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ABSTRACT 
 

The goal of this work is to develop mathematical models, stability criteria, and 

control designs for a two-stage poppet valve system with a simple back-side pipeline 

condition that may be used in a valve stack to create an independent metering function 

for a hydraulic circuit.  

First, this system is modeled as a nonlinear open-loop model as well as a linear 

one. The completely linear form of the flow force acting on the poppet head is derived 

from simplified Navier-Stokes Equations. Second, four control methods that comprise 

modified PI control, LQG control, H∞ control, and nonlinear feedback control are used to 

make a closed-loop poppet system. The first three linear controllers are verified by being 

combined with the linear system as well as the nonlinear system in the simulation. The 

nonlinear controller is only applied to the nonlinear system and certified by Lyapunov 

theorem to be globally asymptotically stable. The basic guidelines for selecting control 

gains are derived by Routh-Hurwitz method. Finally, important system parameters are 

discussed to reveal their effects on the open-loop system stability. The transient flow 

force and two leakages have very close relationships with the system stability. 

Simulations results illustrate that the closed-loop poppet system with either the modified 

PI controller or the nonlinear controller can track the desired poppet displacement 

represented by a sine wave with 10 HZ frequency. The LQG controller and the H∞ 

controller having fixed weighting functions or matrices are not flexible enough to satisfy 

the global nonlinear systems, though they exhibit the acceptable regulation behavior.  
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CHAPTER 1. INTRODUCTION 
 

1.1 Introduction 

Poppet valves are extensively used in hydraulic systems as relief valves, check 

valves, cartridge valves, and pressure regulators due to their obvious advantages. First, 

they are easy to manufacture. They have positive metal-to-metal seals. Therefore tight 

machining tolerances are not necessary. Second, they are insensitive to jamming the seat 

by dirt particles due to a self-cleaning function. Third, they only have very small leakages. 

Poppet valves can essentially make zero leakage; thereby do not need check valves. 

Fourth, as a metering device, poppet valves do not need a pilot system, because they can 

directly use the system pressure as their pilot pressure. Therefore, a metering poppet 

valve system with low cost and small passage is possible. The final highlighted advantage 

of poppets is that they have high pressure-sensitivity to the valve displacement. A 

relatively small uplifting movement of the poppet can bring a large orifice area. However, 

there are two primary disadvantages of poppet valves. First, instability of the system is 

easy to occur accompanying with self-excited oscillations. Instability can be caused by 

many influences, for example, the unsteady flow forces through the poppet, uncertainty 

of discharge coefficient, upstream configurations, fluid delivery lines and the interference 

of the valve motion with other system components. Second, compared with the spool 

valves, the poppet valves cannot balance the pressure forces acting on the entire poppet 

by itself due to its geometry. Usually a compressed spring with preload is installed on the 

land side of the poppet to push the poppet tightly contact with the seat. Therefore, a 

poppet valve is very sensitive to fluid characteristics of the upstream and downstream of 
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the system. In this research, the working conditions linking with the back-side chamber 

will be considered. 

The purpose of this research is to investigate the dynamic behavior and to carry 

out the control design for a two-stage metering poppet-valve system that may be used in a 

valve stack to create independent metering functions for a hydraulic circuit. The physical 

model of this study is quite similar to that in Du’s work [1] except adding a simple back-

side pipeline condition that contains a fixed-area orifice and a constant pressure reservoir 

to his system. The differences between Du’s work and this work will be discussed in 

detail later in the literature review. The results of this work will be used for the upfront 

design of pressure compensators and for troubleshooting valve instabilities that are 

experienced in various applications. 

 
1.2 Description 

1.2.1 Configuration of A Relief Control Poppet 

Figure 1-1 shows the general configuration of a seating type poppet valve that can 

relieve the over-high pressure flow to protect other components in hydraulic circuits. A 

typical poppet valve mainly comprises a moving element (or poppet) with spherical or 

conical or other head shapes, a fixed seat with different seat angles, and a force balance 

device e.g. attaching a spring or attaching a piston to the high-pressure side of the poppet. 

In Figure 1-1, the spring preload can be adjusted by altering the vertical height of the 

cartridge.   

In this dissertation, the poppet lateral deviation from the center position due to the 

transverse flow force is ignored [2]. Therefore, the poppet is considered to only execute 
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vertical movements. As the pressure force from the nose side becomes big enough to 

overcome the sum of the inertia force, the damping force, the balance force and the 

pressure forces (including the flow force) acting on the poppet, the poppet is lifted away 

from the seat and the annular fluid passage allows to flow through the poppet valve from 

the high-pressure side to the low-pressure side. The relief function of the fluid 

accomplishes the basic pressure-drop of the poppet valve. The inverse process can 

happen when the back-side pressure is big enough to prevail over the sum of other forces 

acting on the poppet.  

 

 

Figure 1-1. Common relief poppet valve structure 

 
1.2.2 Configuration of the Metering Poppet Valve System 

This system is a bi-direction two-stage metering poppet valve system, shown in 

Figure 1-2. The first stage is a 3-way piloting spool valve that is critically-centered with 

Cartridge 

Poppet 

Seat 
Spring 
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the land width the same as that of the control-chamber port. The control orifice that is 

built up by the spool land and this port can open in both sides depending on which side 

has the higher pressure. However, no matter which side has the higher pressure, at the 

steady-state condition, this control opening always connects the control chamber with the 

poppet nose-side chamber, i.e. the port always opens at its right side. And this control 

orifice can be small enough to make up the leakage loss 2Q  in the control chamber. The 

size and the response speed of this opening decide the reaction of the main poppet to the 

load changes. The displacement of the spool valve vx  is the input to the system, which 

might be fulfilled by operators or through other electric equipment according to load 

requirements.  

The dynamics of the spool can be neglected by choosing the spool with fast 

response. The MOOG D633/D634 direct drive servo-proportional control valve in Figure 

1-3 is a very fast valve that exhibits a frequency response of 90 HZ. The valve may be 

used to provide the first stage spool-valve function by connecting the T-port to the back-

side chamber, the A-port to the poppet control chamber, the P-port to the nose-side 

chamber, while the B-port is blocked. Note: the Y-port remains open to the tank. Two 

simple working components connecting with the poppet back-side chamber are included 

in the system: an orifice with a fixed cross-section area kA  and a fluid reservoir with a 

constant pressure kP . 
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Figure 1-2. A two-stage poppet valve system structure 

 
The second stage is a common poppet valve that connects with a cartridge by a 

spring, though the spring is very weak here. The fluid damping influence is considered to 

be linearly proportional to the poppet velocity in this two-stage valve system. The fluid 

can move either from the nose side to the back side or inversely depending on the 

resultant force of the mass inertia, the damping force, the spring force, the static pressure 

forces and the flow force. The size of the poppet opening and the pressure drop across the 

poppet head determinates the amount of the load that the system can be taken. 
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Figure 1-3. Sectional view of a MOOG D633/D634 direct drive servo-proportional 

control valve 

 
The operation of the system can be explained by taking the case that the nose-side 

pressure is higher than the back-side pressure. In this case, the back-side part can be 

regarded as the load side. Assume that a variable displacement pump is used to keep the 

pressure drop crossing the poppet head constant. When the load is slowing down, the 

requirement of the metering flow goes down. Therefore the spool valve is required to 

move to the left side. The opening of the control port that connects the poppet nose side 

with the control chamber increases. More fluid allows entering the poppet control 

chamber. More fluid pressure force is produced to break the force balance and push the 

poppet towards the fixed seat to make the smaller poppet opening. The fluid flowing 

from the high-pressure supply end to the low-pressure exhaust port decreases. The 

increasing control chamber in turn contributes to make the control pressure down till it 

reaches a new equilibrium status with other forces on the poppet. Therefore, when the 

poppet is reaching the desired position, the control opening becomes to reduce till it is 

small enough to compensate the leakage exiting the control chamber.  When more flow is 
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needed, the movement of the spool valve is going to be on-the-right-side. The opening of 

the control port that connects the poppet back side with the control chamber increases. 

Fluid is allowed to flow from the poppet control chamber to the back-side chamber. 

Decreasing the fluid pressure force allows the poppet land to move away from the fixed 

seat to make the bigger poppet opening. Then the poppet is lifted farther from the seat to 

allow more fluid metering from the high-pressure supply end to the low-pressure exhaust 

port to provide more energy to endure more loading. The movement of the poppet stops 

when the control pressure increases to a certain degree to make the new force balance on 

the poppet. The opening of the control port drops till it is small enough to balance the 

leakage loss in the control chamber. Note that at any equilibrium point, the spool opening 

is small and opens to connect the nose side chamber with the control chamber. Pressures 

acting on the poppet can keep roughly fixed relationships. 

 
1.3 Literature Review 

1.3.1 Poppet Valve Research 

The greatest disadvantage of the poppet valve is that this type of valve often 

endures self-excited oscillation which is unstable. Therefore many basic works have been 

focused on poppet stability problems. In the early 1960’s, J.A. Stone’s work [3] showed 

that the downstream configuration (e.g., the length and diameter of the chamber) had a 

strong influence on the system stability. The smaller the chamber is, the higher the flow 

forces are. The steady-state flow force was mathematically modeled and experimentally 

shown to roughly match with the theoretical values, though test data were about 20 

percent blew the theoretical values. Experiments were also carried out on the discharge 
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coefficient with the changes of the poppet angles and shapes, and poppet flow 

characteristics with various exhaust conditions that contains different liquids. In 1964, 

James E. Funk [4] analytically proved that interaction of the fluid delivery line dynamics 

and the spring mass dynamics of the poppet valve could cause poppet-valve instability. In 

this work, it is shown that if the valve natural frequency is equal to one of the harmonics 

of the delivery line, the system will become very unstable. The fluid flows from the 

upstream volume that contains the spring to the downstream volume that connects with a 

constant pressure reservoir, which moves in an opposite direction compared to the 

common use. The effect of the flow force on the poppet dynamics was neglected. The 

pipeline dynamics that was described by the momentum equation neglecting the viscous 

force, kinetic energy and the body force was included in the open loop system. A stability 

criterion that is related to the poppet parameters and the operating conditions was derived. 

Funk pointed out the valve should be designed to make a quick lift especially at the 

moment of moving from the fixed seat. After that, many works were carried out based on 

Funk’s model and results. In Kohji Kasai’s work [5], a mathematical model was 

developed for the system which involves the inlet and outlet piping and a theoretical 

stability criterion was derived by not including outlet piping. Kasai also obtained the 

relationship of the length of inlet piping, spring rate, inlet pressure, valve lift, valve shape 

and Reynolds number to describe the range of the disturbance frequency in which 

instability occurs. In 1972, Wandling and Johnson [6] published a paper that was an 

extension of Funk’ work. More elements including the downstream pipeline, steady-state 

fluid force and spring-mass effects were added to the model. The poppet valve spring was 

doubted to be an important factor of the higher-frequency system stability. The coupling 
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effects between the downstream and upstream delivery lines were verified to be negative 

influences on the system stability. Brian Roberts [7] presented a system that contains four 

poppet valves controlled by pilot directional valves to fulfill elaborate flow control 

functions in 1988. A full account of the abundant and distinct benefits of this system is 

given in his work. In 1991, Johnson and Edge [8] conducted a series of experiments to 

explore the flow coefficients and steady-state flow force for poppet and disc valves with 

different geometries under the assumption that there are no cavitations in the chambers 

and the fluid has a high Reynolds number property (greater than 2500). A conclusion was 

drawn from their research that the flow force is an undesirable factor leading to the 

instability problems for the flow control of poppet. And especially at the small opening, 

the fluid characteristics of the poppet and disc valves with angled seats has much more 

intense relationship with the reattachment of the flow jet to the valve seat than that of 

those with sharp-edged seats. The above reattachment leads to the higher flow coefficient, 

which appears as the pressure drop across the poppet opening increases. A computational 

method was used in the work of Kazumi Ito, Koji Takahashi and Kiyoshi Inou [9] to 

apply to the steady, axisymmetric, laminar flow in a poppet without consideration of fluid 

compressibility in 1993. The numerical results of pressure distribution that tallied closely 

with the measured ones showed that the pressure on the body wall of a poppet with 

diverge fluid jet drops promptly with the poppet restriction as Reynolds number increases 

or valve displacement decreases. 

So far, although many studies have been carried out on one-stage poppet valves as 

relief valves, there is relatively little effort in the literature on the two-stage poppet valve 

systems. In 1991, Yung C. Shin’s work [10] mathematically modeled and experimentally 
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analyzed the stability of a two-stage pilot relief valve system that comprises two poppet 

valves based on neglecting the transient flow force. Factors affecting the stability most 

were discussed to improve the dynamic characteristic of the valve. A two-stage electro-

hydraulic flow control valve system, called a “Valvistor” was investigated by Rong 

Zhang [11] in 2002. Both the five-state nonlinear model and the four-state second-order 

linear model were presented to examine the validation of the model and to address the 

performance limitations that are the outcome of the physical structure of the valve system. 

This work showed that two inherent zeros in the open-loop transfer function, even though 

one of them might be cancelled by the low frequency pole, might bring a significant 

limitation on the closed-loop bandwidth. Du [1] in 2002, presented his work about an E/H 

(electro-hydraulic) poppet system that has the very similar physical structure with the 

system in this dissertation. He derived a nonlinear controller for flow control in both 

directions with certain limitations on the pressure difference between the input and output 

ports as the flow is reversed. The work done in this dissertation is an extension of Du’s 

study. There are six main differences between them as follows. Firstly, the structure 

difference is that Du did not consider any downstream or upstream condition. Here a 

fixed area orifice and a fluid reservoir with a constant pressure are chosen as back-side 

pipeline components to constitute the poppet valve system. The spool dynamics is 

ignored in this research by using a spool with a very fast response. However, the back-

side pipeline is an important part of system modeling here. Secondly, Du presented a 

nonlinear system, while this study contains both nonlinear and linear models. The linear 

models can help the engineers to understand the system more and to get the basic 

restrictions of gains in PI control and nonlinear control. Thirdly, a complete linear flow 



11 

force that includes the steady and transient flow forces caused by both random and 

ordered motions of the flow across the poppet opening is derived in this work. The time-

rate-change of pressures 2P  was not taken into consideration by Du in the transient flow 

force. The steady-state flow force in Du’s paper was in nonlinear formation, which is 

hard to be investigated. Fourthly, besides nonlinear control that is the only control 

approach in Du’s paper, three other control methods are used in this work: modified PI 

control, LQG control and H∞ control, though there are some limitations of them. Fifthly, 

even for the nonlinear control, one integral item of the poppet displacement error is added 

to the nonlinear controller to cancel the steady-state error in this work. And the system is 

proved to be globally asymptotically stable by Lyapunov theorem, which was not done 

by Du. The last difference is that the design in this work is checked by tracking a sine 

wave of 10 HZ, instead of 2 HZ frequency. Patrick Opdenbosch [12] at the Georgia 

Institute of Technology made a study on a two-stage poppet valve system with a Nodal 

Link Perceptron Network (NLPN) control scheme in 2004. A nonlinear analytical model 

was derived to describe the dynamic behavior of the poppet. It was noticed that the flow 

forces were treated as disturbances and the flow coefficient for the orifice flow passages 

were experimentally obtained from the steady-state flow, which might not tally with the 

real conditions. 

All research mentioned above has the same assumption that the poppet moves 

exactly along its symmetrical central line, i.e. the transverse flow force and torsion 

moment on the poppet are negligible. Hayashi [13] pointed out in his review that T. 

Maeda demonstrated that the momentum change of the unsteady flow around the poppet 

can induce to the appearance of the self-excited oscillation. He also made a claim that the 
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source of this instability comes from the internal flow dynamic that the poppet suffers, 

instead of coupling effects caused by the interaction between the poppet and other line 

components. 

 
1.3.2 Automatic Control History 

Generally speaking, the evolution history of automatic control can be roughly 

divided into 3 main periods as follows: pre-classical control period (to 1900), classical 

control period (1900-1950) and modern control period (1950-present). Actually, the time 

duration of these periods overlap. Some important review papers, including [14], [15], 

[16], [17] and [18], are used in presenting this section.  

The seeds of automatic feedback control began to sprout about 2000 years ago for 

the needs of precise measurement of time in the Greek and Arab societies [15]. The first 

milestone of automatic control history was, in 1788, with the invention of the centrifugal 

governor that was utilized to control the rotation speeds of a steam engine shaft designed 

by James Watt. In the mid-1800’s, mathematics came upon the stage to be used to 

analyze the stability of dynamic motions of control systems [15]. In that period, J.V. 

Poncelet and G.B. Airy implemented differential equations in the discussion of the 

governor dynamics. However, they could not find the conditions that stable system 

behavior appears [16]. This problem was solved by J.C. Maxwell when he published the 

paper titled, “On Governor” [16]. This significant contribution was to show that the 

system is stable if all roots of its characteristic equation obtained by linearizing the 

differential equations are located on the left-half plane. In 1874 Edward J. Routh gave the 

mathematical expression of how to determine system stability, known as the Routh-
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Hurwitz stability criteria, which also was independently derived by Adolf Hurwitz in 

1895 [15].  The work done by A.M. Lyapunov in 1892 deserved great attention. He 

studied the behavior of dynamic system expressed by nonlinear differential equations 

from the view of energy [15]. Lyapunov stability theorems based on the above study 

provided sufficient conditions for system asymptotic stability that plays a crucial role in 

nonlinear analysis. 

In the classical control period, with development of mass communication and the 

requirements of World War II, the frequency domain techniques for control design 

thrived. In 1922, Nicholas Minorsky first used a PID (proportional-integral-derivative) 

controller in his position control for a ship steering system [15]. A critical achievement of 

numerical analysis of control system in paper titled “Regeneration Theory”, lately 

developed to become Nyquist stability criterion, was published by Harry Nyquist in 1932. 

The concept of phase and gain margins, frequency response plots of a complex function 

was put forwarded by H.W. Bode in 1940. The work, summarized in the book “Theory of 

Servomechanisms”, in the Radiation Laboratory in Massachusetts Institute of Technology 

was highly successful during 1940’s: Nichols chart by N.B. Nichols in 1947, root locus 

method by W.R. Evan in 1948, and so on [16].  

The techniques about the state-space approach and optimal control caught the 

public’s attention back to time-domain analysis. The work of Richard Bellman from 1948 

to 1962 and L.S. Pontryagin around 1960 laid the groundwork for optimal control theory 

that is an extension of the calculus of variations [16]. The previous one initiated the study 

of the principle of optimality and dynamics programming, while the latter one formulated 

his “maximum principle” based on the calculus of variations method. R. Kalman was 
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noted for his contribution to the linear quadratic regulator (LQR), optimal filtering 

problem and estimation theory around 1960. His research results achieved a considerable 

application in time-varying linear systems and multi-input/multi-output (MIMO) systems. 

