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ABSTRACT 

Bubonic plague infections begin in the dermis when the pathogen is introduced by 

a flea during a routine blood feed.   Several barriers separate Yersinia pestis from its 

replicative niche, including phagocytic cells in the dermis and the refractory midgut 

environment of the vector.  For this flea-borne disease, very little is known about the 

genetic factors that influence the establishment of infection in the flea midgut, the 

mechanism of transmission to naive hosts, trafficking of bacteria to the mammalian 

lymph node, or survival in disparate environments.   Despite its lethality and the 

discovery of antibiotic resistant isolates, no licensed plague vaccine has been developed 

for use in the U.S. or Western Europe.  Even a single cell of Y. pestis can initiate a lethal 

case of bubonic plague.  Modern pandemics have originated from the endemic 

maintenance of flea and rodent interactions, as such, an improved understanding of 

genetic determinants that contribute to Y. pestis persistence, virulence, and transmission 

is warranted.  In order to achieve this goal, we have generated improved genetic tools for 

studying mammalian pathogenesis of bubonic plague.  In addition, we have developed 

and improved multiple model systems for comprehensive studies of the Yersinia pestis 

life cycle.  Furthermore, we identified bacterial genetic factors that influenced survival 

and virulence in both mammalian and insect hosts.  Ideally, the data provided will allow 

researchers to acquire consistent and reliable data about the Y. pestis life cycle that may 

ultimately improve epidemiological modeling and prevention of disease.  Holistic and 

comprehensive research directed at the host-vector-pathogen interface will likely lead to 

development of methods for controlling vector-borne pathogens, like Yersinia pestis. 
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CHAPTER 1 

THE VECTOR-BORNE PATHOGEN, YERSINIA PESTIS 

 

 

Adapted from: Bland DM and Anderson DA “Imaging Early Pathogenesis of Bubonic Plague: Are 

Neutrophils Commandeered for Lymphatic Transport of Bacteria?” MBio.  2013. 

 

1.1 Bubonic Plague and Mammalian Pathogenesis 

Yersinia pestis is a highly virulent and potentially lethal zoonotic bacterium that 

survives within the flea vector and is transmitted to mammals via an infectious bite.  

Yersinia pestis is the causative agent of plague, and is considered a Tier 1 Select Agent 

by the U.S. Centers for Disease Control and Prevention.  This particular bacterium 

colonizes the flea midgut and is transmitted to mammals after forming an infectious 

biofilm that lodges in the proventriculus of the flea (1).  Once deposited in the dermal 

layer of the mammalian host, the bacteria will migrate to the draining lymph node, 

establish a replicative niche, and eventually spread systemically, causing multi-organ 

failure and death of the host.  Y. pestis can invade epithelial cells and survive and 

replicate inside macrophages, but tissue damage and disease are primarily caused by its 

rapid extracellular growth and toxicity to host cells (2, 3).  This rapid growth and toxicity 

to the host is the cause of the inflammatory-based enlargement of draining lymph nodes.  

These infected lymph nodes, which are often black in coloration, are known as buboes.  

As such, this mode of disease is aptly named bubonic plague. 
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One of the defining characteristics of Y. pestis is that it is able to inhibit the host 

innate immune response as well as limit inflammation until the later stages of disease (4).   

The initial anti-inflammatory response is believed to be mediated, at least in part, by the 

type III secretion system (T3SS) (5).  Following adherence of bacteria to host immune 

cells, the type III secretion system delivers effector proteins, collectively known as Yops, 

to the host cell cytosol.  These Yops prevent phagocytosis, alter immune function, and 

eventually induce apoptosis of the target cell. When grown at low temperature and in the 

flea, the T3SS is poorly expressed, requiring 37°C for maximal transcriptional induction.  

The molecular mechanism and timing of how this transition occurs in vivo have not been 

well characterized, and it appears likely the initial interactions with host cells would 

proceed with bacteria vulnerable to immune activation.  Furthermore, Y. pestis LPS is 

immunostimulatory at low temperature, and must undergo a biosynthetic change at 37°C 

that provides stealth and attenuation of toll-like receptor signaling such that inflammation 

can be controlled.  The functioning of the T3SS and alterations made to LPS are believed 

to be the major contributors to the initial anti-inflammatory phase of the infection. 

Y. pestis can infect multiple tissues, with continual bacterial growth at the 

inoculation site, as well as seeding of primary and secondary immune tissues followed by 

rapid bacterial growth at these sites (6).  Once an inflammatory response is initiated by 

tissue injury, as well as recognition of Y. pestis pathogen associated molecular patterns 

(PAMPs), neutrophils and monocytes are recruited from the peripheral blood (7).  

Neutrophils are by far the largest recruited cell population and quickly migrate to the site 

of infection where they are believed to mediate bacterial clearance.  Inflammatory 

monocytes also enter infected tissue from the blood, where they mature to carry out 
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macrophage cell functions in host defense:  including bactericidal activity, tissue repair, 

and antigen presentation (8).  In addition, resident dendritic cells routinely traffic to the 

lymph node to display antigen to B and T cells.  The T3SS is known to be capable of 

injecting effectors into all of these host cell types (9).   In vivo, Y. pestis preferentially 

targets phagocytic cells for injection of Yops, thus preventing their activation (10, 11). 

When Y. pestis is phagocytosed, the T3SS is believed to be largely inactive when 

bacteria are in the phagolysosome.   Whether this is due to an environment that down-

regulates expression of the T3SS or because the translocation pore cannot assemble 

across the phagosomal membrane is not known (12).  It is therefore likely, that these host 

cells are activated because of a soluble anti-inflammatory signal induced by the activity 

of the T3SS on other cells rather than a direct effect of Yop injection by intracellular 

bacteria.  This interpretation is consistent with data from the lung model, whereby 

extracellular T3SS
+
 Y. pestis establish an anti-inflammatory state that is permissive for 

growth of avirulent T3SS
-
 bacteria (5). 

  Yersinia pestis is non-motile but invasive, with an extracellular protease 

(Plasminogen activator or Pla) that is essential for its ability to cause infection from 

peripheral routes.  Pla is a broad spectrum protease and adhesin that likely cleaves 

multiple targets such as fibrinogen and plasminogen and enhances bacterial adhesion to 

host extracellular matrices (13).  Expression of Pla is essential for the development of 

bubonic plague, as mice infected by Pla
-
 strains typically don’t develop histopathology or 

lymphatic bacterial burdens characteristic of bubonic plague, but indeed appear to be 

shuffled directly to the septicemic form of the disease (14).  It has been previously 

speculated that Y. pestis uses Pla to bind to cell surface receptors on macrophages and 
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dendritic cells as a means to traffic  to the draining lymph node (15, 16).  However, 

recent and more convincing data suggests that neutrophils with altered programming may 

carry live bacteria to the lymph node (17).  The mechanism whereby this would occur is 

not clear, as neutrophils are not known to express lymph node homing receptors (18). 

Nevertheless, prevailing models of bacterial trafficking to the primary lymph node 

involve intracellular bacterial transport via the lymphatic system or extracellular vascular 

dissemination.   

Bubonic plague is extremely infective; a flea bite that transmits even one 

bacterium to the human host can ultimately lead to lethal bubonic plague.  Symptoms of 

bubonic plague in humans develop within 2-6 days of infection and include fever, 

headache, chills, lethargy, and the characteristic swollen lymph nodes (19).  This is 

typically the result of being bitten by an infected flea, however, bubonic plague can also 

develop from accidental exposure via needle stick in experimental settings.  The frequent 

development of secondary septicemia causes significant complications for the patient, 

with mortality rates as high as 50-60% (19).  These rates are probably exacerbated in the 

clinical setting by the application of antibiotics that are ineffective against Y. pestis.  

However, when individuals know they have been exposed to plague, prophylactic 

treatment with tetracycline antibiotics is exceptionally effective.  One of the more 

concerning aspects of plague, as well as all bacterial pathogens, is the identification and 

isolation of multi-drug resistant strains (20).  In addition, there is no licensed vaccine for 

plague, necessitating a need to identify novel therapeutics for all forms of the disease.  

Together, these factors have made the U.S. Centers for Disease Control and Prevention 
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label Y. pestis a Tier 1 Select Agent, due to concerns over its potential use as a 

bioterrorism threat (21) 

1.2   Flea-Borne Transmission and Evolutionary Perspectives. 

The primary vectors for plague, fleas, are wingless insects belonging to the order 

Siphonaptera.  Adults are blood-feeding ectoparasites that feed on live birds and 

mammals, with the majority parasitizing rodents.  The plague life cycle results in stable 

maintenance of Y. pestis as an endemic infection of wild rodent populations in many parts 

of the world, including the United States (22).  When a mammal becomes infected, and Y. 

pestis enters the host’s blood stream, a flea can take an infectious bloodmeal.  Titers of 

bacteria in the bloodstream of the infected host must be considerably high (10
6
≤ 

CFU/ml), when the host is in the terminal stages of disease, in order for the flea to 

become infected.  This is believed to be necessitated by the relatively small volume of 

blood a flea ingests, but may also be dependent on the flea’s natural resistance to 

microbial challenge.  

The traditional “Blocked” or “Late Phase” mechanism by which fleas can 

transmit plague requires that the bacteria form a biofilm within the insect digestive tract 

(1, 23).  The biofilm, a layered bacterial mass, is mediated by secretion of a surface-

associated exopolysaccharide that will eventually block the flea’s esophagus and prevent 

the uptake of new bloodmeals (24).  This biofilm will develop between 1-3 weeks post 

infection.  The flea, unable to become satiated, will make repeated, unsuccessful attempts 

to feed on a host.  During these feeding events, some of the bacteria will be regurgitated 

from the biofilm and into the skin, perpetuating bubonic plague (25).  The most abundant 

world-wide vector for plague, Xenopsylla cheopis, is readily blocked by Y. pestis 
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biofilms, and up to 50% of these fleas have been observed to form transmissible 

infections in the laboratory (26, 27).  However, over 20 different species of flea in North 

America are believed to be capable of plague transmission (28).   To date, only X. 

cheopis has been demonstrated conclusively to transmit the infection through the 

“blocked proventriculus” method.   

More recently, a second transmission mechanism, or “Early Phase” transmission, 

has been established, that does not require a bacterial biofilm, but can only occur shortly 

after flea infection (23, 29).  Early phase transmission has been demonstrated under 

experimental conditions in X. cheopis as well as the North American flea Oropsylla 

montana.  Researchers have shown that during the first four days following a blood meal 

spiked with a high concentration of Y. pestis, fleas are almost as efficient as transmitting 

plague as those producing transmissible infections from biofilm-mediated esophageal 

blockages.  The most prevalent hypothesis for this phenomenon is that the flea’s 

mouthparts may be contaminated with Y. pestis for a narrow window of time.  However, 

there is currently no experimental evidence to support the mechanical transmission 

hypothesis.  Early phase transmission proponents claim this provides a more plausible 

explanation for the rapid epizootic outbreaks that are observed in prairie dog populations 

in the U.S., where close to 100% of the population is wiped out within 6-8 weeks (30).   

Currently, the evidence suggests that both transmission mechanisms are mutually 

compatible; however, they do complicate the epidemiological modeling of plague. 

The factors that contribute to making a flea efficient at transmitting plague bacilli 

remain poorly understood.   Established efficiencies of Y. pestis transmission amongst 

laboratory X. cheopis populations can vary greatly (23, 26, 27, 31).  Furthermore, much 
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of what is currently known about transmission of Y. pestis was obtained during the early 

portions of the 20
th

 century when little information on its virulence was known (31).  It is 

likely that contributions to a transmissible infection are made by the flea’s immune 

system, anatomy of the digestive tract, the insect microbiome, as well as environmental 

conditions.  However, these are unlikely to be the sole contributors, as nothing is known 

about genetic differences that may alter vector responses to infection. 

Yersinia pestis evolved from the enteric pathogen, Yersinia pseudotuberculosis, 

recently in evolutionary terms, within the last 20,000 years.   During this timeframe, the 

bacterium has acquired enhanced virulence capabilities in mammalian hosts, as well as, 

the ability to survive and propagate it’s transmission from the flea vector.  One of the 

reasons Y. pestis is thought to have evolved its hypervirulence is that the flea vector is 

only capable of delivering small infectious dosages in the blocked model.  On average, 

less than 100 CFU of Y. pestis are delivered into the host dermis from a blocked X. 

cheopis flea (27). Additionally, acquisition of the infection by a naïve flea requires a 

high-titer bacteremia in the mammalian host (28).  This situation would impose 

evolutionary pressures to select for bacteria that rapidly replicated and entered the host 

blood stream to perpetuate transmission.  

The two major bacterial genetic elements that have been shown to have a direct 

influence on bacterial survival within the flea midgut are Yersinia Murine Toxin (ymt) 

and the Hemin storage (hms) locus. Ymt is encoded on the Yersinia virulence plasmid 

pMT1, Ymt has phospholipase D activity that protects the bacteria from an unknown 

antibacterial mechanism of the flea midgut (32).  Y. pestis that lack Ymt are unable to 

survive in the flea midgut.  The biofilm, composed of exopolysaccharide, is produced by 
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the hemin storage genes (33, 34).  This operon is located within the pigmentation locus 

(pgm) of Y. pestis.  It is called the pigmentation locus because the hms operon is also 

responsible for the uptake of the dye and heme analog, Congo Red, on solid media.  The 

pgm locus is an unstable genetic element and can be lost during routine laboratory 

passage.  However, hms retention can be rapidly screened for by growing Y. pestis on 

media supplemented with Congo Red.  If the pgm locus has been lost, colonies will not 

take up Congo red and will appear white.   Interestingly, all flea borne isolates retain the 

pgm locus, suggesting that retention of the hms operon is selected for during the plague 

life cycle (35-38).  Laboratory strains lacking Hms can colonize the flea midgut for a 

short period of time, but they are unable to produce a biofilm or transmit via the blocked 

model of disease. In addition to acquiring the expression of Hms and Ymt, a number of 

subtractive genetic modifications have allowed Y. pestis to persist within the flea midgut, 

including the loss of acute oral toxicity to fleas, as well as, inactivation of insecticidal 

ABC toxin genes (39, 40). 

While Yersinia spp. receive plenty of attention for their virulence to mammalian 

species, it’s important for researchers to remember that this genus appears to be more 

closely related to members of the Enterobacteriaceae that are associated with 

invertebrates (Photorhabdus, Serratia) rather than vertebrates (Escherichia, Salmonella) 

(41).  Y. pestis genes that do not appear to have functionality in the mammalian host may 

be relevant to the vector-borne life cycle of disease. 

1.3  Plague Research Models: Concerns and Limitations 

 A number of In vivo model systems have been developed to study the plague life 

cycle and the strategies it uses to cause disease.  Many of these models are well 
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established and provide insights about host responses, bacterial gene regulation, disease 

pathology, and vaccine suitability for plague.  Within plague research models there are 

limitations as to how well data can be applied and interpreted for naturally occurring 

environments and alternative hosts. Addressing the inadequacies in existing model 

systems and improving safety for users is crucial for generating data that is relevant to 

disease progression and transmission.  

  More recently, principal investigators must be wary of dual use research of 

concern (DURC).   DURC  has been defined as research that is generated for legitimate 

purposes but has a high risk of being used for nefarious intentions (42).  Experiments that 

generate bacterial strains that have resistance to therapeutically valuable antibiotics are 

among DURC concerns.    As such, the CDC limits antibiotics that can be used for 

research with fully virulent Y. pestis.  Many of the genetic tools used for the study of 

bacterial virulence factors employ selectable markers, such as chloramphenicol and 

kanamyicin, which are not practical due to DURC considerations.  Currently, ampicillin 

is the only selectable marker approved by the CDC, and alternative selectable markers for 

Y. pestis genetic systems are limited.  Complicating the matter is that many researchers 

perform their genetic manipulations at biosafety level 2 (BSL) within Y. pestis strains 

lacking the virulence plasmid that encodes the T3SS.  A recombinant version of the 

virulence plasmid that contains an ampicillin resistance cassette is subsequently 

reintroduced into the strain in order to restore virulence and perform  in vivo studies at 

BSL-3.  This strategy hinders a plague researcher’s ability to generate mutant Y. pestis 

strains and subsequently restore gene function through plasmid complementation.   
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Due to the lack of alternative selectable markers, new genetic systems should be 

developed for use with BSL-3 designated Y. pestis strains.  The lysine biosynthesis 

pathway is involved in the production of diaminopimelic acid (DAP), an indispensable 

peptidoglycan cross-linking component in Gram-negative bacteria, and the essential 

amino acid lysine.  These factors make the lysine biosynthesis pathway an attractive 

target for a bacterial selectable marker system, whereby lysine biosynthesis can be 

restored from a recombinant plasmid.  Bacterial lysine auxotrophs can be grown in lab 

culture when DAP is supplemented in the growth medium, and these mutants have 

previously been employed successfully as genetic systems in other Gram-negative 

bacteria.   In addition, these strains provide a user-safety advantage as they are avirulent 

to users due to the bacteria’s inability to scavenge DAP from mammalian and insect 

hosts. 

 To date, research involving Yersinia-insect interaction has been relatively limited 

in scope and size. Veterinary entomology that focuses on plague is an emerging field that 

has promise for improving epidemiological modeling of plague, as well as, identifying 

proteins that are crucial for disease transmission (43).  While the most direct and obvious 

model is using the flea itself, a few other in vivo and in vitro systems have been 

developed to attempt to model the plague life cycle.  The nematode, C. elegans, has been 

used as a model to study biofilm formation in a number of bacterial species.  Y. pestis is 

capable of forming biofilms on the mouthparts of C. elegans, which can be tracked 

through fluorescent microscopy (44).  Increased biofilm formation decreases the ability 

of the roundworms to feed.  The decreased survival of the organism can be used as an 

indirect measurement of biofilm formation (45, 46).  However, this model only focuses 
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on genes that influence biofilm formation and does not mimic stresses imposed by the 

arthropod midgut environment. It is unlikely that bacterial gene regulation of Y. pestis on 

the nematode mouth parts is analogous to regulation utilized within the flea midgut, 

which limits this model’s usefulness. 

Ideally, researchers model the organism that is actually employed for 

dissemination of the pathogen.  In this case, the flea is the most obvious choice for 

studying plague. However, there are limitations on the research aims that can be 

addressed within the flea.  While there are approximately 80 species of flea have been 

found to be infected with Y. pestis in nature, only X. cheopis has been conclusively 

demonstrated to consistently perform blocked transmission (47).  Mechanisms of 

transmission and host genomic comparisons between other flea species need to be 

examined to understand how the majority of fleas harbor and transmit plague.  Currently, 

no flea genome has been sequenced.  This makes it challenging to study the host response 

to microbial infection through gene specific analysis and/or knockdown.  Furthermore, 

there are no genetic tools to generate transgenic fleas.  This makes determining the 

importance of host genes for generating transmissible infections difficult.  This 

knowledge gap may be addressed by utilizing a Drosophila larval model of infection.  

Numerous transgenic fruit flies have been generated and are readily available through the 

Drosophila Genomics Resource Center (Bloomington, Indiana).  In addition, our 

collaborators have demonstrated that fruit fly larvae can ingest and stably maintain 

plague in the digestive tract for 4 days.  While this window is relatively short, it can help 

identify both bacterial and insect genes that are significant during the critical early stages 

of midgut infection.   
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The influence of genetic drift on the capacity of fleas to generate transmissible Y. 

pestis infections remains unexamined.  Researchers of plague-insect interactions in the 

U.S. use fleas that are derived from inbred stocks which were established decades ago. In 

Drosophila species, it has been demonstrated that inbred populations have altered 

competitive and reproductive fitness relative to their outbred counterparts after, on 

average, 180 generations (48, 49).  In animal models of research, strict regulations exist 

for the generation number of established inbred mouse lines, such as BALB/c.  This is 

due to concerns over the influence of inbreeding on experimental outcomes.  While the 

biological systems of arthropods tend not to be as multifaceted as mammals, a large 

degree of genetic complexity exists and the influence of inbreeding has been documented 

in model insect systems (48-50).  Therefore, it is likely that selective pressures imposed 

by laboratory rearing conditions have created genetically homogenous flea populations 

with altered capacities to generate transmissible infections.  The influence of genetic drift 

on experimental outcomes may cause flea researchers to reassess how flea colonies are 

maintained within the lab, determine whether outbred genetic diversity must be 

reintroduced into existing lab colonies, and question whether currently accepted 

transmission efficiencies truly reflect what occurs in natural flea populations. 

1.4 Considerations and Research Aims 

Vector transmission of infectious disease is a research priority for the 

Departments of Health and Human Services, Homeland Security and Defense, and the 

Centers for Disease Control and Prevention (51).  Little is known about mechanisms of 

long term survival and transmission of flea-borne pathogens, yet recent emergence and 

re-emergence of flea borne bacterial infections (Bartonella and Yersinia, respectively) 

have been documented (52, 53).  Of particular concern is the recent evolution of Yersinia 
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pestis to acquire the flea life cycle, which added enhanced virulence, prolonged survival 

between mammalian outbreaks, and the potential for horizontal gene exchange (54).  

