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Abstract

This project consists of three distinct but related parts. The first part studies

the problem of estimating the covariance matrix ΣΣΣ and the precision matrix ΩΩΩ (the

inverse of the covariance matrix) in a star-shaped model with missing data. By

considering a type of Cholesky decomposition of the precision matrix ΩΩΩ = ΨΨΨ′ΨΨΨ,

where ΨΨΨ is a lower triangular matrix with positive diagonal elements, we introduce

a special group G, which is a subgroup of the group consisting of all lower triangular

matrices, and then develop the invariant Haar measures on G, the reference prior,

and the Jeffreys prior of ΨΨΨ. We also introduce a class of priors of ΨΨΨ that includes

all the priors described above. The posterior properties are discussed and the closed

forms of Bayesian estimators are derived under any of the Stein loss, the entropy

loss, and the symmetric loss. Consequently, the maximum likelihood estimate of the

covariance matrix is inadmissible under any of the above three loss functions. Some

simulation results are given for illustration.

The second part deals with Bayesian analysis for spatially correlated data. We first

propose an efficient algorithm for Bayesian spatial analysis via the generalized Ratio-

of-Uniforms method, which works for a general class of priors including the reference

prior. The main advantage of our algorithm over other MCMC algorithms is that it

x



generates independent samples from the resulting posterior distribution. A detailed

example based on simulation is provided for illustration. We then present a Bayesian

spatial methodology for analyzing the site index data from the Missouri Ozark Forest

Ecosystem Project (MOFEP). Based on ecological background and availability, we

choose three variables, aspect class, land type association and soil depth as covariates.

To allow great flexibility of the smoothness of the random field, we pick up the Matérn

family as the correlation function. Because there is no previous knowledge of the

parameters in the model, we choose the reference prior as an appropriate prior. An

efficient algorithm based on the generalized Ratio-of-Uniforms method is applied for

the posterior simulation. Our results show that aspect class and soil depth are both

significant while land type association is less significant. Model validation is briefly

discussed. In addition, a prediction map of site index in site one of MOFEP is created.

In the third part, we establish a new spatial model taking into account several

close measurements as repeated measurements in one location and apply it to the

analysis of the total vegetation coverage data in site one of MOFEP. An MCMC

algorithm based on the shrinkage slice sampler is developed. Our results show that

the soil depth covariate is an important factor while the aspect class is less important

when modelling the total vegetation coverage. We also show that the strong spatial

effect does exist in the data discussed and the measurements in four quadrats of a

subplot are not strongly correlated but are not independent. In addition, prediction

of the total vegetation coverage at unmeasured locations is established. Possible

generalizations are briefly discussed.
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Chapter 1

Introduction

The Missouri Ozark Forest Ecosystem Project (MOFEP) is an on-going, centuries-

long experiment that is designed to monitor and assess the short and long-term effects

of common management practices on Ozark ecosystems (see Brookshire and Shifley

(1997), Shifley and Brookshire (2000) and Shifley and Kabrick (2002)). The MOFEP

will provide a comprehensive evaluation of the impacts of operational management

practices on a wide array of ecosystem attributes. This project mainly focuses on the

analysis of the site index data and it is organized as follows.

In Chapter 2, we study the problem of estimating the covariance matrix ΣΣΣ and the

precision matrix ΩΩΩ (the inverse of the covariance matrix) in the star-shaped model

with missing data. By considering a type of Cholesky decomposition of the precision

matrix ΩΩΩ = ΨΨΨ′ΨΨΨ, where ΨΨΨ is a lower triangular matrix with positive diagonal ele-

ments, we get the MLEs of the covariance matrix and precision matrix and prove that

both of them are biased. Based on the MLEs, unbiased estimators of the covariance

matrix and precision matrix are obtained. A special group G, which is a subgroup of

1



the group consisting all lower triangular matrices, is introduced. The invariant Haar

measures on G, the reference prior, and the Jeffreys prior of ΨΨΨ also are discussed. We

also introduce a class of priors of ΨΨΨ, which includes all the priors described above.

The posterior properties are discussed and the closed forms of Bayesian estimators

are derived under any of the Stein loss, the entropy loss, and the symmetric loss.

Consequently, the MLE of the covariance matrix (precision matrix) is inadmissible

under any of the above three loss functions. Some simulation results are given for

illustration. Combining a star-shaped model with a Bayesian spatial model discussed

in Chapters 3 and 4, one may consider to establish a new one, a Bayesian multivariate

spatial model with conditional independence structure, which may be applied to the

study of the MOFEP in the future.

In Chapter 3, we propose an efficient algorithm for Bayesian spatial analysis via

the generalized Ratio-of-Uniforms method. The algorithm works for a general class

of priors including the reference prior developed by Berger et al. (2001). The main

advantage of our algorithm over other MCMC algorithms is that it generates inde-

pendent samples from the resulting posterior distribution. A detailed example based

on simulation is provided for illustration.

In Chapter 4, we develop a Bayesian spatial model for analyzing the site index data

from the MOFEP. Based on ecological background and availability, we choose three

variables, aspect class, land type association and soil depth as covariates. To allow

great flexibility of the smoothness of the random field, we choose the Matérn family as

the correlation function. We choose the reference prior as an appropriate prior because

there is no previous knowledge of the parameters in the model. The algorithm based

on the generalized Ratio-of-Uniforms method, proposed in Chapter 3, is applied for

2



the posterior simulation. One advantage of the algorithm is that this simulation

method can generate independent samples from the required posterior distribution,

which is much more efficient for both statistical inference of the parameters and

prediction of the site indexes at unsampled locations. Our results show that aspect

class and soil depth are both significant in the model while land type association is

less significant. The model validation is briefly discussed. In addition, our simulation

method allows easy realization for computing quantities from the posterior predictive

distributions.

In Chapter 5, we establish a new spatial model taking into account several close

measurements as repeated measurements in one location and apply it to the analysis of

the total vegetation coverage data in site one of the MOFEP. An MCMC algorithm

based on the shrinkage slice sampler is developed. Our results show that the soil

depth covariate is an important factor while the aspect class is less important when

modelling the total vegetation coverage. In addition, the strong spatial effect does

exist in the data discussed and the measurements in four quadrats of a subplot are

not strongly correlated but are not independent. Prediction of the total vegetation

coverage at unmeasured locations is developed. Finally, possible generalizations are

briefly discussed.
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Chapter 2

Bayesian Inference on a Covariance

Matrix in a Star-shaped Model

2.1 Introduction

The multivariate normal distribution plays a key role in multivariate statistical

analysis. There is a large literature on estimating the covariance matrix and precision

matrix in the saturated multivariate normal population, where no additional restric-

tion other than being positive definite is required. See, for example, Haff (1980), Sinha

and Ghosh (1987), Krishnamoorthy and Gupta (1989), Yang and Berger (1994), Sun

(1998), Sun and Pang (2000), Zhou et al. (2001) and others. However, as the num-

ber of variables p in a multivariate distribution increases, the number of parameters

p(p + 1)/2 to be estimated increases fast. Unless the number of observations, n, is

very large, estimation is often inefficient, and models with many parameters are, in

general, difficult to interpret. In many practical situations, there will be some man-

4



ifest inter-relationships among several variables. One important case is that several

group variables that are conditionally independent, given other remaining variables.

For the multivariate normal distribution, this will correspond to some zeros among

the entries of the precision matrix. See Dempster (1972), Whittaker (1990), or Lau-

ritzen (1996). Bayesian model selection of detecting zeros in precision matrix can be

found in Wong et al. (2002).

Assume that X ∼ Np(0, ΣΣΣ). The vector X is partitioned into k groups, that is,

X = (X′
1,X

′
2, . . . , X

′
k)
′, where Xi is pi-dimensional, and

∑k
i=1 pi = p. We assume that

given X1, the other subvectors X2, . . . ,Xk are mutually conditionally independent.

From Whittaker (1990) and Lauritzen (1996), the precision matrix ΩΩΩ = ΣΣΣ−1 has the

following special structure:

ΩΩΩ =




ΩΩΩ11 ΩΩΩ12 ΩΩΩ13 · · · ΩΩΩ1k

ΩΩΩ21 ΩΩΩ22 0 · · · 0

ΩΩΩ31 0 ΩΩΩ33 · · · 0

...
...

...
. . .

...

ΩΩΩk1 0 0 · · · ΩΩΩkk




. (2.1)

In fact, we can easily show that (2.1) is equivalent to

ΣΣΣ =




ΣΣΣ11 ΣΣΣ12 ΣΣΣ13 · · · ΣΣΣ1k

ΣΣΣ21 ΣΣΣ22 ΣΣΣ21ΣΣΣ
−1
11 ΣΣΣ13 · · · ΣΣΣ21ΣΣΣ

−1
11 ΣΣΣ1k

ΣΣΣ31 ΣΣΣ31ΣΣΣ
−1
11 ΣΣΣ12 ΣΣΣ33 · · · ΣΣΣ31ΣΣΣ

−1
11 ΣΣΣ1k

...
...

...
. . .

...

ΣΣΣk1 ΣΣΣk1ΣΣΣ
−1
11 ΣΣΣ12 ΣΣΣk1ΣΣΣ

−1
11 ΣΣΣ13 · · · ΣΣΣkk




. (2.2)

The case of k = 3 is considered in detail by Whittaker (1990) and is called a “butterfly

model.” For general k, we called the model a star-shaped model in Sun and Sun

5



(2005a) because the graphical shape of the relationships among the variables described

by Whittaker (1990) or Lauritzen (1996) is like a star.

The above model is very popular in some areas, especially in economics. For

example, let X1 be the federal interest rate, which is a global variable, and X2, . . . , X51

be the house price in each state, which are local variables. Then X2, . . . , X51 are

conditionally independent given X1 because each house price Xi, i = 2, . . . , k will

normally depend on its local situation if the federal interest rate is fixed.

The above star-shaped model is a special case of the lattice conditional indepen-

dence model introduced by Andersson and Perlman (1993). Although star-shaped

models or general graphical models have been used widely, as far as we know, few

theoretic results are obtained on estimating the covariance matrix and the precision

matrix in lattice conditional independence models. Andersson and Perlman (1993)

gave the form of the maximum likelihood estimator (MLE) of the covariance matrix

ΣΣΣ. Konno (2001) considered the estimation of the covariance matrix under the Stein

loss

L1(Σ̂ΣΣ, ΣΣΣ) = tr(Σ̂ΣΣΣΣΣ−1)− log |Σ̂ΣΣΣΣΣ−1| − p (2.3)

and proved that the MLE of ΣΣΣ is inadmissible. In fact, the Stein loss for estimating

the covariance matrix is equivalent to the following loss for estimating the precision

matrix ΩΩΩ = ΣΣΣ−1,

L∗1(Ω̂ΩΩ, ΩΩΩ) = tr(Ω̂ΩΩ−1ΩΩΩ)− log |Ω̂ΩΩ−1ΩΩΩ| − p. (2.4)

Of course, the Stein loss is related to the commonly used entropy loss. See Robert

6



(1994). Let f(x | ΣΣΣ) be the density of X under ΣΣΣ. The entropy loss is,

L2(Σ̂ΣΣ, ΣΣΣ) = 2
∫

log

{
f(X | Σ)

f(X | Σ̂ΣΣ)

}
f(X | ΣΣΣ) dX

= tr(Σ̂ΣΣ−1ΣΣΣ)− log |Σ̂ΣΣ−1ΣΣΣ| − p. (2.5)

The Stein loss is obtained from the entropy loss by switching the role of two arguments,

Ω̂ΩΩ and ΩΩΩ. The loss function L2 is typical entropy loss and has been studied by many

authors such as Sinha and Ghosh (1987), Krishnamoorthy and Gupta (1989), and

others.

Note that because neither L1 nor L2 is symmetric, we could consider a symmetric

version by adding the Stein loss and entropy loss:

L3(Σ̂ΣΣ, ΣΣΣ) = L1(Σ̂ΣΣ, ΣΣΣ) + L2(Σ̂ΣΣ, ΣΣΣ) = tr(Σ̂ΣΣΣΣΣ−1) + tr(Σ̂ΣΣ−1ΣΣΣ)− 2p (2.6)

The symmetric loss L3 was introduced by Kubokawa and Konno (1990) and Gupta

and Ofori-Nyarko (1995). It can be seen as estimating the covariance matrix and the

precision matrix simultaneously.

For estimating the precision matrix ΩΩΩ, the entropy loss and the symmetric loss

will be

L∗2(Ω̂ΩΩ, ΩΩΩ) = L2(Σ̂ΣΣ, ΣΣΣ) = tr(Ω̂ΩΩΩΩΩ−1)− log |Ω̂ΩΩΩΩΩ−1| − p (2.7)

and

L∗3(Ω̂ΩΩ, ΩΩΩ) = L3(Σ̂ΣΣ, ΣΣΣ) = tr(Ω̂ΩΩΩΩΩ−1) + tr(Ω̂ΩΩ−1ΩΩΩ)− 2p. (2.8)

For convenience, we will still name L∗1, L
∗
2, L

∗
3 as the Stein loss, the entropy loss, and

the symmetric loss for estimating the precision matrix ΩΩΩ.

7



Sun and Sun (2005a) considered the problem of estimating the precision matrix

under the entropy loss L∗2 and the symmetric loss L∗3 in the star-shaped case with

complete observations. They obtained the closed forms of Bayesian estimators with

respect to a class of priors of ΨΨΨ. Consequently, the MLE of the precision matrix is

inadmissible under either the entropy loss L∗2 or the symmetric loss L∗3.

Considering that missing data problems occur frequently in practice and their

analysis can be challenging, we will study the problem of estimating the covariance

matrix and the precision matrix in the star-shaped model with missing data. For

estimating the covariance matrix without restriction, Anderson (1957) listed several

general cases, where the MLEs of the parameters can be obtained in closed form.

Among these cases, the monotone missing-data pattern is most important. One also

can see the related references by Little and Rubin (1987), Konno (1995), Liu (1999),

Domonici et al. (2000) and so on. However, because there are some restrictions on

the covariance matrix in our model, we will see a lot of differences.

In this chapter, we will consider estimation of the covariance matrix and the

precision matrix in the star-shaped model with missing data, which generalizes some

results in Sun and Sun (2005a). In § 2.2, we first introduce the sample observations.

By introducing a type of Cholesky decomposition of the precision matrix ΩΩΩ = ΨΨΨ′ΨΨΨ,

where ΨΨΨ is a lower triangular matrix with positive diagonal elements, the MLEs of the

covariance matrix and the precision matrix are obtained, and it is proved that both

of them are not unbiased. Based on the MLEs, unbiased estimates of the covariance

matrix and the precision matrix are given. Considering that the parameter ΨΨΨ plays an

important role in estimating the covariance matrix and the precision matrix, a special

group G, which is related to the decomposition, is introduced in § 2.3. The invariant
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Haar measures of this group are given, and we also prove that the Jeffreys prior of

ΨΨΨ matrix is exactly the same as the right invariant Haar measure on the group G.

A reference prior is obtained by using the algorithm in Berger and Bernardo (1992).

In § 2.4, we introduce a class of priors of ΨΨΨ, which includes all priors such as the

left and right Haar measure and reference priors as special cases. Some properties

on the posterior under such class of priors are discussed. In § 2.5, the closed form of

Bayesian estimators with respect to this class of priors is obtained under the Stein

loss. Consequently, the best equivariant estimates under the group G is derived, and

thus it shows that the MLE of ΩΩΩ is inadmissible under the Stein loss. Results on

the entropy loss and symmetric loss are shown in § 2.6 and § 2.7. The results on

estimating covariance matrix are given in § 2.8. Some simulation results are given in

§ 2.9. Finally, we give some concluding remarks.

2.2 MLEs and Unbiased Estimators

2.2.1 Sample observations

Now suppose that we have the following observations:

Y1,Y2, . . . ,Yn from X ∼ Np(0, ΣΣΣ);

Z11,Z12, . . . ,Z1n1 from X1 ∼ Np1(0, ΣΣΣ11);

Zi1,Zi2, . . . ,Zini
from

(
X1

Xi

)
∼ Np1+pi


0,




ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii





 , i = 2, . . . , k. (2.9)

All Yis and Zijs are independent. Let S =
∑n

i=1 YiY
′
i and Vi =

∑ni
j=1 ZijZ

′
ij, i =

1, . . . , k. Then S,V1, . . . ,Vk are mutually independent and are sufficient statistics of

9



ΣΣΣ or ΩΩΩ. Now write S = (Sij), where Sij is a pi × pj submatrix and

Vi =




Vi11 Vi12

Vi21 Vi22


 , i = 2, . . . , k, (2.10)

where Vi11 is a p1 × p1 submatrix. Also let V1 = V111 for convenience. Assume that

n > p, n1 > p1 and ni > p1 + pi, i = 2, . . . , k. Then, S,V1, . . . ,Vk are all positive

definite with probability one and

S ∼ Wp(n, ΣΣΣ), V1 ∼ Wp1(n1, ΣΣΣ11),

Vi ∼ Wp1+pi


ni,




ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii





 , i = 2, . . . , k. (2.11)

We will estimate ΣΣΣ and ΩΩΩ based on the sufficient statistics S,V1,V2, . . . ,Vk.

2.2.2 Cholesky decomposition

Usually, it is difficult to get appropriate estimators of the covariance matrix or the

precision matrix with some restrictions. For example, if you want to estimate ΩΩΩ in

(2.1) directly, you have to estimate ΩΩΩ11, ΩΩΩ22, . . . , ΩΩΩkk, ΩΩΩ12, . . . , ΩΩΩ1k first. However, it

will not guarantee that the estimate of ΩΩΩ you obtained in this way is positive definite.

Now we will introduce the following Cholesky decomposition method to get MLEs of

ΣΣΣ and ΩΩΩ in the star-shaped model. This method will guarantee that the estimate

of ΩΩΩ obtained is positive definite. In addition, we will see that this decomposition is

still useful in getting Bayesian estimates of ΩΩΩ or ΣΣΣ.

Let

ΩΩΩ = ΨΨΨ′ΨΨΨ or ΣΣΣ = ∆∆∆∆∆∆′, (2.12)

where both ΨΨΨ and ∆∆∆ are p by p lower-triangular matrices with positive diagonal

entries. Thus ΨΨΨ = ∆∆∆−1, where ∆∆∆ is Cholesky decomposition of ΣΣΣ. From the structure
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of ΩΩΩ given by (2.1), it is easy to show that ΨΨΨ has the following block structure:

ΨΨΨ =




ΨΨΨ11 0 0 · · · 0

ΨΨΨ21 ΨΨΨ22 0 · · · 0

ΨΨΨ31 0 ΨΨΨ33 · · · 0

...
...

...
. . .

...

ΨΨΨk1 0 0 · · · ΨΨΨkk




, (2.13)

and thus

∆∆∆ = ΨΨΨ−1 =




ΨΨΨ−1
11 0 0 · · · 0

−ΨΨΨ−1
22 ΨΨΨ21ΨΨΨ

−1
11 ΨΨΨ−1

22 0 · · · 0

−ΨΨΨ−1
33 ΨΨΨ31ΨΨΨ

−1
11 0 ΨΨΨ−1

33 · · · 0

...
...

...
. . .

...

−ΨΨΨ−1
kk ΨΨΨk1ΨΨΨ

−1
11 0 0 · · · ΨΨΨ−1

kk




, (2.14)

with the ΨΨΨii being pi by pi lower-triangular matrices, i = 1, . . . , k. Note that there

is no restriction on ΨΨΨij(i ≥ j) except requiring that all diagonal elements of ΨΨΨii are

positive. This good property enables us to estimate ΨΨΨij first; then we can get the

estimates of ΣΣΣ and ΩΩΩ directly from the relationship between ΣΣΣ (or ΩΩΩ) and ΨΨΨ. This

method will ensure that the estimate of ΣΣΣ (or ΩΩΩ) obtained is positive definite if the

estimates of the diagonal elements in each ΨΨΨii are positive. Other properties of this

decomposition will be discussed in the next section.

2.2.3 The maximum likelihood estimates

Whittaker (1990) gives the expression of MLE of the covariance matrix ΣΣΣ for

k = 3 with complete observations. Sun and Sun (2005a) get the corresponding

result for general k. We will generalize them to the star-shaped model with missing
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observations. Let

W11 = S11 +
k∑

i=1

Vi11;

Wi11 = S11 + Vi11,

Wi1 = W′
1i = Si1 + Vi21,

Wi22 = Sii + Vi22,

Wii·1 = Wi22 −Wi1W
−1
i11W1i, i = 2, . . . , k, (2.15)

and let m1 = n +
∑k

t=1 nt, mi = n + ni, i = 2, . . . , k throughout this chapter. Also,

let W11·1 = W11 for convenience.