The mature exposition of linear quadratic gaussian (LQG) can be found in, [19], [20] and 

[21]. The first one in 1979 provides a profitable method to adjust the estimated-state-

observer controller with the use of Kalman filter to obtain the same system performance 

as that having a full-sate feedback controller. The second one in 1981 stated a practical 

design procedure of LQG for MIMO systems. The last one in 1986 made a concluding 

speech on introducing LQG and utilizing the particular skills when executing it on certain 

projects. However, LQG has internal shortcomings: the plant mathematics could have a 

significant discrepancy with the actual one and the forms of disturbance are not limited to 

be white noises. Therefore, new concepts, such as H2 and H∞ norm, to define the integral 

quadratic restriction for system performances rose into the engineers’ view in the optimal 

control area. G. Zames, in 1981 [22] and 1983 [23], took consideration into a weighted 

H∞ norm to be a mathematical indication of system behavior and put forward studies of 

this fresh approach on multivariable systems without right half-plane zeros(RHP),  single 

variable stable systems with a single RHP zero and single variable unstable systems in 

the servo-industry. The general formulas for systems with a finite number of RHP zeros 

or poles were also derived. Doyle and Glover [24] made an exposition about how to get 

all state-space controllers for a standard H2 or H∞ problem by solving two Riccati 

equations in 1989.  

In a general way, the classical control techniques are not manageable ways to deal 

with the control problems of the MIMO systems. However modern control techniques 
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display their advantages with the fact that they basically are time-domain methods that 

use space-state models to describe system behaviors for both MIMO systems and single-

input/single-output (SISO) systems.  

The development of nonlinear control technology was not as flourishing as that of 

linear control methodology. However, several useful theoretical approaches were 

uncovered as follows: phase plane, describing function, feedback linearization, sliding 

control and adaptive control, and so on. These topics can be found in books [25], [26], 

[27]. In 1996 Atheron [18] investigated the achievement of nonlinear control from its 

very first beginning to approximately 1960. In Astrom’s journal paper [28] of 1996, the 

important productions of adaptive control from the mid-1950s to the mid-1960s were 

presented. 

Some advanced control methods have been applied to hydraulic systems. An 

adaptive robust control (ARC) was presented in Yao’s work [29] of 2001. A 

discontinuous projection based ARC controller is created to provide the high 

performance robust motion control of electro-hydraulic servo-systems driven by double-

rod hydraulic actuators with the consideration of parameter uncertainty and certain non-

linearity uncertainty. H2/H∞ MIMO controllers were developed to electronically 

coordinate the power distribution for an earthmoving vehicle’s powertrain transmission in 

Zhang’s paper [30]. The H∞ controller exhibits better nominal performance and robust 

performance than the H2 controller, which is represented by that the system with the H∞ 

controller demonstrates quicker response, wider tracking range and better disturbance 

rejection. Fales [31] used a LQG controller in a wheel loader control system to achieve 

the motion control for the bucket leveling.  
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1.4 Thesis Objective and Organization 

 The objective of this work is to develop mathematical models, stability criteria 

and control designs for a two-stage metering poppet valve system that may be used in a 

valve stack to create an independent metering function for the hydraulic system (shown 

in Figure 1-2). The poppet system is asked to have the ability to meter a certain amount 

of flow that can take the required load under given working conditions. Since it is 

assumed that the nominal nose-side pressure 1P , the nominal back-side pressure 2dP  and 

the nominal piping pressure kP  are known, this task becomes to make the poppet move to 

the desirable position when the spool actuator is operated according to the desirable 

command which is obtained from the load and system information. The poppet must 

respond quickly enough with the acceptable steady-state error to track a 10 HZ sine wave 

that is a reference poppet displacement. The steady-state error must be less than 10% of 

the desired poppet displacement. In practice, if a poppet can exhibit a frequency response 

of 5 HZ or 6 HZ, it is quick enough to meet the flow metering requirement in the 

hydraulic circuit. However, according to engineer’s experience, when the controller is 

applied to the real physical system, the response speed of a hydraulic component, for 

example a poppet valve, usually slows down to about 50% of the one in simulation. The 

phase lag can not be bigger than 90 degree for this research. The settling time of about 30 

ms for the step response is a goal for the speed of response.  

This study begins by formulating the mathematical models that are basically 

third-order systems, including linear and nonlinear expressions, for this two-stage open-

loop poppet-valve system. Using non-dimension analysis, the poppet inertia and the 
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influence of the change of control pressure in the back-side chamber are neglected to 

produce a reduced-order analytical form that is a second-order linear system. In Chapter 3, 

four control methods are applied to accomplish the closed-loop systems: modified PI 

control, LQG control, H∞ control and nonlinear feedback control. The first three ones are 

not only implemented on linear systems, but also verified by being combined with the 

nonlinear models. The last one is specially assigned to the nonlinear system. Stability 

criteria and the ranges of control gains for the reduced-order linear closed-loop system 

with the PI controller are solved according to the Routh-Hurwitz method. The nonlinear 

system with the nonlinear controller is proved to have globally asymptotical stability. In 

the simulation Chapter 4, discussions are focused on how key parameters affect the 

system stability behavior by measuring their costs to the open-loop stability criteria. 

Nominal system pressures (nose-side pressure 1P  and back-side pressure 2dP ), leak 

coefficients, system structure geometries (back-side volume LV  and the ratio of the 

poppet land area and the nose-side port area crA ), fluid properties (fluid bulk modulus β  

and orifice coefficient dC ) and spring rate k  are taken into consideration in this 

investigation. The system is simulated to examine its regulating and tracking ability of 

the desired poppet displacement. The reference poppet displacement of the step response 

is given to investigate the system regulation ability, while the desired poppet 

displacement of the sine wave with 10 HZ frequency is used for the tracking problem.  

Simulink results are discussed and compared for the two groups of closed-loop systems. 

The first group includes the full-model linear system with the modified PI controller, the 

reduced-order linear system with the modified PI controller, the full-model linear system 

with the LQG controller, the full-model linear system with the H∞ controller and the 
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nonlinear system with the nonlinear controller. The second group contains the nonlinear 

system with the modified PI controller, the nonlinear system with the LQG controller, the 

nonlinear system with the H∞ controller and the nonlinear system with the nonlinear 

controller. Subsequently, Chapter 5 states the finding conclusions and contributions of 

this work to the metering poppet system. Finally, Chapter 6 suggests possible work that 

can be done in future. 



19 

CHAPTER 2. SYSTEM MODELING 

 

2.1 Introduction 

In this chapter, mathematical models are set up for describing main dynamic 

behaviors of the primary mechanical components within this two-stage metering poppet-

valve system. The governing equations for the nonlinear and linear open-loop systems 

with 3 states are obtained. The second-order reduced-order linear open-loop system is 

derived from non-dimension analysis by neglecting the poppet inertia and the control 

pressure effect in the back-side chamber. The flow across the poppet orifice can move in 

two directions. Therefore, all linear analysis includes two cases: the nominal nose-side 

pressure of the poppet 1P  is higher than the nominal back-side pressure of the poppet 2dP  

that is higher than the nominal load pressure kP ,  i.e. 1 2d kP P P> > , and the nominal nose-

side pressure of the poppet 1P  is lower than the nominal back-side pressure of the poppet 

2dP  that is also lower than the nominal load pressure kP , i.e. 1 2d kP P P< < . The 

linearization can not be performed when 1P  is equal to 2dP , or 2dP is equal to kP , because 

these differences of pressures will appear in the denominators of the flow gains. In the 

nonlinear model, the flow force is still treated as a linear force as well as that in the linear 

model. The model continuity may be guaranteed by adding saturation components in the 

simulation.  
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2.2 Poppet Analysis 

Figure 2-1 shows the free-body diagram of the poppet valve. The following 

discussion assumes that the poppet only moves in the axial direction. The deviation from 

the center symmetrical position due to unsteady transverse flow force is ignored [2]. In 

practice, the rotating movement of the poppet can produce the small moment according to 

its central axis. 

 

 

Figure 2-1. Forces acting on the poppet 
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The forces acting on the poppet come from four sources: the poppet-valve spring 

force spF  , the control pressure force acting on the top face of the poppet land c cA P  , the 

back-side pressure force ( ) 2cA A P−  , and the resultant flow force produced by the fluid 

passage across the nose-side chamber pF . It is assumed that pressure forces act evenly on 

the contacting faces. Here, they are treated as concentrated forces that act on the centers 

of the faces. In this research, the nose-side pressure 1P  is held constant by the variable 

displacement pump. It may be summarized that the forces on the poppet valve in the y-

direction and set them equal to the valve’s time rate of change of linear momentum to 

produce the following equation of motion for the poppet valve. 

( ) ( )2p c c c sp spdmy cy F A A P A P F F+ = + − − − +�� � ,    (2.1) 

where y  is the instantaneous vertical displacement referenced from the poppet seat (See 

Figure 2-1), cP  is the instantaneous control pressure acting on the top-side cross section 

of the poppet land, spF  is the instantaneous spring force and spdF   is the nominal spring 

force on the poppet, which is chosen as zero. It will be reasonably illustrated in the next 

section that the force pF  includes the static pressure force on the poppet nose side 1AP   

produced by the random motion (diffusion) of molecules of the flow and the flow force 

fF  yielded by the ordered motion (convection) of the flow that introduces the linear 

momentum change of the flow passage across the poppet opening. The following 

equation maybe used to depict the flow force pF  

1p fF AP F= + .      (2.2) 
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The following equation is used to describe the spring force when the poppet valve is at 

location y  

spF ky= ,       (2.3) 

where k  is the spring rate. In this analysis, the spring force is so small that it can be 

considered to be zero. However, for the completeness of the analysis, it is included in this 

derivative process. Substituting Equation (2.3) into Equation (2.1) produces 

                      ( )2 2p c cmy cy ky F AP A P P+ + = − + −�� � .          (2.4)  

 
2.2.1 Poppet Valve Flow Force 

It is necessary to understand the detailed information of the poppet valve flow 

force pF  to complete Equation (2.4). The Navier-Stokes Equations are given in vector 

form to describe the force balance of the fluid in the given deformable nose-side control 

volume as follows [32] 

( ){ } 2u
u u f p u

t
ρ µ

∂
+ ⋅∇ − = −∇ + ∇

∂

G GG G G
,   (2.5) 

where ρ  is the fluid density, uG  is the fluid velocity vector, ∇  is the gradient operator, 

and 2∇  is the Laplacian operator, f
G

 is the body force vector, p∇  is the gradient of the 

fluid pressure and µ  is the fluid viscosity. 

In absence of the body forces and viscosity effect, and considering that all vectors 

change only in 1y  direction (shown in Figure 2-2), Navier-Stokes Equations can be 

simplified to 
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( )1

1 1 1

y

y y y

u
u u p

t
ρ

∂
+ ⋅∇ = −∇

∂

 
 
 

G
G G

.   (2.6) 

 

Figure 2-2. Poppet nose-side control volume for calculating the poppet flow force 

  
The horizontal flow force which is perpendicular to the symmetrical line of the poppet is 

small enough to be neglected. The following force-balance equation within the poppet 

nose-side chamber is given by calculating the volume integral of the above equation 
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where 1m mV A y=  is the changeable nose-side control volume . .c v  that is shown in Figure 

2-2 with the maximum length L , mA A=  is the cross-section area of a control volume 
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boundary surface . .c s  and subscript 1y  represents the sub-vectors in 1y  direction. In this 

case, the Equation (2.7) can be rewritten as 

1 1

1 1

1 1

1
0

y L y L

y o y o

uL

y y
u

P

m
P

Qdy Qdu A dP
t

ρ ρ∂
+ = −

∂ ∫ ∫ ∫
G ,   (2.8) 

where 
1y o

Q
u

A
=  is the fluid entering velocity, ( )

1
cosy L

p

Q
u

A
ϕ=  is the vertical vector of 

the fluid exiting velocity, Q  is the main flow across the poppet opening, pA  is the 

instantaneous poppet opening area that is the function of poppet displacement y  and the 

valve conical angleθ , A  is the poppet inlet area, ϕ  is the jet angle of the fluid flowing 

out of the poppet valve, 
1 11 and y o y LP P P=  are the corresponding pressures related to the 

boundary condition of the control volume. The following equation can be obtained by 

evaluating the integral in Equation (2.8) 

( )
1 1 1 1y L y o y L

Q
L Q u u F AP

t
ρ ρ

∂
− = +

∂
+ ,   (2.9) 

where 
1 1y oF AP=  is the pressure force acting on the bottom surface of the control volume, 

1y L pF F= −  is the resultant force acting on the top surface of the control volume by the 

poppet head. Then the following equation is summarized to depict the flow force on the 

top surface of the nose-side volume 

( )
1

2
1

cos 1

p

y L
Q

F AP L Q
t A A

ρ ρ
ϕ∂

= − −
∂

 
+ +  

 
.   (2.10) 
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Subsequently, the flow force acting on the poppet head which is the counterforce of 

1y LF may be represented as follows 

( )
1

2
1

cos 1

p

p y L
Q

F F AP L Q
t A A

ρ ρ
ϕ∂

= −
∂

 
= − − −  

 
.   (2.11) 

The poppet instantaneous discharge area pA  is a nonlinear area which can be 

demonstrated by the following equation 

( ) ( ) ( )2 2sin cos sinpA Dy yπ θ θ θ = −  ,    (2.12) 

where D  is the diameter of the poppet nose-side inlet. A linear form of the above 

equation can be given by 

( )sinpA Dyπ θ=      (2.13) 

 

Figure 2-3. Poppet instantaneous discharging area 
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Therefore, the following scalar equation can be given to approximately describe the flow 

force acting on the poppet due to the change of the fluid momentum 

( )2 cos 1
f ft fs

p

QF F F L Q
t A A

ϕ
ρ ρ

 ∂
= − − = − − −  ∂  

,   (2.14) 

ft
QF L
t

ρ ∂
=

∂
,        (2.15) 

( )2 cos 1
fs

p

F Q
A A
ϕ

ρ
 

= −  
 

,      (2.16) 

where ftF  is the transient flow force that may work to either open or close the valve 

which depends on the sign of Q
t

∂
∂

, and fsF  is the steady flow force that always works to 

try to close the valve. There is an assumption for simplification of this problem that the 

jet angle ϕ  is equal to the valve conical angle θ . 

The classical orifice equation [32] is used to describe the volumetric flow rate Q  

that goes through the small opening between the poppet head and the seat. This equation 

assumes that the fluid through the orifice is a steady, incompressible, high Reynolds 

number flow. It can be given by 

( )1 2 1 2
2 signp dQ A C P P P P
ρ

= − − ,                                        (2.17) 

where dC  is the discharge coefficient that is usually obtained from experiments, 

1 2P P P∆ = −  is the instantaneous pressure drop across the poppet head, 1P  is the constant 
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pressure in the nose-side chamber, 2P  is the instantaneous pressure in the back-side 

chamber. The following equation can be defined by 

( )
1 2

1 2 1 2

1 2

1      
sign 0      

1     

P P
P P P P

P P

>
− = =
− <

.     (2.18) 

The linearized orifice equation may be derived according to the nominal conditions as 

follows by using Taylor series expansion and neglecting the high-order items 

( ) ( ) ( ) ( )1 2 1 2
1 2

p
d d d

p dd

AQ QQ Q y y P P P P
A y P P

   ∂∂ ∂
= + − + − − −        ∂ ∂ ∂ −  

, (2.19) 

where dQ  is the nominal flow rate across the poppet, dy y y∆ = −  is the axial 

displacement derivation of the poppet from the nominal position, and 1 2d dP P P∆ = −  is 

the nominal pressure drop. The subscript “ d ” is used to identify the nominal operation 

conditions of the system. It is needed to be noted that the linear expressions from Taylor 

series method are only valid when the derivations are not too far from the nominal 

conditions. And the linearization can not be performed when the desired back-side 

pressure 2dP  is equal to the desired nose-side pressure 1P , because the pressure drop 

1 2dP P−  appears in the denominator of ,qt cK K  known as the flow gain and the flow-

pressure coefficient respectively [32] that will be defined later. Then this introduces the 

infinite values of the flow gains that are not acceptable. The flow gains can be derived as 

follows 

( ) ( )1 2
1 2

2
sin signp d

qt d d
p d

A P PQK DC P P
A y

π θ
ρ

 ∂ −∂
= = −  ∂ ∂ 

,  (2.20) 
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( )
( )

1 2 1 2

sin

2
d d

c
dd

DC yQK
P P P P

π θ

ρ

 ∂
= =  ∂ − − 

.     (2.21) 

By substituting Equations (2.20) and (2.21) into Equation (2.19) and rearranging items, 

the linearized form of the main flow Q  can be given by  

( ) ( )

( )

1 2

2 2

1
2

   

d qt d c

qt c d

Q Q K y y K P P

K y K P P

= + − + −

= − −

.   (2.22) 

It is assumed that the time rate of change of the desired vectors is considered as 

zero. By substituting Equation (2.22) into Equation (2.15) and differentiate the main 

poppet flow Q  with respect to time t , the transient flow force, ftF  can be linearly 

represented by 

2ft qt cF LK y LK Pρ ρ= − �� .    (2.23) 

 Similarly, by using Taylor series expansion and neglecting the high-order items, the 

linearized form of the steady flow force fsF  can be represented by 

( ) ( ) ( ) ( )1 2 1 2
1 2

fs p fs
fs fsd d d

p dd

F A F
F F y y P P P P

A y P P
   ∂ ∂ ∂

= + − + − − −        ∂ ∂ ∂ −  
. (2.24) 

where fsdF  is the nominal steady flow force. fqK  and fctK  [32] known as the flow force 

gain and the flow force pressure coefficient can be respectively given by 

( ) ( )2 2 2 2
2 2

1 2 1 2

4 sin
sin 2fs p d

fq d d d d
p d

F A D C
K DC P P y P P

A y A
π θ

π θ
 ∂ ∂

= = − − −  ∂ ∂ 
, (2.25) 
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( ) ( ) ( )
2 2 2 2

2 2
1 2

2 sin
sin 2 signfs d

fct d d d d
d

F D C
K DC y y P P

P A
π θ

π θ
 ∂ 

= = − −  ∂∆   
. (2.26) 

By substituting Equations (2.25) and (2.26) into Equation (2.24) and rearranging items, 

the linearized form of the steady flow force fsF  can be given by  

( ) ( )1 2fs fq d fctF K y y K P P= − + − .   (2.27) 

By substituting Equations (2.23) and (2.27) into Equation (2.14), the linearized form of 

the flow force acting on the poppet due to the linear momentum change may be given by  

 ( ) ( )2 1 2f qt c fq d fctF LK y LK P K y y K P Pρ ρ= − + − + −�� .  (2.28) 

1 Consequently, the linearized form of the flow force acting on the poppet may be 

demonstrated by  

( ) ( )1 2 1 2p qt c fq d fctF AP LK y LK P K y y K P Pρ ρ= − + − − − −�� .  (2.29) 

Substituting Equation (2.29) into Equation (2.4) and rearranging terms produce 

the following motion equation of the poppet 

( ) ( ) ( ) ( )1 2

2                                                           
qt fq fq d fct c fct

c c c

my c LK y k K y K y A K P A A K P

A P LK P

ρ

ρ

+ + + + − = − + − +

− +

�� �

�
. (2.30) 

 
2.2.2 Nominal Conditions 

Under the steady-state conditions, the following equation can be used to describe 

the equilibrium of the poppet  

                                                 
1 In the nonlinear model, the flow force is still treated as a linear force. The model continuity may be guaranteed by 
adding saturation components in simulation. 
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( ) ( )1 2fct d c fct d c cdA K P ky A A K P A P− = − − + + .   (2.31) 

The desired control pressure can be derived from the above equation as follows 

( ) ( )1 2fct c fct d d
cd

c c

A K P A A K P kyP
A A

− + − +
= −  .   (2.32) 

The following equations are also given to describe the pressure relationships that control 

the poppet static behavior under the steady-state conditions  

( )1 1 2
c fct d

cd d
c c

A A K kyP P P P
A A

− +
− = − + ,    (2.33) 

( )2 1 2
fct d

cd d d
c c

A K kyP P P P
A A
−

− = − − .     (2.34) 

Note that the nominal conditions in which nose-side pressure 1P  is equal to nominal 

back-side pressure 2dP  are not involved in this analysis. 