Together, not only is Y.  pestis a current threat to human and animal health, but it gives us 

a glimpse of what could emerge in the future.  It is essential that we understand 

mechanisms of flea transmission and mammalian virulence in order to prevent outbreaks 

of antibiotic resistant, highly virulent infection (20).  As such, this dissertation addresses 

the following research aims: 

 Develop genetic tools and model systems to improve our understanding of 

plague pathogenesis and flea-borne infection. 

 Identify bacterial virulence factors and surface localized proteins that are 

important for Y. pestis survival in diverse environments. 

 Determine the genetic contributions of the flea vector that influences 

stable maintenance of plague in the insect digestive tract. 

Developing model systems to understand plague pathogenesis and disease 

transmission mechanisms is critical for the epidemiological modeling of plague.  

Identification of genetic elements needed throughout the plague life cycle may help in 

developing novel therapeutic strategies.  We propose that fleas infected with Y. pestis can 

be used as a safe model system to develop a broad understanding of microbial-arthropod 

interactions.  Research directed at the host-vector-pathogen interface will likely lead to 

development of methods for controlling vector-borne diseases.  
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CHAPTER 2:  

NOVEL GENETIC TOOLS FOR DIAMINOPIMELIC ACID SELECTION IN 

VIRULENCE STUDIES OF YERSINIA PESTIS 

 

As found in: David M. Bland, Nicholas A. Eisele, Lauren L. Keleher, Paul E. Anderson, and Deborah M. 

Anderson “Novel Genetic Tools for Diaminopimelic Acid Selection in Virulence Studies of Yersinia 

pestis” PLoS One (2011) 

 

Contributions: DB, DA, and NE conceived and designed experiments.  Bacterial mutants and genetic tools 

generated by DB, PA, NE, and LK.  All experiments and analysis performed by DB and DA except Figures 

2.7 and 2.8 performed and analyzed by NE, DA, and LK.  Manuscript written by DB and DA. 

 

 

2.1 Abstract 

 Molecular studies of bacterial virulence are enhanced by expression of 

recombinant DNA during infection to allow complementation of mutants and expression 

of reporter proteins in vivo.  For highly pathogenic bacteria, such as Yersinia pestis, these 

studies are currently limited because deliberate introduction of antibiotic resistance is 

restricted to those few which are not human treatment options.  In this work, we report 

the development of alternatives to antibiotics as tools for host-pathogen research during 

Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a 

requirement for cell wall synthesis in eubacteria.  We generated a mutation in the dapA-

nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the 

expression of both genes.  The resulting strains were auxotrophic for diaminopimelic acid 

and this phenotype was complemented by dapA in single and multi-copy systems.  In 
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vivo, we found that plasmids derived from the p15a replicon were cured without 

selection, while selection for DAP enhanced stability without detectable loss of any of the 

three resident virulence plasmids.  The dapAX mutation rendered Y. pestis avirulent in 

mouse models of bubonic and septicemic plague, which could be complemented when 

dapAX was inserted in single or multi-copy, restoring development of disease that was 

indistinguishable from the wild type parent strain.  We further identified a high level, 

constitutive promoter in Y. pestis that could be used to drive expression of fluorescent 

reporters in dapAX strains that had minimal impact to virulence in mouse models while 

enabling sensitive detection of bacteria during infection.  Thus, diaminopimelic acid 

selection for single or multi-copy genetic systems in Yersinia pestis offers an improved 

alternative to antibiotics for in vivo studies that causes minimal disruption to virulence. 

  



22 

 

2.2 Introduction 

 Yersinia pestis is the causative agent of plague and is a recently evolved pathogen 

(1, 2).  Due to its ability to undergo genetic flux from loss of genetic content and 

acquisition of DNA by horizontal transfer, Y. pestis evolved from a mild gastro-

instestinal pathogen to one that rapidly induces high titer sepsis in mammals in order to 

promote its transmission and environmental survival in fleas (3).  Many biovars of Y. 

pestis exist, varying between one another by significant changes, including plasmid 

acquisition, while even within biovars strains differ due to numerous point mutations, 

often in non-coding sequences (4, 5).  Isolation of multi-antibiotic resistant Y. pestis from 

human plague patients has been reported in two independent cases, both of which were 

due to the acquisition of different multi-drug resistant plasmids, highlighting a potential 

public health concern for the evolution of drug resistant plague (6-8).  This, combined 

with its hypervirulence in humans and mammals, stable maintenance in the environment 

between outbreaks, and the potential for rapid spread among humans, makes Y. pestis a 

potential reemerging threat to public health.   

 Heightened concern over highly pathogenic microbes such as Yersinia pestis has 

led to a surge in plague investigations, from basic mechanisms of pathogenesis to the 

development of novel vaccines and therapeutics.  Yet, currently available gene 

expression and gene knockout tools used for attenuated Yersinia strains rely on the 

introduction of antibiotic resistance, which is restricted in the virulent isolates, thereby 

limiting the potential output of this surge in research activity.  In this work, we addressed 

this shortfall and report the adaptation of standard genetic tools for metabolic, rather than 

antibiotic, selection. 
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 Biosynthesis of lysine has become an increasingly used anti-bacterial target as it 

provides essential protein (lysine) and cell wall (meso-diaminopimelic acid) components, 

thereby inhibiting bacterial growth by two mechanisms (9).  Mammals are unable to 

synthesize lysine and lack diaminopimelic acid, therefore the presence of a functional 

lysine biosynthetic pathway is essential for bacterial growth in mammalian hosts.  Like 

antibiotics, this property has been explored as a mechanism for selection of bacteria 

carrying recombinant plasmids during infection.  For example, Salmonella typhimurium 

lacking asdA (aspartate dehydrogenase) is unable to synthesize diaminopimelic acid and 

therefore is avirulent in a mouse model of disease (10, 11).  Growth of this mutant is 

dependent on exogenous diaminopimelic acid or on the plasmid expression of asdA 

allowing for its selection in vivo.  In E. coli, deletion of dapA, B, C, D and E confer 

diaminopimelic acid auxotrophy that can be used to select for recombinant DNA (12).  

Selection systems involving dapB (dihydropicolinic acid reductase) have been reported 

for other Gram negative pathogens, such as Burkholderia pseudomallei, thus it appears 

there are multiple genetic targets to block this highly conserved metabolic pathway (13, 

14).   

 In this work, we explored the utility of diaminopimelic acid selection in Yersinia 

pestis for single and multi-copy expression of recombinant DNA.  In Y. pestis, the genes 

encoding dapB, C, D and E are duplicated with two copies of each present in the 

chromosome (15).  However the gene encoding dapA, a dihydropicolinic acid synthetase, 

is present in another chromosomal location, found in single copy, and is therefore 

predicted to be necessary for an early step of the pathway for biosynthesis of 

diaminopimelic acid.  In Y. pestis, as well as many other bacteria, dapA is annotated as 
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the first gene of an operon that includes nlpB/dapX, an outer membrane lipoprotein that is 

not essential for growth (16).   Here we show that null mutation of the dapAX operon 

results in diaminopimelic acid (DAP) dependent growth and an avirulent phenotype in 

mouse models of plague.   Growth without DAP could be restored by supplying Y. pestis 

dapA in single or multiple copies and retention of plasmids could be achieved in vivo 

during murine infection.  Complementation of the dapAX mutation in vivo required the 

introduction of both genes in trans, either in single or multiple copy, and this restored the 

development of plague to near wild type levels.  We also report the development of dap-

selectable DsRed reporter assays that enable identification of bacteria during infection. 

Together the data demonstrate the utility of the diaminopimelic acid biosynthetic 

pathway as a viable alternative to antibiotic selection for expression of recombinant DNA 

during experimental models of plague.    

  Table 2.1 Bacterial Strains used in this study. 
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2.3 Materials and Methods 

Bacterial strains and growth conditions.  All strains used were taken from frozen stocks 

and streaked for isolation onto heart infusion agar (HIA) plates.  The plates used for Y. 

pestis CO92 were supplemented with 0.005% Congo Red and 0.2% galactose to select 

bacteria that retain the pigmentation locus (17).  For bubonic plague challenge, a single 

red pigmented colony was used to inoculate heart infusion broth (HIB) and grown 18-24 

hrs at 26°C, 120 rpm.  All handling of samples containing live Y. pestis CO92 was 

performed in a select agent authorized BSL3 facility under protocols approved by the 

University of Missouri Institutional Biosafety Committee.  Y. pestis KIM D27, a non-

pigmented strain originally isolated by Robert Brubaker, was routinely grown fresh from 

frozen stock on HIA, followed by aerobic growth at 26ºC in HIB overnight prior to use in 

experiments (18).  Where indicated, ampicillin (100μg/ml) was added to media for 

selection of plasmids.  For growth of dapA mutant Y. pestis, 400 μg/ml diaminopimelic 

acid (DAP) was added to liquid or agar media. 

 E. coli DH5α and JM109 served as cloning strains for construction of 

recombinant pACYC177 (New England Biolabs, Ipswitch, MA) based plasmids (19, 20).  

E. coli S17-1λpir (21) served as cloning strain for Ori-R6K based plasmids, including the 

suicide vector and the mini-Tn7 vectors (22, 23).  E. coli strains were grown in LB media 

for propagation.  For cloning purposes, ampicillin (100μg/ml) was added to the media for 

selection.   

Plasmids and dapAX complementation.  Yersinia pestis dapA and dapAX were amplified 

from Y. pestis KIM D27 by PCR.   pACYC177 was modified by replacement of the 
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kanamycin resistance gene with that of dapA using restriction sites HindIII and SmaI.  

The resulting plasmid no longer conferred kanamycin resistance but still retained 

ampicillin resistance and was used for complementation studies.  The suicide vector, 

pCVD442 dapA, was constructed by amplifying 1,000bp upstream of the dapA promoter 

and 1,000bp downstream of the dapA stop codon (22, 24).  These DNA fragments were 

amplified by PCR and ligated into the XbaI and SphI sites of pCVD442 using EcoRI as a 

linker between upstream and downstream DNA segments.  Restriction enzymes and T4 

DNA ligase were purchased from New England Biolabs (Ipswich, MA).  Promoterless 

DsRed was amplified from pDsRed Monomer (Clonetech, Mountain View, CA) and 

cloned into pACYC177 for use in the promoter trap screen.  For Tn7 transposition, dapA 

or dapAX was amplified by PCR and cloned into the SmaI and SpeI sites of pUC18R6KT 

mini-Tn7 (23). 

Animals.  This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.  

This protocol was approved by the Animal Care and Use Committee of the University of 

Missouri.  All efforts were made to minimize suffering of the animals.  Female BALB/c 

or C57BL/6 mice, 6-8 weeks old, were purchased from Charles River Laboratories 

(Wilmington, MA).  During bubonic plague challenge, mice were maintained in select 

agent approved containment facilities at the University of Missouri.  All infected mice 

were monitored regularly by daily weighing and assignment of health scores.  Animals 

that survived to the end of the 14 day observation period or were identified as moribund 

(defined by severe ataxia) were euthanized by CO2 asphyxiation followed by bilateral 
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pneumothorax, methods approved by the American Veterinary Medical Association 

Guidelines on Euthanasia. 

Plague challenge.  Y. pestis CO92, grown as described above, was diluted in sterile PBS 

to the indicated dose just prior to use for challenge experiments.  For bubonic plague, 

bacteria were delivered in 100µl volume by subcutaneous injection in BALB/c mice 

(LD50 = 1 CFU) (25).  Actual dose and retention of the pigmentation locus were 

determined by plating in triplicate on HIA with congo red.  For intravenous challenge 

involving non-pigmented Y. pestis KIM D27, bacteria were diluted in sterile PBS and 

delivered by tail vein injection of 100µl (LD50 = 100 CFU) (26).   For intranasal 

challenge involving non-pigmented Y. pestis KIM D27, mice were pre-treated by 

intraperitoneal injection of 500μg Fe
+2

 (FeCl2).  All animals subcutaneously or 

intranasally infected with Y. pestis were first lightly anesthetized by isoflurane inhalation.  

Animals were observed for recovery from anesthesia following the procedure and 

returned to housing.   

Competitive Index.  This method was performed as previously described (27).  Wild type 

Y. pestis KIM D27 with or without recombinant pACYCdapA were combined in a 1:1 

ratio (doses ranging from 1,000 to 13,000 CFU each strain) and injected intravenously 

into BALB/c or C57BL/6 mice in a 100μl volume.  Four days post infection, mice were 

euthanized, and spleens were harvested, homogenized in PBS and plated in duplicate on 

HIA (all bacteria) and HIA + amp (plasmid-bearing bacteria).  To calculate plasmid loss, 

bacterial colony forming units (CFU) recovered without amp selection were subtracted 

from the CFU recovered with amp selection and percentages of each found in the spleen 

were determined.  The Competitive Index (C.I.) is defined as: % Amp
r
 Recovered/% 
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Amp
r
 Input.  For statistical analysis, the ratio of amp

r
 to total CFU recovered was 

compared with the ratio of amp
r
 to total CFU in the inoculum. 

Yersinia promoter trap screen.  Primers with abutted restriction sites were used to 

amplify the open reading frame of DsRed-Monomer (Clonetech, Mountain View, CA) 

which was subsequently ligated into pBR322 (New England Biolabs, Ipswitch, MA) in 

place of the tetracycline resistance gene. Y. pestis KIM D27 genomic DNA was digested 

with RsaI and 100-1,500bp DNA fragments were ligated directly upstream of DsRed.  

Colonies were screened in E. coli DH5α for DsRed expression, and those that gave the 

strongest signal were transformed into Y. pestis KIM D27 and checked for DsRed 

fluorescence.  One plasmid from this screen, pRsaI-2.1, was further characterized by 

sequence analysis, followed by sub-cloning into pDB2 (pUC18R6KT + dapAX).  The 

resulting plasmid was then used for transposition into Y. pestis KIM D27dapAX to insert 

DsRed and dapAX into the chromosome. 

DsRed expression assay.  Three independent colonies of Y. pestis KIM D27, KIM 

D27pRsaI-2.1, and KIMD27.1013 were grown at 26°C and 37°C in HIB.  100µl of each 

culture was added to a 96-well plate and analyzed on a plate reader for absorbance 

(600nm) and DsRed fluorescence (544/590nm).  Measured fluorescent values were then 

divided by OD600 to normalize to cell number. 
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Macrophage assay.              .  

Macrophages were prepared as 

previously described (28).  

Briefly, 1x10
6
 biotinylated 

macrophages were plated in 

DMEM supplemented with 5% 

FBS and infected with the 

indicated strains at an MOI of 

10 for 5 hours.  Gentamicin 

was present in the media at 

100μg/ml to kill extracellular 

bacteria.  Cells were fixed with 

4% paraformaldahyde then 

stained with DAPI and 

streptavidin conjugated to 

Alexa Fluor-488 (Invitrogen, 

Carlsbad, CA) and analyzed by 

confocal microscopy. 

Statistical Analyses. Data from the competitive index were tested for difference from a 

given proportion using prop test from R (29).  Briefly, the proportion of amp
r
 to total 

CFU in the recovery was tested for a difference from the proportion of amp
r
 to total CFU 

in the inoculums using alpha = 0.05.  Survival data was evaluated by Cox proportional 

Figure 2.1 Construction of the dapAX mutation results 

in DAP dependent growth.  The dapA promoter and 

open reading frame were deleted by homologous 

recombination using the plasmid pCVD442 (A).   

Overnight cultures of the indicated strains (the dapAX 

mutant supplemented with 400μg/ml DAP) were serially 

diluted 10 fold in HIB (no DAP) and plated on HIA with 

or without DAP (B).  Plates were incubated at 26°C for 

48 hrs.  
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hazards survival analysis or Kaplan-Meier Log Rank test.  DsRed expression data were 

evaluated by one way ANOVA. 

2.4 Results 

2.4.1 Deletion of dapAX in Y. pestis results in DAP auxotrophy  

 Diaminopimelic acid (DAP) is a component of the cell wall that provides cross 

linking of peptidoglycan in many Gram negative bacteria including Yersinia pestis.  

Previous work showed that disruption of the metabolic pathway for biosynthesis of DAP 

renders E. coli unable to grow in media lacking diaminopimelic acid (12).  Thus, standard 

laboratory media such as heart infusion agar, blood base agar and Luria agar cannot 

support growth of mutants lacking essential genes of the diaminopimelic acid 

biosynthetic pathway.  A search of the Y. pestis genome revealed that many genes are 

duplicated, but one gene required for an early step in the biosynthetic pathway, 

dipicolinate synthetase or dapA, was present in single copy (15).  We therefore generated 

a suicide vector designed to delete the promoter and open reading frame of dapA in 

Yersinia pestis, which is predicted to delete the expression of two genes, dapA and nlpB 

(dapX), likely present in an operon (Figure 2.1).  Homologous recombination of the 

deletion construct was introduced by pCVD442 into the wild type, non-pigmented Y. 

pestis strain KIM D27 and resulted in a mutant strain that was unable to grow on plates 

without DAP supplementation or expression of dapA in trans (Figure 2.1B, data not 

shown). Deletion of dapA was confirmed by PCR, and the absence of dapA and dapX 

mRNA was observed by reverse transcriptase PCR of mRNA purified from stationary 

phase cultures (data not shown).  
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We next characterized the Y. 

pestis KIM D27 dapAX strain 

for growth characteristics in 

laboratory media with and 

without DAP.  The dapAX strain 

was unable to grow in broth 

media without DAP, either at 

26°C or 37°C and this was 

restored by supplying the wild 

type dapA gene in either single 

or multiple copies (Figure 2.2).  

However, the dapAX mutant 

grew normally when DAP was 

added to the culture media.   

Following removal of DAP 

from the media, Y. pestis KIM 

D27dapAX viability sharply 

declined 6 hrs later indicating 

depletion of DAP is rapidly 

lethal to the bacteria (data not shown).  Together the data suggest that the absence of 

DapA confers dependency on supplemental diaminopimelic acid for growth. 

2.4.2 Diaminopimelic acid selection is functional in vivo in mouse models of plague 

Figure 2.2 DAP independent growth is restored by 

expression of dapA in single or multi copy.Wild type 

KIM D27, and isogenic strains KIM D27-1003, KIM 

D27-1003pdapA, or KIM D27-1011 were grown 

overnight in HIB at 26°C, then diluted to an OD600 of 

.075 and grown for 25 hrs at 26°C (A) or 37°C (B) with 

shaking at 130 rpm, monitoring OD600 as indicated. 

KIM D27-1003 strain with no DAP supplementation 

was washed 3X in sterile PBS to remove excess DAP 

from the overnight culture. Data are representative of 3 

independent experiments.  
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We tested for diaminopimelic 

acid selection during a mouse 

model of septicemic plague.  In 

this model, pACYC dapA was 

introduced by electroporation 

into Y. pestis KIM D27 dapAX, 

and the resulting strain was used 

to infect BALB/c mice by 

intravenous injection.  Whereas 

the dapAX mutant was 

avirulent, with >10
6
 fold 

increase in dose required for a 

lethal infection in this model, 

the pACYC dapA 

complemented strain had 

substantial restoration of 

virulence and an estimated 

LD50 of 30,409 CFU 

Figure 2.3 Expression of dapA on a multi-copy 

plasmid partially restores virulence. 
Y. pestis KIM D27-1003 (dapAX) either with or 

without pdapA (A), or with dapA inserted into 

the attTn7 site of Y. pestis KIM D27 (KIM D27-1011) 

(B) were grown overnight in HIB either with or 

without 100 µg/ml ampicillin, then diluted in sterile 

PBS to the indicated doses. 100 µl was injected 

intravenously into the tail vein of BALB/c mice (n = 8 

per group for A; n = 5 per group for B). Survival was 

monitored for 14 days. The observed 50% lethal dose 

(LD50) was calculated as 30,409 (pdapA) and 20,804 

(KIM D27-1011) by the method of Reed and Muench  

[27].  
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Table 2.2 DAP selection in vivo does not cause instability of resident virulence 

plasmids. 

 

(~300XWT) (Figure 2.3).  To investigate whether or not the dapA plasmid was stably 

maintained in vivo, we isolated bacteria from the spleens of BALB/c mice infected with 

20,000 CFU of Y. pestis KIM D27dapAXpACYC-dapA on day 4 post-infection, when 

each mouse showed signs of acute disease.  Colonies isolated from these spleens were 

tested by PCR to verify the presence of all three Y. pestis virulence plasmids in addition 

to the plasmid expressing dapA.  PCR analysis of 81 colonies from each mouse verified a 

high degree of retention of all three virulence plasmids as no plasmid loss was seen 

(Table 2.2).  These results strongly suggest that p15a plasmids can be selected in vivo 

without loss of other Y. pestis virulence plasmids.  However, since the pACYC-dapA 

strain was unable to fully restore virulence to wild type levels, we sought to further 

characterize the impact of p15a plasmids on the virulence of wild type Y. pestis. 

