers would probably agree this approach conceals and 
mischaracterizes the spatial variability of indicators within the St. Louis MSA, large-area 
aggregation of resilience indicators is still common practice in the discipline.  Not only is there 
risk that misinformation associated with the spatial aggregation could attenuate into the policy 
decisions of state and federal-level emergency managers, the scale of analysis does not match 
the local-level and place-specific qualities of community resilience.  In the worst case, the map 
may lead policy makers to ignore areas with the highest need; in the best case, it probably 
doesn’t tell policy makers anything they don’t already know.   
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disaster resilience are increasingly choosing a local spatial scale in their studies.  Downes 

et al. (2013) systematically examines the spatial scales of 106 recent community 

resilience studies spanning 35 social science disciplines, finding that 46.6% were 

conducted at the local scale, 21.9% regional, 26.0% national/continental, and 5.5% at a 

global scale.  This thesis’ examination of recent community vulnerability/ resilience 

studies outside of geography (e.g. in public health, emergency management, civil 

engineering and regional planning, etc.) concurs with this assessment (c.f. Morrow 1999, 

Kulig 2000, Kendra and Wachtendorf 2007, Wolf et al. 2010, Geis 2000, Hall and Zautra 

2010, Jabeen et al. 2010, Flanagan et al. 2011, Boon et al. 2012, Teo et al. 2013, Cohen 

et al. 2013, Chandra et al. 2013).  This pattern lends credence to the argument that the 

future scale of community resilience intervention will be local and the dimensions of 

resilience studied will be place-specific.   

A more a fundamental justification against large-scale community resilience 

studies can be found in early work in physics. Nearly a century ago, the field of statistical 

physics provided the mathematical argument against large-scale characterization of 

local-scale phenomena.  This occurred as an important early discovery from the 

tradition of physical systems science, in the observation that system component 

variables tend to display increasing levels of random interaction as one examines the 

system at smaller scales, which may lead to wide local variations in both the attributes 

of variables and the relationships between variables.  For example, while a global 

pattern of energy balance may exist where incoming radiation from the sun is equaled 

by emittance from the planet, there are extreme local variations on energy budget.  
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From this, climatologists know better than to infer the state of the global energy budget 

by studying data from just a few sites; conversely, they would not attempt to infer the 

characteristics of specific locations using only data aggregated at large spatial scales.  By 

the 1950’s, this latter concept was codified as the ‘ecological effect’ to the statistical 

analysis of data in the social sciences (most notably by Robinson 1950 and Durkheim 

1951).  The essence of the ecological effect is that characteristics of individuals, or 

individual locations, cannot be inferred from aggregated data, and that correlations 

between variables can be different depending on the scale at which they are analyzed 

(Subramanian et al. 2009).  Practical examples of this effect and the dangers of making 

assumptions based on it abound in the social and natural sciences literature (Blakely and 

Woodward (2000) provides illustrations in epidemiological research).  For example, 

while the sum total of economic indicators in a given country may point to a net gain in 

standards of living, there probably exist pockets of quite substandard living conditions, 

as well as superior conditions and anywhere in between.  In this situation, if one is 

tasked with reporting on the state of community standard of living for a particular 

location, it would seem unwise to use data aggregated to large-area spatial units, owing 

to the inherent variability of individual communities within each unit.  Unfortunately, as 

evidenced by Figure 7 above, these methods are currently employed in some 

geographic studied which measure community disaster resilience (see also the scale 

chosen in Borden et al. 2007, Cutter et al. 2010).  Based on the above findings, a 

paradigmatic shift toward the study of specific small-scale localities is needed to bring 
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geographic studies of community disaster resilience in line with the current and future 

information needs of emergency managers. 

Neither an abandonment of the additive index as an analytic tool17, nor a 

wholesale embrace of complexity science is recommended here.  When community 

resilience analyses are produced and handed to emergency managers, simple 

aggregated indices of readily available socioeconomic data can in fact lead to saved lives 

and property during a disaster.  Likewise, an analysis of processes that lead to 

community resilience based purely on current understandings of complexity science 

would almost certainly fall short of the emergency management community’s 

expectation of clear, actionable information – in the worst case, it could actually lead to 

inaction (Markusen 1999).  What is recommended is a balanced approach that attempts 

to integrate key findings and methods from the wide range of disciplines discussed in 

this review, thus better aligning with the current geographic ideals of transdisciplinary 

linkage, methodological pluralism and multi-perspective reflexivity.  The aim is to 

provide emergency managers a more holistic understanding of issues such as disaster 

vulnerability and resilience, thereby reducing the uncertainty in the question of which 

communities are more or less resilient; an uncertainty which may have heretofore been 

elevated by geography’s adherence to methods derived from a linear-oriented 

conceptual framework. 

                                                      
17

 In fact, a modified weighted index to measure disaster resilience for St. Louis City neighborhoods will be 
used in this thesis, but will employ methods to characterize the complex influence among variables and to 
integrate local expert knowledge into the variable weighting procedure.  
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CHAPTER 3. METHODOLOGY 

In view of the above findings and recommendations, a new approach to 

measuring community disaster resilience is proposed.  The utility of the developed 

approach is then demonstrated with an analysis of community resilience conducted at 

the neighborhood level in the City of St. Louis, Missouri.  The methods outlined here 

represent a novel attempt at operationalizing concepts from complexity science and 

non-linear systems theory toward measuring disaster resilience at the community level 

within an urban context.18  More importantly, the chosen approach is intended to 

adhere more explicitly to promote the geographic objectives of transdisciplinary linkage, 

methodological pluralism, and multi-perspective reflexivity. 

This thesis advocates a place-specific framing of community resilience studies, 

both in terms of scale as well as in indicator and variable development.  It also proposes 

that some measurement tools within complexity science are applicable to the 

measurement of community resilience.  While the selection of  methods here reflects 

this stance, they are by no means meant as normative, nor can they be assumed to scale 

up to broader levels of analysis or be applied to other places without significant and 

thoughtful modification.  Measuring community resilience to disaster, perhaps more so 

                                                      
18

 Current research in the discipline shows an emergent similarity to the complexity paradigm but does 
not self-identify as such and applies some methods seen as ill-advised by complexity science. Rufat (2013), 
for example, distrusts the simple additive matrix, but also relies solely on the internal statistics of his data 
to uncover clusters of vulnerable groups in a specific place. He was left to explain the drivers of 
vulnerability as ‘the machine’ defined them. This application of remote sensing / spectral clustering 
analysis methods should be encouraged, as it is clearly in the interests of methodological pluralism. But it 
should be pointed out that unsupervised classification assumes no a priori knowledge of the study area 
and trades this off for a high error potential. Rufat could have used methods which exploited his deep 
expert knowledge of the study area (Lyon, France).   
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than other qualities of human systems, requires methods that reflect the uniqueness of 

the place and population studied. 

 

3.1 Environmental Hazard Profile  

The all-hazards approach to disaster mitigation stressed in recent research (c.f. 

Cutter 2003) remains highly relevant and important, even though the scale of some 

geographic studies precludes incorporation of place-specific environmental hazard 

information.  Therefore, in the context of small-scale resilience studies, it is proposed 

here that a framework for the identification and characterization of environmental 

hazards affecting a community of interest is included in all such resilience studies.  

Luckily (and somewhat ironically), the United States federal government already utilizes 

a good template for such place-based all-hazards profiles.  The Federal Emergency 

Management Agency (FEMA) has for decades provided incentives for local government 

to conduct research on hazards in their jurisdictions and develop disaster mitigation 

plans.  For example, FEMA requires a written all-hazards mitigation plan for cities and 

school districts applying for federal disaster mitigation grants and other assistance 

programs.  The required content for these plans, codified in the Stafford Act (42 U.S.C. 

5165) and FEMA regulation 44 CFR 201, include: Community/County Profile  (including 

history, geography, demographics, governmental jurisdiction, etc.), Risk Assessment 

(identifying and characterizing all environmental hazards known to exist within the 

jurisdiction), City/County Capability Assessment (including health and public safety 

infrastructure, emergency response capabilities, sheltering capacity, critical 
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infrastructure assessment, etc.) and Mitigation Plan (identifying hazard mitigation goals, 

objectives and strategy, key stakeholders, inter-agency coordination plans, etc.).  Such 

plans, where they exist, can provide important insight into the characteristics of 

environmental hazards affecting certain cities, local leaders’ and residents’ perception 

of those hazards, and the priorities for mitigation identified by the local government.  

With this in mind, it is recommended here that, when available, all-hazard mitigation 

plans submitted to FEMA by local jurisdictions are utilized in urban community resilience 

studies for the purpose of producing a place-specific, locally sourced all-hazards profile.  

Additionally, the comparative hazard assessment and perception information contained 

in the mitigation plan, constituting a set of expert rankings, can be directly utilized to set 

weights for environmental hazard variables in a vulnerability index.  This practice would 

be especially helpful in instances where the direct elicitation of expert rankings in 

surveys or interviews proves impractical. 

 

3.2 Combined Environmental and Socioeconomic Vulnerability Index 

Though most community resilience paradigms now focus more on assets and 

strengths as opposed to deficits or weaknesses (which are generally framed in terms of 

adverse socioeconomic conditions), the vulnerability which these deficiencies can create 

inside communities should not be ignored.  In particular, following decades of work by 

critical social theorists demonstrating that disadvantageous socioeconomic conditions 

amount to hazards, geographers are rightly hesitant to cease accounting for social 

vulnerabilities, especially in the urban context (Rufat 2103).  Therefore, it is 
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recommended that a vulnerability analysis phase be included in urban community 

resilience studies, to combine environmental and socioeconomic hazards.  Place-specific 

environmental hazards data should preferably be gleaned from local expert knowledge 

sources, as in the FEMA hazard mitigation plans referenced above.  For socioeconomic 

indicators and representative variables of vulnerability, a plethora of data sources exists 

(King 2001, Flax et al. 2002, Cutter et al. 2003, Adger et al. 2004, Cardona 2005).  

However, the selection of socioeconomic indicators and variable data should also take 

advantage of the reporting of local experts, such municipal departments of health or 

public safety, which often reveals the unique stressors and challenges faced by 

communities in the area studied. 

 

3.3 Resilience Index 

An apparent, yet unexplained, methodological inconsistency in the shift of focus 

from vulnerability to resilience in community disaster research is that the same 

indicators and variables used to populate vulnerability indices are also commonly used 

to populate resilience indices (see, for example, the variables utilized by Cutter et al. 

2003 and Cutter et al. 2008).  Given that the components of resilience are not typically 

identical to (or opposites of) the components of vulnerability, a new system for 

constructing separate vulnerability and resilience indices and apportioning indicators 

into each is proposed.  The principle followed for apportioning indicators is: if a certain 

variable can be viewed as more of a deficiency, or as a process working against a 

populations’ ability to cope with extreme events, it will be included in the vulnerability 



58 
 

index.  If the variable can be viewed more as a quality or process (especially an 

endogenous, emergent process or intentional/collective action) which increases 

community capacity to cope with extreme events, it will be included in the resilience 

index.  This dual vulnerability-resilience approach has advantages beyond that of 

adhering to multidisciplinary recommendations for separating these concepts in the 

analysis phase.  It will also allow both metrics, once populated with variables and 

parameterized, to be juxtaposed to characterize the relative agreement between the 

degree of risk a community faces and the amount of resilience capacity put into play.  

Therefore, a study conducted by this method can provide a characterization of both 

absolute resilience (in a map depicting resilience ‘scores’ alone) and, more importantly, 

relative resilience (rendered as a weighted suitability surface). 

Also proposed in this thesis is a resilience index structure that divides indicators 

into the sub-scales at which they can be perceived to operate: the micro (individual / 

household), meso (neighborhood), and macro (government/institutional) levels.  This 

practice not only enables the balancing of multi-scalar resilience components as 

recommended in the literature, but also permits emergency managers and community 

leaders to analyze study outputs, such as thematic maps, according to their 

organizational focus and/or level of jurisdiction.  Indicators chosen to populate each 

sub-level of the multi-scale resilience index can be sourced from a variety of studies that 

have examined the dimensions of community resilience, including those focused on 

business management (Bhamra et al. 2011), environmental science (Bahadur et al. 

2013), public health (Cohen et al. 2013), social psychology (Windle 2011), econometrics 
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(Chan and Wong 2007), geography (Renschler et al. 2010) as well as others.  As in 

vulnerability indices, variables chosen to represent resilience indicators should 

whenever possible include place-specific data sourced from local expert reporting. 

 

3.4 Determining Indicator Weights 

Weighting of indicators in vulnerability and resilience indices has received a 

variety of treatments in the literature, from equal-weighting schemes, to knowledge-

based ranking of individual indicators, to weighting schemes based on internal 

multivariate statistics of indicators (Ratick and Osleeb 2011).  However, Cutter et al. 

(2010) argues for standardization of equal indicator weighting given that method’s 

transparency and ease of understanding may be untenable due to the potential for 

knowledge-based rankings to unveil indicator importance or preference for 

management purposes.  At the local scale at which this resilience study is performed, 

and considering the level of enthusiastic stakeholder buy-in which such studies can 

elicit, this potential is considered to be high.  Therefore, a method for integrating local 

expert knowledge and lay opinions of vulnerability and resilience indicator importance, 

for the purpose of defining indicator weights, is warranted.  The knowledge-based 

approach has advantages over statistical methods in that perceived relations are taken 

into account, whereas multivariate statistical methods are only able to evaluate the 

relative importance between indicators inherent in the analyzed data (Nardo et al. 

2005a).  Also, relational statistics, especially when applied to variables in human 

systems, are at risk to spurious correlations (Hiete et al. 2011). 
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The analytic hierarchy process (AHP) can be extended to set weights for 

individual indicators in both vulnerability and resilience indices based on qualitative 

pair-wise comparison of indicators in a digraph.  AHP is a robust decision support tool 

originally developed within industrial engineering for using expert ratings to select 

preferred means from a set of alternatives to achieve a normative production outcome 

(Saaty 2008).  Here, the AHP approach can be used to define the relative importance of 

study indicators within an index; however, in this case the purpose is not to identify and 

select out the most dangerous threat in the vulnerability index or most important 

protection in the resilience index, but to retain the information regarding relative 

indicator importance for the purpose of defining weights.  In this context, the 

‘aggregation of individual judgments’ approach to AHP (Aczel and Saaty 1983, Wu et al. 

2010) is operationalized as follows:  

A pairwise indicator comparison matrix (or a set of matrices if the there are two 

or more sub-levels in the index to be weighted) is constructed.  Indicators within their 

respective sub-scale are assessed against each other as to their importance or relative 

contribution to resilience within their respective subscale.  The scale of quantified 

judgment of comparative importance can be set from 1.0-9.0 according to Table 3. 

Table 3. Quantitative Scale for Indicator Comparisons (Wu et al. 2010) 

Verbal Judgment of i-j Comparison Numerical Rating 

Of Overwhelming Importance 9 
Much More Important 8 
Of Moderately More Importance 7 
Slightly More Important  6 
Of Equal Importance 5 
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Slightly Less Important  4 

Of Moderately Less Importance 3 
Much Less Important  2 
Insignificant by Comparison 1 

 

Given a set of indicators indexed i and j, let C1, C2, …, Cn represent the set of 

indicators in a certain sub-index (such as the Socioeconomic sub-index of the 

vulnerability index) and aij represent a quantified judgment on a pair of indicators Ci and 

Cj.  The pairwise comparison matrix with n indicators is presented below, where a12, for 

instance, means the quantified judgment between C1 on the first row and C2 on the 

second column: 

  [ ij]  [

  12   1n

 21    2n

    
 n1  n2   nmax

] (1) 

To compute the importance for each indicator in terms of its comparative 

contribution to the overall goal, AHP consists of three steps.  First, values in each 

column of the pairwise comparison matrices are summed.  Second, the number of 

quantified judgments aij in the pairwise comparison matrix is divided by its column total, 

which results in the normalized pairwise comparison matrix.  Third, the average of the 

elements in each row of the normalized pairwise comparison matrix is calculated.  As a 

result, these averages represent the weights of the indicators. 

