ION-SELECTIVE ELECTRODES FOR SIMULTANEOUS REAL-TIME ANALYSIS OF SOIL MACRONURIENTS

Hak-Jin Kim

Dr. John W. Hummel and Dr. Kenneth A. Sudduth, Dissertation Supervisors

ABSTRACT

Automated sensing of soil macronutrients (i.e., N, P, and K) would allow more efficient mapping of soil nutrient variability for variable-rate nutrient management. This study reports on the development of a sensor array consisting of three different ionselective electrodes (ISEs) for simultaneous determination of soil macronutrients. The sensitivity and selectivity of PVC membrane-based ISEs with tetradodecylammonium nitrate (TDDA) and valinomycin for sensing nitrate and potassium, respectively, and of cobalt rod-based phosphate ISEs were satisfactory for measuring N, P, and K ions over typical ranges of soil concentrations. The nitrate ISEs, when used in conjunction with the Kelowna extractant ($0.25M CH_3COOH + 0.015M NH_4F$), provided soil NO₃-N values similar to those obtained with standard methods (i.e., automated ion analyzer and 1M KCl extractant). However, the soil K values obtained with the K ISEs and Kelowna extractant were about 50% lower than those obtained with an ICP spectrometer and Mehlich III extractant due to decreased K extraction by the Kelowna solution. The ISE-P values for soil were about 63% lower than ICP-P values (ICP and Mehlich III) due to both decreased P estimates in soil extracts by cobalt electrodes and reduced P extraction by the Kelowna solution. Nevertheless, strong linear relationships ($r^2 > 0.78^{**}$) existing between the two methods would make it possible to use the K and P ISEs for soil K and P sensing.