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Abstract

Smoothing is the practice of modeling data in order to eliminate random variation

from the observed data and provide estimates of the underlying process. Models are

developed here beginning with an additive model that incorporates spatio-temporal

smoothing of the observed mortality rates for female breast cancer in Missouri from

1969 through 2001. The next model developed uses an intrinsic auto regressive (IAR)

prior to smooth the temporal trends in the data and a conditional auto-regressive

(CAR) prior for the spatial effects. These two are combined in a single joint prior for

spatio-temporal effects. The third model is a joint spatio-temporal model, using the

IAR prior for the temporal trends and a spatial prior based on the thin-plate spline

solution. These results open the door for further exploration including an alternate

parameterization of the thin-plate splines prior to allow the computation of Bayes

factors comparing the CAR prior and the thin-plate splines prior. This example is

illustrated using a data set of responses to the Missouri Turkey Hunting Survey of

1996, conducted by the Missouri Department of Conservation. Additional strategies

for dimension reduction of large scale problems are explored by reducing the number of

basis functions in the thin-plate spline prior, results are compared for various degrees

of dimension reduction. The example in this case involves the analysis of data for

U.S. mortality due to colorectal cancer among men during the period 1999-2003.
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Chapter 1

Introduction

Over the past decades a great deal of effort has been expended in the collection

and compilation of high quality data on cancer incidence and mortality in the United

States. Most of this work is done by governmental agencies such as the National Can-

cer Institute’s Surveillance Epidemiology and End Results (SEER) program (2006a)

and the Centers for Disease Control and Prevention’s (CDC) National Program of

Cancer Registries (NPCR) (2006b) who jointly prepare the annual U.S. Cancer Statis-

tics (USCS) (2006c) report on cancer mortality and incidence in the nation. Other

reports are prepared by the North American Association of Central Cancer Registries

(NAACCR) (2006d) and by state and regional registries, such as the Missouri Cancer

Registry (2006e), (2006f), the Oregon State Cancer Registry (2006g) and the Iowa

Cancer Registry (2006h) and Greater Bay Area Cancer Registry (2006i). These

data have largely been used in the creation and disbursement of descriptive statis-

tics concerning the state of cancer in the U.S. The information available through

these statistics present limited information concerning spatial or temporal trends in

the course of cancer in the U.S. Recently, there have been more efforts made to in-
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vestigate these trends, such as Jackson-Thompson et al. (2006). National data on

mortality due to cancer has been examined using a variety of methods in work by

Mungiole & Pickle (1999), Manton, Woodbury, Tallard, Riggan, Creason & Pellom

(1989) and Devesa et al. (1999) for example. While others have sought to model na-

tional data on cancer incidence (Picle et al. 2003). For public health policy makers,

there are two important initial questions about any disease, and cancer specifically,

that need to be answered. First, how has the course of the disease changed over time;

have incidence or mortality rates increased or decreased? Secondly, are there specific

regions where the disease is more or less prevalent than others, and has this changed

over time? These are important questions that provide feedback both to assess the

effectiveness of public health policy and to provide guidance as to the best allocation

of limited resources in preventing the spread of disease.

The use of Bayesian spatial models for disease mapping and smoothing of data

dates back to the seminal paper by Clayton & Kaldor (1987), which introduced the

use of the conditional autoregressive (CAR) prior from Besag (1974) for spatial ef-

fects in an empirical Bayesian model. Other examples of various empirical Bayesian

approaches to spatial data include Manton, Woodbury, Stallard, Riggan, Creason

& Pellom (1989), Clayton & Bernardinelli (1992), Devine, Halloran & Louis (1994),

Devine, Louis & Halloran (1994), and Devine & Louis (1994). Other more recent

Bayesian approaches include, Bernardinelli et al. (1995), Ferrándiz et al. (1995), Xia

& Carlin (1998), Sun et al. (2000), and Zhang et al. (2006).

This proposal consists of several distinct but related projects, each incorporating

or building on existing techniques of spatio-temporal data analysis. These projects

demonstrate the evolutionary development of the analysis of the datasets in question.
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The first data set considered here consists of the observed number of deaths in each

county in Missouri due to female breast cancer from 1969 through 2001. The data

are stratified into eleven three year time periods, and into four ten year age-group

periods, 40−49, 50−59, 60−69 and 70+ years of age. One of the goals of the analysis

proposed here is to devise a suitable spatio-temporal smoother for this data set. The

second datasets include the data collected from the 1996 Missouri Turkey Hunting

Survey (MTHS) by the Missouri Department of Conservation. These data consist of

responses from a random survey of individuals who purchased hunting permits for the

1996 turkey hunting season. These responses indicate where the individual hunted

during each week of the two week season and if they were successful in harvesting

a turkey and during which week. This data set has a long history of analysis and

spatial modeling, beginning with He & Sun (1998), Woodard et al. (1999) and He &

Sun (2000). Later refinements of the spatial models for this data include Woodard

et al. (2003), Sheriff et al. (n.d.) and White & Sun (2006). This data set provides

an excellent example for the development of new methods of spatial data analysis.

The final data set consists of deaths due to colorectal cancer among men across the

continental U.S. from 1999-2003.

The first model proposed for the analysis of the breast cancer mortality data is a

relatively straightforward additive model with separate terms for the spatial, temporal

and age effects. This is similar to a random effects model, but with the distinction

that the temporal effects term has a slope that contains both a separate age effect

and a separate spatial effect. This model does provide a degree of smoothing, but

unfortunately this smoothing is dominated by the age effects and retains little of the

regional heterogeneity present in the raw data.
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The second model presented for the analysis of the breast cancer mortality data is

a semi-parametric model that incorporates a joint spatial and temporal effects term

and an age effect term. The joint spatio-temporal effect requires the advent of a joint

prior for both the spatial and temporal effects. This is accomplished in this case

by using the conditional auto-regressive (CAR) prior for spatial effects introduced

in the previous model and implementing an intrinsic auto-regressive (IAR) prior for

the temporal effects. This model shows an improvement in smoothing, in terms of

retaining the regional heterogeneity of the raw data while reducing the observed noise.

However, there are indications that this model does not sufficiently smooth the data

and that there is room for improvement.

The third model presented here uses the dataset consisting of the responses from

the 1996 Missouri Turkey Hunting Survey, a collection of sample data consisting of

the observed number of turkeys harvested and the number of hunters hunting in a

given county in Missouri for both weeks of the 1996 turkey season. This data set

has previously been analyzed by a variety of methods and is used to demonstrate

the development of a model using a spatial effects prior in the model based on the

thin-plate spline solution. This model shows excellent results compared to the CAR

model for the same data.

The fourth model presented here uses another joint spatio-temporal prior. This

model represents the culmination of the previous efforts to devise a suitable spatio-

temporal smoother for the data in question. This model uses a similar joint spatio-

temporal effect prior as developed in the second model, but instead uses the spatial

effects prior based on the thin-plate spline solution demonstrated in the previous

model. This model shows promise as a spatio-temporal smoother and provides several
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opportunities for future work.

The fifth model presented here is a re-parameterization of the thin-plate splines

based prior used in the model presented in Chapter 4. The data used are the results

from the 1996 MTHS. The prior used in this model is re-parameterized in order to

calculate the Bayes factors comparing the performance of the thin-plate spline prior

model to the model using a CAR prior for spatial effects.

The sixth model presented here uses the thin-plate spline prior presented in the

previous chapter applied to a national dataset for mortality due to colorectal cancer

among men in the continental U.S. during the period 1999 − 2003. This is used as

a platform for exploring a strategy of dimension reduction in order to accelerate the

computational process. This dimensional reduction is accomplished by reducing the

number of basis functions in the thin-plate spline prior. Several different degrees of

dimensional reduction are tried and the results compared with the model evaluated

with the full set of basis functions. The capability of these models to detect significant

differences between regions is compared using standardized mortality ratios (SMRs).
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Chapter 2

An Additive Hierarchical Model

for Mortality Rates

In order to begin the description of the additive model, first consider the likelihood

of the data. Let yijk denote the number of cases of a given disease for the ith county,

jth time period, and kth age-group. Given the population size nijk and rate pijk, we

assume that yijk follows an independent Poisson distribution,

(yijk | pijk)
indep.∼ Poisson(nijkpijk). (2.1)

We consider the following hierarchical model,

νijk ≡ log(pijk) = zi + (µk − wi)(tj − t̄) + θk + εijk, (2.2)

where zi is the additive effect for the ith county and θk is the additive effect for

age-group k. The change over time is represented by the rate (µk + wi) for the ith

county and kth age group multiplied by (tj − t̄), where t̄ = J−1
∑J

j=1 tj and tj is the

midpoint of the jth time period. This allows for each age group and each county to

have different temporal slopes. Extra variation due to other sources is included in
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the error terms εijk and is assumed to follow the distribution

εijk
iid∼ N(0, δ0). (2.3)

As a result, the prior for νijk is

(νijk | zi, θk, µk, wi, δ0) ∼ N(zi + (µk − wi)(tj − t̄) + θk, δ0). (2.4)

The priors for θk and µk must be specified, and zi and wi have prior distributions

with hyper-parameters that have prior distributions of their own. The extra observed

variation εijk also has a prior distribution with hyper-parameter δ0, which has its own

prior distribution as well. This form of spatio-temporal interaction, in which county

slopes are allowed to have spatial correlation, is first suggested in Sun et al. (2000).

2.1 Prior Distributions of zi and wi

The prior distribution of zi is given by the conditional autoregressive (CAR) prior

proposed in Besag (1974) and Clayton & Kaldor (1987). This prior is defined in part

using the I × I adjacency matrix C with elements Cuv defined as

Cuv =






1, if counties u and v are adjacent,

0, otherwise, with Cuu = 0

(2.5)

The CAR prior is then defined by the conditional density

[z | ρ1, δ1] =
|II − ρ1C|1/2

(2πδ1)I/2
exp

{
−z′(II − ρ1C)z

2δ1

}
, (2.6)

where δ1 > 0. In order for this to be a proper prior, the values for ρ1 are constrained

such that ρ1 ∈ (λ−1
1 , λ−1

I ), where λ1, λI are respectively, the maximum and the min-

imum eigenvalues of the adjacency matrix C. Note that this interval also contains
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0. In the case ρ1 = 0, the zi are independent. As in the case of zi, w = (w1, .., wI)
′

follows the same CAR prior as z = (z1, . . . , zI)
′

[w | ρ2, δ2] =
|II − ρ2C|1/2

(2πδ2)I/2
exp

{
−w′(II − ρ2C)w

2δ2

}
. (2.7)

where δ2 > 0 and ρ2 ∈ (λ−1
1 , λ−1

I ). Note that the correlation coefficients ρ1 and ρ2 are

assumed to be independent of age-group and time period. The CAR priors (2.6) and

(2.7) chosen for both z and w as in He & Sun (2000) have the benefits of additional

correlation parameters not in other priors such as the prior proposed by Besag et al.

(1991).

2.2 Summary and Completion of the Hierarchical

Model

Evaluation of the model requires the likelihood and additional priors given here.

The likelihood in (2.1) can be written in terms of νijk = log(pijk),

[yijk | νijk] ∝ exp(νijkyijk − nijke
νijk). (2.8)

In order to complete the hierarchical model, the following priors are needed

θk ∼ N(ξmk, δmk), (2.9)

µk ∼ N(ξsk, δsk), (2.10)

[δl] ∝ 1

δal−1
l

e(−bl/δl), l = 0, 1, 2, (2.11)

ρr ∼ U(λ−1
1 , λ−1

I ), r = 1, 2. (2.12)

The hyper-parameters (ξmk, δmk), (ξsk, δsk) and (al, bl) are fixed constants. When

al > 0 and bl > 0, δl has a proper distribution.
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2.3 Propriety of Posterior Distribution

To complete the hierarchical model, the hyper-parameters (ξmj, δmj), (ξsj, δsj) and

(al, bl) need to be specified. The commonly used non-informative prior for θ and µ are

flat or constant priors. This can be a limiting case when δmj and δsj → ∞. Flat priors

are naturally used for ρ1 and ρ2. Noninformative priors for δl can present problems.

Traditionally the prior 1/δl can be used for δl. The problem with this prior is that

Sun et al. (2000) shows that the resulting posterior obtained will be improper. In

this model constant priors for the variance components are used; again this gives rise

to the possibility that the resulting posterior distributions may be improper. Sun

et al. (2000) gives an estimation procedure based on a theorem on the existence of

the posterior.

2.4 Estimation Via MCMC

In order to evaluate this model, Gibbs sampling as proposed in Gelfand & Smith

(1990) is used to evaluate the resulting posterior distributions. In order to implement

the Gibbs sampler the full conditional distributions need to be sampled; most of these

are known densities, while a few others are sampled by proving the log-concavity of

the distributions and using the ARS algorithm from Gilks & Wild (1992).

2.5 Available Conditional Distributions

If we define ν = (ν111, . . . ν11K , ν121, . . . , νIJK)′, then the full conditional distribu-

tion for the joint posterior of the parameters of interest is
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Lemma 1

(a) For given (zi, µk, wi, θk, δ0; yijk), (ν1,1,1, . . . , νIJK) are independent, and each νijk

depends only on yijk,

[νijk | zi, µk, wi, θk, δ0; yijk] ∝ exp

{
yijkνijk − nijke

νijk − 1

2δ0
(νijk − aijk)

2

}
,

where aijk = θk + zi + (µk + wi)(tj − t̄).

(b) The conditional posterior distribution of νijk in part (a) is log-concave.

(c) (θk | νijk, zi, δ0; yijk) ∼ N

(
ξmk
δmk

+ 1
δ0

�
i,j (νijk−zi)

(IJ/δ0)+(1/δmk)
, 1

(IJ/δ0)+(1/δmk)

)

(d) (z | ν, θ, ρ1, δ0, δ1; y) ∼ NI

(
c1,G

−1
1

)
, where G1 = JK

δ0
II + ( � I−ρ1C)

δ1
,

c1 = G−1
1 (d11, d12, . . . , d1I)

′, and d1i =
�

j,k(νijk−θk)

δ0
.