 As a validation measure, AHP uses a consistency ratio to evaluate the 

consistency of the pairwise judgments (Zahedi 1986).  The first step is to use the 

pairwise comparison matrix as shown in Eq. 1 to multiply the weights of the indicators, 

specified as an nx1 matrix, computed in the third step of the above procedure.  This 
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results in a weighted sum vector for each indicator.  Next, the weighted sum vectors are 

divided by the corresponding weights for each indicator.  Third, the average of these 

values, denoted as λmax, is calculated.  The consistency index (CI) is then computed by: 

     max            (2) 

where n is the number of indicators.  Finally, the consistency ratio (CR) is computed as 

CR = CI/RI, where RI is the random index of a randomly generated pairwise comparison 

matrix.  Table 4 provides RI values with different n.  When CR is less than 0.10, the matrix 

is considered to be consistent. 

 

Table 4. RI Random Index Values for Various n 

 

 

3.5 Combining Vulnerability and Resilience Indices 

When the separate vulnerability and resilience indices are calculated, there 

results two separate spectrums of scores for vulnerability per community and resilience 

per community.  Since each index consists of different numbers of variables with 

different weighting schemes (yet are expected to be normally distributed), it makes 

sense to analyze these datasets using defined standard deviations as a common scale. 

For example, in the sample distribution datasets in Figure 8, both vulnerability and 

resilience datasets are normally distributed with fewer extreme scores.  
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Figure 8. Sample Vulnerability and Resilience Index Score Distributions and Statistics 

 

 

In this case, defining categories of community index scores based on standard 

deviations around the mean of the datasets can produce categories to facilitate 

comparison and combination of the two datasets.19  If categories of ‘Very High’, ‘High’, 

‘Medium’, ‘Low’ and ‘Very Low’ are chosen, the datasets can be classified in a confusion 

matrix as shown in Table 5, with the output being final relative resilience categories. 

 
 
             
 

                                                      
19

 For example: ‘Very Low’= Less Than -1.5 Std.Dev; ‘Low’= Between -1.5 and -.5 Std.Dev; ‘Medium’= 
Between -.5 and .5 Std.Dev; ‘High’= Between .5 and 1.5 Std.Dev; ‘Very High’= More Than 1.5 Std.Dev 



64 
 

  Table 5. Sample Confusion Matrix to Convert Vulnerability and Resilience 
              Categories to Final Relative Risk Categories 
 

 

 

3.6 Validation Methodology 

Internal and external validation of models of social processes is crucial in 

establishing the reliability and explanatory power of these models. Models based on 

additive indices may be viewed as internally sensitive to the parameters chosen for each 

step of index construction. Therefore, attention should be paid to how each step of the 

index construction process (indicator selection, analysis scale selection, adjustment for 

data error/undercounts, normalization, variable transformation and weighting) 

influences the outcome of analysis. It has been shown that the sensitivity of additive 

index parameterization differs with each type of index type. For example, Tate (2012) 

applies variance-based global sensitivity analysis (Monte Carlo simulation20) to the most 

common additive index types using vulnerability/resilience data for different geographic 

locations, in order to uncover the nature of sensitivity inherent in each index type. 

Results showed that the hierarchical index model is highly affected by changes to 

                                                      
20

 A Monte Carlo simulation measures a model’s sensitivity to small changes in one or more of its 
parameters, by running many thousands of model simulations with incremental modifications and 
collecting resulting statistics.  

Very Low Low Medium High Very High

Very High Critically High Risk Very High Risk High Risk Medium risk Medium Risk
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Low Medium Risk Medium Risk Medium Risk Low Risk Very Low Risk
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variable weighting parameters, slightly affected by changes to variable transformation 

parameters, and negligibly affected by other construction steps (see Figure 9 below). As 

a consequence, Tate recommends additional methodological scrutiny at the variable 

weighting stage of hierarchical index design. Though not included in Tate’s analysis, the 

step of choosing weights for sub-indices within a hierarchical index is assumed to also 

highly affect the outcome of analysis.  

 

 Figure 9. Sensitivity Analysis Comparison of 3 Common Additive Indices (Tate 2012)  

 

In the context of the proposed index construction methodology, sub-index 

weighting has received the least methodological attention, and therefore must be 

assumed to contribute the most uncertainty to the model. However, Monte Carlo-type 

sensitivity analysis of small weighting changes may be unnecessary here, since 

emergency managers are unlikely to make small changes to the weighting scheme of the 

proposed sub-indices.21 Also, absolute changes to a community’s vulnerability/resilience 

                                                      
21

 For example, when choosing weights for the ‘environmental’ and ‘socio-economic’ sub-indices within 
the vulnerability index, it is assumed emergency managers will opt for multiples of 5 or 10 – such as 
applying a 40% weight to ‘environmental’ and 60% to ‘socio-economic’. However, it is also assumed that 
the chosen weights may vary dramatically in different study areas, according to local conditions and the 
viewpoints of officials. For example, in a disaster-prone yet socially stable and prosperous area, the 
‘environmental’ sub-index may be weighted 80% whereas the ‘socio-economic’ only 20%.  
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scores in the proposed dual-index approach are less important than changes to the 

resulting ‘relative resilience’ information categories each community falls into.  

Therefore, sensitivity analysis here will focus on how reasonable changes to sub-index 

weighting schemes in the vulnerability and resilience indices result in different 

categorization of communities in the final relative resilience matrix (see the proposed 

Confusion Matrix in Table 5 above). Since the objective of the proposed relative 

resilience categorization is to highlight communities with the most critical levels of risk 

(high vulnerability combined with low absolute resilience) in order to help prioritize 

mitigation efforts, the changes in total community population in high-risk categories 

after various sub-index weighting schemes will be presented. 

 

3.7 Evaluating Indicator Interaction, Cause-Effect Relationships and Key 
Indicators For Targeted Mitigation Strategies 
 
Once a model of community resilience has been built and validated, and after 

resilience scores for communities across a study area have been calculated, converted 

to information categories and mapped, disaster mitigation officials may still be quite 

uncertain about which indicators to target in order to increase the resilience of certain 

high-risk communities (those with high vulnerability and low resilience).  After all, the 

final classification of a particular community’s resilience is based on the interaction of 

quite a large set of variables22, each representing a real-world social process which 

exerts a certain amount of causal influence on other variables as well as the overall level 

                                                      
22

 Index-based resilience research in particular tends to include a high number of variables. Even in studies 
using the inductive approach to index construction, whereby a set of candidate study variables is whittled 
down through PCA analysis, the number of variables used can be in the dozens (c.f. Cutter 2007) 
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of community resilience.  For a mitigation effort to be maximally effective, it should be 

targeted at variables which not only are considered the most important to overall 

resilience, but also exert strong positive influence on other resilience indicators. Since 

the task of trying to think about how each variable influences all others would quickly 

become overwhelming, some tool for the structured analysis of these influences is 

required.  

The DEMATEL method, extended for defining influence among resilience 

indicators by Hiete et al. (2011), is argued to be a promising tool for distinguishing the 

importance of resilience indicators, with the objective of communicating most 

influential resilience variables to decision makers.  DEMATEL can be viewed as 

complimentary to AHP in an indicator analysis because it 1) shows how strongly each 

variable is related to all others, and 2) defines the nature of variable inter-influence by 

distinguishing between cause-and-effect indicators.  This characterization of the 

indicators provides useful information for disaster management.  If a mitigation effort is 

targeted at influencing an indicator which is both highly related to all others and of a 

causal nature, the overall policy impact is expected to be higher (Hiete et al. 2011).  

Similarly to AHP, the starting point of the DEMATEL method is a digraph, the direct 

relation matrix M, which is a square matrix of n × n where n is the total number of 

indicators in the index to be analyzed.23  To populate M, an analyst estimates the degree 

of direct influence between the different resilience indicators based on pair-wise 

                                                      
23

 As opposed to AHP, in which indicators are only compared with others within their respective sub-levels 
in separate digraphs, a DEMATEL analysis compares all variables in an index simultaneously in one digraph 
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comparisons.  The scale for quantification of influence may consist of integers which 

represent influence levels from low to high (such as 0 = none or negligible influence, 1 = 

low influence, 2 = medium influence, 3 = high influence, 4 = very high or controlling 

influence).  Within M, the ith row represents the quantified influence of indicator i on 

each indicator j = 1, . . . , n.  Since indicators are assumed not to influence themselves, 

all principal diagonal elements of M are set equal to zero. 

Based on the methodology described by Fontela and Gabus (1976), M can be 

normalized as in Eq. 2. 

  
 

max[maxi=1 ,   ,  ∑ 
     i,j, maxj=1    ∑ 

    i , j]
 (3) 

The normalized direct relation matrix N is then used to calculate the total direct–

indirect relation matrix T, depicting the direct and indirect influence among the 

indicators.  The normalization of N ensures convergence of T.  For normalization, 

besides the maximum value of the row- and column-wise sums, the maximum value of 

just the row-wise sums can be used (Hu et al. 2009). 

                      Id       (4) 

Row- and column-wise summation of the elements of T gives the degree of 

dispatching Pi or the degree of receiving Rj which represent the total direct and indirect 

influence an indicator exerts on or receives from the other indicators (Tamura and 

Akazawa 2005). 

   ∑     
 
     (5) 

 

   ∑     
 
     (6) 
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Furthermore, for each indicator the position value s+
i and the relation value s−

i 

can be derived from the total direct–indirect relation matrix T as follows: 

  
          (7) 

    
                                     (8) 

The position value s+i measures how strongly an indicator i is related to all 

others.  Indicators with low position values s+i are neither strongly influenced by others 

nor do they influence other indicators to a considerable extent.  The opposite is true for 

those with high s+i values.  The relationships captured by the positional values are 

therefore similar to those of internal statistical methods such as Pearson’s correlation 

coefficient.  However, its data-independence and exploitation of local knowledge allow 

the positional value to communicate perceived and directed influences, which may 

prove useful in a management context. 

The relation values s−i allow for distinguishing between cause and-effect group 

indicators.  Indicators of the cause group influence others more than they are influenced 

themselves (therefore having positive net influence: s−
i > 0), whereas the effect group of 

indicators are defined as s−
i < 0 (negative net influence). 

By plotting s+
i and s−

i against each other, comparative assessment of the overall 

structural cause–effect relationships among indicators can be visualized in a causal 

diagram (Figure 10).  As noted, mitigation policies directed at indicators exhibiting both 

high positional and relational values are expected to be more effective.  Another way of 

visualizing the results of a DEMATEL analysis is by constructing an impact-relation 

network diagram from the total direct–indirect relation matrix T.  All impact-relations 
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can be shown simultaneously linked with directional arrows; or, using an arbitrary 

threshold value s+i/s-j, one can simplify the network diagram to show only the most 

‘important’ impact relations (Li and Tzeng 2009, see Figure 11). 

 
 
 

Figure 10. Example Casual Diagram Output from a DEMATEL Analysis. 
 

 

NOTE: Relational and positional values obtained from Eq. (7) and (8) are plotted against each 
other. In this example, variables A2, E7 and A1 have higher positional and relational values, 

signifying they are each related strongly to other variables and they each exert causal influence 
on a large number of other variables. Focusing on A2, E7 and/or A1 in mitigation efforts is 

expected to have a broader impact on the goal of increasing community resilience (Hiete et al. 
2012). 
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Figure 11. Directed-impact relations among variables from the T matrix can also be 
visualized in a network diagram. Below is an example diagram simplified with a 
threshold value of s-

i/s+
j in order to show only the most important relations (Hiete 2012) 
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CHAPTER 4. APPLICATION TO ST. LOUIS, MISSOURI 

 

4.1 Study Area and Units of Analysis 

“St. Louis is a city of neighborhoods.”  
– St. Louis City Department of Health (2012), Understanding Our Needs 

 

Many data-intensive community resilience studies, as well as other public policy-

related research, use U.S. Census geographies such as tracts or postal zip codes as 

proxies for communities or urban neighborhoods (Krieger 2006).  The advantages to 

that approach are, first, that Census tracts are designed to have similar populations 

which facilitates ease of comparing geographic differences, and second, that analysis at 

the Census tract level can be easily scaled up to larger Census geographies (Flanagan et 

al. 2011).  However, an assumption in a community resilience study that Census tracts 

constitute distinct, self-identified communities, or that populations in those tracts can 

be reasonably expected to come together to solve problems, may be untenable.  

Therefore, this research will spatially define communities in St. Louis as St. Louisans do – 

as neighborhoods.  The rich history of St. Louis as an important gateway transit hub, as a 

show city for the combined 1904 Olympic Games and World’s Fair, and as the site of 

many interesting architectural and urban design experiments may be too broad to cover 

here.  However, one result of the city’s cultural heritage is that many of its residents 

identify strongly with distinct neighborhoods.  The city of St. Louis municipal 

government recognizes 79 neighborhoods, each with its own formative history and 
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unique character.  As such, official St. Louis neighborhood geographies will be utilized 

here (STL Planning Dept. 2010). 

Figure 12. Study Area and Analysis Units- St. Louis City Neighborhoods (STL Planning Dept. 2010) 
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4.2 Data Sources 

Selection of environmental hazards variables, and expert knowledge-based index 

weights for these variables in the vulnerability index, will be derived from the most 

recent (2009) St. Louis City Hazard Mitigation Plan (EW Gateway 2010b).  East-West 

Gateway Council of Governments (EWG), a formal planning and coordination body 

made up of representatives from St. Louis-area municipal governments and school 

districts, takes on the responsibility of producing and submitting the Hazard Mitigation 

Plan to SEMA and FEMA on behalf of its constituent jurisdictions.  Within this role, E-W 

Gateway also acts as the official public clearinghouse for all hazard, community profile, 

asset and mitigation planning data assembled for the FEMA report (EW Gateway 2010a).  

Before undertaking hazards data collection and research, EWG elicits input from 

members of constituent government agencies, local universities, and the general public 

(through a series of workshops and orientation meetings meant to gather mitigation 

issues, goals, priorities and ideas) (EW Gateway 2010a).  Therefore, the hazards data, 

research methodology, risk assessments and mitigation priorities retained in EWG’s 

Hazard Mitigation Plan represent a fusion of both expert and lay local knowledge of 

environmental hazards in the St. Louis metropolitan area.  The St. Louis City section of 

the 2009 plan, including local emergency management officials’ quantitative assessment 

of environmental hazard risks, is therefore utilized here to form a hazard profile of St. 

Louis City neighborhoods and to set weights for hazard variables within the 

environmental sub-index of the overall vulnerability index (see Tables 6 and 11 below). 
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Socioeconomic vulnerability indicators are selected after consideration of local 

expert reporting of the main social stressors affecting populations in the City of St. 

Louis.  Comprehensive socioeconomic threat data is published every three years by 

epidemiologists at the City of St. Louis Department of Health in the multi-volume report 

Understanding Our Needs (STL Dept. Health 2012).  Though written by public health 

professionals, approximately half of this publication deals with deficiencies and 

vulnerabilities brought out by adverse socioeconomic conditions.  Understanding Our 

Needs discusses conditions such as racial polarization, outmigration, poverty, teen 

pregnancy, crime, residential/business vacant space, hospital access, insurance 

coverage, public school quality, welfare recipients and many others.  Therefore, 

indicators of social vulnerability from this publication are used to supplement other 

commonly used or recommended indicators in the disaster vulnerability literature (e.g. 

indicators of inequitable food access, English-language deficiency, low evacuation 

accessibility, infrastructure fragility, populations with functional disabilities, etc.).  Data 

and variables used to represent chosen vulnerability indicators for this study are 

sourced primarily from the U.S. Census Bureau’s American Community Survey 2011, as 

well as Missouri Department of Transportation, St. Louis Metropolitan Police 

Department, St. Louis City Departments of Planning, Urban Design and Health, National 

Association of Charter School Authorizers and The Reinvestment Fund. Since a multitude 

of variables exist that could denote resilience-boosting processes or qualities at each 

sub-level, they will be selected based on the author’s expertise of the study area and 

publically-available data.  Variables comprising the socio-economic sub-index of the 
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overall vulnerability index are weighted using the AHP method described in Section 3.4, 

taking into account the perceived severity of these threats noted or implied in 

Understanding Our Needs, as well as the author’s personal experience with social 

threats in the study area.  