2.4.3 Diaminopimelic acid selection is necessary for plasmid retention in vivo.   
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To understand the 

effects of p15a plasmids 

on the virulence of Y. 

pestis, we performed a 

competition experiment 

to determine if pACYC-

dapA impaired growth in 

vivo.  Towards this end, 

BALB/c or C57BL/6 

mice were challenged by 

intravenous injection of 

10
3
-10

4
 CFU wild type Y. 

pestis KIM D27 mixed in 

a 1:1 ratio with wild type 

bacteria expressing 

pACYC dapA.  

Following 4 days post-

infection, mice were 

euthanized and bacteria 

in the spleens were 

enumerated.  KIM D27 

cells harboring pACYC 

dapA compared to those without plasmid were identified by plating bacteria on media 

Figure 2.4. pACYC177 imposes a biochemical burden on Y. 

pestis in vivo.Y. pestis KIM D27 with or without pdapA was 

grown overnight in HIB with or without, respectively, 

ampicillin. An approximately 1:1 ratio of each strain was 

mixed and delivered by intravenous injection into the tail 

vein of BALB/c (A) or C57BL/6 (B) mice. On day 4 post-

infection, when many of the mice were moribund, spleens 

were harvested and bacterial titer was determined for strains 

with and without plasmid by plating serial dilutions on HIA 

and HIA+amp. The Competitive Index (C.I.) is defined as the 

ratio of recovered bacteria from mouse spleens divided by the 

ratio in the inoculum. Scores less than one indicate the 

plasmid-bearing strain was less fit than its counterpart within 

an individual mouse. After no significant difference between 

experiments were detected, data were pooled from 3 

independent experiments with groups of 4–5 mice, and a total 

of 15 (BALB/c) and 13 (C57BL/6), respectively, were 

analyzed. Data were tested for difference of proportion using 

R giving p<0.0001.  
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with and without ampicillin.  The percentages of plasmid carrying strain recovered from 

the spleen were compared to the input values to calculate the competitive index (CI) 

(Figure 2.4).  Statistical significance of data from infections of BALB/c and C57BL/6 

mice was then evaluated by testing for a difference in proportion between input and 

recovery.  Both strains of mice yielded similar results, and in nearly all mice, bacteria 

carrying the plasmid decreased in proportion after infection (p<0.001) and the 

corresponding CI was typically greater than 1 for bacteria without plasmid.  In one 

experiment, we observed lower proportions, however if analyzed separately, this 

experiment still showed a significant decrease in proportion from inoculum to recovery.  

Together, these results suggest that carrying an additional plasmid, though it may not 

cause instability of other virulence plasmids, imposes a biochemical burden that either 

retards bacterial growth in vivo or causes it to be subject to curing during the infection. 

 We therefore also measured stability of pACYC177 and pACYCdapA during Y. 

pestis KIM D27 infection of BALB/c mice without selection.  Bacteria harvested from 

the spleen on day 4 post-infection were monitored for loss of ampicillin resistance by 

plating on HIA with and without ampicllin.  Results showed plasmid loss for both strains 

ranging from 1-4% with higher loss for the larger plasmid containing Y. pestis dapA 

(Table 2.3).  Together the data indicate that p15a plasmids are cured during infection 

suggesting incompatibility with one or more virulence plasmids. 

2.4.4 Single copy complementation of dapAX restores virulence.   

Because of the biochemical burden imposed by plasmids, we aimed to develop 

methods for insertion of genes in the chromosome, for single copy, stable expression 

using DAP selection.  Towards this end, we adapted the mini-Tn7 system for integration 
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Table 2.3 p15a plasmid loss with no selection detected in 

spleens recovered from moribund mice. 
 

 

of genes downstream 

of the glmS gene of 

Gram negative 

bacteria, which has 

been shown to be 

highly efficient in Y. 

pestis (23, 30).  The 

dapAX operon was 

cloned into the multi-

cloning site of 

pUC18R6KT which is flanked by attTn7 transposition sites.  The resulting plasmid, 

pDB2, and the helper plasmid encoding the transposase complex, pTNS2, were 

electroporated into Y. pestis KIM D27dapAX, and selected on HIA (no DAP).  The 

complemented strain was verified by PCR to carry dapAX downstream of glmS rather 

than its original location on the chromosome (data not shown).  To test complementation 

in vivo, we infected BALB/c mice with Y. pestis KIM D27dapAX attTn7::dapAX by 

intravenous injection and tested for survival at a dose equivalent to 1 LD50 of the wild 

type parent strain.  Wild type KIM D27 IV challenge of approximately 45 CFU caused 

60% lethality, and similarly, integration of dapAX by Tn7 transposition gave 40% 

lethality at low challenge dose (70CFU) suggesting single copy expression of dapAX is 

sufficient to fully restore virulence (Figure 2. 5A).    

 We also tested whether DAP selection would work in the fully virulent Orientalis 

Y. pestis strain CO92.  The dapAX mutation was generated by deletion of the promoter 
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and open reading frame for 

dapA using pCVD442 and 

homologous recombination 

as described above.  The 

resulting strain was unable 

to grow on media without 

supplemental DAP (data not 

shown).  The deletion was 

confirmed by PCR as well 

as retention of all three 

virulence plasmids and the 

pigmentation locus (data 

not shown).  Because our 

results in KIM D27 

suggested that both dapA 

and dapX/nlpB were 

required for virulence, we 

introduced both genes to 

determine if virulence could 

be restored in a bubonic 

plague model.  Introduction of dapAX in single copy using the mini-Tn7 transposon 

restored growth in the absence of supplemental DAP.  The Y. pestis CO92 dapAX mutant 

and dapAX Tn7::dapAX strains were then used to challenge BALB/c mice by 

Figure 2.5 Complementation of the dapAX operon by 

chromosomal insertion restores virulence. (A) Y. 

pestis KIM D27 and KIM D27-1012 (dapAX 

attTn7::dapAX) were grown overnight, diluted to the 

indicated dose in sterile PBS and delivered by intravenous 

injection into the tail vein of BALB/c mice. (B) Y. 

pestis CO92, CO92-1008 (dapAX), and CO92-1009 (dapAX 

attTn7::dapAX) were grown overnight, diluted to the 

indicated dose in sterile PBS and delivered by subcutaneous 

injection into the left hind limb of BALB/c mice (n = 5 for 

all groups). Survival was monitored over 14 days for both 

models. No significant difference in survival was detected 

between wild type and dapAX complemented strains (p = 

0.22 for KIM D27; p = 0.10 for CO92) using the Gehan-

Breslow-Wilcoxon test.  
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subcutaneous injection in a bubonic plague model.  In this model, insertion of dapAX by 

Tn7 transposition also appeared to fully complement virulence with 100% lethality 

caused by less than 15 CFU of either wild type or complemented strain (Figure 2.5B) 

(31).  Histopathology of moribund mice indicated development of bubonic plague as 

lymph nodes taken from subcutaneously challenged mice on day 4 post-infection, showed 

severe hemorrhage and necrosis similar to wild type (Figure 2.6).  Thus, with DAP as a 

selection for Tn7 insertion of genes in single copy, virulence could be restored indicating 

no significant impact on pathogenesis.   

2.4.5 DAP selectable system for single copy detection of fluorescence in vivo.   

To further develop single copy expression systems for virulence studies, we 

screened for constitutively active Yersinia promoters that could drive expression of the 

fluorescent protein DsRed that could be seen by microscopy in single copy.  Towards this 

end, a library of Y. pestis KIM D27 DNA fragments (100-1,500bp) fused to a 

promoterless DsRed plasmid was generated in E. coli.  Colonies were screened for 

expression of DsRed and those with the strongest signal were then tested for activity in Y. 

pestis.  The strongest isolate, RsaI-2.1, could be identified on agar media as a red colony 

in both E. coli and Yersinia (data not shown).  The insert was characterized by 

sequencing and the entire reporter cassette was sub-cloned into pDB2 upstream of 

dapAX, within the flanking attTn7 sites.  The DNA sequence revealed the presence of the 

cysZ promoter and first 178 codons of its open reading frame fused in frame to DsRed.  

In addition, we cloned the cysZ promoter from Y. pestis and used it to express the brighter 

DsRed variant, Tomato. 

  



39 

 

  

 

Figure 2.6 Development of fulminant bubonic plague is restored 

byattTn7::dapAX. 

Y. pestis CO92 and CO92-1009 (dapAX attTn7::dapAX) were grown overnight 

at 26°C, diluted in sterile PBS to the indicated doses and delivered to BALB/c 

mice by subcutaneous injection. On day 4 post-infection, the left inguinal lymph 

node was removed, fixed in formalin, sectioned and stained with hematoxylin 

and eosin (H&E). (A–B) Uninfected; (C–D) CO92; (E–F) CO92-1009. Images 

are representative of tissues harvested from 5 mice in each group.  
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 cysZ-DsRed and cysZ-

Tomato reporters were introduced 

into Y. pestis KIM D27dapAX by 

Tn7 transposition and selected by 

growth on HIA without DAP 

supplementation.  The resulting 

strain was confirmed by PCR (data 

not shown) and expression of 

DsRed was monitored in overnight 

cultures incubated at either 26°C or 

37°C in HIB.  The results showed 

strong expression of DsRed at both 

temperatures, with an increase at 

37°C over 26°C (Figure 2.7).  

Tomato fluorescence was higher at 

both temperatures.  Expression of 

DsRed or Tomato in this system 

did not have a significant impact on virulence compared to complementation with dapAX 

alone in an intranasal model of septicemic plague, as challenge doses of approximately 

50X LD50 caused similar lethality (Table 2.4) (32).  Similarly, expression of DsRed or 

Tomato in Y. pestis CO92 caused similar lethality when challenged with 50X LD50 

compared to dapAX alone in a bubonic plague model. 

 

Figure 2.7. The cysZK promoter supports high 

level expression of fluorescence in single copy 

in Y. pestis.  Y. pestis CO92 strains were grown 

overnight in HIB at 26°C (open bars) or 37°C 

(closed bars) and then analyzed on a 96-well plate. 

Relative fluorescent units (RFU) were measured on 

a plate reader at an excitation/emission spectra of 

544/590 nm. Each value was normalized to the 

OD600 of the sample. To facilitate removal from 

the BSL-3 laboratory, 1 mL of culture was 

removed, fixed in 4% paraformaldahyde then 

resuspended in PBS. Error bars represent the 

standard error of the mean between three distinct 

overnight cultures.  

 



41 

 

Table 2.4 High level, constitutive expression of DsRed or Tomato causes 

minimal disruption to virulence. 

 

 We next tested expression during macrophage infections.  Y. pestis KIM 

D27pRsaI-2.1 (multi-copy DsRed) or KIMD27.1013 (single copy DsRed) were grown at 

26°C overnight, diluted in sterile PBS and added to biotin labeled RAW 264.7 

macrophage-like cells.  Infection was initiated by centrifugation, and after 30 min, 

gentamicin was added to kill extracellular bacteria.  Cells were later fixed, labeled with 

streptavidin-Alexa Fluor 488 and stained with DAPI to enable fluorescent detection of 

macrophages, then examined by confocal microscopy (Figure 2.8).  Expression of DsRed 

from this plasmid could readily be detected after 5 hrs infection, from both intracellular 

and extracellular bacteria.  Tomato expression could also be seen by microscopy in single 

copy suggesting this expression system provides very high, constitutive induction of 

fluorescence in multiple environments.  Together we have demonstrated the use of 



42 

 

 

Figure 2.8 Detection of intracellular and extracellular bacteria by microscopy of single 

copy expression of PcysTomato. (A–B) Y. pestis KIM D27, (C–D) pRsaI-2.1, (E–F) KIM D27-

1013 (dapAX attTn7::dapAX PcysDsRed), or (G–H) KIM D27-1014 (attTn7::dapAX cys-

Tomato) were grown overnight in HIB at 26°C, diluted 1:15 in HIB and grown for 2 hours, and 

then used to infect biotinylated RAW 264.7 macrophage-like cells at an MOI of 10 for 30 

minutes. Cells were then fixed and stained with streptavidin conjugated to AlexaFluor 488 to 

indentify the host cell membrane. Samples were analyzed by laser scanning confocal 

microscopy.  

 

diaminopimelic acid as a flexible selection system for in vitro and in vivo studies of 

Yersinia pestis. 

 

2.5 Discussion 

 

 Research on highly pathogenic organisms such as Yersinia pestis has inherent 

limitations because of precautions required of genetic engineering.  In particular, 

selection of recombinant DNA, either for retention of exogenous plasmids or to identify 

recombination events must be restricted to avoid the creation of antibiotic resistant strains 

that could compromise human treatment options.  In this work we sought to establish a 

system for recombinant DNA expression in the highly pathogenic bacterium Yersinia 
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pestis based on metabolic rather than antibiotic selection.  Our system targets the 

biosynthesis of the cell wall, similar to commonly used antibiotics that are effective 

against Y. pestis.    Introduction of a null mutation in the dapAX operon caused growth 

dependence on diaminopimelic acid (DAP) for assembly of a functional cell wall.  The 

resulting strain was highly attenuated for virulence in mouse models, and predictably will 

be in all mammalian species as well as fleas, none of which harbor pools of DAP.  

Unfortunately, the DAP selection system requires working in a mutant strain background 

which precludes its use on pre-existing strains.  However, the benefits of switching to this 

approach are not limited to the ability to conduct experiments in a safer genetic 

background.  Antibiotic selection in the mammalian or vector host is at best cumbersome, 

with a requirement for daily or more administration of drug, which may impact the 

outcome of infection.  This introduces experimental risk, including safety concerns, 

reproducibility of dosing and other, perhaps unpredicted effects on the bacterium or host 

causing inherent variability and complications with interpretation.  Thus, metabolic 

selection is superior to the introduction of antibiotic resistance for experimental models 

of infectious diseases.  

 The DAP system permits in vivo selection of plasmids, enabling the faithful study 

of gene expression by multi-copy plasmids, which has previously not been achieved for 

Y. pestis.  To facilitate these studies, we have generated dapAX mutant strains in multiple 

Y. pestis backgrounds for use in all in vivo model systems, including both mammals and 

fleas (Table S1).  In addition, we found that both genes in the dapAX operon contributed 

to virulence of Y. pestis in mouse models of bubonic and septicemic plague, thereby 

reducing the potential for spontaneous reversion of virulence.  Though we have not yet 
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observed reversion of dapA mutant Y. pestis to DAP independent growth, it appears that 

Yersinia can acquire DAP from dead or dying bacteria when large populations are present 

(data not shown).     

 We reported the identification of a strong, likely constitutively active Y. pestis 

promoter, with similar activity in E. coli, that can drive detectable expression of a 

fluorescent reporter protein in laboratory media or during macrophage infection.  CysZ is 

a conserved, non-essential gene that encodes an inner membrane protein involved in 

sulfate transport (33, 34).  It is not surprising that sulfate transporter proteins would be 

highly abundant as this is a key nutrient for cells during all phases of growth.  Other 

metabolite transporter genes have been used in expression vector systems, such as the lac 

operon.  Though we and others have employed lac promoter constructs for high level 

expression of recombinant protein in Y. pestis, these promoter systems have not been 

strong enough for single copy use (Eisele, Keleher and Anderson, unpublished 

observations).  Our screen identified optimized production of DsRed under conditions 

that minimized an impact to bacterial growth.  Moreover, because cysZ is conserved in 

other Gram negative bacteria, it is likely that this technology may be broadly useful for 

pathogenesis research.     

2.6 Acknowledgments 

 In memory of Malcolm Casadaban, to whom we are grateful for the ideas and 

helpful discussions that led to the development of this program.  We are grateful to Dr. 

Craig Lewis for help with statistical analyses of competition experiments.  We also wish 

to thank Drs. Herb Schweizer and Greg Phillips for providing the mini-Tn7 plasmids; Dr. 

Joe Hinnebusch for pCVD442; Kristen Peters for assistance with the intravenous model; 



45 

 

Dr. Hanni Lee-Lewis for help with the pathological analysis of disease and members of 

our laboratory for assistance with the BSL3 experiments.  Histology services were 

provided by the University of Missouri Research Animal Diagnostic Laboratory 

(RADIL). 

  



46 

 

2.7 References 

1. Pollitzer R. 1954. Plague. World Health Organization, Geneva, Switzerland. 

2. Chain P, Carniel E, Larimer F, Lamerdin J, Stoutland P, Regala W, 

Georgescu A, Vergez L, Land M, Motin V, Brubaker R, Fowler J, 

Hinnebusch B, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, 

Souza B, Dacheux D, Elliott J, Derbise A, Hauser L, Garcia E. 2004. Insights 

into the evolution of Yersinia pestis through whole-genome comparison with 

Yersinia pseudotuberculosis. Proc Natl Acad Sci 101:13826-13831. 

3. Lorange E, Race B, Sebbane F, Hinnebusch B. 2005. Poor vector competence 

of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 

191:1907-1912. 

4. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler A, 

Wagner D, Allender C, Easterday W, Chenal-Francisque V, Worsham P, 

Thomson N, Parkhill J, Lindler L, Carniel E, Keim P. 2004. Microevolution 

and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci 101:17837-

17842. 

5. Auerbach R, Tuanyok A, Probert W, Kenefic L, Vogler A, Bruce D, Munk C, 

Brettin T, Eppinger M, Ravel J, Wagner D, Keim P. 2007. Yersinia pestis 

evolution on a small timescale: comparison of whole genome sequences from 

North America. PLoS One 2:e770. 

6. Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel 

E, Courvalin P. 1997. Multidrug resistance in Yersinia pestis mediated by a 

transferable plasmid. New Eng J Med 337:677-680. 

7. Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau 

S, Courvalin P, Carniel E. 2001. Transferable plasmid-mediated resistance to 

streptomycin in a clinical isolate of Yersinia pestis. Emerg Inf Dis 7:43-48. 

8. Welch T, Fricke W, McDermott P, White D, Rosso M, Rasko D, Mammel M, 

Eppinger M, Rosovitz M, Wagner D, Rahalison L, LeClerc J, Hinshaw J, 

Lindler L, Cebula T, Carniel E, Ravel J. 2007. Multiple antimicrobial 

resistance in plague: An emerging public health risk. PLoS One 2:1-6. 

9. Hutton C, Southwood T, Turner J. 2003. Inhibitors of lysine biosynthesis as 

antibacterial agents. Mini Rev Med Chem 3:115-127. 



47 

 

10. Curtiss Rr, Nakayama K, Kelly S. 1989. Recombinant avirulent Salmonella 

vaccine strains with stable maintenance and high level expression of cloned genes 

in vivo. Immumol Invest 18:583-596. 

11. Galan J, Nakayama K, 3rd CR. 1990. Cloning and characterization of the asd 

gene of Salmonella typhimurium: use in stable maintenance of recombinant 

plasmids in Salmonella vaccine strains. Gene 94:29-35. 

12. Bukhari A, Taylor A. 1971. Genetic analysis of diaminopimelic acid- and lysine-

tequiring mutants of Escherichia coli. J Bacteriol 105:844-854. 

13. Rediers H, Bonnecarre`re V, Rainey P, Hamonts H, Vanderleyden J, De Mot 

R. 2003. Development and Application of a dapB-Based In Vivo Expression 

Technology System To Study Colonization of Rice by the Endophytic Nitrogen-

Fixing Bacterium Pseudomonas stutzeri A15. App Env Microbiol 69:6864-6874. 

14. Norris M, Kang Y, Lu D, Wilcox B, Hoang T. 2009. Glyphosate resistance as a 

novel select-agent-compliant, non-antibiotic-selectable marker in chromosomal, 

mutagenesis of the essential genes asd and dapB of Burkholderia pseudomallei. 

App Env Microbiol 75:6062-6075. 

15. Parkhill J, Wren B, Thomson N, Titball R, Holden M, Prentice M, Sebaihia 

M, James K, Churcher C, Mungall K, Baker S, Basham D, Bentley S, Brooks 

K, Cerdeño-Tárraga A, Chillingworth T, Cronin A, Davies R, Davis P, 

Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev A, Leather 

S, Moule S, Oyston P, Quail M, Rutherford K, Simmonds M, Skelton J, 

Stevens K, Whitehead S, Barrell B. 2001. Genome sequence of Yersinia pestis, 

the causative agent of plague. Nature 413:523-527. 

16. Bouvier J, Pugsley A, Stragier P. 1991. A gene for a new lipoprotein in the 

dapA-purC interval of the Escherichia coli chromosome. J Bacteriol 173:5523-

5531. 

17. Surgalla M, Beesley E. 1969. Congo red-agar plating medium for detecting 

pigmentation in Pasteurella pestis. App Microbiol 18:834-837. 

18. Brubaker R, Beesley E, Surgalla M. 1965. Pasteurella pestis: Role of Pesticin I 

and iron in experimental plague. Science 149:422-424. 



48 

 

19. Hanahan D. 1985. DNA Cloning: A practical approach., p. 109. In Glover D 

(ed.), vol. 1. IRL Press, McLean, VA. 

20. Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning 

vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 

vectors. Gene 33:103-119. 