 
2.2.3 Equation of Motion for the Poppet Valve 

Two different forms of the motion equation of the poppet valve are respectively 

used in the nonlinear system, in which the flow rates keep their nonlinear expressions, 

and the linear systems that do not contain any nonlinear item. The following equation is 

employed to describe the poppet dynamic behavior in the nonlinear system 

( ) ( ) ( ) ( )1 2

2                                                           
qt fq fq d fct c fct

c c c

my c LK y k K y K y A K P A A K P

A P LK P

ρ

ρ

+ + + + − = − + − +

− +

�� �

�
.    (2.35) 
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By substituting Equation (2.31) into Equation (2.4) and rearranging the items, the 

following equation of motion of the poppet valve is given to express the poppet dynamic 

behavior in the linear systems 

( ) ( )( ) ( )( )
( )

2 2 2

                                                                
qt fq d c c fct d

c c cd

my c LK y k K y y LK P A A K P P

A P P

ρ ρ+ + + + − = + − + −

− −

��� �
.(2.36) 

 
2.3 Back-side Pressure Analysis 

The main objective of this work is to investigate the system stability behavior for 

the two-stage metering poppet valve design under various working load conditions. The 

simple back-side conditions are selected to include the back-side volume of the poppet 

house, a fixed-area orifice and a constant pressure reservoir. The following pressure rise-

rate equation within the varying control volume is used to describe the fluid 

characteristics in the back-side chamber 

2 2 2
L

L c c L
V P Q Q Q KP Q P Vδ
β

= + − − − −� � ,       (2.37) 

where β  is the flow bulk modulus, LV  is the back-side chamber volume, LV�  is the time-

rate-of-change of the back-side volume that is so small that can be negligible, 2Q  is the 

leakage from the control chamber to the back-side chamber through the gap between the 

poppet land and the hole that contains the poppet land due to pressure difference between 

the control pressure cP  and the load pressure 2P , LQ  is the flow rate from the back-side 

chamber to the reservoir which has a constant pressure, cQ  is the flow rate entering or 

exiting the control chamber due to the pressure difference between the control pressure 
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and the pressure at the other side of the spool opening and K  is the total leakage 

coefficient for the piping connecting the back-side chamber and the reservoir.  

It is assumed that the pressure and fluid density within the back-side chamber is 

uniform throughout. That is, the fluid filling this chamber is homogeneous undergoing 

hydrostatic pressurization. There is an assumption that the piping leakage is proportional 

to the back-side pressure, which describes a low Reynolds number flow. The flow rate 

cQ  shows up in the back-side pressure equation only when the spool has a left-side 

opening. Note that the leakage that occurs between the spool land and the hole that 

contains it from the control chamber to the back-side chamber or the pump-side piping, 

or versus is so small that it is neglected. Then, the following equation of back-side 

pressure is obtained by 

2 2 2
L

L c c
V P Q Q Q KP Q Pδ
β

= + − − −�        (2.38) 

where  

0     0
1     0

v
c

v

x
P

x
δ

≥
=  <

.         (2.39) 

The left side of the above equation is the volume change of the back-side chamber 

due to the compressible flow in terms of time. The flow rates on its right side are caused 

by flows either entering or exiting the back-side chamber due to its pressure drop effect. 

The volume change of the back-side chamber due to boundary change is so small to be 

neglected. 
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Figure 2-4. Flows entering or exiting the back-side chamber 

 
2.3.1 Flow Rates in Back-side Chamber 

Equations (2.17) and (2.22) can be respectively utilized as the nonlinear 

mathematical expression and linear mathematical expression for the flow rate Q  across 

the poppet main opening.   

yd

Ac
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xv

xvd
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Figure 2-5. Leakage between the poppet land and its containing bore 

 
The following equation is used to describe the leakage 2Q  

( )2 2 2cQ K P P= − ,     (2.40) 

where 2K  is the leakage coefficient of the leakage between the poppet land and the hole 

that contains it due to the pressure drop between the control chamber and the back-side 

chamber. This leakage can be considered as an annular leakage between the round 

substance and outside tube that contains it (See Figures 2-5). Therefore, the classical 

annular leakage equation is used to explicitly describe it. The circular flow passage here 

is assumed as a Poiseuille flow in which the viscous shear force is the dominating effect.  

Consequently, the following equation [52] based on Poiseuille flow can be used to 

describe leakage coefficients by considering the worst eccentricity cases when  =1ε  

dc/2

cl

Pc
k

Q2

Dcbore 

Dc 

P2
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2 2
2

2

31
52 ,      =1

96 192

cbore c
cbore c

c c

D d
D dK

l l

ε π
π ε

µ µ

 + 
 = = ,  (2.41) 

where cboreD  is the diameter of the hole that holds the poppet land, cd  is the diameter 

clearance between the poppet land and the hole that contains it, cl  is the metering length 

of the poppet land, µ  is the fluid viscosity and ε  is the eccentricity ratio. It can be 

defined as 

o

e
h

ε = ,     (2.42) 

where e  is the eccentricity dimension between the center of the inside cylinder and the 

center of the outside tube, oh  is the clearance of the circular walls between the inside 

insert and the outside tube. It is assumed that the metering length of the poppet land cl  is 

kept as constant. 

The load flow LQ  is expressed by classical orifice equation considering to the 

small fixed-area orifice in the back-side piping channel as follows 

( )2 2
2 signL k d k kQ A C P P P P
ρ

= − − ,    (2.43) 

where kP  is a constant pressure representing the fictitious working environment. The 

linearized piping flow rate may be derived according to the nominal conditions as follows 

by using Taylor series expansion and neglecting the high-order items 

( ) ( ) ( )2 2
2

L Ld k k
k d

QQ Q P P P d P
P P

 ∂
= + − − −     ∂ − 

,   (2.44) 
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where LdQ  is the nominal piping flow rate across the  fixed-area orifice from the back-

side chamber to the reservoir. Note that the linearization can not be performed when the 

desired back-side pressure 2dP  is equal to the desired load pressure kP , because the 

pressure drop 2d kP P−  appears in the denominator of cLK  known as the flow-pressure 

coefficient of the back-side pipeline flow that will be defined later. Then this introduces 

the infinite values of the flow gains that are not acceptable. The dynamics of the pipeline 

is neglected in this study. The load flow-pressure gains can be derived as follows 

( ) ( )2
2 2

sign
2

k dL
cL d k

k d kd

A CQK P P
P P P Pρ

 ∂
= − =  ∂ − − 

.  (2.45) 

By substituting Equation (2.45) into Equation (2.44) and rearranging items, the following 

load flow rate equation might be given by  

( ) ( ) ( )2 2 2
1
2L Ld cL k cL d k cL kQ Q K P P K P P K P P= + − = − + − .  (2.46) 

The spool can only travel from -1mm to 1mm in the channel, which leads to a 

small opening orifice. Therefore, the control flow cQ  can be expressed by classical 

orifice equation as follows 

( )2 signc v dQ hx C P Pδ δ
ρ

= ,    (2.47) 

where vx  is the instantaneous spool displacement, h  is the rectangular height, and 

1

2

    0
    0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

.     (2.48) 
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The spool-valve port with rectangular geometry is used and shown in Figure 2-6. 

w  is the rectangular width. It is clear that the instantaneous discharge opening area 1A  of 

the spool can be given by  

1
1   and   v

AA hx h
x

∂
= =

∂
    (2.49) 

 

 

Figure 2-6. Spool valve rectangular port geometry 

 
At the equilibrium position, the control orifice that is formed by the spool land 

and the control chamber always opens on the right of the poppet symmetrical center line. 

Therefore, the control flow rate for the linear analysis can be given by  

( )1 1
2 signc v d c cQ hx C P P P P
ρ

= − − .     (2.50) 

Similar as the linearized orifice Equation (2.19), the following control flow rate equation 

can be given by utilizing Taylor series method and omitting high-order items 

( ) ( ) ( ) ( )1 1
1

c c
c cd v vd c cd

v cd d

Q QQ Q x x P P P P
x P P

  ∂ ∂
= + − + − − −      ∂ ∂ −   

, (2.51) 

vx

w

h

Opening Area
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where cdQ  is the nominal control pressure. 1 1,q t cK K  known respectively as the control 

flow force gain and the control flow force pressure coefficient can be given by 

( )1
1 1

2
signcdc

q t d cd
v d

P PQK hC P P
x ρ

− ∂
= = − ∂ 

,   (2.52) 

( )1
1 12

c d vd
c

c cdd

Q hC xK
P P P Pρ

 ∂
= =  ∂ − − 

.     (2.53) 

By substituting Equations (2.52) and (2.53) into Equation (2.51) and rearranging items, 

the linearized form of the steady-state flow force fsF  can be given by  

( ) ( )

( )

1 1 1

1 1

1
2

    

c cd q t v vd c c

q t v c c cd

Q Q K x x K P P

K x K P P

= + − + −

= − −

   (2.54) 

 
2.3.2 Nominal Conditions 

Under the steady-state conditions, the nonlinear expressions of the nominal 

poppet main flow rate and the nominal pipeline flow rate are respectively given by  

( ) ( )1 2 1 2
2sin signd d d d dQ Dy C P P P Pθ
ρ

= − − ,   (2.55) 

( )2 2
2 signLd k d d k d kQ A C P P P P
ρ

= − − .    (2.56) 

Also, the linear expressions of the nominal poppet main flow rate, the nominal pipeline 

flow rate and the nominal leakage flow rate are respectively given by  

( ) ( )1 2 1 2
1 2
2d d c d c dQ Q K P P K P P= + − = − ,   (2.57) 



39 

( ) ( )2 2
1 2
2Ld Ld cL d k cL d kQ Q K P P K P P= + − = − ,  (2.58) 

( )2 2 2d cd dQ K P P= − .      (2.59) 

The steady-state flow rate balance in the back-side chamber can be depicted as  

( )2 2 2 0d Ld d cd dQ Q KP K P P− − + − = .    (2.60) 

For calculating the nominal poppet displacement, the poppet flow force pressure 

coefficient fctK  in Equation (2.26) can be simplified by neglecting the high-order item as 

follows 

( ) ( )2
1 2sin 2 signfct d d dK DC y P Pπ θ= − ,   (2.61) 

From Simultaneous Equations (2.32), (2.61), (2.55), (2.56) and (2.60), the following 

equation of the nominal displacement of the poppet valve can be given by 

( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 2 1 2 2

22 2
1 2 1 2 1 2 1 2

2 sign

2sin sign sin 2 sign

k d d k d k d d
c

d

d d d d d d
c c

K AA C P P P P P P KP
A

y
K K kDC P P P P DC P P P P
A A

ρ

π θ π θ
ρ

− − − − +
=

− − − − − −

.(2.62) 

This static displacement combining with stable system pressures decides how much flow 

is metered into or out of the back-side chamber, which represents the poppet responses 

for corresponding external loads. Note that the nominal condition under the case in which 

the desired nose-side pressure 1P  is equal to the desired back-side pressure 2dP  or/and the 

desired back-side pressure 2dP  is equal to the desired reservoir pressure kP  is not 

included in this analysis. Substituting Equations (2.57) and (2.58) into Equation (2.60), 

and rearranging items produce  
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( ) ( )2 2 2 22 cL d k qt d cd d dK P P K y K P P KP− = + − − .      (2.63) 

 
2.3.3 Back-side Pressure Equation 

Two different forms of the back-side pressure equation are depicted for the 

nonlinear system and the linear systems. The following equations are employed to 

represent the back-side chamber fluid characteristics for the nonlinear system 

( )2 2 2 2
L

c L c c
V P Q K P P Q KP Q Pδ
β

= + − − − −� ,    (2.64) 

0     0
1     0c

x
P

x
δ

≥
=  <

,       (2.65) 

( ) ( )1 2 1 2
2sin signdQ Dy C P P P Pπ θ
ρ

= − − ,   (2.66) 

( )2 2
2 signL k d k kQ A C P P P P
ρ

= − − ,     (2.67) 

( )2 signc v dQ hx C P Pδ δ
ρ

= ,     (2.68) 

1

2

     0
    0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

.                 (2.69) 

The following analysis is carried out for linear systems. Flow rate cQ  is not 

considered in linear analysis, because linearization is carried out only at equilibrium 

position. No matter the back-side pressure 2P  is higher or lower than the nose-side 

pressure 1P , for keeping its balance, the spool actuator only can have a tiny opening on its 
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right side of the control port. Therefore, for any linearization cPδ  is always equal to zero. 

The following pressure rise-rate equation within the varying control volume is used to 

describe the fluid characteristics in the back-side volume for the linear systems 

( )2 2 2L
L

P Q Q Q KP
V
β

= + − −� .    (2.70) 

Substituting Equations (2.22), (2.40), (2.46), and (2.63) into Equation (2.70), and 

arranging similar items produce the following equation to describe the pressure dynamic 

behavior in the back-side volume in linear analysis 

( )( ) ( ) ( )2 2 2 2 2
L

c cL d qt d c cd
V P K K K K P P K y y K P P
β

+ + + + − = − + −� . (2.71) 

 
2.4 Control Pressure Analysis 

The spool valve acts as the pilot valve to control the poppet valve displacement. 

The following pressure rise-rate equation within the varying control volume (shown in 

Figure 2-7) is used to describe the fluid characteristics in the control chamber 

( )2 2
co

c c c c
V P Q K P P A y
β

= − − +� � ,    (2.72) 

where coV  is the control chamber volume, which is assumed as constant by ignoring the 

volume change caused by the movement of the poppet.  
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Figure 2-7. Control pressure analysis 

 
The nonlinear fluid characteristics of the control flow rate cQ  is expressed in 

Equations (2.47) and (2.48). And the linear mathematical statement of the control flow 

rate cQ  is depicted in Equation (2.54). The left side of the above equation is the volume 

change of the control chamber due to compressible flow in terms of time. The flow rates 

on its right side are caused by flows either entering or exiting the control chamber due to 

its pressure drop effect. The last item on the right side is the volume change of the control 

chamber due to boundary change. 
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2.4.1 Nominal Conditions 

Under the steady-state conditions, the nominal control flow rate is given by 

( )

( ) ( )

1 1

1 1 1 1

2 sign

1     2
2

cd vd d cd cd

cd c cd c cd

Q hx C P P P P

Q K P P K P P

ρ
= − −

= + − = −

,   (2.73) 

The static flow rate relationship under the nominal conditions in the control chamber can 

be expressed as  

( )2 2cd cd dQ K P P= − .     (2.74) 

From simultaneous Equations (2.33), (2.34), (2.73) and (2.74), the following equation of 

the nominal opening of the spool valve can be given by 

( )

( )

( )

( ) ( )

2 2

1 1

2
2 1 2

2
1 2 1

2 sign

     
2 sign

cd d
vd

d cd cd

fct d
d

c c

c fc d
d d cd

c c

K P P
x

hC P P P P

A K K kyK P P
A A

A A K K kyhC P P P P
A A

ρ

ρ

−
=

− −

−
− −

=
− +

− + −

, (2.75) 

Considering that the spring force effect is negligible in the design and making an 

assumption that ( ) ( )1 1 2sign signcd dP P P P− = − , the following equation can be derived to 

obtaining the nominal spool position 

2

1 2
2

fct

c
vd d

c fct
d

c

A K
K

Ax P P
A A K

hC
Aρ

−

= −
− +

.   (2.76) 
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Similar as before, note that the nominal condition in which the desired nose-side pressure 

1P   is equal to the desired back-side pressure 2dP  or/ and the desired nose-side pressure 

1P  does not equal to the desired control pressure cdP  is not included in this analysis. 

By substituting Equation (2.73) into Equation(2.74), and rearranging items, the following 

nominal pressure relation can be given by 

 ( )1 1 1 2 22 2c c cd cd dK P K P K P P= + − .    (2.77) 

 
2.4.2 Control Pressure Equation 

Two different forms of the control pressure equation are depicted for the 

nonlinear system and the linear systems. The following equations are employed to 

represent the control chamber fluid characteristics for the nonlinear system 

( )2 2
co

c c c c
V P Q K P P A y
β

= − − +� � ,    (2.78) 

( )2 signc v dQ hx C P Pδ δ
ρ

= ,             (2.79) 

1

2

    0
    0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

.              (2.80) 

Substituting Equations(2.40), (2.54) and (2.77) into Equation (2.70), and 

arranging items produce the following equation to describe the pressure dynamic 

behavior in the back-side volume in linear analysis 

( ) ( ) ( ) ( )3 1 2 2 2 1c c cd c d q t v vdK K P P A y K P P K x x+ − = + − + −� .       (2.81) 
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Note that the time-change rate of the control pressure is very small so that it is negligible 

in the linear analysis, though it is involved in the nonlinear analysis. 

 
2.5 Nonlinear Governing Equations for the Open-loop System 

The nonlinear governing equations for the open-loop poppet-valve system can be 

summarized as follows 

 ( ) 1 2 2fq d fct c c ceff eff effmy y K y K y A K P P A P LK PC A ρ+ + − = − + − + ��� � ,      (2.82) 

where ,  and eff eff effK C A are constants as follows 

eff fqK k K= + ,      (2.83) 

eff qtC c LKρ= + ,     (2.84) 

eff c fctA A A K= − + ,     (2.85) 

          ( )2 2 2 2
L

c L c c
V P Q K P P Q KP Q Pδ
β

= + − − − −� ,     (2.86) 

where 

0     0
1     0

v
c

v

x
P

x
δ

≥
=  <

,     (2.87) 

( ) ( )1 2 1 2
2sin signdQ Dy C P P P Pπ θ
ρ

= − − , (2.88) 

( )2 2
2 signL k d k kQ A C P P P P
ρ

= − − ,   (2.89) 
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( )2 signc v dQ hx C P Pδ δ
ρ

= ,   (2.90) 

1

2

    0
    0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

,        (2.91) 

 ( )2 2
co

c c c c
V P Q K P P A y
β

= − − +� � .         (2.92) 

Figure 2-8 shows the block diagram for the open-loop poppet-valve system. 