Proposition 2.1 Based on the incomplete data (S,V1, . . . ,Vk) in the star-shaped

model, the MLE Σ̂ΣΣM of ΣΣΣ is given as follows:

Σ̂ΣΣM
11 =

W11

m1

;

Σ̂ΣΣM
i1 = (Σ̂ΣΣM

1i )
′ =

Wi1W
−1
i11W11

m1

,

Σ̂ΣΣM
ii =

1

mi

Wii·1 +
1

m1

Wi1W
−1
i11W11W

−1
i11W1i, i = 2, . . . , k;

Σ̂ΣΣM
ij =

1

m1

Wi1W
−1
i11W11W

−1
j11W1j, 1 < i < j ≤ k. (2.16)

Proof. The likelihood function f(S,V1, . . . ,Vk | ΨΨΨ) is proportional to

|S|n−p−1
2 |ΣΣΣ|−n

2 etr
{
−1

2
ΣΣΣ−1S

}
|V1|

n1−p1−1

2 |ΣΣΣ11|−
n1
2 etr

{
−1

2
ΣΣΣ−1

11 V1

}

×
k∏

i=2

|Vi|
ni−p1−pi−1

2

∣∣∣∣∣∣

ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii

∣∣∣∣∣∣

−ni
2

etr




−1

2




ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii



−1

Vi





∝ |ΨΨΨ|n|ΨΨΨ11|n1

k∏

i=2

∣∣∣∣∣∣

ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii

∣∣∣∣∣∣

ni

· etr
{
−1

2
ΨΨΨSΨΨΨ′

}
etr

{
−1

2
ΨΨΨ11V1ΨΨΨ

′
11

}

×
k∏

i=2

etr




−1

2




ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii







Vi11 Vi12

Vi21 Vi22







ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii



′

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=
k∏

i=1

|ΨΨΨii|mi ·
k∏

i=1

etr
{
−1

2
ΨΨΨiiWii·1ΨΨΨ

′
ii

}

×
k∏

i=2

etr
{
−1

2
(ΨΨΨi1 + ΨΨΨiiWi1W

−1
i11)Wi11(ΨΨΨi1 + ΨΨΨiiWi1W

−1
i11)

′
}

(2.17)

≤
k∏

i=1

|ΨΨΨii|mi ·
k∏

i=1

etr
{
−1

2
ΨΨΨiiWii·1ΨΨΨ

′
ii

}
.

Hence, the MLE Ψ̂ΨΨ of ΨΨΨ will be determined by

Ψ̂ΨΨ′
iiΨ̂ΨΨii = miW

−1
ii·1, i = 1, . . . , k;

Ψ̂ΨΨi1 = −Ψ̂ΨΨiiWi1W
−1
i11, i = 2, . . . , k (2.18)

and thus by (2.12) and (2.14) the MLE of ΣΣΣ is obtained as described in the proposition.

Under the conditions n > p, n1 > p1 and ni > p1 + pi, i = 2, . . . , k, the MLE Σ̂ΣΣM

is positive definite with probability one. In addition, by (2.18), the MLE Ω̂ΩΩM of the

precision matrix ΩΩΩ can be straightforwardly obtained as follows:

Proposition 2.2 Based on the incomplete data (S,V1, . . . ,Vk) in the star-shaped

model, the MLE Ω̂ΩΩM of ΩΩΩ is given by

Ω̂ΩΩM
11 = m1W

−1
11 +

k∑

i=2

miW
−1
i11W1iW

−1
ii·1Wi1W

−1
i11;

Ω̂ΩΩM
1i = (Ω̂ΩΩM

i1 )′ = −miW
−1
i11W1iW

−1
ii·1,

Ω̂ΩΩM
ii = miW

−1
ii·1, i = 2, . . . , k. (2.19)

The MLE Ω̂ΩΩM of the precision matrix ΩΩΩ also can be obtained by the following

relationships between ΩΩΩ and ΣΣΣ,

ΩΩΩ11 = ΣΣΣ−1
11 +

k∑

i=2

ΣΣΣ−1
11 ΣΣΣ1iΣΣΣ

−1
ii·1ΣΣΣi1ΣΣΣ

−1
11 ;

ΩΩΩ1i = −ΣΣΣ−1
11 ΣΣΣ1iΣΣΣ

−1
ii·1,

ΩΩΩii = ΣΣΣ−1
ii·1, i = 2, . . . , k, (2.20)
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where

ΣΣΣii·1 = ΣΣΣii − ΣΣΣi1ΣΣΣ
−1
11 ΣΣΣ1i, i = 2, . . . , k.

Remark 2.1 For the star-shaped model with missing data, the MLE Σ̂ΣΣM is no longer

a minimal sufficient statistic for ΣΣΣ, which is different from the case with complete

observations in Sun and Sun (2005a). In fact, W11,W211, . . . ,Wk11,W21, . . . ,Wk1,

W22·1, . . . ,Wkk·1 are minimal sufficient statistics of ΣΣΣ, which can be shown by (2.17).

Sun and Sun (2005a) showed that for a star-shaped model with complete obser-

vations, the MLE Σ̂ΣΣM of the covariance matrix ΣΣΣ is unbiased while Ω̂ΩΩM is biased.

However, the following proposition shows that for the missing case, neither Σ̂ΣΣM nor

Ω̂ΩΩM is unbiased.

Proposition 2.3 Consider the star-shaped model with missing data.

(a) The MLE Σ̂ΣΣM in (2.16) is not an unbiased estimate of ΣΣΣ;

(b) The MLE Ω̂ΩΩM in (2.19) is not an unbiased estimator of ΩΩΩ.

Proof. See Appendix 2A.

2.2.4 Unbiased estimators

Based on Σ̂ΣΣM , Ω̂ΩΩM , we create unbiased estimates of ΣΣΣ and ΩΩΩ, respectively.

Proposition 2.4 Consider the star-shaped model with missing data.

(a) An unbiased estimate Σ̂ΣΣU of ΣΣΣ is given by

Σ̂ΣΣU
ii =

[
1− p1(m1 − p1 − 1)

m1(mi − p1 − 1)

]
Wii·1

mi − p1

+
Wi1W

−1
i11W11W

−1
i11W1i

m1

, i = 2, . . . , k.
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and Σ̂ΣΣU
ij = Σ̂ΣΣM

ij for other i, j, where Σ̂ΣΣM
ij is shown by (2.16) in Proposition 2.1.

(b) An unbiased estimate Ω̂ΩΩU of ΩΩΩ is given by

Ω̂ΩΩU
11 = (m1−p1−1)

(
1−

k∑

i=2

pi

mi − p1 − 1

)
W−1

11

+
k∑

i=2

(mi−p1−pi−1)W−1
i11W1iW

−1
ii·1Wi1W

−1
i11;

Ω̂ΩΩU
1i = −(mi − p1 − pi − 1)W−1

i11W1iW
−1
ii·1,

Ω̂ΩΩU
ii = (mi − p1 − pi − 1)W−1

ii·1, i = 2, . . . , k.

Proof. See Appendix 2B.

2.3 The Invariant Haar Measures and Noninfor-

mative Priors of ΨΨΨ

2.3.1 The Invariant Haar measures

From Sun and Sun (2005a), noninformative priors of ΨΨΨ play an important role in

getting appropriate estimates for the covariance matrix ΣΣΣ and the precision matrix ΩΩΩ

for the complete data case. We will discuss noninformative priors of ΨΨΨ for incomplete

data in this section. Define

G =
{
A ∈ Rp×p | A has a structure as (2.13)

}
. (2.21)
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Sun and Sun (2005a) showed that G is a group with respect to matrix multiplication.

For any i = 1, 2, . . . , k, let

ΨΨΨii =




ψi11 0 · · · 0

ψi21 ψi22 · · · 0

...
...

. . .
...

ψipi1 ψipi1 · · · ψipipi




. (2.22)

And for i = 2, . . . , k, let

ΨΨΨi1 =




φi11 φi12 · · · φi1p1

φi21 φi22 · · · φi2p1

...
...

. . .
...

φipi1 φipi2 · · · φipip1




. (2.23)

The left invariant Haar measure and the right invariant Haar measure of G are given

by

νl
G(dΨΨΨ) ∝ dΨΨΨ

p1∏
j=1

ψj
1jj ·

k∏
i=2

pi∏
j=1

ψp1+j
ijj

, (2.24)

νr
G(dΨΨΨ) ∝ dΨΨΨ

p1∏
j=1

ψp−j+1
1jj · k∏

i=2

pi∏
j=1

ψpi−j+1
ijj

, (2.25)

respectively. In addition, we can readily verify that νr
G(dΨΨΨ) = νl

G(d∆∆∆) and νl
G(dΨΨΨ) =

νr
G(d∆∆∆) because ∆∆∆ = ΨΨΨ−1.

2.3.2 The Jeffreys prior and a reference prior

The following proposition gives the Jeffreys prior and one reference prior of ΨΨΨ in

the star-shaped model with missing data.
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Proposition 2.5 Consider the star-shaped model with missing data.

(a) The Jeffreys prior πJ(dΨΨΨ) of ΨΨΨ is the same as the right invariant Haar measure

νr
G(dΨΨΨ) of G given by (2.25);

(b) The reference prior of ΨΨΨ for the ordered group {ψ111, (ψ121, ψ122), . . . , (ψ1p11, . . . ,

ψ1p1p1), (φ211, . . . , φ21p1 , ψ211), . . . , (φk11, . . . , φkpkp1 , ψkpk1, . . . , ψkpkpk
)} is given by

πR(dΨΨΨ) ∝ dΨΨΨ
k∏

i=1

pi∏
j=1

ψijj

. (2.26)

Proof. See Appendix 2C.

It is interesting to note that the Jeffreys prior of ΨΨΨ in the model with missing

data is the same as that in the model with complete data by Sun and Sun (2005a)

and the same conclusion holds for the reference prior of ΨΨΨ.

Remark 2.2 Unlike the case with complete data in Sun and Sun (2005a), it seems

impossible to get the closed form of equivariant estimators of ΣΣΣ or ΩΩΩ with respect to

G in the star-shaped model with missing data.

2.4 Properties of Posteriors of ΨΨΨ

In this section, we consider a class of priors of ΨΨΨ

p(ΨΨΨ) ∝
k∏

i=1

pi∏

j=1

ψ
aij

ijj exp(−bijψ
2
ijj), (2.27)

where aij ∈ R, bij ≥ 0, j = 1, . . . , pi, i = 1, . . . , k. This class includes the left Haar

invariant measure νl
G(ΨΨΨ), the right Haar invariant measure νr

G(ΨΨΨ) (the Jeffreys prior

πJ(ΨΨΨ)), and the reference prior πR(ΨΨΨ).
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We have the following posterior properties. The proof is straightforward and is

omitted.

Theorem 2.1 For the star-shaped model with missing data, the posterior p(ΨΨΨ |

S,V1, . . . ,Vk) under the prior p(ΨΨΨ) in (2.27) has the following properties:

(a) p(ΨΨΨ | S,V1, . . . ,Vk) is proper if and only if mi+aij +1 > 0, j = 1, . . . , pi, i =

1, . . . , k;

(b) ΨΨΨ11, (ΨΨΨ21, ΨΨΨ22), . . . , (ΨΨΨk1, ΨΨΨkk) are mutually independent;

(c) For i = 2, . . . , k, conditional posterior distribution of ΨΨΨi1 given ΨΨΨii is

ΨΨΨi1 | ΨΨΨii, (S,V1, . . . ,Vk) ∼ Npi,p1(−ΨΨΨiiWi1W
−1
i11, Ipi

⊗W−1
i11);

(d) For i = 1, . . . , k, the marginal posterior of ΨΨΨii is

ΨΨΨii | (S,V1, . . . ,Vk) ∼ exp
{
−1

2
tr(ΨΨΨiiWii·1ΨΨΨ

′
ii)

} pi∏

j=1

ψ
mi+aij

ijj exp(−bijψ
2
ijj).

From Theorem 2.1, each of the posterior densities under the left Haar invariant

measure νl
G(ΨΨΨ), the right Haar invariant measure νr

G(ΨΨΨ) (the Jeffreys prior πJ(ΨΨΨ)),

and the reference prior πR(ΨΨΨ) will be proper. Specifically, the posterior distribution

under the left Haar invariant measure νl
G(ΨΨΨ) is related to Wishart distribution as

shown below.

Corollary 2.1 If we take the left invariant Haar measure of the group G, νl
G(dΨΨΨ) as

a prior, then the posterior distribution of ΨΨΨ in the star-shaped model with missing

data satisfies

(a) ΨΨΨ11W11ΨΨΨ
′
11 | (S,V1, . . . ,Vk) ∼ Wp1(m1, Ip1);

(b) For i = 2, . . . , k, ΨΨΨiiWii·1ΨΨΨ
′
ii | (S,V1, . . . ,Vk) ∼ Wpi

(mi − p1, Ipi
).
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2.5 Bayesian Estimators of ΩΩΩ under the Stein Loss

The following lemma, which was proved in Sun and Sun (2005a), will be useful in

finding Bayesian estimators of ΩΩΩ with respect to the prior p(ΨΨΨ).

Lemma 2.1 Let G be a scalar positive definite matrix and C = (cij)m×m be its

Cholesky decomposition. Assume that Z = (zij)m×m is a random lower-triangular

matrix with positive diagonal elements whose distribution follows

[Z] ∝ exp
{
−1

2
tr(ZGZ′)

} m∏

i=1

zai
ii exp(−biz

2
ii). (2.28)

(a) If ai > 0, bi ≥ 0, i = 1, . . . , m, then

E(Z′Z) = (C′)−1diag(δ1, . . . , δm)C−1, (2.29)

where δi = (ai + 1)/(1 + 2bic
−2
ii ) + m− i, i = 1, . . . , m.

(b) If ai > 1, bi ≥ 0, i = 1, . . . , m, then

E(Z′Z)−1 = C diag(η1, . . . , ηm)C′, (2.30)

where η1 = u1, ηj = uj
∏j−1

i=1 (1 + ui), j = 2, . . . , m with ui = (1 + 2bic
−2
ii )/(ai − 1),

i = 1, . . . , m.

Now define

T =




T11 0 0 · · · 0

W21W
−1
211T11 T22 0 · · · 0

W31W
−1
311T11 0 T33 · · · 0

...
...

...
. . .

...

Wk1W
−1
k11T11 0 0 · · · Tkk




, (2.31)
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and then we have

R = T−1 =




T−1
11 0 0 · · · 0

−T−1
22 W21W

−1
211 T−1

22 0 · · · 0

−T−1
33 W31W

−1
311 0 T−1

33 · · · 0

...
...

...
. . .

...

−T−1
kk Wk1W

−1
k11 0 0 · · · T−1

kk




, (2.32)

where Tii is Cholesky decomposition of Wii·1, i = 1, 2, . . . , k.

Theorem 2.2 Suppose that mi +aij − 1 > 0, j = 1, . . . , pi, i = 1, . . . , k. Then under

the Stein loss L∗1, the Bayesian estimate of ΩΩΩ with respect to the prior p(ΨΨΨ) in (2.27)

is given by

Ω̂ΩΩ1 = R′B1R, (2.33)

where R is given by (2.32), B1 = diag(B11,B12, . . . ,B1k), B11 = D+
∑k

i=2 piT
′
11W

−1
i11T11

and D = diag(d1, . . . , dp1) with dj = (m1+a1j +1)/(1+2b1jt
−1
1jj)+p1−j, j = 1, . . . , p1;

B1i = diag(b1i1, . . . , b1ipi
) with b1ij = (mi +aij +1)/(1+2bijt

−1
ijj)+pi−j, j = 1, . . . , pi,

i = 2, . . . , k. And tijj is the jth diagonal element of Tii, j = 1, . . . , pi, i = 1, . . . , k.

Proof. See Appendix 2D.

By the same argument with Corollary 2 in Sun and Sun (2005a), we can get the

best G-equivariant estimator of ΩΩΩ, which is the same as the Bayesian estimator with

respect to the left Haar invariant measure νl
G(ΨΨΨ) listed below.

Corollary 2.2 Under the Stein loss L∗1, the best G-equivariant estimator of ΩΩΩ is the

same as Bayesian estimator with respect to the left Haar invariant measure νl
G(ΨΨΨ)

and is given by

Ω̂ΩΩ1B = R′B1BR, (2.34)
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where R is given by (2.32), B1B = diag(B11B,B12B, . . . ,B1kB), B11B = D1 +
∑k

i=2 pi

T′
11W

−1
i11T11 and D1 = diag(d11, . . . , d1p1) with d1j = m1 + p1 − 2j + 1, j = 1, . . . , p1;

B1iB = diag(bi1B, . . . , bipiB) with bijB = mi−p1+pi−2j+1, j = 1, . . . , pi, i = 2, . . . , k.

Remark 2.3 It is well-known that the group of lower-triangular matrices is solvable

and thus its subgroup G is also solvable (see Bondar and Milnes (1981) for a survey).

By Kiefer (1957), the best G-equivariant estimator Ω̂ΩΩ1B is also minimax with respect

to the Stein loss L∗1.

In addition, we obtain Bayesian estimators of ΩΩΩ with respect to the right Haar

invariant measure νr
G(ΨΨΨ) (the Jeffreys prior πJ(ΨΨΨ)) and the reference prior πR(ΨΨΨ) in

the following:

Corollary 2.3 Consider the Stein loss L∗1. (a) the Bayesian estimator Ω̂ΩΩ1J of ΩΩΩ with

respect to the Jeffreys prior πJ(ΨΨΨ) is

Ω̂ΩΩ1J = R′B1JR, (2.35)

where

B1J = diag(B11J ,B12J , . . . ,B1kJ), (2.36)

B11J = (m1 − p + p1)Ip1 +
k∑

j=2

pjT
′
11W

−1
j11T11; B1iJ = miIpi

, i = 2, . . . , k.

(b) The Bayesian estimator Ω̂ΩΩ1R with respect to the reference prior πR(ΨΨΨ) is

Ω̂ΩΩ1R = R′B1RR, (2.37)

where

B1R = diag(B11R,B12R, . . . ,B1kR), (2.38)
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B11R = D1R +
k∑

j=2

pjT
′
11W

−1
j11T11;

B1iR = diag(mi + pi − 1,mi + pi − 2, . . . , mi), i = 2, . . . , k;

D1R = diag(m1 + p1 − 1,m1 + p1 − 2, . . . , mi).

The MLE of ΩΩΩ given by (2.19) can be expressed as

Ω̂ΩΩM = R′ diag(m1Ip1 ,m2Ip2 , . . . , mkIpk
)R,

and the unbiased estimate Ω̂ΩΩU of ΩΩΩ given by Proposition 2.4(b) can be expressed as

Ω̂ΩΩU = R′UR, where

U = diag
{
(m1 − p1 − 1)

(
1−

k∑

i=2

pi

mi − p1 − 1

)
Ip1 , (m1 − p1 − p2 − 1)Ip2 ,

. . . , (mk − p1 − pk − 1)Ipk

}
.

Remark 2.4 By Corollary 2.2, Ω̂ΩΩM , Ω̂ΩΩU , Ω̂ΩΩ1J and Ω̂ΩΩ1R are all inadmissible under

the Stein loss L∗1 because they are all equivariant with respect to the group G.

Note that any estimate of ΩΩΩ having the form of R′ diag(a1, . . . , ap)R will be equiv-

ariant with respect to the group G, where ai is a constant, i = 1, . . . , p. Thus, by

Corollary 2.2, any estimator having the form like R′ diag(a1, . . . , ap)R will be inad-

missible under the Stein loss. However, it is unclear whether R′ diag(a1, . . . , ap)R is

a Bayesian estimate, which also is different from the case with complete data in Sun

and Sun (2005a).
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2.6 Bayesian Estimators of ΩΩΩ under the Entropy

Loss

Theorem 2.3 Suppose that mi +aij − 1 > 0, j = 1, . . . , pi, i = 1, . . . , k. Then under

the entropy loss L∗2, the Bayesian estimate of ΩΩΩ with respect to the prior p(ΨΨΨ) in

(2.27) is given by

Ω̂ΩΩ2 = R′B2R, (2.39)

where R is given by (2.32), B2 = diag(B21,B22, . . . ,B2k) with

b211 =
1

u11

, b21j =
1

u1j

j−1∏

t=1

1

1 + u1t

, j = 2, . . . , p1 (2.40)

and

b2i1 =
1

{1 + tr(T11B
−1
21 T′

11W
−1
i11)}ui1

,

b2ij =
1

{1 + tr(T11B
−1
21 T′

11W
−1
i11)}uij

j−1∏

t=1

1

1 + uit

, j = 2, . . . , pi, i = 2, . . . , k. (2.41)

Here uij = (1 + 2bijt
−2
ijj)/(mi + aij − 1) with tijj being the jth diagonal element of Tii,

j = 1, . . . , pi, i = 1, . . . , k.

Proof. See Appendix 2E.

Corollary 2.4 Under the entropy loss L∗2, the best G-equivariant estimator of ΩΩΩ is

the same as the Bayesian estimator with respect to the left Haar invariant measure

νl
G(ΨΨΨ) and is given by

Ω̂ΩΩ2B = R′B2BR, (2.42)
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where R is given by (2.32), B2B = diag(B21B,B22B, . . . ,B2kB), and B2iB = diag(di1B,

. . . , dipiB) with

dijB =





(m1 − j − 1)(m1 − j)

m1 − 1
, if i = 1, j = 1, . . . , p1,

(mi − p1 − j − 1)(mi − p1 − j)

(mi − 1){1 + tr(B21T
′
11W

−1
i11T11)}

, if i = 2, . . . , k, j = 1, . . . , pi.

(2.43)

Remark 2.5 Similar to Remark 2.3, the best G-equivariant estimator Ω̂ΩΩ2B is also

minimax with respect to the entropy loss L∗2.

Corollary 2.5 Consider the entropy loss L∗2. (a) The Bayesian estimator Ω̂ΩΩ2J of ΩΩΩ

with respect to the Jeffreys prior πJ(ΨΨΨ) is

Ω̂ΩΩ2J = R′B2JR, (2.44)

where

B2J = diag(B21J ,B22J , . . . ,B2kJ), (2.45)

B21J = (m1 − p− 1)Ip1 ; B2iJ =
(m1 − p− 1)(mi − pi − 1)

tr(T′
11W

−1
i11T11) + m1 − p− 1

Ipi
, i = 2, . . . , k.