21. Simon R, Priefer U, Pu¨hler A. 1983. A broad host range mobilization system 

for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. 

Biotechnology 1. 

22. Donnenberg M, Kaper J. 1991. Construction of an eae deletion mutant of 

Enteropathogenic Escherichia coli by using a positive selection suicide vector. 

Infect Immun 59:4310-4317. 

23. Choi K, Gaynor J, White K, Lopez C, Bosio C, Karkhoff-Schweizer R, 

Schweizer H. 2005. A Tn7-based broad-range bacterial cloning and expression 

system. Nat methods 2:443-448. 

24. Richaud F, Richaud C, Ratet P, Patte J. 1986. Chromosomal location and 

nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol 166:297-300. 

25. DeBord K, Anderson D, Marketon M, Overheim K, DePaolo R, Ciletti N, 

Jabri B, Schneewind O. 2006. Immunogenicity and protective immunity against 

bubonic plague and pneumonic plague by immunization of mice with the 

recombinant V10 antigen, a variant of LcrV. Infect Immun 74:4910-4914. 

26. Overheim K, DePaolo R, KeBord K, Morrin E, Anderson D, Green N, 

Brubaker R, Jabri B, Schneewind O. 2005. LcrV plague vaccine with altered 

immunomodulatory properties. Infect Immun 73:5152-5159. 

27. Logsdon L, Mecsas J. 2003. Requirement of the Yersinia pseudotuberculosis 

Effectors YopH and YopE in Colonization and Persistence in Intestinal and 

Lymph Tissues. Infect Immun 71:4595-4607. 

28. Eisele N, Anderson D. 2009. Dual-function antibodies to Yersinia pestis LcrV 

required for pulmonary clearance of plague. Clin Vacc Immunol 16:1720-1727. 



49 

 

29. Team RDC 2008, posting date. R: A language and environment for statistical 

computing. [Online.] 

30. Peters J, Craig N. 2001. Tn7: smarter than we thought. Nat Rev Mol Cell Biol 

2:806-814. 

31. Anderson G, Leary S, Williamson E, Titball R, Welkos S, Worsham P, 

Friedlander A. 1996. Recombinant V antigen protects mice against pneumonic 

and bubonic plague caused by F1-capsule positive and negative strains of Yersinia 

pestis. Infect Immun 64:4580-4585. 

32. Lee-Lewis H, Anderson D. 2010. Absence of inflammation and pneumonia 

during infection with non-pigmented Yersinia pestis reveals new role for the pgm 

locus in pathogenesis. Infect Immun 78:220-230. 

33. Parra F, Britton P, Castle C, Jones-Mortimer M, Kornberg H. 1983. Two 

Separate Genes Involved in Sulphate Transport in Escherichia coli K12. J Gen 

Microbiol 129:357-358. 

34. Rückert C, Koch D, Rey D, Albersmeier A, Mormann S, Pühler A, 

Kalinowski J. 2005. Functional genomics and expression analysis of the 

Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in 

assimilatory sulphate reduction. BMC Genomics 6:121-138. 

 

 



50 

 

Chapter 3 

CONSERVED OMP ACCESSORY FACTOR BAMC IS REQUIRED FOR 

EXTRACYTOPLASMIC STRESS RESPONSES DURING YERSINIA PESTIS 

INFECTION OF INSECT AND MAMMALIAN HOSTS 

 

Contributions: David Bland and Deborah Anderson conceived and designed experiments.  Bacterial 

mutants and genetic tools generated by David Bland.  Experiments and Analysis performed by David Bland 

and Deborah Anderson.  Manuscript was written by David Bland and Deborah Anderson. 

 

3.1 Abstract 

The β-barrel assembly machinery (BAM) complex of Gram-negative bacteria is 

composed of five subunits (BamA-E) that facilitate the insertion of β-barrel proteins into 

the outer membrane.  BamA and BamD are highly conserved and essential for growth, 

while BamC is the most divergent member of the complex, with similarity amongst 

pathogenic Enterobacteriaceae.  Yersinia pestis is one of the most pathogenic members of 

the Enterobacteriaceae family and the causative agent of plague, a flea-borne disease.  In 

this work, we demonstrate that BamC is a virulence factor for Yersinia pestis that is 

required to cause systemic disease in murine plague models and is also involved in the 

colonization of fleas.  As in other Gram-negative bacteria, loss of Y. pestis bamC causes 

little to no change in outer membrane protein (OMP) assembly during normal growth and 

a small increase in sensitivity to polymixin B.  In contrast, under multiple conditions of 

extracytoplasmic stress, the survival of the bamC mutant was significantly reduced 

compared to the parent Y. pestis strain.  Furthermore, the induction of the alternative 
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transcription factor σ
E
 in response to extracytoplasmic stress required BamC, and this led 

to increased surface expression of multiple OMPs.    The bamC mutant was less virulent 

in mouse models of bubonic and septicemic plague and had reduced ability to grow in the 

midgut after maintenance blood feeding of the North American flea vector, Oropsylla 

montana.  Together, the data support a role for BamC in promoting growth in adverse 

environments, where its activity is necessary for proper function of a subset of OMPs.    
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3.2 Introduction 

Outer membrane proteins (OMPs), including porins and secreted autotransporters, 

are known to be important for bacterial metabolism and pathogenicity (1-3).  These 

proteins adopt a β-barrel structure in the outer membrane where they mediate diverse 

processes such as adhesion, secretion, proteolysis or resistance to environmental stresses 

(4-8).  The mechanism by which β-barrel proteins are folded in the periplasm and 

subsequently inserted into the bacterial outer membrane (OM) remains incompletely 

understood (9).  However, it is well established that the outer membrane β-barrel 

assembly machinery (BAM) complex is required for OMP insertion (10, 11). 

The BAM complex is composed of five proteins that have been co-purified from 

E. coli, BamA-E, of which BamA and BamD are essential for viability (12-15).  BamA is 

a β-barrel protein located in the outer membrane where it functions to assemble other β-

barrel proteins.  BamB, C, D and E are outer membrane lipoproteins.  BamB binds BamA 

directly and BamC, D and E form a complex in the periplasm that binds to BamA (16).  

All five proteins were required to reconstitute insertion of OmpT in proteoliposomes in 

vitro (17).  While BamD is absolutely required for OMP assembly in vivo, deletion of 

bamB or bamE causes a moderate reduction of OMPs during growth in laboratory media, 

as well as enhanced sensitivity to many classes of antibiotics (18, 19).   BamC co-purifies 

with the BAM complex in a BamD-dependent manner, suggesting BamC may be an 

accessory factor for BamD (20).  In contrast to bamB, deletion of bamC causes little to no 

decrease in OMPs and its function in the BAM complex of E. coli is not well understood 

(10).  In S. marcescens, BamC regulates swarming motility, suggesting its function may 

be required under specific circumstances (21).    Consistent with this hypothesis, BamC is 
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highly conserved amongst pathogenic Enterobacteriaceae, indicative of selective 

pressure for retention of bamC (22).   

Yersinia pestis is a non-motile highly pathogenic member of the 

Enterobacteriaceae family and is the causative agent of the plague (23).  Bubonic plague 

is a vector-borne infection due to the ability of Y. pestis to colonize the digestive tract of 

fleas and promote its transmission to mammalian hosts.  Infection of fleas with Y. pestis 

occurs when they take a bloodmeal from a rodent or other mammal with terminal 

septicemic plague.  The majority of the ingested bacteria are rapidly lost through 

defecation, and bacteria that remain can colonize the flea midgut where they can form an 

infectious biofilm that becomes lethal to the fleas over time (24).  Fleas that carry Y. 

pestis can transmit the infection to mammals through two mechanisms.  In early phase 

transmission, defined as less than 1 week post-infection, fleas can transmit bacteria at 

high frequency, through a currently unknown mechanism, during a subsequent bloodmeal 

(25).  After about 7 days, a stable biofilm of Y. pestis can form in the midgut.  When the 

biofilm lodges on the proventriculus of the flea, it occludes ingestion of blood and 

because of this blockage, bacteria are regurgitated into the bite site (26).  Once inoculated 

in the skin or capillaries, Y. pestis migrates to the draining lymph node where it grows to 

high titer and spreads systemically.  The elevated temperature of the mammalian host 

activates the expression of a number of surface-located β-barrel proteins that are required 

for immune evasion and bacterial growth in the blood (27-29).  High titer bacteremia 

develops in the final stage of bubonic plague and is required for transmission to fleas 

(30). 
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Here we show that BamC is a virulence factor important to the vector and 

mammalian life cycles of Y. pestis.  We found that BamC is required for bacterial growth 

in adverse environments during multiple stages of the Y. pestis life cycle.  Furthermore, 

we show that induction of the extracytoplasmic stress factor σ
E
 is impaired during 

incubation in low pH providing a possible mechanism for attenuation of growth in 

macrophages and in the flea midgut.  These findings suggest an explanation for selective 

pressure for retention of BamC in bacteria that colonize insect and/or mammalian hosts. 

3.3 Materials and Methods 

Bacterial strains and plasmids. All strains used were grown on heart infusion agar (HIA) 

plates and single colonies were used to inoculate heart infusion broth (HIB).  The plates 

used for Y. pestis CO92 were supplemented with 0.005% Congo Red and 0.2% galactose 

to select for colonies that retain the pigmentation locus (pgm) (31).   All handling of 

samples containing non-exempt strains of Y. pestis CO92 was performed in a select agent 

authorized BSL3 facility under protocols approved by the University of Missouri 

Institutional Biosafety Committee.  Y. pestis KIM and CO92 strains were routinely grown 

fresh from frozen stock on HIA, followed by growth at 26ºC with aeration at 150rpm in 

heart infusion broth (HIB) overnight prior to use in experiments.  Where indicated, 

ampicillin (50μg/ml) was added to media for selection of plasmids.   

Y. pestis strains and recombinant plasmids used in this study are described in 

Table 4.1; E. coli strains are described in Supplemental Table 1.  Restriction enzymes 

were purchased from New England Biolabs (Ipswich, MA).  Recombinant DNA cloned 
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from Y. pestis was PCR amplified from CO92 pCD1
-
 genomic DNA; primer sequences 

are listed in Supplemental Table 2. 

Table 3.1 Bacterial strains and plasmids used in this study. 

Y. pestis 

Strains/Plasmids 
Key Properties Reference 

Strains:   

CO92 Pgm
+
 Lcr

+
 (32) 

CO92 pCD1
-
 Pgm

+
 Lcr

-
 This Study 

CO92dapA-bamC CO92; Missing dapA promoter and ORF (33) 

CO92 bamC1 CO92dapA-bamCattTn7::dapA; dapA transposition into 

the attTn7 site of the CO92ΔdapA-bamC parental strain 

(33) 

CO92 bamC1 

attTn7::dapA-

bamC 

CO92dapA-bamCattTn7::dapA-bamC; dapA-bamC 

transposition into the attTn7 site of the CO92ΔdapA-

bamC parental strain 

(33) 

CO92bamC2 

pCD1
-
 

CO92; Missing the bamC ORF, pCD1
-
 This Study 

KIM D27 Pgm
-
 Lcr

+
; KIM5- derivative (34) 

KIMD27bamC2 KIM D27; Missing the bamC ORF This Study 

KIM6+ Pgm
+
 Lcr

-
 (35) 

KIM6+ bamC2 KIM6+; Missing the bamC ORF This Study 

Plasmids:   

pbamC pBR322, Ap
r
, Constitutive expression of bamC-FLAG 

from the lac promoter 

This Study 

pbamD pBR322, Ap
r
, Constitutive expression of bamD from the 

lac promoter 

This Study 

prpoE pBR322, Ap
r
, Expresses Tomato protein from the 

SigmaE (rpoE) promoter region (155bp upstream of the 

rpoE start codon) 

This Study 

pdapA-bamC pBR322, Ap
r
, Expresses Tomato protein from the dapA-

bamC promoter region (162bp upstream of the bamC 

start codon)  

This Study 

pNull pBR322, Ap
r
, Tomato ORF without a promoter This Study 
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Murine plague models.  This study was carried out in strict accordance with the Animal 

Welfare Act and the NIH Guide for the Care and Use of Laboratory Animals.  All animal 

procedures were approved by the Animal Care and Use Committee of the University of 

Missouri.  Male and female BALB/c mice, bred from a colony maintained on campus, 

were originally obtained from Charles River Laboratories (Wilmington, MA).  During 

bubonic plague challenge, mice were maintained in BSL-3 housing at the Laboratory for 

Infectious Disease Research at the University of Missouri.  All infected mice were 

monitored daily for clinical signs of disease, including hunched posture, ruffled fur, 

progressively decreasing activity, and seizures, for 14 days post-challenge.  Animals that 

exhibited pronounced neurologic signs and severe weakness were considered moribund 

and were humanely euthanized.  Euthanasia was performed by CO2 asphyxiation 

followed by cervical dislocation or bilateral pneumothorax, methods that are approved by 

the American Veterinary Medical Association Guidelines on Euthanasia.     

For subcutaneous and intravenous plague challenge, isolated, single colonies were 

used to inoculate HIB and grown 18-24 hours at 26°C, 120 rpm.  Bacteria were diluted in 

sterile PBS to the desired dose just prior to challenge; dose was verified by plating on 

HIA.  Bacteria were recovered by mechanical disruption of indicated tissues followed by 

ten-fold serial dilutions in sterile PBS and plated on HIA with antibiotic selection where 

appropriate.  The lethal dose (LD50) was calculated according to the method of Reed and 

Muench following challenge with 3-4 doses, serially diluted 10-fold (36).  Three 

independent trials for LD50 were performed. 

Sedimentation Assay.  Analysis of bacterial sedimentation was performed as described 

previously (37).  Bacteria were grown overnight to stationary phase (OD600 of ~1.0), 
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vortexed, and placed in 15mL conical tubes.  Cultures were maintained upright with 

minimal disturbance and optical density was recorded from 1mL of media removed from 

the top of the conical tube at the indicated time points.  Measurements were compared to 

the initial OD600 to determine the percentage sedimentation. 

Flea infections. Oropsylla montana fleas were maintained in a refrigerated incubator at 

22°C with ~80% relative humidity (38).  Fleas were reared in one gallon glass jars 

containing larval medium (3 parts saw dust to 1 part of an equal mixture of blood meal, 

dried milk, and mouse pellets).  For infection, fleas were starved for 6 days and 

subsequently allowed to feed on 3-4mL of heparinized murine blood containing 10
8
-10

9
 

CFU of Y. pestis.  Following infection, fleas were anesthetized using a chill table set to 

0°C and monitored under a dissection scope for signs of fresh blood in the esophagus or 

proventriculus.  Fleas that did not acquire a Y. pestis-infected blood meal were removed 

from the study.   Mechanical disruption of fleas for bacterial enumeration was performed 

using a bead beater and homogenates were plated on Yersinia Selective Agar (YSA) 

(Becton Dickinson Diagnostic Systems, Franklin Lakes, NJ).  

Macrophage Assays.  RAW 264.7 murine macrophages were maintained in Dulbecco’s 

modified eagle medium (DMEM) with 10% FBS and 50μg/ml ciprofloxacin, 37°C, 5% 

CO2.  Prior to infection, macrophages were resuspended in 2ml of DMEM supplemented 

with 5% FBS.  In the gentamicin protection assay, 5x10
6
 macrophages were seeded in a 

12-well plate and challenged at an MOI of 10 with different Y. pestis pCD1
-
 strains 

suspended in PBS.  Plates were spun at 41xg for 5 minutes to promote cell contact, and 

incubated for 45 minutes at 37°C.  After incubation, 50μg/ml of gentamicin was added to 
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each well to kill extracellular bacteria.  Intracellular bacteria were recovered by lysing 

macrophages with 0.05% Triton X-100.   

The capase-3 assay was performed using the Enzchek Caspase-3 assay kit #2 Z-

DEVD-R110 substrate according to the manufacturer’s instructions (Invitrogen, 

Carlsbad, CA).  Briefly, 5x10
6
 macrophages were infected for 3 hours at an MOI of 5 

with Y. pestis pCD1
+
 strains.  Cells were harvested, lysed and incubated with DEVD-

R110 substrate.  Percent caspase-3 activation was normalized to the KIM D27 parental 

strain.    

Disc sensitivity Assay. Disc sensitivity assays were performed according to 

manufacturer’s instructions (Becton Dickinson Diagnostic Systems).  Y. pestis strains 

were grown at 37°C in duplicate HIA plates with 4 discs per plate.   Antibiotic disc 

concentrations were as follows: 30µg nalidixic acid, 300 units polymyxin B, and 5µg 

rifampin.   

Acidic Stress Assay. The acidic sensitivity assay was performed as previously described, 

viable bacteria were enumerated by plating on HIA (39).  All samples were run in 

triplicate; percent recovery was determined relative to the amount recovered from PBS-

treated control wells.   

Fluorescence Reporter Assays. Y. pestis pCD1
-
 strains carrying tdTomato reporter 

constructs were grown overnight and diluted to an OD600 of 0.05 in 4mL of HIB.  Strains 

were grown for 24 hours at 37°C; media was supplemented with 150mM NaCl where 

indicated.  Acidic growth conditions were achieved by titrating HIB to pH 6 and 

buffering media with 50mM 1,4- piperazine diethane sulfonic acid sodium salt (PIPES).   
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Relative fluorescence units (RFU) and OD600 were measured in duplicate using a plate 

reader.  RFU was normalized to OD600; fold-induction was determined by dividing the 

optical density normalized RFU value by the same value generated by the Null reporter 

construct ((RFU/OD600 of reporter construct)/(RFU/OD600 of null construct)). 

Bacterial OMP preparation and Analysis.  Y. pestis pCD1
-
 strains were grown overnight 

and diluted to an OD600 of 0.1 in 20mL of HIB.  Bacteria were grown for 6 hours to an 

OD600 of 0.6, centrifuged at 6120xg, resuspended in 10mL of protein buffer (100µM 

MgCl2, 10µM HEPES, 2µM KCl) supplemented with 1 tablet of cOmplete Mini Protease 

Inhibitor Cocktail (Roche Diagnostics, Mannheim, Germany).     Bacteria were lysed by 

two passages through a French press at 10,000 psi.  Bacterial lysates were subjected to a 

low speed centrifugation (6120xg) for 10 minutes.  Membrane proteins were enriched by 

ultracentrifugation for 30 minutes at 150,000xg (40, 41).  Prior to loading on 12% SDS-

PAGE gels, the Bicinchoninic Acid (BCA) protein assay was performed according to the 

manufacturer’s instructions (Pierce Biotechnology, Rockford, IL).  For mass 

determination, proteins were excised from the acrylamide gel and digested with trypsin.  

Samples were analyzed by Q-TOF LC MS/MS. Raw mass spectra were processed using 

the Agilent Qualitative Analysis software allowing extraction of MS and MS/MS data as 

a mascot generic format (MGF) file.  The MGF files were uploaded to the MASCOT 

server and a search was conducted among Eubacteria sequence data.   

Statistical Analysis.  Data from all trials were analyzed for statistical significance using 

the tests indicated in the figure legends.  All analyses were performed using the 

SigmaPlot v12.0 software (Systat Software Inc., Chicago, IL).   Significance was defined 

as p<0.05.   
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3.4 Results 

3.4.1 BamC is required for bacterial growth in the lymph node and dissemination during 

bubonic plague.  BamC is encoded by the second gene in an operon (dapA-bamC) in 

many Gram- negative bacteria, including Y. pestis.  We recently reported that BamC 

expression was required to fully restore virulence to Y. pestis dapAbamC mutants (33).  

To better understand the mechanism underlying this BamC-related attenuation, we 

characterized the virulence of Y. pestis CO92 dapAbamC attTn7:dapA (bamC1) strain in 

a murine bubonic plague model.  BALB/c mice were challenged with 100 CFU (100x 

LD50 wild type) of the indicated strains of Y. pestis CO92 by subcutaneous injection and 

monitored for survival over 14 days.  Loss of bamC caused attenuation of virulence and 

only 10% lethality was observed, compared to 100% lethality caused by wild type or 

BamC-complemented Y. pestis at this dose (Figure 3.1A).  We constructed a second 

bamC mutant in the CO92 background where the bamC open reading frame was deleted 

by homologous recombination using pCVD442 (42).  The resulting strain, bamC2, 

appeared to have a similar virulence defect when used to infect mice by subcutaneous 

injection (data not shown). 