 

 

Figure 2-8. Block diagram for the open-loop poppet-valve system 

 
2.6 Linear Governing Equations for the Full-model Open-loop System 

The linear governing equations for the open-loop poppet-valve system can be 

summarized as follows  

( ) ( ) ( )2 2 2eff eff d c eff d c c cdmy C y K y y LK P A P P A P Pρ+ + − = + − − −��� � ,  (2.93) 

( ) ( ) ( )2 2 2 2
L

v d qt d c cd
V P K P P K y y K P P
β

+ − = − + −� ,    (2.94) 

( ) ( ) ( )2 2 2 1s c cd c d q t v vdK P P A y K P P K x x− = + − + −� ,         (2.95) 
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where  and v sK K  are constants as follows 

2v c cLK K K K K= + + + ,    (2.96) 

2 1s cK K K= + .     (2.97) 

In linear analysis, the system analysis under special conditions (when the nose-

side pressure 1P  and the nominal back-side pressure 2dP  equals or/and the back-side 

pressure 2dP  and the load pressure kP  equals) is not taken into consideration. 

 

Figure 2-9. Block diagram for the full-model linear open-loop poppet-valve system 

 
Figure 2-9 shows the block diagram for the full-model linear open-loop poppet-

valve system. It is assumed the nominal pressure drop across the poppet is known. 

Therefore, for taking the desired external load under certain power supply that drives the 
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fluid to flow through the poppet, an operator can give the spool valve displacement vdx  to 

make the poppet valve move upward or downward its seat to reach position dy . 

 
2.7 Steady-State Solution 

The mathematical expressions of state equilibrium relations between the system 

variables are given by removing the time-rate-of-change items as follow  

( ) ( ) ( )2 2eff d eff d c c cdK y y A P P A P P− = − − − ,     (2.98) 

( ) ( ) ( )2 2 2v d qt d c cdK P P K y y K P P− = − + − ,   (2.99) 

( ) ( ) ( )2 2 2 1s c cd d q t v vdK P P K P P K x x− = − + − .           (2.100) 

 The first equation depicts the force balance on the poppet under steady-state 

condition. The second and third equations represent respectively the static fluid behavior 

in the back-side chamber and the control chamber. 

 
2.8 Linear Governing Equations for the Reduced-order Open-loop System 

2.8.1 Non-Dimensional Governing Equations for the Full-model Linear Open-loop 

System 

It can be illustrated from the above linear system equations that this is a 3rd order 

system with very complex parameters. It is necessary to perform non-dimensionalization 

to obtain a more clear view about how system variables and parameters act in practice. 

Some definitions are given by 
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2 2 2

,        ,        

,        ,      

d v vd v

c cd c d

y y y x x x

t t P P P P P Pτ

= =

= = =

� �

� �� ,    (2.101) 

where the carets denote dimensionless quantities, τ  is  a characteristic time in which the 

main dynamic behavior of the system may occur. 2, , ,d vd cd dy x P P  are all desired values.  

Substituting Equation (2.101) into Equations (2.93), (2.94) and (2.95), and 

rearranging items yield the three non-dimension system equations for the full-model 

linear open-loop poppet-valve system. The first equation describes the force balance on 

the poppet as follows 

( ) ( ) ( )
2

2
1 2 3 4 5 22 1 1 1c

dPd y dy y P P
dt dt dt

Ψ +Ψ +Ψ − = Ψ +Ψ − − −
�� � � ��

� � � ,  (2.102) 

where 1 2 3 4 5, , , , Ψ Ψ Ψ Ψ Ψ  are all constant coefficients that change according to nominal 

conditions 

1 22

2
3 4

2
5

,                   

,                     

eff dd

c cd c cd

eff d c d

c cd c cd

eff d

c cd

C ymy
A P A P

K y LK P
A P A P

A P
A P

τ τ

ρ
τ

Ψ = Ψ =

Ψ = Ψ =

Ψ =

.   (2.103) 

The second one is the non-dimension mathematical description of the fluid characteristics 

in the back-side chamber as follows 

 ( ) ( ) ( )2
1 2 2 31 1 1c

dP y P P
dt

Ξ = − −Ξ − +Ξ −
� � ��
� ,   (2.104) 
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where 1 2 3, , Ξ Ξ Ξ  are all constant coefficients that change according to nominal 

conditions 

2 2
1 2

2
3

,                     

          

L d v d

qt d qt d

cd

qt d

V P K P
K y K y

K P
K y

βτ
Ξ = Ξ =

Ξ = .  
 (2.105) 

The third one is the non-dimension mathematical description of the fluid characteristics 

in the control chamber as follows 

( ) ( )1 2 3 21 1 1v c
dyx P P
dt

− = −Ζ + Ζ − − Ζ −
� � �� � ,    (2.106) 

where 1 2 3, , Ζ Ζ Ζ  are all constants that change according to nominal conditions 

1 2
1 1

2 2
3

1

,                      c d c cd

q t vd q t vd

d

q t vd

A y K P
K x K x

K P
K x

τ
Ζ = Ζ =

Ζ =

.   (2.107) 

 
2.8.2 Linear Governing Equations for the Reduced-order Linear Open-loop System 

The unimportant items in the governing equations can be detected from the non-

dimension calculation. The reduced-order linear open-loop system can be obtained by 

ignoring the trivial effects and maintaining the primary factors for the stability criterion 

analysis of the PI control design in the next chapter. One set of typical known pressure 

conditions is introduced to investigate the quantity comparison for the non-dimension 

constant coefficients. The actual operating conditions will be given in Chapter 4 (See 

Tables 4-1 and 4-2). It is noted that the time constant τ  is set as 0.03 seconds in which 
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period the system is expected to fulfill main performance requirements. The following 

equation represents the set of pressure condition (Shown in Figure 2-10)  

( ) ( ) ( )

( ) ( ) ( )

( )

6 6
1 a

6 6
2 a

6
a

22 10 5 10 sin 62.8  P

20 10 5 10 sin 62.8  P

5 10  P

d

k

P t

P t

P

= +

= +

=

.  (2.108) 

It is obvious that the constant pressure drop, i.e. 2 MPa, exists between the two 

sides of the poppet opening. The desired nose-side pressure 1P  is a sine wave with 10 HZ 

frequency as well as the desired back-side pressure 2dP . The amplitudes for 1P  and 2dP  

are respectively 22 MPa and 20 MPa. The nominal load pressure kP  is a constant with the 

value of 5 MPa. 
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Figure 2-10. Pressures for calculating non-dimension governing equation coefficients 
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Figure 2-11. Non-dimension equation coefficients for the poppet analysis 
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Figure 2-12.  Non-dimension equation coefficients for the back-side pressure analysis 
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Figure 2-13.  Non-dimension equation coefficients for the control pressure analysis 

 
The calculating results for coefficients are shown in Figure 2-11 through Figure 2-

13 Both x coordinate (time) and y coordinate (coefficients) are non-dimension values. 

Therefore there is no label to indicate their units. It is illustrated from Figure 2-11 that the 

order of magnitude of the first coefficient 1Ψ  related to the mass inertia is at least 1 less 

than those of the rest coefficients in the poppet equation. Figure 2-12 shows that the 

values of the first and second 1Ξ  and 2Ξ  are respectively about 100 times and 10000 

times of the value of the third coefficient 3Ξ  related to the control pressure change in the 

back-side chamber. In Figure 2-13, it can tell us that all coefficients have obviously 

unavoidable influence on the control pressure. The values of coefficients 1Ζ ,  2Ζ  and 3Ζ  

are at the same order magnitude level. 



54 

  It is easy to make a conclusion that the values of 1Ψ  in poppet analysis and 3Ξ  in 

back-side pressure analysis are at least 10 times less than other corresponding coefficients. 

It is reasonable to consider to removing 1Ψ  and  3Ξ  to simplify the system and keep 

enough system information. Therefore, the poppet inertia and the change of control 

pressure in the back-side pressure analysis are not considered in the reduced-order linear 

system. The following equations are given to describe the reduce-order linear open-loop 

poppet-valve system 

( ) ( ) ( )2 2 2eff eff d c eff d c c cdC y K y y LK P A P P A P Pρ+ − = + − − −�� , (2.109) 

( ) ( )2 2 2
L

v d qt d
V P K P P K y y
β

+ − = −� ,     (2.110) 

( ) ( ) ( )2 2 2 1s c cd c d q t v vdK P P A y K P P K x x− = + − + −� .   (2.111) 

 
2.9 Summary 

  In this chapter, three main mathematical models for both nonlinear and linear 

open-loop systems are presented: governing equations for the nonlinear system, 

governing equations for the full-model linear system and governing equations for the 

reduced-order linear system. With the help of dimensionless analysis, the reduced-order 

linear open-loop system is derived by neglecting the poppet mass and the change of the 

control pressure in the back-side chamber. The complete linear formation of the flow 

force acting on the poppet head is derived from the simplified Navier-Stoke Equations. 

The controller design, stability criterion analysis and model simulation in the subsequent 

chapters will be performed based on the open-loop systems established here.  
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CHAPTER 3. CONTROL DESIGN 

  

3.1 Introduction 

There are two main difficulties existing in poppet control. One is that the poppet 

itself is pressure imbalanced due to its geometry. Another is that the system containing 

poppets is always undergoing a wide variation in pressure conditions. Therefore, poppet 

systems are easy to experience instability, normally distinguished by oscillation that can 

damage the component and make big noise. It is necessary to fall back on measures to 

control the poppet dynamic behavior. The controller design for this system is presented in 

this chapter. Four control methods are included: proportional-integral (PI) control, linear 

quadratic gaussian (LQG) control, H∞ control and nonlinear feedback control. The 

analysis of the first three methods is based on the linear systems that are obtained from 

linearizing the nonlinear poppet system, while the fourth one is performed on the 

nonlinear poppet system. The validity of the linear controllers is checked by combining 

them with both the linear system and the nonlinear system in simulation chapter. A 

modified PI controller with changing gains is introduced to overcome the shortcoming of 

the PI controller with constant gains that can not adapt well to the diversity of system 

pressures. LQG is carried out on a single-input-multiple-output (SIMO) system which has 

one input of the spool displacement error v vdx x−  and two outputs of the poppet 

displacement error dy y−  and the back-side pressure error 2 2dP P− , while H∞ control is 

fulfilled only for a SISO system which does not have 2 2dP P− . The stability of the global 
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nonlinear linear system with the nonlinear controller is proved by utilizing Lyapunov 

stability theory.  

The purpose of the control design is to make the poppet have the ability to meter a 

certain amount of flow that can take the required load under working conditions given. 

Since it is assumed that the nominal nose-side pressure 1P , the nominal back-side 

pressure 2dP  and the nominal piping pressure kP  are known, this task becomes to make 

the poppet move to the desirable position when the spool actuator is operated by the 

desirable command which is obtained from the load and system information. The poppet 

must respond quickly enough with the acceptable steady-state error to track a 10 HZ sine 

wave that is a desired poppet displacement. The steady-state error must be less than 10% 

of the nominal poppet displacement. In practice, if a poppet can exhibit a frequency 

response of 5 HZ or 6 HZ, it is quick enough to meet the flow metering requirement in 

the hydraulic circuit. However, according to engineer’s experience, when the controller is 

applied to the real physical system, the response speed of a hydraulic component, for 

example a poppet valve, usually slows down to about 50% of the one in simulation. The 

phase lag can not be bigger than 90 degree for this research. The settling time of about 30 

ms for the step response is a goal for the speed of response.  

 
3.2 Modified PI Control 

3.2.1 Control Law 

The PID (proportional-integral-derivative) controller is widely used in industry 

due to its simplicity and practicability.  The proportional part can only proportionally 

increase or reduce the control error. Therefore, its control ability is limited and it has 
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nonzero steady-state error. The integral part has a low-pass frequency characteristic. It 

contributes to eliminate the steady-state error. However, its pole at the origin does add 

additional phase lag to the loop and could create system instability and make it slow as 

well. The phenomenon of “wind up” probably appears to reach physical saturation, which 

will prevent the controller from practical application. Limits of upper and lower integral 

saturation can be activated to avoid “wind up”. The derivative part can predict the future 

tendency of the control error. It will generate a large control signal, which might harm the 

system. In this research, only a PI controller is used to achieve the control goal. 

The difficulty in this system is to control the poppet under a wide range of system 

pressures. Therefore, pressure control needs to be considered in PI design. Clues can be 

found by examining two important pressure relationships of the equilibrium position 

(shown in Figure 2-1) that appear in Equations (2.33) and (2.34). The following pressure 

relationships might be presented to develop a new PI controller 

( )1 1 2
c fct

c
c c

A A K kyP P P P
A A

− +
− = − + ,    (3.1) 

( )2 1 2
fct

c
c c

A K kyP P P P
A A
−

− = − − ,    (3.2) 

where y  is the instantaneous poppet position, 1P  is known poppet nose-side pressure, cP  

is the instantaneous control pressure in the control chamber, 2P  is the instantaneous 

poppet back-side pressure, cA  and A  are respectively the cross section area of the poppet 

land and the poppet port, fctK  is the poppet flow force pressure coefficient and k  is the 
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spring rate.  Rearranging items in the steady-state Equation (2.100) produces the 

rudiment of the control law as follows 

( ) ( ) ( ) ( ){ }2 2 2 1 1 1
1

1
v vd c cd d c c cd

q t

x x K P P P P K P P P P
K

− = − − − − − − −       . (3.3) 

By substituting Equations (3.1) and (3.2) into Equation (3.3) and rearranging items, the 

following static relationship between the spool displacement and pressures can be given 

to be the pre-expression of the control law 

( ) ( ) ( )2 1
2 2

1 1

fct c eff s
v vd d d

q t c q t

K A K K A kKx x P P y y
K A K

− −
− = − − − − .  (3.4) 

The above item and the common PI items constitute the final version of the PI controller 

that is used as the control law in this research as follows 

( ) ( ) ( )2 2 2 2v vd P d I d PP dx x K y y K y y dt K P P− = − + − − −∫ ,  (3.5) 

where 2 2,  and P I PPK K K  are respectively the proportional gain, the integral gain and the 

pressure gain as follows that are changing according to the nominal pressure conditions 

( )

2
1 1

2
1

2 1

1

         

sP
P

q t c q t

I
I

q t

fct c eff
PP

c q t

kKKK
K A K

KK
K

K A K K A
K

A K

= −

=

− −
=

,    (3.6) 
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where  and P IK K  are respectively constant proportional gain and integral gain. Figure 3-

1 shows the block diagram of the closed-loop poppet-valve system. 

 

 
Figure 3-1. Block diagram for the closed-loop poppet-valve system 

 
3.2.2 Characteristic Equation of the Reduced-order Linear Closed-loop System 

The subsection implements the analysis about how to choose constant ,P IK K  for 

the closed-loop system that combines the control law of Equation (3.5) with the reduced-

order linear open-loop system described in Chapter 2 (shown in Equations (2.109), (2.110)

and (2.111)). The following characteristic equation of the reduced-order linear closed-

loop system can be given by 

3 2
0 1 2 3 0d s d s d s d+ + + = ,     (3.7) 

where 0 1 2 3, , , d d d d  are constant coefficients as follows 

2

0
cL

eff
s

AVd C
Kβ

 
= +  

 
,       (3.8) 

2
2 1

1
c P q t L cL

eff c qt v eff
s s

A K K V AVd K LK K K C
K K

ρ
β β

 
= − + + + 

 
,  (3.9) 
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2 1 2 2 1
c L

eff v q t P v I q t
s

A Vd K K K K K K K
K β

 
= + + 

 
,                 (3.10) 

1 2
3

c v q t I c v I

s s

A K K K A K Kd
K K

= = .                                 (3.11) 

 
3.2.3 Control Gain Analysis 

Routh-Hurwitz stability criterion [32] can be used to help determine the stability 

problem of this linear third-order system. It states that the roots of the characteristic 

equation that describes a system can indicate whether this system is stable or unstable. If 

all real parts of these eigenvalues are negative, that is all roots locate within the left-hand 

complex plane, it means that the system is stable. There are two rules for a stable system 

in Routh-Hurwitz stability criterion: 

1) All coefficients in the characteristic equation are positive. 

2) Each coefficient in the first column of the Routh array must have the same sign. 

Therefore, two stability criteria of the third-order system are given as  

0 1 2 3 1 2 0 3, , , 0 and d d d d d d d d> > .   (3.12) 

It is obvious that if 
2

0c
qt

s

A
c LK

K
ρ+ + > , then 0 0d >  is guaranteed. By substituting 

Equations (2.83), (2.84) and (3.6) into Equation (3.9), rearranging items and making 

reference from Equations (2.20), (2.21), (2.25), (2.96) and (2.25) the following equations 

can be given by 



61 

N N
N

( )

0

2

1
0 0

0 00, due to the requirement of 0 

2

2

0
0 0

   

c c LL
fq c qt v qt P

s s

d

c cL
fq cL qt v

s

A A VVd K LK K K c LK K
K K

A AVK K K K L K K c
K

ρ ρ
β β

ρ
β

> >
> >> >

>
> >

 
= − + + + + 

 

 
= + + + + + + 

 

���	��
 ��������	�������


��������	�������
���	��
 �����	����
 N
0

L
P

s

V K
K β
>

.  (3.13) 

It is assumed that the nominal nose-side pressure 1P , the nominal back-side pressure 2dP  

and the nominal back-side pressure kP  are never equal to each other. On one hand, under 

the system pressure relationship of 1 2d kP P P> > , 0PK >  can make 1d  always positive 

according to the lower expression of Equation (3.13). On the other hand, under the 

system pressure relationship of 1 2d kP P P< < , 
2

0, 0c
P qt

s

A
K c LK

K
ρ> + + > can always give 

a positive value of 1d  in the upper expression of Equation (3.13). Therefore, 1 0d >  can 

be satisfied by 
2

0, 0c
P qt

s

A
K c LK

K
ρ> + + >  under working conditions that are interested in 

this research. It can be shown from Equations (2.95) and (2.96) that 0IK >  can make 

sure the stability criterion 3 0d >  to be satisfied. By substituting Equations (2.83) and (3.6) 

into Equation (3.10), rearranging items and making reference from Equations (2.25), 

(2.96) and (2.25)  , the following equation can be given by 

N N
2

0
0 0

c v c L
fq v P I

s s

A K A Vd K K K K
K K β

>
> >

= + +���	��
 .   (3.14) 

Consequently, 0PK >  and 0IK >  can furnish security for this stability criterion 2 0d > . 
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By substituting Equations (2.83), (2.84) and (3.6) into Equation (3.11), rearranging items 

and making reference from Equations (2.20), (2.21), (2.25), (2.96) and (2.25), the 

following equations can be given by 

N
N

N
N

N

0

2

1 2 0 3
0 00 0

00 00, due to 
the requirement

0

L
fq c qt

c v c c L
fq v P eff v fq v v P I

c Ls s s
P

s
d

VK LK K
A K A A Vd d d d K K K C K K K K K K

A VK K K K
K

ρ
β

β
β

> >> >
>> >>

>

      −        − = + + + + +             +       

���	��
 ���	��

�����	����


.  (3.15) 

From the above equation, a conclusion can be drawn that if 
2

0, 0c
P qt

s

A
K c LK

K
ρ> + + > , 

0IK >  and s L L
P c qt fq

c

K VK LK K K
A V
β ρ

β
 

> − 
 

 exist, the last stability requirement, 

1 2 0 3 0d d d d− > , can be obtained. 