      4.3 Data Preparation 

Two neighborhoods within the City of St. Louis have no residential population 

(defined as civilian, non-institutionalized population) according to the ACS 2011. 

Kosciusko, constituting industrial and commercial land use, and has no reported 

residential population at all; North Riverfront contains a large institutionalized 

population (in the St. Louis City Correctional Facility) but no other reported residential 

population.  It is certainly important to consider the disaster vulnerability/resilience of 

business entities and institutions within places such as Kosciusko and North Riverfront; 

however, since this thesis focuses primarily on qualities of people and processes in 

residential communities, these neighborhoods are omitted from analysis. 

Since no Census-published data are available at the spatial scale of official St. 

Louis City neighborhoods, significant data preparation and restructuring is necessary to 

forge a correspondence between ACS 2011 geographies and the neighborhood analysis 

units.  In consultation with demographers in the Research Division of St. Louis City 

Department of Planning, a system for redistributing data obtained in different Census 

areal units  (such as block groups, tracts or postal zip codes) to neighborhood 

geographies was developed, using a relational database in a zonal GIS environment.  
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This process (known as dasymmetric mapping – see Matisziw et al. 2008) can 

redistribute a certain proportion of tabular Census data (originally aggregated to block 

group, tract or zip code geographies) to neighborhood geographies based on the level of 

geometric intersection of these geographies.  To account for the effects of the 

modifiable areal unit problem (MAUP), land use information on the locations of 

residential parcels is used to denote where within a Census geography the populations 

likely reside.  In this application of dasymmetric mapping, there results a small residual 

of data that could not be allocated to the parcels since Census-developed Tiger/Line and 

St. Louis City-developed neighborhood spatial datasets not aligning exactly.   

Once indicator variable data is prepared for both the vulnerability and resilience 

index, variables are reclassified to a value in the range [0, 1] with 0.0 representing the 

lowest and 1.0 as the highest vulnerability or resilience, respectively.  In general, human 

variables representing counts of people or physical/spatial variables represented by land 

area were normalized by neighborhood population or land use totals.  Variables 

representing road distances from neighborhoods to critical services or evacuation points 

are normalized by maximum observed distance values.  Binary variables representing 

the presence or absence of a certain quality (such as an active neighborhood 

association) are coded as [0, 1] accordingly. 

 
 
 
4.4 Vulnerability Indicators and Index 
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Table 6. Framework of Vulnerability: ‘A Set of Threats’ 
DIMENSION ID HAZARD INDICATOR PROXY VARIABLE JUSTIFICATION DATA SOURCE 

ENVIRONMENTAL 

- EARTHQUAKE 
LIQUEFACTION POTENTIAL AREASFROM 7.8 

MMI NEW MADRID EARTHQUAKE EVENT 
- 

USGS 2012, EW GATEWAY 
2013 

- EXTREME HEAT 
URBAN HEAT ISLAND POTENTIAL – 

IMPERVIOUS LULC 
- 

EPA-APPD, EW GATEWAY 
2013 

- FLOOD 
RIVERINE, FLASH, AND L&D#327 FAILURE 

PREDICTED FLOOD AREA 
- 

FEMA 2013, EW GATEWAY 
2013 

- 
INDUSTR. POLLUTANT 

EXPOSURE 
ENVIRONMENTAL HEALTH HAZARD INDEX 

CATEGORY AREAS 
- EW GATEWAY 2013 

- 
TORNADO + WIND/HAIL 

STORM 
INVARIABLE  – WEIGHTED BY EXPERT RISK 

ASSESSMENT 
- EW GATEWAY 2013 

- EXTREME COLD 
INVARIABLE  – WEIGHTED BY EXPERT RISK 

ASSESSMENT 
- EW GATEWAY 2013 

SOCIO-
ECONOMIC 

V1 AGING STRUCTURES % HOMES BUILT BEFORE 1940 MILETI 1999 ACS 2011 

V2 PUBLIC SAFETY THREAT 
AVERAGE ANNUAL VIOLENT & MAJOR 

PROPERTY CRIMES 2007-2011 
SHAW-TAYLOR 1999 SLMPD 2013 

V3 
ECONOMIC INSTABILITY – 

INSUFFICIENT INCOME 
POVERTY RATE (% POP BELOW POVERTY 

LEVEL) 
HARKNESS 2007 ACS 2011 

V4 UNEMPLOYMENT RATE % UNEMPLOYED TIERNEY 2007 ACS 2011 

V5 
VULNERABLE HOUSEHOLDS – 

SINGLE MOTHER HH 
% FAMILIES WITH SINGLE FEMALE HEAD OF 
HOUSEHOLD WITH DEPENDENT CHILDREN  

MORROW 1999 ACS 2011 

V6 
VULNERABLE HOUSEHOLDS – 

SPECIAL NEEDS 
% ELDERLY WHO ARE DISABLED AND LIVING 

ALONE 
HEINZ CENTER 2002 ACS 2011 

V7 
ECONOMIC INSTABILITY – 
COMMERCIAL VACANCY 

% LONG-TERM VACANT COMMERCIALLY-
ZONED PROPERTIES (STRATEGIC LAND USE) 

ST. LOUIS CITY 2012 
ST. LOUIS DEPT OF PLANNING 

2012 

V8 
ECONOMIC INSTABILITY – 

RESIDENTIAL VACANCY 
% LONG-TERM VACANT RESIDENTIALLY-

ZONED PROPERTIES (STRATEGIC LAND USE) 
ST. LOUIS CITY 2012 

ST. LOUIS DEPT OF PLANNING 
2012 

V9 INEQUITABLE FOOD ACCESS 
% OF NEIGHBORHOOD WITHIN LIMITED 

SUPERMARKET ACCESS AREAS (LSA) 
TRF 2013 TRF 2013 

V10 POOR SCHOOL QUALITY 
SERVICE GAP IN MISSOURI TIER 1 K-12 

SCHOOLS 
NACSA 2009 NACSA 2009 

V11 
LIMITED ENGLISH 

PROFICIENCY 
% ESL + NON-ENGLISH SPEAKING 

POPULATION 
MORROW 2008 ACS 2011 

V12 EVAC. POTENTIAL – ACCESS 
PRINCIPAL ARTERIAL MILES PER 

NEIGHBORHOOD 
NRC 2006 MODOT 2013 

V13 
EMERGENCY MEDICAL 

ACCESSIBILITY 

DRIVE TIME FROM NEIGHBORHOOD 
CENTROID TO NEAREST ER-EQUIPPED 

HOSPITAL 

AUF DER HYDE AND 
SCANLON 2007 

GIS DERIVED FROM MODOT, 
STATE OF MO PUBLIC HEALTH 

 

Table 7. Digraph Structure for AHP Assessment of Socio-economic Vulnerability Sub-Index 

 

Note: AHP assessment is used to set indicator weights in the Socio-Economic sub-level of the vulnerability 
index (indicators in the Environmental sub-index are weighted separately using already-available 
quantified expert judgments from the St. Louis Hazard Mitigation Plan shown in Table 11). Each cell is 
filled in with a quantified judgment of the level of threat of indicator i (row) as opposed to indicator j 
(column), as described in Section 3.4, using the scale in Table 3.   
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4.5 Resilience Indicators and Index 
 

Table 8. Framework of Resilience: ‘A Set of Protections’ 
LEVEL ID INDICATOR VARIABLE JUSTIFICATION DATA SOURCE 

INDIVIDUAL & 
HOUSEHOLD 

I1 CIVIC PARTICIPATION % CENSUS 2010 PARTICIPATION CUTTER 2010 US CENSUS BUREAU 2011 

I2 EDUCATIONAL ATTAINMENT 
% POPULATION HAVING AT LEAST SOME COLLEGE 

EDUCATION 
UNDP 1990 ACS 2011 

I3 LOW INCOME BUFFER 
AVE HH GOV ASSISTANCE DOLLARS PER HHS IN 

POVERTY 
BIANCHI ET AL 

1982 
ACS 2011 

I4 INSURANCE COVERAGE 
% CIVILIAN POP COVERED BY ANY TYPE OF 

HEALTH INSURANCE PLAN 
DORFMAN 1979 ACS 2011 

I5 HH ECONOMIC SECURITY 
% HOMEOWNERS NOT SEVERELY COST-

BURDENED 
BIANCHI ET AL 

1982 
ACS 2011 

I6 HH FOOD SECURITY & URBAN ECOLOGY PRIVATE GARDENS AS % OF TOTAL HHS TRF 2013 AGRIMISSOURI 2013 

I7 
ELDERLY + DISABLED POPULATION 

CONNECTIVITY 
# SLAAA FUNCTIONAL NEEDS REGISTRANTS 

MCGUIRE ET AL 
2007 

SLAAA 2013 

I8 EMERGENCY MOBILITY % HH WITH A CAR TIERNEY 2007 ACS 2011 

I9 PLACE ATTACHMENT % HH RESIDING >10 YEARS 
VALE & 

CAMPANELLA 2005 
ACS 2011 

COMMUNITY 
(NEIGHBORHOOD) 

N1 
COMMUNITY INVOLVEMENT - 

RESIDENTIAL 
ACTIVE NEIGHBORHOOD ASSOCIATION 

STEWART ET AL 
2009 

SLACO 2013 

N2 
COMMUNITY INVOLVEMENT - PLACE 

ATTACHMENT / FOOD SECURITY 
ACTIVE  COMMUNITY GARDEN 

TIDBAL AND 
KRASNEY 2007 

GATEWAY GREENING 2013 

N3 
COMMUNITY INVOLVEMENT – 
ECONOMIC PRESERVATION & 

DEVELOPMENT 
ACTIVE NEIGHBORHOOD BUSINESS ASSOCIATION 

STEWART ET AL 
2009 

SLACO 2013 

N4 
COMMUNITY IDENTITY & PLACE 

ATTACHMENT 
HISTORIC PLACE OR DISTRICT (NRHP REGISTRY) 

INSIDE NEIGHBORHOOD 
FLANAGAN ET AL 

2011 
NRHP 2013, EW GATEWAY 

2012, MSDIS, 2013 

N5 
CIVIC PARTICIPATION / POLITICAL 

ENGAGEMENT 
ACTIVE WARD ASSOCIATION – POLITICAL 

PARTISAN ORGANIZATIONS 
STEWART ET AL 

2009 
ST. LOUIS CITY HALL 

N6 NEIGHBORHOOD RACIAL DIVERSITY GINI COEFFICIENT – ‘WHITE’,’BLACK’, ’OTHER’ NORRIS ET AL 2008 ACS 2011 

N7 NEIGHBORHOOD AGE EQUITY 
GINI COEFFICIENT – ‘0-14’,’15-34’,’35-54’,55-

74’,’75+’ 
MORROW 2008 ACS 2011 

N8 NEIGHBORHOOD INCOME DIVERSITY 
GINI COEFFICIENT – 6 CATEGORIES (BELOW 

POVERTY, LOW, LOW-MEDIAN, HIGH-MEDIAN, 
HIGH, WEALTHY 

DORFMAN 1979 ACS 2011 

N9 
NEIGHBORHOOD OCCUPATIONAL 

DIVERSITY 

GINI COEFFICIENT – ‘BUSINESS SCIENCE & 
ARTS’,’SERVICE’, ’SALES & OFFICE’, 

’MANUFACTURING & EXTRACTION’, 
’TRANSPORTATION 

BOLLMAN ET AL 
2006 

ACS 2011 

N10 
ECONOMIC RESILIENCE – BUSINESS SIZE 

DIVERSITY 
GINI COEFFICIENT – BUSINESS SIZES ‘1-19’,’20-

99’,’100+’ 
GARMESTANI ET AL 

2006 
ESRI BUSINESS ANALYST 2013 

N11 
ECONOMIC RESILIENCE – INNOVATIVE 

POTENTIAL 
% POP EMPLOYED IN STEM-RELATED 

OCCUPATIONS 
MCGRANAHAN & 

WOJAN 2007 
BLS 2012, ACS 2011 

GOVERNMENT & 
INSTITUTIONAL 

G1 ELECTED OFFICIAL CONNECTIVITY ACTIVE WARD ASSOCIATION – ALDERMAN TWIGG 2007 ST. LOUIS CITY HALL 2013 

G2 
GOVERNMENT ECONOMIC 

DEVELOPMENT EFFORT 

CITY PLANNING DEPT ‘DEVELOPMENT PLAN’ OR 
CITY URBAN DESIGN DEPT ‘IMPROVEMENT 

PROJECT’ 
GODSCHALK 2003 

ST. LOUIS DEPT OF PLANNING, 
ST. LOUIS DEPT OF URBAN 

DESIGN 2013 

G3 
GOVERNMENT EXTREME 

TEMPERATURE MITIGATION EFFORT 
WARMING AND COOLING SHELTER EW GATEWAY 2009 

STATE OF MO, UNITED WAY 
2013 

G4 
GOVERNMENT EMERGENCY FOOD 

MITIGATION EFFORT 
EMERGENCY SUPPLEMENTAL FOOD SITE TRF 2013 

STATE OF MO, UNITED WAY 
2013 

G5 
GOVERNMENT GENDER-BASED 

EMERGENCY MITIGATION EFFORT 
WOMEN AND CHILDREN CRISES CENTER MORROW 1999 

STATE OF MO, UNITED WAY 
2013 

G6 
GOVERNMENT-

PROVIDEDMULTIPURPOSE SPACE 
GOVERNMENT-MAINTAINED OPEN SPACE 

STEWART ET AL 
2009 

CITY OF ST LOUIS PLANNING 
DEPT 2013, EW GATEWAY 

2013 

G7 INST. EMERGENCY HEALTH MITIGATION COMMUNITY HEALTH CENTER CUTTER 2010 
ST LOUIS CITY DEPT OF 

HEALTH 2013 

G8 
INST. NON-PROFIT/CIVIC 

REPRESENTATION 
# OF CIVIC ORGS PER 10,000 POPULATION MURPHY 2007 NAICS 2012 

G9 INST. CAPITAL DEVELOPMENT 
# OF CONSUMER SAVINGS BANKS WITHIN 

NEIGHBORHOOD 
LONGSTAFF ET AL 

2010 
FDIC 2013 
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Table 9. Digraph Structures for AHP Assessment of Resilience Sub-Indices 
 

Individual / 
 Household 

I1 I2 I3 I4 I5 I6 I7 I8 I9 

I1 0 
        

I2 
 

0 
       

I3 
  

0 
      

I4 
   

0 
     

I5 
    

0 
    

I6 
     

0 
   

I7 
      

0 
  

I8 
       

0 
 

I9 
        

0 

 
Neighborhood / 

Community 
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 

N1 0 
           

N2 
 

0 
        

  

N3 
  

0 
       

  

N4 
   

0 
        

N5 
    

0 
     

  

N6 
     

0 
      

N7 
      

0 
     

N8 
       

0 
  

  

N9 
        

0 
 

  

N10 
         

0   

N11                     0 

 
Government /  
Institutional 

G1 G2 G3 G4 G5 G6 G7 G8 G9 

G1 0 
        

G2 
 

0 
       

G3 
  

0 
      

G4 
   

0 
     

G5 
    

0 
    

G6 
     

0 
   

G7 
      

0 
  

G8 
       

0 
 

G9 
        

0 

Note: AHP assessment is used to set indicator weights in each of three sub-levels of the resilience index 
(referenced above as A., B. and C.). Each cell is filled in with a quantified judgment of the importance of i 
(row) vs j (column), as described in Section 3.4, using the scale in Table 3.   