(e) (w | ν,µ, ρ2, δ0, δ2; y) ∼ NI

(
c3,G

−1
2

)
, where G2 = Kc2

δ0
II + ( � I−ρ2C)

δ2
,

d2 =
∑

j(tj − t̄ )2, and c2 = 1
δ0

G−1
2

∑
j,k(ν·jk(tj − t̄) − d2

∑
k µk).

(f) (µk | νijk, wi, δ0; yijk) ∼ N
(
c3k
, G−1

3k

)
, where G3k

=
(

Id2

δ0
+ 1

δsk

)
and

c3k
= G−1

3k

(
ξsk

δsk
+ 1

δ0

[∑
i,j νijk(tj − t̄ ) − d2

∑
i wi

])
.

(g) (δ0 | ν, z,w,µ, θ; y) ∼ IG
(
a0 + IJK

2
, b0 + 1

2

∑
i

∑
j

∑
k(νijk − aijk)

2
)

(h) (δ1 | z, ρ1; y) ∼ IG
(
a1 + I

2
, b1 + 1

2
z′(II − ρ1C)z

)

(i) (δ2 | w, ρ2; y) ∼ IG
(
a2 + I

2
, b2 + 1

2
w′(II − ρ2C)w

)
.

(j) [ρ1 | z, δ1; y] ∝ |II − ρ1C|1/2 exp
(

ρ1

δ1
z′Cz

)
.

(k) The conditional density of ρ1 in part (a) is log-concave.
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(l) For given (w, δ2; y) the conditional posterior density of ρ2 is

[ρ2 | w, δ2; y] ∝ |II − ρ2C|1/2 exp

(
ρ2

δ2
w′Cw

)
.

(m) The conditional distribution of ρ2 in part (l) is log-concave.

Proof. The proof for part (b) is as follows

∂2

∂ν2
ijk

log[νijk | zi, µk, wi, θk, δ0; yijk] = −(nijke
νijk + 1/δ0) < 0, ∀ νijk.

For part (k),

∂2

∂ρ2
1

log[ρ1 | z, δ1; y] = −1

2

I∑

i=1

(
λi

1 − ρ1λi

)2

< 0, ∀ ρ1.

Part (l) follows as for part (k).

2.6 Results

Most of the above conditional distributions are easily sampled, the exceptions be-

ing for νijk, ρ1 and ρ2. Those are shown to have log-concave densities and are then

evaluated using the ARS algorithm at each step in the Gibbs sampler. Implementa-

tion is done in FORTRAN, with the compiled code running in 100,000 iterations in

approximately 100 minutes, with 50,000 iterations for burn-in.

2.6.1 Noninformative and Data Dependent Priors

The model is initially run using non-informative priors for δ0, δ1 and δ2,

π(δl) ∝ 1√
δl
, l = 0, 1, 2.
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The resulting posterior means and variance are used to calculate a set of data-

dependent priors for δ0, δ1 and δ2 by inflating the mean and variances by some factors

IF . Typically IF = (2, 200) for the mean and variance respectively. Then we use the

inflated mean and variance to calculate new values for the hyper-parameters of the

priors. These new data-dependent priors are used to test the model for robustness

in prior selection. Results in Table 2.1 for the non-informative priors (NI) and the

inflated priors show that the model does indeed appear to be robust in terms of prior

selection.

Table 2.1: Quantiles of δ0, δ1, δ2, ρ1 and ρ2 for Noninformative (NI) and Inflation
Factor (IF) Data-dependent Priors

Summary of Posterior Distributions
Prior Min. 1st Qt. Median Mean 3rd Qt. Max. Std. Dev.
NI .00095 .00341 .00459 .00467 .00578 .01268 .00166

IF 2, 200 .00019 .00304 .00418 .00431 .00548 .01282 .00181
δ0 IF 1.5, 25 .00019 .00304 .00418 .00431 .00548 .01282 .00181

IF 2.5, 500 .00123 .00346 .00432 .00456 .00541 .01183 .00152
NI .00274 .00797 .00952 .00979 .01134 .02295 .00249

IF 2, 200 .00274 .00794 .00946 .00976 .01126 .03006 .00255
δ1 IF 1.5, 25 .00274 .00794 .00946 .00976 .01126 .03006 .00255

IF 2.5, 500 .00337 .00830 .00980 .01005 .01151 .02927 .00245
NI .00001 .00019 .00027 .00028 .00035 .00119 .00013

IF 2, 200 .00001 .00019 .00027 .00030 .00036 .00045 .00019
δ2

IF 1.5, 25 .00001 .00019 .00027 .00030 .00036 .00450 .00019
IF 2.5, 500 .00005 .00023 .00030 .00032 .00037 .00470 .00016

NI -.2480 .0787 .1185 .1046 .1442 .1700 .0531
IF 2,200 -.2480 .0838 .1222 .1084 .1471 .1700 .0519

ρ1
IF 1.5, 25 -.2480 .0838 .1222 .1084 .1471 .1700 .0519
IF 2.5, 500 -.2504 .0803 .1198 .1051 .1453 .1700 .0544

NI -.3399 -.1188 .0103 -.0188 .0947 .1700 .1334
IF 2,200 -.3399 -.1019 .02375 -.0076 .1054 .1700 .1333

ρ2
IF 1.5,25 -.3399 -.1019 .02375 -.0076 .1054 .1700 .1333
IF 2.5,500 -.3399 -.0835 .0249 .0006 .1017 .1700 .1208
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2.6.2 Age effects θk and µk

The range of posterior means of θk indicates a steady increase in mortality due

to female breast cancer with respect to age. Figure 2.1 shows that the rates for each

age group appear to be increasing as age increases; the mortality rates are higher for

older age-groups, regardless of location in space or time.

The posterior means for µk shown in Figure 2.1 demonstrate the change in rates

with respect to age over time. The negative values for the two youngest age groups

indicate a decrease in mortality rates over the time period for the those age groups,

and the positive values for the two oldest age groups represent an increase in the

mortality rates over time for those age groups. Looking at both plots indicates that

the rates for the youngest age groups are less than the older age groups but also that

there is a discrepancy in the rates over time; they are increasing for the older age

groups but decreasing for the younger age groups. This interaction between age and

time is indication of a possible cohort effect.

2.6.3 Variance components δ0, δ1 and δ2

The relative importance of z and w and can be seen in their respective variances,

δ1, δ2 and in δ0, whose posterior distributions are shown in Figure 2.1. The mean

of the posterior distribution of δ2 is smaller than that of δ0 and δ1. In addition the

posterior density of ρ2 is quite diffuse and centered about 0. These results indicate

that the w components are superfluous to the model, the small variance and density

of ρ2 indicates that there is little contribution by these terms.
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2.6.4 Spatial Correlation Parameters ρ1 and ρ2

The plots of the posterior distributions of ρ1 and ρ2 in Figure 2.1 show that the

spatial correlation ρ1 for z is clearly non-zero, but the distribution for ρ2, the spatial

parameter for the distribution of w, is widely spread about 0. The implication in this

is that the spatial structure between rates over time is not significant, even though

the spatial effect overall is. In the CAR prior for w when ρ2 is equal to zero, the wi

are in fact i.i.d and would have the effect of adding random noise to the age group

component of the temporal slope.

2.7 Disease Mapping

The maps in Figures 2.2 and 2.3 compare the results of the additive model to

the raw estimates of rates. As can be seen from these maps, the estimates from the

additive model greatly smooth the raw data. Little if any spatial pattern evident in

the data is visible from these maps. The smoothing that is taking place is due to the

θk terms dominating the model estimates. As a result, the rate estimates are being

smoothed toward a mean age-group effect. This result is at odds with the maps of

the raw rates, which show some indication of possible spatial patterns in the rates.

The second four sets of maps in Figures 2.4–2.7 show the rates for each age group

through each time period. These clearly show the trend over time for the two youngest

age groups (k = 1, 2) to be decreasing. The rates for the third age group (k = 3)

are flat, and the rates for the oldest age group (k = 4) are increasing. These results

verify what can be seen in the previous figures showing the posterior densities for µk.
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2.8 Conclusions

In all, the results for this model show that the dominant term is θk, indicating that

the age effects dominate the model. While the spatial effects appear significant, they

are small relative to the age effects. There appear to be significant temporal trends,

though the spatial correlation between the temporal slopes appears insignificant and

they are again dominated by the age terms. There is also a clear difference between

the oldest and youngest age groups in terms of temporal trends.

This model demonstrates satisfactory results in terms of detecting age group dif-

ferences in both mean rate and the temporal slope of the mean rate. The model

does not detect any apparent spatial trends in the data that could be due to over or

under-smoothing of spatial trends.
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Figure 2.1: Posterior Densities of (a) θk, (b) µk, (c) δ0, (d) δ1, (e) δ2, (f) ρ1 and ρ2

from Additive Model for Mortality Rates pijk for Female Breast Cancer in Missouri
from 1969-2000.
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Frequency Estimates of pijk

j = 3, k = 1

Frequency Estimates of pijk

j = 5, k = 2

Bayesian Estimates of pijk

j = 3, k = 1
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j = 5, k = 2

0 0.005
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Figure 2.2: Maps of Frequency and Bayesian Estimates of Mortality Rates pijk for
Female Breast Cancer in Missouri from 1996-2000 for (j, k) = (3, 1) and (j, k) = (5, 2).

17



Frequency Estimates of pijk

j = 7, k = 3

Frequency Estimates of pijk

j = 11, k = 4

Bayesian Estimates of pijk

j = 7, k = 3

Bayesian Estimates of pijk

j = 11, k = 4

0 0.005

range of p

Figure 2.3: Maps of Frequency and Bayesian Estimates of Mortality Rates pijk for
Female Breast Cancer in Missouri from 1996-2000 for (j, k) = (7, 3) and (j, k) =
(11, 4).
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(a)   j=1 (b)   j=2 (c)   j=3
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(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11

0.0002 0.0004

range of p

Figure 2.4: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 for j = 1, . . . , 11 and k = 1.
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(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11
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Figure 2.5: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 for j = 1, . . . , 11 and k = 2.
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(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11
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Figure 2.6: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 for j = 1, . . . , 11 and k = 3.
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Figure 2.7: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 for j = 1, . . . , 11 and k = 4.
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Chapter 3

A Joint Model for Spatial and

Temporal Effects

The previous model considered was an additive model that contained separate

spatial effects, age effects and a temporal slope term itself containing spatial and age

effects. The results of this model show that the mean log rate for a given age group

dominated the model. All the observations were essentially shrunk to their respective

age group mean rates. This had the effect of obscuring any spatial patterns in the

rates. In addition, the temporal slope term was similarly dominated by the mean age

group temporal slope, and little spatial effect on the temporal slope was observed.

While the posterior density of ρ1 seemed to indicate the existence of a separate spatial

effect, the overall effect in the estimated rates from the model is not easily observed.

In order to overcome these shortcomings in this model, we consider a joint spatio-

temporal prior using an intrinsic auto-regressive prior on the temporal trends in the

data, and a CAR prior for the spatial effects. This provides for a non-parametric

temporal smoothing of the data. The resulting semi-parametric model is a joint
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spatio-temporal smoother.

3.1 The Likelihood of the Data and First Stage

Prior

The model introduced here is a semi-parametric model that jointly models the

spatial and temporal effects, using a non-parametric intrinsic auto-regressive prior as a

temporal smoother and a conditional auto regressive prior for the spatial effects. Here

we again consider the breast cancer mortality data from Chapter 2. The likelihood of

the data is given in (2.1) and (2.8). The difference in this model is in the hierarchical

model for pijk, which in this case is written

log(pijk) ≡ νijk = zij + θk + εijk, (3.1)

where zij is mean log-rate for the ith county, jth time period and θk is the difference

between the log-rate of the first age-group and the kth age group. The error term

accounting for any other extra variation is then assumed to follow the distribution

εijk
iid∼ N(0, δ0). (3.2)

All the effects are additive. This gives rise to the prior for νijk,

(νijk | zij, θk, δ0) ∼ N(zij + θk, δ0). (3.3)

3.2 The Joint Spatio-Temporal Prior

Now in order to define the prior distribution of the zij, note that (zi1, zi2. . . . , ziJ)

can be considered a time series for a given county i. To insure the stationarity of a
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time series it is often differenced, that is, a new series is defined with elements

∇xt = xt − xt+1. (3.4)

In order to generalize this, we define a forwardshift operatorD, similar to the backshift

operator used in time-series data analysis, as in Shumway & Stoffer (2000)

Dxt = xt+1.

This can be extended to powers, D2xt = D(Dxt+1) = xt+2, which in the general form

gives Ddxt = xt+d. Then (3.4) can be written

∇dxt = (1 −D)dxt, for d = 1. (3.5)

The higher order difference terms can be found by algebraically expanding (3.5). As

an example, the second difference becomes

∇2xt = (1 −D)2xt

= (1 − 2D +D2)xt

= xt − 2xt+1 + xt+2.

For a given vector of time series observations x = (x1, x2, . . . , xJ)′, the second order

differences can be found by multiplying by the matrix

B =




1 −2 1 0 0 · · · 0 0 0 0 0

0 1 −2 1 0 · · · 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 0 1 −2 1 0

0 0 0 0 0 · · · 0 0 1 −2 1




(J−2)×J

.
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The new differenced vector is then

y = Bx.