It can be summarized that the following rule is derived to give basic guide line of 

how to choose the proportional gain PK  and the integral gain IK  in PI control design. 

2

0

max 0,

0

c
qt

s

s L
P c qt fq

c L

I

A
c LK

K

K VK LK K K
A V

K

ρ

β ρ
β

+ + >

  
> −  

  

>

.   (3.16) 

However, this rule can only assure the system stability. For good system performance, the 

correct gains need to be selected with caution.  
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3.3 LQG Control 

As an important part of robust control methods, Linear-Quadratic-Gaussian (LQG) 

control is widely used in aerospace engineering. It is a modern state-space technique for 

designing optimal dynamic regulators by combining a Kalman estimator to get optimal 

estimated states with a full-state feedback controller to make the system approaches its 

equilibrium status from the initial deviation. It is assumed that the plant is known and 

linear, illustrated by transfer functions or state-space matrices and the process disturbance 

and measurement noise covariance data are known as white noises with known statistical 

properties. Figure 3-2 shows the structure of the closed-loop system with a LQG 

controller. It is obvious that a Kalman estimator represented by the blue dash-line 

rectangle and a LQ Regulator (LQR) constitute the LQG controller represented by the red 

dash-double-dot-line polygon. Both the Kalman estimator and the LQR can be obtained 

by respectively solving two Riccati equations. The variables , ,my x y� �  are respectively the 

measured output vector, the internal Kalman state vector and the estimated full-state 

output vector. Matrices , , and   op op op opA B C D  are open-loop system matrices. KFC , a 3-

by-3 identity matrix, is one of the Kalman filter matrix. fM , W  and nV  are respectively 

the Kalman filter innovation gain matrix, the input disturbance matrix and the 

measurement noise matrix. 
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Figure 3-2. Structure of the linear closed-loop system with the LQG controller 

 
3.3.1 State-Space Equations for the Full-model Linear Open-loop System 

The states in this analysis are all errors between the instantaneous values and the 

nominal values. Thereby the tracking performance can also be performed by the 

regulation design. According to linear governing Equations (2.93) through (2.95), the 

states x , input u  and output ry  for the state-space plant that does not includes 

disturbances can be chosen as 
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  
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[ ] [ ]v vdu x x= = −u ,     (3.18) 

1 1

3 3 2 2

dr

r d

y yy x

y x P P

−    
= = =     

     −     
ry .   (3.19) 

where 1 2 3,  and x x x  are elements of the state vector x , 1 2and r ry y  are elements of the 

output ry , u  is the control signal in error formation. They are all deviations from the 

desired position with assumption that the time rate of change of desired values is assumed 

as zero. Only instantaneous poppet position y  and back-side pressure 2P  are measured as 

outputs in LQG design. 

It is assumed that there are two sate measured noises 1 2,v v  acting on the position 

sensor and the pressure sensor respectively and one process disturbance 1w  acting on the 

spool displacement vx . They can be expressed by 

[ ] 1

1

2

,
v

w
v

 
= =  

  
nW V .     (3.20) 

The above process disturbance and sensor noise are defined as white noises which have 

flat constant power spectral density matrices , n nQ R  respectively as follows 
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where 
1 2

,  ,  w v vσ σ σ  are chosen constants related to the precision of measurement 

equipments and process disturbance. And , nW V  are matrices that must satisfy 
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,    (3.22) 

where “E” is the expectation operator. The superscript “T ” means the transpose for a 

matrix. If the linear system is close to a singular system, it is probably hard to obtain the 

LQG robust feedback gains or Klaman estimator. This problem can be solved by 

fulfilling LQG control design on a non-dimension linear system to improve the design 

circumstance and solvability of this plant in Matlab. Non-dimension process disturbance 

and measurement noise can be separately expressed by 

  [ ]
1

1 2 1
1 1 2 1

22

, , , , 
nd

nd nd nd nd
d d vdnd

v v v ww v v w
y P xv

 
= = = = = 

  
nd ndW V .  (3.23) 

The non-dimension flat constant power spectral density matrices ,  nND nNDQ R  of the 

above non-dimension process disturbance and sensor noise can be respectively given by  
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where 
1 2

,  ,  
nd nd ndw v vσ σ σ  are dimensionless constant related to precision of measurement 

equipments and process disturbance as follows 

1 2

1 2
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nd

nd nd

w
w
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v v
v v

d d

x

y P

σσ

σ σ
σ σ

=

= =

.    (3.25) 

A matrix with the superscript “-1” indicates the inverse matrix for the original one. 

The original open-loop plant model with process disturbance W  and 

measurement noise nV  can be given as follows 

= + +

= + + +

op op

m op op n

x A x B u FW

y C x D u HW V

�
,     (3.26) 

where my  is the measured output vector that contains disturbance, 

, , , , ,op op op opA B F C D H  are system matrices as follows 
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op op opF B C D H .    (3.29) 

Substituting Equation (3.29) into Equation (3.26) produces 
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= + = +
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where my  can be expressed as  

1 1

3 2 2 2

m d

m d

y y y v

y P P v

− +   
= =   
   − +   

my ,    (3.31) 

where  1 2 and m my y  are elements of the measured outputs my  with disturbance effects.  
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3.3.2 Kalman Estimator 

The purpose of Kalman filter is to estimate the state variables of this dynamic 

system from a series of incomplete measurements which have random sensor errors and 

the input information. Figure 3-3 shows the state-space structure of the linear closed-loop 

system with the LQG controller (shown by the dash-double-dot-line polygon) for Kalman 

filter calculation. 

 

Figure 3-3. State-space structure of the linear closed-loop system with the LQG controller 

 
The open-loop system that is used to get the Kalman estimator (as shown in 

Figure 3-3) can be given by 
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The equation of the Kalman estimator might be given by (reference from Figure 3-2) 

( )= + + −

= + =

= + + = +

op op f m op
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m op op n op n

x A x B u M y C x

y C x D u C x
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�� � �

� � � � .   (3.33) 

The above equation can be rearranged as 

= +

= + =
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KF KF KF

x A x B u

y C x D u C x

�� � �

� � � �
,    (3.34) 

where , ,  and KF KF KF KFA B C D  are system matrices for the Kalman filter as follows 

,    
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and ,  and x y u� � �  are respectively the internal states, outputs and inputs of the Kalman filter 

system as follows 
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71 

1 1

2 2

3 3 2 2

d

d

y yy x

y x y

y x P P

−    
    
    = = =
    
     −     

y

�� �

�� � � �

�� �

,    (3.37) 
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     
u� ,      (3.38) 

where 1 2 3, and x x x� � �  are elements of x�  and 1 2 3, and y y y� � �  are elements of y� , the variable 

with “~” denotes the variables which describe the dynamic behavior of the Kalman filter 

and the optimal matrix fM , which is used to minimize the steady-state error covariance 

N ( )( ){ }lim T

t
E

−>∞

− −x x x x� � ,  can be given by 

1T −=f f op nM Y C R ,     (3.39) 

where 0T= ≥f fY Y  is given by solving the following algebraic Riccati equation 

1 0T T T −+ − + =f op op f f op n op f nY A A Y Y C R C Y Q .   (3.40) 

Normally, the selection of fM  needs to follow a principle that it can create a Kalman 

filter which has a faster response than those of the system. 

 
3.3.3 Full-State Feedback LQR 

The LQR problem is to find the control law u  containing full-state feedback to 

make all the system variables approach zero by the way of minimizing the quadratic cost 

function rJ  that can be described by the following equation 
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where  and Q R  are weight matrices of the cost function that can be selected in this 

design as follows 
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where 1 2 3, ,q q q  are constants that will be given to solve the Ricccati equation for 

obtaining the LQR controller. The optimal control law can be given by 

= − ru K x� ,      (3.43) 

where, rK  is the gain matrix that can be given by 

 1 T−=r op rK R B Y ,     (3.44) 

where 0T= ≥r rY Y  is given by solving the following algebraic Riccati equation 
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In dimensionless analysis, the non-dimension weight matrices  and ND NDQ R  can be 

represented are selected as 
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3.3.4 Summary of the Closed-loop System with the LQG Controller 

Combining Kalman filter design with LQ regulator design produces the following 

state-space equation for the closed-loop poppet system 

= +

= +

g clg g clg clg

g clg g clg clg

x A x B u

y C x D u

�
,         (3.47) 

where ,  and g g clgx y u  are respectively states, outputs and inputs of the above closed-loop 

system as follows 
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, ,  and clg clg clg clgA B C D  are system matrices for the closed-loop system with the LQG 

controller as follows 
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Substituting Equations (3.48) through (3.54) into Equation (3.47) produces  
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3.4 H∞ Control 

3.4.1 System Uncertainty 

The modeling errors, which can be defined as “uncertainty”, always exist between 

the mathematical model and the true physical system. There are two main types of system 

uncertainty: parametric uncertainty and unmodelled plant uncertainty. The correct value 

of many parameters is either hard to be measured, or very complex to get the numerical 

expression, or varies with the change of time and working condition. There is no doubt 

that any analytical model can not avoid unmodelled model uncertainty, which either 

comes from intended neglect or originates from human knowledge deficiency in 
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cognition of the real world. In this study, only parameter uncertainty is considered, i.e. 

assume that the mathematical models make a good agreement with the real system. Three 

key parameters (fluid bulk modulus β , orifice coefficient dC  and spring rate k ) with 

ranges are chosen to perform uncertainty analysis. Figure 3-4 shows the plant pG  with 

the lumped multiplicative input uncertainty [30]. Gnorm is the nominal plant without 

consideration of the uncertainty. The parameter uncertainties are depicted as the product 

of the uncertainty weight function IW  and the lumped complex perturbation I∆  that is a 

stable transfer function and has a H∞ norm less than 1, i.e. 1
∞
≤I∆ . 

 

 

Figure 3-4. Plant with the lumped multiplicative uncertainty: pG  

 
Subsequently, the set of mathematical system plants with the multiplicative input 

uncertainty in transfer function is given by [30] 
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The form of weight function IW  of the multiplicative input uncertainty can be expressed 

by  

( ) N
( ) ( )

( )
max ,    

j j
j

j
ω ω

ω ω
ω∈Π

−
≥ ∀

p

p norm
I

G norm

G G
W

G
,   (3.57) 

where ω  is the frequency. Therefore, any IW  whose magnitude is greater than the 

maximum value of the absolute ratio of the model error between the system with 

uncertainty pG  and the nominal system normG  with respect to the nominal system normG , 

can be chosen to symbolize the system multiplicative input uncertainty weight function. 

 
3.4.2 Mixed Sensitivity H∞ Control Design 

3.4.2.1 Standard Control Configuration for a Common System with Uncertainty 

Figure 3-5 demonstrates the standard control configuration that is used to solve 

control design problem (including H∞ control design) and carry out robust analysis for a 

common system with uncertainty. hP  is the generalized open-loop plant, while hN  is the 

generalized closed-loop plant (the structure of dash-double-dot line that includes the 

controller hK .). The uncertainties represented as I∆  and P∆  are withdrawn from the 

nominal closed system hN . The block I∆  is a certain normalized form ( 1, ω
∞
≤ ∀I∆ ) of 

the real uncertainty. It may be a block-diagonal matrix [30]. Therefore, the system is 

designed to undergo a specific uncertainty that has no explicit mathematic form. In this 

study, it is chosen as a multiplicative input uncertainty expressed by Equation (3.57). The 

full complex matrix block P∆  ( 1, ω
∞
≤ ∀P∆ ) is specially stated to represent a fictitious 
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uncertainty coming from H∞ performance specifications [30], for example, tracking 

requirement, noise truncation and control energy limitation.  

 

 

Figure 3-5. Standard system structure with uncertainty for control design and robust 

analysis 

 
In the practical design process, the more useful configuration (shown in Figures 

3-6) may be used to find out the stable controller hK  for the generalized plant hP . The 

following relationship exists in Figure 3-6 
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where z  is the system output vector that usually are errors needed to be small enough, 

my  is the measurable output vector, nV  can be measurement noise or process disturbance 

or both, u  is the control law, ∆y  is the outputs due to system uncertainties and ∆u  is the 

inputs due to system uncertainties. 

 

Figure 3-6. Standard control design configuration for a system with uncertainty 

 
Note that in the process of obtaining the proper controller hK  for this poppet 

system, only is the nominal plant utilized without consideration of the disturbance nV . 

Therefore the control design can be fulfilled accompanying with the assumption that the 

real uncertainty is not involved in the design process, although it plays an important role 

u 

y∆

z 

ym

 
Ph 

Kh 

Vn  

∆I 
u∆

Nh
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for analyzing system robustness later. For the control design, the following input-output 

relationship can be given by 

=
   
   
   

n
h

m

z V
P

y u
.     (3.59) 

The generalized open-loop plant hP  (shown in Figures 3-5 and 3-6) can be denoted by 

partitioned transfer functions as follows. 

   

  

 
=  
  

h11 h12

h

h21 h22

P P
P

P  P
,     (3.60) 

where , ,  and h11 h12 h21 h22P P P P  are all system transfer function matrices. Then the 

following relationship can be derived as 

= +

= +

h11 n h12

m h21 n h22

z P V P u

y P V P u
.     (3.61) 

Another configuration (shown in Figure 3-7) may be more valuable to perform the 

robust analysis for the system with uncertainty. This well-known framework is to be 

called N∆-structure [30]. Similarly, the relationship lying in Figure 3-7 can be given by 

=
  
  
     

∆∆

h

n

uy
N

Vz
.     (3.62) 
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Figure 3-7. N∆-structure for analyzing robustness of a system with uncertainty 

 
3.4.2.2 Common H∞ Control Design 

H∞ control method is one of powerful ways of controller design for both SISO 

(single input and single output) and MIMO (multiple inputs and multiple outputs) linear 

systems. Especially for MIMO systems, instead of phase and gain margin, a new concept 

of singular value is introduced to be the stability criterion. The H  stands for “Hardy 

Space”.  The infinity norm is the peak value of a transfer function in all frequency ranges 

that can be expressed as follows 

( ) ( )maxs j
ω

ω=h hN N             (for the SISO systems),  (3.63) 

( ) ( )( )maxs j
ω
σ ω=h hN N        (for the MIMO systems),  (3.64) 

where ( )σ i  stands for the largest singular value of the matrix hN at a certain frequency 

that represents the worst direction and the worst frequency. The singular values of the 

matrix hN  can be defined as 

( ) ( )       1H H
i i i i nσ λ λ= = =h h h hN N N N " ,   (3.65) 

z 

y∆

 
Nh Vn  

u∆ ∆I 
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where n  is the number of all eigenvalues, iλ  is the thi  eigenvalue, and the matrix with a 

superscript “ H ” identifies a complex conjugate transpose matrix. 

The optimal H∞ control design for the common system aims at finding all 

stabilizing controllers hK  to minimize the H∞ norm of the matrix hN  that can be 

expressed by the following equation 

( ) [ ] 1,
lNF −= = + −h h h h11 h12 h h22 h h21N P K P P K I P K P ,   (3.66) 

where ( ),
lNF h hP K  is the lower linear fractional transformation (LFT) in which the 

generalized plant hP  and a stable controller hK  are parameters. It is necessary to require 

that the final closed-loop system should be internally stable. The essence of the control 

task is to make the influence of the disturbances nV  on the output z  as small as possible.  

However, Glover and Doyle [24] showed that the process of finding the optimal 

H∞ solution is numerically and theoretically complicated. Therefore the main task 

becomes to find all stabilizing controllers hK  that can satisfied the following equation. 

min,   >γ γ γ
∞
<hN ,    (3.67) 

where γ  is a given value which is bigger than minγ  that is the minimum value of 

∞hN over all stabilizing controllers hK  that can be called suboptimal controllers.  

Due to H∞  being utilized on a linear system, the generalized plant hP  can be 

described in state-space formation. 
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where , , , , , , ,  and h h1 h2 h1 h2 h11 h12 h21 h22A B B C C D D D D  are system matrices.2 The linear 

generalized system without the controller can be expressed in state-space formation as 

= + +

= + +

= + +

h h h h1 n h2

h1 h h11 n h12

m h2 h h21 n h22

x A x B V B u

z C x D V D u

y C x D V D u

�

,     (3.69) 

where hx  is the internal state of the H∞ closed system. 

Three conditions [30] must be satisfied to obtain the optimal controllers hK : 

1) The following algebraic Riccati equation has a nonnegative solution ∞X  

( )2 0H H H Hγ −
∞ ∞ ∞ ∞+ + − =h h h1 h1 h1 h1 h2 h2A X X A + C C X B B B B X ,  (3.70) 

 such that  

( ){ }2
eR 0,H H

i iλ γ −
∞

 + − < ∀ h h1 h1 h2 h2A B B B B X .   (3.71) 

2) The following algebraic Riccati equation has a nonnegative solution ∞Y  

( )2 0H H H Hγ −
∞ ∞ ∞ ∞+ + + − =h h h1 h1 h1 h1 h2 h2A Y Y A B B Y C C C C Y ,  (3.72) 

 such that  

                                                 
2 There are some important assumptions and discussions about them manifested in books [34] and [33] that are not 
presented in this dissertation. Readers who are interested in the assumptions can obtain details in the above books. 