 

A.

. 

 A. 

B. 

C. 
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Table 10. Digraph Structure for DEMATEL Analysis of Resilience Indicators 

 

NOTE: DEMATEL analysis is used to both quantify relationships/influences among resilience indicators and 
to reveal which indicators are of a more causal nature and therefore more important in a management 
context. Each cell is filled in with a quantified judgment of the amount of influence i (row) exerts on j 
(column), with 0.0 = no or negligible influence, 1.0 = low influence, 2.0 = medium influence, 3.0 = high 
influence, and 4.0 = very high or controlling influence.  The results of DEMATEL are useful after each 
neighborhood’s relative resilience has been calculated, because it can help answer the question: “Which 
indicators would have the highest impact on overall resilience if they were strengthened?” Mitigation 
strategies for neighborhoods with low relative resilience scores are better directed at these high-impact 
indicators.      
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4.6 Validation Datasets 

Although the concept of population disaster resilience has sometimes been 

described more in terms of its intangibility than its observability, external validation of a 

resilience model using empirical evidence of actual disaster resilience may yet be 

possible.  Such validation can be conducted for St. Louis, using publically-available data 

on disaster-related deaths and requests for assistance.  The dataset representing 

observations of disaster resilience is comprised of 18 geo-coded occurrences of heat-

related fatalities during the intense heat wave which affected the St. Louis area in 

summer 2012 (St. Louis Post-Dispatch 2012).  Geographically-weighted regression was 

conducted using aggregated heat fatalities per neighborhood as the dependent variable, 

and relative resilience score as the explanatory variable.  Likewise, relative resilience 

scores of neighborhoods may also be evaluated as an explanatory variable for recent 

population change (outmigration) of St. Louis neighborhoods.  Supplementing this study 

area-wide validation, other datasets representing observed disaster resilience in more 

specific areas can be used, such as resident requests for assistance from St. Louis City 

Emergency Management Agency (CEMA) following windstorms in north St. Louis in 2011 

(St. Louis CSB 2013).  

Since this thesis argues that the proposed methods for modelling community 

resilience – which are based primarily on assessments of local knowledge as opposed to 

internal statistics – can explain observed resilience better than current simple additive 

index techniques,  a comparison will be made between this study’s output 
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characterization of relative community resilience and an analysis using data and index 

methods similar to the dominant geographic approach.     
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CHAPTER 5. RESULTS 

  

5.1 Hazard Profile, Vulnerability Index and Sub-Index Weights 

Table 11. Results of Environmental Hazard Assessment from City of St. Louis Mitigation 
Plan with Calculated Weights for Vulnerability Index (EW Gateway 2010a)   
 

*Industrial Accident / Pollution Exposure hazard was added by the current author due to EWG’s intended 
inclusion of this hazard in the 2015 Hazard Mitigation Plan.  This hazard’s characteristics were assessed by 
the author using EWG’s 2012 Health Hazard Index dataset and accompanying report (see Appendix for a 
map of the index per block group overlaid with St. Louis neighborhoods).  
NOTE: Each hazard indicator’s Index Weight is calculated as its Risk Score divided by the Risk Score 
column total (62.5), which ensures all indicator weights sum to 1.0. 

Hazard Frequency Magnitude Warning Time Severity 
Risk 

Score 
Priority 

Rank 
Index 

Weight 

Earthquake 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

14 1 0.224 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 

Tornado + 
Wind / 

Hailstorm 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

11 2 0.176 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 

Extreme 
Heat + 

Drought 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

10.5 3 0.168 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 

Flood 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

10 4 0.16 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 

Extreme 
Cold + 
Winter 
Storm 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

9 5 0.144 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 

Industrial 
Accident / 
Pollutant 

Exposure* 

Highly likely 4 Catastrophic 4 Minimal 4 Catastrophic 4 

8 6 0.128 
Likely 3 Critical 3 6-12 hours 3 Critical 3 

Possible 2 Limited 2 12-24 hours 2 Limited 2 

Unlikely 1 Negligible 1 24+ hours 1 Negligible 1 
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Table 12. Results of AHP Assessment of Socio-Economic Vulnerability Indicators 
(See Table 6 in Chapter 4 for List of Socio-Economic Indicators and Variables) 

 
 

 
 
 

Figure 13. Distribution and Standard Deviation Categories of Vulnerability Index 
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Figure 14. Map of Neighborhood Hazard Vulnerability 
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5.2 Absolute Resilience Index and Sub-Index Weights 

Table 13. Results of AHP Assessment of Resilience Index Sub-Levels 

 

 
Figure 15. Distribution and Standard Deviation Categories of Resilience Index  

 

 

 

 

ID Indicator Weight ID Indicator Weight ID Indicator Weight

I2
Educational 

Attainment
0.16125 N6 Income Equity 0.1295534 G7

Emergency Health & 

Medical Mitigation
0.1603293

I4
Insurance 

Coverage
0.14637 N7 Racial Diversity 0.1244979 G5

Gender-Based 

Emergency 

Mitigation

0.128999

I5

Household 

Economic 

Security

0.12875 N1

Community 

Involvement - 

Residential

0.1040401 G8
Non-Profit Services 

Representation
0.1269411

I3
Low Income 

Buffer
0.12401 N9

Occupational 

Diversity
0.102836 G3

Extreme 

Temperature 

Mitigation Effort

0.1245115

I7

Elderly & 

Disabled 

Population 

Connectivity

0.11872 N10
Business Size 

Diversity
0.0977915 G1

Elected Official 

Connectivity
0.1094313

I8
Emergency 

Mobility
0.09271 N3

Community 

Involvement - 

Business

0.0946334 G4
Emergency Food 

Mitigation Effort
0.1042028

I6
Household 

Food Security
0.08125 N11

Innovative 

Potential
0.0855975 G6

Government-

Maintained Multi-

Purpose Space

0.0827076

I9
Place 

Attachment
0.07998 N8 Age Equity 0.0848898 G2

Economic 

Development Effort
0.0819812

I1
Civic 

Participation
0.06694 N5

Political 

Engagement
0.0739333 G9 Capital Development 0.0808962

N2 Place Attachment 0.0527448

N4
Community 

Identity
0.0494823

INDIVIDUAL / HOUSEHOLD NEIGHBORHOOD / COMMUNITY GOVERNMENT / INSTITUTIONS
B. A. C. 
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Figure 16. Map of Neighborhood Absolute Resilience  
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5.3 Confusion Matrix and Relative Resilience Classifications 

Table 14. Neighborhood Classified by Vulnerability/Resilience 
 

 

NOTE: See Table 5 in Chapter 3 for classification labels for relative resilience  

 

 

Figure 17. Distribution of Neighborhoods in Relative Resilience Categories 

 

 

Total civilian population of neighborhoods in each category noted in parentheses (Source: ACS 2011) 

 
 
 
 
 

Very Low Low Medium High Very High

Very High
NONE 2, 61 18, 37, 60 59 NONE

High
62, 71, 75 17, 19, 64

16, 22, 24, 29, 50 

67, 77

1, 28, 30, 32, 36, 

65
NONE

Medium
55, 72, 54

33, 54, 56, 57, 58, 

68, 69, 70

3, 5, 23, 34, 40, 48, 

52, 78

15, 21, 25, 27, 31, 

35, 41, 49, 66
39, 63

Low
73, 76 43 12, 51

4, 11, 26, 42, 46, 

47
10, 38

Very Low
NONE NONE 6, 7, 8, 13, 14, 45 9, 43, 44 NONE

 RESILIENCE

V
U

LN
ER

A
B

IL
IT

Y
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Figure 18. Map of Neighborhood Relative Resilience (Pre-Validation Classification) 
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5.4 DEMATEL Results and Indicator Influence Diagram 

Table 15. DEMATEL Matrix N (Normalized Direct Relation Matrix) 

 

 

Table 16. DEMATEL Matrix T (Total Direct-Indirect Matrix) 

 

 

 

ID I1 I2 I3 I4 I5 I6 I7 I8 I9 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 G1 G2 G3 G4 G5 G6 G7 G8 G9

I1 0 0.2 0.4 0.4 0.2 0.2 0.4 0 0.2 0.4 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.2 0.6 0.6 0.6 0.6 0.2 0.6 0.6 0.4

I2 1 0 0.8 1 1 0.8 0.6 1 0.6 0.8 0.8 0.6 0.2 0.8 0.8 0.6 0.4 0.8 1 0.8 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.8

I3 0.6 0.6 0 0.6 0.6 0.2 0.4 0.4 0.4 0.4 0.2 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.6 0.4 0.4 0.4 0.2 0.4 0.8 0.4

I4 0.4 0.4 0.6 0 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.2 0.4 0.6 0.4

I5 0.6 0.6 0.4 0.8 0 0.8 0.6 0.6 0.6 0.6 0.6 0.4 0.2 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.4 0.6 0.4

I6 0.4 0.2 0.2 0.4 0.4 0 0.2 0.2 0.6 0.4 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4

I7 0.6 0.2 0.2 0.4 0.4 0.2 0 0.2 0.4 0.4 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.2 0.2 0.4 0.4 0.2

I8 0.2 0.6 0.4 0.4 0.4 0.4 0.2 0 0.2 0.2 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0 0.4 0.4 0.4

I9 0.6 0.4 0.4 0.6 0.6 0.6 0.6 0.2 0 0.6 0.4 0.4 0.4 0.6 0.2 0.2 0.4 0.2 0.2 0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.2 0.2 0.4

N1 0.6 0.4 0.4 0.4 0.2 0.2 0.6 0.2 0.6 0 0.6 1 0.4 0.8 0.4 0.4 0.4 0.4 0.4 0.4 1 0.8 0.4 0.4 0.4 0.4 0.4 0.6 0.4

N2 0.4 0.2 0.2 0.2 0.2 0.8 0.4 0.2 0.6 0.6 0 0.4 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.2

N3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.8 0.4 0 0.4 0.4 0.4 0.4 0.2 0.4 0.6 0.4 0.6 0.8 0.8 0.2 0.2 0.4 0.2 0.4 0.6

N4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.4 0.4 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0.2 0.2 0.2 0.4 0.2 0.2 0.2

N5 0.8 0.4 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.4 0 0.2 0.2 0.2 0.2 0.2 0.2 1 0.6 0.2 0.2 0.2 0.2 0.2 0.4 0.2

N6 0.4 0.6 0.6 0.6 0.6 0.4 0.2 0.2 0.4 0.6 0.6 0.6 0.2 0.6 0 1 0.6 1 0.8 0.8 0.6 0.6 0.6 0.6 0.6 0.2 0.4 0.8 0.8

N7 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.6 0.6 0.6 0.4 0.2 0.6 0.8 0 0.4 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.4 0.8 0.6

N8 0.4 0.4 0.2 0.4 0.4 0.2 0.6 0.2 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0.2 0 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.6 0.4

N9 0.2 0.4 0.4 0.6 0.6 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.2 0.2 0.8 0.6 0.6 0 0.8 0.6 0.6 0.6 0.2 0.2 0.2 0.2 0.2 0.4 0.6

N10 0.2 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0.6 0.4 0.2 0.8 0.2 0.2 0.4 0.4 0.4 0.4 0 0.4 0.4 0.8 0.2 0.2 0.2 0.2 0.2 0.4 0.6

N11 0.4 0.4 0.2 0.4 0.4 0.2 0.2 0.4 0.2 0.2 0.2 0.4 0.2 0.4 0.6 0.4 0.4 0.6 0.4 0 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4

G1 0.4 0.2 0.4 0.2 0.2 0.2 0.6 0.2 0.4 0.8 0.4 0.6 0.4 0.6 0.2 0.4 0.4 0.4 0.4 0.2 0 0.8 0.2 0.2 0.2 0.2 0.2 0.4 0.2

G2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0 0.2 0.2 0.2 0.2 0.2 0.4 0.4

G3 0.2 0 0 0.2 0 0 0.8 0.2 0.2 0.2 0 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0 0.6 0.6 0.2 0.6 0.4 0.2

G4 0.2 0 0 0 0 0.2 0.2 0 0.2 0.2 0.2 0 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.6 0 0.6 0.2 0.6 0.4 0.2

G5 0.2 0.2 0.2 0.2 0.2 0.2 0 0 0.2 0.2 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.8 0 0.2 0.8 0.6 0.2

G6 0.2 0.2 0.2 0 0 0.2 0 0 0.4 0.4 0.6 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.2 0.2 0 0.2 0.2 0.2

G7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.6 0.6 0.2 0 0.6 0.2

G8 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.2 0.2 0.4 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.6 0.4 0.4 0.4 0.2 0.4 0 0.2

G9 0 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0 0.2 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0 0.2 0.2 0

ID I1 I2 I3 I4 I5 I6 I7 I8 I9 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 G1 G2 G3 G4 G5 G6 G7 G8 G9

I1 -0.273 0.182 0.304 0.228 0.189 -0.030 -0.274 0.168 -0.082 0.081 -0.075 0.245 0.203 0.015 0.018 -0.034 -0.227 0.086 0.049 0.091 0.064 -0.028 -0.647 -0.798 -0.679 -0.207 -0.779 -0.420 0.216

I2 0.367 -0.777 -0.185 -0.440 -0.549 -0.169 0.234 -0.225 0.248 0.507 0.314 0.237 0.494 0.303 -0.512 -0.345 -0.197 -0.429 -0.345 -0.279 0.341 0.531 0.279 0.130 0.090 0.574 0.166 -0.165 -0.366

I3 0.327 -0.031 -0.237 -0.152 -0.234 -0.276 0.058 -0.046 0.164 0.461 0.091 0.406 0.583 0.230 -0.378 -0.236 -0.301 -0.317 -0.261 -0.255 0.371 0.502 -0.231 -0.471 -0.425 0.283 -0.430 -0.214 -0.222

I4 0.274 0.062 0.302 -0.314 -0.074 -0.146 -0.009 0.028 0.084 0.337 0.109 0.336 0.538 0.215 -0.240 -0.225 -0.287 -0.190 -0.222 -0.227 0.336 0.275 -0.441 -0.660 -0.585 0.153 -0.626 -0.325 -0.081

I5 0.478 0.113 0.192 0.241 -0.365 0.328 0.046 0.191 0.251 0.357 0.396 0.169 0.458 0.178 -0.336 -0.371 -0.351 -0.384 -0.398 -0.212 0.064 -0.070 -0.485 -0.641 -0.575 0.171 -0.575 -0.395 -0.225

I6 0.284 0.181 0.197 0.427 0.330 0.212 -0.139 0.226 0.148 -0.108 0.374 -0.261 -0.026 -0.065 -0.095 -0.215 -0.237 -0.151 -0.241 0.069 -0.369 -0.539 -0.386 -0.314 -0.263 -0.062 -0.274 -0.154 0.016

I7 0.347 0.343 0.383 0.567 0.498 0.258 -0.487 0.427 -0.028 -0.075 0.065 -0.027 0.066 0.013 -0.007 -0.161 -0.221 -0.050 -0.066 0.011 -0.224 -0.456 -0.766 -0.817 -0.784 -0.293 -0.763 -0.432 0.087

I8 0.397 0.027 0.123 -0.156 -0.258 0.058 0.126 -0.227 0.325 0.588 0.350 0.446 0.638 0.306 -0.552 -0.402 -0.310 -0.497 -0.314 -0.318 0.383 0.416 -0.250 -0.523 -0.479 0.364 -0.357 -0.322 -0.177

I9 0.317 0.305 0.330 0.579 0.468 0.392 -0.067 0.305 -0.445 -0.243 -0.018 -0.321 -0.095 -0.013 -0.049 -0.218 -0.209 -0.116 -0.204 0.043 -0.398 -0.593 -0.420 -0.311 -0.269 -0.176 -0.267 -0.241 0.012