(b) The Bayesian estimator Ω̂ΩΩ2R with respect to the reference prior πR(ΨΨΨ) is

Ω̂ΩΩ2R = R′B2RR, (2.46)

where

B2R = diag(B21R,B22R, . . . ,B2kR), (2.47)

with

B21R = diag
(
m1 − 2,

(m1 − 2)2

m1 − 1
, . . . ,

(m1 − 2)p1

(m1 − 1)p1−1

)
;

B2iR = diag
(
mi − 2,

(mi − 2)2

mi − 1
, . . . ,

(mi − 2)pi

(mi − 1)pi−1

)

/
{1 + tr(B21RT′

11W
−1
i11T11)}, i = 2, . . . , k.
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Remark 2.6 Similar to Remark 2.4, the MLE Ω̂ΩΩM and the unbiased estimator Ω̂ΩΩU ,

Ω̂ΩΩ2J and Ω̂ΩΩ2R are still inadmissible under the entropy loss L∗2.

2.7 Bayesian Estimators of ΩΩΩ under the Symmetric

Loss

We need the following lemma, which is a direct result of Lemma 2.2 in Eaton and

Olkin (1987).

Lemma 2.2 Let A = {A ∈ Rp×p | A is lower-triangular with positive diagonal

elements}. If ∆∆∆ and ΛΛΛ are both positive definite, then

min
A∈A

{
tr(A∆∆∆A′) + tr((A′)−1ΛΛΛA−1)

}
= 2tr(ΛΛΛ1/2∆∆∆ΛΛΛ1/2)1/2

is achieved by taking A as the inverse of Cholesky decomposition of ΛΛΛ−1/2(ΛΛΛ1/2∆∆∆ΛΛΛ1/2)1/2

ΛΛΛ−1/2. Specifically, if ∆∆∆ and ΛΛΛ are both diagonal, then the minimum will be achieved

at A = ΛΛΛ1/4∆∆∆−1/4.

Theorem 2.4 Suppose that mi +aij − 1 > 0, j = 1, . . . , pi, i = 1, . . . , k. Then under

the symmetric loss L∗3, the Bayesian estimator of ΩΩΩ with respect to the prior p(ΨΨΨ) in

(2.27) is given by

Ω̂ΩΩ3 = R′B3R, (2.48)

where R is given by (2.32), B3 = diag(B31,B32, . . . ,B3k) with B31 = B
1/2
11

(B
1/2
11 B−1

21 B
1/2
11 )−1/2B

1/2
11 and B3i = B

1/2
1i B

1/2
2i , i = 2, . . . , k, where B1i and B2i are

given by Theorem 2.2 and Theorem 2.3, respectively, i = 1, 2, . . . , k.
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Proof. See Appendix 2F.

Corollary 2.6 Under the symmetric loss L∗3, the best G-equivariant estimator of ΩΩΩ

is the same as the Bayesian estimator with respect to the left Haar invariant measure

νl
G(ΨΨΨ) and is given by

Ω̂ΩΩ3B = R′B3BR, (2.49)

where B3B = diag(B31B,B32B,. . . ,B3kB) with B31B = B
1/2
11B(B

1/2
11BB−1

21BB
1/2
11B)−1/2B

1/2
11B

and B3iB = B
1/2
1iBB

1/2
2iB, i = 2, . . . , k, where B1iB and B2iB are given by Corollary 2.2

and Corollary 2.4, respectively, i = 1, 2, . . . , k.

Remark 2.7 Similar to Remarks 2.3 and 2.5, the best G-equivariant estimators Ω̂ΩΩ2

is also minimax with respect to the symmetric loss L∗3.

Corollary 2.7 Consider the symmetric loss L∗3. (a) The Bayesian estimator Ω̂ΩΩ3J of

ΩΩΩ with respect to the Jeffreys prior πJ(ΨΨΨ) is

Ω̂ΩΩ3J = R′B3JR, (2.50)

where

B3J = B
1/2
1J (B

1/2
1J B−1

2J B
1/2
1J )−1/2B

1/2
1J

with B1J and B2J being given by (2.36) and (2.45), respectively.

(b) The Bayesian estimate Ω̂ΩΩ3R with respect to the reference prior πR(ΨΨΨ) is

Ω̂ΩΩ3R = R′B3RR, (2.51)

where

B3R = B
1/2
1R (B

1/2
1R B−1

2RB
1/2
1R )−1/2B

1/2
1R
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with B1R and B2R being given by (2.38) and (2.47), respectively.

Remark 2.8 Similar to Remark 2.2 and 2.4, Ω̂ΩΩM , Ω̂ΩΩU , Ω̂ΩΩ3J , and Ω̂ΩΩ3R are all inad-

missible under the symmetric loss L∗3.

2.8 Estimating the Covariance Matrix

As immediate corollaries of our results on estimating the precision matrix, we

now list the results for estimating covariance matrix under the star-shaped model

with missing data.

Theorem 2.5 Under the loss Li, i = 1, 2, 3, the Bayesian estimator of ΣΣΣ is given by

Σ̂ΣΣi = TB−1
i T′, (2.52)

where T is given by (2.31) and Bi, i = 1, 2, 3 is shown by Theorems 2.2,2.3, and 2.4,

respectively.

Corollary 2.8 Under the loss Li, i = 1, 2, 3, the G-equivariant estimator of ΣΣΣ, which

also is the Bayesian estimator with respect to the left Haar invariant measure νl
G(ΨΨΨ),

is given by

Σ̂ΣΣiB = TB−1
iB T′, (2.53)

where T is given by (2.31) and BiB, i = 1, 2, 3 is shown by Corollaries 2.2, 2.4, and

2.6, respectively.
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Corollary 2.9 For i = 1, 2, 3, the Bayesian estimator of ΣΣΣ with respect to the Jef-

freys prior πJ(ΨΨΨ) under the loss Li is

Σ̂ΣΣiJ = TB−1
iJ T′,

and the Bayesian estimate of ΣΣΣ with respect to the reference prior πR(ΨΨΨ) under the

loss Li is

Σ̂ΣΣiR = TB−1
iR T′,

where BiJ and BiR are shown by Corollaries 2.3, 2.5, and 2.7, respectively.

Remark 2.9 The MLE Σ̂ΣΣM , the unbiased estimator Σ̂ΣΣU , and the Bayesian estimates

Σ̂ΣΣiJ and Σ̂ΣΣiR are all inadmissible under the loss Li, i = 1, 2, 3.

Remark 2.10 The best G-equivariant estimators Σ̂ΣΣi is minimax with respect to the

loss Li, i = 1, 2, 3.

2.9 Simulation Results

In this section, we will compare the risks of MLE Ω̂ΩΩM , the unbiased estimator Ω̂ΩΩU ,

the best equivariant estimator Ω̂ΩΩiB, the Bayesian estimate Ω̂ΩΩiJ , the Bayesian estimate

Ω̂ΩΩiR under each L∗i , i = 1, 2, 3. Each risk will be denoted as RiM , RiU , RiB, RiJ , RiR

under L∗i , respectively.

Unlike the model with complete data studied by Sun and Sun (2005a), it is hard

to derive a closed form expression for the risks of the above estimates under any

L∗i . So we compare their risks by simulation. Because all of these estimators are
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Figure 2.1: Risk Comparisons when (p1, p2, p3) = (2, 1, 1), (n1, n2, n3) = (3, 4, 5) and
5 ≤ n ≤ 15. (a) under L∗1, (b) under L∗2, and (c) under L∗3.

equivariant, we may take ΣΣΣ = Ip in simulation. Some simulation results are plotted

in Figures 2.1-2.9. From the simulation study, the improvement over the risks of Ω̂ΩΩM ,

Ω̂ΩΩU , Ω̂ΩΩiJ and Ω̂ΩΩiR by Ω̂ΩΩiB under all three losses is quite substantial.

When bij 6= 0, then the corresponding Bayesian estimate Ω̂ΩΩBi of ΩΩΩ with respect

to the prior (2.27) under the loss L∗i is not equivariant, and thus its risk depends on

the covariance matrix ΣΣΣ. We did a small study of risk comparison between the best

equivariant estimate Ω̂ΩΩiB and the Bayesian estimate Ω̂ΩΩBi with aij = 2 and bij = 1

when (p1, p2, p3) = (2, 2, 3) and (n, n1, n2, n3) = (10, 3, 5, 4). Figure 2.10 shows the

results by taking ΣΣΣ = diag(λ, 1, 1, 1, 1, 1, 1) for the loss function L∗i , i = 1, 2, 3. We can

see that when λ is close to one, the improvement over the risks of the best equivariant

estimate Ω̂ΩΩiB by the Bayesian estimate Ω̂ΩΩBi under all three losses is quite substantial.
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Figure 2.2: Risk Comparisons when (p1, p2, p3) = (2, 1, 1), (n, n2, n3) = (5, 4, 5) and
5 ≤ n1 ≤ 15. (a) under L∗1, (b) under L∗2, and (c) under L∗3.
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Figure 2.3: Risk Comparisons when (p1, p2, p3) = (2, 1, 1), (n, n1, n3) = (5, 4, 5) and
5 ≤ n2 ≤ 15. (a) under L∗1, (b) under L∗2, and (c) under L∗3.
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Figure 2.4: Risk Comparisons when (p1, p2, p3) = (2, 2, 1), (n1, n2, n3) = (3, 5, 4) and
5 ≤ n ≤ 20. (a) under L∗1, (b) under L∗2, and (c) under L∗3.
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Figure 2.5: Risk Comparisons when (p1, p2, p3) = (2, 2, 1), (n, n2, n3) = (6, 5, 4) and
3 ≤ n1 ≤ 15. (a) under L∗1, (b) under L∗2, and (c) under L∗3.
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Figure 2.6: Risk Comparisons when (p1, p2, p3) = (2, 2, 1), (n, n1, n3) = (6, 3, 4) and
5 ≤ n2 ≤ 15. (a) under L∗1, (b) under L∗2, and (c) under L∗3.
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Figure 2.7: Risk Comparisons when (p1, p2, p3, p4, p5) = (2, 2, 3, 4, 1),
(n1, n2, n3, n4, n5) = (3, 5, 6, 7, 4) and 13 ≤ n ≤ 20. (a) under L∗1, (b) under
L∗2, and (c) under L∗3.
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Figure 2.8: Risk Comparisons when (p1, p2, p3, p4, p5) = (2, 2, 3, 4, 1),
(n, n2, n3, n4, n5) = (14, 5, 6, 7, 4) and 3 ≤ n1 ≤ 10. (a) under L∗1, (b) under
L∗2, and (c) under L∗3.

5 7 9 11
1.5

3

4.5

6

n
2

Ris
k

(a)

5 7 9 11
2

3

4

5

n
2

Ris
k

(b)

5 7 9 11
4.5

5.5

6.5

7.5

8.5

9.5

n
2

Ris
k

(c)

Ω
M

Ω
U

Ω
3B

Ω
3J

Ω
3R

Ω
M

Ω
U

Ω
2B

Ω
2J

Ω
2R

Ω
M

Ω
U

Ω
1B

Ω
1J

Ω
1R

Figure 2.9: Risk Comparisons when (p1, p2, p3, p4, p5) = (2, 2, 3, 4, 1),
(n, n1, n3, n4, n5) = (14, 4, 6, 7, 4) and 5 ≤ n2 ≤ 11. (a) under L∗1, (b) under
L∗2, and (c) under L∗3.
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Figure 2.10: Risk Comparisons between ΩΩΩiB and ΩΩΩBi when (p1, p2, p3) = (2, 2, 3),
(n, n1, n2, n3) = (10, 3, 5, 4) and ΣΣΣ = diag(λ, 1, 1, 1, 1, 1, 1). (a) under L∗1, (b) under
L∗2, and (c) under L∗3.

2.10 Concluding Remarks

This chapter deals with the problem of estimating the covariance matrix and the

precision matrix under the three common loss functions in the star-shaped model

with missing data. Using a type of Cholesky decomposition of the precision matrix

ΩΩΩ = ΨΨΨ′ΨΨΨ, we easily obtained the MLEs of the covariance matrix and the precision

matrix. Also, by introducing a class of priors of ΨΨΨ, we get the closed forms of Bayesian

estimators of ΩΩΩ under the Stein loss, entropy loss and symmetric loss, respectively.

This method is quite powerful in estimating the covariance matrix or the precision

matrix.

Although our sample plan is restricted to taking observations from X,X1, (X′
1,X

′
i)
′,

i = 2, . . . , k, which is popular in economic studies, we can deal with other cases such
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as taking observations from X, X1, (X′
1,X

′
i1
,X′

i2
. . . ,X′

ij
)′, 2 ≤ i1 < . . . < ij ≤ k by

applying the similar method. Of these cases, the monotone missing data pattern is

not required when the covariance matrix has a special structure, which is different

from the case of the covariance matrix with no restriction by Anderson (1957) and

Liu (1999) and so on. In addition, for convenience, we assume that the sample sizes

satisfying n > p, n1 > p1 and ni > p1 + pi, i = 2, . . . , k in this chapter. The essential

conditions are m1 > p1 + 1 and mi > p1 + pi + 1.

The investigation on a star-shaped model with missing data is, nevertheless, far

from being complete, and there are many important and interesting questions to be

further studied. An interesting but difficult problem is whether the best equivariant

estimate Σ̂ΣΣiB is admissible under the corresponding loss Li.

Since the decomposition ΩΩΩ = ΨΨΨ′ΨΨΨ is quite powerful in estimating the covariance

matrix and the precision matrix, we expect more results in this area by considering

priors in terms of ΨΨΨ in the future.

Combining a star-shaped model with a Bayesian spatial model discussed in Chap-

ters 3 and 4, one may consider to establish a new one, Bayesian multivariate spatial

model with conditional independence structure, which may be applied to our current

study of the MOFEP.
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2.11 Appendix

Appendix 2A Proof of Proposition 2.3

(a) In fact, we will show E(Σ̂ΣΣM
ii ) 6= ΣΣΣii, i = 2, . . . , k. By Proposition 2.1,

Σ̂ΣΣM
ii =

Wi22 −Wi1W
−1
i11W1i

mi

+
Wi1W

−1
i11W11W

−1
i11W1i

m1

=
Wi22

mi

+
( 1

m1

− 1

mi

)
Wi1W

−1
i11W1i +

Wi1W
−1
i11(

∑k
t=1 Vt11 −Vi11)W

−1
i11W1i

m1

.

Obviously, from (2.11), E(Wi22) = E(Sii + Vi22) = miΣΣΣii, i = 2, . . . , k and

E{Wi1W
−1
i11(

k∑

t=1

Vt11 −Vi11)W
−1
i11W1i} = (m1 −mi)E(Wi1W

−1
i11ΣΣΣ11W

−1
i11W1i).

Because




S11 S1i

Si1 Sii


 ∼ Wp1+pi


n,




ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii





 ,

it follows

Si1 | S11 ∼ Npi,p1(ΣΣΣi1ΣΣΣ
−1
11 S11, ΣΣΣii·1 ⊗ S11). (2.54)

Similarly,

Vi12 | Vi11 ∼ Npi,p1(ΣΣΣi1ΣΣΣ
−1
11 Vi11, ΣΣΣii·1 ⊗Vi11), (2.55)

and thus we have

(Si1 + Vi12) | (S11,Vi11) ∼ Npi,p1(ΣΣΣi1ΣΣΣ
−1
11 (S11 + Vi11), ΣΣΣii·1 ⊗ (S11 + Vi11)). (2.56)

So,

E(Wi1W
−1
i11W1i) = E{E(Wi1W

−1
i11W1i | (S11,Vi11))}
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= E{tr(W−1
i11Wi11)ΣΣΣii·1}+ E(ΣΣΣi1ΣΣΣ

−1
11 Wi11W

−1
i11Wi11ΣΣΣ

−1
11 ΣΣΣ1i)

= tr(Ip1)ΣΣΣii·1 + ΣΣΣi1ΣΣΣ
−1
11 E(Wi11)ΣΣΣ

−1
11 ΣΣΣ1i

= p1ΣΣΣii·1 + miΣΣΣi1ΣΣΣ
−1
11 ΣΣΣ1i (2.57)

and

E(Wi1W
−1
i11ΣΣΣ11W

−1
i11W1i) = E{E(Wi1W

−1
i11ΣΣΣ11W

−1
i11W1i | (S11,Vi11))}

= E{tr(W−1
i11ΣΣΣ11W

−1
i11Wi11)ΣΣΣii·1}+ E(ΣΣΣi1ΣΣΣ

−1
11 Wi11W

−1
i11ΣΣΣ11W

−1
i11Wi11ΣΣΣ

−1
11 ΣΣΣ1i)

= tr{E(S11 + Vi11)
−1ΣΣΣ11}ΣΣΣii·1 + ΣΣΣi1ΣΣΣ

−1
11 ΣΣΣ1i

=
p1

mi − p1 − 1
ΣΣΣii·1 + ΣΣΣi1ΣΣΣ

−1
11 ΣΣΣ1i. (2.58)

Hence,

E(Σ̂ΣΣM
ii ) =

E(Wi22)

mi

+
( 1

m1

− 1

mi

)
E(Wi1W

−1
i11W1i)

+
m1 −mi

m1

E(Wi1W
−1
i11ΣΣΣ11W

−1
i11W1i)

=

[
1 + p1

{
1

m1

− 1

mi

+
m1 −mi

m1(mi − p1 − 1)

}]
ΣΣΣii

+

[
1− mi

m1

− p1

{
1

m1

− 1

mi

+
m1 −mi

m1(mi − p1 − 1)

}]
ΣΣΣi1ΣΣΣ

−1
11 ΣΣΣ1i, (2.59)

which is not equal to ΣΣΣii.

(b) Because



S11 + Vi11 S1i + Vi12

Si1 + Vi21 Sii + Vi22


 ∼ Wp1+pi


n + ni,




ΣΣΣ11 ΣΣΣ1i

ΣΣΣi1 ΣΣΣii





 , (2.60)

we have Wii·1 ∼ Wpi
(mi − p1, ΣΣΣii·1), and thus

E(Ω̂ΩΩM
ii ) =

mi

mi − p1 − pi − 1
ΣΣΣ−1

ii·1 6= ΩΩΩii, i = 2, . . . , k,

which proves the second part.
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Appendix 2B Proof of Proposition 2.4

(a) Obviously, E(Σ̂ΣΣM
11) = E(S11 +

∑k
i=1 Vi11)/m1 = ΣΣΣ11. By (2.56),

E(Si1 + Vi21 | S11,Vi11) = ΣΣΣi1ΣΣΣ
−1
11 (S11 + Vi11)

and thus E(Σ̂ΣΣM
i1 ) = ΣΣΣi1 because of E(S11 + Vi11) = miΣΣΣ11, i = 2, . . . , k. In addition,

for any 1 < i < j ≤ k,

(
Si1

Sj1

)
| S11 ∼ Npi+pj ,p1




(
ΣΣΣi1

ΣΣΣj1

)
ΣΣΣ−1

11 S11,




ΣΣΣii·1 0

0 ΣΣΣjj·




⊗
S11


 ,

Vi21 | Vi11 ∼ Npi,p1(ΣΣΣi1ΣΣΣ
−1
11 Vi11, ΣΣΣii·1 ⊗Vi11),

Vj21 | Vj11 ∼ Npj ,p1(ΣΣΣj1ΣΣΣ
−1
11 Vj11, ΣΣΣjj· ⊗Vj11); (2.61)

then we get

(
Si1 + Vi21

Sj1 + Vj21

)
| (S11,Vi11,Vj11)

∼ Npi+pj ,p1

((
ΣΣΣi1ΣΣΣ

−1
11 (S11 + Vi11)

ΣΣΣj1ΣΣΣ
−1
11 (S11 + Vj11)

)
,
(

ΣΣΣii·1
⊗

(S11 + Vi11) 0

0 ΣΣΣjj·
⊗

(S11 + Vj11)

))
. (2.62)

Also, by E(W11) = m1ΣΣΣ11, we can easily obtain that E(Σ̂ΣΣM
ij ) = ΣΣΣi1ΣΣΣ

−1
11 ΣΣΣ1j = ΣΣΣij.

In addition, similar to (2.59), we can easily see that E(Σ̂ΣΣU
ii) = ΣΣΣii, i = 2, . . . , k and

the part (a) is proved.

(b) By (2.56),

Wi1 | Wi11 ∼ Npi,p1(ΣΣΣi1ΣΣΣ11Wi11, ΣΣΣii·1 ⊗Wi11), (2.63)

and (Wi1,Wi11) is independent of Wii·1. Therefore,

E(W−1
i11W1iW

−1
ii·1 | Wi11) = W−1

i11E(W1i | Wi11)E(W−1
ii·1)

=
1

mi − p1 − pi − 1
W−1

i11 ·Wi11ΣΣΣ
−1
11 ΣΣΣ1i · ΣΣΣ−1

ii·1

=
1

mi − p1 − pi − 1
ΣΣΣ−1

11 ΣΣΣ1iΣΣΣ
−1
ii·1
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and

E(W−1
i11W1iW

−1
ii·1Wi1W

−1
i11 | Wi11)

=
1

mi − p1 − pi − 1
W−1

i11E(W1iΣΣΣ
−1
ii·1Wi1 | Wi11)W

−1
i11

=
pi

mi − p1 − pi − 1
W−1

i11 +
1

mi − p1 − pi − 1
ΣΣΣ−1

11 ΣΣΣ1iΣΣΣ
−1
ii·1ΣΣΣi1ΣΣΣ

−1
11 .

So we get

E(Ω̂ΩΩU
11) = (m1 − p1 − 1)

(
1−

k∑

i=2

pi

mi − p1 − 1

)
E(W−1

11 )

+
k∑

i=2

pi

mi − p1 − 1
ΣΣΣ−1

11 +
k∑

i=2

ΣΣΣ−1
11 ΣΣΣ1iΣΣΣ

−1
ii·1ΣΣΣi1ΣΣΣ

−1
11

= ΣΣΣ−1
11 +

k∑

i=2

ΣΣΣ−1
11 ΣΣΣ1iΣΣΣ

−1
ii·1ΣΣΣi1ΣΣΣ

−1
11 = ΩΩΩ11;

E(Ω̂ΩΩU
1i) = −(mi − p1 − pi − 1)E(W−1

i11W1iW
−1
ii·1) = −ΣΣΣ−1

11 ΣΣΣ1iΣΣΣ
−1
ii·1 = ΩΩΩ1i,

E(Ω̂ΩΩU
ii) = (mi − p1 − pi − 1)E(W−1

ii·1) = ΣΣΣ−1
ii·1 = ΩΩΩii, i = 2, . . . , k.