, (3.68)
h11D

=hP
hA h1B h2B

h1C

h2C h21D h22D
h12D
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( ){ }2
eR 0,H H

i iλ γ −
∞

 + − < ∀ h h1 h1 h2 h2A Y C C C C .   (3.73) 

3) The following condition is also needed to be held 

( ) 2ρ γ∞ ∞ <X Y ,     (3.74) 

 where ( )ρ i  is the spectral radius that can be given by 

( ) ( )max ,ii
jρ λ ω ω∞ ∞ ∞ ∞= ∀  X Y X Y .   (3.75) 

 When the above three conditions are met, the form of all stabilizing controllers 

hK  can be given by 

( ) ( ) ( )( ),Nls F s s=h hc hK K Q ,    (3.76) 

where ( ),
lNF hc hK Q  is the lower linear fractional transformation (LFT) of hQ  and hcK , 

hcK  can be expressed as follows 

    

and matrices , , ,∞ ∞ ∞ ∞A Z L F  can be respectively represented by the following equations 

2 Hγ −
∞ ∞ ∞ ∞ ∞= + + +h h1 h1 h2 h2A A B B X B F Z L C ,   (3.78) 

( ) 12γ
−−

∞ ∞ ∞= −Z I Y X ,      (3.79) 

  H
∞ ∞= − h2L Y C ,            (3.80) 

, (3.77)0
=

∞A ∞ ∞−Z L
∞ h2Z B

∞F

− h2C I 0

I
( )shcK  
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H
∞ ∞= − h2F B X ,       (3.81) 

and  ( )shQ  is any stable proper transfer function such that ( )s γ
∞
<hQ . The ( )shQ  

can be defined to be proper that its degree of the numerator does not exceed the degree of 

the denominator. More information in detail about derivation process of H∞  control is 

fully discussed in books [33] and [34].  

 
3.4.2.3 Mixed Sensitivity H∞ Control Design 

Figure 3-8 displays the detail construction of mixed sensitivity H∞ control design 

for this poppet system which is selected as a SISO system having the poppet position 

error dy y−  as the output and the spool position error v vdx x−  as the input. Because the 

system matrix of this poppet system is close to being singular, multiple outputs can not be 

applied to obtain the optimal solution in H∞ design. PW  is the selected weight function 

for shaping the sensitivity function S  to reject a disturbance nV , while uW  is the 

selected weight function to avoid unacceptable control efforts that might be obtained 

from the controller. S  is the closed-loop transfer function from disturbance 1v  to output 

dy y−  as follows 

( ) 1−= + norm hS I G K .      (3.82) 

Generally, PW  and uW  are performance bounds of the closed-loop system. The 

following matrix can be applied to express the open-loop plant for the poppet system with 

performance specifications that is used for the controller design  
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 
 = − 
 − − 

P P norm

h u

norm

W W G
P 0 W

I G
.     (3.83) 

This system can be expressed as Equation (3.59), and the sates can be depicted as 

follows 

( )( )
( )

11

2

d

v vd

y y vz
z x x

 − + 
= =   

− −    

P

u

W
z

W
,   (3.84) 

( )( )1dy y v = − − + my ,    (3.85) 

[ ]1v=nV ,      (3.86) 

[ ]v vdx x= −u .      (3.87) 

The purpose of mixed sensitivity H∞ control design is to find all stabilizing controllers 

hK  to minimize the H∞ norm of  
 

=  
  

P

h

u h

W S
N

W K S
. hN  can be defined as the 

combination system of the weighted sensitivity functions PW S  and u hW K S . S  and 

hK S  are sensitivity functions that represent system performances. 



86 

 

Figure 3-8. System structure for mixed sensitivity H∞ control design 

 
The common formation of PW  can be given by 

1

2

               
            
                     

                     
v

P

P

Pn

W
W

W

 
 
 =  
 
  

PW
"

,    (3.88) 

where PW  is a diagonal matrix in which all elements are zero except the diagonal 

elements, ( )1
vPi v vW i n= "  is the vi th  diagonal element, vn  means the number of the 

output disturbances. The following two choices may be used for specifying output 

performance.  

u 

ymy-yd

Vn = [v1] 

r=0 
+ 

+ 

Nh 

+ 

+ 

― Gnorm

WP 

-Wu 

Kh 

z1

z2

Ph (not including WI and ∆I in control design)

+ 

∆IWI 
u∆

y∆
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/
, 1v v

v v

v v

i Bi
Pi i

Bi i

s M
W A

s A
ω

ω
+

=
+

� ,    (3.89) 

( )
( )

2

2

/
, 1v v

v v

v v

i Bi

Pi i

Bi i

s M
W A

s A

ω

ω

+
=

+
� ,   (3.90) 

where 
vi

M  is a constant (percentage) which is greater than the maximum peak value of 

vi
S , 

vBiω  is the minimum bandwidth, and 
vi

A  is steady-state error percentage that is 

much less than 1. The control cost weigh function uW   can be chosen as constant 

diagonal matrix.  

Associated with robust control, some important definitions are introduced here. 

Nominal stability (NS) is to check whether the closed-loop system without uncertainty is 

stable. Nominal performance (NP) is to check whether the performance of the nominal 

closed-loop system is consistent with requirements. Robust stability (RS) is to check 

whether the closed-loop system can remain stable for all possible perturbations. Robust 

performance (RP) is to check whether the performance of the closed-loop system can be 

satisfied according to design requirements for all possible perturbations. The stability 

criterion for a SISO system can be expressed as 

is internally stable

1,

1,

1,

NS

NP

RS

RP

ω

ω

ω

⇔

⇔ < ∀

⇔ < ∀

⇔ + < ∀

h

P

I I

P I I

N

W S

W T

W S W T

 ,    (3.91) 
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where IT  is the closed-loop transfer function from reference signal r  to output dy y−  as 

follows 

( )
= =

+
norm h

I
norm h

G KT I - S
I G K

.      (3.92) 

Because the output dy y−  is a poppet displacement error between the actual value and 

the desired value, this reference signal is treated as zero. 

 
3.5 Nonlinear Controller Design for the Nonlinear System 

3.5.1 System Nonlinearities 

The nonlinearities in this system can be mainly summarized in three main areas:  

1) There are inherent nonlinear features of the flow in the poppet system, for 

examples, the square root relationship in the classical orifice equation for flows 

across the poppet opening, the spool opening and the fixed-area orifice on the 

piping channel.  

2) The bidirectional spool opening side is a very important element with the 

high nonlinear property. When the spool which is moving along vx+  direction 

goes across the poppet symmetrical center line, the right-side opening will 

connect the nose-side pressure 1P  with the control chamber. When the spool 

which is moving along vx−  direction goes across the symmetrical center line, 

the left-side opening will connect the back-side pressure 2P  with the control 

chamber. Therefore, every time when the spool crosses the central point, the 
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flow will instantly change its fluid characteristics. This pressure nonlinearity 

plays a significant role in the control law. 

3) Bidirectional movements of flows across the poppet opening, the spool 

opening and the fixed-area orifice in the pipeline due to pressure drop changes, 

for example 1 2P P− , 1 cP P− , 2cP P−  and 2 kP P− . Actually, this nonlinear item 

is not considered in this study, because it is not allowed that the pressure drops 

change from positive values to negative values in the operating process. The 

pressure drops are either positive or negative under sample working conditions. 

 
3.5.2 Control Law 

Lyapunov’s direct method gives the following theorem to prove global stability 

for the overall system. 

Theorem [15]: Assume that there exists a scalar function V  of the state x , 
with continuous first order derivative such that 

1) ( )V x  is positive definite 

2) ( )V x�  is negative definite 

3) ( )V − > ∞x  as − > ∞x  

then the equilibrium at the origin is globally asymptotically stable. 

If a scalar function ( )V x  which satisfies the above requirements can be found, 

the globally asymptotical stability of the system can be guaranteed. The tracking 

performance problem in this research can be achieved by making system variable errors 

approach zero. Therefore the above stability theorem can be used to prove system 

stability here. 
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From Chapter 2, the nonlinear governing equations for open-loop poppet-valve 

system can be summarized as follows 

( ) 1 2 2fq d fct c c ceff eff effmy y K y K y A K P P A P LK PC A ρ+ + − = − + − + ��� � ,             (3.93) 

( )2 2 2 2
L

c L c c
V P Q K P P Q KP Q Pδ
β

= + − − − −� ,    (3.94) 

0     0
1     0

v
c

v

x
P

x
δ

≥
=  <

,       (3.95) 

( ) ( )1 2 1 2
2sin signdQ Dy C P P P Pπ θ
ρ

= − − ,   (3.96) 

( )2 2
2 signL k d k kQ A C P P P P
ρ

= − − ,     (3.97) 

( )2 signc v dQ hx C P Pδ δ
ρ

= ,     (3.98) 

1

2

    0
    0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

,                (3.99) 

( )2 2 0c c cQ K P P A y− − + =� ,                (3.100) 

By substituting the desired values into Equations (3.93), (3.94), (3.96), (3.97) and (3.100), 

and selecting the control law, the  following equations can be given by  

( ) 1 2 2fq d fct d c cd c dd eff d eff d effmy y K y K y A K P P A P LK PC A ρ+ + − = − + − + ��� � ,  (3.101) 

( )2 2 2 2
L

d d cd d Ld d c c
V P Q K P P Q KP Q Pδ
β

= + − − − −� ,   (3.102) 
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0     0
1     0

v
c

v

x
P

x
δ

≥
=  <

,       (3.103) 

( ) ( )1 2 1 2
2sin signd d d d dQ Dy C P P P Pπ θ
ρ

= − − ,   (3.104) 

( )2 2
2 signLd k d d k d kQ A C P P P P
ρ

= − − ,    (3.105) 

( )2 2 0c cd d c dQ K P P A y− − + =� ,     (3.106) 

and the control law is given by 

( ) ( ) ( )

( )

2 2

2 sign

c c d P d I d
v

d

K P P A y K y y K y y dt
x

hC P Pδ δ
ρ

− − − − − −
= ∫�

,  (3.107) 

1

2

     0
     0

c v

c v

P P x
P

P P x
δ

− ≥
=  − <

.                (3.108) 

The similar control law was introduced in [1]. However, the integral item of the 

poppet displacement error is included to cancel the steady-state error. The method by 

which it is derived and why it is proven to be useful to the poppet system with the simple 

back-side operating condition are presented in this study. This control law is mainly a 

combination of a PI controller and nonlinear pressure compensation. Therefore, the 

proportional gain PK  and the integral gain IK  are positive numbers, i.e. 

0, and 0P IK K> >      (1.109) 

Substituting Equations (3.98) and (3.107) into Equation (3.100) and 

differentiating the results produce  
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0c P IA y K y K y∆ + ∆ + ∆ =�� � ,    (3.110) 

where , , d d dy y y y y y y y y∆ = − ∆ = − ∆ = −�� �� �� � � . It is obvious that 0, 0P IK K> >  can 

guarantee its stability. 

Subtracting Equations (3.93), (3.94), (3.95), (3.96), (3.97) and (3.100) from 

Equations (3.101), (3.102), (3.103), (3.104), (3.105) and (3.106) correspondingly 

produces 

2 2eff eff c effm y C y K y LK P A Pρ∆ + ∆ + ∆ = ∆ + ∆��� � ,    (3.111) 

( )2 2 2
L

L
V P Q K K P Q
β
∆ = ∆ − + ∆ −∆� ,     (3.112) 

( ) ( ) ( )( )1 2 1 2 1 2 1 2
2sin sign signd d d dQ D C y P P P P y P P P Pπ θ
ρ

∆ = − − − − − ,(3.113) 

( ) ( )( )2 2 2 2
2 sign signL k d d k d k k kQ A C P P P P P P P P
ρ

∆ = − − − − − , (3.114) 

2
2

  cAP y
K

∆ = − ∆ � ,       (3.115) 

where 2 2 2dP P P∆ = −� � � , 2 2 2dP P P∆ = − , dQ Q Q∆ = − , L Ld LQ Q Q∆ = − . 

It is assumed that ( ) ( )1 2 1 2sign sign dP P P P− = −  and ( ) ( )2 2sign signk d kP P P P− − . 

Then, the following equations can be derived as 
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( ) ( )

( )

2
1 2 1 2

1 2 1 2

2
1 2 1 2

1 2 1 2

2sin sign

    sign

d
d

d

d
Q

d

y PQ D C y P P P P
P P P P

y PK y P P P P
P P P P

π θ
ρ

 − ∆ ∆ = + ∆ − −
 − + − 

 − ∆ = + ∆ − −
 − + − 

, (3.116) 

where the constant QK  can be given by 

 ( ) 2sinQ dK D Cπ θ
ρ

= ,      (3.117) 

 2
2

2 2

2
L k d QK

d k k

PQ A C K P
P P P Pρ

∆
∆ = = ∆

− + −
,   (3.118) 

where the constant QKK  can be given by 

2 2

2k d
QK

d k k

A CK
P P P P ρ

=
− + −

.     (3.119) 

Differentiating Equation (3.115)  with time produces 

2
2

 cAP y
K

∆ = − ∆� �� .      (3.120) 

 
3.5.3 Lyapunov Function and Globally Asymptotical Stability 

The equilibrium positions for the above error dynamics system are zeros, that is, 

all errors finally need to approach zeros. The following Lyapunov function is chosen to 

verify the system stability  

 2 2 2
2

1
2

L
y I y c

VV P K K y K A y
β

 
= ∆ + ∆ + ∆ 

 
� ,   (3.121) 
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where yK  is a pending positive constant which will be decided in the following analysis. 

It is obvious that ( ) 0, for 0V > ≠x x , ( ) 0, for 0V = =x x  and ( ) , when V − > ∞ − > ∞x x , 

where [ ]2, , Ty y P= ∆ ∆ ∆x � . Substituting Equations (3.110) and (3.120) into Equation 

(3.111) and rearranging the similar items produce 

2 2

2

eff c cP
eff c

c

cI
eff c

c

A A AKC m LK
K A K

y y
AKK m LK

A K

ρ

ρ

 
+ − + 

 ∆ = ∆
 

− + + 
 

� .   (3.122) 

Differentiating Equation (3.121) produces  

2 2 1 1
L

y I y c
VV P P K K y y K A y y
β

= ∆ ∆ + ∆ ∆ + ∆ ∆� � � � �� .   (3.123) 

Substituting Equations (3.112), (3.116), (3.118) and (3.110) into Equation (3.123) and 

rearranging items produce 

( )1 2 1 2 2

2 2
2 2

1 2 1 2

 sign

       

Q

Q d
QK y P

d

V K P P P P y P

K y
K K K P K K y

P P P P

= − − ∆ ∆

 
 − + + + ∆ − ∆
 − + − 

�

�
. (3.124) 

By substituting Equations (3.115) and (3.122), the first item in the right side of the above 

equation can be altered as follows  

( ) ( )

( )

1 2 1 2 2 1 2 1 2
2

2 2 2
1 2 1 2

2
2

sign sign

                             sign

c
Q Q

eff c cP
c Q eff c

c

cI
eff c

c

AK P P P P y P K P P P P y y
K

A A AKA K C m LK
K A K

P P P P y
AKK K m LK

A K

ρ

ρ

− − ∆ ∆ = − − − ∆ ∆

  
+ − +  

  = − − ∆
  

− +  
  

�

�

.(3.125) 



95 

Substituting Equation (3.125) into Equation (3.124) and choosing the positive constant 

yK  which satisfies the following equation can maintain that 0V <�  always exists 

( )2 2
1 2 1 2

2
2

sign

eff c cP
c Q eff c

c
y

cI
P eff c

c

A A AKA K C m LK
K A K

K P P P P
AKK K K m LK

A K

ρ

ρ

  
+ − +  

  > − −
  

− +  
  

. (3.126) 

It is obvious that the following equation needs to be met to support the above requirement. 

2

eff c
I

c
c

K A
K Am LK

K
ρ

≠
+

.    (1.127) 

Otherwise the right side of the inequality equation will be infinite. And it is impossible to 

get the positive constant yK . Therefore, according to Lyapunov theorem and considering 

Equations (1.109), (3.126) and (1.127), it can be summarized that choosing the following 

positive yK  can guarantee the globally asymptotical stability of the closed-loop poppet-

valve system with the nonlinear controller  

( )2 2
1 2 1 2

2
2

2

max 0, sign

0

0,and 

eff c cP
c Q eff c

c
y

cI
P eff c

c

P

eff c
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3.6 Summary 

In this chapter, the control designs that are based on either the linear system or the 

nonlinear system are presented. Four control methods are introduced to construct the 

closed-loop systems: modified PI control, LQG control, H∞ control and nonlinear 

feedback control. The basic requirements of proportional and integral gains in PI control 

are derived. The elementary procedures of control designs are expounded. With the help 

of Matlab and Simulink, the simulation results of the closed-loop systems will be 

obtained in the next chapter. The regulation and tracking behavior of the nonlinear 

systems armed with the three linear controllers will also be computationally tested in the 

next chapter. 



97 

CHAPTER 4. SIMULATION RESULTS 

 

4.1 Introduction 

This chapter can be roughly divided into two important parts. The first part is to 

examine the effects of key parameters on the open-loop system stability criteria with the 

help of Mathematica. The second part shows the simulation results to illustrate the 

dynamic characteristics of systems utilizing Matlab and Simulink. The closed-loop 

systems are separated into two groups. The first group contains five closed-loop systems 

that are the full-model linear system with the modified PI controller, the reduced-order 

linear system with the modified PI controller, the full-model linear system with the LQG 

controller, the full-model linear system with the H∞ controller and the nonlinear system 

with the nonlinear controller.  Another group consists of four nonlinear closed-loop 

systems that are the nonlinear system with the modified PI controller, the nonlinear 

system with the LQG controller, the nonlinear system with the H∞ controller and the 

nonlinear system with the nonlinear controller. For the sake of comparison, the results of 

these two groups of systems are classified into two sets of figures.  Both typical 

regulation and tracking problems are demonstrated and discussed to give a basic view of 

system performances. All parameter values used in models and calculations are shown in 

the following two tables: Tables 4-1 and 4-2. 
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Table 4- 1. Parameters of system operation conditions 

Symbol Description Value Units 

1P  
Nominal Nose-Side Pressure 

1) 22(106) 
2) 
22(106)+5(106)*sin(62.8*t) 

Pa 

2dP  
Nominal Back-Side Pressure 

1) 20(106) 
2) 
22(106)+5(106)*sin(62.8*t) 

Pa 

kP  Nominal Load Pressure 5(106) Pa 

K  Pipeline Leakage Coefficient 10-11 m3/(Pa·s)

LV  Back-side Chamber Volume 0.00304 m3 

coV  Control Chamber Volume 9.2e-6 m3 

β  Fluid Bulk Modulus of 
Elasticity

1.33365(109) Pa 

µ  Fluid Viscosity 0.01 Pa·s 

dC  Orifice Discharge Coefficient 0.62 no unit 
ρ  Fluid Density 833 Kg/m3 

kD  Fixed Orifice Diameter 0.0025 m 

 

Table 4- 2. Poppet parameters  

Symbol Description Value Units 

D  Poppet Port Diameter 0.025 m 
L  Length of Nose-side Chamber 0.0181 m 

cD  Poppet Land Diameter 0.031245 m 

cA  Poppet Land Area 7.667(10-4) m2 

cboreD  Poppet-Land Hole Diameter 0.03127 m 

cd  Clearance between the Poppet Land 
and Its Hole 

2.5(10-5) m 

cl  Poppet Metering Length 0.028 m 
m  Poppet Valve Mass 0.136 Kg 
c  Poppet Valve Drag Coefficient 18 N·s/m 

k  Poppet Spring Rate 0 N/m 

θ  Poppet Angle 0.785 rad 

2K  Leakage Coefficient of Leakage 
between the Poppet Land and Its Hole

1.42761(10-13) m3/(Pa·s
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4.2 System Requirements 

Two main goals of the controller design are to make the system stable under the 

bi-direction flowing fluid across the poppet and to improve system performances. It will 

be shown in the next section that the open-loop system will experience instability when 

the nominal back-side pressure 2dP  is higher than the nominal nose-side pressure 1P . 