N1 -0.489 0.027 -0.131 0.083 0.135 -0.184 -0.108 -0.006 -0.495 -1.165 -0.537 -0.482 -0.857 -0.321 0.398 0.295 0.208 0.328 0.294 0.142 -0.405 -0.477 0.380 0.701 0.635 -0.489 0.650 0.441 0.067

N2 0.013 0.284 0.195 0.544 0.514 0.707 -0.196 0.334 -0.138 -0.549 -0.355 -0.604 -0.600 -0.266 0.195 -0.020 -0.123 0.085 -0.014 0.140 -0.686 -0.885 -0.244 0.032 0.050 -0.347 0.050 0.095 0.059

N3 -0.772 -0.274 -0.500 -0.343 -0.173 -0.292 -0.029 -0.246 -0.354 -0.516 -0.480 -0.840 -0.750 -0.395 0.372 0.374 0.351 0.309 0.378 0.151 -0.333 -0.113 0.969 1.050 0.937 -0.192 0.973 0.553 0.149

N4 -0.254 0.099 -0.037 0.187 0.231 0.150 -0.239 0.135 -0.224 -0.450 -0.167 -0.443 -0.785 -0.368 0.258 0.126 0.048 0.169 0.123 0.138 -0.567 -0.436 0.146 0.382 0.366 -0.195 0.367 0.173 0.089

N5 0.032 0.193 0.179 0.218 0.238 -0.074 -0.103 0.176 -0.370 -0.490 -0.447 -0.388 -0.424 -0.517 0.166 0.081 -0.037 0.145 0.108 0.028 -0.149 -0.308 -0.051 0.170 0.163 -0.443 0.171 0.177 0.000

N6 -0.304 -0.715 -0.685 -1.058 -0.992 -0.710 0.232 -0.946 0.127 0.428 0.074 0.279 0.337 0.178 -0.680 0.157 0.323 -0.064 -0.129 -0.169 0.535 0.848 0.902 0.812 0.696 0.581 0.653 0.302 -0.365

N7 0.086 -0.421 -0.313 -0.617 -0.656 -0.436 0.231 -0.550 0.184 0.402 0.153 0.161 0.390 0.231 -0.288 -0.486 0.027 -0.193 -0.285 -0.243 0.400 0.607 0.408 0.325 0.263 0.446 0.292 0.138 -0.397

N8 0.052 0.028 -0.044 0.016 0.018 -0.074 0.065 -0.006 0.013 0.057 0.034 0.114 0.131 0.040 -0.046 -0.127 -0.303 -0.046 -0.022 -0.014 0.017 -0.165 -0.208 -0.281 -0.257 -0.015 -0.276 -0.173 -0.027

N9 -0.280 -0.712 -0.710 -0.873 -0.849 -0.529 0.432 -0.887 0.174 0.296 0.098 0.066 0.235 0.035 -0.192 0.023 0.418 -0.554 -0.144 -0.186 0.372 0.751 0.970 0.971 0.815 0.609 0.884 0.378 -0.398

N10 -0.505 -0.429 -0.581 -0.533 -0.347 -0.193 0.126 -0.444 0.013 -0.220 -0.229 -0.138 -0.364 -0.244 0.068 0.156 0.374 0.041 -0.263 0.016 -0.150 0.234 0.852 0.998 0.873 0.121 0.934 0.481 -0.005

N11 -0.118 -0.565 -0.618 -0.846 -0.824 -0.598 0.272 -0.626 0.100 0.323 0.027 0.231 0.350 0.182 -0.202 -0.004 0.284 -0.095 -0.166 -0.480 0.462 0.769 0.787 0.703 0.595 0.571 0.650 0.174 -0.333

G1 -0.386 -0.015 -0.089 0.072 0.147 -0.122 0.036 -0.003 -0.433 -0.588 -0.468 -0.538 -0.734 -0.293 0.283 0.248 0.237 0.274 0.235 0.051 -0.830 -0.352 0.352 0.687 0.607 -0.457 0.651 0.460 -0.039

G2 -0.257 0.019 -0.066 0.065 0.114 0.062 -0.061 0.062 -0.161 -0.349 -0.150 -0.323 -0.438 -0.236 0.132 0.079 0.073 0.080 0.061 0.029 -0.227 -0.606 0.175 0.364 0.331 -0.215 0.356 0.261 0.077

G3 0.048 0.289 0.297 0.377 0.357 0.075 -0.111 0.458 0.002 0.047 -0.052 0.251 0.144 -0.001 0.083 -0.010 -0.197 0.065 0.142 0.086 0.056 -0.243 -1.260 -1.058 -0.928 -0.295 -1.012 -0.604 0.265

G4 -0.096 0.205 0.158 0.211 0.303 0.221 -0.352 0.260 -0.017 -0.079 0.012 0.095 -0.051 -0.083 0.181 0.090 -0.093 0.151 0.194 0.173 -0.054 -0.385 -0.612 -1.060 -0.570 -0.274 -0.675 -0.401 0.264

G5 -0.071 0.236 0.241 0.203 0.270 0.178 -0.463 0.251 0.027 0.064 0.067 0.292 0.109 -0.044 0.061 0.007 -0.213 0.036 0.118 0.076 0.055 -0.185 -0.687 -0.785 -1.091 -0.181 -0.761 -0.438 0.202

G6 -0.346 0.110 -0.053 0.123 0.203 0.254 -0.312 0.048 -0.178 -0.558 -0.036 -0.569 -0.544 -0.374 0.328 0.186 0.111 0.236 0.172 0.218 -0.608 -0.589 0.226 0.425 0.412 -0.471 0.390 0.192 0.119

G7 0.030 0.228 0.252 0.203 0.234 0.169 -0.301 0.328 0.059 0.122 0.104 0.295 0.181 0.005 -0.028 -0.067 -0.238 -0.046 0.041 0.014 0.073 -0.126 -0.655 -0.840 -0.713 -0.122 -1.170 -0.429 0.140

G8 0.195 0.046 0.128 0.030 -0.014 0.020 0.041 0.007 0.052 0.228 0.109 0.169 0.334 0.109 -0.158 -0.125 -0.135 -0.143 -0.121 -0.161 0.080 0.142 -0.362 -0.490 -0.440 0.077 -0.470 -0.614 -0.150

G9 -0.064 -0.140 -0.136 -0.345 -0.229 -0.137 0.136 -0.104 0.117 0.209 -0.023 0.179 0.142 0.120 -0.156 -0.052 0.050 -0.131 -0.078 -0.086 0.214 0.237 0.140 0.064 0.042 0.117 0.071 -0.043 -0.285
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Table 17. Degree of Dispatching Pi, Positional and Relational Values for Resilience 
                  Indicators Used in the DEMATEL Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Indicator ID Indicator Pi Si + Si -

I1 Civic Participation -2.416 -3.385 -1.447

I2 Educational Attainment -0.171 -1.275 0.933

I3 Low Income Buffer -1.242 -2.346 -0.139

I4 Insurance Coverage -1.603 -2.907 -0.299

I5 Household Economic Security -1.752 -3.066 -0.438

I6 Household Food Security -1.434 -2.319 -0.549

I7 Elderly & Disabled Population Connectivity -2.591 -3.808 -1.374

I8 Emergency Mobility -0.594 -1.505 0.318

I9 Place Attachment -1.924 -2.762 -1.086

N1 Community Involvement - Residential -1.362 -2.246 -0.478

N2 Place Attachment -1.730 -2.392 -1.068

N3 Community Involvement - Business -0.036 -0.998 0.927

N4 Community Identity -0.977 -1.311 -0.644

N5 Political Engagement -1.557 -2.617 -0.498

N6 Income Equity 0.648 -0.729 2.025

N7 Racial Diversity -0.140 -1.417 1.136

N8 Age Equity -1.497 -2.675 -0.319

N9 Occupational Diversity 1.214 -0.186 2.614

N10 Business Size Diversity 0.643 -0.713 1.999

N11 Innovative Potential 1.004 -0.152 2.159

G1 Elected Official Connectivity -1.007 -2.183 0.170

G2 Economic Development Effort -0.750 -1.993 0.492

G3 Extreme Temperature Mitigation Effort -2.730 -3.849 -1.612

G4 Emergency Food Mitigation Effort -2.286 -3.520 -1.051

G5 Gender-Based Emergency Mitigation -2.426 -3.610 -1.242

G6 Government-Maintained Multi-Purpose Space -0.885 -1.254 -0.517

G7 Emergency Health & Medical Mitigation -2.256 -3.433 -1.080

G8 Non-Profit Services Representation -1.617 -3.161 -0.072

G9 Capital Development -0.173 -1.484 1.138
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Figure 19. Causal Diagram of Resilience Indicators Evaluated in DEMATEL Analysis 
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CHAPTER 6. VALIDATION AND DISCUSSION 

 
6.1 Internal Validation: Model Sensitivity to Sub-Index Weighting Scheme 
 
 Although it is at first tempting to interpret the results of the relative community 

resilience analysis as-is, there is reason to believe that these results could be highly 

dependent on the chosen sub-index weighting scheme (Tate 2012).  As noted in Figure 

14, the ‘Environmental’ and ‘Socio-Economic’ sub-indices of the vulnerability index were 

weighted 40% and 60% respectively.  The decision to give higher weight to socio-

economic hazards was guided by the City of St. Louis Hazard Mitigation Plan (EW 

Gateway 2010a) and the City of St. Louis Public Health Department’s publication 

Understanding Our Needs (STL Health Dept. 2012), both of which suggest that adverse 

socio-economic conditions within the City tend to attenuate and magnify the effects of 

extreme events.  Likewise, as noted in Figure 16, the ‘Individual/Household’, 

‘Neighborhood’ and ‘Government/Institution’ sub-indices of the absolute resilience 

index were each given a weight of 33%.  Less guidance was available in local expert 

reporting for ranking relative importance of community protections against disaster at 

the micro/meso/macro levels as represented by these three resilience sub-indices; a 

balanced weighting scheme was therefore applied.  However, it is reasonable that local 

emergency managers in St. Louis may opt for different weighting schemes in either the 

vulnerability or resilience indices, and it is therefore important to explore the 

consequences of alternative weighting scenarios. 
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 The questions most relevant to disaster mitigation as it relates to sub-index 

weighting are: ‘How do the higher risk classifications of neighborhoods change when 

different weighting schemes are applied to each index?’ and ‘Are there neighborhoods 

that consistently remain in higher risk classifications even when different weighting 

schemes are applied?’  To further explore these questions, the final relative resilience 

categorizations were recalculated using nine reasonable combinations of alternative 

weighting schemes for each sub-index of the vulnerability and absolute resilience 

indices.  These weighting schemes are listed below in Table 18, with the original 

baseline weighting scheme shown as reference.  

 

Table 18. Baseline and Alternative Weighting Schemes Used In Sensitivity Analysis 

 

 

During category recalculation, any changes to the high-risk categories were 

recorded, with attention paid to neighborhoods which remain in these high-risk 

categories across weighting scenarios.  Table 19 below depicts changes to the high-risk 

categories due to alternative weighting schemes, indicating the neighborhoods which 

moved into or dropped out of these categories. 

 

Baseline Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 Alt 7 Alt 8 Alt 9

Environmental 40% 40% 40% 40% 50% 50% 50% 60% 60% 60%

Socio-Economic 60% 60% 60% 60% 50% 50% 50% 40% 40% 40%

Individual/Household 33% 30% 40% 30% 40% 30% 30% 40% 30% 30%

Neightborhood 33% 40% 30% 30% 30% 40% 30% 30% 40% 30%

Government/Institution 33% 30% 30% 40% 30% 30% 40% 30% 30% 40%

Vulnerability 

Sub-Indices

Resilience    

Sub-Indices

Baseline and Alternative Sub-Index Weighting Schemes 
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Table 19. Changes to High-Risk Neighborhood Categorizations Due to Alternative 
           Weighting Schemes 
 

 

The categorizations of four neighborhoods changed consistently (more than half 

of the time) across weighting schemes.  These particular neighborhoods have 

vulnerability and resilience scores which are very near the chosen information class 

boundaries (standard deviation breaks), and therefore their risk categorizations are 

highly sensitive to the choice of weighting scheme.24  Choosing alternative weighting 

schemes Alt 4 through Alt 9 results in neighborhood #61 (Carr Square) dropping from 

the ‘Very High’ to ‘High’ risk classification.  Those same schemes also result in 

neighborhoods #74 (Baden) and #55 (Kingsway East) dropping from the ‘High’ to 

‘Medium’ risk classification.  Importantly, more than half of the alternative weighting 

schemes result in neighborhood #33 (Peabody-Darst-Webbe) raising from the ‘Medium’ 

to the ‘High’ risk classification. 

Although the low instances of neighborhoods changing classifications due to 

alternative weighting suggests an acceptably low amount of classification uncertainty in 

the model, it is still necessary to decide how to represent the few neighborhoods 

                                                      
24

 When an object to be classified falls close to, or directly on top of, a discrete information class 
boundary, the object can be said to have a highly uncertain classification. This uncertainty may be 
addressed using a fuzzy classification system with non-discrete information class boundaries (Zadeh 
1976).     

Alt 1 Alt 2 Alt 3 Alt 4 Alt 5 Alt 6 Alt 7 Alt 8 Alt 9

↓
Dropped From 

'Very High' to 'High'
− − − 61 61 61, 62 61, 71 61 61, 62, 71

↓

Dropped From 

'High' to 'Medium' 

or Lower

− 74 − 74, 55 55 −
74, 55, 72, 

60

74, 55, 72, 

60

74, 55, 72, 

60, 59

↑
Raised From 

'Medium' to 'High'
− 33 − 33 33 33 − 33 33

Alternative Weighting Schemes
Type of Categorization 

Change
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identified as having greater sensitivity to weighting schemes.  If left unchanged, the 

relative resilience/risk categorizations (as rendered in Figure 18), which use the baseline 

weighting scheme, would over-represent the risk in Baden, Carr Square and Kingsway 

East; it would also mask the elevated risk in Peabody-Darst-Webbe.  A map which uses 

banded colors to portray the uncertainty of classification in these neighborhoods may 

suffice to communicate this important information to decision makers (see Figure 20). 

The most important mitigation information for St. Louis emergency managers to 

be gleaned from the above sensitivity analysis is the list of neighborhoods which remain 

within the same high-risk classifications despite variations in sub-index weighting.  

These are the neighborhoods which can be described with greater certainty as being 

threatened with particularly high levels of various hazards while possessing particularly 

low levels of resilient characteristics. For example, no matter what weighting scheme 

was applied, neighborhood #2 (Patch) and #75 (Riverview) were classified as ‘Very High’; 

likewise, only two alternate weighting scheme choices challenged the ‘Very High’ risk 

classification for neighborhoods #71 (Mark Twain) and #62 (Columbus Square).  Seven 

out of nine neighborhoods originally classified as ‘High’ risk were similarly classified in 

that category across alternative weighting schemes: #19 (Gravois Park), #17 (Mount 

Pleasant), #72 (Walnut Park East), #18 (Marine Villa), #60 (St. Louis Place), #37 

(Midtown) and #64 (Near North Riverfront).  Although this sensitivity analysis can help 

highlight the neighborhoods which should be given high priority in disaster mitigation 

strategies, information about which resilience characteristics should  
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Figure 20. Example Fuzzy Representation of Neighborhoods With Uncertain Relative  
                  Resilience Classifications  
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be targeted with such strategies is derived separately in analysis of DEMATEL results 

(see Section 6.4).        

While the internal validity of the proposed community resilience model is judged 

to be acceptable in terms of the above sensitivity analysis of sub-index weighting, the 

effect of individual variable weighting also contributes significantly to model uncertainty 

(Tate 2012).  Though beyond the scope of this study, important information about the 

effects of alternative variable weighting may be uncovered through a Monte Carlo 

simulation.  However, because additional methodological scrutiny was given to variable 

weighting through the proposed knowledge-based AHP weighting system, it is argued 

that model sensitivity has been sufficiently addressed.         