The proof is completed.

Appendix 2C Proof of Proposition 2.5

Let θθθ = (ψ111, ψ121, ψ122, . . . , ψ1p11, . . . , ψ1p1p1 , φ211, . . . , φ21p1 , ψ211, . . . , φk11, . . . , φkpkp1 ,

ψkpk1, . . . , ψkpkpk
)′ and Ii be the i× i identity matrix and ei be the i× 1 vector with

the ith element 1 and others 0. By the likelihood function f(S,V1, . . . ,Vk | ΨΨΨ) in

the proof of Proposition 2.1, the Fisher information matrix of θθθ is

ΛΛΛ(θθθ) = −E

(
∂2 log f

∂θθθ∂θθθ′

)
= diag(ΛΛΛ11,. . . ,ΛΛΛ1p1 , ΛΛΛ21,. . . ,ΛΛΛ2p2 ,. . . ,ΛΛΛk1, . . . , ΛΛΛkpk

), (2.64)

where

ΛΛΛ1p1 = m1{(ΨΨΨ′
11ΨΨΨ11)

−1 +
1

ψ2
1p1p1

ep1e
′
p1
},
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ΛΛΛ1j = m1

{
(Ij 0)(ΨΨΨ′

11ΨΨΨ11)
−1(Ij 0)′ +

1

ψ2
1jj

ejej
′}, j = 1, 2, . . . , p1 − 1,

ΛΛΛipi
= mi








ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii



′ 


ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii








−1

+
mi

ψ2
ipipi

ep1+pi
e′p1+pi

, i = 2, . . . , k,

ΛΛΛij = mi(Ip1+j 0)








ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii



′ 


ΨΨΨ11 0

ΨΨΨi1 ΨΨΨii








−1 (
Ip1+j

0

)
+

mi

ψ2
ijj

ep1+je
′
p1+j,

for j = 1, 2, . . . , pi − 1, i = 2, . . . , k. Thus using the fact that |B + aa′| = |B|(1 +

a′B−1a), where B is invertible and a is a vector, we can easily show that

|ΛΛΛ1j| = 2mj
1

j∏

t=1

1

ψ2
1tt

, 1 ≤ j ≤ p1, (2.65)

|ΛΛΛij| = 2mp1+j
i

p1∏

t=1

1

ψ2
1tt

·
pi∏

s=1

1

ψ2
iss

, 1 ≤ j ≤ pi, 2 ≤ i ≤ k. (2.66)

Hence the Jeffreys prior of ΨΨΨ (or θθθ) is |ΛΛΛ(θ)| 12 , which is proportional to that in (2.25).

From (2.64)– (2.66), the reference prior of ΨΨΨ for the ordered group {ψ111, (ψ121, ψ122),. . . ,

(ψ1p11, . . . , ψ1p1p1), (φ211, . . . , φ21p1 , ψ211),. . . ,(φk11, . . . , φkpkp1 , ψkpk1,. . . ,ψkpkpk
)} is eas-

ily obtained as (2.26), according to the algorithm in Berger and Bernardo (1992).

Appendix 2D Proof of Theorem 2.2

The Bayesian estimator of ΩΩΩ under the Stein loss L∗1 will be produced by minimizing

the posterior risk

b1(Ω̂ΩΩ) =
∫ [

tr
{
Ω̂ΩΩ−1(ΨΨΨ′ΨΨΨ)

}
− log |Ω̂ΩΩ−1(ΨΨΨ′ΨΨΨ)| − p

]
f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ,

where f(ΨΨΨ | S,V1, . . . ,Vk) is described in Theorem 2.1. Letting Ω̂ΩΩ = Ψ̂ΨΨ′Ψ̂ΨΨ, where

Ψ̂ΨΨ ∈ G and has the similar block partition as in (2.13). Thus the question becomes
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to minimize

g1(Ψ̂ΨΨ) =
∫

tr{(ΨΨΨΨ̂ΨΨ−1)(ΨΨΨΨ̂ΨΨ−1)′}f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ− log |(Ψ̂ΨΨ′Ψ̂ΨΨ)−1|. (2.67)

So we need to calculate the posterior expectation of tr
{
ΨΨΨΨ̂ΨΨ−1)(ΨΨΨΨ̂ΨΨ−1)′

}
. Because

ΨΨΨΨ̂ΨΨ−1 =




ΨΨΨ11Ψ̂ΨΨ
−1
11 0 0 · · · 0

(ΨΨΨ21 −ΨΨΨ22Ψ̂ΨΨ
−1
22 Ψ̂ΨΨ21)Ψ̂ΨΨ

−1
11 ΨΨΨ22Ψ̂ΨΨ

−1
22 0 · · · 0

(ΨΨΨ31 −ΨΨΨ33Ψ̂ΨΨ
−1
33 Ψ̂ΨΨ31)Ψ̂ΨΨ

−1
11 0 Ψ̂ΨΨ33ΨΨΨ

−1
33 · · · 0

...
...

...
. . .

...

(ΨΨΨk1 −ΨΨΨkkΨ̂ΨΨ
−1
kk Ψ̂ΨΨk1)Ψ̂ΨΨ

−1
11 0 0 · · · Ψ̂ΨΨkkΨΨΨ

−1
kk




, (2.68)

we have

tr{(ΨΨΨΨ̂ΨΨ−1)(ΨΨΨΨ̂ΨΨ−1)′} =
k∑

i=1

tr{(Ψ̂ΨΨ′
ii)
−1ΨΨΨ′

iiΨΨΨiiΨ̂ΨΨ
−1
ii }

+
k∑

i=2

tr{(ΨΨΨi1 −ΨΨΨiiΨ̂ΨΨ
−1
ii Ψ̂ΨΨi1)(Ψ̂ΨΨ

′
11Ψ̂ΨΨ11)

−1(ΨΨΨi1 −ΨΨΨiiΨ̂ΨΨ
−1
ii Ψ̂ΨΨi1)

′}. (2.69)

By Theorem 2.1 (d) and Lemma 2.1 (a), it follows

E(ΨΨΨ′
11ΨΨΨ11 | S,V1, . . . ,Vk) = (T′

11)
−1DT−1

11 (2.70)

and

E(ΨΨΨ′
iiΨΨΨii | S,V1, . . . ,Vk) = (T′

ii)
−1B1iT

−1
ii , i = 2, . . . , k. (2.71)

Moreover, for any 2 ≤ i ≤ k, by Theorem 2.1(c) and applying Theorem 2.3.5 in

Gupta and Nagar (2000), we have

E{(ΨΨΨi1 −ΨΨΨiiΨ̂ΨΨ
−1
ii Ψ̂ΨΨi1)(Ψ̂ΨΨ

′
11Ψ̂ΨΨ11)

−1(ΨΨΨi1 −ΨΨΨiiΨ̂ΨΨ
−1
ii Ψ̂ΨΨi1)

′ | S,V1, . . . ,Vk}

= tr{(Ψ̂ΨΨ′
11Ψ̂ΨΨ11)

−1W−1
i11}Ipi
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+ E{ΨΨΨii(Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)(Ψ̂ΨΨ
′
11Ψ̂ΨΨ11)

−1(Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)
′ΨΨΨ′

ii | S,V1, . . . ,Vk}

= tr{(Ψ̂ΨΨ′
11)

−1W−1
i11Ψ̂ΨΨ

−1
11 )Ipi

+ (Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)(Ψ̂ΨΨ
′
11Ψ̂ΨΨ11)

−1(Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)
′(T′

ii)
−1B1iT

−1
ii . (2.72)

Combining (2.69)–(2.72), it yields

E
[
tr{(ΨΨΨΨ̂ΨΨ−1)(ΨΨΨΨ̂ΨΨ−1)′} | S,V1, . . . ,Vk

]

=
k∑

i=1

tr{(Ψ̂ΨΨ′
ii)
−1(T′

ii)
−1B1iT

−1
ii Ψ̂ΨΨ−1

ii }

+
k∑

i=2

tr
{
(Wi1W

−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)(Ψ̂ΨΨ
′
11Ψ̂ΨΨ11)

−1(Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)
′(T′

ii)
−1B1iT

−1
ii

}
.

(2.73)

(2.67) is equal to

g1(Ψ̂ΨΨ) =
k∑

i=1

tr
{
(Ψ̂ΨΨ′

ii)
−1(T′

ii)
−1B1iT

−1
ii Ψ̂ΨΨ−1

ii

}
−

k∑

i=1

log |(Ψ̂ΨΨ′
ii)
−1Ψ̂ΨΨ−1

ii |

+
k∑

i=2

tr
{
(Wi1W

−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)(Ψ̂ΨΨ
′
11Ψ̂ΨΨ11)

−1(Wi1W
−1
i11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)
′(T′

ii)
−1B1iT

−1
ii

}

≥
k∑

i=1

tr
{
(Ψ̂ΨΨ′

ii)
−1(T′

ii)
−1B1iT

−1
ii Ψ̂ΨΨ−1

ii

}
−

k∑

i=1

log |(Ψ̂ΨΨ′
ii)
−1Ψ̂ΨΨ−1

ii |

and the equality holds if we take Ψ̂ΨΨi1 = −Ψ̂ΨΨiiWi1W
−1
i11, i = 2, 3, . . . , k. Consequently,

g1(Ψ̂ΨΨ) attaches minimum at Ψ̂ΨΨ11 = G11T
−1
11 , Ψ̂ΨΨii = B

1/2
1i T−1

ii and Ψ̂ΨΨi1 = −Ψ̂ΨΨiiWi1W
−1
i11,

i = 2, 3, . . . , k, where G11 is the inverse of the Cholesky decomposition of B−1
11 . This

completes the proof.
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Appendix 2E Proof of Theorem 2.3

Similarly to the proof of Theorem 2.2, the Bayesian estimator of ΩΩΩ under the entropy

loss L∗2 will be produced by minimizing the posterior risk

b2(Ω̂ΩΩ) =
∫ [

tr{Ω̂ΩΩ(ΨΨΨ′ΨΨΨ)−1} − log |Ω̂ΩΩ(ΨΨΨ′ΨΨΨ)−1| − p
]
f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ,

which is equivalent to minimize

g2(Ψ̂ΨΨ) =
∫

tr{(Ψ̂ΨΨΨΨΨ−1)(Ψ̂ΨΨΨΨΨ−1)′}f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ− log |Ψ̂ΨΨ′
Ψ̂ΨΨ|.

Similar to (2.69), we have

tr{(Ψ̂ΨΨΨΨΨ−1)(Ψ̂ΨΨΨΨΨ−1)′} =
k∑

i=1

tr{Ψ̂ΨΨii(ΨΨΨ
′
iiΨΨΨii)

−1Ψ̂ΨΨ
′
ii}

+
k∑

i=2

tr{(Ψ̂ΨΨi1 − Ψ̂ΨΨiiΨΨΨ
−1
ii ΨΨΨi1)(ΨΨΨ

′
11ΨΨΨ11)

−1(Ψ̂ΨΨi1 − Ψ̂ΨΨiiΨΨΨ
−1
ii ΨΨΨi1)

′}. (2.74)

From Theorem 2.1(d) and Lemma 2.1(b),

E{(ΨΨΨ′
11ΨΨΨ11)

−1 | S,V1, . . . ,Vk} = T11B
−1
21 T′

11,

E{(ΨΨΨ′
iiΨΨΨii)

−1 | S,V1, . . . ,Vk} = TiiB
−1
2i T′

ii/{1 + tr(T11B
−1
21 T′

11W
−1
i11)}, i = 2, . . . , k

because of mi + aij − 1 > 0, j = 1, . . . , pi, i = 1, . . . , k. In addition, similar to (2.72),

for i = 2, . . . , k,

E
[
tr{(Ψ̂ΨΨi1 − Ψ̂ΨΨiiΨΨΨ

−1
ii ΨΨΨi1)(ΨΨΨ

′
11ΨΨΨ11)

−1(Ψ̂ΨΨi1 − Ψ̂ΨΨiiΨΨΨ
−1
ii ΨΨΨi1)

′} | S,V1, . . . ,Vk

]

= tr
[
E{(Ψ̂ΨΨi1−Ψ̂ΨΨiiΨΨΨ

−1
ii ΨΨΨi1)

′(Ψ̂ΨΨi1−Ψ̂ΨΨiiΨΨΨ
−1
ii ΨΨΨi1) | S,V1,. . . ,Vk}

E{(ΨΨΨ′
11ΨΨΨ11)

−1 | S,V1,. . . ,Vk}
]

= tr
{
(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W

−1
i11)

′(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W
−1
i11)T11B

−1
21 T′

11

}

+ tr(T11B
−1
21 T′

11W
−1
i11)tr(Ψ̂ΨΨiiTiiB2iT

′
iiΨ̂ΨΨ

′
ii)/{1 + tr(T11B

−1
21 T′

11W
−1
i11)}.
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So we have

E[tr{(Ψ̂ΨΨΨΨΨ−1)(Ψ̂ΨΨΨΨΨ−1)′} | S,V1, . . . ,Vk] =
k∑

i=1

tr(Ψ̂ΨΨiiTiiB
−1
2i T′

iiΨ̂ΨΨ
′
ii)

+
k∑

i=2

tr
{
(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W

−1
i11)

′(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W
−1
i11)T11B

−1
21 T′

11

}
(2.75)

and thus

g2(Ψ̂ΨΨ) =
k∑

i=1

{
tr(Ψ̂ΨΨiiTiiB

−1
2i T′

iiΨ̂ΨΨ
′
ii)− log |Ψ̂ΨΨ′

iiΨ̂ΨΨii|
}

+
k∑

i=2

tr
{
(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W

−1
i11)

′(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W
−1
i11)T11B

−1
21 T′

11

}
.

Hence, we can readily see that g2(Ψ̂ΨΨ) is minimized at Ψ̂ΨΨii = B
1/2
2i T−1

ii for i = 1, . . . , k

and Ψ̂ΨΨj1 = −Ψ̂ΨΨjjWj1W
−1
j11 for j = 2, . . . , k. Thus the proof is completed.

Appendix 2F Proof of Theorem 2.4

The Bayesian estimator of ΩΩΩ under the symmetric loss L∗3 will be produced by mini-

mizing the posterior risk

b3(Ω̂ΩΩ) =
∫ [

tr
{
Ω̂ΩΩ(ΨΨΨ′ΨΨΨ)−1

}
+ tr

{
Ω̂ΩΩ−1(ΨΨΨ′ΨΨΨ)

}
− 2p

]
f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ,

which is equivalent to minimize

g3(Ψ̂ΨΨ) =
∫ [

tr
{
(Ψ̂ΨΨΨΨΨ−1)(Ψ̂ΨΨΨΨΨ−1)′

}
+ tr

{
(ΨΨΨΨ̂ΨΨ−1)(ΨΨΨΨ̂ΨΨ−1)′

}]
f(ΨΨΨ | S,V1, . . . ,Vk) dΨΨΨ

− log |Ψ̂ΨΨ′
Ψ̂ΨΨ|.

Combining (2.75) with (2.73), it yields

g3(Ψ̂ΨΨ) =
k∑

i=1

[
tr(Ψ̂ΨΨiiTiiB

−1
2i T′

iiΨ̂ΨΨ
′
ii) + tr{(Ψ̂ΨΨ′

ii)
−1(T′

ii)
−1B1iT

−1
ii Ψ̂ΨΨ−1

ii }
]
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+
k∑

i=2

tr{(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W
−1
i11)

′(Ψ̂ΨΨi1 + Ψ̂ΨΨiiWi1W
−1
11 )T11B

−1
21 T′

11}

+
k∑

i=2

tr{(Wi1W
−1
11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)(Ψ̂ΨΨ
′
11Ψ̂ΨΨ11)

−1(Wi1W
−1
11 + Ψ̂ΨΨ−1

ii Ψ̂ΨΨi1)
′(T′

ii)
−1B1iT

−1
ii }

≥
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[
tr(Ψ̂ΨΨiiTiiB

−1
2i T′

iiΨ̂ΨΨ
′
ii) + tr{(Ψ̂ΨΨ′

ii)
−1(Tii)

−1B1iT
−1
ii Ψ̂ΨΨ−1

ii }
]
,

and the equality holds if we take Ψ̂ΨΨi1 = −Ψ̂ΨΨiiWi1W
−1
i11, i = 2, 3, . . . , k. Thus, by

Lemma 2.2, we can easily see that g3(Ψ̂ΨΨ) attaches minimum at Ψ̂ΨΨ11 = Q31T
−1
11 with

Q31 being the inverse of Cholesky decomposition of B
−1/2
11 (B

1/2
11 B−1

21 B
1/2
11 )1/2B

−1/2
11 ,

Ψ̂ΨΨii = B
1/2
3i T−1

ii and Ψ̂ΨΨi1 = −Ψ̂ΨΨiiWi1W
−1
i11, i = 2, 3, . . . , k. Thus the proof is completed.
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Chapter 3

An Efficient Simulation Algorithm

for Bayesian Spatial Analysis

3.1 Introduction

Spatial data arises in many fields of application including ecological, environmen-

tal, and epidemiological settings. When formal inference is sought, point-referenced

spatial data are often modelled using Gaussian random fields, specified by their mean

function and covariance function. Inference based on maximum likelihood estimation

has been implemented by Mardia and Marshall (1984). Customary likelihood asymp-

totic theories are not usually applicable (as discussed in Stein (1999)) and hence

Bayesian modelling, which provides exact inference, becomes attractive. The main

advantage of the Bayesian approach is that parameter uncertainty is fully accounted

for when performing prediction and inference, even in small samples.
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Simulation methods play an important role in full Bayesian analysis and MCMC

algorithms are now widely used in all areas of statistics. MCMC methods are roughly

as follows. Consider a desired probability distribution π. Assume for the moment that

we can construct a Markov chain, such that its stationary probability distribution is

π. We run a Markov chain forward till such time as its distribution is close to the sta-

tionary distribution, and then stop based on some criteria determined by diagnostics

or other means. The best known MCMC methods are the Metropolis-Hastings algo-

rithm and the Gibbs sampler. The Gibbs sampler is popularly applied in spatial area

since the number of interest parameters is large. In addition, Metropolis-Hastings

algorithm or slice sampler within the Gibbs sampler are often used because the full

conditional distribution of the parameters θθθ controlling the correlation function is not

of standard form, see Besag and Green (1993), Cowles (2003), Banerjee et al. (2004),

Agarwal and Gelfand (2005) etc. For a review of MCMC methods such as Gibbs sam-

pling, the Metropolis-Hastings algorithm, slice sampler etc, and their applications in

spatial statistics, see Dellaportas and Roberts (2003).

However, an obvious problem with the MCMC methods is that it is not clear when

one should stop running the chain and accept the final state as a realization of the

probability distribution π. MCMC algorithms also usually suffer from slow conver-

gence and highly serially correlated outputs, especially in the field of spatial statistics,

(see Dellaportas and Roberts (2003)). Consequently, MCMC methods introduce bias

into the sample. The simulation inference from correlated samples is generally less

precise than from the same number of independent samples. In this chapter, we pro-
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pose a new simulation algorithm based on the generalized Ratio-of-Uniforms method

of Wakefield et al. (1991). Our new algorithm will create independent samples, rather

than correlated samples.

This chapter is organized as follows. § 3.2 gives a brief review of Gaussian process

models and a class of priors that we will use for Bayesian analysis. A new efficient

algorithm for the posterior simulation is proposed based on the generalized Ratio-of-

Uniforms method in § 3.3. As far as we know, this method has not been drawn much

attention in the Bayesian spatial area, although it has been proposed by Wakefield

et al. (1991) for about fifteen years. An illustrative simulated example will be provided

in § 3.4. Some concluding remarks and discussions are given in § 3.5.

3.2 The Model

3.2.1 The likelihood

Let {Z(s), s ∈ D}, D ⊆ IR2, be the random field of interest. The data con-

sist of n observations Z = (Z(s1), Z(s2), . . . , Z(sn))′ from a single realization of

this random field, where s1, s2, . . . , sn are known distinct sampling locations in D.

Based on Z, the usual tasks of interest are estimation of the mean and covari-

ance functions of the random field, and prediction of an unobserved random vector

Z0 = (Z(s01), Z(s02), . . . , Z(s0k)), where s01, s02, . . . , s0k are unsampled locations in

the subregion D.

We assume that Z(·) is a Gaussian random filed with IE{Z(s)} =
∑p−1

j=0 βjfj(s) =
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βββ′f(s); βββ = (β0, β1, . . . , βp−1)
′ ∈ IRp are unknown regression parameters, f(s) =

(f1(s), . . . , fp(s))
′ are known location-dependent covariates, and cov{Z(s), Z(u)} =

σ2Kθθθ(‖s−u‖) where ‖·‖ denotes Euclidean distance, σ2 = var{Z(s)}, Kθθθ(‖s−u‖) =

corr{Z(s), Z(u)}, an isotropic correlation function, and θθθ = (θ1, . . . , θc)
′ ∈ Θ ⊂ IRc

are parameters controlling the range of correlation and the smoothness of the random

field.

There are many correlation functions that are popularly used in spatial statistics,

see Cressie (1993) or Banerjee et al. (2004) etc.