In the case of our data, if we define Z = (zij), we can define the matrix U = BZ ′

with the elements.

uih = zih − 2zih+1 + zih+2 , h = 1, 2, . . . , J − 2

and

u′

i = (ui1, ui2, . . . , uiJ−2)
′,

the ith row vector of U . Note that ui is a stationary temporal process for the ith

county, and the vector u∗

h = (u1h, u2h, . . . , uIh)
′ is a spatial process for the hth new

time period, with a distribution as in (2.6) for any h

u∗

h ∼ N
(
0, δ1(II − ρC)−1

)
. (3.6)

If we define the following

u = vec(U) = (u11, u12, . . . , u1J−2, u21, . . . , uIJ−2)
′,

then the density of u is written as

[u | δ1, ρ] =
|II − ρC|1/2

(2πδ1)I(J−2)/2
exp

(
− 1

2δ1
u′[II − ρC) ⊗ IJ−2]u

)
. (3.7)

If we define z = (z11, . . . , z1J , z21, . . . , zIJ)′, it can be shown that

u′[(II − ρC) ⊗ IJ−2]u = z′[(II − ρC) ⊗ A]z, (3.8)
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where

A = B′B =




1 −2 1 0 0 · · · 0 0 0 0 0

−2 5 −4 1 0 · · · 0 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0 0

· · · · · · · · · · · · · · · . . . · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 1 −4 6 −4 1

0 0 0 0 0 · · · 0 1 −4 5 −2

0 0 0 0 0 · · · 0 0 1 −2 1




J×J

(3.9)

is a singular matrix of rank J − 2. The joint prior density of z is then

[z|δ1, ρ] ∝
|II − ρC|1/2

(2πδ1)I(J−2)/2
exp

(
− 1

2δ1
z′[(II − ρC) ⊗ A]z

)
. (3.10)

The Kronecker product of II − ρC and A yields a type of precision matrix that

is made up of two components, the II − ρC matrix which accounts for the spatial

process, and the A matrix which makes up the smoothing of the temporal process;

the Kronecker product replicates the spatial function across the temporal processes.

The result is that z can be considered a set of spatially correlated temporal processes.

The temporal component of this matrix can be seen as a second order intrinsic

auto-regressive (IAR(2)) prior applied to the temporal trend of the data, as related

in Besag & Kooperberg (1995) and Künsch (1987). The IAR(2) prior is specifically

demonstrated in Fharmeir & Wagenpfeil (1996) in terms of smoothing hazard func-

tions.
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3.3 Other Priors

The prior distributions of δ0, δ1 are assumed to follow inverse gamma distributions

as specified below:

[δl] ∝
1

δal+1
l

exp

(
−bl
δl

)
, l = 0, 1. (3.11)

In order for the matrix (II − ρC) to be positive definite, the value of ρ is constrained

by (λ−1
I , λ−1

1 ), where λ1 ≤ . . . ≤ λI are the eigenvalues of C. The prior for ρ is then

as given in (2.12).

3.4 Computation

If we define ν = (ν111, . . . ν11K , ν121, . . . , νIJK)′, then the full conditional posterior

distributions needed to implement the Gibbs sampler are readily calculated.

Lemma 2

(a) For given (z, θ, δ0; y), the (ν111, . . . , νIJK) are independent, each νijk depends

only on yijk, and

[νijk | zij, θk, δ0; yijk] ∝ exp

{
νijkyijk − nijke

νijk − 1

2δ0
(νijk − zij − θk)

2

}
.

(b) The conditional posterior distribution of νijk is log-concave.

(c) (z | ν, θ, δ0, δ1, ρ; y) ∼ NIJ(c, δ0G
−1) where G = KIIJ + δ0

δ1
(II − ρC) ⊗ A,

c = G−1
∑K

k=1(νk − θk1IJ) and νk = (ν11k, ν12k, . . . , νIJk)
′.

(d) (δ0 | ν, z, θ; y) ∼ IG
(
a0 + IJK/2, b0 + 1

2

∑
i,j,k(νijk − Zij − θk)

2+
)
.

(e) (δ1 | z; y) ∼ IG
(
a1 + I(J − 2)/2, b1 + 1

2
z′ [(II − ρC) ⊗ A] z

)
.
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(f) [ρ | z, δ1; y] ∝
∏I

i=1(1 − ρλi)
1/2 exp

(
ρ

2δ1
z′[C⊗ A]z

)
.

(g) The conditional posterior distribution of ρ is log-concave.

Proof. We only prove the results for log-concavity. For part (b)

∂2

∂ν2
ijk

log[νijk | Zij, θk, δ0; yijk] = −nijke
νijk − 1

δ0
< 0, ∀ νijk.

For part (g), we have

∂2

∂ρ2
log[ρ | z, δ1; y] = −1

2

I∑

i=1

(
λi

1 − ρλi

)2

< 0, ∀ ρ ∈
(

1

λ1
,

1

λI

)
.

The results hold.

The full conditional posterior distributions of z, δ0, δ1j
are standard forms and can

be sampled directly using a Gibbs sampler (Gelfand & Smith 1990). The distributions

for the νijk and the ρ are shown to be log-concave and can be sampled as in the

previous model using the ARS algorithm from Gilks & Wild (1992).

3.5 Results for the Joint Model

The joint model differs from the additive model in several ways. First the use of the

IAR(2) prior on the temporal gradient of the data, creates a new set of observations

that are all independent and identically distributed. This joint model also allows

for the use of a single prior for spatio-temporal effects. This results in a simpler

model that only includes a parameter for the age-effects in addition to the spatio-

temporal effect. This parameterization avoids the cumbersome form of the additive

model, where there are spatial effects and then temporal slopes that are spatially

correlated, age group effects and age group specific temporal slopes. In the additive
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model updating the full conditional distributions of z and W requires the inversion

of two I × I matrices for each iteration of the Gibbs sampler. In the joint model,

there is only one matrix to invert. Unfortunately, the dimension of the matrix is

IJ × IJ , which increases the computational difficulty of updating the conditional

posterior distribution of z.

3.5.1 Computational Improvements

Updating the z using the conditional posterior distribution based on the current

value of ρ requires the inversion of an IJ × IJ matrix. In order to speed up the

process, it is desirable to diagonalize this matrix.

• Begin by letting QC be an orthogonal matrix such that C = QCΛCQ
′

C, where

ΛC is the diagonal matrix of eigenvalues of C, and let QA be an orthogonal

matrix such that A = QAΛAQ
′

A, where ΛA is the diagonal matrix of eigenvalues

of A.

• Then define Q̃ = QC ⊗ QA, Q̃
′

= Q
′

C ⊗ Q
′

A, and

Φρ = KIIJ + ((IIJ − ρΛC) ⊗ ΛA). (3.12)

Note that Q̃ is orthogonal, and Φ is diagonal and now easily invertible. It can

then be shown that

KIIJ + ((II − ρC) ⊗ A) = Q̃ΦρQ̃
′, (3.13)

(KIIJ + ((II − ρC) ⊗ A))−1 = Q̃Φ−1
ρ Q̃′. (3.14)
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We prove the first equality only:

(QC ⊗ QA)(KIIJ + ((II − ρΛC) ⊗ ΛA))(Q′

C ⊗ Q′

A)

= KIIJ + II − ρ(QCΛC ⊗ QAΛA)(Q′

M ⊗ Q′

A)

= KIIJ + II − ρ(QCΛCQ′

C ⊗ QAΛAQ′

A)

= KIIJ + (II − ρC) ⊗ A.

Now to update z the following algorithm is implemented.

1. Update Φρ.

2. Simulate s ∼ NIJ(0, IIJ).

3. Compute rλ = Φ
−

1
2

λ s + Φ−1
λ Q̃′

∑K
k=1(νk − θk1IJ).

4. Let z = Q̃rλ, which has the same distribution as in Lemma 6(a).

3.5.2 Noninformative and Data-dependent Priors

The model is initially run using noninformative priors for δ0 and δ1

π(δl) ∝ 1√
δl
, l = 0, 1.

The resulting statistics from the samples of their posterior distributions are shown

in Table 3.1. The posterior means and variances are used to calculate a set of data-

dependent priors for δ0 and δ1, as discussed in Section 2.6.1.

3.5.3 Interpreting ρ

The trace and density plot of the parameter ρ both indicate that most of the

mass of the density is located at the positive limit for the value of ρ. While strictly
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Table 3.1: Quantiles of δ0, δ1 and ρ for Noninformative (NI) and Inflation Factor (IF)
Data-dependent Priors

Summary of Posterior Distributions
Prior Min. 1st Qt. Median Mean 3rd Qt. Max. Std. Dev.
NI .00233 .00675 .00821 .00835 .00974 .01927 .00223

IF 2, 200 .00278 .00676 .00811 .00830 .00961 .01706 .00216
δ0 IF 1.5, 25 .00237 .00635 .00771 .00787 .00929 .01724 .00210

IF 2.5, 500 .00343 .00701 .00825 .00844 .00965 .01729 .00200
NI .00003 .00032 .00047 .00052 .00067 .00222 .00028

IF 2, 200 .00009 .00032 .00044 .00048 .00058 .0020 .00023
δ1 IF 1.5, 25 .00011 .00034 .00047 .00050 .00061 .00210 .00022

IF 2.5, 500 .00010 .00034 .00046 .00049 .00060 .00225 .00022
NI .08411 .1734 .1745 .1736 .1751 .1756 .00342

IF 2,200 .1083 .1736 .1746 .1739 .1751 .1756 .00250
ρ1 IF 1.5, 25 .0691 .1735 .1745 .1737 .1750 .1756 .0035

IF 2.5, 500 .1313 .1735 .1745 .1738 .1750 .1756 .00225

speaking ρ is not a measure of spatial correlation, if ρ = 0 then there is no spatial

correlation in the prior and the z would be independent, and unnecessary. On the

contrary, these results for the posterior density of ρ seems to indicate that the model

is not sufficiently smooth.

3.5.4 The Variance Components δ0 and δ1

The two variance components δ0 and δ1 show good behavior under the various

priors and appear to be robust in the selection of hyperparameters. While a direct

comparison with the variance components of the additive model is not possible, it is

possible to compare in general their relative magnitudes. In the additive model the

relative magnitudes or the ratio of δ0/δ1 is the inverse of in the joint model. This

would seem to indicate that the relative importance of z in the joint model is greater

than in the additive model. This impression is reinforced in looking at the results of
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the smoothed estimates of pijk from each model.

3.6 Comparison between the Additive model and

the Joint Model

The results for the joint model provide an interesting comparison to the additive

model. As previously mentioned, the additive model seems to shrink the estimates

toward an age group mean, while failing to preserve any spatial pattern in the data.

This is clear in the sample scatter plots of the additive model estimates versus the

joint model estimates. The slope of the resulting scatter plots is almost vertical,

showing that the estimates from the additive model vary much less than the results

from the joint model. This reveals that the joint model is actually allowing more of

the original spatial heterogeneity to remain in the model.

3.6.1 Maps

This result can further be seen in maps comparing the two models and the raw

data. Both sets of maps show that the joint model estimates retain more of the original

data’s spatial distribution. Regions that have a distinctly lower or higher incidence

rates still show up on the joint model maps. This is evident in the southeast portion of

the state, Reynolds and Shannon counties in particular. This regional heterogeneity

is also better preserved in the maps for each age group. Again the same pattern

manifests itself in the southeastern portion of the state, particularly in Reynold and

Shannon counties, though over time the trends are not as strong.
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3.6.2 Model Selection Criteria

Comparison between the two models is also aided by the use of model selection

criteria. The first of these criteria is the DIC proposed by Spiegelhalter et al. (2002),

is easily implemented in the MCMC code. The DIC measure is based on the deviance

D defined as

−2log(p(y | θ)).

The expected value of the deviance for the model is a measure of the goodness-of-fit,

the smaller this value the better the model fits the data. The expectation of the

deviance can be estimated from the MCMC output as

D̄ = Eθ(D(θ)) (3.15)

Like other model selection criteria the DIC is the sum of a measure of model com-

plexity, and a measure of goodness of fit. The lower this sum the more desirable the

model. The measure of model complexity for the DIC is PD, which is defined as

Eθ(D(θ)) −D(Eθ(θ)).

This quantity can be estimated easily from the MCMC output as

PD = D̄ −D(θ̄)

As a result the DIC is easily estimated from the output of an MCMC sampler,

DIC = PD + D̄ ≡ 2D̄ −D(θ̄). (3.16)

Selecting the model with the lowest DIC is similar to other criteria and the notion

of model selection where it is desirable to select the simplest best fitting model. The

results for the additive and joint model are shown in Table 3.2.
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Table 3.2: DIC Values for the Additive and Joint Models

Model Comparison Using DIC

Model PD D̄ DIC
Additive 198.57 434911 435109

Joint 443.909 449051 449495

Table 3.3: D(m) Values for the Additive and Joint Models

Model Comparison Using D(m)

Model P (m) G(m) D(m)
Additive 64.45 18692.64 18757.09

Joint 188.78 30016.74 30205.52

The second criteria, is from Gelfand and Ghosh (1998), selects the model that min-

imizes the posterior expected loss. This is shown to be the equivalent of minimizing

the quantity

D(m) = G(m) + P (m),

where G(m) is the sum of squares predictive error, and P (m) is the sum of the

predictive variances. The term G(m) acts as a goodness-of-fit measure while the P (m)

is a penalty term. The interpretation is intuitive. Simple models suffer under both

G(m) and P (m), whereas over-fitted models tend to have larger predictive variances.

The results for these two models are shown in Table 3.3.

These model selection criteria provide two similar results. The DIC and the D(m)

criteria select the additive model, citing both better fit and a less complex model.

The joint model however shows a posterior density for ρ that is heavily skewed toward

the positive limit of its prior density. This is thought to suggest that there is in fact

some degree of spatial heterogeneity that is not being explained by either the additive

or the joint model. The suggestion here is that both models are in some sense under-
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smoothing, in that they are unable to adequately explain the spatial pattern and in

the case of the additive model are shrinking the data estimates toward a mean. In

the case of the joint model, the heavily skewed value for the posterior density of ρ

suggest that the model is under-smoothing the data. These reasons suggest that the

results of the model selection criteria are misleading and leads to the conclusion that

another form of spatial prior might be beneficial and provide better results.