 
 
6.2 External Validation: Model Correlation to Observed Disaster Resilience 
 

 The additive indices used in this study were comprised of a large and very broad 

set of variables meant to represent most of the vulnerable and resilient characteristics 

of populations in the study area.  As such, these indices are expected to capture the 

general sense of a community’s protection against the effects of disaster, which may 

arise from any number of environmental threats modeled.  Indices which attempt to 

construct a general/comprehensive model of disaster resilience may not neatly explain 

how a community responds to a particular extreme environmental event.  An 

assumption that all modelled resilience characteristics come into play during all 

disasters is probably not accurate, because communities may respond in very specific 

ways, and by limited means, after an extreme event.  The error of this assumption is 
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compounded by the fact that resilience and vulnerability variables in this study 

represent processes which operate on a variety of complex and dynamic spatial and 

temporal scales.  However, traditional statistical correlation analysis requires this 

assumption when using the totality of the index to explain a dataset representing 

observed resilience, even if that resilience could be better explained by a handful of 

variables relevant to a specific extreme event.  Even if strong statistical correlation is not 

expected, there is still pertinent information to be gleaned from a spatial comparison of 

modelled community resilience with datasets which show how communities interact in 

the face of different types of extreme events.   

6.2.1 Case #1: Extreme Heat-Related Fatalities 

One study-area wide dataset representing St. Louis neighborhood interaction 

with a slow-onset environmental hazard is a geocoded set of addresses where 18 heat-

related fatalities occurred within St. Louis City during an extreme heat wave and 

accompanying intense drought in summer 2012 (see Figure 21).  Heat-related deaths 

were dispersed throughout the City, with only two (12%) occurring within 

neighborhoods categorized as having ‘High’ or ‘Very High’ relative resilience. Sixteen 

(88%) of heat-related deaths occurred in neighborhoods categorized as having 

‘Medium’, ‘Low’ or ‘Very Low’ relative resilience.  This suggests that the resilience model 

utilized in this thesis has captured qualities and processes in high-resilience 

neighborhoods which protect vulnerable populations from extreme heat.  However, 

heat deaths did not all cluster within neighborhoods identified as having the lowest  
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Figure 21. Resilience Model Validation With Heat Death Data 
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categories of resilience – the vast majority occurred in ‘Medium’ resilience 

neighborhoods.  This demonstrates that locations of deaths from extreme heat waves 

may involve more factors than simply highest overall risk.  The fact that all of the 

deceased were over the age of 50 suggests that specific factors such as age and health 

may have also accounted for the location of the death.         

6.2.2 Case #2: Population Loss Due to Economic Shocks 

An important part of the definition of disaster used in this study as it relates to 

human social systems involves how an extreme environmental may overwhelm a 

population’s coping mechanisms, push a social system into an unfavorable state, and 

lead to some peoples’ decision to move elsewhere.  While severe, fast-onset natural 

disasters such as a tornado’s destruction of a city certainly have the potential to 

instigate such change, it is also important to consider slower-onset extreme events 

operating on longer time-scales, such as sudden economic shocks.  The global financial 

crisis of 2008 caused such a shock for consumer finances and household balance sheets, 

precipitating a national mean household wealth decline of 15% and a median household 

wealth decline of 39% (Federal Reserve Bank of St. Louis, 2013).  In St. Louis, the loss of 

financial security for households due to economic downturn probably contributed to the 

observed sharp drop in population experienced by the city in the years immediately 

following the crisis.25  The effect of this sudden population decline may have been 

                                                      
25

 The nature of the financial crisis’ effects on St. Louis has not been studied. However, it is assumed here 
that many St. Louisans experienced foreclosure and loss of jobs, and that socioeconomic conditions in the 
City were worsened in general by the attenuating negative effects of the economic downturn. 
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pronounced since it came on the heels of a hopeful period of post-millennial population 

growth after more than 30 years of steady decline (see Figure 22).  However, it is 

expected that some neighborhoods within St. Louis weathered the financial crisis better 

than others, and that the indicators of resilience included in this study may have helped 

insulate these neighborhoods from the socioeconomic stressors instigating sharp 

population decline.    

Figure 22. Abrupt Population Loss in St. Louis Following 2008 Financial Crisis 

    

To test this hypothesis, geographically weighted regression was conducted to 

evaluate how well St. Louis neighborhood population change - as calculated from ACS 

2011 and ACS 2012 5-year population estimates – can be explained by neighborhood 

relative resilience scores.  The spatial variable for geographic weighting was a fixed  
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Figure 23. Resilience Model Validation With Post-Economic Shock Population Change 
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kernel at 6279 meters. In order to use a continuous variable for relative resilience 

instead of categories, it was decided to use the difference between each 

neighborhood’s raw vulnerability and absolute resilience index score (Vulnerability 

Score – Resilience Score = Relative Resilience Score).  Both the independent and 

dependent variables are somewhat imprecise for the phenomenon under study.  For 

example, the ACS 2011 figure is a single estimate for years 2006-2010 while ACS 2012 

estimates for years 2007-2011; therefore the dependent variable includes some 

population change which occurred before the financial crisis.  Also, as discussed earlier 

in the rationale for using a semantic, category-based approach for vulnerability and 

absolute resilience index comparison, using raw scores for comparison/quantification is 

unwise since the separate indices are not in the same scale.  Nonetheless, results of 

regression (shown in Figure 23) indicate a significant correlation, with an r2 coefficient of 

.2016.  Although the amount of variation explained by the regression is very low (and 

expected, since it is assumed population change and relative resilience have a non-

linear relationship), there is interesting spatial variability in the amount of observed 

versus expected population change, with the central business corridor including 

Downtown, Downtown West and Midtown experiencing much higher growth vis-à-vis 

their relative resilience scores.  This may suggest that the more numerous or higher-

paying job opportunities in these central business district areas acted as a strong buffer 

to population decline.  Higher-than expected population loss clusters in areas of North 

and South City, with most neighborhoods identified as having low relative resilience also 

experiencing higher-than-predicited population decline.  This may suggest that negative 
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socioeconomic feedbacks associated with the economic downturn were intensified in 

areas lacking the indicators of resilience in the chosen model.   

6.2.3 Case #3. Resident Requests for Government Assistance after Windstorms 

Some of the clearest evidence for a lack of (or an overwhelming of) household- 

and community-level disaster resilience can be derived from data on household 

requests for government financial and/or labor assistance following an extreme event.  

A notable recent example of this occurred during the winter and early spring of 2011, 

when a series of unseasonably powerful windstorms affected large portions of north St. 

Louis, including an EF-0 strength tornado which occurred on New Year’s Eve 2010 (St. 

Louis Post-Dispatch 2010).  Between January and March 2011, 175 households made 

telephone requests to St. Louis City Emergency Management Agency for various disaster 

recovery-related services, including financial assistance for the repair or replacement of 

damaged property, and for labor assistance to clean up personal property or repair roof 

damage (STL Citizens Service Bureau 2013).  According to St. Louis City records, most of 

these callers cited lack of insurance as the reason for the request, though some cited 

health-related issues which prevented them from making repairs themselves, or lack of 

family contacts willing to help (STL Citizen Service Bureau 2013).  

 Even though the act of requesting disaster assistance from a municipal 

government can be viewed as a type of resilient action (since it takes advantage of 

government-level response/recovery resources), it suggests that sources of household 

and community level resilience have been overwhelmed.  Also, in this case, there was  

  
 



107 
 

 Figure 24. Resilience Model Validation With Storm-Related Requests For Assistance 
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no program of household disaster assistance, financial or otherwise, offered by the City 

of St. Louis; the requests were eventually routed from the City Emergency Management 

Agency office to a local non-profit disaster relief agency, Americorps St. Louis, which 

provided free roof tarping and cleanup services. 

Because the 2011 windstorms affected relatively few neighborhoods in North St. 

Louis, geographically weighted regression was not performed to correlate neighborhood 

relative resilience scores with number of requests for assistance per neighborhood.  

However, a point density layer representing concentration of requests for assistance per 

square kilometer was created, as shown in Figure 24 above. The density surface was 

classified in 5 colors representing increases of 10 requests per square kilometer.  As in 

the occurrences of heat deaths shown in Figure 21, the important information for 

emergency managers rendered in Figure 24 of disaster assistance requests is that, while 

households in high-resilience neighborhoods (such as Central West End) are not likely to 

request government assistance, the requests which do occur may not simply cluster in 

neighborhoods identified as having the lowest resilience. 

 

6.3 Model Correction for Validation Results 

 In fact, the external validation conducted here with three case study datasets 

demonstrates that the original choice of categorization of neighborhood resilience may 

have misrepresented the elevated risk in some of the neighborhoods categorized as 

having ‘Medium’ relative resilience.  This can be remedied simply by reassigning relative 

resilience categories so that less neighborhoods fall under the ‘Medium’ category (see 
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Figure 25).  Only neighborhoods on the diagonal retain a ‘Medium’ (yellow) 

classification, while neighborhoods in the row above are reclassified as ‘Low’ (orange) 

and those below are reclassified ‘High’ (light blue).  

  
 
 
 
 
 
 
 

Figure 25. Reclassification of Original Relative Resilience Categories 
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Figure 26. Reclassified Relative Resilience Categories with Fewer ‘Medium’  
                   Neighborhood Categorizations 
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When these new categories are visualized (see Figure 26 above), better 

agreement with the validation datasets can be observed. Also, the reclassification 

requires neighborhoods in the new ‘Medium’ category to have matching vulnerability 

and absolute resilience classifications, which is in line with the assumption that a certain 

level of resilience may ‘cancel out’ the same level of vulnerability.  However, the re-

categorized relative resilience classification trades better information about ‘Medium’ 

resilience neighborhoods for a substantially larger set of ‘Low’ resilience neighborhoods 

for emergency managers to more closely monitor.  In fact, the original categorization of 

the lower resilience neighborhoods encompassed a population of 44,175 in 14 

neighborhoods, equivalent to 14% of the total St. Louis population – a reasonable 

amount of people for whom to plan mitigation strategies and emergency response 

policies.  The new categorization, on the other hand, encompasses 117,143 people in 32 

neighborhoods, equivalent to 37% of the total city population.  Nonetheless, it is 

probably better to choose a representation which correlates better with observed levels 

of disaster resilience, as represented by the validation datasets presented.    

6.4 Spatial Patterns of High and Low Resilience in St. Louis 

Whatever the choice of parameterization and representation decided in the 

validation stage, there is clear spatial clustering of high and low relative resilience in St. 

Louis neighborhoods.  This was expected, since many of the indicators used in this study 

had similarly clustered values (see Appendices A and B for maps of all individual 

indicator variables in the vulnerability and absolute resilience indices).  The final 

clustering of high and low resilience neighborhoods also conforms to the narrative of 
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public health officials and resident focus groups reported in St. Louis City Department of 

Health’s publication Understanding Our Needs (STL Health Dept. 2012).  This publication 

describes North St. Louis as an economically depressed area suffering from high crime 

and the effects of outmigration, as opposed to an affluent west and southwest section 

of the city with wealthier households and less socioeconomic stressors.  

Statistically significant groupings of neighborhoods with the same relative 

resilience category can be identified by using the Local Moran’s I statistic, which  

 
Figure 27. Significant Clustering of High and Low Relative Resilience Neighborhoods 

 

assesses categories of surrounding neighborhoods and their defined weights (in this 

case, neighborhoods were weighted using their 2011 population) to evaluate clustering 

of high and low resilience neighborhoods.  This statistic also identifies neighborhoods 

surrounded with significantly different categories of resilience.  Results (see Figure 27) 

indicate that much of the Southwest portion of the city had significant instances of high-
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resilience neighborhoods being surrounded by other high-resilience neighborhoods.  

The opposite trend can be observed in the northern part of the city, with significant 

instances of low-resilience neighborhoods surrounded by other low resilience 

neighborhoods.  Interestingly, there are two neighborhoods in North St. Louis identified 

as having particularly high levels of resilience compared to their neighbors.  This finding 

may suggest the existence of a combination of important resilience-boosting processes 

unique to these neighborhoods, and/or points to these neighborhoods being less 

affected by negative influences from surrounding areas.  The notion that the levels of 

resilience in a particular neighborhood may influence those of surrounding 

neighborhoods will be discussed in the next section. 

 

6.5 Autocorrelation and Spatial Influence of Neighborhood Resilience 

 So far this chapter has mostly discussed the results of the relative resilience 

calculation in terms of each neighborhood’s discrete resilience classification, not in 

terms of how the spatial characteristics of each neighborhood might influence the level 

of resilience in others.  Likewise, the apportionment of variable data and calculation of 

raw neighborhood scores for vulnerability and absolute resilience, as well as the final 

categorization of relative resilience, operated on the assumption that each 

neighborhood’s combined attributes do not exert any influence on their neighbors.  

 However, as components of complex, multi-scale social systems, neighborhoods 

can be assumed both to exert influence on and receive influence from surrounding 
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neighborhoods.26  These influence/feedback relations would be very difficult to model 

based on a single, ‘snapshot’ studies of resilience using temporally-limited data; as in 

the modelling of physical systems, it would be better to study the mechanics of how 

socioeconomic relations change through time, in order to arrive at an empirically-based 

model of how these feedback relations ‘work’ in the real world.  However, even without 

longitudinal data, observed spatial characteristics of neighborhoods, as measured by 

various spatial clustering and geographic weighting statistics, can be used to further 

modify the relative resilience model.  

Spatial statistics, many of which were developed in line with Tobler’s Law that 

‘things near each other are more alike than things far apart’, might be used to model 

how the spatial attributes of communities influence their neighbors.  For example, it 

may be correct to assume that a positive feedback relationship exists between adjacent 

neighborhoods with similarly high levels of resilience, such that both neighborhoods’ 

resilience is mutually sustained or even magnified by this connection.  An opposite, 

negative feedback relationship may exist between adjacent neighborhoods of low levels 

of resilience.  The strength of this feedback may depend on a number of factors, such as 

the neighborhoods’ population, the distance between neighborhood centroids, the 

amount of time each has had strong positive or negative resilience attributes, or the size 

of the cluster of neighborhoods with similar levels of resilience, etc.  Factors such as 

neighborhood relationships and contiguity can be modeled  as a spatial weights matrix, 

                                                      
26

 These influence relationship, of course, are not limited to immediately bordering neighborhoods; they 
should be assumed to radiate out with diminishing strength according to distance and the types of 
dependencies and feedback relations on much broader spatial scales.    
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which is similar to a digraph in that it estimates the strength of the spatial relationship 

between neighborhood i and all other neighborhoods j that are within a specified spatial 

relationship with each other, (i.e. based on centroid distance or edge contiguity, etc.).  A 

spatial weights matrix can be easily rendered as a 3-column table showing the 

quantified distance- and/or contiguity-related weight between an ‘origin’ neighborhood 

and its ‘destination’ neighborhoods, with the weights quantified as the inverse of the 

number of neighbors(see Table 20 for part of the spatial weights matrix computed for 

St. Louis neighborhoods, which shows weights for contiguous neighbors for 

neighborhoods #1-5).   