We determined the 50% lethal dose (LD50) of Y. pestis CO92bamC1 in the 

bubonic plague model by infecting groups of 10 mice with increasing challenge doses 

and monitoring for survival over 14 days.  From these experiments, the LD50 of the 

bamC1 mutant in BALB/c mice was calculated to be 469± 53 CFU, over 400-fold less 

virulent than the WT strain.  Histopathology of lymph node and spleen recovered from 

moribund mice infected with WT or the bamC1 mutant Y. pestis were similar and showed 

lesions that are characteristic of plague (Figure 3.7A-F).  Bacterial titers in the draining 
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Figure 3.1  BamC is needed for virulence and bacterial dissemination.  (A-B) BALB/c mice were 

challenged by subcutaneous injection with 100 CFU of the indicated strains of Y. pestis.  (A) Survival was 

monitored over 14 days. Data shown were pooled from two independent experiments, n=10; statistical 

significance was analyzed by the Log Rank test followed by pairwise comparisons using the Holm-Sidak 

multiple comparisons test; *p<0.05.  (B) Bacteria were enumerated from the draining lymph node and 

spleen at 48 hours post-infection.  Data were pooled from 2 independent experiments, n=10; bars indicate 

median; statistical significance was evaluated by one-way ANOVA followed by Tukey’s post test; 

*P<0.05.  (C-D) BALB/c mice were challenged by intravenous injection with 1500 CFU of the indicated 

strains of Y. pestis.  (C) Survival was monitored over 14 days.  Data shown were collected in 2 independent 

experiments, n=10; statistical significance was analyzed by the Log Rank test followed by pairwise 

comparisons by the Holm-sidak multiple comparisons test; *p<0.05.   (D) Bacteria were enumerated from 

the spleens at 48 and 96 hours post-infection.  Data show the geometric mean and were pooled from 2 

independent experiments, n=10; bars indicate median.  Statistical significance was evaluated by one-way 

ANOVA followed by Tukey’s post test; *P<0.05. 

 lymph node and the spleen were significantly reduced by 48 hours post-infection in the 

absence of BamC (Figure 3.1B).  Complementation of BamC in single copy was 

sufficient to restore bacterial titers to those caused by infection with wild type bacteria.  

Together the data demonstrate a requirement for BamC in the early stages of bubonic 

infection, perhaps for growth or survival in the draining lymph node.   

We also examined virulence of Y. pestis CO92bamC1 in a mouse pneumonic 

plague model.  BALB/c mice challenged by intranasal infection of the bamC1 mutant 

were delayed in succumbing to disease, with a modest reduction of lethality compared to 

infection by the wild type strain (Figure 3.8).  Histological analysis of lungs from 
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moribund mice indicated both WT and bamC1 infected mice developed primary 

pneumonic plague (Figure 3.7).  These results indicate that BamC is less important when 

bacteria are growing in the lung environment.   

3.4.2 Over-expression of BamD does not restore virulence of Y. pestis bamC  Previously, 

BamC was shown to interact with BamD in E. coli, suggesting BamC may be an 

accessory protein for this essential component of the BAM complex (9).  We therefore 

sought to determine if over-expression of BamD could suppress the virulence defect of 

the Y. pestis bamC2 mutant.  Y. pestis KIM D27 bamC2 is a deletion of the bamC open 

reading frame in the non-pigmented KIM D27 strain that was constructed by homologous 

recombination using the suicide vector pCVD442.  While the KIM D27 strain is virulent 

by the intravenous route (LD50=50-100 CFU), the bamC2 mutant was attenuated in the 

septicemic plague model with growth defects in the liver and spleen (LD50= 36,667 ± 

3936, Figure 3.1C-D).  The virulence defects of Y. pestis lacking bamC are therefore 

similar in the bubonic and septicemic plague models.  We sought to determine if over-

expression of BamD could suppress the bamC2 virulence defect.  When we expressed 

BamD from the lac promoter on a multi-copy plasmid in Y. pestis KIM D27 bamC2, the 

resulting strain appeared no more virulent in the septicemic plague model.       

3.4.3 BamC is important for efficient colonization of fleas.  We next studied the role of 

BamC in the flea life cycle of Y. pestis.  Little is known about the vector-pathogen 

interactions in the midgut of Oropsylla montana, an important plague vector in North 

America, or other flea species due to the absence of a sequenced flea genome.  We 

analyzed the life cycle of WT and bamC2 Y. pestis CO92pCD1
-
 in O. montana following 

infection with 1x10
8
 CFU.  Every 24 hours, groups of 6-10 fleas were individually 
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Figure 3.2  BamC is important for bacterial growth in fleas.  (A) Oropsylla montana fleas were fed from 

a blood meal reservoir containing 108 CFU of the indicated strains. Groups of 6-10 fleas were individually 

homogenized every 24 hours and plated on Yersinia selective agar; solid lines indicate the average CFU 

recovered; dotted line indicates limit of detection.  (B) Fleas were fed 1x108 CFU from a bloodmeal 

reservoir of the indicated strains.  On days 2, 7 and 14 post-infection, fleas were mechanically disrupted 

and homogenates were plated on Yersinia selective agar.  Colonization was defined as >1 CFU recovered.  

Data shown were combined from two independent experiments (n=number of fleas in each group); error 

bars depict the standard deviation of the mean; data were evaluated using Student’s t-test, *P<0.05.  (C) Y. 

pestis-infected O. montana fleas were monitored for survival every 5 days; n indicates the number of fleas 

in each group.  (D)  Fleas were fed from a blood meal reservoir containing 109 CFU/ml of the indicated 

strains. For the treatment groups, the blood reservoir also contained 40mM n-Acetyl Cysteine (NAC).  On 

day 2 post-infection, fleas were mechanically disrupted and homogenates were enumerated for bacterial 

burden on Yersinia selective agar; data were evaluated using Student’s t-test; *P <0.05, ns=not significant. 

 

homogenized and plated on Yersinia selective agar (43).  Both strains initially infected at 

indistinguishable rates, and the mean CFU recovered from the flea midgut declined over 

days 1-4 but appeared similar between WT and bamC infections (Figure 3.2A).  On day 

5, fleas were given a maintenance bloodmeal and after that, both the WT and bamC2 

mutant appeared to grow due to the availability of nutrients, with increased median titers 

on days 6 and 7 compared to day 4.  However, Y. pestis bamC2 appeared to grow more 
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slowly and was more often cleared in fleas recovered after the bloodmeal.  On day 7, the 

median CFU recovered from WT and bamC infected fleas appeared to be dropping.  We 

repeated this experiment using a higher challenge dose and similar results were observed 

(Data not shown).   

We quantified bacterial survival in the midgut and measured the percentage of 

fleas in which bacteria could be detected on days 2, 7 and 14 post-infection.  Fleas were 

given maintenance bloodmeals on days 5 and 10 post-infection.  Similar to the data 

described above, no differences in bacterial survival were observed on day 2, and most 

fleas remained infected (Figure 3.2B).  In contrast, on day 7 post-infection, significantly 

fewer fleas harbored viable bamC bacteria compared to the WT infection.  On day 14, 

however the percentage of fleas infected by WT bacteria had dropped and became 

indistinguishable from the bamC mutant.  Infection with WT or bamC2 mutant Y. pestis 

caused similar lethality of the fleas over the 30 day observation period, with a gradual 

decline in viability over time (Figure 3.2C).   These data suggested that the differences in 

bacterial growth observed in the bamC mutant were not caused by changes in 

susceptibility of the flea to lethality during the course of the experiment. Overall, it 

appeared there was a population of bacteria that depended on BamC for survival or 

growth in ingested blood in the flea midgut. 

Reactive oxygen species (ROS) production is stimulated after intake of 

bloodmeals as an anti-microbial defense mechanism in fleas (44).  To determine if the 

bamC mutant was more sensitive to ROS, we performed an in vivo reactive oxygen assay.  

n-Acetyl-cysteine (NAC) is an antioxidant previously demonstrated to reduce ROS 

responses in the flea midgut when ingested with the bloodmeal (44).   We used NAC to 
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determine if reduction of ROS would enhance growth of WT or bamC2 mutant Y. pestis 

in fleas.  To test if BamC was important for resistance to ROS in the midgut, fleas were 

infected with either the parental or mutant Y. pestis strain in blood supplemented with 

40mM NAC which was previously shown to be bacteriocidal.  Bacterial titers were 

measured and compared on day 2, prior to the development of biofilm to avoid any 

impact it may have on resistance to ROS.   Supplementation with NAC did not influence 

overall bacterial titers of WT Y. pestis suggesting that ROS production does not hamper 

WT Y. pestis survival in the midgut (Figure 3.2D).  Similarly, Y. pestis bamC2 were also 

not affected by NAC treatment.  Together these data suggest that the bamC mutant may 

have a growth defect in the flea midgut rather than increased sensitivity to clearance.   

3.4.4 BamC is required for OMP assembly during extracytoplasmic stress  Overall, it 

appears that BamC contributes to growth in the mammalian and flea life cycles of Y. 

pestis, either as a component of the BAM complex or as a surface exposed virulence 

factor.  If BamC was functioning in the BAM complex in Y. pestis, then it is likely that 

insertion of OMPs would be defective in the bamC2 mutant.  To test this hypothesis, we 

examined membrane preparations from WT and bamC2 Y. pestis KIM D27.  Both strains 

grow similarly in heart infusion media at 26°C and 37°C, and similar CFUs were 

recovered of WT or bamC2 mutant at a given OD600 (Figure 3.3A) (33).  In contrast, 

addition of 150mM NaCl to the media resulted in a small, but significant reduction in 

growth of the bamC2 mutant.  We generated membrane-enriched samples from WT, 

bamC2 and complemented strains from mid-log phase cultures grown in HIB or HIB + 

150mM NaCl.  Samples were normalized to an equivalent OD600 prior to SDS-PAGE 

analysis.  The bamC2 mutant appeared to harbor equal or even increased amounts of 
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Figure 3.3  BamC is required for OMP assembly during 

extracytoplasmic stress.  (A) Wild type or bamC2 mutant Y. pestis 

KIM D27 cultures were grown in HIB with (top) or without (bottom) 

the addition of 150mM NaCl and growth was monitored for 24 hours at 

37°C.  Data shown was pooled from 3 independent experiments; 

statistical analysis of each time point was performed using the 

Student’s t-test; *P < 0.05.  (B-C) Coomassie stained SDS-PAGE of 

membrane proteins from bacteria grown with or without additional 

150mM NaCl, protein samples were normalized to equivalent OD600  

(B) or 50µg of total protein (C).  Indicated proteins were identified by 

Q-TOF mass spectrometry.  Data shown is a representative gel from 3 

independent protein preparations.   

 

membrane proteins 

compared to wild type 

(Figure 3.3B).   

However, upon the 

addition of NaCl, a 

global reduction in total 

protein was 

incorporated in the 

outer membrane of the 

bamC2 mutant which 

was restored by 

plasmid expression of 

bamC.  We re-analyzed 

these samples by SDS-

PAGE following 

normalization to the 

same total protein 

levels and identified 

some of the proteins by 

Q-Time of Flight 

(TOF) mass 

spectrometry.  OmpC, OmpA and Pla appeared to be reduced in the bamC2 mutant 

compared to WT or the complemented strain (Figure 3.3C).  In contrast, GroEL, an inner 
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membrane associated protein that was present in the sample, was not affected by 

increased salinity nor in the bamC2 mutant suggesting there is no global effect on protein 

synthesis nor transport across the inner membrane in the bamC2 mutant (45).  Together 

the data suggest BamC may be involved in OMP assembly in high salinity environments.  

We also compared the sensitivity of wild type and bamC2 mutant Y. pestis strains 

to antibiotics.  Rifampin and nalidixic acid, two antibiotics with cytoplasmic targets, were 

equally effective against BamC
+
 and BamC

-
 Y. pestis (Table 3.2).  This suggests that the 

bamC2 mutant does not have a general increase in membrane permeability.  In contrast, 

polymixin B, an antibiotic that targets outer membrane lipopolysaccharide, was more 

effective against the bamC2 mutant.  Over-expression of BamC appeared to increase 

resistance to polymixin B.  Polymixin B is a mixture of cationic lipopeptides that interact 

with LPS leading to increased membrane permeability (46).  Increased sensitivity to 

polymixin B is therefore suggestive that LPS integrity may be disrupted in the bamC2 

mutant.  LptD, which is essential for LPS assembly on the outer membrane, is a β-barrel 

protein that depends on the BAM complex for assembly (47, 48).  Increased polymixin 

sensitivity may therefore be indicative that LptD depends on BamC for its assembly or 

function.   
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Table 3.2 Antimicrobial Disc Sensitivity Zone of Inhibition (mm) 

Strain Rifampin Nalidixic Acid Polymyxin B 

KIM D27 14.33 +/-.78 33.5 +/- 1.73 15.09 +/- 1.04 

KIM D27bamC2 14.58 +/- 1.08 35.5 +/- 1.24 21.45 +/- .93* 

KIM D27bamC2pbamC 14.5 +/- .9 32.17 +/- 1.34 14.91 +/- 1.04 

KIM6+ 13.17 +/- 1.03 36.17 +/- .58 13.09 +/- 1.04 

KIM6+bamC2 13.5 +/- .9 35.83 +/- .58 20.55 +/- 1.29* 

KIM6+bamC2pbamC 13.67 +/- .78 35.17 +/- 1.03 9.64 +/- .81* 

Data was analyzed with Student’s t-test versus the parental strain; *P<0.05 

 

Auto-aggregation has been linked to virulence in a number of Gram-negative 

bacteria and is critical to the formation of biofilms (49-51).  In order to assess this 

property and its dependence on BamC, we used a sedimentation assay.  In the absence of 

BamC, Y. pestis more rapidly sedimented out of suspension compared to wild type and 

this phenotype was restored by expression of BamC from a plasmid (Figure 3.4A).  This 

defect was observed in stationary phase bacteria that had been grown at 26°C and was not 

observed under normal growth conditions at 37°C likely due to the expression of the 

Caf1 capsule that forms at mammalian temperature(37).   This result suggests that 

proteins involved in auto-aggregation do not depend on BamC for assembly.   

One of the essential components of the type three secretion system (T3SS) is an 

OM β-barrel protein, YscC that is required for secretion of effector proteins into the host 

cell (4).   Although it has not been tested if YscC assembly depends on the BAM 

complex, deletion of BamD in Salmonella results in reduced type III secretion consistent 

with dependency of one or more components of the T3SS on the BAM complex (19, 41).  
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Figure 3.4  No role for BamC in auto-aggregation or type III 

secretion. (A) Bacteria were grown overnight to stationary 

phase, vortexed, and placed in 15mL conical tubes.  Percent 

sedimentation was determined by measuring OD600 after 10 and 

20 min incubation at room temperature. Error bars depicted 

indicate the standard error of the mean.  (B) 5x106 RAW264.7 

macrophages were challenged at an MOI of 10 with the 

indicated strains in duplicate wells, gentamicin was added after 

45 minutes and the infection continued for a total of 8 or 24 

hours.  Data shown was pooled from 3 independent 

experiments; error bars depicted indicate the standard deviation 

of the mean.  All data was analyzed with a one-way ANOVA 

with Tukey’s post test; *P<0.05.   

 

Given the proposed 

function of BamC as an 

accessory factor of BamD, 

we tested the functionality 

of the T3SS in the Y. pestis 

bamC1 mutant in a 

macrophage infection 

assay.  Macrophage 

infection by Yersinia pestis 

results in apoptosis due to 

the translocation of YopJ 

by the T3SS (52, 53).  The amount of caspase-3 activation correlates with the amount of 

YopJ translocation and caspase-3 detection has been used to quantify T3SS activity (54, 

55).  When we compared WT and bamC1 infection of macrophages, no detectable 

difference in caspase-3 activation was observed (Figure 3.4B).   This suggests that the 

T3SS is fully functional in the absence of bamC and YscC does not require BamC for 

assembly in the outer membrane.  Overall, these assays suggest BamC function may be 

required in certain environments and/or for specific OMPs. 

3.4.5 BamC is required for activation of σ
E
 during extracytoplasmic stress. Given that the 

bamC mutant has an altered OMP profile when grown in high salinity media, we sought 

to determine if this phenotype was associated with induction of an extracytoplasmic 

stress response.  Sigma E (σ
24

) is a subunit of RNA polymerase induced when Gram-

negative bacteria experience envelope stress or in response to accumulation of unfolded  
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Figure 3.5  BamC is required for activation of σE during extracytoplasmic stress. (A) Diagram 

of fluorescent reporter constructs, each containing a different promoter element upstream of the 

fluorescent protein tdTomato, expressed in pBR322.  Y. pestis KIM D27 WT (B) or WT and 

bamC2 (C) strains carrying the indicated reporter constructs were analyzed by plate reader after 

24 hours of growth.  The relative fluorescent units (RFU) were normalized to the optical density 

(OD600) of the bacterial culture.  Shown is the fold induction compared to expression from the 

null promoter.  Where indicated, 150mM NaCl was added to the media at time 0.  Data shown is 

pooled from 7 independent experiments. Error bars depict the standard error of the mean.  

Statistical analysis was performed by one-way ANOVA followed by Tukey’s post test; *P<0.05, 

NS=not significant. 
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proteins in the periplasm as a mechanism to control differential gene expression (56).  In 

E. coli, deletion of BamB caused an increase in σ
E
 transcription suggesting induction of 

the periplasmic unfolded protein response (57).  In addition, a putative σ
E
 binding site 

was identified in the bamC promoter in E. coli, however in E. coli, deletion of bamC did 

not induce expression of σ
E
.  We therefore examined induction of the σ

E
 response in the 

bamC mutant.   Transcriptional reporters were generated by fusing the promoter of rpoE 

or bamC to the fluorescent protein tdTomato (Figure 3.5A).  The σ
E
 response was 

induced by the addition of 150mM NaCl to the growth media (58, 59).  Stationary phase 

Y. pestis induced the rpoE promoter 18-fold compared to a promoterless construct 

(Figure 3.5B).  Upon incubation in high [NaCl], induction of the rpoE promoter to 27-

fold over background was observed (Figure 3.5B).  In contrast, NaCl did not induce 

expression of the bamC promoter, suggesting that bamC is not regulated by σ
E
.    The 

rpoE promoter was also induced to about 27-fold over background in Y. pestis bamC2 

grown in untreated HIB, suggesting that, unlike E. coli, deletion of bamC in Y. pestis 

causes envelope stress or activates the unfolded protein response.  No further induction of 

rpoE expression was observed in response to elevated [NaCl] in the bamC2 mutant 

(Figure 3.5C).  We tested another stress condition, that of low pH, and found that WT but 

not bamC2 mutant Y. pestis induced more rpoE expression in low pH than in neutral 

media (Figure 3.5D).  This data indicates that the bamC2 mutant is unable to respond to 

acidic stress, similarly to a high salinity environment.  Together, with the protein 

analysis, it appears that BamC may be involved in extracytoplasmic stress responses.  

3.4.6 BamC is necessary for intracellular survival in RAW 264.7 cells.  Y. pestis is an 

extracellular pathogen, but can survive and replicate in a Yersinia Containing Vacuole 
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 Figure 3.6  BamC is required for intracellular growth and survival in low pH. (A) 5x106 RAW264.7 

macrophages were challenged at an MOI of 10 with the indicated strains in duplicate wells, gentamicin 

was added after 45 minutes and the infection continued for a total of 8 or 24 hours.  Data shown was 

pooled from 3 independent experiments; error bars depicted indicate the standard deviation of the 

mean.  All data were analyzed with a one-way ANOVA with Tukey’s post test; *p<0.05. (B) WT Y. 

pestis CO92pCD1-, bamC or bamCpbamC Y. pestis were grown overnight, washed with PBS, and 

resuspended in PBS pH 4.2 in triplicate and incubated at 26°C for the indicated times.  Percent 

recovery was determined by comparing recovered CFU following pH 4.2 treatment to PBS pH7.0 

control well.  Data is pooled from 3 independent experiments.  Error bars depict the standard error of 

the mean; statistical significance was evaluated by one-way ANOVA followed by Tukey’s post test; 

*p<0.05.    

 (YCV) within macrophages and this intracellular stage is believed to be important for 

virulence (60).  We therefore measured survival of the bamC mutant in macrophages.  

RAW 264.7 macrophages were infected with equal doses of Y. pestis KIM D27 or the 

bamC mutant (MOI=10), and after 45 min, gentamicin was added to kill extracellular 

bacteria, and the incubation was allowed to continue for 8 or 24 hours in order to 

determine intracellular survival.  At 8 HPI, 40% fewer Y. pestis bamC2 was recovered 

compared to WT, and this difference increased to 75% after 24 HPI (Figure 3.6A).  The 

bamC2 mutant was also tested for survival in low pH environments by incubation in PBS 

buffered at pH4.6 or 7.0.  The results showed that the bamC2 mutant was significantly 

more susceptible to an acidic environment compared to the wild type strain (Figure 

3.6B).  Expression of wild type BamC restored resistance to an acidic environment.  

Together, the data suggest that BamC is required for survival in macrophages and other 
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adverse microenvironments throughout the vector-mammal transmission cycle of Y. 

pestis.       

3.5 Discussion 

Growth assays, macrophage infections and protein gels support the hypothesis 

that BamC is an accessory factor that may only be required for optimal assembly of a 

subset of proteins under conditions of extracytoplasmic stress.  We have shown that the 

absence of bamC causes mild to moderate growth defects under conditions of high 

salinity, low pH, and provided evidence that the function of some OMPs may depend on 

BamC more than others.  Further, we have shown that the absence of bamC causes 

significant attenuation of virulence in the mouse bubonic and septicemic plague models 

as well as attenuation of growth in fleas. Together, the data provides further evidence of 

the co-evolutionary relationship in the development of the flea-mammalian transmission 

cycle.   

