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ABSTRACT 

Recent developments in aerospace exploration have stimulated extensive research 

interest in Highly Flexible Structures (HFSs), such as dish antennas, space telescopes, 

and solar collectors due to their prospectively wide applications and involved challenging 

mechanics problems. As the basic structural elements for these HFSs, strings, cables and 

beams play an important role in the high precision design of these structures. Large 

elastic deformation and nonlinear dynamics of these one-dimensional structures need to 

be fully understood in order to design such structures and to control them when they are 

in service. 

In this dissertation, exact equations of motion for finite-amplitude vibration of 

strings were derived based on a fully nonlinear string model. The Method of Multiple 

Scales (MMS) was used to solve the weakly nonlinear governing differential equations of 

strings subjected to a harmonic base-excitation. Two different ways of using the MMS 

were followed and the results were compared. Bifurcations of solutions due to variations 

of system parameters (e.g., the frequency detuning, excitation amplitude and damping 

coefficient) were studied in detail using the obtained modulation equations in both polar 
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and Cartesian forms. Frequency response curves, trajectories of various orbits, frequency 

spectrum, bifurcation structures, and bifurcation diagrams were used for a detailed 

qualitative as well as quantitative analysis of dynamic responses. 

A 3D motion analysis system was used to perform dynamic testing on string and 

cable vibrations. Strings with different tensions and cables with different sag to span 

ratios were tested and the results were comparatively analyzed. A modal decomposition 

method based on the use of the first four linear mode shapes was used to extract time- 

and space-varying modal coordinates to reveal modal coupling caused by internal 

resonance and other nonlinear phenomena. Experimental frequency response curves of 

physical points on a string were obtained and compared with the theoretical ones. For 

cables, experimental frequency response curves of modal coordinates were used for 

analysis. Frequency spectra of responses of one marker and four modal coordinates, 

phase relations between participating modes, and Poincare sections were used to 

characterize vibrations. Linear and nonlinear modal couplings, resulting in isolated and 

simultaneous internal resonances were observed in cable vibration at the first crossover 

point. The concept of nonlinear normal mode was questioned. 

To understand the packaging of 1-D structures, we also performed large-

deformation analysis of a triangular frame using a geometrically exact beam theory that 

accounts for large displacements, large rotations, initial curvatures, extensionality, and 

transverse shear strains. The problem was presented as a boundary value problem 

described by a set of first-order ordinary differential equations. The multiple-shooting 

method was used to solve this two-point boundary value problem. Numerically exact 

deformed geometries at different stages of packaging were obtained. Appropriate loading 



 xix

schemes and corresponding efficient and controllable deployment schemes were also 

discussed.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

Today’s space exploration missions ask for larger and larger space structures. Air 

Force Research Laboratory, NASA Langley Research Center, and the Jet Propulsion 

Laboratory in conjunction with the DARPA Special Program Office are exploring the 

development of large space structures (e.g., structures having a diameter of 200-300 m) 

for a variety of future space-based intelligence, surveillance and reconnaissance (ISR)  

 

  

Fig. 1.1 Boeing's large space station 
(http://www.abo.fi).  

Fig. 1.2 Extremely large communication 
satellites (http://www.abo.fi).  

 

missions. Figs. 1.1 and 1.2 show two representative future space structures of extreme 

scales. The cost of putting a satellite in orbit using an expendable launch  

vehicle, however, is extremely expensive - about $18,000 per kilogram. Highly Flexible 
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Structures (HFSs), having light weight and high packaging efficiency, are thus gaining 

more and more applications in various fields, especially in aerospace engineering. For 

example, instead of using electro-mechanical types of deploying systems, NASA’s recent 

space exploration missions use more and more inflatable structures and highly flexible 

mechanism-free deployable structures in order to reduce the stowed volume and weight, 

minimize extra vehicular activities in space, and/or decrease the operation time and cost 

as well. 