Table 20. Spatial Weights Matrix Computed for Neighborhoods #1-5 

 
 

NOTE: Only contiguous neighborhoods were considered in this weights 
matrix (For example, #2 Patch has only one contiguous neighborhood, #1 Carondelet) 

 

ORIGIN 

Neighborhood #

DESTINATION 

Neighborhood #
WEIGHT

1 2 0.20

1 3 0.20

1 4 0.20

1 16 0.20

1 17 0.20

2 1 1.00

3 1 0.25

3 4 0.25

3 5 0.25

3 16 0.25

4 1 0.25

4 3 0.25

4 5 0.25

4 6 0.25

5 3 0.17

5 4 0.17

5 7 0.17

5 6 0.17

5 15 0.17

5 16 0.17
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Suppose the spatial weights matrix shows ‘origin-destination weights’ W1 based 

solely on spatial (distance and contiguity) characteristics, but that these might be 

further modified to reflect the relative magnitude of origin-destination neighborhood 

influence based on the population of those neighborhoods.27 A ‘population weight’ field 

Wp was already calculated for neighborhoods for use in the Local Moran’s I analysis 

above (Figure 27), by dividing neighborhood population by the total St. Louis 

population. The population weights Wp for origin neighborhoods Ni can be appended to 

the spatial weights matrix. The inverse of W1 can then be multiplied by the inverse of 

the newly appended population weights Wp.  This results in a new ‘distance/population 

weight’ W2 for all NiNj which has been scaled based on the Origin neighborhood’s 

population.  Normalizing W2 by dividing each value by the highest weight results in a 

‘normalized distance/population’ weight Wn. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
27

 The following discussion of the new spatial influence measurement method includes notation for each 
referenced element for the sake of clarity. 
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Table 21.  Normalized Distance/Population Weights WN Calculated for Selected 
           Neighborhoods 
 

 

WN represents the strength of the influence that Ni exerts on each Nj, based on 

population and spatial characteristics but not the type/magnitude of resilience influence 

(positive or negative resilience); a value for Ni’s relative resilience category will provide 

this, if it shows a positive value for the higher resilience or a negative value for lower 

ones.  Relative resilience category values were already assigned positive/negative values 

for the purposes of color mapping, with ‘Very Low’= -2.0, ‘Low’= -1.0, ‘Medium’= 0.0, 

‘High’= 1.0 and ‘Very High’= 2.0.  When these category numbers are appended to the 

table for each origin neighborhood Ni, they can be multiplied by the normalized 

distance/population weights WN, resulting in a set of directed resilience influences RI-j 

for all NiNj.  

 

ORIGIN N i 

Neighborhood #

DESTINATION N j 

Neighborhood #

O-D Distance 

Weight W 1

ORIGIN 

Neighborhood 

Population 

Weight W p

O-D Distance / 

Population Weight W 2

Normalized Distance / 

Population Weight W N

1 2 0.20 0.0289 6.922202604 0.0040388

1 3 0.20 0.0289 6.922202604 0.0040388

1 4 0.20 0.0289 6.922202604 0.0040388

1 16 0.20 0.0289 6.922202604 0.0040388

1 17 0.20 0.0289 6.922202604 0.0040388

2 1 1.00 0.0086 116.8137803 0.0681564

3 1 0.25 0.0111 22.51256101 0.0131352

3 4 0.25 0.0111 22.51256101 0.0131352

3 5 0.25 0.0111 22.51256101 0.0131352

3 16 0.25 0.0111 22.51256101 0.0131352

4 1 0.25 0.0285 8.76103352 0.0051117

4 3 0.25 0.0285 8.76103352 0.0051117

4 5 0.25 0.0285 8.76103352 0.0051117

4 6 0.25 0.0285 8.76103352 0.0051117

5 3 0.17 0.0362 4.603220031 0.0026858

5 4 0.17 0.0362 4.603220031 0.0026858

5 7 0.17 0.0362 4.603220031 0.0026858

5 6 0.17 0.0362 4.603220031 0.0026858

5 15 0.17 0.0362 4.603220031 0.0026858

5 16 0.17 0.0362 4.603220031 0.0026858
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Table 22. Directed Resilience Influences RI-j Calculated for Selected Neighborhoods 

 

Summarizing the table by adding all Ri-j values for each Destination 

neighborhood Nj results in a total incoming resilience influence TIR for each 

neighborhood, representing the aggregate positive or negative resilience influences 

directed at that neighborhood by all other neighborhoods (subject to the imposed 

contiguity rule).  If a neighborhood has a positive TIR value, it indicates that more 

bordering neighborhoods have high (positive) relative resilience.  A positive TIR 

neighborhood can be said to benefit from a positive resilience feedback from its spatial 

relationship with its neighbors, and this effect is magnified if bordering neighborhoods 

have higher populations.  The opposite is true for a neighborhood with negative TIR 

values - It can be said to suffer from a negative resilience feedback given its close spatial 

ORIGIN N i 

Neighborhood #

DESTINATION N j 

Neighborhood #

Normalized Distance / 

Population Weight W N

N i Relative 

Resilience 

Category Number

Directed 

Resilience 

Influence Ri-j

1 2 0.0040388 0 0

1 3 0.0040388 0 0

1 4 0.0040388 0 0

1 16 0.0040388 0 0

1 17 0.0040388 0 0

2 1 0.0681564 -2 -0.136312849

3 1 0.0131352 0 0

3 4 0.0131352 0 0

3 5 0.0131352 0 0

3 16 0.0131352 0 0

4 1 0.0051117 1 0.005111732

4 3 0.0051117 1 0.005111732

4 5 0.0051117 1 0.005111732

4 6 0.0051117 1 0.005111732

5 3 0.0026858 0 0

5 4 0.0026858 0 0

5 7 0.0026858 0 0

5 6 0.0026858 0 0

5 15 0.0026858 0 0

5 16 0.0026858 0 0
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relationship with low-resilience neighborhoods.  Again, this negative feedback can be 

magnified if surrounding low-resilience neighborhoods have high populations.  

If certain neighborhoods have very high or very low TIR scores, it makes sense to 

change their relative resilience category to reflect this new information.  When TIR 

values for St. Louis neighborhoods are graphed, the resulting normal distribution, with 

fewer neighborhoods having very high positive or very low negative TIR  values (see 

Figure 28), suggests that standard deviational categories may again be appropriately 

used to set thresholds of TIR values thus necessitating a relative resilience category 

change.  Using a +1.5 and -1.5 standard deviation threshold as a basis for categorization, 

8 neighborhoods are identified as having very high negative incoming resilience 

influence, and 9 neighborhoods are identified as having very high positive incoming 

resilience influence. 

Figure 28. Distribution and Standard Deviation-Based Categories of Incoming Resilience 
                   Influence TIR  
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  Neighborhoods in the Very High Positive TIR category are bumped up to the next 

higher relative resilience category.  Neighborhoods in the Very Low Negative TIR 

category are bumped down into the next lower relative resilience category.  However, 

the classification of the two neighborhoods identified in the Local Moran’s I analysis as 

having significantly higher relative resilience than their neighbors were not changed, 

since they are assumed to be somewhat insulated from the influence of surrounding 

neighborhoods.  These changes in neighborhood classification are shown in Figure 29, 

and the resulting new relative resilience map with neighborhood population tables is 

shown in Figure 30.  

 
Figure 29. Changes to Relative Resilience Categories after Spatial Influence Analysis 
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Figure 30. Map and Population Tables of Relative Resilience Categories after Spatial 
Influence Analysis 

 
 

 



122 
 

The new categorizations also correlate better with heat death and windstorms 

request-for-assistance validation datasets.  This increased accuracy is expected, because 

the new categorizations are derived from the spatial qualities of the study area as well 

as the attributes of the study units.  Figures 31 and 32 demonstrate the increased 

correlation between modelled and actual resilience in the validation datasets. 

Figure 31. Correlation of Heat Death Data with Corrected Resilience Model 
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Figure 32. Correlation of Windstorm-Related Requests for Assistance with 
                         Corrected Resilience Model 
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6.6 Comparison of Relative Resilience Model with Alternate Index-Based Model 
 
It is expected that the proposed methods for characterizing community-level 

resilience 1) will provide better information on resilience-building qualities and 

processes for the purposes of targeted mitigation (because they account for and explore 

cause-effect relations among resilience variables), and 2) that the results of analysis 

using the proposed model (which relies on a knowledge-based system for index 

construction) will be both significantly different than results of current index-based 

approaches and also explain observed levels of resilience better than these alternate 

methods.  

This first expectation can only be validated by testing whether the results of the 

proposed DEMATEL analysis make sense to emergency managers and community 

leaders in St. Louis, and whether these results can help community stakeholders 

prioritize mitigation efforts. Emergency management officials from the St. Louis City 

Department of Public Safety and community organizers including St. Louis Association of 

Community Organizations (SLACO) have expressed high interest in seeing the results of 

the current analysis; it is hoped that, eventually, the results of this study will prove 

useful for these stakeholders and beneficial for St. Louis neighborhoods. 

The second hypothesis, however, can be tested by conducting an alternative 

resilience analysis using data inputs and index construction methods similar to current 

simple, statistically-corrected additive index approaches.  Such an analysis was 

conducted using a deductive additive index of 17 variables based on Cutter (2008)’s 

BRIC (Baseline Resilience Indicators of Place) model.  Only variables not expected to 
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exhibit significant co-linearity in statistical testing were retained (for example, a variable 

indicating the ‘percent population not in poverty’ was intentionally omitted due to its 

expected similarity with another variable, ‘percent population employed’).  An equal 

weighting scheme was used for all variables, and standard deviation-based resilience 

categories were assigned to neighborhoods based on the distribution of equal-weighted 

index scores. The result of this single index was then rendered on a map for comparison 

to the output of this study’s relative resilience classifications (Figure 33), and tested for 

its ability to uncover statistically-significant groupings of high- and low- resilience 

neighborhoods using Local Moran’s I (Figure 34). 

 

Figure 33. Comparison of the Present Study’s Relative Resilience Classification 
                      and the Alternate Classification     
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Figure 34. Comparison of Statistically-Significant Clustering of Resilience  
       Classifications (Local Anselin Moran’s I) between the Relative 
        Resilience Model and Alternate Model  

 

The resulting spatial distribution of neighborhood resilience classifications in the 

alternate model captures a general characterization of higher resilience in the 

southwest and mid portions of the city, and lower resilience in the northern and 

southern portions. This is expected since the variables used in the alternative analysis 

were mostly representative of individual- or household-level socioeconomic 

characteristics (as is the case in most index-based resilience research – see section 2.4), 

and were likely to reflect the obvious differences in small-scale socioeconomic status 

between certain parts of the City.  However, the map of the alternate model suggests 

that the lowest resilience occurs in the southern portion of the City, which is 

contradicted by both the proposed model and by the expert and lay reporting of the 

severity of community threats contained in Understanding Our Needs (STL Health Dept 

Relative Resilience Model 
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2012). In fact, if government official or community leaders were to rely on statistically 

significant groupings of lower-resilience neighborhoods in the alternate model for 

mitigation targeting, there is a chance the northern portion of the City could be 

overlooked, since there are no such groupings there (Figure 34).   

When validated against the datasets representing observed levels of community 

disaster resilience, the alternate model offers significantly less explanatory power than 

the proposed relative resilience model. In the case of heat death data (2012 heat wave), 

the alternate model over-predicts the resilience level of some neighborhoods (as many 

deaths occurred in neighborhoods characterized by the alternate model as having 

‘Medium’ resilience as with ‘Low’), and the goodness-of-fit of distribution of heat deaths 

per resilience classification does not approach the accuracy of the relative resilience 

model (Figure 35). In the case of resident requests for assistance (2011 windstorms), the 

alternate model makes little distinction in level of resilience of neighborhoods with high 

or low concentrations of requests (the majority of all requests, as well as all the area 

with the highest density of requests, fell in neighborhoods characterized as having 

‘Medium’ resilience in the alternate model – see Figure 36). In the case of population 

change (post-2008 economic shock), there was no significant difference in explanatory 

power between the two models after geographically-weighted regression (relative 

resilience model r2=.20, alternate model r2=.19). 

The above alternative index analysis validates the usefulness of an index 

structured and analyzed based on a local knowledge system (and accounting for spatial  
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Figure 35. Coincidence of Heat Deaths and Resilience Classifications  
                   Between Relative Resilience Model and Alternate Model 

 

Figure 36. Coincidence of Requests for Assistance and Resilience Classifications  
             Between Relative Resilience Model and Alternate Model 
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influences) vis-à-vis an approach favoring internal statistical techniques. This is not to 

suggest such statistical techniques are inapplicable; in fact, they may prove 

complimentary in a resilience analysis.  If, for example, both the knowledge-based 

DEMATEL method and internal statistics identify certain variables as less informative or 

relevant to the study, this creates a strong argument for the omission of such variables. 

The creative integration of data-dependent analysis tools with knowledge-based ones 

may hold promise for uncovering actionable information in datasets representing 

complex social processes.  

                               

6.6 The Case for Resilience Model Validation and Correction 

The above discussion, measurement and correction of the validity of the 

proposed community resilience model was undertaken specifically to improve a model 

which is meant to be as adaptive and malleable as possible.  During the process, issues 

with weighting sensitivity and neighborhood classification were discovered, and 

solutions were implemented in order to present the best information to emergency 

management decision makers.  Also, a new method for quantifying the spatial influence 

among adjacent neighborhoods was developed and utilized to further correct the 

original relative resilience classification.  The relative resilience model was further 

proved to outperform an alternative community resilience model similar to those used 

in current literature. Because such corrections are clearly vital to the utility of the 

model, and would have gone unaddressed if validation were not undertaken, it is 

surprising that most resilience studies skip this important step (Tate 2012; Tate 2013; 
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Wolf et al 2014).  While it is unclear why internal or external validation is not widely 

practiced, the consequences for the intended audience of these studies are clear: 

important information is lost, and the model’s effectiveness is blunted.  For this reason, 

it is recommended that validation of some type is always conducted on index-based 

resilience models.  This process does not need to be thought of as an attempt to 

conclusively validate or invalidate the model, but rather as an attempt to make it better.      

 

6.7 On Which Neighborhoods Should Emergency Managers Focus? 

 As a result of reclassifications to neighborhood relative resilience categories in 

Sections 6.2 and 6.5, there more neighborhoods categorized as having low or very low 

disaster resilience. Ten neighborhoods, with a combined population of 35,896 (11% of 

the city total), are classified ‘very low’.  Twenty three neighborhoods, with a combined 

population of 85,333 (27% of the city total), are classified ‘low’.  However, the increase 

in population and number of neighborhoods identified as high-risk does not necessarily 

translate to a more difficult mitigation task for emergency managers.  The spatial 

characteristics of clusters of high-risk neighborhoods, as well as the spatially influential 

nature of identified resilience characteristics, may actually make mitigation efforts more 

efficient.  This is because the effects of disaster mitigation policy - which may include 

efforts to boost any of the resilience indicators listed in Table 8 by government and 

community leaders – can be expected to attenuate into surrounding neighborhoods due 

to feedback relationships inherent in complex social systems.  Well-chosen mitigation 

tactics (see Section 6.7 for this study’s recommendations) directed at the contiguous 
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cluster of ‘very low’ resilience neighborhoods in North St. Louis may positively affect 

surrounding neighborhoods identified as having ‘low’ resilience.  There is also reason to 

believe that the strong resilience-boosting processes identified in central city 

neighborhoods may positively affect the lower-resilience neighborhoods to the North.  

 Since this study used neighborhood population to help define their spatial 

influence, it makes sense to also recommend that emergency mangers and community 

leaders focus their attention on the higher-population neighborhoods.  Of course, when 

analyzed by population, there may be neighborhoods classified as ‘Low’ or even 

‘Medium’ resilience which deserve attention due to their high population. Such is the 

case in St. Louis for the Dutchtown neighborhood – its population of 14,991 make it by 

far the most populace low-resilience neighborhood, and should be considered for 

mitigation.  To help with the spatial identification of high-population neighborhoods vis-

à-vis their resilience categories, it is useful to create a 3D visualization of St. Louis where 

lower-resilience neighborhoods are extruded vertically by their population (see Figure 

33). 
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Figure 37. Example 3D representation of St. Louis neighborhood population and 
resilience categorization   

 
 

 

6.8 What Community Characteristics Should Emergency Managers Target? 

 Spatial analysis techniques have been used to lessen the uncertainty of which 

neighborhoods should be given priority attention by emergency managers and 

community leaders.  However, without a way to distinguish the relative importance of 

the large set of resilience indicators used in this study, these decision makers would be 

very uncertain as to which of these community qualities and processes to address in 

mitigation efforts.  The results of the earlier DEMATEL analysis provide compelling 

evidence for which indicators are of a more causal and influential nature and, as such, 

are expected to strengthen overall community resilience more efficiently than others. At 

Lower-Resilience Neighborhoods 
Extruded By Population 
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the end of DEMATEL,  the total direct-indirect relationship matrix T (see Section 3.4) is 

used to calculate a position value s+i (which measures how dependent an indicator is on 

the values of other indicators, similar to Pearson’s r) and relation value s-i (which 

measures an indicator’s causal influence on others) for each resilience indicator.  When 

s+i and s-i are plotted on a graph, a quadrant overlay can be used to visually distinguish 

indicator which fall into 4 general categories, as depicted in Figure 19. 