3.7 Conclusions

The use of a joint spatial temporal semi-parametric model has shown itself to be

potentially beneficial and to possibly provide good smoothing characteristics. The

constraints on the smoothing parameter ρ placed by the propriety of the CAR prior,

and the resulting posterior distribution for ρ indicate that the data actually may

require more nuanced smoothing than is provided by the CAR prior. This leads to

the notion that there may be a more suitable prior to use for the spatial effects. This

will lead to the next example where we derive a joint spatio-temporal model using a

prior based on thin-plate splines for spatial effects, and compare it to the joint model

using the CAR prior for spatial effects presented here.
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Figure 3.1: Scatterplots Comparing the Estimates of Mortality Rates pijk for Female
Breast Cancer in Missouri from 1996-2000 from the Additive and Joint CAR Models
(a) (j, k) = (3, 1), (b) (j, k) = (5, 2), (c) (j, k) = (7, 3), (d) (j, k) = (11, 4).
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Figure 3.2: Trace plots of (a) δ0, (b) δ1, (c) ρ, and (d) θk, k = 2, 3, 4 from the
Joint CAR Model for Mortality Rates pijk for Female Breast Cancer in Missouri from
1969-2000.
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the Joint CAR Model for Mortality Rates pijk for Female Breast Cancer in Missouri
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Figure 3.4: Maps of Frequency and Bayesian Estimates of Mortality Rates pijk for
Female Breast Cancer in Missouri from 1996-2000 from the Additive and Joint CAR
Models for (j, k) = (3, 1) and (j, k) = (5, 2).
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Figure 3.5: Maps of Frequency and Bayesian Estimates of Mortality Rates pijk for
Female Breast Cancer in Missouri from 1996-2000 from the Additive and Joint CAR
Models for (j, k) = (7, 3) and (j, k) = (11, 4).
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Figure 3.6: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 from the Joint CAR Model for j = 1, . . . , 11 and
k = 1.

42



(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11

0.0001 0.0041

range of p

Figure 3.7: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 pijk from the Joint CAR Model for j = 1, . . . , 11
and k = 2.
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Figure 3.8: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 from the Joint CAR Model for j = 1, . . . , 11 and
k = 3.
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Figure 3.9: Maps of Bayesian Estimates of Mortality Rates pijk for Female Breast
Cancer in Missouri from 1996-2000 from the Joint CAR Model for j = 1, . . . , 11 and
k = 4.
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Chapter 4

A Semiparametric

Spatio-Temporal Model Using the

Thin-Plate Spline Prior

Spatial data occurs in many contexts, and the detection of trends in or clustering

of such data is often the central question of interest in data analysis. Often the data

collected has noise associated with it that conceals existing spatial patterns. The

use of spatial covariance functions or smoothing functions seeks to remove noise from

the observed data by a variety of mechanisms, depending on the method employed.

No matter what the method used, the end result is an estimate of the desired quan-

tity preserving the spatial pattern, free from the noise obscuring that pattern in the

observed data. A good smoothing function should have the properties of removing

noise from the data and providing reasonable estimates of the desired quantity. This

should be accomplished without over-smoothing the data, thus preserving existing

spatial clustering or trends in the data. For these reasons, thin-plate splines as im-
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plemented here appear to be a reasonable method to be used as a spatial smoother.

Results show that the smoother is in fact relatively simple to implement and com-

pares favorably with other methods of spatial data smoothing, namely a CAR model

applied to areal data. Examples of the specific use of thin-plate splines as spatial

smoothers can be found in Wahba et al. (1995) and van der Linde et al. (1995).

In addition, the comparison between the use of thin-plate splines and other non-

parametric smoothing functions and more traditional geo-statistical techniques such

as kriging have been made in Laslett (1994), Hutchinson & Gessler (1994), Laslett

& McBratney (1990), as well as Nychka (2000), who provides several examples as

well. The methods presented here differ slightly from the traditional representation

of thin plate splines seen in texts. The derivation of the solution is identical to those

presented in other sources such as Wahba (1990) and Green & Silverman (1994),

who provide a thorough technical and historical coverage of smoothing splines. The

model here is derived using Bayesian methodology as suggested in Wahba (1978),

Wahba (1983), and Kimmeldorf & Wahba (1970) and Kimmeldorf & Wahba (1971),

and implemented in a Gibbs sampler.

Typically thin-plate splines are used for point referenced data. In this paper the

data used are collected at the areal level and include issues of missing or sparse data

for several areas. There exists a well established body of work concerning the use of

areal models for modeling spatial data that address these issues. The history of these

models is well known, beginning with Besag (1974) who introduced the conditional

auto-regressive CAR model, now one of the most used models for disease mapping and

other applications. Examples of the CAR model include Clayton & Kaldor (1987),

Cressie & Chan (1989), Marshall (1991), Waller et al. (1997), and He & Sun (2000),

among many others. This popularity is due in part to the ease of implementation
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using a Gibbs sampler as first suggested by Gelfand & Smith (1990). He & Sun (2000)

implement a CAR model as a spatial smoother in a generalized linear hierarchical

model evaluated in a Bayesian context using Gibbs sampling to analyze the same

dataset presented in this paper. There are some slight differences in the construction

of the generalized linear models in these two papers and the hierarchical structures,

yet the similarities allow for comparison between the two models as spatial smoothers

for the data in question.

Thin-plate splines allow for the smoothing of rough multi-dimensional point ref-

erenced data by fitting a smoothed surface to the data. This fitting is accomplished

by maximizing a penalized likelihood function; the penalty corresponding to certain

smoothness conditions on the fitted surface. These conditions provide the smoothing

effect of the thin-plate spline. Rather than fitting an overall mean plane to the data

as in a least squares solution, the thin-plate spline penalty term allows for variation

in the response surface, preserving regional heterogeneity, while enforcing a smooth

transition between regions. It is natural then to apply thin-plate splines to point

referenced spatial data as a smoothing function. This paper implements a thin-plate

spline based model for spatial data in order to evaluate the efficacy and ease of using

thin-plate splines as a spatial smoother for areal data in comparison to the use of a

conditional auto-regressive (CAR) function for spatial effects. Furthermore, the fit-

ting of the model is performed in a Bayesian context using posterior means as point

estimates of the smoothed values of the observed data.

Over the past decades a great deal of effort has gone into the collection and

compilation of high quality data on cancer incidence and mortality. However, only

recently have efforts been made toward more in-depth analysis of the data, including
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the spatial-temporal modeling of incidence and mortality rates. While various models

previously presented have used a variety of spatial smoothing techniques in a Bayesian

context and have incorporated temporal effects, here we present a spatio-temporal

model that is semiparametric and uses a single prior for both spatial and temporal

effects. The spatial smoother is based on the thin-plate spline solution while the

temporal smoothing is based on an intrinsic auto-regressive (IAR) model. The results

show good computational characteristics for this model as well as promising results

in terms of comparison with other spatio-temporal models.

The first section of the paper contains a cursory presentation of the thin-plate

spline material as relevant to the development of the model as well as the Bayesian

interpretation of the thin-plate spline solution. The temporal smoothing by use of

an IAR(2) prior is also presented and incorporated into the model. The full con-

ditional distributions are derived as well as a technique for simplifying the MCMC

sampling by diagonalizing the covariance matrix used to sample from the full con-

ditionals. The second section tests the thin-plate spline based model for robustness

using noninformative and data-dependent priors. The estimates of the mortality rates

for the thin-plate spline model, the CAR model, and the raw data are compared and

mapped. Model selection and testing are also considered using the DIC and D(m).

The final section discusses the implication of these results and comments on further

areas of investigation.

4.1 Thin-Plate Splines

The material presented here is intended to highlight the representation of the thin-

plate spline solution that is unique to this paper, not as a thorough demonstration of
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the derivation of the thin-plate spline solution. For a more thorough demonstration of

this material see Nychka (2000). For an elegant derivation of the background material

concerning thin-plate splines, see Duchon (1977) or Meinguet (1979)

4.1.1 Derivation

Consider the non-parametric regression problem,

yi = f(xi) + εi, i = 1, . . . , n, (4.1)

where f is an unknown function on fixed domain D ⊂ IRd, xi ∈ D are fixed points,

and errors εi are iid (independently identically distributed) N(0, δ0).

To estimate unknown f , we consider the penalized sum of squares

Sη(f) =
1

n

n∑

i

wi(yi − f(xi))
2 + λJm(f) (4.2)

for some λ > 0, where wi are some fixed constants. The estimate of f̂ at xi is the

minimizer of Sη(f). The term Jm(f) can be thought of as a ”roughness” penalty, and

is defined as

Jm(f) =

∫

�
d

∑ m!

α1! . . . αd!

(
∂mf

∂xα1
1 . . . ∂xαd

d

)2

dx. (4.3)

The sum in the integrand is taken over all the non-negative integer vectors α =

(α1, . . . , αd)
′ such that α1 + . . .+ αd = m, where 2m > d. In the case of spatial data,

d = 2. It is then common to choose m = 2. Matheron (1973) and Duchon (1977)

show that the solution to (4.2) belongs to the finite dimensional space

f(x) =

t∑

j=1

φj(x)βj +

n∑

i=1

ψi(x)γi, (4.4)

where (φ1, . . . φt) is a set of functions that span the space of all d-dimensioned poly-

nomials of degree less than m. For d = 2 and m = 2, t = 3 and x = (x1, x2). As a
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result

φ1(x) = 1, φ2(x) = x1, φ3(x) = x2.

For d = 2 and m = 3, t = 6, we can choose

φ1(x) = 1, φ2(x) = x1, φ3(x) = x2,

φ4(x) = x1x2, φ5(x) = x2
1, φ6(x) = x2

2.

The functions (ψ1 . . . , ψn) are a set of n radial basis functions defined as

ψi(x) = hmd(x − xi), hmd(r) =






amd‖r‖2m−d log ‖r‖, if d is even,

amd‖r‖2m−d, if d is odd,

, (4.5)

for some constants amd. Here ‖r‖ =
√

r′r is the Euclidean norm of r.

In matrix notation, we write

β = (β1, · · · , βt)
′, (4.6)

γ = (γ1, · · · , γn)′, (4.7)

T = (φj(xi))n×t, (4.8)

K = (ψi(xj))n×n. (4.9)

Then (4.4) is expressed as



f(x1)

...

f(xn)




n×1

= Tβ + Kγ. (4.10)

Meinguet (1979) and Duchon (1977) also showed that equation (4.3) can be written

as

Jm(f) = γ ′Kγ, (4.11)
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subject to the constraint that T ′γ = 0. The problem minimizing (4.2) then becomes

a constrained minimization problem with objective function

Sη(f) = (y − Tβ − Kγ)′W (y − Tβ − Kγ) + λγ ′Kγ, (4.12)

where y = (y1, · · · , yn)
′ and W = diag(w1, · · · , wn). Following Wahba (1990), con-

sider the spectral decomposition of TT ′, i.e.,

TT ′ = FΛF ′, (4.13)

where F is orthogonal and Λ is diagonal. We write F as

F = (F1,F2), (4.14)

where F1 is the n× t matrix of vectors spanning the column space of T and F2 has

dimension n × (n − t). Because F is orthogonal, F ′

1F2 = 0. Consequently T ′γ = 0

if and only if γ = F2η for some η ∈ � n−t. The minimization problem (4.12) is

equivalent to

min�
∈

�
t, � ∈

�
n−t

{
(y − Tβ − KF2η)′W (y − Tβ − KF2η) + λη′F ′

2KF2η
}
. (4.15)

We define the following matrices and vector

G = (T ,KF2)n×n , H =




0 0

0 F ′

2KF2




n×n

, ω =

(
β

η

)
.

Note that F ′

2KF2 has dimension (n − t) × (n − t) and is invertible, so H has rank

n− t. Then (4.15) can be written as

min�
∈

�
n

{
(y − Gω)′W (y − Gω) + λω′Hω

}
. (4.16)

Finally we define

v = Gω, (4.17)

M = (G−1)′HG−1, (4.18)
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then (4.16) can be written as

min�
∈

�
n

{
(y − v)′W (y − v) + λv′Mv

}
. (4.19)

Clearly, the solution to (4.19) is

v̂ ≡ f̂(x) = (W + λM)−1Wy. (4.20)

Note that M has rank n− t.

4.1.2 Bayesian Thin-Plate Splines

The minimization problem in (4.19) has a Bayesian interpretation, first suggested

by Kimmeldorf & Wahba (1971) and Wahba (1978). Suppose y follows a normal

distribution

(y | v, δ0) ∼ N(v, δ0W
−1). (4.21)

Next suppose that v has a prior with density function

π1(v | δ1) =
|M |1/2

+

(2πδ1)(n−t)/2
exp

(
− 1

2δ1
v′Mv

)
, (4.22)

because M has rank n− t it is not invertible the prior given in (4.22) is improper. It

is easy to show that the conditional posterior distribution of v given (δ0, δ1; y) is

(v | δ0, δ1; y) ∼ N((W + λM)−1Wy, δ0(W + λM)−1), (4.23)

where |M |+ is the product of the positive eigenvalues of M and λ = δ0/δ1. Clearly

the conditional posterior mean or mode of v given (δ0, δ1; y) is the same as the solution

given in (4.20).

To see the structure of the prior (4.22), recall

v = Gω = G

(
β

η

)
,
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and

π2(β,η | δ1) = π1

(
G

(
β

η

)
| δ1

)
· |G|, (4.24)

where the first term of the right hand side is given by (4.22). Note that (4.18) implies

G′MG = H =




0 0

0 F ′

2KF2


 .

Thus, we have

v′Mv = (β′ η′)G′MG

(
β

η

)
= (β′ η′)H

(
β

η

)
= η′F ′

2KF2, (4.25)

|M |1/2
+ |G| = (|G′||M |+|G|)1/2 = |G′MG|1/2

+

= |H|1/2
+ = |F ′

2KF2|1/2. (4.26)

Substituting (4.25) and (4.26) into (4.24) we get

π2(β,η | δ1) =
|F ′

2KF2|1/2

(2πδ1)(n−t)/2
exp

(
− 1

2δ1
η′F ′

2KF2η

)
. (4.27)

Clearly β has a constant prior and η has a proper normal prior. Consequently,

v = Gω has a partially informative normal prior from Speckman & Sun (2003). In

order to complete a full Bayesian hierarchical model for estimating the unknown v,

the prior densities for δ1 and δ0 could be applied. These are assumed to follow inverse

gamma distributions with densities

[δl] ∝
1

δal+1
l

exp

(
−bl
δl

)
, for l = 0, 1. (4.28)

See, for example, Speckman & Sun (2003).