We investigated the mechanism underlying the virulence defect of the bamC 

mutant in a variety of biological assays to ask the question whether a single protein or 

several proteins were responsible for bacterial growth in the flea and mammal.  

Respiratory infection of mice by Y. pestis proceeded nearly unaltered by loss of BamC 

consistent with the view that this environment is more favorable for bacterial growth than 

the skin or even blood.  Many virulence factors have been identified, some of them β-

barrel OMPs, that are more critical to infection by the subcutaneous route than the 

respiratory route.  For example, PhoP is required for virulence in the bubonic plague 

model where a 75-fold increase in LD50 was measured after subcutaneous infection, but 
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no change was observed following respiratory infection(61).  Compared to the 400-fold 

increase in LD50 observed in the bamC mutants, it appears likely that the reduced function 

of multiple virulence factors lead to the reduced pathogenesis we observed.    

Polymixin B sensitivity appeared to correlate with BamC expression and we 

suggested that the OMP LptD, which catalyzes LPS assembly and is known to depend on 

the BAM complex for insertion in the outer membrane, might be dependent on BamC in 

Y. pestis.  LPS is a major virulence factor for Y. pestis in mammals and fleas and it is 

likely to mutations that disrupt LPS could attenuate growth in both species either because 

the render the bacteria more sensitive to adverse environments or less evasive to innate 

immune recognition.      

Gram-negative bacteria respond to the extracytoplasmic stress of adverse 

environments in part by inducing σ
E
 and the same response is activated when unfolded 

proteins or LPS accumulate in the periplasm.  Induction of σ
E
 in the bamC mutant is 

consistent with the polymixin B phenotype and suggests that deletion of bamC causes an 

LPS assembly defect (57, 62).  We provided evidence that BamC is important to 

responding to extracytoplasmic stress because the bamC mutant was unable to induce σ
E
 

when bacteria were incubated in high salinity or low pH media.  These data are in 

agreement with the recent report that the σ
E
 response is required for Y. 

pseudotuberculosis to survive low pH and other extracytoplasmic stresses (63).  

Moreover, σ
E
 was also recently shown to be required for the insect borne pathogen 

Bartonella quintana to adapt to the insect gut environment following transmission from 

its mammalian host (64).  Our data provide a possible mechanism whereby adaptation of 
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these Gram-negative bacteria to adverse environments involves up-regulation of σ
E
 and 

OMP assembly.  

BamC is highly conserved in pathogenic Gram-negative bacteria. Due to the 

evolutionary pressure on BamC function, a functionally equivalent protein, BamF, has 

also evolved in Alphaproteobacterial insect-borne human pathogens such as Rickettsia.  

BamF shares no sequence homology with BamC, but has been shown to associate with 

BamD suggesting functional similarity to BamC (22).  In addition, the C-terminal domain 

of BamC has recently been demonstrated to be surface exposed in E. coli (20).  Although 

the importance of the surface exposed region for BamC in particular and the BAM 

complex as a whole remains to be determined, these observations raise the possibility of 

BamC as a therapeutic target that might broadly protect against infection by Gram-

negative bacteria.  In support of this hypothesis, vaccination of mice with recombinant 

Neisseria meningitidis BamC was recently demonstrated to generate a protective 

antibody response against disease (65).  Using antibodies or small molecules to target the 

surface exposed region of BamC may therefore be useful in disrupting the function of the 

BAM complex thereby reducing bacterial survival in multiple host environments. 
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Table 3.3 E.coli strains and Plasmid Construction 

Strain/Plasmid Key Properties Reference 

E. Coli Strains   

S17-1 Sm
r
 Sp

r
 Tra

+
; pro thi hsdR recA; chromosomal integration of RP4-

2-Tc::Mu-Kan::Tn7  λpir+ 

(66) 

DH5α F
-
 , lacZΔαM15 endA1 recA1 hsdR17(rM- mK-) supE44 thi-1 

gyrA96 Δ(lacZYA-argF)U169 

(67) 

Plasmids    

pCVD442 Ap
r
, R6K Ori and sacB counter selection; suicide vector (68) 

pCVD442-bamC Contains 1000 base pairs up and downstream from the bamC open 

reading frame in order to promote homologous recombination. 

This Study 

pBR322 Cloning vector Ap
r 
Tet

r
, ColE1 origin of replication New England 

Biolabs 

pBamC-Flag Ap
r
, expresses bamC-FLAG from the lac promoter (EcoRV); 

bamC inserted in place of Tc
r 
gene (EcoRV, EagI). 

This Study 

pBamD Ap
r
, expresses bamD from the lac promoter (EcoRV); bamD 

inserted in place of Tc
r 
gene (EcoRV, EagI). 

This Study 

pdap-Tomato Ap
r
, pBR322 Backbone, has a fragment of the dap ORF fused to 

the Tomato ORF via overlapping PCR and includes the 

introduction of an XbaI restriction site between the two DNA 

fragments.  The entire DNA fragment was ligated into the EcoRV 

and EagI sites within the Tc
r 
cassette. 

This Study 

prpoE Ap
r
, pdap-Tomato Backbone, Expresses Tomato protein from the 

SigmaE (rpoE) promoter region (155bp upstream of the rpoE start 

codon base pairs 3039217-372 on the CO92 genome Acession #: 

NC_003143)  ligated into the EcoRV and XbaI sites. 

 

This Study 

pdapA-bamC Ap
r
, pdap-Tomato Backbone, Expresses Tomato protein from the 

dapA-bamC promoter region (162bp upstream of the bamC start 

codon base pairs 3420197-359 on the CO92 genome Acession #: 

NC_003143) XbaI site introduced between promoter and Tomato 

ORF. ligated into the EcoRV and XbaI sites. 

 

This Study 

pNull pdap-Tomato Backbone, has the dap ORF fragment removed via 

restriction digest (XbaI and EcoRV) sticky ends were filled with 

DNA Polymerase I, Large (Klenow) Fragment and  the construct 

was blunt end ligated resulting in a promoterless Tomato ORF. 

 

This Sudy 

pDsRed-monomer Ap
r
, lac driven DsRed expression, PCR template for the lac 

promoter. 

Clontech 

ptdTomato Ap
r
, lac driven Tomato expression, PCR template for the td 

Tomato ORF. 

Clontech 

pGEM-T easy Ap
r
, blue/white screen cloning vector Promega 
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Table 3.4 Primers used for plasmid construction. 

Name Sequence (5’ – 3’) Plasmid 

BamC P1 TCT AGA CCA AGC GCT TAC AAC ACA GT   pCVD442bamC 

BamC P2 GGG GCC GAA GCC CCT TTG GTT ATT TCC CTA 

AGA AGT TAC AGC  

pCVD442bamC 

BamC P3 GCT GTA ACT TCT TAG GGA AAT AAC CAA AGG 

GGC TTC GGC CCC 

pCVD442bamC 

BamC P4 GCA TGC GCA GGC GTT CCA TTT GGG TA  pCVD442bamC 

F BamC GGG ATA TCT TGA TGG CAA TAT CAT TGC A pBR322-bamC-FLAG 

R BamC-FLAG GGC GGC CGT TAC TTG TCG TCA TCG TCT TTG 

TAG TCT TTT ATC GCG GTT GCG CTA GTC TG 

pBR322-bamC-FLAG 

F BamD GAT ATC ATG ACG CGT ATG AAA TAT CTG GTG pBR322-bamD 

R BamD CGG CCG TTA GGC TGG ATT GGC CGC AAT pBR322-bamD 

F lac promoter AGA TAT CAG CGC CCA ATA CGC AAA CC pBR322-bamC-FLAG 

and pBR322-bamD 

R lac promoter AGA TAT CTG TTT CCT GTG TGA AAT TGT pBR322-bamC-FLAG 

and pBR322-bamD 

dap-Tom P1 GAT ATC AGC GAA GAT TAA AAA TAT TGT TGC pdap-Tomato, pNull 

dap-Tom P2 GAT GAC CTC CTC GCC CTT GCT CAC CAT TCT 

AGA CAA ATT TCC CTA AGA AGT TAC AGC 

pdap-Tomato, pNull 

dap-Tom P3 GCT GTA ACT TCT TAG GGA AAT TTG TCT AGA 

ATG GTG AGC AAG GGC GAG GAG GTC ATC 

pdap-Tomato, pNull 

dap-Tom P4 CGG CCG TTA CTT GTA CAG CTC GTC CAT GCC pdap-Tomato, pNull 

F rpoE promoter GAT ATC TAT AAG ATG TCT GAA TAA TAT TTG prpoE 

R rpoE promoter 

F dapA-bamC 

promoter 

TCT AGA CCG AGG TGA ACT CTC CCG AAA 

GAT ATC TCG CTC TTC CTG TCA TGC TCT 

prpoE 

pdapA-bamC 
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Figure 3.7 BamC deficient strains induce similar pathology to fully virulent Yersinia pestis in all routes of 

infection. BALB/c mice (n=3-5) were challenged by subcutaneous (A-F) or intranasal (G-I) infection of 10x 

LD50 Y. pestis CO92, bamC or bamC-complemented strains.  Inguinal lymph nodes (A-C), spleen (D-F) or 

lungs (G-I) were harvested from moribund mice, fixed in 10% formalin for 48 hours, followed by sectioning 

and staining with hematoxylin and eosin (H&E).  Representative images are shown. 
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 Figure 3.8  BamC deficient strains have a mild reduction of virulence in a pneumonic model of 

plague. BALB/c mice were challenged by intranasal infection with 3000 CFU of the indicated 

strains of Y. pestis. Survival was monitored over 14 days.  Data were pooled from two independent 

experiments, n=10. Statistical significance was evaluated by the Log Rank test; *p<0.05. 
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Chapter 4 

ARTHROPOD AND BACTERIAL GENETIC FACTORS INFLUENCE 

ESTABLISHMENT OF Y. PESTIS IN THE INSECT DIGESTIVE TRACT 

 

Contributions: David Bland and Deborah Anderson conceived and designed flea experiments.  Melanie 

Marketon’s lab conceived and designed Drosophila experiments.  Bacterial mutants provided by Melanie 

Marketon (Indiana University).  Flea experiments and analysis performed by David Bland.  Drosophila 

experiments and analysis performed by Melanie Marketon’s lab.  Manuscript written by David Bland.  

Model of flea infection generated by David Bland 

 

4.1 Abstract 

Yersinia pestis is the causative agent of plague, a highly virulent and potentially 

lethal zoonotic disease.  This bacterium survives within the flea midgut and is transmitted 

to mammals when bacteria are regurgitated into the mammalian dermis.  Over 20 

different species of flea in North America are believed to be capable of plague 

transmission (1).  However, the efficiency with which these fleas transmit the infection 

varies greatly (2-5).  This variation is believed to be due to currently unidentified genetic 

differences in flea host species (6).  Traditionally, the stable infection of the flea vector 

involves the growth of bacteria into a dense biofilm that lodges in the flea digestive tract 

and eventually blocks the esophagus, preventing future ingestion of blood meals (7).  

This mode of infection requires the direct interaction of bacteria with the insect midgut. 

As such, early establishment of a Y. pestis replicative niche in the midgut is likely a 

contributing factor for making fleas efficient vehicles for the transmission of plague. 

However, the genetic contributions of the insect midgut towards defense against 
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microbial incursion remain largely uninvestigated in the flea model of infection (8).  

Insect midgut immune responses are fairly well conserved.  The production of reactive 

oxygen species (ROS) and antimicrobial peptides are common features of blood feeding 

arthropods (9).  Researchers studying Yersinia-Flea interactions utilize flea strains that 

have been maintained in the lab for decades. The possibility exists that genetic drift in 

laboratory flea populations has influenced the Y. pestis life cycle. Here we show that Y. 

pestis mutants that are more sensitive to antimicrobial insult do not colonize the flea 

digestive tract as efficiently as their wild-type counterparts.  This data is corroborated by 

using a Drosophila larva oral infection model, where transgenic fruit flies, defective for 

expression of conserved immune genes, carry increased bacterial loads.  In addition, we 

demonstrate that North American inbred flea populations harbor greater concentrations of 

Y. pestis than their outbred counterparts.  We propose that selective pressures imposed by 

laboratory rearing conditions have created genetically homogenous flea populations that 

have an altered capacity for allowing Y. pestis to colonize the flea midgut. 
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4.2 Introduction 

All pathogens that are transmitted by blood feeding arthropods eventually interact 

with the insect digestive tract.  The midgut is the first barrier to microbial establishment 

within the insect host (10). The majority of pathogens that are transmitted by mosquitoes, 

ticks, and biting flies must evade host immunity, cross the insect midgut, enter the 

hemoceol, and migrate to the salivary glands in order to be transmitted back to a 

mammalian host.  Y. pestis is unique in that it does not enter the insect hemoceol and 

remains in close association with the flea digestive tract throughout the infection process 

(1).  Therefore, evading the immune response of the flea midgut is likely the most critical 

step in a establishing a stable plague infection. 

The majority of insect digestive tract immune mechanisms are well conserved 

across insect species (11, 12).  Midgut epithelia of other blood feeding arthropods are 

known to secrete antimicrobial peptides in response to Gram-negative bacterial challenge 

(11, 13).  In addition, X. cheopis fleas have been demonstrated to produce ROS in the 

midgut shortly after taking a bloodmeal (8).   These innate immune responses are known 

to be vital for the successful establishment of microbes within the insect host (14).  The 

lack of sequence data for flea immune genes also negates the possibility of using 

transgenic fleas to determine the importance of host responses for the colonization of Y. 

pestis.  Therefore, development of alternative model systems is appropriate for 

establishing that host responses are influencing Y. pestis colonization in the flea midgut.  

A number of bacterial genes have been identified that are known to be critical for 

resistance to ROS and antimicrobials in closely related bacterial species.  The OxyR 

transcriptional regulator is activated upon encountering a hydrogen peroxide stressed 
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environment in Gram-negative bacteria (15, 16).  oxyR is known to regulate the 

production of catalase and is critical for ROS stress responses (17).  Without this gene, 

Gram-negative bacteria are more sensitive to the oxidative burst initiated by mammalian 

neutrophils.  The gmhA gene encodes phosphoheptose isomerase, an enzyme that is 

needed for production of heptose (18).  Heptose is an important sugar in 

lipopolysaccharide (LPS), a major structural component of a Gram-negative bacterium’s 

outer membrane. Without GmhA production, bacterial LPS is truncated at the O-antigen 

site (19).  This structural alteration is known to lead to increased antimicrobial 

susceptibility in E. coli (18).  Furthermore, loss of GmhA has been implicated in reducing 

Y. pestis biofilm formation through in vitro assays and on C. Elegans mouth parts (20).  

Reduction in biofilm production and alteration in LPS structure may result in a 

synergistic loss of resistance to antimicrobial peptides in ΔgmhA strains. The PhoP-Q two 

component regulatory system is known to be important for Y. pestis to sense 

environmental changes and respond to stress (21). Similarly to the function of GmhA, 

interrupting PhoP signaling has downstream effects on LOS structure and biofilm 

formation (22).  Loss of Yersinia spp. PhoP results in enhanced sensitivity to cationic 

antimicrobial peptides, including the insect midgut expressed peptide cecropin P1 (23-

25).  These bacterial mutants demonstrate characteristics that likely make them more 

susceptible to conserved midgut immune responses. 

Arthropod model systems, such as Drosophila, have been the basis for much of 

our understanding of eukaryotic genetics.  Numerous transgenic fruit flies exist, including 

those with mutations in genetic elements that control insect immune responses.  In the 

absence of genetic tools for studying flea host responses, using fruit fly larvae may be a 
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viable alternative for studying early insect host responses to Y. pestis challenge.  As such, 

we investigate the utility of a Drosophila larval system for examining early host 

responses to Yersinia infection.  Knockouts of the critical Drosophila immune genes imd 

and duox exist are employed to achieve this goal.  The immune deficiency (Imd) pathway 

is responsible for sensing and responding to microbial challenge through the secretion of 

antimicrobial peptides such as diptericin and cecropin A (26, 27).   The dual oxidase 

(Duox) system is needed for production of ROS in the insect midgut (28).   

Xenopsylla cheopis, or the oriental rat flea, is considered to be the most efficient 

vector for the transmission of plague throughout the world (7). While in the United 

States, Oropsylla montana is considered the main flea species that perpetuates the plague 

life cycle in rural prairie dog and ground squirrel populations (29, 30).  However, X. 

cheopis is still endemic in urban rat populations in many of the larger U.S. cities.  Despite 

these facts, direct comparisons between flea species capable of transmitting plague, such 

as X. cheopis and O. montana, are lacking.  Comparing fleas from both urban and rural 

plague environments may improve our understanding of the Y. pestis life cycle.  In order 

to establish what makes these two flea species efficient vectors, reliable data that closely 

mimics how these fleas generate transmissible infections in the wild needs to be obtained 

(31).  

One of the barriers for generating data that closely mimics natural infection 

processes is genetic homogeneity in experimental animals.  Many of the laboratory reared 

flea colonies previously employed for flea studies have been propagated for decades.  

Methodology associated with researching Yersinia-flea interactions has not considered 

the influence of genetically homogenous flea populations on microbial colonization of 
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the midgut.  It has been established that inbreeding influences insect fitness and has the 

potential to alter host susceptibility to microbial challenge (32-34).  In order to address 

this issue, a laboratory colony was established from an outbred X. cheopis population 

from Los Angeles, California in late 2012.  The X. cheopis strain most frequently utilized 

in plague studies was isolated from Baltimore, Maryland over 30 years ago.  Given the 

potential of genetic drift to alter experimental outcomes, the introduction of genetic 

variation to laboratory flea populations may be critical for translating mechanistic 

findings to epidemiological models of plague.   

Here we show that Y. pestis strains lacking oxyR, gmhA, or phoP have reduced 

ability to colonize the O. montana midgut during the first week of infection.  We 

establish that fruit flies are an alternative model organism for studying insect-Yersinia 

interactions. Drosophila larvae can be stably infected with Y. pestis and transgenic fruit 

flies lacking the immune genes imd and duox harbor higher bacterial titers than their wild 

type counterparts.  Finally, we demonstrate that inbred X. cheopis and O. montana flea 

populations are more permissive to Y. pestis midgut establishment early during infection 

than their outbred counterparts.  These differences between inbred and outbred strains 

have the potential to dramatically influence downstream transmission outcomes.  

Together the data demonstrates that both host genetic factors and bacterial resistance 

mechanisms are important for the stable colonization of plague in the flea midgut.  In 

totality, the data supports standardizing flea rearing methodology to include frequent 

introduction of genetic diversity into experimental insect populations. 
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4.3 Materials and Methods 

Bacterial strains and plasmids All strains used were grown on heart infusion agar (HIA) 

plates and single colonies were used to inoculate heart infusion broth (HIB).  The plates 

used for Y. pestis KIM strains were supplemented with 0.005% Congo Red and 0.2% 

galactose to select for colonies that retain the pigmentation locus (pgm).   Y. pestis KIM 

and CO92 strains were routinely grown fresh from frozen stock on HIA, followed by 

growth at 26ºC with aeration at 150rpm in heart infusion broth (HIB) overnight prior to 

use in experiments.  KIM6+ ΔphoP, ΔoxyR , ΔgmhA  strains were received from Melanie 

Marketon and were generated as described previously (25).  The KIM6+ ΔgmhA strain 

was generated by removal of the gmhA open reading frame from the Y. pestis 

chromosome through homologous recombination using the lambda red system. 

All Y. pestis strains harbor the plasmid pAH118, which expresses green 

fluorescent protein from a weak constitutive promoter and contains an ampicillin 

resistance cassette.  Where indicated, ampicillin (100μg/ml) was added to media for 

selection of plasmids. 

Flea infection  Both O. montana and X. cheopis fleas were maintained in a refrigerated 

incubator at 22°C with ~80% relative humidity (2).  Fleas were reared in one gallon glass 

jars containing larval medium (3 parts saw dust to 1 part of an equal blood meal, dried 

milk, mouse pellet mixture).  For infection, fleas were starved for 6 days and 

subsequently allowed to feed on 3-4mL of heparinized murine blood containing 10
8
-10

9
 

CFU of Y. pestis.  Following infection, fleas were anesthetized using a chill table set to 

0°C and monitored under a dissection scope for signs of fresh blood in the esophagus or 

proventriculus.  Fleas that did not acquire a Y. pestis-infected blood meal were removed 
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from the study.   Mechanical disruption of fleas for bacterial enumeration was performed 

using a bead beater.  Bacterial enumeration was determined by plating in duplicate on 

HIA media with ampicillin (100μg/ml). 