Highly flexible structures are mostly consisted of one-dimensional (1D) structural 

members (i.e., strings, cables and flexible beams) because it is easy to pack a 1D 

structure into a small volume. The difference between a cable and a string is whether 

there is initial sag, and the difference between a cable or string and a flexible beam is 

whether there is the bending stiffness. The importance of sag and bending stiffness 

changes for different analysis cases. For example, in a study of high-frequency vibration 

of a cable with small sag, the influence of sag may be negligible, and, a study of low-

frequency vibration of a long flexible beam, the influence of bending stiffness may be 

negligible also. So, the behavior depends on the geometry, material as well as loading, 

and it is meaningful to investigate the vibrations of strings, cables and flexible beams 

together. These 1D structural members are used in many highly flexible space structures 

and are also widely used in other engineering fields. Fig.1.3 is an experiment conducted 

by NASA Dryden Flight Research Center (1998) to support a Phase II Small Business 

Innovation Research (SBIR) contract between U.S. Air Force Research Labs and Kelly 

Space & Technology (KST). The idea is to use an aerotowed reusable launch vehicle to 

put small satellites into low orbits around the Earth because towing a launch vehicle to  
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Fig. 1.3 The C-141A airplane towed the QF-106A 
airplane in flight tests. The airplanes were 
connected by a tow rope 1,000 ft (305 m) long. 

Fig. 1.4 A cable/string suspended 
“flying" models (NASA Langley 
Research Center) 

 

altitude should increases the payload and decreases the launch cost. A C-141A was used 

as the towing airplane, and a QF-106A (a modified F-106) was used as the towed 

airplane. To successfully realize this innovative idea, large deformation analysis, static 

and dynamics stability analysis, and experimental verification of ground taxiing and 

flight dynamics need to be conducted in order to understand this tow-dynamics and to 

design the ropes. For example, the tow rope was assumed to be a straight line before the 

test. However, significant sail of the rope from the airflow was observed during the 

experiment. This sail is believed to have an important effect on the trim of the aircraft 

relative to the predications from the simulation, the angle at the point where the rope 

meets the QF-106A, and other safety and controllability indexes. To have a good control 

of these important parameters for the test, the influence of the flight speed, the wind 

(airflow) speed, the weights of aircrafts, the length and material properties of the rope and 

their relation need be understood. Obviously, first of all, the aerodynamics around a rope 

and the behaviors under differential tension and sail need to be clarified.  
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There are some other important applications of cables and strings in aerospace 

engineering. Fig.1.4 shows an F/A-18 E/F cable-mount model for flying test in the 

Langley Transonic Dynamics Tunnel (TDT). The purpose is to determine the effects of 

ground-wind loads on launch vehicles and to provide steady and unsteady aerodynamic 

pressure data to support computational aeroelasticity and computational fluid dynamics 

code development and validation. Strings are used to mount the flying model and 

undergo drastic vibration when they are subjected wind loads and reaction forces of the  

 

 
 

Fig. 1.5 An artistic conception of a 
satellite with a tether (cable). 
(http://www.biologydaily.com) 

Fig. 1.6 One concept for the space elevator 
tethered to a mobile seagoing platform. 
(http://www.biologydaily.com) 

 

mounted vehicle. Fig. 1.5 shows an artistic conception of a satellite propelled by a tether 

(cable). Tether propulsion uses long, strong cables to change the orbits of spacecraft. It 

has the potential to make space travel significantly cheaper. One way to use tethers for 

propulsion, for example, is Electrodynamic Tether. It conducts electricity to act against 

the magnetic field of the earth and can be used either to accelerate or brake an orbiting 

spacecraft. As the electrodynamic tether cuts the earth's magnetic field, its magnetic field 
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interacts with the magnetic and gravitational fields of the earth and vibrations may 

happen due to variations of the magnetic and gravitational fields of the earth. Unless they 

are damped somehow, the vibrations may grow large enough to cause stresses so high 

that the tether fails from mechanical stress. A tether has many modes of vibration which 

can be sensed by radio beacons on the tether, or inertial and tension sensors on the 

endpoints. Thus, control of the vibrations is possible with a full understanding of the 

cable dynamics. Fig.1.6 shows the concept of the space elevator tethered to a mobile 

seagoing platform which may be built in the coming decades. A space elevator allows 

human send objects and astronauts to space much more often, and at costs only a fraction 

of those associated with current means. Normally, a space elevator design includes a base 

station, a cable, climbers, and a counterweight. Among various possibilities that may 

cause failure and safety issues, the cable vibration could not be paid enough attention. For 

example, if the cable is excited at its resonant frequencies by the climber or aerodynamic 

loads, the vibrational energy could build up to a dangerous level beyond the cable's 

tensile strength. This problem is similar to the vibration of elevator cables for high-rise 

buildings.  