4.2 The Joint Spatio-Temporal Model

The model for our data here begins with the likelihood defined in (2.1) and (2.8).

Additionally we refer to the same hierarchical structure on the prior of pijk as in (3.1).
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The difference between this model and the model (3.1) lies in the prior for z. This

prior is developed in the same manner as (3.10),

[z | δ1] =
|M ⊗ A|1/2

+

(2πδ1)(I−3)(J−2)/2
exp

(
− 1

2δ1
z′(M ⊗ A)z

)
, (4.29)

where the matrix M is defined in (4.18) and the matrix A is defined in (3.9). The

Kronecker product of M and A yields a type of precision matrix that is made up of

two components, the M matrix which accounts for the spatial structure of the data,

and the A matrix which smooths the temporal process. The Kronecker product

applies the spatial function across the temporal processes. The result is that z can

be considered a set of spatially correlated temporal processes.

The temporal component of this matrix can be seen as a second order intrinsic

auto-regressive, (IAR(2)) prior applied to the temporal trend of the data, as related

in Besag and Kooperberg (1995) and Künsch (1987). The IAR(2) prior is used in

Fahrmeir and Wagenpfeil (1996) for smoothing hazard functions.

Since θk is the difference between the mean for age-group k and age-group 1,

θ1 = 0. We assume the priors for the remaining θk are constant, i.e.

π(θk) ∝ 1, k = 2, 3, . . . , K. (4.30)

Additionally, we specify the prior distribution of νijk as in (3.3),

(νijk | zij, θk, δ0) ∼ N(zij + θk, δ0). (4.31)

Let ν = (ν111, . . . , ν1J1, ν211 . . . , νIJ1, ν112, . . . , νIJK)′ and θ = (θ1, θ2, θ3, θ4)
′. The

prior distribution of ν is written as

(ν | z, θ, δ0) ∼ NIJK (1K ⊗ z + θ ⊗ 1IJ , δ0IIJK) . (4.32)

In order to complete this model, we choose the priors for δ0 and δ1 as in (3.11).

55



4.2.1 Full-Conditional Distributions

The full conditional distributions of the model parameters are needed to imple-

ment a Gibbs sampler.

Lemma 3

(a) For given (z, θk, δ0; y), (ν111, . . . , νIJK) are independent, and each νijk depends

only on yijk with

[νijk | zij, θk, δ0; yijk] ∝ exp

{
νijkyijk − nijke

νijk − 1

2δ0
(νijk − zij − θk)

2

}
.

(b) The conditional posterior density of νijk in (a) is log-concave.

(c) Write νk = (ν11k, ν12k, . . . , νIJk)
′. Then (z | ν, θ, δ0, δ1; y) ∼ NIJ (c, δ0G

−1),

where

G = KIIJ + λ(M ⊗ A), c = G−1

K∑

k=1

(νk − θk1IJ),

and λ = δ0/δ1.

(d) (θk | ν, z, δ0; y) ∼ N
(
(IJ)−1

∑I
i=1

∑J
j=1(νijk − zij), δ0(IJ)−1

)
.

(e) (δ0 | ν, z, θ; y) ∼ IG(a0 + 1
2
IJK, b0 + 1

2

∑I
i

∑J
j

∑K
k (νijk − zij − θk)

2).

(f) (δ1 | z; y) ∼ IG(a1 + 1
2
(I − 3)(J − 2), b1 + 1

2
z′(M ⊗ A)z).

Proof. We only prove part(b). In fact,

∂2

∂ν2
ijk

log[νijk | zij, θk, δ0; yijk] = −nijke
νijk +

1

δ0
< 0, ∀ νijk.

The result then holds.
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4.2.2 Computational Improvements

Updating z using the conditional distribution based on the current value of λ in

Lemma 11(a) requires the inversion of an IJ × IJ matrix. In order to speed up the

process, it is desirable to diagonalize this matrix. This algorithm extends the method

of Section 3.5.1.

• Begin by letting QM be an orthogonal matrix such that M = QMΛMQ
′

M ,

where ΛM is the diagonal matrix of eigenvalues of M , and let A = QAΛAQ
′

A,

where ΛA is the diagonal matrix of eigenvalues of A.

• Then define Q̃ = QM ⊗ QA, Q̃
′

= Q
′

M ⊗ Q
′

A, and

Φλ = KIIJ + λ(ΛM ⊗ ΛA). (4.33)

Note that Q̃ is orthogonal and Φ is diagonal and now easily invertible. It can

then be shown that

KIIJ + λ(M ⊗ A) = Q̃ΦλQ̃
′,

(KIIJ + λ(M ⊗ A))−1 = Q̃Φ−1
λ Q̃′.

We prove the first equality only:

Q̃(KIIJ + λ(ΛM ⊗ ΛA))Q̃′

= (QM ⊗ QA)(KIIJ + λ(ΛM ⊗ ΛA))(Q′

M ⊗ Q′

A)

= KIIJ + λ(QMΛM ⊗ QAΛA)(Q′

M ⊗ Q′

A)

= KIIJ + λ(QMΛMQ′

M ⊗ QAΛAQ′

A)

= KIIJ + λ(M ⊗ A).

Now to update z the following algorithm could be implemented.
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1. Update Φλ.

2. Simulate s ∼ NIJ(0, IIJ).

3. Compute rλ = Φ
−

1
2

λ s + Φ−1
λ Q̃′

∑K
k=1(νk − θk1IJ).

4. Let z = Q̃rλ, which has the same distribution as Lemma 9(c).

4.3 Results

Since almost all the full conditionals are of closed form, the implementation of the

Gibbs sampler (Gelfand & Smith 1990) is relatively simple. The exception is for νij,

which can be evaluated using an Adaptive Rejection Sampler (Gilks & Wild 1992) at

each step of the Gibbs sampler. Convergence is rapid, and as a result, implementation

in FORTRAN takes a little over 100 minutes to produce 100,000 iterations, with the

first 50,000 discarded as burn-in.

4.3.1 Noninformative and Data-dependent Priors

The model is initially run using non-informative priors for δ0 and δ1,

π(δl) ∝ 1, l = 0, 1.

Statistics from the posterior distributions for δ0, δ1 and λ are shown in Table 4.1.

The posterior means and variance are then used to calculate sets of data-dependent

priors for both δ0 and δ1. These are calculated by inflating the posterior means and

variances of the respective parameters and deriving the respective hyperparameters

corresponding to the inflated values, as in Section 2.6.1. These new hyperparameters
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are then used and the model re-run in order to determine the robustness of the model

to perturbations in the variance parameters’ priors.

Table 4.1: Quantiles of δ0, δ1 and ρ for Noninformative (NI) and Inflation Factor (IF)
Data-dependent Priors

Summary of Posterior Distributions
Prior Min. 1st Qt. Median Mean 3rd Qt. Max. Std. Dev.
NI .0027 .0077 .0092 .0094 .0109 .0219 .0024

IF 2, 200 .0035 .0074 .0087 .0089 .0101 .0200 .0021
δ0 IF 1.5, 150 .0035 .0067 .0080 .0082 .0096 .0174 .0021

IF 2.5, 500 .0036 .0079 .0092 .0094 .0107 .0178 .0021
NI .00000 .00001 .00002 .00004 .00005 .00041 .00005

IF 2, 200 .0026 .0050 .0057 .0058 .0065 .0117 .0011
δ1 IF 1.5, 150 .0023 .0041 .0046 .0047 .0053 .0104 .0009

IF 2.5, 500 .0031 .0055 .0062 .0064 .0071 .0119 .0011
NI 11.58 170.5 386.5 9743.8 1281.6 406881 29764.1

IF 2,200 .4376 1.2423 1.5115 1.5845 1.846 5.1474 .4893
λ

IF 1.5,25 .4670 1.3685 1.7188 1.8129 2.1679 4.9362 .61283
IF 2.5,500 .4867 1.2060 1.4703 1.5232 17908 4.5884 .4443

As can be seen, the choice of priors seems to have little influence on the posterior

distribution of δ0, though the choice of these informative priors seems to have a great

deal of influence over the posterior distributions of δ1 and λ. This is a bit troubling.

We would like to see a more non-informative prior for these parameters. This is an

issue which will see further discussion. For now the results from the non-informative

priors will be used for further discussion.

4.3.2 CAR Model vs Thin-Plate Spline Model

The results here are compared with a previous model for the same data, which

used a conditional autoregressive prior for the spatial effects. The CAR prior density

is defined in (3.10).
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Scatterplots in Figure 4.1 of the estimates of pijk for the two models illustrate

the similarities between them. The thin-plate spline model tends to smooth the data

much like the CAR model. One of the original motivations for using the thin-plate

spline model was its demonstrated improvement over the CAR model in Chapter 4.

The posterior density of ρ from the CAR model in Figure 3.7, showed that it is heavily

skewed to the right. This is thought to be indicative of under smoothing, though this

interpretation is open to discussion.

The maps in Figures 4.4-4.9 show the estimates of pijk based on the raw data, the

CAR model and the thin-plate spline model. The results reinforce what is shown in

the scatterplots. The results of the two models look similar. Both models appear to

have shrunk the estimates toward an overall mean.

One method of model selection between the CAR model and the thin-plate spline

model is the DIC as proposed by Spiegelhalter et al. (2002) and discussed in Section

3.6.2. Table 4.2 lists the results for the two models.

Table 4.2: DIC Values for the CAR and Thin-plate Spline Models

Model Comparison Using DIC

Model PD D̄ DIC
CAR 443.909 449051 449495

Thin-Plate Spline 432.868 449067 449500

In this case the DIC indicates that the CAR model is a better model. Spiegelhalter

et al. (2002) give only a rough rule of thumb stating that models within one to two of

the best score should be considered and models within three to seven should be ”less

so.” Given the variability in the goodness-of-fit term D̄ and the smaller complexity

term PD for the thin-plate spline model it is difficult to reject it out of hand based

on the DIC alone.
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Another model selection criteria is the D(m), based on minimizing the posterior

expected loss as proposed by Gelfand & Ghosh (1998). The results for the comparison

of the two models using this criteria are shown in Table 4.3.

Table 4.3: D(m) Values for the CAR and Thin-plate Spline Models

Model Comparison Using D(m)

Model P (m) G(m) D(m)
CAR 188.78 30016.74 30205.52

Thin-Plate Spline 192.56 22988.85 23181.41

These results strongly favor the thin-plate spline model. Despite its larger estimate

variances, it appears to fit the data better. The caveat with this interpretation is that

the measure of goodness of fit G(m) is based on the squared error loss, which may

not be the appropriate loss function.

Viewing the posterior densities of some parameters for both models, we can see in

Figure 3.7 that in the case of the CAR model that the posterior distribution of ρ is

heavily skewed and the center of mass is near the positive limit for ρ. This is thought

to indicate that the model based on the CAR prior for the spatial effects does not

sufficiently smooth the data. This may be true. Referring to Table 4.1 and looking

at the posterior density of the smoothing parameter in Figure 4.3 λ and δ0 we see

that it has large values for the mean and median, and correspondingly small values

for δ1 in the noninformative case. The trace of these two parameters indicate that

the smoothing parameter seems to spike from time to time, indicating that the model

is trying to fit a flat surface. Looking at the maps, it appears that this is probably

what both models are trying to do. Interpreting the skewed posterior density of ρ

suggesting that the model is under smoothing is probably correct in a strict sense.

The best scoring model in terms of DIC has been the additive model that tended to
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shrink estimates toward a mean and didn’t indicate much spatial pattern to the data.

What is probably going on is that there is no real need for a spatial component in

the model for this data.

4.4 Conclusion

Though the results of the model selection criteria are perhaps unclear, compari-

son of the maps of the estimated rates from both the CAR and the thin-plate splines

models show that the estimates reveal a subtle spatial pattern at best for the es-

timates. These results suggest that there could be spatial and temporal trends at

work and that the nature of these trends appear to interact, in space and time at the

county level. There is also the possibility that the temporal trend is not adequately

explained using the IAR prior. These trends can be seen in the maps of rates for

each age groups and reveal the complex nature of the changes in rates across age

groups over time. It appears that age effects and these temporal changes most likely

dominate the data.

It is likely an overall mean would fit the data as well as any of these spatial models.

The problem arises in looking at the results based on the CAR model, particularly the

posterior density of ρ and assuming that the skewed density indicated the presence

of a strong spatial pattern, that was not fully explained by the CAR prior. The

posterior density of the smoothing parameter λ in the thin-plate spline model was

actually more useful as it indicated that the model was trying to fit a flat surface.