Even though it can be stable when 2dP  is less than 1P , the open-loop system still has a 

very slow response. The poppet displacement is the first primary object that is interested 

in this design, though the control of the back-side pressure is also valuable. The poppet is 

anticipated to quickly track the desired sine-wave movement with 10 HZ frequency. The 

phase lag of the actual poppet displacement can not be bigger than 90 degree. The 

theoretical state-state error of the poppet position is less than 10%. The moving range of 

the poppet is from 0 mm to 15 mm, while the spool can only move 1 mm away from its 

central position in bi-directions. For regulation ability, the expecting settling time is less 

than 30ms.  

 
4.3 Influences of Key Parameters on the Open-loop System Stability 

This section will display how variations of key parameters take effect on the full-

model linear open-loop system stability. Some of them are the sources of system 

uncertainty that are taken into consideration in the H∞ robust analysis, for example fluid 

bulk modulusβ , orifice discharge coefficient dC  and spring rate k . Some of them are 

working condition varieties, e.g. system pressures. Some of them are system geometry 
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structures, for instance the back-side chamber volume LV  and the ratio of section 

areas c
c

ArA
A

= . Mathematica results will be presented in the following subsections.  

 

4.3.1 Characteristic Equation of the Full-model Linear Open-loop System 

Considering to the linear governing equations for the full-model linear open-loop 

poppet system in Equations (2.93), (2.94) and (2.95), the 3rd-order characteristic equation 

of the full-model linear open-loop system can be given by 

3 2
0 1 2 3 0a s a s a s a+ + + =      (4.1) 

where 0 1 2 3, ,  and a a a a  are constants responding to the nominal working conditions as 

follows 

0
LmVa

β
=          (4.2)
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c c cL
v eff

s s s
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qt eff eff v
s s

K KA Ka K A K K
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 
          (4.5) 

 
4.3.2 Non-Dimension Stability Criteria of the Full-model Linear Open-loop System 

According to Routh-Hurwitz stability criterion, four stability criteria of this 

third-order system are given as  
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0 1 2 3 1 2 0 3, , , 0 and a a a a a a a a> > .    (4.6) 

The scaled stability criteria can help us investigate how system dynamic behavior can be 

brought out under variations. The following non-dimension stability criteria of the full-

model linear open-loop system can be given by 

1
1

v

aStN
mK

= ,       (4.7) 

2
2

eff v

aStN
C K

= ,      (4.8) 

3
3

eff v

aStN
K K

= ,      (4.9) 

4 1 2 3
eff L

eff v

K V
StN StN StN StN

C K β
= − .    (4.10) 

The stability criteria mentioned in the following sections are all pointed to dimensionless 

stability criteria. 

 

4.3.3 System Pressures 1 2, dP P  

Two sets of the nominal nose-side pressure 1P   and the nominal back-side 

pressure 2dP  are picked out to dig out their influences on system stability. The first set of 

the ranges of 1P  and 2dP  can be respectively given from ( )622 10  Pa to ( )635 10  Pa and 

from ( )67 10  Pa to ( )621 10  Pa. The nominal piping pressure kP  is ( )65 10 Pa. Other 

parameters and working conditions can be kept as shown in Table 4-1 and 4-2. The 
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results are shown in Figure 4-1. F-M O-L means full-model open-loop. The second set of 

the ranges of 1P  and 2dP  can be respectively given from 610  Pa to ( )614 10  Pa and from 

( )615 10  Pa to ( )626 10  Pa. And the pressure kP  is changed to be ( )627 10  Pa. The results 

are shown in Figure 4-2. 
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Figure 4-1. F-M O-L system stability criteria for the 1st set of working pressures 
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The most important information that can be got from the above plots is that the 

system will become unstable when the flow moves from the back-side chamber to the 

nose-side chamber due to the 3rd stability criterion showing to be negative in this case. It 

can be found out that in 3a , the power of the first item is at least one greater than those of 

the other items. This item is related to the transient fluid force due to the poppet velocity.  
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Figure 4-2. F-M O-L system stability criteria for the 2nd set of working pressures  
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Except this, there are no clear trends of the relationships between the pressures 

and the stability. For instance, when only the change of 2dP  is taken into consideration, it 

shows that in the first case it roughly makes a positive contribution to the system stability 

while in the second case it, in general, makes the system goes to the unstable side. 

However, as to 1P , the effect will be so complicate that it is hard to draw a conclusion 

that it gives either positive or negative influences on the system stability. 

 

4.3.4 Leakage Coefficients 2 ,K K  

  The system leakage always plays an important role to affect system dynamics. 

The two main leakages (the leakage across the poppet land and the hole that contains it, 

and the leakage occurring in the back-side delivery line) that have close relations to load 

conditions are primarily considered. Two sets of the nominal nose-side pressure 1P   and 

the nominal back-side pressure 2dP  are picked out to dig out leakage influence on 

stability. There are named as Case 1 and Case 2. In Case 1, the set of the system 

pressures is ( )6
1 a22 10  PP = , ( )6

2 a20 10  PdP =  and ( )6
a5 10  PkP = . Another pressure set 

of ( )6
1 a5 10  PP = , ( )6

2 a20 10  PdP =  and ( )6
a22 10  PkP =  is for Case 2, in which the fluid 

flows in the reverse direction as that in Case 2. The ranges of leakage coefficient 2K  and 

K  can be respectively given from ( )151.42761 10−  ( )3
am / P s⋅  to ( )111.42761 10−  

( )3
am / P s⋅  and from 1310−  ( )3

am / P s⋅  to 910−  ( )3
am / P s⋅ . The upper limit is 100 times of 

the original value, while the lower limit is one hundredth of the original value. The 

results are shown respectively in Figure 4-3 and Figure 4-4. 
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Figure 4-3. F-M O-L system stability criteria for Case 1 of leakage coefficients 

 
  It is always demonstrated that the 3rd criterion goes to be negative in Case 2 from 

Figure 4-4. In the Case 1, the system stability will go to the negative direction when 2K  

increases. In Case 2, the increase of 2K  will make the 1st, 2nd and 4th criteria decrease and 

slowly increase the 3rd criterion though it is still negative. The change of K   always have 

little effects on the 1st, 2nd and 4th criteria, except make the 3rd one decreases in Case 1 
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and increases in Case 2. It can be summarized that the increase of  2K  and K  will make 

the decrease of the absolute value of the 3rd criterion. Considering the minus sign is 

introduced by the flow gain qtK , a surprising conclusion may be drawn that the increase 

of 2K  and K  will slow down the system stability, though in the common sense, it helps 

stability.  
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Figure 4-4. F-M O-L system stability criteria for Case 2 of leakage coefficients 
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Figure 4-5. F-M O-L system stability criteria for Case 1 of system geometries 

 

4.3.5 System Geometries ,L cV rA  

Two important structure geometries are studied as stability factors: the back-side 

volume LV  and the ratio of the poppet land cross-section area and the cross-section area 
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of the poppet port c
c

ArA
A

= . Two sets of the nominal nose-side pressure 1P   and the 

nominal back-side pressure 2dP  that are picked out to fulfill this analysis are same as 

those in the previous subsection. The ranges of the back-side volume LV  and the ratio crA  

can be respectively given from ( )53.04 10−  m3 to ( )13.04 10−  m3 and from 0.1 to 2.5. The 

ratio changes based on that the poppet port area is kept as constant. The results are shown 

respectively in Figure 4-5 and Figure 4-6. 

The static change of back-side volume has almost no effect on the system stability 

when the area ratio is small. When the area ratio becomes big, the volume growth will 

make the system more stable. That is because when the fluid system has a constant 

compressible capability, the total pressure change required by a same volume change in a 

bigger fluid chamber falls off. Therefore, generally speaking, a larger back-side chamber 

can make the system more stable. Figures 4-5 and 4-6 shows that the increase of area 

ratio will has the unfavorable influence on the 3rd stability criterion in both Case 1 and 

Case 2, though it generally make the values of the 1st, 2nd  and 4th  stability criteria go up. 

In Case 1, when the value of the area ratio is rising, the 3rd criterion decreases first; after 

the poppet land has the same cross-section area as that of the poppet port, it increases. It 

has the same trend for the absolute value of the 3rd criterion and is negative in Case 2.  
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Figure 4-6. F-M O-L system stability criteria for Case 2 of system geometries 

 

4.3.6 Fluid Properties , dCβ  

Fluid bulk modulus of elasticity β  and orifice coefficient dC  are investigated as 

the potential changing sources of fluid properties. The basic working pressures are same 

as the previous two subsections. The ranges of fluid bulk modulus β  and the orifice 
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coefficient dC  can be respectively given from ( )41333.65 10  aP  to ( )81333.65 10  aP  and 

from 0.2 to 1. The results are shown respectively in Figure 4-7 and Figure 4-8. “beta” 

means β . 
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Figure 4-7. F-M O-L system stability criteria for Case 1 of fluid properties 



111 

Full −Model Open −Loop 0.2

0.4

0.6

0.8

1

Cd

5×1010 1×1011

beta

-100000

0

100000

StN1
-100000

0

100000

StN1

 

Full −Model Open −Loop 0.2

0.4

0.6

0.8

1

Cd

5×1010 1×1011

beta

0

1

StN2
0

1

StN2

 

Full −Model Open −Loop

0.2

0.4

0.6

0.8

1

Cd

5×1010

1×1011 beta

-5×106
-4×106

-3×106

-2×106

StN3

0.2

0.4

0.6

0.8

1

Cd -5×106
-4×106

-3×106

-2×106

StN3

 

Full −Model Open −Loop0.2
0.4

0.6
0.8

1

Cd

5×1010

1×1011beta

0

100000

StN4 0

100000

StN4

 

Figure 4-8. F-M O-L system stability criteria for Case 2 of fluid properties 

 
Bulk modulus β , namely isothermal fluid bulk modulus, is the measure of a 

system’s resistant ability to a given amount of uniform external pressure. Orifice 

coefficient dC  basically accounts for the effect of the orifice geometry on the relationship 

between the pressure and the fluid velocity. It is illustrated from Figures 4-7 and 4-8 that 

the increase of  dC  will cause the decrease of the absolute value of the 3rd criterion. On 
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the whole, both β  and dC  can be treated as negative causes of the system stability, 

although the increase of β  at big dC  makes the value of the 1st stability criterion goes up 

while the increase of β  at small dC  makes it goes down in Case 2. Generally, when β  

and dC  increase, the system has the trend to go to the unstable way. There is no surprise 

to see negative values of the 3rd stability criterion in Case 2. However, till now, it is the 

first time to have negative 1st and 2nd stability criteria that appears as dC  is big (shown in 

Figure 4-8). A big β  means that the system has a “softer” elasticity in pressure to the 

change of fractional volume. A slight relative volume change can cause a bigger pressure 

recovery capability. It will also be illustrated later in this chapter that dC  can introduce 

30% error of the nominal plant. And probably, it is also related to the increment of the 

transient flow force. 

 

4.3.7 Spring Rate k  

The examination of the spring rate k  accompanies with the change of the nominal 

nose-side pressure 1P . Though in this dissertation, the spring is not taken into 

consideration in both system modeling and control design, its effect on the linear open-

loop stability criteria is also discussed here. The first set of pressures can be given 

as ( )6
2 20 10dP =  Pa, ( )65 10kP =  Pa and the range of 1P  can be set from ( )622 10  aP  to 

( )635 10  Pa. The second set of pressures can be given as ( )6
2 20 10dP =  Pa, ( )622 10kP =  

Pa and the range of 1P   can be selected from 610  aP  to ( )619 10  Pa. The range of k  can 
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be respectively given from 0 N/m to 610  N/m. The results are shown separately in Figure 

4-9 and Figure 4-10. 
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Figure 4-9. F-M O-L system stability criteria for Case 1 of spring rate 
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Figure 4-10. F-M O-L system stability criteria for Case 2 of spring rate 

 
According to the results, the effect of the change of the spring rate on the 1st, 2nd 

and 4th stability criteria is so small to be negligible, except its increase corresponds to the 

increase of 4th stability criterion in Case 1. It roughly can only introduce influence on the 

3rd stability criterion. A harder spring with a big spring rate k  will provide less stability 

guarantee under the first set of working pressures. However, it will make the system 
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tends to be stable under the second pressure case, though the system is still unstable. It is 

obvious that the spring rate is not the dominant factor of the 3rd criterion, because the 

criterion’s sign is mainly decided by THE poppet flow gain qtK . Therefore, in general, a 

conclusion can be drawn that the spring rate is a negative factor of the system stability. 

 

4.4 Regulation Problem of Open-loop Systems 

Figure 4-11 demonstrates the simulation results for the regulating problem of the 

full-model linear open-loop system, the reduced-order linear open-loop system and the 

nonlinear open-loop system. The step response signal is given to investigate the system 

regulation ability. The set of system pressures are chosen as ( )6
1 22 10P =  Pa, 

( )6
2 20 10dP =  Pa and ( )65 10kP =  Pa.  The initial conditions for both the full-model linear 

and reduced-order linear open-loop systems are [ ] ( )4
2 2, , 1.35 10 ,0,0d dy y y P P − − − =  � . 

The initial condition for the nonlinear open-loop system is 

[ ] ( ) ( )4 6
2, , 4.6105 10 ,0, 20 10y y P − =  � . The steady-state positions for the poppet and 

spool are respectively ( )-61.5795 10  m and ( )66.6699 10−  m.  Only is the small poppet 

opening investigated, because the instability usually appears when the poppet is crackly 

opened. The steady-state poppet velocity is assumed as zero.  

In Figure 4-11, Nonlinear-* with the red solid thick line represents variables for 

the nonlinear system. Fu-* with the blue dash-dot thick line symbolizes variables for the 

full-model linear system. Re-* with the green dash thick line depicts variables for the 
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reduced-order linear system. The magenta dot line stands for the desired values. dy 

means dyy
dt

=� . The spool position is considered as a constant input. 
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Figure 4-11. Regulation of open-loop systems 

 
It is obvious that the systems can not response promptly. The settling time for the 

poppet displacement y  and the back-side pressure 2P  is about 6s, which is much larger 

than the speed requirement. The nonlinear system, in which the time-rate-of-change of 

control pressure, cP�  is considered, is a little bit slower than the linear systems. The flow 

force on the poppet is linearly simulated in the nonlinear system.  It also shows that the 

performance of the reduced-order linear system matches closely with that of the full-

model linear one, which provides another confirmation of evaluating control gains of the 

modified PI controller according to the reduced-order linear system. The poppet velocity 
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suffers a serous oscillation in the nonlinear system. Note that although it is not illustrated 

in the plot, for the case of 1 2d kP P P< < , the open-loop systems will become unstable, 

which is consistent with the negative values of the stability criterion in the parameter 

analysis section.  

 
4.5 Regulation Problem of the First Group of Closed-loop Systems 

The step responses of five closed-loop systems are illustrated in this section: the 

full-model linear system with the modified PI controller, the reduced-order linear system 

with the modified PI controller, the full-model linear system with the LQG controller, the 

full-model linear system with the H∞ controller and the nonlinear system with the 

nonlinear controller. Working pressures, initial condition and steady-state values are 

same as those in the previous section. Two saturation components are used in all the 

models to limit the spool displacement ranged from -1 mm to 1 mm and the poppet 

displacement ranged from 0 mm to 15 mm. 

In the PI controller, the proportional gain PK  is chosen as 0.1 and the integral 

gain IK  is chosen as 0.005. The proportional gain 2PK , the integral 2IK  and the gain 

Pressure gain PPK  are constants according to the equilibrium conditions.  

In the nonlinear system, a 50 HZ filter is put into the controller to prevent the 

infinite velocity due to possible sudden step inputs. And a memory component in 

Simulink is used to recorder the last spool position to judge the opening direction of the 

control orifice. An integral limitation is activated to restrict the integral accumulation. A 

saturation component is added to avoid zero pressure drops in the nonlinear controller.  
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In LQG control design, the flat constant power spectral density matrices ,n nQ R   

are respectively given by 

1

2

2 2

2 2

2 2

  0.001

  0 0.001    0 
0   0           100   

n w

v
n

v

Q

R

σ

σ

σ

   = =   

   
= =   
    

.    (4.11) 

The weight matrices ,Q R  for getting reasonable LQ regulator are selected as 

  
( )( )

[ ]

2 2
1

2 2
2

22 73

1/   0  0 1/ 0.1   0  0
0  1/   0  = 0  1/100   0  

0  0  1/ 0  0  1/ 6 10

8

q

Q q

q

R

       =          

=

,   (4.12) 

In H∞ control design, the system uncertainties come from three parameters: fluid 

bulk modulus β , orifice coefficient dC  and the spring rate k . Their ranges are given 

respectively from ( )60.67 1333.65 10×  Pa to ( )61.37 1333.65 10×  Pa, from 0.52 to 0.72, 

and from 0 to 6500 N/m. The plots according to the uncertainty form of Equation (3.56) 

are shown in Figure 4-12. The orifice coefficient dC  carries the biggest uncertainty, 

followed by the spring rate k  and fluid bulk modulusβ . The uncertainty weight function 

IW  (red line shown in Figure 4-12) can be given according to Equation (3.57) as follows 

( )
3 2

3 2

0.168 12.887 18.334 5.653
+75.398 75.736 19.106I
s s sW s

s s s
+ + +

=
+ +

.  (4.13) 

The weight functions  and P uW W are chosen as follows 
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π

π

 + =  +  
=

.    (4.14) 
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Figure 4-12. Input uncertainty and weight function IW  (red line) for regulation problem 

 
The sensitivity weight  PW  has a 40 dB/decade slope at the frequencies lower than the 

bandwidth of 10 HZ. The control weight uW  restrains the control effort of the spool. 