Oral Drosophila larvae infection. The procedure is adapted from the non-invasive 

infection method developed by Olcott et al (35). Adult flies were placed in collection 

chambers capped with ethyl acetate (EA) plates dabbed with small amounts of yeast 

paste, prepared with sterilized yeast grain and PBS water. After overnight incubation in 

the dark at 27°C, fresh EA plates and yeast paste were added and the flies were allowed 

to lay eggs for two hours to ensure synchronized development of the eggs. After this 

incubation period, the EA plates were removed and eggs were rinsed in a cell strainer 

with a 70 micron mesh filter. Eggs were then placed in 6-well dishes containing 2 ml of 

solidified Bacto-Agar per well, and wells were sprinkled with sterilized yeast pellets. The 

wells were sealed with a breathable membrane (Breathe-Easy, Diversified Biotech), and 

plates were stored at room temperature for two days. The following day (Day -1), Y. 

pestis strains in a freshly prepared yeast suspension (0.2 g killed yeast per 1.2 ml sterile 

phosphate buffered saline) were evenly distributed over the surface of the appropriate 

well to initiate infection. An equivalent amount of bacteria-free yeast suspension was 

applied to control wells.  Bacterial suspensions were plated in order to verify the initial 

inoculation. Wells were then sealed and larvae were incubated at room temperature. For 3 

days, 5 larvae were from each well were retrieved and surface-sterilized by washing once 

with 95% ethanol and sterile water.  Individual larvae were homogenized in PBS and 

plated on Yersinia Selective Agar with appropriate antibiotics. 
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gltA PCR Screen Fleas were frozen for 5 minutes at -80°C and subsequently 

homogenized in 10μL of sterile water.  1μL of flea homogenate was added to a standard 

Taq DNA polymerase reaction (New England Biolabs).  Primer sequences for Bartonella 

and Rickettsia gltA were utilized as described previously. Rick-F (5’ 

GATTTTTTAGAAGTGGCATATTTG3’)Rick-

R(5’GGKATYTTAGCWATCATTCTAATAGC3’) 

BartF(5’GCTATGTCTGCATTCTATCA3’)Bart-

R(5’GATCYTCAATCATTTCTTTCC3’). 

Flea Measurements:  Fleas were measured using an ocular micrometer with a 10x 

magnification lens.  20 Fleas (half male/ half female) were measured one hour after 

consuming a blood meal.  The length was defined as the distance from the tip of the head 

to the tip of abdomen.  Height was defined as the distance at its tallest point from the top 

to the bottom of the abdomen (near the center of the abdomen).  Width was measured 

from above with the insect’s mouth parts facing down at the widest point of the abdomen. 

4.4 Results 

4.4.1 Y. pestis strains susceptible to ROS and Antimicrobial peptides show decreased 

colonization of O. montana fleas. In order to determine if insect host response was 

important for Y. pestis colonization of the insect digestive tract, O. montana fleas were 

challenged with bacterial strains more susceptible to antibacterial stress.  Fleas were fed 

blood meal spiked with 1x10
9
 CFU of the indicated strains of Y. pestis.  Groups of 40 

fleas were collected and mechanically disrupted for bacterial enumeration on days 1, 3, 

and 7 post infection in order to determine their infection status. 
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Infected fleas were pooled into 4 different bacterial concentration groups: 

uninfected, <10
3
, 10

3
-10

5
, and >10

5
 CFU.  Grouping categories were designed to provide 

insight into the bacterial dynamics of infection early in the plague colonization process.  

Strains lacking the hemin storage locus (Hms) were included to determine the importance 

of biofilm formation in the flea digestive tract.  The hms locus is responsible for 

producing and secreting a poly-β-1,6-N-acetyl-D-glucosamine based exopolysaccharide 

(EPS) (36, 37). The EPS is critical for blockage based transmission and likely obstructs 

the clearance of midgut infection (38).  After one day post infection, all bacterial strains 

capable of producing EPS, despite the flea host response, follow a colonization pattern 

where 75-90% of fleas harbor bacteria (Figure 4.1A).  However, strains unable to 

generate biofilms (KIM6-, ΔgmhA-) have a significantly reduced colonization percentage. 

Roughly half of the fleas with EPS defective strains clear the infection during the first 24 

hours.  This suggests that biofilm production is important very early in the infection 

process for persistent infection of the flea.  By day 3 post infection, strains that show 

enhanced susceptibility to antimicrobial peptides (ΔgmhA and ΔphoP), are more readily 

cleared from the flea midgut, as indicated by a reduction in the population bearing greater 

than 10
3
 CFU of Y. pestis.  Strains lacking EPS production are more rapidly cleared by 

day 3, as indicated by the reduction in overall colonization and the loss of flea 

populations harboring bacterial concentrations greater than 10
5
 CFU.  Interestingly, the 

ΔoxyR strain closely follows the WT infection pattern during the first 3 days of infection.  

However, by day 7 post infection, this strain appears to behave similarly to other strains 

defective for antibacterial resistance.  It is known that in response to a bloodmeal, the flea 

midgut secretes ROS (8).  In order to keep experimental groups alive for extended study, 
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Figure 4.1 Resistance to 

antimicrobials and ROS is 

important for Y . pestis colonization 

of the flea midgut Oropsylla 

montana fleas were allowed to feed 

on blood spiked with 1X10
9
 CFU of 

the indicated Y. pestis strains. Strains 

designated with a “-“ indicate the 

absence of the hms operon. On days 

1 (A) 3 (B) and 7 (C) post infection, 

40 fleas per bacterial strain were 

mechanically disrupted and 

enumerated on heart infusion agar.  

Fleas were grouped according to 

their bacterial burden and are 

represented as a percentage of the 

total population enumerated on that 

day.  Data is analyzed with a Holm-

Sidak Multiple Comparison One-

way ANOVA. Significance is 

compared to the control group 

(KIM6+).  Black asterisks = 

percentage of fleas infected.  White 

asterisks = percentage of fleas with a 

large bacterial burden (>10
3
 CFU).  

n = 40 P < .05 

fleas are given a maintenance blood feed every 4 days.  It is possible that upon initial 

infection, bacteria maintained at 37°C are primed for ROS resistance.  Once maintained in 

the flea midgut for an extended period at lower temperatures (22-26°C), bacteria are more 

A 

C 

B 
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susceptible to a secondary oxidative burst that is initiated by flea maintenance feeding 

events.  By day 7, all bacterial strains have decreased ability to maintain a high titer 

infection. However, mutant strains have significant reduction in bacterial colonization, 

between 25-35% relative to the parental strain.  Furthermore, fleas still colonized with 

mutant bacteria by day 7 are less likely to have a high bacterial burden (>10
3
 CFU) 

compared to the wild type strain.  It is important to note that wild type KIM6+ is the only 

strain capable of increasing the percentage of fleas bearing a high bacterial burden (>10
5
 

CFU) throughout the week long infection.  The data indicates that maintaining a bacterial 

concentration less than 10
3
 is not sustainable during the first week of infection.  The 

majority of fleas in this bacterial concentration category appear to be capable of clearing 

Y. pestis during the first week of infection.  This data is consistent with the notion that 

EPS production is critical for maintenance of plague beyond the first week of infection.  

Taken together, the data suggests that host antibacterial defenses influence Y. pestis 

midgut colonization early during the infection. 

4.4.2 Midgut innate immune responses are important for Y. pestis colonization of 

Drosophila larvae 

Using Y. pestis strains known to be more susceptible to antibacterial responses provides 

strong evidence for a flea host response, however, it does not directly link host genes to 

specific outcomes.  In order to address this issue, a Drosophila larval model was 

developed to study early host immune responses to Y. pestis infection.  Larvae were 

allowed to feed on yeast agar inoculated on day -1 with Y. pestis.  Insects were collected 

for bacterial enumeration on Yersinia Selective Agar for 3 days following initial infection 

(day 0).  Larvae can stably maintain 10
4
 CFU of Y. pestis in their digestive tract, 

regardless of the initial bacterial seeding concentration, for up to 3 days post infection 
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Figure 4.2 Y. pestis stably colonizes the Drosophila digestive tract through oral 

infection. Fruit fly larvae were allowed to feed on yeast agar seeded with the 

indicated doses of Y. pestis on day -1.  (A) On each day, 5 larvae were 

mechanically disrupted and enumerated for bacterial burden on Yersinia selective 

agar.  (B)  Small sections of the yeast agar known as “plugs” were also 

enumerated for Y. pestis colonization.  Shown is pooled data from 2 independent 

(Marketon) 

 

(Figure 4.2A).  To 

verify recovered 

bacteria was from 

larval colonization 

and not remnants of 

the initial innoculum, 

yeast agar plugs 

were enumerated to 

determine how long 

Yersinia could 

survive in the larval 

medium.  While 

bacterial concentrations within the larvae digestive tract remain relatively constant, 

bacterial concentration in the yeast medium decreases over time (Figure 4.2B).  By day 3, 

almost no bacteria can be recovered from the larval rearing medium.  This data is 

suggestive that larvae aren’t continuously clearing and subsequently refreshing Y. pestis 

in the digestive tract, but rather become persistently infected after the initial feeding 

events. 

In order to directly test if immune genes are important for plague colonization of the 

insect digestive tract, transgenic Drosophila larvae were infected with Y. pestis and 

bacterial titers were monitored for 3 days.  Larvae lacking the imd gene, a genetic 

element needed for regulating the production of antimicrobial peptides, have increased 

bacterial burdens on day 2 and 3 post infection (Figure 4.3).  Furthermore, wild type 
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Figure 4.3 Knockout of host immune responses increases Y. pestis burden 

in the digestive tract. Transgenic fruit fly larvae lacking the imd (A) or 

duox (B) genes were challenged with 105 CFU of the indicated strains of Y. 

pestis.  On each day, 5 larvae were mechanically disrupted and enumerated 

for bacterial burden on Yersinia selective agar.  Shown is pooled data from 

3 independent experiments.  Data was analyzed using Student’s t-test. * = 

p< .05, ** = p< .01, ***= p< .001. (Marketon) 

larvae harboring ΔphoP 

bacterial strains have a 

significant reduction in 

bacterial burden 

throughout the infection.  

However, the bacterial 

parent phenotype can be 

rescued when ΔphoP Y. 

pestis is used to colonize 

imd deficient fruit flies.    

The generation of 

reactive oxygen species 

also appears to be 

important for host 

resistance to Y. pestis 

colonization.  Larvae 

lacking expression of 

duox, a gene needed for producing oxygen radicals in the midgut, had significantly higher 

bacterial burdens for both wild type and ΔoxyR Y. pestis strains on day 3 post infection.  

In addition, the ΔoxyR strain had decreased bacterial burden in larvae that were capable 

of producing ROS at this same time point.  Similarly to the data obtained in O. montana 

fleas, bacteria grown at 37°C seem to be primed for resistance to initial ROS host 

responses during the first 24 hours of bacterial infection.  The data demonstrates that 

A 

B 
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Drosophila larvae can be stably infected with Y. pestis.  Furthermore, this data provides 

the first evidence that a direct connection exists between insect midgut immune genes 

and the concentration of plague in the insect digestive tract.   

4.4.3 Establishing outbred laboratory flea colonies 

 In order to determine if genetic drift is influencing Y. pestis colonization, an 

outbred X. cheopis population was established from fleas obtained from Rattus 

norvegicus in downtown Los Angeles.  X. cheopis parasitizes rats inhabiting  Los 

Angeles County, California.  The L.A. county department of public health has a rat 

surveillance program to monitor flea burdens and the incidence of flea borne pathogens.  

With help from the L.A county department of public health, tomahawk traps were set 

with dog biscuits coated in peanut butter at two sites in downtown Los Angeles.  Over the 

course of 6 hours, from dusk until 1 A.M. during late October, 12 rats were caught from 

two sites in downtown Los Angeles.  Rats were combed for parasites and 26 fleas were 

recovered (~2.17 fleas/rat).  Fleas were placed into a 50ml conical tube for overnight 

shipping back to Columbia, Missouri.  While combing rats, users wore full tyvek suits 

with hoods and hepa-filtered power air purified respirators.  These precautions were 

taken due to the presence of rats in Los Angeles county that previously tested 

seropositive for Seoul virus, a hantavirus with significant morbidity (39).  Upon receiving 

the shipment, fleas were placed into a one gallon glass jar with 2 inches of larval rearing 

medium and stored in a refrigerated incubator maintained at 22°C with 80% relative 

humidity (RH).  Fleas were fed bloodmeals 3 times a week to ensure their survival and 

maximize their reproductive success.   
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Figure 4.4 LA12 Fleas do not contain Bartonella or 

Rickettsia spp. Fleas were mechanically disrupted in 

5ul of sterile ddH2O.  Flea homogenates were used in a 

Taq polymerase PCR reaction and reactions were 

loaded on a 1% agarose gel and were screened through 

electrophoresis for the presence of either Batonella 

(top) or Rickettsia gltA DNA.  Each lane represents an 

individual flea.  Lanes are designated by primers seen 

at the bottom of each lane.  gltA amplicon = ~700bp.  

Shown on the left is a 1kb DNA standard. 

It is known that fleas from this 

area may be infected with Bartonella 

spp. and/or Rickettsia typhi (40).  In 

order to ensure fleas were not infected 

with these pathogenic organisms, the 

population was propagated for 6 weeks 

and handled as if they may be infected 

with a flea borne pathogen using BSL-2 

protocols.  Primers were generated to 

PCR amplify the gltA open reading 

frame, a conserved metabolic gene 

encoding citrate synthase, for both 

Bartonella and Rickettsia spp. (40, 41).  

Twenty fleas (approximately 1/4
th

 of 

the total population) were negative for 

amplification of both the 

aforementioned bacterial genus’s gltA genes (Figure 4.4).   Fleas were also screened via 

PCR for the presence of Y. pestis using primers specific for hmsF, as expected, all fleas 

were negative (Data not shown).  While it is difficult to tell if fleas were infected at the 

time of collection, the rearing of fleas under laboratory conditions may be sufficient for 

the loss of these bacteria from the insect flora.  Alternatively, providing a bloodmeal 

spiked with appropriate antibiotics may have been applied if fleas had tested positive for 

bacterial pathogens. 
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4.4.4 Inbred flea populations are more permissive to Y. pestis colonization 

 Utilizing the newly established X. cheopis flea population, which will henceforth 

be referred to as the “LA12” strain, we sought to understand whether genetic drift had 

influenced the ability of Y. pestis to colonize the digestive tract.  Strikingly, when we 

compared the inbred X. cheopis strain established from Baltimore, which will be referred 

to as BALT, to the LA12 strain, we noticed that the BALT fleas were noticeably larger 

when fed to repletion.  In order to confirm this observation, fleas were measured using an 

ocular micrometer.  The dimensions of the BALT fleas were significantly larger than 

their LA12 counterparts (Table 4.1).   

Table 4.1 Flea Dimensions 

Flea Strain Dimensions (mm) 

 Length Height Width 

X. Cheopis (LA12) 1.93 ± .2 .74 ± .1 .47 ± .08 

X. Cheopis (BALT) 2.36 ± .31* .96 ± .14* .72 ± .15* 

O. montana (OMT) 2.09 ± .15* .79 ± .09 .54 ± .07 

n = 20, half male/female.  Data was analyzed using a One-way ANOVA (Holm-Sidak vs. 

control). *p < .05. 

As a population, BALT fleas are about 20% longer and taller and 30% wider than their 

LA12 counterparts.  This data suggested to us that the BALT strain may be capable of 

taking larger infectious bloodmeals.  In contrast, the Oropsylla montana fleas, which will 

be referred to as “OMT”, are slightly longer than the LA12 strain but are not significantly 

taller or wider following a bloodmeal.  Visibly, OMT fleas appear to be similar in size to 

the LA12 strain when fed to repletion.  It is possible that larger blood meals may increase 
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Figure 4.5 Inbred flea strains are more permissive to Y. pestis Colonization Fleas were allowed to 

feed on blood spiked with with 1x109 CFU of the indicated strains of Y. pestis.  On day one post 

infection, fleas were mechanically disrupted and enumerated on heart infusion agar with ampicillin.  

Data was pooled from 2 independent experiments.  Bars represent groups of 12-26 fleas of the 

indicated species and recovery location. Fleas that did not harbor Y. pestis were eliminated from 

CFU analysis.  X.c. = Xenopsylla cheopis. O.m. = Oropsylla montana. Limit of detection = 50 

CFU.  Ceiling of detection = 105 CFU.  Data was analyzed using a One-way ANOVA with Holm-

Sidak multiple comparison. p <.05 

the challenge dose taken by the BALT strain.  This bloodmeal discrepancy may 

contribute to plague persistence later during infection. 

 In order to determine if outbred strains were, overall, more permissive to 

colonization, LA12, BALT, and OMT fleas were infected with 1x10
9
 CFU/ml

 
of KIM6, 

ΔgmhA, and ΔoxyR EPS positive strains of Y. pestis.  Groups of fleas were enumerated 

for bacterial burden on day 1 post infection.  Interestingly, both inbred strains, OMT and 

BALT, harbored significantly higher bacterial burdens than the outbred LA12 strain.  

While it is possible that the increase in bacterial burdens among the BALT fleas is related 

to the size of the infectious bloodmeal, the data for the OMT strain would refute that 
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hypothesis. There was no significant difference between OMT and LA12 flea 

dimensions, suggesting that the differences in bacterial recovery are independent of the 

size of the infectious bloodmeal.  Furthermore, within the LA12 fleas, there was 

significantly less recovery of the ΔoxyR strain, more than one log reduction in CFU, 

relative to the parental Y. pestis strain.  This phenotype contrasts with the inbred flea 

populations as there was no significant difference in bacterial recovery of ΔoxyR bacteria 

within BALT or OMT fleas. 

 Together, the data are consistent with the hypothesis that outbred fleas are more 

permissive to establishment of Y. pestis in the digestive tract early during infection.  The 

data suggests that production of ROS and AMPs are important for colonization of the flea 

midgut early during infection.  Furthermore, it would appear that the ROS response is 

more robust in the outbred LA12 fleas than their inbred counterparts. 

4.5 Discussion 

The genetic contribution of the flea host remains a major question for flea vector 

competence that has not been rigorously addressed at a functional level.  While insect 

immune responses are fairly well characterized in other disease vectors, the flea host 

response and its importance for establishment of plague has been largely unexamined.  

Using strains that are more susceptible to cationic antimicrobials and reactive oxygen 

species, we conclusively show that there is decreased Y. pestis colonization of the flea 

midgut early during infection. Using these data, combined with what is already known 

about the flea life cycle of Y. pestis, we are able to develop a model of the first week of 

infection within the flea digestive tract (Figure 4.6). 
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Figure 4.6 Model of the first week of flea midgut infection with Y. pestis The flea acquires an infectious bloodmeal by 

feeding on a mammal with a high titer of Y. pestis in the bloodstream.  Y. pestis transitioning from the mammalian 

temperature (37°C) to the flea temperature (21-22°C) are resistant to reactive oxygen species (ROS) and induce 

expression of exopolysaccharide (EPS) in order to initiate bacterial aggregation.  During the first 3 days of infection, 

bacterial concentrations decrease due to flea defecation and production of antimicrobial peptides (AMP)s.  Fleas are 

capable of transmitting Y. pestis, through an unknown mechanism, during the first 4 days of infection.  A large 

percentage of infected fleas are capable of clearing Y. pestis infection during days 3-5.  Fleas that remain infected 

increase bacterial concentrations in the digestive tract through replication from days 5-7.   Typically, around half of the 

flea population remains infected with Y. pestis by day 7.  Once biofilm-mediated blockage occurs, fleas can transmit 

plague bacilli to a new mammalian host through the Late Phase mechanism. 

Once a flea acquires an infectious bloodmeal from a rodent with terminal plague, 

the flea digestive tract is exposed to Y. pestis.  Initially, Y. pestis transitioning from the 

mammalian temperature (37°C) to the flea temperature (21-22°C) are resistant to reactive 

oxygen species produced in the midgut.  The temperature shift also induces expression of 

exopolysaccharide, which initiates biofilm formation by promoting bacterial aggregation.  

During the first 3 days of infection, the majority of bacteria  appears to be cleared from 

the digestive tract.  Likely due to the frequent defecation of recently fed fleas as well as 

the production of antimicrobial peptides.  Also during this time frame, Early Phase 

Transmission can occur, possibly through a mechanical transmission mechanism.  Days 

3-5 represents a critical juncture whereby Y. pestis either persists and replicates in the 

digestive tract or is cleared by the flea.  Fleas that remain infected increase bacterial 

concentrations from days 5-7, typically with about half of the population capable of 
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clearing the infection.  From day 7 onward, blockage of the insect esophagus is a 

possibility. Once biofilm-mediated blockage occurs, fleas can transmit plague bacilli to a 

naïve host through the Late Phase mechanism, perpetuating the Y. pestis life cycle. 