Perhaps there was not much spatial pattern to the data after all. This was easier

to detect in the thin-plate spline model, because the smoothing parameter has a

more straightforward interpretation in terms of the presence or absence of spatial
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heterogeneity. The mixed performance of the model selection criteria is possibly the

result of neither model being appropriate.
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Figure 4.1: Scatterplots Comparing the Estimates of Mortality Rates pijk for Female
Breast Cancer in Missouri from 1996-2000 from the CAR and Thin-plate Spline Joint
Models: (a) (j, k) = (3, 1), (b) (j, k) = (5, 2), (c) (j, k) = (7, 3), and (d) (j, k) =
(11, 4).
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Figure 4.2: Trace Plots of (a) δ0, (b) δ1, (c) λ, and (d) θk, k = 2, 3, 4 from the
Joint Thin-plate Splines Model for Mortality Rates pijk for Female Breast Cancer in
Missouri from 1969-2000.
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Figure 4.3: Posterior Densities for (a) δ0, (b) log(δ1), (c) log(λ), and (d) θk, k = 2, 3, 4
from the Joint Thin-plate Splines Model for Mortality Rates pijk for Female Breast
Cancer in Missouri from 1969-2000.
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Figure 4.4: Maps of Frequency and Bayesian Estimates of Mortality Rates pij from the
Joint Thin-plate Splines Model for Female Breast Cancer in Missouri from 1996-2000
for (j, k) = (3, 1) and (j, k) = (5, 2).
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Figure 4.5: Maps of Frequency and Bayesian Estimates of Mortality Rates pij from the
Joint Thin-plate Splines Model for Female Breast Cancer in Missouri from 1996-2000
for (j, k) = (7, 3) and (j, k) = (11, 4).
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0.0001 0.0005

range of p

Figure 4.6: Maps of Bayesian Estimates of Mortality Rates pij from the Joint Thin-
plate Splines Model for Female Breast Cancer in Missouri from 1996-2000 for k = 1
and j = 1, . . . , 11.
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(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11

0.0001 0.0010

range of p

Figure 4.7: Maps of Bayesian Estimates of Mortality Rates pij from the Joint Thin-
plate Splines Model for Female Breast Cancer in Missouri from 1996-2000 for k = 2
and j = 1, . . . , 11.
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(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11

0.0002 0.0014

range of p

Figure 4.8: Maps of Bayesian Estimates of Mortality Rates pij from the Joint Thin-
plate Splines Model for Female Breast Cancer in Missouri from 1996-2000 for k = 3
and j = 1, . . . , 11.
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(a)   j=1 (b)   j=2 (c)   j=3

(d)   j=4 (e)   j=5 (f)   j=6

(g)   j=7 (h)   j=8 (i)   j=9

(j)   j=10 (k)   j=11

0.0003 0.0021
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Figure 4.9: Maps of Bayesian Estimates of Mortality Rates pij from the Joint Thin-
plate Splines Model for Female Breast Cancer in Missouri from 1996-2000 for k = 4
and j = 1, . . . , 11.
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Chapter 5

Using a g-prior for Model

Comparison and Refinement

5.1 The Problem

Comparison in Section 4.3.2 of the models using the thin-plate spline prior and the

CAR prior for spatial effects was done using the DIC and D(m) model selection cri-

teria. These model selection criteria are limited in their effectiveness in part because

they have no definitive means of determining if a difference between two values is

significant. The natural choice to decide between two models is to use Bayes factors,

but Bayes factors are not defined for improper priors such as the thin-plate spline

model of Section 4.1.2. In order to allow for comparison between the model based

on the CAR prior and the thin-plate spline prior, this chapter presents an alterna-

tive parameterization of the thin-plate splines based prior using proper priors for the

unique parameters and demonstrates how the Bayes factors can be calculated using

bridge sampling, thus allowing for the comparison of the two models.
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This methodology is illustrated using the data from Missouri Turkey Hunting

Survey of 1996. This dataset consists of responses from a survey mailed at random

to individuals who purchased a hunting permit during the two-week turkey hunting

season of 1996. Respondents indicated in which county they hunted during each

week of the season, and if they harvested a turkey during that week. The surveys

were mailed at random and the responses were then post-stratified by county. As a

result, several counties have missing or sparse data. This makes traditional frequentist

methods of rate estimation for the individual counties erratic. It is desirable to use

a spatial smoother to reduce the noise in the observed rate estimates and create a

map of smoothed estimates that depict the spatial variation in hunter success rates.

Previously we have used a hierarchical model with a thin-plate splines prior and

compared the results of that model to the results from a similar model using a CAR

prior. Comparing two models using Bayes Factors requires that the two models to be

compared are nested and that the unique parameters have proper priors. In this case

the two models are not nested so a third null model that is nested to both models is

introduced for the purposes of computation. The two models considered differ slightly

from their previous parameterizations but do provide substantially the same results

and allow a comparison of the two models using both the DIC and Bayes Factors.

5.2 The Data and Likelihood

The data here consist of, yij, the number of turkeys harvested in county i during

week j from the survey and nij, the corresponding number of hunters for county i

during week j, where i = 1, . . . , I and j = 1, . . . , J . In this example for the data from

the 1996 MTHS I = 114 and J = 2.
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Given nij, the yij are assumed to follow independent binomial distributions

(yij | nij, pij)
indep.∼ Binomial(nij , pij), i = 1, . . . , I, j = 1, J, (5.1)

where pij is the probability of harvesting a turkey in county i during week j.

5.3 The Hierarchical Models

In order to model the rates pij, we make use of the logit transformation of pij,

νij = log(pij/(1 − pij)), for i = 1, · · · , I, j = 1, · · · , J . Following He & Sun (2000) ,

the first stage prior for νij has the form,

νij = θj + zi + εij, i = 1, . . . , I, j = 1, . . . , J, (5.2)

where

εij
iid∼ N(0, δ0). (5.3)

Here θj is the effect for week j and zi is the county effect. We write ν = (ν11, . . . , νI1,

. . . , νIJ)′, X0 = IJ ⊗ 1I , and X1 = 1J ⊗ II , θ = (θ1, . . . , θJ)′, and z = (z1, . . . , zI)
′.

Then the first stage prior ν given (θ, z, δ0) is equivalent to

(ν | θ, z, δ0) ∼ NIJ(X0θ + X1z, δ0IIJ), (5.4)

For the second stage prior, we assume the following density for (θ, δ0),

π(θ, δ0) ∝ 1

δ0
. (5.5)

In the following two subsections, we will present two different models for the spatial

effects z, namely the CAR prior and the thin-plate spline prior. He & Sun (2000)

showed that the CAR prior is preferable to many other priors. The main purpose of

this chapter is compare the CAR prior with the thin-plate spline prior.
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5.3.1 Model M1 for z

The first model M1 uses the CAR prior for spatial effects z written as

(z | ρ, δ0, η) ∼ NI

(
0,
δ0
η

(I − ρC)−1
)
. (5.6)

This is the same prior given for z in (2.6), with δ1 = δ0/η. The prior for ρ is given in

(2.12). The prior for η uses a Pareto distribution, whose density is given by

π(η | a) =
a

(a+ η)2
, η > 0, (5.7)

where a > 0 is a positive constant. Although this prior is proper, it has neither mean

nor variance. Furthermore, it has the following hierarchical structure.

Lemma 4 Assume that η | φ ∼ Exp(φ) and φ ∼ Exp(a). The marginal prior for η

has the density (5.7).

Proof. Note that,

π(η | φ) = φe−φη, and π(φ | a) = ae−aφ. (5.8)

The result holds immediately.

Note that the hyper-parameter a is the median of the Pareto distribution. Possible

choices for a will be discussed in a later section. We summarize the Model M1 as

follows:

M1 : z has the hierarchical structure (5.6), (2.12) and (5.7).

5.3.2 Model M2 for z

The second model M2 uses a prior for z, the county effects that is in the spirit

of a decomposition of the thin-plate spline prior (4.27). . Note that the matrix T
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as defined in (4.8) contains a column of ones corresponding to a constant term. In

our model (5.4), the column space of X0 contains a constant vector 1. To avoid

identifiability issues, we remove the first column of ones in T and define,

T− = (Tij), i = 1, . . . , I, j = 2, . . . , t, (5.9)

β− = (β2, . . . , βt)
′. (5.10)

Now we could define a modified prior for z based on (4.27),

z = T−β− + X2u, (5.11)

where X2u term represents the part of informative normal. To define the prior for u

let D be the Cholesky decomposition of F ′

2KF2, i.e D is a lower triangular matrix

with positive diagonal elements such that

F ′

2KF2 = D′D. (5.12)

Define

X2 = KF2D
−1. (5.13)

The prior for (u | η2, δ0) is NI−t(0, δ0/η2I), i.e.

[u | η2, δ0] =

(
η2

2πδ0

)(I−t)/2

exp

(
− η2

2δ0
u′u

)
. (5.14)

The prior for η2 uses the Pareto distribution as in (5.7),

[η2 | b] =
b

(b+ η2)2
, (5.15)

where b > 0 is a fixed constant.

In (4.27) we noted that the prior for β is flat, in this case we need a proper prior

for β− in order to calculate Bayes factors for model selection. Recently Liang et al.
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(2005) studied the properties of Zellner’s g-prior (Zellner 1986), specifically a Zellner-

Siow prior (Zellner & Siow 1980), for testing if a group of regression coefficients of a

normal linear model were zero. We adapt such a prior in our case defining g = η2,

and the prior for β− as

[β− | δ0] =
(I/2)

1
2

(2πδ0)
t−1
2

Γ( t
2
)

Γ(1/2)
|T ′

−
T−|

1
2

[
I

2
+

1

2δ0
β′

−
(T ′

−
T−)−1β−

]
−

t
2

. (5.16)

Note that (5.16) is a multivariate t-distribution and has the following hierarchical

structure.

Lemma 5 Assume that (β− | η1, δ0) ∼ N(0, δ0
η1

(T ′

−
T−)−1) and η1 ∼ Gamma(1/2, I/2).

The marginal prior β− has the density (5.16).

Proof. Note that,

π(β− | η1, δ0) = |T ′

−
T−|1/2

(
η1

2πδ0

)(t−1)/2

exp

(
− η1

2δ0
β′

−
(T ′

−
T−)−1β−

)
,

π(η1) =
(I/2)1/2

Γ(1/2)
η

1/2
1 exp(−η1(I/2)).

The result holds immediately.

Let These results define the prior for z in model M2:

M2 : z has the hierarchical structure of (5.11)-(5.16) and (5.14)-(5.15).

Note that the prior for z in model M1 is an analog for Zellner’s g-prior for part

of the spatial effects in model M2 (Liang et al. 2005).

78



5.4 Bayesian Computation

5.4.1 Bayes Factor Computation and the Null Model M0

Since models M1 and M2 are not nested, we introduce a null model M0 given as

M0 : (ν | θ, δ0) ∼ NIJ(X0θ, δ0IIJ), (5.17)

where the priors for (θ, δ0) is defined in (5.5). If we evaluate Bayes factor of model

Mk versus M0,

BFk0 =
π(y |Mk)

π(y |M0)
, k = 1, 2,

the Bayes Factor B21 is

BF21 =
BF20

BF10

. (5.18)

In order to evaluate BFk0, we apply Meng & Wong (1996)’s bridge sampling algo-

rithm. Let γ = (ν, θ, δ0) be the common parameters between the models Mk and

M0. Let γkm = (ν(m), θ(m), δ
(m)
0 ), m = 1, . . . , nk, be the output of the Gibbs sampling

for model Mk. The algorithm is iterated until convergence, and we set B
(0)
k0 = 1.

The estimate of Bk0, the Bayes factor comparing models Mk and M0 at the (g + 1)

iteration is

B̂
(g+1)
k0 =

1
n0

∑n0

m=1
l0m

dkl0m+d0B̂
(g)
k0

1
nk

∑nk

m=1
1

dklkm+d0B̂
(g)
k0

, (5.19)

where dk = 1 − d0 = nk/(nk + n0), l0m = qk(γ0m)/q0(γ0m), lkm = qk(γkm)/q0(γkm),

and qk is the product of the likelihood and the marginal prior density of γ under

model Mk. We choose nk = n0, so that dk = d0 = 1/2. In the case of B10, after some
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analytic integration we have

q1(γ)

q0(γ)
=

∫ ∫ ∫
L(y | ν)π(ν | θ, z, δ0)π(θ)π(z | η, ρ, δ0)π(δ0)π(η)π(ρ)

L(y | ν)π(ν | θ, δ0)π(θ)π(δ0)
dzdηdρ

=

∫ ∫ ∫
π(ν | θ, z, δ0)π(z | η, ρ, δ0)π(η)π(ρ)

π(ν | θ, δ0)
dzdηdρ

=

∫
∞

0

∫ λ−1
I

λ−1
1

√
| I−ρC |
|Gη,ρ|

aηI/2

(η + a)2
exp

{
1

2δ0
(ν−X0θ)′X1G

−1
η,ρX

′

1(ν−X0θ)

}
dρdη,

where Gη,ρ = JII + η(I − ρC). In the case of B20, after some analytic integration

q2(γ)

q0(γ)

=
L(y | ν)π(θ)π(δ0)

L(y | ν)π(θ)π(δ0)π(ν | θ, δ0)

×
∫ ∫ ∫ ∫

π(ν | θ,β−,u, δ0)π(β− | η1, δ0)π(u | η2, δ0)π(η1)π(η2)dβ−dudη1dη2

=

∫
∞

0

∫
∞

0

η
1/2
1 (I/2)1/2

(1 + η1)
√

|Gη2 |Γ(1
2
)

bη
(I−3)/2
2

(η2 + b)2
exp

(
−Iη1

2
+

1

2δ0
ν̃ ′X2G

−1
η2

X ′

2ν̃

)
dη1dη2,

where

ν̃ = ν − X0θ and Gη2 = I + X ′

2

(
I +

1

1 + η2

T−(T ′

−
T−)−1T ′

−

)
X2.

The remaining integration can be carried out numerically and the resulting Bayes

Factors calculated.

5.4.2 Full Conditional Distributions

Evaluation of the models M0, M1 and M2 are carried out using Gibbs sampling.

In order to do this the necessary conditional posterior distributions are needed. The

following are given whose proofs are standard and omitted.

Lemma 6 Under model M0, the conditional distributions are given below.
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(a) For given (θ, δ0; y), (ν11, . . . , νIJ) are independent. The conditional density of

νij depends only on yij and is given by

[νij | θj, δ0, yij] ∝ exp(νijyij − nij log(1 + eνij ) − (νij − θj)
2/2δ0).

(b) The conditional posterior density of νij in (a) is log-concave.

(c) (θ | ν, δ0; y) ∼ N(X ′

0ν/I, δ0IJ/I).

(d) (δ0 | ν, θ; y) ∼ IG(IJ/2, (ν − X0θ)′(ν − X0θ)/2δ0).

Lemma 7 Under model M1, we have the following conditional distributions.

(a) For given (θ, zi, δ0; y), (ν11, . . . , νIJ) are independent. The conditional density

of νij depends only on yij and is given by

[νij | θj, zi, δ0, yij] ∝ exp
(
νijyij − nij log(1 + eνij ) − (νij − θj − zi)

2/2δ0

)
.

(b) The conditional posterior density of νij in (a) is log-concave.

(c) (θ | ν, z, δ0; y) ∼ N(X ′

0(ν − X1z)/I, δ0IJ/I).