The likelihood of the model parameters (βββ, σ2, θθθ), based on the observed data

z = (z(s1), . . . , z(sn))′, is given by

L(βββ, σ2, θθθ; z) = (2πσ2)−n/2|ΣΣΣθθθ|−1/2 exp
{
− 1

2σ2
(z−Xβββ)′ΣΣΣ−1

θθθ (z−Xβββ)
}

(3.1)

where X = (xij) is the known n× p matrix defined by xij = fj(si), assumed to have

full rank, and ΣΣΣθθθ = (Kθθθ(‖si − sj‖)), assumed to be positive definite for any θθθ ∈ ΘΘΘ.

3.2.2 The Priors

We consider a class of priors,

π(βββ, σ2, θθθ) ∝ π(θθθ)

(σ2)a
, a ∈ IR. (3.2)

Slightly abusing terminology, we call π(θθθ) the marginal prior density of θθθ. This form

of prior distribution, with a = 1, was proposed by Kitanidis (1986) and Handcock

and Stein (1993). Berger et al. (2001) showed that the Jeffreys prior, the independent

Jeffreys prior and the reference prior all are of this form.
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Combining the likelihood (3.1) with the prior (3.2), we have the joint posterior

distribution

p(βββ, σ2, θθθ | z) ∝ π(βββ, σ2, θθθ)L(βββ, σ2, θθθ; z). (3.3)

Obviously, it is very difficult to do analytical posterior analysis for (3.3). Simulation

is therefore needed to estimate the parameters. The following integrated likelihood

plays an important role in simulation study of the posterior distribution.

3.2.3 Integrated likelihood

As noted by Berger et al. (2001), it is possible to integrate the product of the

likelihood and the prior over (βββ, σ2) in a closed form for the prior distributions of the

form (3.2). Indeed, a standard calculation yields

∫

IRp×(0,∞)
L(βββ, σ2, θθθ; z)π(βββ, σ2, θθθ) dβββ dσ2 = LI(θθθ; z)π(θθθ), (3.4)

where

LI(θθθ; z) ∝ |ΣΣΣθθθ|−1/2|X′ΣΣΣ−1
θθθ X|−1/2(S2

θθθ)
−((n−p)/2+a−1) (3.5)

and

S2
θθθ = (z−Xβ̂ββθθθ)

′ΣΣΣ−1
θθθ (z−Xβ̂ββθθθ). (3.6)

Note that S2
θθθ is the generalized residual sum of squares, and

β̂ββθ = (X′ΣΣΣ−1
θθθ X)−1X′ΣΣΣ−1

θθθ z (3.7)

is the generalized least squares estimator of βββ, given θθθ. In fact, the right hand of

(3.4) is proportional to the marginal posterior density p(θθθ | z) of θθθ, which is crucial in
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our new simulation scheme. This integrated likelihood is also of considerable interest

to non-Bayesians, as discussed, for instance, in Berger et al. (1999).

Based on (3.4), the joint posterior distribution p(βββ, σ2, θθθ | z) is proper if and only

if the marginal posterior density p(θθθ | z) is proper, that is,
∫

LI(θθθ; z)π(θθθ) dθθθ < ∞.

3.3 Posterior Simulation

3.3.1 Gibbs sampler

The Gibbs sampler is commonly used in spatial statistics. To implement the

Gibbs sampler, we must assume that samples can be generated from each of the full

conditional distributions. For our model, the full conditional distributions are:

βββ | σ2, θθθ; z ∼ Np(β̂ββθθθ, σ
2(X′ΣΣΣ−1

θθθ X)−1), (3.8)

σ2 | βββ, θθθ; z ∼ IG(n/2 + a− 1, (z−Xβββ)′ΣΣΣ−1
θθθ (z−Xβββ)/2), (3.9)

[θθθ | βββ, σ2; z] ∝ exp{−(z−Xβββ)′ΣΣΣ−1
θθθ (z−Xβββ)/(2σ2)}π(θθθ). (3.10)

where IG(α1, α2) represents the inverse gamma distribution with shape parameter

α1 and scale parameter α2. For notational simplicity, we sometimes use the notation

[ααα1 | ααα2] to represent the conditional probability density of ααα1 given ααα2. Sampling

from (3.8) and (3.9) is straightforward. However, sampling from (3.10) could be

problematic because it is not a standard form.

Two methods may be considered to sample from (3.10). One is the Metropolis-

Hastings algorithm. But there is no routine to choose an appropriate candidate
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distribution for this algorithm. The other is the slice sampler, making use of suitable

factorizations of the density to introduce auxiliary variables to simplify the sampling

problem (Banerjee et al. (2004)). However, this method may not work well when the

marginal prior π(θ) is not a standard distribution, for example, the reference prior ob-

tained by Berger et al. (2001). Furthermore, both methods suffer from highly serially

correlated draws and slow convergence in MCMC simulation. In §3.3.3, we propose

a new simulation algorithm based on the generalized ratio-of-uniforms method.

3.3.2 The generalized Ratio-of-Uniforms method

The Ratio-of-Uniforms method introduced by Kinderman and Monahan (1977)

is a flexible method that can be adjusted to a large variety of distributions. It has

become a popular transformation method to generate nonuniform random variates,

since it results in exact, efficient, fast, and easy-to-implement algorithms. The method

is based on the following lemma.

Lemma 3.1 Let h be a positive integrable function over X , a subset of IR. Suppose

that the variables (u, v) are uniformly distributed over

Ch =
{
(u, v) : 0 < u ≤

[
h

(v

u

)]1/2
}

. (3.11)

Then x = v/u had density h(x)/
∫

h(x).

This method is only suited for one-dimentional bell-shaped densities with tails that

decrease at least as fast as x−2. Wakefield et al. (1991) proposed a generalization of

the Ratio-of-Uniforms method.
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Lemma 3.2 Let h be a positive integrable function over X , a subset of IRk. Suppose

that the variables (u, v1, . . . , vk) are uniformly distributed over

Ch(r) =
{
(u, v1, . . . , vk) : 0 < u ≤

[
h

(v1

ur
, . . . ,

vk

ur

)]1/(rk+1)
}

(3.12)

where r ≥ 0 is a constant. Then x = (v1/u
r, . . . , vk/u

r) had density h(x)/
∫

h(x) dx.

For sampling random points uniformly distributed in Ch(r), the Accept-Reject

algorithm from a convenient k-dimensional enveloping rectangle T (r) = [0, a(r)] ×

[b−1 (r), b+
1 (r)]× · · · × [b−k (r), b+

k (r)] is often used, where

a(r) = sup
x
{h(x)}1/(rk+1),

b−i (r) = inf
x

xi{h(x)}r/(rk+1), i = 1, . . . , k,

b+
i (r) = sup

x
xi{h(x)}r/(rk+1), i = 1, . . . , k (3.13)

provided that all of them are finite.

When k = 1 and h(x) = O(x−1−ε) as x →∞ for some ε > 0, it is easy to see that,

by choosing r such that rε > 1, a(r), b−1 (r) and b+
1 (r) defined by (3.13) are finite.

Therefore, the above generalized ratio-of-uniforms method works for any bell-shaped

density with tails that decrease at least as fast as x−1−ε, ε > 0.

3.3.3 A new simulation algorithm

Our new simulation scheme is based on the following result.

Theorem 3.1 The joint posterior distribution of (βββ, σ2, θθθ) has the following decom-

position

p(βββ, σ2, θθθ | z) = p(βββ | σ2, θθθ; z)p(σ2 | θθθ; z)p(θθθ | z), (3.14)
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where the conditional distribution of βββ given σ2, θθθ; z is given by (3.8) and

σ2 | θθθ; z ∼ IG((n− p)/2 + a, z′{ΣΣΣ−1
θθθ − ΣΣΣ−1

θθθ X(X′ΣΣΣ−1
θθθ X)−1X′ΣΣΣ−1

θθθ }z/2), (3.15)

[θ | z] ∝ LI(θθθ; z)π(θθθ), (3.16)

with LI(θθθ; z) given by (3.5).

Proof. We just need to prove (3.15) because of (3.8) and (3.4). Since

(z−Xβββ)′ΣΣΣ−1
θθθ (z−Xβββ)

= z′ΣΣΣ−1
θθθ z + (βββ − β̂ββθθθ)

′X′ΣΣΣ−1
θθθ X(βββ − β̂ββθ)− β̂ββ′θθθX

′ΣΣΣ−1
θθθ Xβ̂ββθθθ,

it follows

p(σ2 | θθθ; z) =
∫

L(βββ, σ2, θθθ; z)π(βββ, σ2, θθθ) dβββ

∝ (σ2)−n/2−a
∫

exp{−(z−Xβββ)′ΣΣΣ−1
θθθ (z−Xβββ)/(2σ2)} dβββ

∝ (σ2)−(n−p)/2−a exp[−z′{ΣΣΣ−1
θθθ − ΣΣΣ−1

θθθ X(X′ΣΣΣ−1
θθθ X)−1X′ΣΣΣ−1

θθθ }z/2)/(2σ2)]

and hence (3.15).

Let h(θθθ) = LI(θθθ; z)π(θθθ). If there exists r > 0 such that all of a(r), b−i (r), b+
i (r), i =

1, . . . , k defined by (3.13) are finite, then we have the following algorithm for the

posterior simulation.

Algorithm:

Step 1: Simulate

U ∼ Uniform [0, a(r)],

Vi ∼ Uniform [b−i (r), b+
i (r)], i = 1, . . . , k
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and compute ρρρ = V/U r with V = (V1, . . . , Vk);

Step 2: If U ≤ [LI(ρρρ; z)π(ρρρ)]1/(rk+1), we accept ρρρ as a sample θθθ from LI(θθθ; z)π(θθθ);

otherwise go back to Step 1;

Step 3: For given θθθ, simulate σ2 from

IG((n− p)/2 + a, z′{ΣΣΣ−1
θθθ − ΣΣΣ−1

θθθ X(X′ΣΣΣ−1
θθθ X)−1X′ΣΣΣ−1

θθθ }z/2);

Step 4: For given θθθ, σ2, simulate βββ from Np(β̂ββθθθ, σ
2(X′ΣΣΣ−1

θθθ X)−1);

Step 5: Go back to Step 1.

Note that the above algorithm will create independent samples from the joint

posterior distribution of βββ, σ2, θθθ, which is a key difference from other MCMC sampling

methods such as Gibbs sampler. We found that the above algorithm works for a lot

of choices of a and π(θθθ) in (3.2) in spatial data analysis. In the next section, we will

provide a detailed example for applying the above algorithm.

Remark 3.1 For prediction of Z(s0) at an unsampled site s0, we just need to sam-

ple from N(x′0βββ
(i) + γ(i)′ΣΣΣ−1

θθθ(i)(z − Xβββ(i)), σ2(i)(1 − γ(i)′ΣΣΣ−1

θθθ(i)γ
(i))) after we obtain the

samples (βββ(i), σ2(i), θθθ(i)) from the joint posterior distribution p(βββ, σ2, θθθ | z), where

γ(i) = (Kθθθ(i)(‖s0 − s1‖), . . . , Kθθθ(i)(‖s0 − sn‖))′.

3.4 An Illustrative Example

In this section, we analyze a simple spatial problem by applying our simulation

algorithm described in § 3.3.
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Suppose that we choose the correlation function to be exponential. Then

Kθ(d) = exp(−d/θ), θ > 0. (3.17)

Berger et al. (2001) obtained the reference prior πR(βββ, σ2, θ), which is of the form

(3.2) with

a = 1 and πR(θ) ∝
{

tr[W2
θ]−

1

n− p
(tr[Wθ])

2

}1/2

, (3.18)

where

Wθ =
∂ΣΣΣθ

∂θ
ΣΣΣ−1

θ PΣΣΣ
θ and PΣΣΣ

θ = I−X(X′ΣΣΣ−1
θ X)−1X′ΣΣΣ−1

θ ; (3.19)

(∂/∂θ)ΣΣΣθ denotes the matrix obtained by differentiating ΣΣΣθ element by element.

Berger et al. (2001) also proved that the posterior distribution p(βββ, σ2, θ | z) under

the reference prior is proper.

Consider a 10×10 grid inD = [0, 1]×[0, 1] with data points z = (z11, z12, . . . , z10,10)
′

and assume that Z ∼ N100(µµµ, σ2ΣΣΣ(θ)). The data Z that fill the grid were simulated by

taking µµµ = IE[Z(s)] = 5.5− 4.6x− 3.1y +5.9x2− 6.5xy +4.2y2, θ = 0.2 and σ2 = 0.2.

So the real parameter βββ = (β0, β1, . . . , βp−1)
′ = (5.5,−4.6,−3.1, 5.9,−6.5, 4.2)′. Our

goal here is to estimate the parameters (βββ, σ2, θ) based on the simulated data z.

To implement the first step of the algorithm, we need to study the analytical

properties of the product of the integrated function LI(θ; z) and the marginal prior

density πR(θ). Figure 3.1 and Figure 3.2 display the marginal prior density πR(θ) and

the marginal posterior density πR(θ | z) up to a normalizing constant, respectively.

By Lemma 1 of Berger et al. (2001), we have

lim
θ→0+

LI(θ; z) = c0 > 0 and LI(θ; z) = O(1) as θ →∞. (3.20)
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Figure 3.1: The Reference Prior πR(θ).
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Figure 3.2: The Non-normalized Marginal Posterior Density of θ.
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In addition, the proof of Corollary 1 of Berger et al. (2001) shows that

πR(θ) ≤ C

θ2
(3.21)

if θ is large enough, where C is a constant. Therefore, by taking r = 5, we can easily

show that a(r), b−1 (r), b+
1 (r) defined by (3.13) are finite. Obviously, b−1 (r) = 0, and

numerical calculation yields

a(r) = 1.3941, b+
1 (r) = 1.0774. (3.22)

The shaded area in Figure 3.3 shows the acceptance area when implementing the

generalized Ratio-of-Uniforms method. Theoretically, the acceptance rate is the ratio

of the shaded area to the area of the rectangle [0, a(r)]×[0, b+(r)], which is about 0.38.

In fact, we obtained a sample of size 10, 000 with this algorithm through generating

26526 pairs of (u, v), which means that the actual acceptance rate is 37.74 percent.

Remark 3.2 If (u, v) are uniformly distributed over Ch(µ) = {(u, v) : 0 < u ≤

[h( v
u

+ µ)]1/2}, Then x = v/u + µ has density h(x)/
∫

h(x) dx, where µ is a constant.

One may choose an appropriate µ to get higher acceptance rate for the above example.

Figures 3.4 and 3.5 show histograms and density estimates for the scale parameter

θ and the variance σ2, respectively.

Note that for any symmetric and unimodal distribution, its mean, median and

mode will be equal if the mean exists. However, heavy-tailed distributions are pop-

ular in Bayesian spatial models. In this case, the posterior mean will sometimes be

overly influenced by heavy tails of the posterior distribution. Banerjee et al. (2004)

58



0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

u

v

Acceptance Area wrt Ratio−of−Uniforms

Figure 3.3: Acceptance Area based on the Generalized Ratio-of-Uniforms Method.

suggested that the posterior median would often be the best and safest point es-

timate for the corresponding parameter. We found that the posterior mode is the

best for estimating the corresponding parameter in our setting. For estimating θ, the

posterior mode, median and mean are 0.1980, 0.3663, 1.7217, respectively, while the

real value of θ is 0.2. For estimating σ2, the posterior mode, median and mean are

0.1770, 0.3034, 1.4143, respectively, while the real value of σ2 is 0.2.

Remark 3.3 Loss functions are often used in estimation of parameters with both

frequentist and Bayesian methods. People are reluctant to use loss functions, such as

squared loss or entropy loss, for estimation of parameters in spatial statistics. The

main reason is that it is very difficult to show the existence of high moments because

the structure of a covariance matrix is complicated.

59



0.5 1 1.5 2 2.5
0  

0.5

1  

1.5

2  

2.5

Histogram of Samples from p(θ|z)

Figure 3.4: Histogram, Density Estimate for the Posterior of θ based on Simulation.

For estimating the regression coefficient βββ, we found that the posterior distribution

of βi often widely spreads and thus it is difficult to estimate each of them accurately.

For example, the posterior mean, median and mode of β1 are−7.2179,−7.2424,−7.325,

respectively, while the real value of β1 is −4.60. The reason for this is that the struc-

tures of the design matrix X and the correlation matrix ΣΣΣ(θ) strongly influences the

shapes of the posterior distributions of the regression coefficients although there are

100 observations. In fact, it is well known that the generalized least square estimate

of βββ, which is the best linear unbiased estimate, follows the multivariate normal dis-

tribution with the mean βββ and the covariance matrix σ2[X′ΣΣΣ−1(θ)X]−1 when both σ2

and θ are known. Thus for estimating β1, the standard deviation of the best linear

unbiased estimate will be 1.4012 even though it is assumed that both σ2 and θ are

known.
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Figure 3.5: Histogram, Density Estimate for the Posterior of σ2 based on Simulation.

Remark 3.4 There are two different asymptotic frameworks in spatial models: in-

creasing domain asymptotics, in which the minimum distance between sampling points

is bounded away from zero and thus the spatial domain of observation is unbounded;

and infill asympotics, in which observations are taken ever more densely in a fixed and

bounded domain. Asymptotic behaviors of spatial covariance parameters estimators

can be quite different under the two frameworks. See Zhang (2004) and Zhang and

Zimmerman (2005) etc.

We also did a small comparison study for sampling from the posterior distribu-

tion p(θ | z) by using the Metropolis-Hastings algorithm and the Ratio-of-Uniforms

algorithm. Note that the output sampling from the Metropolis-Hastings algorithm

are correlated. But we can get approximately independent samples by thinning the

output, that is, keeping every kth simulation draw and discarding the rest. For

the above p(θ | z), we found that k should be at least 100 when Gamma(1.4, 2)
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Figure 3.6: Posterior Densities of βi, i = 0, 1, . . . , 5.

is chosen as a candidate distribution, which is close to p(θ | z). This means that

to get 10, 000 approximately independent samples, we need 1, 000, 000 samples from

the Metropolis-Hastings algorithm, which takes about 30 hours on a 2.20GHz AMD

Athlon XP 3200+ PC. However, it took just 46 minutes to get 10, 000 independent

samples by using our algorithm on the same computer.

3.5 Concluding Remarks and Discussions

Computational difficulties are often cited as a reason not to undertake Bayesian

analysis. The simulation algorithm we proposed led to considerable simplification of

the calculation necessary to undertake a full Bayesian spatial analysis. The proposed
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simulation algorithm works well for a large class of priors including some popularly

used priors in spatial area. In addition, the key difference between our algorithm and

other MCMC algorithms is that our algorithm will create independent samples from

the resulting posterior distribution. Hence we do not have drawbacks such as slow

convergence or high autocorrelation that often appear in most MCMC algorithms.

The sufficient condition to implement our algorithm is that there exists a posi-

tive number r, such that all of a(r), b−i (r), b+
i (r), i = 1, . . . , k defined by (3.13) are

finite, where h(θθθ) is the posterior density of θθθ up to a normalized constant and θθθ is

the parameter controlling the correlation matrix. We are investigating whether this

condition can be relexed.

This chapter just dealt with the Gaussian random fields. The case of non-Gaussian

data is often of interest. We will consider the non-Gaussian random fields in the

future.
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Chapter 4

Bayesian Spatial Reference

Analysis with Application to Site

Index Prediction

4.1 Introduction

The Missouri Ozark Forest Ecosystem Project (MOFEP) is an on-going, centuries-

long experiment that is designed to monitor and assess the short and long-term effects

of common management practices on Ozark ecosystems (see Brookshire and Shifley

(1997), Shifley and Brookshire (2000) and Shifley and Kabrick (2002)). The MOFEP

will provide a comprehensive evaluation of the impacts of operational forest manage-

ment practices on a wide array of ecosystem attributes. The purpose of this chapter

is to predict the site index at unmeasured locations.
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Site index is a measure of forest productivity based upon the height at a specified

base age of dominant or codominant trees. Height is used because it is correlated to

site quality. In Missouri, a base age of 50 years is used. Most measured trees are

not at the base age, so curves are used to convert heights of tree of any age to the

base age height. A compendium of the published site index curves for eastern half

of the United States was presented by Carmean et al. (1989). From this report, the

equations by McQuilkin (1974) and McQuilkin (1978) were used for black oak, scarlet

oak and white oak, and equations by Nash (1978) were used for shortleaf pine.

From 1993 and 1996, site index was determined on suitable trees at 648 permanent

plots on the nine MOFEP sites. Trees considered suitable were canopy codominants

having good form with no indication that they had been suppressed and showing the

best growth potential. One to five candidate trees selected for site index determination

were sampled outside of the 0.5-acre permanent vegetation plots but within 330 feet

of vegetation plots. Candidate trees were also limited to four species – black oak,

scarlet oak, white oak, and shortleaf pine because these four species are the most

abundant commercial species in the region and reliable site index curves have been

developed locally for them. The suitability of each tree was ranked by the field crew

because good site index trees could not always be found near the vegetation plots.

For each site index tree, the distance and azimuth from the geo-referenced vegeta-

tion plot center were recorded and these can be later used to determine the location

of each site index tree. Trees were assigned a ranking of their perceived quality for

indicating site index. Tree heights were measured with clinometer to the nearest foot.
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A single increment core was extracted at breast height and taken to the lab for age

determination. Site index was determined using species, height, age at d.b.h., and

published site index equations for species in the Missouri Ozarks (see, McQuilkin

(1974), Nash (1978)).

Since the site index can only be available on some locations, the prediction of

the site index at unmeasured locations is of ecological interest in practice. Recently,

Bayesian approaches to analysis of spatial data have seen an upsurge in popularity, es-

pecially when the main goal is prediction, see Handcock and Stein (1993), De Oliveira

et al. (1997), Ecker and Gelfand (1997) and many others. The main advantage of

the Bayesian approach is that parameter uncertainty is fully accounted for when

performing prediction and inference, even in small samples.