 While antimicrobial resistance appears to be needed throughout the first week of 

midgut colonization, ROS resistance appears to follow a different infection pattern in 

OMT fleas and Drosophila larvae.  The ΔoxyR strain has a colonization pattern that is 

indistinguishable from WT during the first 3 days of infection, however, after fleas 

receive a maintenance feed there is a dramatic reduction in bacterial colonization.  This 

finding is interesting for a number of reasons.  This data would suggest that bacteria 

grown at 37°C have been primed for resisting ROS during the initial infection, but are far 

more susceptible to the oxidative burst initiated by a new blood feed after multiple days 

of residing at lower temperatures (21-22°C) in the insect midgut.  This phenotype is 

recapitulated in the Drosophila midgut where ΔoxyR titers are indistinguishable from 

wild type bacteria during the first two days of infection.  Furthermore, it appears as 

though the overall ROS response by inbred strains may be dampened in inbred flea 

strains considering the fact that there is a significant increase in Y. pestis burden for 

BALT and OMT fleas compared to the LA12 strain.  The LA12 strain appears to be 

significantly better at clearing ΔoxyR bacteria than both of the other inbred flea strains.  

The differences in flea size complicate the interpretation of this data.  However, due to 

the fact that LA12 and BALT strains have similar sizes (and likely similar bloodmeal 

volumes), it seems plausible that flea inbreeding alters the natural course of Y. pestis 

infection.  Further studies examining the day 0 flea burden are needed to address this 

issue. 
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 We show that the Drosophila oral infection model is a viable alternative for 

studying the early host response to Y. pestis.  This model identifies imd and duox as 

genetic elements that mitigate the establishment of plague in the insect midgut.  In the 

future, once flea sequencing data becomes available, performing q-PCR studies on these 

genes over the course of the infection will allow us to better understand the flea immune 

response.  The fruit fly model offers a clear advantage over C. elegans research models 

because the digestive tract is actively engaged in the infection process.  Furthermore, 

genetic systems in Drosophila are far more advanced and abundant than in any other 

arthropod model system.  This system may also be useful in addressing biological 

questions regarding the timing and importance of early biofilm formation.  The factors 

that mediate initial adherence of bacteria to the flea digestive tract remain unknown.  This 

system may be useful for determining if specific host cell receptors or bacterial proteins 

directly influence the midgut adherence process. 

 The influence of genetic drift on experimental flea colonies has not previously 

been examined.  We show the first evidence that inbred flea populations have distinct 

differences in size as well as an ability to harbor increased concentrations of  Y. pestis.  

Further experimentation is required to directly pinpoint the cause of this disparity 

between inbred and outbred flea populations, however the data is suggestive that 

researchers should consider generating genetically heterogeneous flea populations.  This 

may be achieved through establishment of outbred colonies or through the introduction of 

external genetic information into existing populations through breeding.  We have 

provided some simple techniques and practices to ensure the safe collection and 

establishment of outbred flea populations.  These techniques may be useful for 
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introducing genetic heterogeneity into currently existing flea model systems and avoiding 

concerns associated with genetic drift.  Alternatively, the development of new 

methodology for handling fleas may be useful for mitigating the influence of genetic 

drift.  If eggs can be recovered, stored for extended periods, and subsequently induced to 

hatch prior to infection, this would provide a valuable tool for maintaining genetic 

heterogeneity.  This practice would have the added benefit of normalizing the age of the 

fleas and may improve flea feeding efficiency of the initial infectious bloodmeal. 

Considering Y. pestis’s unique characteristic of only interacting with the insect 

digestive tract, it seems to be an ideal candidate for modeling the insect gut response to 

prolonged microbial colonization.  Here we make strides in identifying critical pathogen 

and host genetic factors that are important for establishment of plague bacilli in the insect 

midgut.  In addition, improvements in our understanding of bacterial dynamics during the 

first week of flea colonization will allow us to ask specific biological questions about 

early and late phase transmission events.  Furthermore, we identify limitations with 

existing flea model systems that researchers should take into consideration when 

designing experimental protocols and handling laboratory insect colonies.  We hope this 

work encourages researchers to take a systems biology approach for studying the 

complexities of the Y. pestis life cycle. 
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Chapter 5  

SUMMARY AND FUTURE PERSPECTIVES 

 

 

5.1 Summary 

Here we present data that supports the stated aims of developing genetic tools for 

plague research, improving Y. pestis model systems, identifying plague virulence factors, 

and determining the insect host contribution towards permitting a stable midgut infection.  

First, we show that diaminopimelic acid selection can be used as a safe alternative to 

generating antibiotic resistant Y. pestis strains for in vivo virulence studies (1).  Strains 

with a deficiency in the lysine biosynthesis pathway are unable to grow without 

supplementation of DAP in the growth media.  Furthermore, DAP is an amino acid only 

produced by bacteria, rendering these strains avirulent in humans due to an inability to 

scavenge DAP from the environment.  The DAP project also resulted in the generation of 

genetic tools for single copy expression of recombinant protein with thermally regulated 

promoters.  

Researchers of microbial pathogenesis follow a set of criteria established by Dr. 

Stanley Falkow called Molecular Koch’s postulates (2).  These postulates state that when 

studying the function of a mutated gene on a pathogen’s virulence in vivo, restoration of 

that gene’s expression should restore any virulence defects observed when the gene is 

absent.  Typically, this is achieved through cloning the gene of interest into a plasmid 

construct that also contains an antibiotic resistance cassette.    The plasmid can then be 

transformed into competent mutant bacteria in order to restore expression of the gene of 

interest.  Retention of these plasmids in vitro can be selected for by supplementing the 



119 

 

growth or experimental medium with the antibiotic that the plasmid provides resistance 

for.  However, in animal models of disease, it is impractical to continuously provide 

antibiotics intravenously in order to promote retention of the pathogen’s complementing 

plasmid.  Furthermore, this scenario would almost certainly alter the host’s resident 

microbiota, complicating the interpretation of experimental data.   

We demonstrate, in the first research chapter, that plasmids are occasionally lost 

during the course of Y. pestis pathogenesis.  Using a plasmid with a p15a replication of 

origin, we show that between 1-5% of bacteria recovered from mouse spleens on day 4 

post infection experienced plasmid loss as measured by retention of ampicillin resistance.  

It is critical for data interpretation that expression of recombinant protein is maintained 

throughout the disease process.  To remedy this, we generated genetic tools using DAP 

selection and the TN7 transposon system (3).  This transposon system induces integration 

of recombinant DNA directly into the bacterial chromosome, in single copy, at a specific 

attTn7 site (4).  Single copy complementation of the dapA mutation is sufficient for 

restoration of wild type growth and virulence characteristics.  Genetic information 

inserted in this manner is unlikely to be lost due to bacterial growth requirements for 

DAP and lysine as well as the infrequency of chromosomal reversion.  If the insertion 

was somehow lost, bacteria would be unable to replicate and would rapidly be eliminated 

from the bacterial population.  

The second research chapter investigates the role of the BamC lipoprotein in 

mammalian virulence and survival in the flea host.  BamC is an accessory component of 

the BAM complex believed to be important for outer membrane biogenesis.  Despite the 

essential function of the complex as a whole, BamC had largely been considered 
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dispensable due to a lack of growth phenotypes associated with ΔbamC strains in E. coli.  

We show that loss of BamC in Y. pestis causes a reduction in virulence in murine models 

of bubonic and septicemic plague and that it is also required for efficient colonization of 

the flea midgut.  This is the first report of a surface exposed protein that is needed for 

both hosts of the Y. pestis life cycle.   

Overall, Y. pestis BamC is important for bacterial survival during stress 

conditions in vivo.  The BamC mutant shows enhanced sensitivity to cationic 

antimicrobials and acidic pH conditions.  These phenotypes are corroborated by reduced 

survival of the ΔbamC mutant in murine macrophages, where the bacteria would 

encounter a low pH environment.  However, extracytoplasmic stress sensitivity does not 

seem to result from an overall increase in membrane permeability for BamC deficient 

strains. The ΔbamC mutant’s resistance to antibiotics with a cytoplasmic target is 

indistinguishable from the parental strain, yet this strain has significantly increased 

sensitivity to polymyxin B, which targets OM LPS.  Together, the data suggests an OM 

specific structural inadequacy, with possible implications for LPS production.  Under 

normal growth conditions, in a complete liquid medium, the ΔbamC strain incorporated 

decreased concentrations of OMPs into the bacterial OM.  This is consistent with the 

observation that the extracytoplasmic stress sigma factor, σE
, is upregulated in BamC 

deficient strains.  Upregulation of sigma E is indicative of increased concentrations of 

unfolded or misfolded protein in the bacterial periplasm.  This suggests BamC is needed 

either for efficient function of the BAM complex or that this protein is part of the 

extracytoplasmic stress regulatory network.  When inducing osmotic stress by adding 

sodium chloride to the growth medium, it appears as though some subsets of OMPs are 
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more affected than others in the ΔbamC bacterial background.  Furthermore, BamC has 

no significant homology with proteins of known function.  These two facts, paired 

together, is an indication that BamC may have novel function in regulating protein 

incorporation within the BAM complex. 

The BamC project, in totality, suggests that loss of this protein results in a 

decrease of multiple OM proteins. When these proteins are reduced in the OM, Y. pestis 

exhibits decreased virulence and colonization defects due to enhanced sensitivity to 

environmental stresses.  However, whether this phenotype is the result of a change in 

global gene regulation or a decrease in BAM complex efficiency remains to be 

determined. 

The final research chapter establishes that insect host responses influence Y. pestis 

colonization of the flea digestive tract.  This chapter also improves the model systems 

used for studying the Y. pestis life cycle in the insect host.  We demonstrated that 

bacterial strains which are more sensitive to antimicrobial insult are not as effective in 

colonizing the flea digestive tract.  The data supports the notion that the flea midgut 

secretes antimicrobial peptides and ROS in order to try and limit microbial establishment.  

The oxyR strain did not appear to be sensitive to the initial ROS response in O. Montana 

fleas, however, after maintenance blood meal, the strain’s ability to persist in the midgut 

was reduced.  Considering the success of wild type Y. pestis in the flea digestive tract, the 

data is consistent with the notion that bacteria leaving the mammalian blood stream have 

been primed for resisting initial ROS responses within the flea midgut (5).  Furthermore, 

Y. pestis has clearly undergone a number of genetic modification events that have 

improved its success in the flea midgut (6).  Due to a lack of sequencing data and tools 
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for the genetic manipulation fleas, the Drosophila larval model provides an alternative 

system for understanding how Y. pestis colonizes the insect host.  Not only does the oral 

infection model verify the postulated antimicrobial resistance defects in mutated bacterial 

strains, but it validates the role of insect host immune genes in mediating the Y. pestis 

infection process. 

The role of genetic drift in influencing the colonization of flea populations with Y. 

pestis has not been previously examined.  In order to study this concern, we established 

an outbred laboratory population of X. cheopis fleas from an urban rat focus.  When we 

compared bacterial burdens between inbred and outbred strains, we found that inbred 

strains were more permissive to high bacterial titers.  While it is true that the X. cheopis 

outbred strain has a larger body size, and therefore, may ingest greater concentrations of 

Y. pestis in the initial infectious bloodmeal, the inbred O. Montana strain did not have a 

significant size difference compared to the outbred LA12 fleas yet carried bacterial 

burdens that were indistinguishable from the inbred X. cheopis strain.  Surprisingly, loss 

of bacterial oxyR expression did not reduce midgut bacterial burden in inbred flea 

populations.  However, in the outbred LA12 strain, Y. pestis titers were significantly 

lower for the ΔoxyR strain.  This is suggestive that ROS secretion may be compromised 

for inbred flea populations.  To avoid these concerns in the future, we have provided 

methods for the safe collection and screening of fleas.   These methods provide 

guidelines for re-establishing outbred populations of key flea species and generating 

populations of uncharacterized species, in order to study their capacity as a competent 

host for plague bacilli (7). 
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This project increases the tools at the disposal of those researching Yersinia-insect 

interactions.   It also supports the standardizing of methods used for the handling of 

laboratory flea population.  Together, this should improve the quality of data the can be 

acquired and applied to epidemiological modeling of plague and understanding insect 

midgut immune responses.   

5.2 Future Directions 

 The genetic tools generated for use with diaminopimelic acid auxotrophs are 

valuable to Yersinia pestis researchers as an alternative selection system.  While other 

non-antibiotic based selectable markers exists, such as those for heavy metal resistances, 

these systems do not provide the same degree of user safety and may cause additional 

health concerns due to the inevitable handling of toxic metals (8, 9).  Despite the risks, 

investigating the viability of other alternative selectable markers is warranted.  The cysZ 

promoter is a valuable genetic tool as its expression is both strong and thermally 

regulated in Y. pestis.  This sulfate transport promoter allows researchers to induce 

expression of recombinant DNA in an environmentally conditional manner.  Identifying 

new Y. pestis promoters that are regulated in response to specific environmental queues 

can be valuable for asking very specific questions about the Y. pestis life cycle. 

 The role of the BamC protein as a BAM complex accessory component remains 

incompletely understood.  While it is clear that BamC interacts with the essential 

complex member BamD, this protein’s function may be independent of OMP biogenesis.  

The significant loss of virulence associated with Y. pestis ΔbamC strains suggests that the 

protein is more important than previously believed for pathogenic bacteria.  Interestingly, 

it is the only member of the BAM complex accessory proteins with a surface exposed 
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region.  BamC’s C-terminal domain has recently been demonstrated to be surface 

accessible (10).  Our own studies using fluorescent microscopy and recombinant FLAG 

tagged BamC have suggested that antibodies can bind to the C-terminal domain of BamC 

without permeabilizing the bacterial membrane (Data not shown).  Studies where 

recombinant BamC was expressed with C-terminal truncations would be useful in 

determining whether the surface exposed region has implications in Y. pestis virulence.  

If this is true, it may cause those researching the BAM complex to rethink the role of 

BamC as merely a stabilizing protein for the complex.  It is possible that BamC may play 

a role in sensing the external environment in order to modulate the incorporation of 

OMPs through sigma factor regulation.  If the aforementioned hypothesis is true, it would 

make targeting of BamC with neutralizing antibodies an attractive strategy for disease 

prevention.  This would warrant in vivo studies where it could be determined if 

recombinant BamC or antibodies against specific BamC epitopes provided protection 

from subsequent Y. pestis challenge. 

Many questions remain to be addressed with regard to flea-Yersinia interactions 

and the transmission of Y. pestis to mammalian hosts.  The research indicates that the first 

7 days of infection appear to be a critical time in determining whether a Y. pestis 

infection will be cleared or will be able to establish itself within the flea.  By day 7 the 

majority of fleas still infected with Y. pestis have allowed the pathogen to establish itself 

in high titers (>10
5
 CFU).   It is important to note that one week post infection is the 

earliest time point that biofilm mediated blockage has been observed experimentally (11).  

Understanding bacterial and insect genes that modulate this early infection process may 

be critical for developing techniques to prevent the establishment and/or transmission of 
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Y. pestis.  Ideally, the X. cheopis chromosome will be sequenced in the near future, 

however, an intermediary step would involve isolating flea RNA from midgut epithelial 

cells as the infection progresses.  Generating a cDNA library of transcripts produced 

during the infection process should allow us to compare DNA sequences to closely 

related immune genes in other sequenced arthropods.  This would make it possible for 

qPCR studies to be performed to study temporal dynamics of flea immune responses. 

While the production of EPS is critical for early Y. pestis establishment in the 

digestive tract, combining the loss of EPS with a defect in antimicrobial resistance did 

not appear to increase bacterial clearance.  This result may suggest that some percentage 

of the bacteria may never reach the midgut and strains defective for EPS production are 

more susceptible to host immune responses.  Furthermore, in studies of early phase 

transmission, biofilm formation was not required for flea-borne transmission of plague 

during the first 4 days of infection (12).  The possibility exists that there is an EPS-

independent mechanism of flea colonization that may involve colonization of another 

area of the flea.  It has been suggested that the flea mouthparts may become contaminated 

with Y. pestis and that bacteria can survive on the surface of chitin for a limited time. If 

this were true, it would provide a possible mechanism for early phase transmission of 

plague bacilli.  Y. pestis present on the surface of the flea mouthparts, specifically the 

maxillary lacinae and the epipharynx, would repeatedly be in contact with dermal tissue 

during a feeding event.  Mechanical transmission of disease through mouthpart 

contamination has been documented and even occurs in non-blood feeding arthropods 

(13-15).  Preliminary studies into whether Y. pestis can survive on the surface of chitin 

and for how long may provide a starting point for studying this phenomenon.  We 
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propose that screening the Y. pestis proteome for chitin binding proteins may be useful 

for understanding bacterial adherence to the flea.  If the bacteria in early phase 

transmission originate from the flea digestive tract, the mechanism of its arrival in the 

host dermis remains elusive and may have more to do with the physiology of the flea bite 

rather than a directed strategy of the bacterium. 

Ideally, researchers will establish a threshold for bacterial burden that denotes 

when transmission events can actually occur.  One of the difficulties with this type of 

analysis is that bacterial enumeration and excision of midguts for fluorescent microscopic 

analysis result in termination of experimentally useful organisms.  Bioluminescent 

imaging of bacteria in the flea midgut would allow researchers to rapidly identify 

infected fleas, roughly estimate the amount of bacteria within flea biofilms, and allow 

fleas positive for Y. pestis to continue the infection process without termination of the 

experimental insect (16, 17).  This imaging process has been successfully employed 

during in vivo challenges with Y. pestis in murine experimental models of bubonic plague 

(18).  Our data is suggestive that during the Y. pestis colonization process, by day 7, 

roughly half of the experimental flea population still harbors bacteria.  This situation 

necessitates doubling the number of insects for experimental screening in order to ensure 

that an exact number of fleas will actually retain bacteria at any late stage time point.  

The number of fleas required for statistical significance will likely increase when 

studying arthropod attenuated Y. pestis mutants.  Furthermore, bacterial dosages 

traditionally used for infecting fleas with Y. pestis in the laboratory are likely larger than 

the amount of bacteria that the mammalian blood stream can support before the animal 

succumbs to disease.  Using infectious doses consistent with the limitations of the 
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mammalian bloodstream would likely lead to decreased bacterial colonization 

percentages of flea populations.  Bioluminescent tracking would provide for the 

acquisition of precise colonization data for physiologically relevant doses.  A practically 

unlimited number of fleas can rapidly be screened using this method of analysis, 

eliminating concerns of small sample sizes. 

In totality, a key piece of information is missing from our understanding of the Y. 

pestis transmission cycle.  There is strong evidence to suggest, given our current 

understanding of the Y. pestis infection cycle, that bubonic plague should be self-limiting.  

Development of bubonic plague is acute, progresses rapidly, and is almost always 

terminal for the mammalian host.  In the insect host, Y. pestis eventually forms a biofilm 

that blocks the flea esophagus, preventing ingestion and ultimately leading to the death of 

the flea.  If this is the entirety of the Y. pestis life cycle, how do plague bacilli still persist 

in the wild?  There is no evidence to suggest that Y. pestis is capable of existing as a 

latent infection in mammalian or insect species to re-emerge at a later time with the 

correct biological trigger.  There is limited evidence to suggest that Y. pestis survives 

environmentally, within the soil, however the mechanism of how contaminated soil 

would be reintroduced into either host currently lacks experimental demonstration (19, 

20).  As such, comprehensive examination of the Y. pestis life cycle is needed to address 

the missing piece of Y. pestis environmental stability. 

5.3 Contributions to the Field 

 The DAP selection project provides safe and practical genetic tools for the study 

of plague pathogenesis.  The system avoids concerns over in vivo plasmid loss to ensure 

expression of recombinant DNA throughout the disease process.  Principle investigators 
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concerned with safety can use this system in order to reduce health risks for select agent 

users.    The possibility exists that DURC concerns may cause stricter regulations on 

antibiotic use to be implemented on Tier 1 Select Agents by the CDC in the future, 

including eliminating the use of antibiotic resistance cassettes in fully virulent Y. pestis 

(21).  If this were to occur, this is one of the few developed and rigorously tested genetic 

systems for Y. pestis that would comply with the standards set by Koch’s molecular 

postulates. 

Data presented supports the notion that BamC important for in vivo survival of 

pathogenic Eubacteria in refractory host environments.  We propose a new hypothesis for 

novel function of BamC in regulating insertion of specific protein subsets into the Gram-

negative bacterial OM.  Our data provides the first evidence of a surface exposed 

virulence factor that is important for bacterial survival in both mammalian and insect 

hosts.  As a virulence factor capable of inducing a mammalian immunogenic response, 

BamC is a potential therapeutic target that may be broadly applicable to multiple Gram-

negative bacterial pathogens (22). 

The final chapter provides direct evidence that flea host immune responses play a 

role in Y. pestis colonization of the midgut.  The data is consistent with a requirement for 

EPS production that likely reduces bacterial clearance early during infection due to 

biofilm mediated  resistance to host immune response.  BamC colonization data supports 

the notion that there are additional OMPs utilized by Y. pestis for survival in the flea 

midgut beyond those implicated in EPS production and Ymt mediated resistance.    In 

addition, we provide evidence for the applicability of a Drosophila oral infection model 

for studying early Y. pestis-insect midgut interactions.  Finally, we show that flea 
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inbreeding may cause laboratory flea populations to be more permissive to the 

colonization of plague, perhaps due to a dampening of innate immunity.  Our studies 

support a strategy whereby flea researchers are proactive in promoting genetic 

heterogeneity in laboratory flea populations. 
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