(d) (z | ν, θ, η, δ0, ρ; y) ∼ N(a, δ0B), where B = (η(II − ρC) + JII)
−1 and a =

BX ′

1(ν − X0θ).

(e) (δ0 | ν, θ, z, η; y) ∼ IG(I(J + 1)/2, c/2), where

c = (ν − X0θ − X1z)′(ν − X0θ − X1z) + ηz′(II − ρC)z.

(f) (η | z, φ, ρ; y) ∼ Gamma(I/2, φ+ z′(II − ρC)z/2δ0).

(g) (φ | η; y) ∼ Gamma(2, η + a).
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(h) [ρ | z, η, δ0; y] ∝ |I − ρC|1/2 exp(ηρz′Cz/2δ0).

(i) The conditional density of ρ in part (h) is log-concave.

Lemma 8 Under model M2, we have the following conditional distributions.

(a) For given (θ,β−,u, δ0; y), (ν11, . . . , νIJ) are independent. The conditional den-

sity of νij depends only on yij and is given by

[νij | θj,β−,u, δ0, yij] ∝

exp
(
νijyij − nij log(1 + eνij ) − (νij − θj − (T−β− + X2u)i)

2/2δ0

)
.

(b) The conditional posterior density of νij in (a) is log-concave.

(c) (θ | ν,β−,u, δ0; y) ∼ N(X ′

0(ν − X1(T−β− + X2u))/I, δ0IJ/I).

(d) (β− | ν, θ,u, η1, δ0; y) ∼ N(g(T ′

−
T−)−1T ′

−
(ν − X0θ − X1X2u), δ0g(T

′

−
T−)−1),

where g = 1/(1 + η1).

(e) (u | ν, θ,β−, η2, δ0) ∼ N(GX ′

2X
′

1(ν − X0θ − X1T−β−), δ0G),

where G = (η2II−3 + JX ′

2X2)
−1.

(f) (δ0 | ν, θ,β−,u, η1, η2; y) ∼ IG((IJ + I − 3)/2 + 1, d/2),

where d = ν̃ ′ν̃+η1β
′

−
(T ′

−
T−)β−+η2u

′u and ν̃ = (ν−X0θ−X1(T−β−+X2u)).

(g) (η1 | β−, δ0; y) ∼ Gamma(3/2, I + β′

−
T ′

−
T−β−/2δ0).

(h) (η2 | u, φ; y) ∼ Gamma((I − 3)/2 + 1, φ+ u′u/2δ0).

(i) (φ | η2; y) ∼ Gamma(2, η2 + a).

The resulting full conditionals can all be evaluated using Gibbs sampling. For the

log-concave densities, the ARS algorithm in Gilks & Wild (1992) is used.
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5.4.3 Choices for the Prior Median for η and η2

The parameters a and b in (5.7) and (5.15) are the medians of the Pareto distri-

bution. While this distribution is vague in that it has no mean or variance, the choice

of median is still informative. This leads to the question as to what is a reasonable

choice for a or b? Interpreting the prior median a is the more complex case so as a

simpler illustration we will examine the case of choosing b, the prior median for η2.

From a modeling perspective, we can consider our choice as being one where we want

to choose apriori, how complex our model is. Model complexity can be expressed as

the effective number of parameters. In the case of thin-plate spline models this is

the trace of the smoother matrix, as shown in Hastie & Tibrishani (1990). In this

example the smoother matrix is written in terms of the posterior covariance matrix

for u, and is given as,

X2(η2II−3 + JX ′

2X2)
−1X ′

2. (5.20)

As η2 → ∞, the trace of (5.20) approaches 0, and as η2 → 0 it approaches I − 3, the

rank of X2. The larger η2, the smoother the model fit, the smaller η2, the rougher the

model fit. The value of the trace may not have any direct relation to the number of

parameters in the model, but it does give a relative scale with which to choose a value

for the prior median b. So we want to pick a value for the prior model complexity,

between those limits, and then choose the prior median corresponding to that value.

Obviously the upper limit assumes that the model has a large degree of roughness,

and is equivalent to a saturated model. Conversely if η2 = 0, we assume that there are

no non-linear effects and that the spatial pattern can be described in linear terms. In

the first case, assuming the saturated model is true defeats the purpose of modeling

at all. If we assume that the model is purely linear, then the addition of a non-linear
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term is unnecessary and shouldn’t even be in the model. Instead we should pick what

we think is a reasonable number of non-linear terms to describe the data, given the

number of observations. Given that there is a maximum of I − 3 = 111 non-linear

terms in the model, it is reasonable to assume apriori that 20 or so would suffice to

adequately describe the data. If we choose η2 = 1 the trace of (5.20) is 18.23, which

for our purposes is close enough to 20, thus we will choose a = b = 1.

5.4.4 Decorrelation to Improve Mixing of the Posterior Sam-

pling Chain

Preliminary evidence indicates that the MCMC chain for θ and z mix poorly in

the CAR model, and that the chains for θ and u mix poorly in the g-prior model. In

order to improve the mixing of these chains we apply decorrelation steps as described

in Graves et al. (n.d.). These decorrelation steps are extra steps in the MCMC chain

that help reduce or eliminate autocorrelation in the chain. These steps work by adding

moves to the parameters of interest in directions that are likelihood invariant after

each MCMC cycle is complete. The basis for this procedure is from the work of Liu &

Sabatti (2000). A thorough explanation of the theoretical reasons for this procedure

and why it works is beyond the scope of this paper. Instead, we will present the

algorithms for the application of the decorrelation steps in each case.

For the CAR model, νij = θj + zi, and the likelihood for θ and z is invariant

under the transformation θ → θ + 1c, z → z − 1c for any scalar c according to Liu

& Sabatti (2000), such a move is valid if c is chosen with distribution

(c | z, ρ, η1, δ0) ∼ N(s1′(II − ρC)z, sδ0/(η1)). (5.21)

where s = 1/(IJ − ρ1′C1). The following augmented MCMC algorithm displayed
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much better mixing and converged significantly faster than the traditional Gibbs

algorithm.

Algorithm with Decorrelation Step for Model M1

• Generate one full cycle, obtaining updated θ and z.

• Update the value for c from (5.21).

• Replace θ with θ + 1Jc.

• Replace z with z + 1Ic.

For the g-prior model the likelihood of θ and u given ν is nearly invariant under

the transformation θ → θ + 1c and u → u − wc, where w = (X ′

2X2)
−1X ′

21I−3.

According to Liu & Sabatti (2000) this transformation is valid if c is chosen from the

distribution

(c | u, η2, δ0) ∼ N(sa, δ0s). (5.22)

where a = [(X01J − X1X2w)′(ν − X0θ − X1(T−β− + X2u)) + η2w
′u]. and s =

[(X01J − X1X2w)′(X01J − X1X2w) + η2w
′w]−1.

Algorithm with Decorrelation Step for Model M2

• Generate one full cycle, obtaining updated θ and u.

• Update the value for c from (5.22).

• Replace θ with θ + 1Jc.

• Replace u with u + wc.
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These decorrelation steps are very easy to implement in existing code and are very

effective at reducing the correlation within chains and improving mixing.

5.4.5 Bayes Factor Comparison to the DIC

The DIC or deviance information criterion for each of the models is calculated as

outlined in Spiegelhalter et al. (2002). The results are shown in Table 5.1.

Table 5.1: DIC Values for M0 M1 and M2

Model Comparison Using DIC

Model PD D̄ DIC
M0 100.89 13065.43 13166.32
M1 68.80 13029.69 13098.49
M2 38.85 13047.60 13086.45

According to these results, the models are in rank of ascending DIC, M2, M1 and

M0. According to the guidelines given by Spiegelhalter et al. (2002) the null and CAR

models should not be considered as candidate models for the data over the g-prior

model.

The Bayes Factors1 provide a clearer picture than the DIC

BF10 = 1627.087,

BF20 = 2.73 × 1014,

BF21 = 1.59 × 1011.

These results indicate that the CAR model is significantly better than the null model

and that the g-prior model is significantly better than the CAR model. In this

case, the Bayes Factor results and the DIC results are comparable and reinforce the

interpretation that the g-prior model is the better model to select in this case.

1Preliminary analysis, may not reflect exact final results.
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5.5 Results

The maps provides an illustration of the differences in the raw rates, the rates

smoothed by the CAR model and the rates smoothed by the g-prior model. From the

maps of the raw rate estimates for weeks one and two, it is apparent that the success

rates for week one are higher than those for week two, and that the rates of success

are higher in the northern portion of the state during both weeks. There are a few

counties in the southeastern portion of the state that have no data for either week.

The spatial pattern shown by the raw rate maps does appear noisy, and while there

does appear to be a pattern, it is partially obscured.

The results for the smoothed rate estimates from both the smoothed models show

considerable improvement over the raw rate estimates. The pattern of success rates

across the state appears more homogeneous in general and it is easier to see the

pattern overall. The difference between the CAR model and the g-prior model is more

subtle and reveals the difference in how these two models model spatial structure. The

CAR model results appear at first glance to be rougher than the g-prior results. The

g-prior model has preserved the large scale difference between regions across the state

while smoothing the localized differences between counties more than the CAR model.

It is also interesting to note that the counties in the southeastern corner of the state

where there are no data have been smoothed toward the overall mean in the case of

the CAR model, where in the g-prior model they have been smoothed toward the

regional mean. This is especially apparent for week one. The results show that the

g-prior model appears to preserve the regional large scale trends better than the CAR

model. The trade off to this may be that the g-prior model does not do as well when

it comes to identifying individual regions that are truly anomalous; this capability is
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sometimes referred to as edge detection. In this instance, it may be that the CAR

model is the superior model for detecting edges, or areas of transition. This is a

question for further exploration and discussion.

5.6 Discussion and Further Work

The results of these models show that in this case the g-prior model is in fact

the better smoother. This is demonstrated using both DIC and Bayes Factors. The

results show that the g-prior model preserves overall spatial patterns better than the

CAR model, while the CAR model may do better at individual anomalies. This

underlying difference is apparent in the structure of the two priors. Recall that in the

case of the g-prior, the matrix K contains the spatial structure of the data, and that

the entries of K are basis functions for every pair coordinate points. In the case of

the CAR model, information about the spatial structure is contained in the matrix

C, which only contains information about the first order adjacency of a given region.

This intuitively explains why the g-prior model smooths more across regions of the

state than the CAR model, and likewise why the CAR model preserves individual

anomalies better than the g-prior model.

The usefulness of either of the models for the Missouri Department of Conservation

is evident, in light of the departments goals and desires in wildlife management. The

results presented here suggest that the g-prior model is the better model to use. The

g-prior model is easy to implement and the results are straightforward to interpret.

The issue of prior selection for the median of η2 is one to be discussed further. Over

time, it is reasonable that the professionals implementing this model for similar data

each year may develop a reasonable informative choice based on their experience. In

88



addition, it is possible that an appropriate objective choice of prior median may also

be found. In either case, the lack of a non-informative prior should not be considered

an impediment to implementation and use of the g-prior for spatial models.
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Figure 5.1: Trace Plots of (a) ν11,1, (b) ρ, (c) θ1, (d) η, (e) z11 and (f) δ0 from CAR
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Chapter 6

Dimensional Reduction for a

Smoothed National Cancer Map

Large scale problems in data analysis can often be impractical, as they require

excessive computational time. Methods that reduce the dimension of the problem

are desirable and of much interest. In the context of applying a thin-plate spline

based prior for spatial effects updating at each step of the Gibbs sampler requires

inverting a large matrix. While there are diagonalization procedures available, they

rely on eigenvalue decomposition. These can still be computationally intense for

large scale models and unreliable. Numerical limitations to eigenvalue decomposition

intensify as dimension increases. In order to address this issue, we examine a method

of basis reduction proposed in Nychka et al. (1996). While there are other methods

of dimension reduction using principle components analysis based approaches as in

Van Der Linde (2003), they suffer from the drawbacks inherent in the eigenvalue

decomposition of a large matrix. We combine the reduced set of basis functions with

the eigenvalue diagonalization first outlined in Section 3.5.1, and compare the results
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for several different reduced bases and the full basis.

6.1 Introduction

As an example to implement this method, we use a data set of observed deaths

due to colorectal cancer among men during the period 1999 through 2003 for each

of the 3082 counties in the continental U.S. This may not be considered a large

problem in some contexts, but the matrix that requires inversion at each iteration is

3079 × 3079, and is still computationally intensive. This example should be useful

for exploring the possibilities of using this reduced basis technique for data reduction

and its applicability to larger scale problems.

6.2 Data and Likelihood

The structure of the data and the model used here are familiar. Similar ones have

been used in previous chapters. They provide a useful foundation for exploring how

this methodology can be implemented and to evaluate its efficacy.

6.2.1 Data

The data set used here consists of the observed deaths due to colorectal cancer

among men in each of the 3082 counties in the continental U.S. during the period

1999-2003 and each county’s corresponding population size. There is some indication

that there may be spatial trends in this data due to demographic and socio-economic

differences across the country. For that reason, a spatial smoother on this scale is

helpful to form a more coherent picture of mortality due to cancer.
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6.2.2 Likelihood

The data as collected consists of yi, the observed number of deaths in county

i = 1, . . . , I = 3082, and ni, the corresponding population size. The observed number

of deaths is assumed to follows a Poisson distribution

(yi | pi) ∼ Poisson(nipi), (6.1)

where pi is the mortality rate for county i.

6.2.3 Model

As previously we use the log of link function

log(pi) = νi, (6.2)

and consider the model

ν = µ1I + X1β + X2u + ε, (6.3)

where ν = (ν1, . . . , νI)
′ and ε ∼ NI(0, δ0II). Thus the first level prior for ν is

(ν | µ,β,u, δ0; y) ∼ N(µ1I + X1β + X2u, δ0II). (6.4)

The term µ represents an overall mean, and the matrices X1 and X2 are constructed

similarly to those in (4.8) and (5.12). The priors for β and u are given by (5.16),

(5.14) and (5.15). The prior for (µ, δ0) is

π(µ, δ0) ∝
1

δ0
. (6.5)
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6.3 Computation

The model as given can be evaluated using a Gibbs sampler (Gelfand & Smith

1990) in conjunction with Gilks adaptive rejection sampler (Gilks & Wild 1992). The

only necessary components are the full-conditional densities.