These quadrants and their associated interpretation are:  

1) High Position / High Relation Values – indicators with the highest influence on 
other indicators, and of a causal nature 
2) Low Position / High Relation Values – indicators which exert high influence but 
do not seem to be themselves influenced much (independent variables), and 
also of a causal nature  
3) Low Position / Low Relation Values – indicators which influence others only 
weakly, yet seem to be mostly controlled by other indicators, making them of an 
effect nature  
4) High Position / Low Relation Values - indicators which exert little or no 
influence on others, and seem to be merely effects of other indicators  
 

These quadrants are listed in order of their constituent indicators’ relative 

influential power.  Increases in quadrant 1 indicators (high s-i/highs+i) are expected to 

have the highest positive influence on all other indicators.  This effect may be magnified 

for quadrant 1 indicators because they are also expected to be receptive to positive 

feedback sent out by other influential variables in other quadrants.  Increases in 

quadrant 2 indicators will have the same type of initial influential effect as quadrant 1, 

but because they are more independent from received effects, these indicators 

probably will not benefit from positive feedbacks from others. Increases in quadrant 3 

indicators cannot be expected to have much of a positive effect on other indicators, yet 
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they are receptive to received influence, so they may be boosted by increases to 

indicators in quadrants 1 and 2.  For quadrant 1 indicators, there is little evidence that 

increases to their values would have any effect on other indicators, yet their values are 

also highly dependent on those of other indicators; it can be assumed that quadrant 1 

indicators will change according to the aggregate influence of all others, but will not 

exert any meaningful influence. 

The qualities of the above quadrant intensify toward the outer corners of each 

quadrant (representing more extreme values), and diminish toward the center, so that 

indicators nearer to the midpoint may not significantly demonstrate any of the 

associated qualities.  Based on these characterizations, quadrant 1 indicators should be 

the first choice for targeting in resilience mitigation strategies, since they are highly 

influential, of a causal nature and receptive to feedback. Interestingly, most of the 

indicators in this quadrant included most of the diversity-related, community-level 

characteristics, such as N9-Occupational Diversity, N10-Business Size Diversity, N6-

Income Equity, and N7-Racial Diversity. Other indicators significantly inside quadrant 1 

include N11-Innovative Potential, G9–Institutional Capital Development, N3-Community 

Involvement: Active Neighborhood Business Association, and I2-Educational Attainment.  

There are no indicators that can be identified as of the quadrant 2 type (highly 

independent variables), yet quite a few of the quadrant 3 type (those that exert less 

influential but are receptive to incoming influence).  These indicators are still highly 

relevant to mitigation, yet should be considered secondary to those in quadrants 1 and 

2. Quadrant 3 Indicators nearer to the extreme end include G3-Government Extreme 
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Temperature Mitigation Effort, G4-Government Emergency Food Mitigation Effort, G5-

Government Gender-Based Emergency Mitigation Effort, G7-Institutional Emergency 

Health Mitigation Effort, I1-Civic Participation, and I7-Elderly & Disabled Population 

Connectivity.  There are only two indicators which fall in quadrant 4 (highly dependent, 

not influential) – thankfully so, because these indicators (N4-Community Identity: 

Historic District and G6-Government Maintained Multi-Purpose Space) are not to be 

considered very relevant to disaster mitigation and probably should not be included in 

future research (Hiete et al. 2012).  

The validity of the DEMATEL method is certainly bolstered by the above set of 

quadrant 1 variables, which may rightly be considered true benchmark traits of strong 

and resilient communities.  However, they seem to also be some of the most difficult to 

address and possibly the slowest to respond to improvement efforts.  Yet, from the 

emergency manager’s perspective, it may be encouraging that the most sought-after 

traits for urban residential communities may also be considered crucial protections 

against the effects of extreme events.  This is because a very broad range of municipal 

government policy, institutional attention and community action are already directed at 

improving these particular conditions.  At the government level, a certain amount of 

responsibility for the growth of these indicators is institutionalized across common 

municipal departments such as public health, education, economic development, and 

others.  Therefore, where community resilience is judged to be low, it should not be 

considered the fault of a particular government office or community leader, nor is it the 

responsibility of any one entity to remedy.  In fact, traditional top-down mitigation 
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which relies on government action will probably not be sufficient to address an issue 

such as community resilience, an attribute which is both driven by and the result of 

many interacting, multi-scale processes involving many types of actors, both social and 

environmental.  Resilience is, if nothing else, complex. Attempts to increase resilience at 

the community level will probably only be effective if undertaken and supported equally 

at the different scales complex processes operate (for example, at the household, 

neighborhood, and government level). 

This is not to suggest that government-led mitigation efforts are inherently less 

influential, or that the above DEMATEL analysis of indicators leaves government 

emergency management officials in St. Louis with few options to target.  Even though no 

‘Government’ indicators are present at the extreme end of quadrant 1, there are 

indicators near the center of the graph (variables with uncertain levels of 

influence/dependency but still may be highly relevant to resilience) which are quite 

government-specific, such as G1-Official Ward Association and G2-Government 

Economic Development Effort.  Also, most of quadrant 3, as noted above, contains the 

type of brick-and-mortar emergency relief services which governments are well-suited 

to create, fund, and maintain.         

 
 
6.9 Model Modifications, Alternative Methodologies and Future Directions for 
       Community Resilience Research 
  

The methodologies used in this study were selected in part based on their 

recognized adaptability and customizability, which was necessary since there are no 

complexity-science oriented measurement tools designed to be applied to resilience 
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research, and only a few hints of the applicability of the chosen tools.  With little to help 

guide (and nothing to constrain) this effort, many of the variable choices, index 

structures, tool parameterizations and other methodological choices were based on 

knowledge of the study area, examination of the data, and related examples in the 

literature.  Therefore, there are plenty of opportunities for modification of the proposed 

techniques.  

First and foremost, it must be noted that the spatial unit chosen to represent 

‘community’ in this study was by no means meant to be normative.  Based on a 

combination of the author’s knowledge and local expert reporting of the social 

characteristics of the city of St. Louis, individual city neighborhoods were selected to 

represent communities.  Neighborhoods were primarily chosen because of St. Louis’ 

unique history of neighborhood self-identification, and therefore the reasonable 

expectation that residents within them would come together to solve problems in the 

event of a disaster. However, there are a wide variety of other ways in which a city can 

be partitioned into areal units of analysis, both larger and smaller than city 

neighborhoods, which would fit this definition of ‘community’.  Therefore, it is highly 

encouraged that selection of spatial units in future community resilience research be 

similarly guided by the unique characteristics of the area to be studied, not on any 

universal spatial definition.   

Next, the choices of resilience indicators, while reflective of many multi-scalar 

qualities and processes which make up community resilience, are by no means 

exhaustive.  There are other indicators in the current literature which could have been 
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applied (but were omitted due to data availability), and it is expected that additional 

promising indicators of resilience will continue to be proposed as the academic debate 

evolves.  It is important to also point out that variables which could be chosen to 

represent these indicators are quite diverse, with many other possibilities than those 

chosen here.  Further, an improvement to the indicator/variable selection methodology 

would be to find variables which represent each indicator at the household, 

neighborhood and government scale.  In this thesis, this was accomplished to a limited 

extent (for example, variables related to the ‘Civic Involvement’ and ‘Political 

Engagement’ indicators were found and used for each scale of the resilience index), but 

increased scalar coverage for each indicator would be expected to further strengthen 

the model. 

Though the process of weighting variables and sub-indices received careful 

methodological scrutiny and used a knowledge-based approach for better place-specific 

accuracy, many modifications and improvements could be made to this step.  First, only 

one analyst (the author) contributed the AHP assessment to define vulnerability and 

resilience variable weights.  Commonly, in the business management context that AHP is 

often used, multiple analysts contribute an assessment, and the multiple results are 

averaged together before defining weights (Aczel and Saaty 1983).  It is expected that a 

more diverse fusion of expert judgments of the relative importance of various 

vulnerability and resilience indicators would benefit this type of study.  Undertaken in 

quite a different way than individual variable weighting, sub-index weighting is judged 

to be the most subjective step of the index construction methodology.  Since there are 
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generally few sub-indices used in disaster vulnerability/resilience studies, it may not be 

necessary to utilize a knowledge collation tool such as AHP in order to set these weights; 

however, as Tate (2012) shows, these weighting choices are likely to have the highest 

effect on model output.  While a balanced and somewhat conservative weighting 

scheme was applied to sub-indices (and to the internal sensitivity validation stage), it 

cannot be assumed that local emergency managers or community leaders would always 

choose such an approach.  It would therefore benefit further study to experiment with 

the effect of more extreme sub-index weighting schemes on the model, especially to 

show differences in final community relative resilience classifications for different 

weighting schemes. 

The proposed method to construct separate vulnerability/resilience indices and 

combine them categorically using a confusion matrix is a highly customizable process.  In 

this study, since neighborhood vulnerability and absolute resilience scores were 

normally distributed, grouping these neighborhoods by standard deviational categories 

was viewed as appropriate.  There are, of course, several other parametric and non-

parametric options for defining categories based on the observed distribution of 

vulnerability/absolute resilience scores.  Experimentation with categories based on 

geometric mean, equal interval or natural data breaks (Jenks and Caspall 1971) could 

yield different results which may be more appropriate for other types of observed 

distributions. Different rules for defining categories must be made in the confusion 

matrix, this time for the sake of assigning relative resilience classifications to 

communities.  Again, this is a subjective choice, made in view of the distribution of 
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community vulnerability/absolute resilience category associations and considering the 

information requirements of the intended audience.  As was demonstrated in this 

thesis, the ability of the model to convey information about certain neighborhoods and 

its goodness-of-fit with validation data depends on how relative resilience is classified in 

the confusion matrix.  It is recommended that effects of the chosen relative resilience 

classification scheme be carefully considered in future research. 

Finally, while DEMATEL analysis is judged to be a highly effective tool for 

providing information on indicators likely to be most effective in raising overall 

community resilience, the effectiveness of its implementation depends on the quality of 

its original knowledge-based indicator analysis.  As in AHP weighting, only one 

assessment of variable inter-influence was utilized for the DEMATEL analysis, yet it is 

expected that a collation of multiple, diverse expert and lay opinions be attempted in 

future research.  This is not an easy task, since, in this thesis, a 29×29 matrix had to be 

populated with quantified ij judgments.  If multiple matrices are to be sourced for a 

particular study area, a high level of community buy-in for the study, and perhaps focus 

group sessions, would be necessary.  Nonetheless, without a DEMATEL-like analysis, 

emergency managers and community leaders would be at a loss to subjectively and 

simultaneously prioritize a very large and complex set of indicators for mitigation 

purposes. 

As has been mentioned, disaster resilience is a relatively new and recently ‘hot-

button’ issue in academia (Norris et al. 2008, Reghezza-Zitt et al. 2012). As such, 

methodologies proposed for examining the concept and measuring it at the community 
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level are not quite mature, and in fact most current efforts utilize tools, such as additive 

indices, which were originally designed for different applications.  This study used a 

hybridized and modified additive index methodology in order to integrate concepts 

from complexity science-inspired disciplines.  This fusion of methods was undertaken 

not only because it was considered plausible but because it was expected to result in 

better understanding of resilience than studies based on either pure linear indices or 

the abstract heuristic techniques of complexity science.  However, there are probably 

conceptual frameworks and methodologies completely unrelated to indices or heuristics 

which can offer explanations for some of the facets of community resilience.  Many 

opportunities for trans-disciplinary linkage and methodological pluralism are expected 

to exist than those laid out here.  As mentioned, observation-based empirical research 

which studies community socioeconomic processes as they change through time may be 

considered highly promising.  Also, network-based models of the interaction of 

important community actors, resources and power relations may hold strong 

explanatory power for how clusters of high and low resilience came to exist, and how 

outcomes of disasters are shaped by pre-existing socioeconomic relations.  Since the 

concept of community resilience is often portrayed as baffling, yet at the same time 

highly important and of a high research priority, there are bound to be brand new 

techniques developed to measure it.  Just as the development of fuzzy logic was inspired 

by the inability of positivist, linear-oriented methods to explain social systems in the 

1960s and 1970s (Zadeh 1976), current frustration with the concept resilience may spur 

important methodological innovation in the future.  It is important to look out for these 
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developments, and actively integrate them into research.  Efforts to measure 

community resilience would benefit from being as adaptive, opportunistic and creative 

as the components of the concept itself.     
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CHAPTER 7. CONCLUSION 

 

In this thesis, it is recommended that future community resilience research 

recognize and take into account the inherently complex nature of resilience as it has 

been described by various disciplines.  Here, this complexity was addressed on several 

fronts.  The larger concept of community resilience was deconstructed into a multi-

scalar framework to allow for balanced analysis of resilience-building qualities and 

processes at the levels which they operate. Promising knowledge-based techniques for 

quantifying dynamic influences and cause-effect relationships in the chosen resilience 

indicators were operationalized to set indicator weights in an index and to provide 

information for the most effective mitigation strategies.  A new method was introduced 

for estimating positive and negative resilience feedback relationships among nearby 

communities based on the interacting spatial characteristics of those communities.   

As applied to neighborhoods in the city of St. Louis, Missouri, the resulting 

community resilience model identified significant clusters of high and low resilience 

neighborhoods, which were validated against datasets representing observed outcome 

of extreme environmental and socio-economic events.  Though successful in explaining 

some aspects of community disaster resilience in St. Louis, this research is not intended 

to endorse a specific set of optimal resilience measurement tools or suggest the 

universal applicability of the chosen methods.  Rather, the intent of this research was to 

show that much of the uncertainty and frustration which has defined the recent 
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academic debate over the concept of population resilience can be alleviated by a shift 

away from linear-oriented conceptualizations and statistically-dependent measurement 

methods in favor of any approach which attempts to integrate qualitative perspectives, 

local knowledge and nonlinear system modelling procedures.  

 Evidence that this shift is presently occurring within geographic perspectives of 

community resilience is increasing, as recent studies have: taken into account the 

multiple spatial and temporal scales of resilience-building or resilience-degrading 

community processes (Hoeflehner 2014; Lew 2014; Rodina 2014), adapted theories of 

complex socio-ecological systems to conceptualize resilience (Bitterman and Bennett 

2014; Engie and Quiroga 2014), argued for more local-scale, place-specific 

characterizations of community resilience (Chan et al. 2014; Lazarus 2014), and utilized 

local expert and lay perspectives of both hazards and community protections against 

those threats (Bergren 2014; Kumari and Frazier 2014; Leichenko and Solecki 2014; 

Walsh-Dilley et al. 2014).   

With the increased multi-disciplinary attention afforded to the subject, the study 

of resilience may be entering a renewed period characterized by a plurality of 

methodological treatments and a fusion of diverse knowledge sources.  Local 

emergency management decision makers and community leaders stand to benefit from 

the lessened uncertainty that such academic conversations can provide.    
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APPENDIX A. ENVIRONMENTAL HAZARD VARIABLES 
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APPENDIX B. INDICATORS OF VULNERABILITY 
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APPENDIX C. INDICATORS OF RESILIENCE 
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