In this chapter, we will propose Bayesian spatial model to achieve this goal. We

will just consider black oaks in sites one and two. However, our proposed method can

easily be applied to other species and other sites in the MOFEP study. We will use the

data collected in winter of 1995 by MOFEP technicians in the Missouri Department

of Conservation (MDC) from each MOFEP vegetation plot (Shifley and Brookshire

(2000)). § 4.2 will deal with how to set up an appropriate Bayesian spatial model

and statistical inference of the parameters in the model will be given in § 4.3. Model

validation will be briefly discussed in § 4.4. In § 4.5, we will discuss spatial prediction

of the site index. Finally, some concluding remarks and discussions will be given in

§ 4.6.
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4.2 The Gaussian Model

4.2.1 Data structure and the likelihood

We use the data collected by the Missouri Department Conservation in 1995.

There are 173 sampled black oaks with good rank and high quality judged by techni-

cians, irregularly located in sites one and two. See Figure 4.1. Site index of each tree

was calculated based on the age and the height through the equation provided by

McQuilkin (1974). The location of each site index tree was calculated based on the

distance and azimuth from the geo-referenced vegetation plot center together with the

coordinate of the geo-referenced vegetation plot center. In addition, some environ-

mental characteristics, such as soil type, aspect, land type association, were measured

at the location of each site index tree, which will be partly used as covariates in our

model.

We choose the Gaussian process to model our spatial data. Let {Z(s), s ∈

D}, D ⊆ IR2, be the random field of interest. The data consist of n observa-

tions Z = (Z(s1), Z(s2), . . . , Z(sn))′ from a single realization of this random field,

where s1, s2, . . . , sn are known distinct sampling locations in D. We assume that

Z(·) is a Gaussian random field with IE{Z(s)} = β0 + β1X1(s) + · · · + βpXp(s)

and cov{Z(s), Z(u)} = σ2Kθθθ(‖s − u‖), where βββ = (β0, β1, . . . , βp)
′ ∈ IRp+1 are un-

known regression parameters, X1(s), . . . , Xp(s) are known location-dependent covari-

ates, σ2 = var{Z(s)}, and Kθθθ(‖s−u‖) = corr{Z(s), Z(u)} is an isotropic correlation

function with ‖ · ‖ denoting Euclidean distance, and θθθ ∈ Θ ⊂ IRc controlling the
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Figure 4.1: 173 Sampled Black Oaks in Sites One and Two of the MOFEP Study:
Locations for Modelling Marked as “ · ” and Those for Model Validation Marked as
“× ”.
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range of correlation and the smoothness of the random field. Thus the likelihood of

the model parameters (βββ, σ2, θθθ), based on the observed data z = (z(s1), . . . , z(sn))′,

is given by

L(βββ, σ2, θθθ; z) = (2πσ2)−n/2|ΣΣΣθθθ|−1/2 exp
{
− 1

2σ2
(z−Xβββ)′ΣΣΣ−1

θθθ (z−Xβββ)
}

, (4.1)

where X = (xij) is the known n×(p+1) matrix with its first column as 1 = (1, . . . , 1),

assumed to have full rank, and ΣΣΣθθθ = (Kθθθ(‖si− sj‖)), assumed to be positive definite

for any θθθ ∈ Θ.

For our data set, D represents the area of sites one and two, and Z(s) denotes

the site index of black oak at location s. Of 173 sampled black oaks, we choose

n = 113 trees for modelling based on three considerations. First, the distances

among 173 points located in sites one and two range from 3.32 meters to 3928.96

meters. In the spatial setting, if we add a location very close to an existing location,

the data from the new location will not add much to the inference about the spatial

model. Second, if the model contains two very close locations, then the associated

correlation matrix ΣΣΣθθθ will be nearly singular, which will result in numerical difficulties

for parametric inference with either frequentist or Bayesian methods. Third, if the

model has contained enough points, prediction at a new spatial location will improve

very slowly with increasing sample size, as mentioned by Banerjee et al. (2004). For

113 locations chosen, the minimum distance among them is 50 meters. As a remedy,

we will reserve some of the remaining 60 trees for empirical validation of the resulting

predictions.

Covariates are chosen based on availability and ecological background. We pick up
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three variables, aspect class, land type association (LTA) and soil depth, denoted as

X1(s), X2(s) and X3(s) respectively. Aspect classes are described as ‘protected’ if the

slope aspect is within 316 − 135 degrees, and ‘exposed’ if the slope aspect is within

136 − 315 degrees. There are two types of land type association, Current River

Oak-Pine Woodland/Forest Hills (coded as OZ9b) and Current River Oak Forest

Breaks (coded as OZ9e). See Shifley and Kabrick (2002) for detail. Soil depth was

created by soil type and categorized into two classes, deep to very deep soil and

shallow to moderate deep soil. See the detail relationship between soil types and soil

characteristics in Kabrick et al. (2000). Table 4.1 summarizes the covariates used in

the model.

Name Symbol Type Categories Description

aspect class X1(s) categorical 2 1 – protected

0 – exposed

LTA X2(s) categorical 2 1 – OZ9b

0 – OZ9e

soil depth X3(s) categorical 2 1 – deep to very deep

0 – shallow to moderate deep

Table 4.1: Summary of Covariates
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4.2.2 The correlation function

The previous subsection did not specify a correlation function for the spatial

model. Actually, there are many correlation functions, such as spherical, power expo-

nential, rational quadratic, that are popular in spatial statistics, see Cressie (1993),

Chiles and Delfiner (1999), Stein (1999) and Banerjee et al. (2004), etc. Among the

various families of correlation function which have been proposed, the Matérn family

is particularly attractive. Its algebraic form is given by

Kθ,ν(d) =
1

2ν−1Γ(ν)

(
d

θ

)ν

Kν

(
d

θ

)
, θ > 0, ν > 0, (4.2)

where θ is the spatial range parameter, which measures how quickly the correlations of

the random field decay with distance, ν is the smoothness parameter, which measures

the differentiability of the random field, and Kν(·) is the modified Bessel function of

the second kind and of order ν; see Abramowitz and Stegun (1965) for details on the

behavior of this special function. What makes this family particularly attractive is

that the corresponding process Z(·) is mean-square [ν]− 1 times differentiable where

[ν] represents the largest integer less than or equal to ν. So the Matérn family does

allow for great flexibility in the smoothness of the random field while still keeping the

number of parameters manageable. Furthermore, note that the exponential family is

the special case with ν = 1 and the Gaussian family is the case when ν →∞.

The Matérn family was strongly recommended by Stein (1999) because of the

parameter ν, which controls the smoothness of the random field. In what follows, we

choose this family as the correlation function for our model.
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4.2.3 The prior

The parameters in our model are the regression coefficient βββ, the variance σ2, the

range parameter θ and the smoothness parameter ν. The smoothness of a random

field plays a critical role in spatial data analysis. However, there is often no basis

for knowing a priori the degree of some physical process modelled as a random field.

Thus, we will not assign a prior for the smoothness parameter ν and we assume for the

moment that it is known. We will discuss how to estimate the smoothness parameter

ν before we make Bayesian inference on the parameters βββ, σ2 and θ.

Selection of the prior is based upon previous knowledge of the model parameters.

Often, there is little information available on the model parameters, which prompts

the use of noninformative prior. In this chapter, we consider the reference prior for

(βββ, σ2, θ) developed by Berger et al. (2001),

π(βββ, σ2, θ) ∝ π(θ)

σ2
, βββ ∈ Rp+1, σ2 > 0, θ > 0, (4.3)

where

π(θ) ∝
{

tr[W2
θ]−

1

n− p
(tr[Wθ])

2

}1/2

, (4.4)

with

Wθ =
∂ΣΣΣθ

∂θ
ΣΣΣ−1

θ PΣΣΣ
θ and PΣΣΣ

θ = I−X(X′ΣΣΣ−1
θ X)−1X′ΣΣΣ−1

θ . (4.5)

Here (∂/∂θ)ΣΣΣθ denotes the matrix obtained by differentiating ΣΣΣθ with respect to θ

element by element and I is an identity matrix of order n.

The above reference prior is a non-informative and improper prior. The posterior
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propriety under the reference prior (4.3) has fully been discussed by Berger et al.

(2001). They prove that the posterior is always proper.

Remark 4.1 The prior π(βββ, σ2, θ) in (4.3) with π(θ) = 1 was proposed by Kitanidis

(1986) and Handcock and Stein (1993). However, as shown by Berger et al. (2001),

it will result in an improper posterior.

4.3 Statistical Inference for Parameters

4.3.1 Estimating the smoothness parameter

As we did not assign a prior for the smoothness parameter ν, we have to estimate

this parameter before making Bayesian inference on βββ, σ2 and θ.

Because we are now considering the smoothness parameter ν, it is useful to ex-

plicitly recognize that the reference prior was defined with ν considered given, so we

now write π(βββ, σ2, θ | ν) instead of π(βββ, σ2, θ), and π(θ | ν) instead of π(θ) in this

subsection. Although the reference prior (4.3) is improper, Berger et al. (2001) prove

that the marginal prior π(θ | ν) is proper. This makes it possible to apply the idea

of Berger et al. (1998) to estimate the smoothness parameter ν. The procedure is as

follows.

For each ν, the reference prior used is

π(βββ, σ2, θ | ν) =
C(ν)π(θ | ν)

σ2
, (4.6)
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where

C(ν) =
1∫∞

0 π(θ | ν) dθ
.

Note that computation of C(ν) must be done numerically. We compute C(ν) by

the function quad with MATLAB software. Using the prior (4.6), we compute the

marginal integrated likelihood for each ν as

m(z | ν) =
∫

L(βββ, σ2, θ, ν; z)
C(ν)π(θ | ν)

σ2
dβββ dσ2 dθ

=
∫ ∞

0
LI(θ, ν; z)C(ν)π(θ | ν) dθ

=
∫ ∞

0
|ΣΣΣθ,ν |−1/2|X′ΣΣΣ−1

θ,νX|−1/2(S2
θ,ν)

−(n−p)/2C(ν)π(θ | ν) dθ, (4.7)

where

LI(θ, ν; z) =
∫

Rp+1×(0,+∞)
L(βββ, σ2, θ, ν; z)

1

σ2
dβββ dσ2

∝ |ΣΣΣθ,ν |−1/2|X′ΣΣΣ−1
θ,νX|−1/2(S2

θ,ν)
−(n−p)/2, (4.8)

and

S2
θ,ν = (z−Xβ̂ββθ,ν)

′ΣΣΣ−1
θ,ν(z−Xβ̂ββθ,ν) (4.9)

is the generalized residual sum of squares with

β̂ββθ,ν = (X′ΣΣΣ−1
θ,νX)−1X′ΣΣΣ−1

θ,νz (4.10)

being the generalized least squares estimator of βββ given θ and ν.

Based on the idea of Berger et al. (1998), ν can be estimated by maximizing the

marginal density m(z | ν), that is,

ν̂ = arg max
ν

m(z | ν).
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Figure 4.2: The marginal density m(z | ν) in terms of ν

Figure 4.2 shows the the marginal integrated likelihood m(z | ν) for our dataset. It

follows that for our model, the most likely value of ν is 0.13. Thus we will assume

ν = 0.13 for the posterior simulation in the next subsection.

Remark 4.2 Using various integrated likelihood methods for eliminating nuisance

parameters has been studied by several authors, such as Liseo (1993), Berger et al.

(1999), Liseo (2004) and the references therein.

4.3.2 Posterior simulation

Standard Bayesian theory tells us that the posterior distribution is determined by,

p(βββ, σ2, θ | z) ∝ L(βββ, σ2, θ; z)π(βββ, σ2, θ), (4.11)
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where L(βββ, σ2, θ; z) is given by (4.1) and π(βββ, σ2, θ) by (4.3), assuming that the

smoothness parameter ν is 0.13. The following theorem, which is a special case

of Theorem 3.1, will play an important role in the simulation of the posterior distri-

bution.

Theorem 4.1 The joint posterior distribution of βββ, σ2, θ has the following decompo-

sition

p(βββ, σ2, θ | z) = p(βββ | σ2, θ; z)p(σ2 | θ; z)p(θ | z), (4.12)

where

(βββ | σ2, θ; z) ∼ Np(β̂ββθ, σ
2(X′ΣΣΣ−1

θ X)−1), (4.13)

(σ2 | θ; z) ∼ IG((n− p)/2 + 1, z′{ΣΣΣ−1
θ − ΣΣΣ−1

θ X(X′ΣΣΣ−1
θ X)−1X′ΣΣΣ−1

θ }z/2),(4.14)

[θ | z] ∝ LI(θ; z)π(θ) (4.15)

with LI(θ; z) and β̂ββθ being given by (4.8)and (4.10), respectively, except assuming the

smoothness parameter ν known.

Sampling from (4.13) and (4.14) is straightforward. We will apply the generalized

Ratio-of-Uniforms method proposed by Wakefield et al. (1991) to sample θ from (4.15)

because it is not of standard form.

In order to apply the generalized Ratio-of-Uniforms method to sample θ from

(4.15), it is important to study the analytical properties of the function LI(θ; z)π(θ).

Figure 4.3 and Figure 4.4 show the plots of π(θ) and LI(θ; z)π(θ) with ν = 0.13,

respectively. The following theorem is essential to generate samples from p(θ | z) by

the generalized Ratio-of-Uniforms method.
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Figure 4.3: The Marginal Prior π(θ) with ν = 0.13.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−213

Figure 4.4: The Plot of LI(θ; z)π(θ) with ν = 0.13.
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Theorem 4.2 For ν 6= 1, there exists a positive number r, such that both

[LI(θ; z)π(θ)]1/(r+1) and θ[LI(θ; z)π(θ)]r/(r+1) are bounded on (0, +∞).

Proof. For the Matérn family and the reference prior π(βββ, σ2, θ), Lemma 1 in Berger

et al. (2001) showed that LI(θ; z) → c0 as θ → 0+ where c0 is a positive number,

LI(θ; z) = O(1) as θ → +∞ and π(θ) → 0+ as θ → 0. We consider three cases in the

following.

(i) 0 < ν < 1. Corollary 1 in Berger et al. (2001) stated that

π(θ) ∝ 1

θ1+2(1−ν)

and thus we may take any r > 1/[2(1− ν)].

(ii) ν is greater than 1 and is non-integer. Similarly, we have

π(θ) ∝ 1

θ1+2(ν−1)

and thus we may take any r > 1/[2(ν − 1)].

(iii) ν is greater than 1 but is integer. We have

π(θ) ∝ 1 + 2(ν − 1)| log(θ)|
θ1+2(ν−1)

and thus we may still take r > 1/[2(ν − 1)]. Thus the theorem follows.

By choosing an appropriate number r, the algorithm of the generalized Ratio-of-

Uniforms method works as follows (notice that infθ θ[LI(θ; z)π(θ)]r/(r+1) = 0):

Algorithm for simulation from p(βββ, σ2, θ | z):
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Step 1: Compute

a(r) = sup
θ>0

[LI(θ; z)π(θ)]1/(r+1),

b(r) = sup
θ>0

θ[LI(θ; z)π(θ)]r/(r+1);

Step 2: Simulate

U ∼ Uniform [0, a(r)],

V ∼ Uniform [0, b(r)],

and compute ρ = V/U r;

Step 3: If U ≤ [LI(ρ; z)π(ρ)]1/(r+1), we accept ρ as a sample θ from LI(θ; z)π(θ);

otherwise go back to Step 2;

Step 4: For each θ, simulate

σ2 ∼ IG((n− p)/2 + 1, z′{ΣΣΣ−1
θ − ΣΣΣ−1

θ X(X′ΣΣΣ−1
θ X)−1X′ΣΣΣ−1

θ }z/2);

Step 5: For each (θ, σ2), simulate

βββ ∼ Np+1(β̂ββθ, σ
2(X′ΣΣΣ−1

θ X)−1);

Step 6: Go back to Step 2.

For our dataset, we got ν = 0.13 and thus we may take any r > 0.5747 from

Theorem 4.2. For simplicity, we choose r = 1, which means that the basic Ratio-of-

Uniforms method proposed by Kinderman and Monahan (1977) can be applied. In

this case, a(1) = 0.1349 and b(1) = 0.0584. The acceptance area with the Ratio-of-

Uniforms method is shown in Figure 4.5 and the theoretical acceptance rate for the
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Figure 4.5: The Acceptance Area with the Ratio-of-Uniforms Method
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simulation is around 76 percent. In fact, we obtained 10, 000 samples by sampling

13101 pairs of (u, v), which means the actual acceptance rate is 76.33 percent in our

simulation. The simulation took about 52 minutes on a 2.20GHz AMD Athlon XP

3200+ PC. In addition, notice that our simulation produces independent samples for

(βββ, σ2, θ), which is advantageous over other traditional MCMC methods when making

inference of parameters or prediction.

Remark 4.3 The acceptance rate of the generalized Ratio-of-Uniforms method de-

pends on the value r chosen. It is unclear how to get the best choice of r. However,

our experience shows that a good choice is the integer that is closest to 1/(2|ν − 1|)

and greater than or equal to 1.

Remark 4.4 If the smoothness parameter ν is exactly equal to one, it is still unclear

whether the generalized Ratio-of-Uniforms method can be applied.

Figure 4.6 gives the histogram of θ based on these 10, 000 independent samples.

We can see that the marginal posterior density of the range parameter θ is positively

skewed and heavy-tailed, which commonly appears in spatial area. This property

usually results in difficulties in spatial simulation because it is often difficult to get

samples in the tail. See Banerjee et al. (2004) and Møller (2003) and the references

therein. The histograms of σ2 and β0, β1, β2, β3 are shown in Figures 4.7 and 4.8,

respectively. Table 4.2 shows some posterior quantities from the simulation.

From Figure 4.8 or Table 4.2, we know that both the aspect class and the soil

depth are very significant. The land type association is less significant in the model.
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Figure 4.6: Histogram of θ for the Model in § 4.2.
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Figure 4.7: Histogram of σ2 for the Model in § 4.2.
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Figure 4.8: Histograms of β0, β1, β2, β3 for the Model in § 4.2.
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parameter median mean standard deviation 95% Bayesian Credible Interval

β0 61.34 61.40 3.48 [54.91, 68.36]

β1 5.86 5.84 1.74 [2.44, 9.27]

β2 2.93 2.73 2.92 [−3.65, 7.93]

β3 5.48 5.47 2.11 [1.40, 9.59]

σ2 79.99 84.88 22.70 [58.34, 135.54]

θ 0.50 1.20 10.78 [0.12, 5.37]

Table 4.2: Posterior Quantities of (βββ, σ2, θ).

Figure 4.6 also tells us that the approximate mode of the marginal posterior

density of the range parameter θ is around 0.28, which is smaller than the posterior

median 0.50 . As mentioned in § 3.4, we would like to choose the posterior mode as

an appropriate point estimate of the range parameter θ for our model. This implies

that the effective range, which is the distance at which the correlation drops to only

0.05, is about 0.450 kilometers or 450 meters.

4.4 Model Validation

Assessing model adequacy is very important and fundamental in Bayesian data

analysis, since the analysis can be misleading when the model is not adequate. The

literature on Bayesian model adequacy is very extensive; for example, see Box (1980),

Geisser (1993), Gelfand et al. (1992), Dey et al. (1997), and many others. When the
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observations are independent, the cross-validation approach, in which the predictive

distribution is used in various ways to assess model adequacy, are popularly used.

The main idea of this cross-validation approach is to validate conditional predictive

distribution arising from single observation deletion against observed responses. For

spatial problems, the observations measured at different locations are correlated. If

the sample size is small, this approach is still applicable, for example, see De Oliveira

et al. (1997). However, this approach is not appropriate for a large spatial dataset

because of very expensive computation. Now we will use some of 60 samples trees

that are not contained in the model for assessing model adequacy.

From the 60 sampled trees that are outside the model, we pick 29 trees, such that

the distance between each of the 29 trees and any of the 113 trees in the model is

at least 20 meters. We then calculate the predictive distribution of the site index at

each of 29 locations as follows:

p(z0 | z) =
∫

p(z0 | z, βββ, σ2, θ)p(βββ, σ2, θ | z) dβββ dσ2 dθ, (4.16)

where p(βββ, σ2, θ | z) is the posterior distribution described by (4.11) and p(z0 |

z, βββ, σ2, θ) is determined by

p(z, z0 | βββ, σ2, θ) ∼ Nn+1




(
Xβββ

x′(s0)βββ

)
, σ2




ΣΣΣθ kθ

k′θ 1





 . (4.17)

Here x(s0) is the covariate vector evaluated at s0 and σ2kθ is n×1 vector of covariances

of z0 with (z(s1), . . . , z(sn)). In fact, we have

p(z0 | z, βββ, σ2, θ) ∼ N(µ0, σ
2
0) (4.18)
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where

µ0 = x′(s0)βββ + k′θΣΣΣ
−1
θ (z−Xβββ), σ2

0 = σ2(1− k′θΣΣΣ
−1
θ kθ). (4.19)

Based on the samples generated from the posterior distribution p(βββ, σ2, θ | z) in

the previous section, we can easily obtain the samples from the predictive distribution

and then calculate the 95 percent Bayesian credible interval for each z0 at location

s0. The detailed algorithm will be described in the next section. Of 29 locations

for the purpose of model validation, only 6 observed measurements are outside their

corresponding 95 percent Bayesian credible intervals. In addition, no overprediction

or underprediction tendency is noted. So the model proposed in § 4.2 seems to

perform adequately. We will also justify our model by discussing the variability of

the predictive distribution in the next section.