Lemma 9 Assume that I > 5,

(a) For given (θ,β,u, δ0; y), (ν1, . . . , νI) are independent. The conditional density

of νi depends only on yi and is given by

[νi | µ,β,u, δ0, yi] ∝ exp
(
νiyi − nie

νi − 1

2δ0
(νi − µ− x1iβ − x2iu)2

)
,

where x1i is the ith row of X1 and x2i is the ith row of X2.

(b) The conditional posterior density of νij in (a) is log-concave.

(c) (µ | ν,β,u, δ0; y) ∼ N(1′(ν − X1β1 − X2u)/I, δ0/I).

(d) (β | ν,µ,u, η1, δ0; y) ∼ N(g(X ′

1X1)
−1X ′

1(ν − 1µ− X2u), δ0g(X
′

1X1)
−1),

where g = 1/(1 + η1).

(e) (u | ν, µ,β, η2, δ0) ∼ N(GX ′

2(ν−1µ−X2β), δ0G), where G = (η2I +X ′

2X2)
−1.

(f) (δ0 | ν, µ,β,u, η1, η2; y) ∼ IG( IJ+I−3
2

, d
2
), where d = ν̃ ′ν̃ + η1β

′(X ′

1X1)β +

η2u
′(X ′

2X2)u and ν̃ = ν − 1µ− X1β − X2u.

(g) (η1 | β, δ0; y) ∼ Gamma( 3
2
, I +

�
′ � ′

1
�

1
�

2δ0
).

(h) (η2 | u, φ; y) ∼ Gamma( I−5
2
, 	 ′ 	

2δ0
+ φ).

(i) (φ | η2; y) ∼ Gamma(2, η2 + a).

102



The full conditionals can be evaluated using Gibbs sampling (Gelfand & Smith

1990), with the exception of the conditional posterior of νi, which will be evaluated

using the ARS algorithm of Gilks & Wild (1992).

6.3.1 Dimension Reduction

The most obvious impediment to computation in this instance is the posterior

covariance matrix of u, which requires inversion at each iteration of the Gibbs sampler.

This inversion and updating can be facilitated by use of the algorithm presented in

Section 3.5.1. This still requires the prior eigenvalue decomposition of the (I − 3) ×

(I−3) matrix X ′

2X2. The accuracy of which is computationally limited. The obvious

solution is to reduce the dimension of the matrix X ′

2X2. Nychka et al. (1996) suggests

reducing the number of basis functions in (4.4). Recall that the matrix K is defined

in (4.9) as K = (ψi(xj)), where ψi(x) is defined in (4.5). In all our previous examples

we have assumed that in our definition of K, i = 1, . . . , n and j = 1, . . . , n. If we were

to allow k = 1, . . . , q for some q < n, that is to use a smaller set of γks representative

of the xis to construct the matrices K and T . We would ultimately have a smaller

matrix X ′

2X2. Note that the matrix X1 is unchanged. For further explanation of

this method of data reduction, see Nychka et al. (1996).

The procedure is outlined as follows. Let γk, k = 1, . . . , q, t < q < n be a
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representative set for the total observed x’s. Define the matrices

K− = (Kik)n×q, K−ik = ψi(γk), k = 1, . . . , q i = 1, . . . , n, (6.6)

K∗ = (K∗

il)q×q, K
∗

il = ψl(γk). k = 1, . . . , q, l = 1, . . . , q, (6.7)

T ∗ = (T ∗

ks)q×t T
∗

ks = φs(γk), k = 1, . . . , q, s = 1, . . . , t, (6.8)

T ∗T ∗
′

= F ∗ΛF ∗
′

, (6.9)

T− = (Tij)n×(t−1), T−ij = φj(xi) i = 1, . . . , n, j = 2, . . . , t. (6.10)

Then F ∗

1 is the q × t matrix of vectors spanning the column space of T ∗ and F ∗

2 is

the q × (q − t) matrix of columns vectors orthogonal to T ∗. Define D∗ again using

the Cholesky decomposition F ∗
′

2 K∗F ∗

2 = D∗
′

D∗. Let

X1n×t
= T− and X∗

2n×q−t
= K−F ∗

2 D∗−1. (6.11)

The vector u∗ = (u∗1, . . . , u
∗

q−t)
′, and the matrix X∗

′

2 X∗

2 has dimension (q−t)×(q−t).

The model then can be evaluated by substituting X∗

2 for X2 and u∗ for u, with

the same formal full conditional distributions and prior changes for the dimensional

reduction. This reduces the computational burden of updates in each Gibbs cycle.

Choices for values of q and the specific γk’s will be discussed later.

6.4 Results

The full model as written is implemented along with three other reduced mod-

els. The results are compared and comments made on the specific choices for model

reduction and how they influence the results.
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6.4.1 Data Reduction

The dimensional reduction technique illustrated in Section 6.3.1 is implemented

by creating three different grids of a reduced number of points that cover the area of

the county centroids. These three different grids consist of 1600, 900 and 100 points

uniformly distributed over the area of the range of the county centroid coordinates. In

each case these grids, the reduced design matrix X∗

2 , and the eigenvalue decomposi-

tion of X∗
′

2 X∗

2 are calculated and the models implemented. As expected, the reduced

dimension results in a significant reduction in computational time. The differences in

computational time are roughly proportional to the reduction in the number of basis

functions, since the computational burden is already eased by the use of diagonal-

ization algorithm illustrated in Section 3.5.1. The differences in the qualitative and

quantitative results are interesting. These are examined by looking at the resulting

maps of smoothed values produced by each model as well as comparing their DIC

and their ability to detect significant areas with high or low rates of mortality using

the standardized mortality ratios (SMRs).

6.4.2 Calculating the Standardized Mortality Ratios

The standardized mortality ratio for county i is defined as the observed mortality

divided by the expected mortality.

SMRi =
Oi

Ei
, (6.12)

where the expected mortality can be based on a reference population, in this case the

national population as a whole

Ei =

∑I
k yk∑I
k nk

ni. (6.13)
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Clearly, (6.12) can be calculated at each iteration of the MCMC chain and sam-

pled, thus providing samples from the densities of the SMRs, which can be used for

detecting areas with significantly higher or lower mortality rates.

6.4.3 Data Mapping

Figures 6.3 - 6.7 show the frequency rate estimates calculated directly from the

data and the results for the smoothed values obtained from each model. Examining

the map for the full model first shows that the raw data rates seem to indicate a

general trend of mortality rates increasing as we move from west to east across the

continental U.S. What becomes clear in the map of smoothed values is that although

this trend remains after smoothing. There are several areas of dark blue, indicating

a low mortality rate centered at large urban areas such as Dallas, Austin, Houston,

Atlanta, and Minneapolis, as well as other large metropolitan areas. This same

phenomenon does not appear to manifest itself in some areas such as New York City

or Los Angeles. The reason for this effect is one of interest and open for further

discussion and exploration.

The remaining maps show similar spatial patterns and smoothing, though a careful

examination of the maps does show that they do in fact become smoother as the

number of basis functions are reduced. The lower rates around the cities mentioned

above does remain a feature of these reduced model maps.

A more quantitative comparison between these models can be made by examining

the DIC for each model. The results from Table 6.1 tend to agree with the maps.

There appears to be little difference between the three reduced models’ DIC. The

DIC with 100 basis functions seems to indicate that we might be encountering the
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Table 6.1: DIC values for q = 3082, 1600, 900 and 100

Model Comparison Using DIC

q PD D̄ DIC
3082 1613.13 2658972.77 2660586.90
1600 1615.34 2658972.77 2660590.10
900 1615.01 2658974.40 2660589.41
100 1619.37 2658972.25 2660591.62

limit of dimension reduction. The PD term for this model has increased noticeably,

indicating that the variance in the estimates has increased. These results would seem

to indicate that this strategy for dimensional reduction appears to be quite valid and

robust, and that the potential for dimensional reduction is in fact quite significant.

In order to further evaluate these results, we will use these four models to detect

significant differences in mortality rates by using standardized mortality ratios.

6.4.4 Standardized Mortality Ratios

The results of the SMR estimates are shown in Figures 6.8-6.11. The areas in red

are areas where the SMR is significantly greater than 1, the areas in blue are areas

where the SMR is significantly less than 1. Significance is determined using the 95%

posterior credible interval. What is shown agrees with the results shown in the rate

maps; there are more areas of significantly higher mortality in the Eastern half of the

continental U.S. than in the western half. Furthermore, the cities that appeared to

show lower rates again appear to be areas of significantly lower mortality.

It can also be seen that there appears to be little difference in these four models

in terms of there ability to detect significant SMRs. These results further reinforce

the notion that the strategy for dimensional reduction implemented here provides an
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excellent means of reducing computational burdens in implementing this thin-plate

spline model for large scale problems.

6.5 Discussion

These results demonstrate that this method of data analysis through smoothing

and the use of SMRs is a viable means of analysis for data on a large scale, such as

national cancer data. The implementation of this method relies on the ease of use and

stability of the models developed in order to gain acceptance in the scientific commu-

nity at large. The results from this example indicate that this method of smoothing

is robust to data reduction techniques and appears to be able to smooth data well

while also retaining enough of the spatial heterogeneity to be able to detect signifi-

cant differences between regions. These are properties, along with the relative ease of

implementation, which make this method one that could achieve wider acceptance.
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Figure 6.1: Trace Plots of (a) δ0, (b) η1, (c) η2, and (d) µ from the g-Prior Model for
pi Male Mortality Rates due to Colorectal Cancer 1999-2003.
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Figure 6.2: Posterior Densities for (a) δ0, (b) η1, (c) η2 (d) and µ from the g-Prior
Model for pi Male Mortality Rates due to Colorectal Cancer 1999-2003.
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Figure 6.3: Map of Frequency Estimates for Male Mortality Rates due to Colorectal
Cancer pi per 100,000 from 1999 − 2003.
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Smoothed Rate Estimates q=3082

0 100

Rate per 100,000

Figure 6.4: Map of Bayesian Estimates for Male Mortality Rates due to Colorectal
Cancer pi per 100,000 from 1999 − 2003 from the Full Model.
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Figure 6.5: Map of Bayesian Estimates for Male Mortality Rates due to Colorectal
Cancer pi per 100,000 from 1999 − 2003 from Reduced Model q = 1600.
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Figure 6.6: Map of Bayesian Estimates for Male Mortality Rates due to Colorectal
Cancer pi per 100,000 from 1999 − 2003 from Reduced Model q = 900.
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Figure 6.7: Map of Bayesian Estimates for Male Mortality Rates due to Colorectal
Cancer pi per 100,000 from 1999 − 2003 from Reduced Model q = 100.
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Figure 6.8: Significant Standardized Mortality Ratios for Male Mortality Due to
Colorectal Cancer during 1999 − 2003 from Full Model.
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Figure 6.9: Significant Standardized Mortality Ratios for Male Mortality Due to
Colorectal Cancer during 1999 − 2003 from the Reduced Model, q = 1600.
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Figure 6.10: Significant Standardized Mortality Ratios for Male Mortality Due to
Colorectal Cancer during 1999 − 2003 from the Reduced Model, q = 900.
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Figure 6.11: Significant Standardized Mortality Ratios for Male Mortality Due to
Colorectal Cancer during 1999 − 2003 from the Reduced Model, q = 100.
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Ferrándiz, J., López, A., Llopis, A., Morales, M. & Tererizo, M. l. (1995), ‘Spa-

tial interaction between neighboring counties: Cancer mortality data in Valencia

(Spain)’, Biometrics 51, 665–678.

Fharmeir, L. & Wagenpfeil, S. (1996), ‘Smoothing hazard functions and time-varying

effects in discrete duration and competing risk models’, Jouranl of the American

Statistical Association 91, 1584=1594.

Gelfand, A. E. & Ghosh, S. (1998), ‘Model choice: A minimum posterior predictive

loss approach’, Biometrika 85, 1–11.

Gelfand, A. E. & Smith, A. F. M. (1990), ‘Sampling-Based Approaches to Calculating

Marginal Densities’, Journal of the American Statistical Association 85, 398–409.

Gilks, W. & Wild, P. (1992), ‘Adaptive rejection sampling for Gibbs sampling’, Ap-

plied Statistics 41, 337–348.

Graves, T. L., Speckman, P. L. & Sun, D. (n.d.), Improving [m]ixing in [mcmc]

[a]lgorithms for [l]inear [m]odels. submitted.

Green, P. & Silverman, B. W. (1994), Nonparametric Regression and Generalized

Linear Models, Champman Hall, London, U.K.

Hastie, T. & Tibrishani, R. (1990), Generalized [A]dditive [M]odels, Chapman Hall,

London, New York.

122



He, C. & Sun, D. (1998), ‘Hierarchical [b]ayes estimation of hunting success rates’,

Environmental and Ecological Statistics 5, 223=236.

He, Z. & Sun, D. (2000), ‘Hierarchical Bayesian estimation of hunting success rates

with spatial correlations’, Biometrics 56, 360–367.

Hutchinson, M. F. & Gessler, F. R. (1994), ‘Splines - More Than Just a Smooth

Interpolator’, Geoderma 62, 45–67.

Jackson-Thompson, J., Ahmed, F., German, R. R., Lai, S. & Friedman, C. (2006),

‘Descriptive epidemiologu of colorectal cancer in the united states, 1998-2001’, Can-

cer .

Kimmeldorf, G. & Wahba, G. (1970), ‘A Correspondance Between Bayesian Estima-

tion of Stochastic Processes and Smoothing by Splines’, Annals of Mathematical

Statistics 41, 495–502.

Kimmeldorf, G. & Wahba, G. (1971), ‘Some Results on Tchebychffan Spline Func-

tions’, Journal of Mathematical Analysis Applications 33, 82–85.
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