In Figure 4-13 and 4-14, Nonlinear-* with the red solid thick line represents 

variables for the nonlinear system with the nonlinear controller. Fu-* with the blue dash-

dot thick line symbolizes variables for the full-model linear system with the modified PI 

controller. Re-* with the green dash thick line depicts variables for the reduced-order 
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linear system with the modified PI controller. The magenta dot line stands for the desired 

values. hinf-* with the cyan dash thin line means variables for the full-model linear 

system with the H∞ controller. lqg-* with the black solid thin line denotes variables for 

the full-model linear system with the LQG controller. This keeps same in the tracking 

problem for the first group of closed-loop systems. 
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Figure 4-13. Regulation of nonlinear/linear closed-loop systems- and vy x  

 
Figure 4-13 and 4-14 show the step responses of poppet displacement y , spool 

displacement vx , back-side pressure 2P  and poppet velocity y� . It can be illustrated that 

all system variables except the back-side pressure 2P  can reach their equilibrium points 

from the initial deviations in about 30ms that is 20 times faster than the stable open-loop 

systems. The nonlinear system is a little bit slower than the linear systems whose settling 
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times for y , y�  and vx   are less than 20 ms. It also has obvious highest peak values for 

variables y , 2P  and y� . It takes the nonlinear system the lowest time period of more than 

50 ms to reach its equilibrium pressure 2P , which will lead to the clear delay of its 

pressure behavior, followed by the reduced-order line closed-loop system, the H∞ linear 

closed-loop system and the LQG linear closed-loop system. Back-side pressure 2P  of the 

full-model linear closed-loop system in Figure 4-13 does not change much (less than 2 

percent of its nominal value) because the initial deviation is none and this system has a 

very quick response. The performance of the linear system with H∞ is closely in line with 

those of the linear systems with the modified PI controller.  
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Figure 4-14. Regulation of nonlinear/linear closed-loop systems- 2 and P y�  
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The second plot in Figure 4-13 illustrates that the LQG control asks for a very big 

control effort that might bring the failure of this method, though it can reach the 

equilibrium status in the shortest time period. The initial condition brings big influence 

on the nonlinear system, which is represented by the spool going beyond its lower 

limitation and the poppet having a vibratory velocity at the very first beginning of 

movement (shown in Figure -14). The linear system with the H∞ controller has distinct 

steady-state errors of 2 and y P , though they are small enough to be negligible. 

 
4.6  Regulation Problem for the Second Group of Closed-loop Systems 

The results in this section aim at comparing the regulating performances of the 

four nonlinear closed-loop systems. The only difference among these nonlinear systems 

is that the loops of the system are closed by diverse controllers: the modified PI controller, 

the LQG controller, the H∞ controller and the nonlinear controller. Working pressures, 

initial condition and the steady-state values are same as those in the previous section. 

Performance matrices in LQG control, weight functions and uncertainty function in H∞ 

control are same as those in section 4.5 too.  

In Figures 4-15 and 4-16, Nonlinear-* with the red solid thick line represents 

variables for the nonlinear system with the nonlinear controller. Non-PI-* with the blue 

dash-dot thick line symbolizes variables for the nonlinear system with the modified PI 

controller. The magenta dot line stands for the desired values. Non-hinf-* with the cyan 

dash thin line means variables for the nonlinear system with the H∞ controller. Non-lqg-* 

with the black solid thin line denotes variables for the nonlinear system with the LQG 

controller. Section 4.8 uses the same denotation. 
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Figure 4-15. Regulation of nonlinear closed-loop systems- and vy x  
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Figure 4-16. Regulation of nonlinear closed-loop systems- 2 and P y�  
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Figures 4-15 and 4-16 demonstrate that the nonlinear systems with the LQG 

controller and the H∞ controller have quite similar behaviors as those of the 

corresponding linear closed-loop systems except that the poppet velocities exhibit the 

serious high frequency oscillation at the starting time. The nonlinear system with the 

modified PI controller performs like the reduced-order linear system in the previous 

section. Its poppet velocity also can not avoid heavily vibrating at the very first beginning 

from the initial condition. 

 
4.7 Tracking Problem of the First Group of Closed-loop Systems 

The systems in this section are exactly same as those in section 4.5. System 

pressures can be chosen as ( )65 10kP =  Pa, ( ) ( ) ( )6 6
1 22 10 5 10 sin 62.8P t= +  Pa, and 

( ) ( ) ( )6 6
2 20 10 5 10 sin 62.8dP t= +  Pa (shown in Figure 2-10). The identical initial 

conditions are used. The pressure drop across the poppet opening is held as 2 MPa. Both 

the desired nose-side pressure (represented by the red solid line) and the desired back-

side pressure (represented by the blue dash-dot line) are operated as sinusoidal waves 

with 10 HZ frequency. The desired piping pressure (represented by the magenta dot line) 

is kept as a constant of 5 MPa. The initial nominal poppet velocity is assumed as 0. The 

rest ones can be given by 

1 ,     2, ,b b

b

di di
di b b

sp

y y
y i n

t
−−

= =� "     (4.15) 

where 
bdiy�  is the thbi  poppet velocity on the poppet trajectory,  diy  is the thbi  poppet 

location on the poppet trajectory, spt  is the sample time that is chosen as 0.01 s and bn  is 
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the maximum number of how many sample times there are in the whole chosen 

simulation time of 0.4 s. Except the uncertainty weight function IW  , all other parameters 

are kept same as those in section 4.5. The weight function IW  can be given according to 

the uncertainty shown in Figure 4-17 by 

( )
4 3 2

4 3 2

0.168 41.011 50.75 20.181 12.269
241.837 191.189 98.102 40.942I
s s s sW s

s s s s
+ + + +

=
+ + + +

.  (4.16) 
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Figure 4-17. Input uncertainty and weight function IW  (red line) for tracking problem 

 
For LQG and H∞ control design, the sinusoidal trajectories are represented by bn  

equilibrium points that individually execute their step responses. The calculating time of 

one regulating process for every equilibrium point is 10 ms, which is one tenth of the 

cycle time of a sine wave with 10 HZ frequency. It can be treated by the way that a 
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period of a sine wave consists of 10 points. The time period from one point to another 

point is 10 ms. If the acceptable step response of every equilibrium point can be 

accomplished in this short period, the whole sine wave can be followed through in one 

period time of 0.1 s. This is absolutely much faster than any hydraulic element in the 

fluid circuit. The final values of each step response are recorded as the positions, 

velocities and pressures that can be reached by the system in a consecutive period, for 

example 0.4 s in these simulations. This concept is used in the whole section of tracking 

problem. 
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Figure 4-18. Tracking of nonlinear/linear closed-loop systems- and vy x  

 

The upper plot in Figure 4-18 brings forth the tracking behaviors of the poppet 

position y  in the five closed-loop systems. It indicates clearly that except the full-model 
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linear system with the LQG controller, all other four systems execute the acceptable 

capabilities to track the sine trajectory with 10 HZ frequency. The linear system with the 

LQG controller has a phase lead of about 45 degree and a steady-state error of more than 

60% compared with the desired position. The lower plot in Figure 4-18 illuminates the 

control signals vx  in which the spool reaches its utmost in bi-directions in the linear 

system with the LQG controller. This can explain why this linear system can not fulfill 

the tracking function. For example, at 0.05 second, although the spool makes its biggest 

opening, more flow still needs to exit from the control chamber to make the poppet lifts 

more from its seat. Therefore, the control effort is too big to be realized by this system. 

Other systems, though some of them also require much more spool movement than the 

desired one, can fulfill their tracking function properly. The strange spike in the nonlinear 

closed-loop system appears when the second item of the poppet flow force pressure 

coefficient fqtK  is taken into account. 

Back-side pressures 2P  plots in Figure 4-19 point up that the full-model linear 

system with the H∞ controller has a slight phase delay and a small steady-state error of 

the amplitude as well as the nonlinear system with the nonlinear controller. Although the 

poppet can not arrive at the desired position, the back-side pressure 2P  of the full-model 

linear system with the LQG controller still can track well and there is no surprise to see 

the big sinusoidal poppet velocity wave (shown in the lower plot of Figure 4-19) in this 

system.  Both the full-model linear system with the modified PI controller and the 

reduced-order linear system with the modified PI controller can make a good agreement 

with the desired system in , vy x  and 2P . The linear poppet with the H∞ controller has a 
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poppet velocity that is in a great conformity with the desired values. The nonlinear 

closed-loop system can not execute the smooth velocity change, which has high 

frequency vibration at the most part of the sine wave. The poppet velocity of the linear 

systems with the modified PI controller trends to be zeros, which is not feasible in 

practice. 
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Figure 4-19. Tracking of nonlinear/linear closed-loop systems- 2 and P y�  

   
Figure 4-20 shows the corresponding change of the control gains of the PI 

controller. 
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Figure 4-20. Gains of the modified PI controller for tracking problem 

 
 
4.8 Tracking Problem of the Second Group of Closed-loop Systems 

The results displayed in this section present the tracking behavior for the 

nonlinear systems that are exactly same as those in section 4.6. Operating system 

pressures and initial conditions are equivalent as those in the previous section.  

It can be said that both LQG and H∞ control design produce the totally 

undesirable performance when they are combined with the nonlinear system. The 

amplitudes of the poppet positions y  are much greater than the desired values (shown in 

Figure. 4-21). And the back-side pressures 2P  are always much less than the required 

pressures (shown in Figure. 4-22). The poppet velocities y�  are quite bigger than the 

required ones (shown in Figure. 4-22).  
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Figure 4-21. Tracking of nonlinear/linear closed-loop systems- y and vx  
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Figure 4-22. Tracking of nonlinear closed-loop systems- 2 and P y�  
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The spool in the nonlinear system with the LQG controller widely opens in its 

negative moving direction. The control chamber always connects with the back-side 

chamber. The poppet position y  only can be adjusted by the pressure drop across the 

control orifice. The nonlinear system with the H∞ controller demonstrated the 

unavailability of astonishing tracking problem when it shows the pleasant behavior in the 

linear system. Only can less than 25 percent of the sine wave of the poppet displacement 

y  be followed. The poppet totally shuts off and the spool reaches its negative limitation 

in some period. This might be caused by the fact that the linear system does not include 

information about the left opening of the control orifice that connects the control chamber 

and the back-side chamber. 

 The nonlinear systems with either the nonlinear controller or the modified PI 

controller make obviously favorable behavior as they are expected. The previous 

nonlinear system has a slight phase lag which matches with the relatively slow pressure 

action in the step response. The spike of its spool displacement might be introduced by 

the steady-state flow force due to the change of the poppet position. 

 
4.9 Summary 

What are presented in this chapter are all the simulation results. The influences of 

the important parameters on the open-loop stability criteria are depicted. The closed-

loop systems are classified into two groups for making comparison of both regulation 

and tracking behavior. The linear controllers are also validated by being combined with 

the nonlinear system as well as the linear systems. The conclusion can be made roughly 

that both the modified PI controller and the nonlinear controller might be the good 
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choices to implement the closed loop for the real poppet valve system. The discussion 

will be fully carried out in the next chapter. 
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CHAPTER 5. CONCLUSIONS AND CONTRIBUTIONS 
 

5.1 Introduction 

The goal of this two-stage poppet valve system aims at achieving its metering 

function with specific behavior requirements. This dissertation focuses on system 

dynamics modeling and control design for this system. Simulink models and Matlab 

programs were constructed for both the linear systems and the nonlinear systems that are 

combined with four control methods including modified PI control, LQG control, H∞ 

control and a nonlinear control. The simulation results of regulation and tracking 

behavior for various closed-loop systems were graphically shown and briefly discussed in 

Chapter 4. The summary of conclusions is addressed in this chapter. 

 

5.2 System Modeling 

A two-stage poppet valve system with a simple back-side operating condition that 

includes an orifice with a fixed area and a constant pressure reservoir was investigated in 

this dissertation. There are two evident nonlinear characteristics of this system in addition 

to the nonlinearity of the flow itself. The first one is that the control orifice can connect 

the control chamber with either the back-side chamber or the nose-side chamber 

depending on the system pressure conditions. Another is that the fluid across the poppet 

opening can run in both directions. The later nonlinearity was ignored in this analysis, 

while the former one was seriously considered. The nonlinear mathematical model was 

proposed to describe the system dynamics. And, linear systems were created by using the 

Taylor series expansion and neglecting the high-order items according to local 
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equilibrium positions. A reduced-order system was also created by leaving out the poppet 

mass and the control pressure change in the back-side chamber. The spring mounted in 

the poppet cartridge is weak enough to be assumed to be none. There is a big difference 

between a relief poppet and a metering poppet, in which the spring is unavoidably a vital 

force component for the relief one to keep the poppet tightly seat on the port base. The 

size and the opening velocity of the control orifice are essential factors to determine the 

accomplishment of distributing an amount of flow required. 

Navier-stokes equations that do not contain the body forces and viscosity effect 

were used in the axial direction for the poppet nose-side chamber to obtain the linear 

formation of the flow force acting on the poppet head. An analytical expression was 

presented to take the transient flow force into consideration. The transient flow force was 

proved to possibly bring into unstable features to the system in the parameter stability 

analysis in Chapter 4. The leakage occurring across the cylindrical geometry of the 

poppet land was modeled as an annular Poiseuille flow passage. The pipeline leakage was 

considered as a low Reynolds flow that is proportional to the back-side pressure 2P . 

 

5.3 Control Design 

All control analysis is carried out for a very small poppet opening that is usually 

the worst case of the poppet local stability according to particular operating situations. 

Mathematica plots in Chapter 4 graphically disclosed some important findings of how the 

selected system parameters work on the open-loop local stability criteria. It was greatly 

surprising to find out that the leakage across the poppet land 2Q  provided a negative 

effect on the stability. In general, leakages will dissipate the system energy disturbance to 



135 

benefit the stability. Therefore more study on the form of the leakage 2Q  and its unusual 

performance for the stability is needed to be conducted in the future. Fluid bulk modulus 

β  is the inverse of the fluid compressibility, which is the change in pressure caused by 

the internal fluid strain change. The bigger the bulk modulus is; the bigger pressure 

response is needed to a constant fluid strain change. Therefore, the increase of the bulk 

modulus will no doubt lead to a more unstable system. A larger back-side chamber LV  

can provide substantial assistance in the system stability. When it goes up, the system 

takes less effort to overcome the smaller pressure change caused by a same amount of 

volume change in a bigger chamber as the fluid elasticity is constant. The poppet 

containing a poppet land cross section area that is larger than the area of the poppet port 

is a desirable design. Orifice coefficient dC  has given evidence that it introduced the very 

serious uncertainty to the system and its increase does not help stability. The change of 

this parameter can introduce proximately 30% uncertainty of the nominal plant value to 

the system. A possible explanation for this is that the transient flow force likely can be a 

crucial factor to lead to instability. And the poppet flow gain qtK  that is nearly related 

with the transient flow force due to the poppet velocity y�  is proportional to orifice 

coefficient dC  under certain system pressures. The influence of the spring rate on the 

system stability has the same trend as that of fluid bulk modulus. When the spring rate is 

bigger, it is harder for the system to be stable. 

The goal of tracking the poppet position trajectories of sine signals with the high 

frequency of 10 HZ was accomplished theoretically. Linear controllers are validated by 

the model that is a combination of the controller with the nonlinear system as well as the 
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linear system. Nonlinear control and PI control with changing gains were proved to be 

better choices. 

In PI control, the gain scheduling was fulfilled by dividing the constant 

proportional and integral gains by the spool flow gain 1q tK  that is associated with the 

fluid going through the control orifice. The essential of this strategy is to make allowance 

for the change of the nominal pressure drop, which is the similar clever idea in the 

nonlinear control design. The control gains in PI controller can be chosen according to 

the stability criteria derived from the Routh-Hurwtiz method. The nonlinear system with 

the nonlinear control was verified by Lyapunov theorem to be globally asymptotically 

stable. 

Both H∞ and LQG control algorithm were achieved to design the local controllers. 

They performed suitable behavior to implement the regulation requirement under typical 

working condition marked out by industry. However, the weigh matrices, Q  and R  in 

full-state feedback LQR design and the uncertainty weight functions, PW  and uW  in H∞ 

control are fixed, which obviously can not satisfied the various operating circumstances. 

Though the full-model linear systems with the H∞ executed tolerable dynamic action, the 

nonlinear system coupled with the H∞ control can only have acceptable performance to 

track a small portion of the poppet displacement of sine waves of 10 HZ shown in Figure 

4-21. The LQG control presented in this dissertation is not a suitable solution of the 

control design for the tracking problem no matter it is associated with the linear system or 

the nonlinear system. Therefore, when H∞ and LQG control algorithm is applied to the 
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real system with widely various working pressures, a strategy of getting proper robust 

internal gains will be required for the global system. 

 

5.4 Contributions 

This dissertation is trying to mainly make contributions for the metering poppet 

topic in two areas: system modeling and control design. This work presented the 

nonlinear and linear analytical models for a two-stage metering poppet system that 

contains a critically-centered 3-way spool as the pilot device, a common poppet valve as 

the flow distributor and a simple poppet back-side chamber condition. A clear linear 

expression of the flow force was derived to investigate its effect on stability. 

In this work, three linear control methods were used to make the closed-loop 

system. It is shown that modified PI control is one of the good choices for industrial 

application. How to choose the appropriate gains for a PI controller was also decided 

numerically. LQG control and H∞ control were proved to satisfy the local system 

behavior, instead of the global one. If a strategy can be conceived to achieve the global 

performance, they also could be acceptable control approaches in practice. The work of 

the nonlinear controller that is based on Du’s work was proved to be globally 

asymptotically stable and valuable. The effects of some important key parameters on the 

system stability were discussed. The leakage across the poppet land and the hole 

containing it has surprising negative influence on the system stability. 
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CHAPTER 6. FUTURE WORK 
 

6.1 System Modeling 

The modeling work can be enriched by adding more components to the system, 

for example complex load conditions (a cylinder with loading, a pump), spool dynamics 

or transient delivery line effect, etc. The experimental data of transient flow force and 

leakage across the poppet land is a good collection for exploring the reason of system 

instability. Furthermore experimental identification of the control design, especially for 

the nonlinear and modified PI control is also encouraged to be covered in the future work, 

though part of the work has been done by industry. If the first-hand data of unstable 

situation that occurs in industry can be collected, it is good for engineers to make a 

detailed model of that system to understand the root causes of the instability. The leakage 

across the poppet land and the bore containing it and the back-side pipeline leakage are 

theoretically proved to be negative influences on the system open-loop stability. 

Considering that leakages dissipate the disturbance energy, it is worth while to 

investigate this conclusion in real physical systems. 

 

6.2 Control Design 

It has been mentioned in Chapter 5, the LQG and H∞ controller in this dissertation 

are locally favorable to the regulating behavior. They only can reveal regional stability 

property. When they are applied to the real physical word, fixed control specifications 

will put them at disadvantage. Therefore, it is necessary to create a robust gain scheduling 

strategy for the all-around system. Rong Zhang [11] developed a LPV (Linear Parameter 
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Varying) method in his PhD. thesis to deal with the similar problem. Additionally, the 

unmodelled uncertainty can be counted in to improve H∞ control. 

The nonlinearity of the flowing direction of the fluid passing the poppet opening 

and the pipeline fixed-area orifice was not involved in system modeling and control 

design. The switch process when the fluid across the poppet suddenly changes its flowing 

direction could contribute to untraceable stability problems. Especially the linear 

formation of the flow force is not advisable at this case, because this split second can 

cause infinite flow gains that are unacceptable for calculation. Consequently, more future 

work can be done to smooth this process. The way to measure the transient flow force 

needs to be examined to explain the relationship between the transient flow force and the 

system stability. 
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