4.5 Spatial Prediction of the Site Index

4.5.1 Bayesian prediction at one location

Modelling point-referenced data is not only useful for identifying significant co-

variates but for producing smooth maps of the outcome by predicting it at unsampled

locations. Spatial prediction is usually referred to as kriging and is popularly used in

spatial problems. In the classical framework a lot of energy is devoted to the deter-

mination of the optimal estimates to plug into the predictive equation. However, as

pointed out by Le and Zidek (1992), classical kriging methodology fails to incorpo-

rate parameter uncertainty when performing prediction and inference. This deficiency
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leads to unwarranted confidence in the interpolated values and, essentially, to seem-

ingly valid decisions or regulatory actions which are, in fact, unjustified. Bayesian

approaches to spatial interpolation avoid this deficiency by considering uncertainty

about the parameters in the model.

For each unmeasured site s0, we obtain its covariate information from the GIS

database provided by the Missouri Department of Conservation. Given samples from

the posterior, simulation of realizations from (4.16) is straightforward. In fact, by

(4.16) and (4.18), we just need to add

Step 5?: for given (βββ, σ2, θ), simulate z0 from N(µ0, σ
2
0) with (µ0, σ

2
0) given by

(4.19);

before Step 6 of the algorithm in § 4.3.2 and thus we get independent samples of z0

from the posterior predictive distribution p(z0 | z) in (4.16).

Figure 4.9 shows the histogram of the z0 at (665614.875, 4115457.5), which is

close to the center of site one. Figure 4.10 shows the histograms of the z0 at other

four locations, which are near the border of size one. Each histogram is based on

a sample of size 5000. In fact, we found that the sample size 300 is good enough

to get the approximate predictive density of z0. We can also see that each posterior

predictive distribution is unimodal and approximately symmetric, which implies that

its mean, median and mode are almost same. In addition, the variation of each

predictive distribution is relatively small, comparing to the posterior distribution of

the variance σ2. For example, the standard deviation of the predictive distribution

at (665564.875, 4115337.5) is just about 2.80 for our 5000 samples. This also gives us
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Figure 4.9: Histogram of z0 Sampling from the Predictive Distribution at (665614.875,
4115457.5): Covariate Information (Aspect Class–Exposed, Land Type Association–
OZ9b and Soil Depth– Deep)
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Figure 4.10: Histograms of the Predictive Distribution at Four Different Loca-
tions: (a) Location (666194.875, 4116397.5), Covariate Information (Aspect Class–
Exposed, Land Type Association–OZ9b and Soil Depth–Deep to Very Deep); (b)
Location (666124.875, 4114517.5), Covariate Information (Aspect Class–Exposed,
Land Type Association–OZ9b and Soil Depth–Deep to Very Deep); (c) Lo-
cation (664474.875, 4115407.5), Covariate Information (Aspect Class–Protected,
Land Type Association–OZ9e and Soil Depth–Shadow to Deep); (d) Location
(665564.875, 4115337.5), Covariate Information (Aspect Class–Exposed, Land Type
Association–OZ9b and Soil Depth–Deep to Very Deep)
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confidence that our proposed model is appropriate.

In order to get a prediction map of the site index, we make a grid of 10 meters by

10 meters on site one and thus there are 38, 744 unmeasured locations. Figures 4.11,

4.12 and 4.13 present the covariate information for the aspect class, the land type asso-

ciation and the soil depth in site one, respectively. Based on the prediction procedure

described in this section, Figure 4.14 shows a prediction map for site one. The map

is made based on the median of 300 samples generated from the posterior predictive

distribution at each grid point. The whole simulation using the above method took

about 125 hours on a 2.20GHz AMD Athlon XP 3200+ PC. For convenience, we also

provide a map of the standard deviation of the site index prediction in Figure 4.15.

4.5.2 Bayesian prediction of spatial block average

Sometimes it is of interest to predict the average site index Z(B) over a subregion

B ⊂ D, that is,

Z(B) = |B|−1
∫

B
Z(s) ds, (4.20)

where |B| denotes the area of B. The integration in (4.20) is the average of random

variables, and hence a random or stochastic integral. To predict Z(B) based on the

dataset z, we require the predictive distribution, which is now

p(z(B) | z) =
∫

p(z(B) | z, βββ, σ2, θ)p(βββ, σ2, θ | z) dβββ dσ2 dθ (4.21)
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Figure 4.11: The Map of the Aspect Class at Site One: the Red Represents the Area
with Protected and the Blue Represents the Area with Exposed
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Figure 4.12: The Map of the Land Type Association at Site One: the Red Repre-
sents Current River Oak-Pine Woodland/Forest Hills (OZ9b) and the Blue Represents
Current River Oak Forest Breaks (OZ9e).
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Figure 4.13: The Map of the Soil Depth at Site One: the Red Represents the Soil
Depth Varying from Deep to Very Deep and the Blue Represents the Soil Depth
Varying from Shallow to Deep.
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Figure 4.14: The Prediction Map of the Site Index at Site One
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Figure 4.15: The Map of Standard Deviation of the Site Index Prediction at Site One
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Under the Gaussian process in § 4.2, we have

p(z, z(B) | βββ, σ2, θ) ∼ Nn+1




(
Xβββ

x′Bβββ

)
, σ2




ΣΣΣθ kθ,B

k′θ,B 1





 . (4.22)

where

xB = |B|−1
∫

B
X(s) ds (4.23)

and the ith element of kθ,B is given by

(kθ,B)i = |B|−1
∫

B
Kθ(si − s) ds. (4.24)

Analogously to (4.18), we get

p(z(B) | z, βββ, σ2, θ) ∼ N(µB, σ2
B), (4.25)

where

µB = x′Bβββ + k′θ,BΣΣΣ
−1
θ (z−Xβββ), σ2

B = σ2(1− k′θ,BΣΣΣ
−1
θ kθ,B). (4.26)

Riemanian approximation to integrate over B for (4.23) and (4.24) may be difficult in

practice, especially when B is irregularly shaped. Instead, noting that each integration

in (4.23) and (4.24) is an expectation with respect to a uniform distribution over the

subregion B, we may use Monte Carlo integration. In particular, we draw a set of

locations sj,B, j = 1, . . . , m, distributed independently and uniformly over B and then

replace xB and (kθ,B)i by

x̃B =
1

m

m∑

j=1

x(sj,B), (k̃θ,B)i =
1

m

m∑

j=1

Kθ(si − sj,B),

respectively. See Gotway and Young (2002) or Banerjee et al. (2004) and the refer-

ences therein for details. The simulation of the predictive distribution of (4.21) is

then similar to that in the previous subsection.
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4.5.3 Bayesian prediction of spatial CDFs

For the spatial process Z(·), we might wish to find the proportion of area in a

subregion B ⊂ D that has site index above some level w. This proportion is the

random variable

GB(w) = Pr(s ∈ B : Z(s) ≥ w) = |B|−1
∫

B
I(Z(s) ≥ w) ds, (4.27)

where I(A) is an indicator function. Prediction of GB(w) is equivalent to that of the

spatial cumulative distribution function (CDF) FB(w) defined by

FB(w) = 1−GB(w) = Pr(s ∈ B : Z(s) < w) = |B|−1
∫

B
I(Z(s) < w) ds, (4.28)

which has been studied by many authors such as Lahiri (1999) Lahiri et al. (1999)

and Zhu et al. (2002) etc.

Although that (4.27) may be studied analytically in some cases, it is difficult to

work with in practice. We can still apply the idea of the Monte Carlo integration in

§ 4.5.2 to approximate GB(w) first and then predict such an approximation through

Bayesian analysis. See Banerjee et al. (2004) for details.

Similar discussion can be applied to the prediction of spatial extremes and their

extent, see Cressie et al. (2004) and Craigmile et al. (2004) and the references therein.

4.6 Concluding Remarks and Discussions

In this chapter, we discuss how to model the site index dataset provided by the

Missouri Department of Conservation and then predict the site index at unsampled
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locations. As an example, we choose black oaks in sites one and two for analysis.

Based on ecological background and availability, we choose three variables, aspect

class, land type association and soil depth as covariates. To allow great flexibility of

the smoothness of the random field, we choose the Matérn family as the correlation

function. We also choose the reference prior as an appropriate prior because there

is no previous knowledge of the parameters in the model and thus an appropriate

Bayesian spatial model is established. An efficient algorithm based on the generalized

Ratio-of-Uniforms method is applied for the posterior simulation. One advantage of

the algorithm is that this simulation method can generate independent samples from

the required posterior distribution, which is much more efficient for both statistical

inference of the parameters and prediction of the site indexes at unsampled locations.

Our results show that aspect class and soil depth are both significant while land type

association is less significant.

It appears that the prediction map Figure 4.14 is not smooth enough, especially

around the observed data locations. The main reason for this is that we did not

consider the measurement error of the site index of a tree in our model and thus

theoretically, the prediction errors at measured locations were zero(see Figure 4.15).

However, the measurement errors always existed for the site indexes of trees (some

may be high) because it is impossible to measure heights of trees accurately and in

addition, the formula used for calculation from the tree height to the site index is

approximate. One good solution is to propose a spatial model with the nugget effect

(measurement error) as follows.
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Suppose that we have observe n observations Z = (Z(s1), Z(s2), . . . , Z(sn))′ from

a single realization of this random field {Z(s), s ∈ D}, where D ⊆ IR2 is the random

field of interest. Assume that Z(·) is a Gaussian random field with IE{Z(s)} =

β0 + β1X1(s) + · · ·+ βpXp(s). and

cov{Z(s), Z(u)} =





σ2 + τ 2, if s = u,

σ2Kθ,ν(‖s− u‖), if s 6= u,

(4.29)

where βββ = (β0, β1, . . . , βp)
′ ∈ IRp+1 are unknown regression parameters, X1(s), . . . ,

Xp(s) are known location-dependent covariates, σ2 + τ 2 = var{Z(s)}, and Kθ,ν(‖s−

u‖) is the Matérn correlation function given by (4.2). τ 2 is often called the nugget ef-

fect in spatial areas. Therefore, the likelihood of the model parameters (βββ, σ2, τ 2, θ, ν),

based on the observed data z = (z(s1), . . . , z(sn))′, is given by

L(βββ, σ2, τ 2, θ, ν; z) = (2π)−n/2|G|−1/2 exp
{
−1

2
(z−Xβββ)′G−1(z−Xβββ)

}
, (4.30)

where X = (xij) is the known n×(p+1) matrix with its first column as 1 = (1, . . . , 1),

assumed to have full rank, and

G = τ 2I + σ2ΣΣΣ (4.31)

with ΣΣΣ = (Kθ,ν(‖si − sj‖))n×n.

Because there is one more parameter, the nugget effect τ 2 in the likelihood function

(4.30) than in (4.1), it appears impossible to develop the corresponding reference prior,

even although the smoothness parameter ν is assumed to be known. As suggested by

Agarwal and Gelfand (2005), we may consider the following prior

π(βββ, σ2, τ 2, θ, ν) = π(βββ)π(σ2)π(τ 2)π(θ)π(ν), (4.32)
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where

βββ ∼ Np(0, dIp),

σ2 ∼ IG(a1, b1),

τ 2 ∼ IG(a2, b2),

θ ∼ IG(a3, b3),

ν ∼ U(0, 2),

where ai, bi and d are specified. IG(a, b) refers to an inverse gamma distribution with

shape parameter a and scale parameter b, and U(a, b) is a uniform distribution on

the interval (a, b). For these specifications, the prior π(βββ, σ2, τ 2, θ, ν) given by (4.32)

is proper and therefore the corresponding posterior distribution should be proper as

well.

Note that for IG(a, b), the variance is infinite when the shape parameter a is 2.

The hyperparameters are chosen so that the prior is proper but vague enough so that

inference is driven by the data. In practice, we may choose d = 100, a1 = a2 = a3 = 2.

b1, b2, b3 may be chosen such that each of them is close to the MLE or REML of its

corresponding parameter.

Since the algorithm in Chapter 3 is not applicable, a new simulation algorithm is

needed. We may apply the Gibbs sampling for the posterior simulation and thus the

full conditional distributions are needed. The full conditional distribution of βββ can

be easily obtained as

(βββ | σ2, τ 2, θ, ρ; z) ∼ Np(µµµβββ, ΣΣΣβββ),
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where

µµµβββ = (X′G−1X + d−1Ip)
−1X′G−1z, (4.33)

ΣΣΣβββ = (X′G−1X + d−1Ip)
−1. (4.34)

with G given by (4.31). However, the full conditional distributions of σ2, τ 2, θ, ν are

not standard forms. We will update each of them with the slice sampler, which can

be found in Section 5.3. The proposed algorithm is as follows.

Algorithm:

Step 1: For given (σ2, τ 2, θ, ν), update βββ by simulating

βββ ∼ Np(µµµβββ, ΣΣΣβββ),

where µµµβββ and ΣΣΣβββ are given by (4.33) and (4.34), respectively;

Step 2: For given (βββ, σ2, τ 2, θ, ν), simulate R ∼ exp(1) and let

V = R− log L(βββ, σ2, τ 2, θ, ν; z);

Step 3: For given (βββ, τ 2, θ, ν), update σ2 by simulating σ2 ∼ IG(a1, b1) until

V > − log L(βββ, σ2, τ 2, θ, ν; z); (4.35)

Step 4: For given (βββ, σ2, θ, ν, V ), update τ 2 by simulating τ 2 ∼ IG(a2, b2) until

the condition (4.35) is satisfied;

Step 5: For given (βββ, σ2, τ 2, ν, V ), update θ by simulating θ ∼ IG(a3, b3) until

the condition (4.35) is satisfied;

Step 6: For given (βββ, σ2, τ 2, θ, V ), simulate ν ∼ U(0, 2) until the condition
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(4.35) is satisfied;

Step 7: Go back to Step 1 until we get the appropriate number of posterior samples.

In order to speed the updating processes, we may apply the shrinkage slice sampler

described in § 5.3.2 in Steps 4, 5 and 6.

In addition, we may consider a multivariate Bayesian spatial model by considering

the four species together to enhance the prediction.
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Chapter 5

Bayesian Spatial Models with

Repeated Measurements — with

Application to the Herbaceous

Data Analysis

5.1 Introduction

Ground layer vegetation is an important component of any forest ecosystem and

has been shown to be a useful indicator of attributes such as disturbance history, site

productivity, and potential responses to management(Whittaker, 1967, Host and Pre-

gitzer, 1991). The study of the Missouri Ozark Forest Ecosystem Project (MOFEP)

is the first comprehensive effort to describe and evaluate the upland ground flora of
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the southeastern Missouri Ozarks.

MOFEP ground flora was sampled in the same plots used for the woody vegetation.

There are 70 to 76 permanent 0.2-ha (0.5-ac) circular plots located within each of nine

study sites for a total of 648 MOFEP vegetation plots. Pre-treatment ground flora

data were collected each summer from 1991 through 1995. Principal data collection

was conducted between early June and late August each year. Sampling sometimes

extended through September because of either limited field personnel or intentional

resampling to address questions about seasonal effects.

There were four subplots in each plot. For each subplot, there were four 1-m2

quadrats located 6.7 meters from the subplot center at 45◦, 135◦, 225◦, 315◦. See

Figure 5.1.

Within each 1-m2 quadrat, all vascular species with live foliage less than 1 meter

tall above the ground were identified and assigned an estimate of percentage coverage.

The sample included plants not rooted in the quadrat frame but with leaves hanging

over it. Individual species coverages were estimated as if no other species were in

the quadrat (i.e., overlap among leaves of different species was ignored). In addition,

the total percentage coverage by live vegetation less than 1 meter in each quadrat,

including vascular and non-vascular, was measured. See Grabner (2000).

The main aim of this chapter is to study the spatial effect of the total vegetation

coverage in the MOFEP sites. We may choose the center of a quadrat as the location

for the measurement of total vegetation coverage in this quadrat and apply the typical

spatial tool described in the previous two chapter or Cressie (1993) for analysis.
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However, the centers of four quadrats in the same subplot are very close to each

other and this results in the singularity of the covariance matrix. In addition, we can

not differentiate the covariate information in four quadrates of a subplot because the

finest resolution for covariate in the MOFEP is a grid cell of 10 m by 10 m. Due

to this special structure of the data, we propose a new spatial model by considering

the measurements in four quadrats of a subplot as repeated measurements. See the

related work by Hooten et al. (2003).

This chapter is organized as follows. Section 5.2 describes the new spatial model.

The full conditional distributions and the simulation scheme will be discussed in

Section 5.3. The prediction will be discussed in Section 5.4. We will apply our new

model to the data of total vegetation coverage in site one in the MOFEP. Finally,

some comments and possible generalization will be given.

5.2 Model Development

5.2.1 Hierarchical Model

Suppose that Z1(s1), . . . , Zr(s1), . . . , Z1(sn), . . . , Zr(sn) are rn observations over

the domain D, where Zj(si) is the jth observations at location si, i = 1, . . . , n; j =

1, . . . , r. Suppose that

Zj(si) = x(si)
′βββ + W (si) + εj(si), (5.1)

where x(si) is a p×1 vector, representing location-dependent covariates, and (W (s1),

. . . , W (sn)) are realizations from a second-order stationary Gaussian process with
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Figure 5.1: MOFEP Vegetation Plot Design.
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covariance function σ2K(‖si − sj‖; θθθ), that is,

(W (s1), . . . , W (sn))′ ∼ Nn(0, σ2K(θθθ)). (5.2)

Here K(θθθ) = (K(‖si − sj‖; θθθ))n×n. For each location si, we assume that

(ε1(si), . . . , εr(si))
′ ∼ Nr(0, σ2τ 2H(ρ)), (5.3)

where H(ρ) is a specified matrix controlled by the parameter ρ. In addition, we

assume the independence between W (si) and εj(si). In what follows, we work with

the exponential family which is isotropic of the form K(d; θ) = exp(−d/θ) and we

choose H(ρ) as

H(ρ) =




1 ρ · · · ρ

ρ 1 · · · ρ

· · · · · · · · · · · ·

ρ ρ · · · 1




r×r

. (5.4)

Note that θ is the spatial range parameter, which measures how quickly the cor-

relations of the random field decay with distance, while ρ is the local correlation

coefficient for repeated measurements. In addition, σ2τ 2 can be viewed as the vari-

ance of repeated measurement errors, which is often called the nugget effect when

r = 1.

Remark 5.1 H(ρ) in (5.4) is positive definite if and only if ρ ∈ (−1/(r − 1), 1).

The parameters of interest are (βββ, σ2, τ 2, θ, ρ) and we choose the functional form

for the prior to be

π(βββ, σ2, τ 2, θ, ρ) = π(βββ)π(σ2)π(τ 2)π(θ)π(ρ). (5.5)
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As for prior specifications, we assume

βββ ∼ Np(0, dIp), (5.6)

σ2 ∼ IG(a1, b1), (5.7)

τ 2 ∼ IG(a2, b2), (5.8)

θ ∼ IG(a3, b3), (5.9)

ρ ∼ U(0, 1), (5.10)

where ai, bi and d are specified. IG(a, b) refers to an inverse gamma distribution with

shape parameter a and scale parameter b, and U(a, b) is a uniform distribution on the

interval (a, b). Based on my experience, it is reasonable to just assume ρ to be positive

because it is the local correlation for repeated measurements that may be affected by

local environmental conditions. However, it is often hard to justify this point from

the observed data. For these specifications, the prior π(βββ, σ2, τ 2, θ, ρ) given by (5.5)

is proper and therefore the corresponding posterior distribution should be proper as

well.

Remark 5.2 If r = 1, then the above model is exactly the same as the typical spatial

model with nugget effect in Cressie (1993) or Banerjee et al. (2004). In this sense,

the proposed model generalizes the traditional spatial model with nugget effect.

5.2.2 The Likelihood

Note that though (Z1(si), . . . , Zr(si)) follows a multivariate normal distribution

given the W (si), a Gibbs sampler which also updates the latent W (si) will be sampling
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n+p+r dimensional posterior density. However, it is possible to marginalize explicitly

over the W (si)s and it is almost always preferable to implement iterative simulation

with a lower dimensional distribution. In fact, such marginalization is routinely used

in conjunction with normal data and normal random effects and, for example, is used

by Chib and Carlin (1999) in the context of longitudinal data models. Let

Z = (Z1(s1), . . . , Zr(s1), . . . , Z1(sn), . . . , Zr(sn))′. (5.11)

Then we can prove that

(Z | βββ, σ2, τ 2, θ, ρ) ∼ Nrn(µµµ, σ2G), (5.12)

where

µµµ = (X⊗ 1r)βββ, (5.13)

G = K(θ)⊗ (1r1
′
r) + τ2In ⊗H(ρ). (5.14)

Here “A⊗B” denotes the Kronecker product of A and B, and 1r is an n× 1 vector

with all elements one. The likelihood function is thus given by

L(βββ, σ2, τ 2, θ, ρ; z) =
|G|−1/2

(σ2)nr/2
exp

{
− 1

2σ2
(z− µµµ)′G−1(z− µµµ)

}
. (5.15)

5.3 The Posterior Distribution and Sampling Schemes

5.3.1 The Full Conditional Distributions

The posterior density of (βββ, σ2, τ 2, θ, ρ) is

p(βββ, σ2, τ 2, θ, ρ | z) ∝ L(βββ, σ2, τ 2, θ, ρ; z)π(βββ)π(σ2)π(τ 2)π(θ)π(ρ), (5.16)
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where L(βββ, σ2, τ 2, θ, ρ; z) is the likelihood function given by (5.15), and π(βββ), π(σ2),

π(τ 2), π(θ) and π(ρ) are determined by (5.6)–(5.10), respectively. The above posterior

distribution is proper because the prior is proper. However, it is very complicated.

We will apply the Gibbs sampling for the posterior simulation and therefore the full

conditional distributions are needed. The full conditional distribution of βββ can be

readily obtained as follows:

(βββ | σ2, τ 2, θ, ρ; z) ∼ Np(µµµβββ, ΣΣΣβββ), (5.17)

where

µµµβββ = [(X⊗ 1r)
′G−1(X⊗ 1r) + d−1Ip]

−1(X⊗ 1r)
′G−1z, (5.18)

ΣΣΣβββ = σ2[(X⊗ 1r)
′G−1(X⊗ 1r) + d−1Ip]

−1. (5.19)

The full conditional distribution of σ2 is still an inverse gamma distribution given by

(σ2 | βββ, τ 2, θ, ρ; z) ∼ IG
(

rn

2
+ a1,

1

2
(z− µµµ)′G−1(z− µµµ) + b1

)
. (5.20)

However, the full conditional distributions of τ 2, θ or ρ are not standard forms and

very complicated, which involves matrix determinant and matrix inverse functions.

One possible choice is Metropolis-Hastings algorithm. But it is hard to find appro-

priate proposal densities. Slice sampling (Neal, 2003), by contrast, is advantageous

in this case. We outline the shrinkage slice sampler in the following subsection.

5.3.2 Shrinkage Slice Sampler

Suppose we want to sample x ∼ f(x). The main idea of slice sampling is to in-

troduce an auxiliary variable y such that the joint distribution of x and y is uniform
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over the region U = {(x, y) : 0 < y < f(x)}. Then x and y are alternately sam-

pled from uniform distributions in a Markov chain. Furthermore, suppose the target

density can be written as f(θ) = f1(θ)f2(θ) where f2(θ) is a standard density easy

to sample and f1(θ) is a complex function difficult to sample. For example, f2(θ)

is a proper prior π(θ) easy to sample while f1(θ) is the likelihood function L(θ;y).

We can introduce an auxiliary variable u such that the joint density of θ and u is

p(θ, u) = I(u < f1(θ))f2(θ). So the marginal density of θ is f(θ). The following is

the slice sampler. Given the current state θ(t),

Step 1. Sample ut ∼ U(0, f1(θ
(t))),

Step 2. Sample θ(t+1) ∼ f2(θ) until ut < f1(θ
(t+1)).

As Neal (2003) stated, slicing only the likelihood f1(θ) = L(θ;y) and doing Gibbs

updates using draws from the prior f2(θ) = π(θ) along with the rejection sampling

is truly “off the shelf”, requiring no tuning at all. It is from this point that the slice

sampling is proposed to be advantageous over the Metropolis-Hastings algorithm.

A naive rejection sampling scheme (repeatedly sample from f2(θ) until we get

a point in the slice, that is, u < f1(θ)) need not give good results. An algorithm

which shrinks the support of f2(θ) so that it gives better approximation to the slice

whenever there is a rejection is more appropriate. The scheme is called “shrinkage

slice sampler” by Neal (2003) and described as follows. If a point θ∗ drawn from f2(θ)

is not in the slice and is larger (smaller) than the current value θ(t) which is in the

slice, the next draw is made from f2(θ) truncated with the upper (lower) bound being

θ∗. The truncated interval keeps shrinking with each rejection until a point in the
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slice is drawn.

This is another issue worth mentioning about slice sampling in spatial statistics.

With regard to computation, for large data sets often evaluation of the likelihood

L(θθθ;y) will produce an underflow, preventing sampling from the uniform distribution

for u given θθθ in Step 1. However, log L(θθθ;y) will typically not be a problem to

compute. So it is often safer to compute log f1(θθθ) rather than f1(θθθ) itself. One can

then use the auxiliary variable v = log(u) = log f1(θθθ)− e1, where e1 is exponentially

distributed with mean one.

5.3.3 Simulation Algorithm

Combining Gibbs sampling with the shrinkage slice sampler, we propose the fol-

lowing simulation algorithm for the posterior (5.16).

Algorithm:

Step 1: For given (σ2, τ 2, θ, ρ), update βββ by simulating

βββ ∼ Np(µµµβββ, ΣΣΣβββ),

where µµµβββ and ΣΣΣβββ are given by (5.18) and (5.19), respectively;

Step 2: For given (βββ, τ 2, θ, ρ), update σ2 by simulating

σ2 ∼ IG
(

rn

2
+ a1,

1

2
(z− µµµ)′G−1(z− µµµ) + b1

)
,

where µµµ and G are given by (5.13) and (5.14), respectively;

Step 3: For given (βββ, σ2, τ 2, θ, ρ), simulate R ∼ exp(1) and let

V = R− log L(βββ, σ2, τ 2, θ, ρ; z);
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Step 4: For given (βββ, σ2, θ, ρ; V ), update τ 2 by simulating τ 2 ∼ IG(a2, b2) until

V > − log L(βββ, σ2, τ 2, θ, ρ; z); (5.21)

Step 5: For given (βββ, σ2, τ 2, ρ; V ), update θ by simulating θ ∼ IG(a3, b3) until

the condition (5.21) is satisfied;

Step 6: For given (βββ, σ2, τ 2, θ; V ), simulate ρ ∼ U(0, 1) until the condition

(5.21) is satisfied;

Step 7: Go back to Step 1 until we get the appropriate number of MCMC samples.

Notice that in Steps 4, 5 and 6, to speed the updating processes, we always apply

the technique of the shrinkage slice sampler in § 5.3.2.

5.4 Prediction

The Bayesian approach to prediction provides a general methodology for taking

into account the uncertainty about parameters on subsequent predictions. For an

unmeasured location s0, Z(s0) =̂ Z0 can be predicted by the following predictive

distribution

p(z0 | z) =
∫

p(z0 | z, βββ, σ2, θ)p(βββ, σ2, θ | z) dβββ dσ2 dθ, (5.22)

where p(βββ, σ2, θ | z) is the posterior distribution described by (5.16) and p(z0 |

z, βββ, σ2, θ) is determined by

p(z, z0 | βββ, σ2, θ) ∼ Nn+1




(
µµµ

x′(s0)βββ

)
, σ2




G kθ

k′θ 1





 . (5.23)
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Here x(s0) is the covariate vector evaluated at s0 and kθ is given by

kθ = (K(‖s0 − s1‖; θ), . . . , K(‖s0 − sn‖; θ))′ ⊗ 1r.

Thus, we have

p(z0 | z, βββ, σ2, θ) ∼ N(µ0, σ
2
0), (5.24)

where

µ0 = x′(s0)βββ + k′θG
−1(z− µµµ), σ2

0 = σ2(1− k′θG
−1kθ). (5.25)

As for the simulation, we just need to add

Step 6?: for given βββ, σ2, τ 2, θ, ρ, simulate z0 from N(µ0, σ
2
0) with µ0, σ

2
0 given by

(5.25);

before Step 7 of the algorithm in § 5.3.3 for each location s0 and thus we get the

samples of z0 from the posterior predictive distribution p(z0 | z) in (5.22). The

inference of z(s0) at unmeasured location s0 is based the samples obtained.

5.5 Application to the Herbaceous Data Analysis

In this section, we analyze the herbaceous data collected in 1994 in site one of

the MOFEP. For each quadrat, vegetation was identified and quantified on a percent

coverage basis (Grabner, 2000). Let D represent the area of site one and Cj(si) be

the observed percent coverage of total vegetation in the ith quadrat of a subplot at
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center si. Let

Zj(si) = log
Cj(si) + .0005

1− (Cj(si) + .0005)
. (5.26)

The transformation (5.26) without adding .0005 is popularly used in logistic regres-

sion because it makes the transformation from (0, 1) to (−∞,∞). As Webster and

McBratney (1987) and Cressie (2004) did, we add 0.05% to each observed datum

Cj(si) to avoid taking logarithm of zero. We fit the model described in § 5.2 for

{Zj(si)}s.

Since the total vegetation data were measured in 73 plots of site one, so we have

n = 292 and r = 4. See Figure 5.2 for locations of the subplots.

Covariates were chosen based on ecological background and availability. We chose

two covariates: the aspect class and the soil depth because of their important influence

on composition(Grabner,2002, page 137). The full description for the aspect class

and the soil depth can be found in § 4.2.1.

The hyperparameters are chosen so that the priors for parameters βββ, σ2, τ 2 and θ

are proper but vague enough and thus the inference is driven by the data. For βββ, we

choose d = 100, implying that each βi has a large variance of its prior distribution.

Centering the normal priors for the regression coefficients at zero is reasonable because

all the coefficients are expected to have small magnitudes due to the small values of

the response variable (minimum −7.02 to maximum 1.33). Note that for an inverse

gamma distribution with shape a and scale b, it has a mean b and an infinite variance

when the shape parameter a is 2. The means of the priors of σ2, τ 2 and θ are chosen

to be close to their REML estimates while the prior variances are infinite. So we
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Figure 5.2: Locations of subplots in site one (the square area is for prediction)

choose a1 = a2 = a3 = 2 and b1 = .48, b2 = 2.50, b3 = .25.

The MCMC algorithm in § 5.3.3 was run for 10, 000 iterations after a burn-in pe-

riod of 1, 000 iterations. It took about 230 hours on a 3.06GHz Intel Xeon server with

MATLAB software. Resulting parameter distributions were summarized in the form

of histograms. Figure 5.3 shows the marginal histograms for the parameters βββ, in the

model. The marginal posterior distributions for βi are approximately symmetric. It

can be inferred that soil depth is indeed an important factor influencing the total vege-

tation coverage because 95% Bayesian credible interval of β2 is (0.0526, 0.6951), which

does not contain zero. The 95% Bayesian credible interval for β1 is (−0.1571, 0.4033).
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This suggests that the aspect class is perhaps less important than the soil depth when

modelling the total vegetation coverage. However, we will still make use of the aspect

class for prediction later because P(β1 > 0 | z) is more than 0.85.

parameter median mean standard deviation 95% Bayesian CI

β0 −2.5066 −2.5065 0.2054 [−2.9109,−2.1095]

β1 0.1267 0.1259 0.1438 [−0.1571, 0.4033]

β2 0.3786 0.3789 0.1640 [0.0526, 0.6951]

σ2 0.4464 0.4618 0.1213 [0.2556, 0.7198]

τ 2 2.9139 3.0465 0.9333 [1.6938, 5.4329]

θ 0.1398 0.1575 0.0776 [0.0673, 0.3498]

ρ 0.1508 0.1496 0.0497 [0.0450, 0.2435]

Table 5.1: Posterior Quantities of (βββ, σ2, τ 2, θ, ρ).

Figure 5.4 also shows the marginal histograms for the parameters σ2, τ 2, θ2, ρ.

Unlike βi, the marginal posterior distributions for σ2, τ 2, θ2, ρ are skewed. Table 5.1

shows the posterior quantities for parameters in the model.

Remember that the parameter θ gives the information of spatial effect while ρ

provides the local correlation information for the measurements from four quadrats

in a subplot. As suggested by Banerjee et al. (2004), we may choose posterior medians

as their point estimates. So we have θ̂ = 0.1398 and ρ̂ = 0.1508. Hence we get that

the effective range, which is the distance at which the spatial correlation drops to
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only 0.05, is approximately 0.42 km. Notice that the maximum distance in site one

is approximately 2.50 km and thus the above point estimate of the effective range

implies that the strong spatial effect exists for the total vegetation coverage data

in site one. In addition, the estimate of ρ shows that the measurements from four

quadrats in a subplot are not strongly dependent but are not independent.

Remark 5.3 As Dr. Dongchu Sun, one of my committee members, pointed out that

for a prior of the parameter η, it may be vague enough for η itself while it is quite

informative for g(η), where g(η) is a function of η. This is true. What we can do is to

take care of parameters of interest first. Note that σ2τ 2 is one of interest parameters

in the model because it can be viewed as the variance of repeated measurement errors.

Although the prior of σ2τ 2 is not a standard form, the prior variance of σ2τ 2 is

still infinite when σ2 and τ 2 are assigned inverse Gamma distributions with shape

parameters ai = 2, i = 1, 2. In this case, hyperparameters b1, b2 would not affect

the inference too much although we chose b1, b2 to be close to REMLs of σ2 and

τ 2, respectively. The small study in the following supports this point. We generated

2000 samples from the posterior distribution with d = 100, a1 = a2 = a3 = 2 and

b1 = 0.30, b2 = 1.00, b3 = 0.2. Figure 5.9 presents the comparison of the estimated

posterior densities under two different cases. We found that the estimated posterior

densities for each parameter are very close.

Based on the theory in § 5.4, the total vegetation coverage at any location in site

one may be predicted. We choose a square area of 500 meters by 500 meters in the

southeastern part of site one for prediction. Like § 4.5, we made a grid cell size of
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10 meters by 10 meters, resulting in 2500 prediction locations in this domain. The

covariate information in this prediction domain can be seen in Figure 5.5.

We choose the median of samples from the predictive distribution as a point

estimate of Z(s0) and thus get an estimate of the total vegetation coverage C(s0) at

location s0 from the transformation (5.26).

Since there are so many locations to be predicted, computation is very time-

consuming due to inverse and determinant of large dimensional matrices if we make

use of all 10, 000 samples from the posterior distribution. We consider reducing the

number of posterior samples. One way is to take just a few posterior samples, say,

the first 500. However, as mentioned by Banerjee et al. (2004), the outputs created

from the shrinkage slice sampler are usually highly autocorrelated, which may not

give a good result for the predictive distribution when using a small size of posterior

samples. The better way is to resort to thinning, which is simply retaining only every

kth sampled value, where k is the approximate lag at which the autocorrelations

in the chain become insignificant. For our 10000 posterior samples, we found that

k = 40 is an appropriate number and thus 250 posterior sub-samples were obtained.

A small study revealed that the difference of the sample medians from the predictive

distribution incurred by using the 10000 total samples and using the 250 sub-samples

is ignorable. For example, at location s0 = (665000, 4115000), the sample median of

the predictive distribution is about −2.8164 with the 10000 total posterior samples

while it is about −2.8013 with just 250 “thinning” posterior sub-samples.

Figure 5.6(a) displays the prediction map of the total vegetation coverage in the
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250, 000m2 square domain based on each median of 250 “thinning” posterior sub-

samples. The corresponding map of standard deviation can be seen in Figure 5.6(b).

It took about 136 hours on a 2.80GHz Intel Pentium IV PC for the prediction simu-

lation.

It is interesting to see whether we can reduce the number of quadrats in each

subplot when the prediction of the total vegetation coverage is the primary purpose.

So among four quadrats in each subplot, two of them, which are at 45◦ and 225◦,

are chosen and then we remodel the new data set again (n = 292, r = 2). The

corresponding maps of the total vegetation coverage in the 250, 000m2 square domain

can be seen in Figure 5.7. It looks like there is no meaningful difference between

Figure 5.6(a) and Figure 5.7(a). We can also see the map of the relative difference

based on the results of four quadrats and two quadrats in each subplot in Figure 5.8.

If biologists agree that the difference is acceptable, we may just measure the total

vegetation coverage in two qudadrats of each subplot.

5.6 Discussion and Conclusion

We have developed a new spatial model taking into account several close mea-

surements as repeated measurements in one location and applied to the analysis of

the total vegetation coverage data in site one of the MOFEP. Our results show that

the soil depth covariate is an important factor while the aspect class is less important

when modelling the total vegetation coverage. We also show that the strong spatial

effect does exist in the data discussed and the measurements in four quadrats of a
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subplot are not strongly correlated but are not independent. In addition, prediction

of the total vegetation coverage at unmeasured locations is established.

Model validation is very important when setting up a new model. This is worthy

of further study in the future.

Possible extentions could be made as follows.

In the MOFEP, it is also important to model the vegetation coverage by an individ-

ual species. For modelling the coverage by an individual species, the model in § 5.2.1

is not applicable directly because plants occur infrequently and have low coverage.

Consequently, the data contain a lot of zeros and 0.001s. For example, Desmodium

nudiflourum is the most popular species in nine MOFEP sites. Despite being the most

abundant species, there are about 41.6 percent quadrats where Desmodium nudiflou-

rum is absent and about 8.7 percent quadrates where the coverage of Desmodium

nudiflourum is less one percent (counted as 0.1 percent). However, we may make use

of our model by introducing latent variables.

Let Yj(si) be the observed percent coverage of an individual species and Y ∗
j (si) be

the unobserved true percent coverage in the ith quadrat of a subplot at center si. It

is reasonable to assume that

Yj(si) =





0, if 0 ≤ Y ∗
j (si) < 0.001,

0.001, if 0.001 ≤ Y ∗
j (si) < 0.01,

Y ∗
j (si), if 0.01 ≤ Y ∗

j (si) ≤ 1.

(5.27)

Let Uj(si) = Φ−1(Y ∗
j (si)) or Y ∗

j (si) = Φ(Uj(si)), where Φ(·) is the cumulative

probability function of the standard normal distribution. It is straightforward to see
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that

Yj(si) =





0, if Uj(si) < c1,

0.001, if c1 ≤ Uj(si) < c2,

Φ−1(Uj(si)), if Uj(si) ≥ c2.

(5.28)

where

c1 = Φ−1(0.001) = − 3.0902, c2 = Φ−1(0.01) = − 2.3263. (5.29)

Like Zj(si), it is assumed that {Uj(si)} follow the hierarchical model in § 5.2.1. In

what follows, we assume r = 4. Let

U = (U1(s1), . . . , Ur(s1), . . . , U1(sn), . . . , Ur(sn))′. (5.30)

Therefore,

(U | βββ, σ2, τ 2, θ, ρ) ∼ Nrn(µµµ, σ2G), (5.31)

which is the same as the conditional distribution of Z given (βββ, σ2, τ 2, θ, ρ) in (5.12)

of subsection 5.2.2, where µµµ and G are given by (5.13) and (5.14), respectively. So,

for given (βββ, σ2, τ 2, θ, ρ), the conditional density of U is

p(u | βββ, σ2, τ 2, θ, ρ) =
|G|−1/2

(σ2)nr/2
exp

{
− 1

2σ2
(u− µµµ)′G−1(u− µµµ)

}
. (5.32)

Let

Y = (Y1(s1), . . . , Yr(s1), . . . , Y1(sn), . . . , Yr(sn))′. (5.33)

From (5.28), we have that for given U , the conditional density of Y is

p(y | u) =
n∏

i=1

r∏

j=1

[I(yj(si) = 0, uj(si) < c1)
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+ I(yj(si) = 0.001, c1 ≤ uj(si) < c2)

+ I(yj(si) = Φ−1(uj(si)), uj(si) ≥ c2)], (5.34)

where I(A) is the indicator function of A. As for the prior of (βββ, σ2, τ 2, θ, ρ), we

may still choose the prior π(βββ, σ2, τ 2, θ, ρ) defined by (5.5)-(5.10). Combining (5.34)

and(5.32) with the prior π(βββ, σ2, τ 2, θ, ρ), we have the joint distribution of (y,u, βββ, σ2,

τ 2, θ, ρ)

p(y,u, βββ, σ2, τ 2, θ, ρ) = p(y | u)p(u | βββ, σ2, τ 2, θ, ρ)π(βββ, σ2, τ 2, θ, ρ). (5.35)

For the posterior simulation, we still prefer to the Gibbs sampler. (5.35) tells us

that for given U, updating (βββ, σ2, τ 2, θ, ρ) requires no information from y and thus

the algorithm in subsection 5.3.3 can be used.

However, for each MCMC cycle, we need update {Uj(si)} because they are latent

variables. The full conditional distribution of U is given by

p(u | βββ, σ2, τ 2, θ, ρ;y) ∝ p(y | u)p(u | βββ, σ2, τ 2, θ, ρ). (5.36)

From (5.31)(5.34) and (5.36), we can see that the full conditional distribution of U

follows a truncated multivariate normal distribution and thus the idea of the simu-

lation algorithm for in Griffiths (2002) may be borrowed. We propose the following

algorithm for the posterior simulation.

Algorithm:

Step 1: For given (βββ, σ2, τ 2, θ, ρ;y), update U by using the simulation

algorithm in Griffiths (2002) for a truncated multivariate normal

distribution;
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Step 2: For given (σ2, τ 2, θ, ρ, u), update βββ by simulating

βββ ∼ Np(µµµ
∗
βββ, ΣΣΣ∗

βββ),

where

µµµ∗βββ = [(X⊗ 14)
′G−1(X⊗ 14) + d−1Ip]

−1(X⊗ 14)
′G−1u, (5.37)

ΣΣΣ∗
βββ = σ2[(X⊗ 14)

′G−1(X⊗ 14) + d−1Ip]
−1; (5.38)

Step 3: For given (βββ, τ 2, θ, ρ, u), update σ2 by simulating

σ2 ∼ IG
(

rn

2
+ a1,

1

2
(u− µµµ)′G−1(u− µµµ) + b1

)
,

where µµµ and G are given by (5.13) and (5.14), respectively;

Step 4: For given (βββ, σ2, τ 2, θ, ρ,u), simulate R ∼ exp(1) and let

V = R− log p(u | βββ, σ2, τ 2, θ, ρ), (5.39)

where p(u | βββ, σ2, τ 2, θ, ρ) is given by (5.32);

Step 5: For given (βββ, σ2, θ, ρ,u, V ), update τ 2 by simulating τ 2 ∼ IG(a2, b2)

until

V > − log p(u | βββ, σ2, τ 2, θ, ρ); (5.40)

Step 6: For given (βββ, σ2, τ 2, ρ,u, V ), update θ by simulating θ ∼ IG(a3, b3) until

the condition (5.40) is satisfied;

Step 7: For given (βββ, σ2, τ 2, θ,u, V ), simulate ρ ∼ U(0, 1) until the condition

(5.40) is satisfied;
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Step 8: Go back to Step 1 until we get the appropriate number of MCMC samples.

Details including the prediction of the percent coverage of an individual species

at unmeasured locations will be investigated in the future.
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