Strings and cables are not only used in aerospace engineering. They are also 

widely used in mechanical, structural and ocean engineering. Fig.1.7 shows a cable-

suspended robot. Compared with conventional serial and parallel robots, the cable driven 

systems have a variety of advantages, including a large work volume, capability of 

handling with 6 degrees of freedom, enhanced crane capabilities (no sway and rotation 

found in an existing single cable crane), and reconfigurability. Fig. 1.8 shows the 
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Fig. 1.7 A cable suspended robot. 
(http://mechsys4.me.udel.edu/) 

Fig. 1.8 Proposed design of the Ruck-A-Chucky 
bridge (T.Y. Lin International).  
 

conceptual design of the Ruck-A-Chucky Bridge, crossing the middle fork of the 

American River in California. In order to provide a vertical clearance of 50 ft above high 

reservoir water level (with water depth 450 ft), the bridge would have a length of 1,300 ft 

between the hillsides which have a slope of 40 degrees to the horizontal. Conventional 

bridges were found to be completely unsatisfactory and hence a hanging arc, with curved 

girders suspended by cables was proposed. The design has an ideal stress distribution 

with small bending and torsional moments. Fig. 1.9 shows a typical ocean towed cable 

system. In this system, the tether or umbilical cable connect  

as well as transmits the ship (floating system) motion along the submerged cable, and it 

excites the towed body (underwater system) to vibrate. Depending on the geometric 

configuration and operational conditions, the cable may be taut or slacken. When the 

cable is slacken, the towed body cannot follow the umbilical oscillations due to high 

inertia and drag forces, and thus the motions of the ship and the towed body are 

decoupled and they oscillate independently with different amplitudes and phases. When 
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the cable becomes taut, large snap loads and erratic motions of the towed body occur 

 

 

Fig. 1.9 A typical ocean towed cable system 
 

resulting in severe damage of the umbilical cable. The resulting degradation reduces the 

life span of the umbilical cable and endangers the recovery of the suspended or towed 

subsea module. For the assessment and planning of future towing and tethered marine 

operations, non-linear cable dynamics need to be understood. 

In the theoretical definition, cables and strings are one-dimensional structures that 

can only sustain longitudinal tension loads because they have negligible flexural, 

torsional, and shear rigidities and have zero buckling loads. A taut string is a straight 

cable under pretension with a sag-to-span ratio close to zero, and a cable is a string with 

sag. In the real situation, however, the flexural, torsional, and shear rigidities of cables 

and strings can never be zero. Depending on the geometry, loading and boundary 

conditions, a real cable may need to be considered as a flexible beam or rod.  For 

example, the cable in Fig.1.9 may undergo a dynamic buckling process, resulting in the 
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hoop form shown in Fig. 1.10 due to a significant decrease of tension when the system is 

under rest. Obviously, the cable undergoes a dynamic buckling process in which torsional 

strain energy is converted to bending strain energy, which can only explained by 

modeling the cable as a flexible beam. This idea is also used to study the dynamic 

formation of DNA loops and supercoils. The crystal structure of the lac repressor 

(Fig.1.11) is formed with all four of the DNA-binding portions pointing in one direction. 

When all four subunits bind at the same time, the DNA crystal structure will be twisted 

into a small loop. These deformation can be studied be modeling DNA structure as 

flexible beam with bending and torsion stiffness.  

 

 
 

Fig. 1.10 A low tension cable may form loops 
and tangles on the sea floor. 

Fig. 1.11 Lac-Repressor-DNA loops. 

 

There are many challenging issues in the modeling and analysis of highly flexible 

structural members. To develop packaging methods, fully nonlinear structural theories 

need to be derived and large static deformation analysis needs to be successfully and 

exactly performed. In order to control a 1D highly flexible structure in service, the 
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nonlinear dynamic characteristics of strings, cables and beams need to be understood and 

experimentally verified during the design. This research work is to partially but 

substantially fulfill these objectives.  

 

1.2 Overview of the dissertation 

The dissertation presents theoretical studies of nonlinear string vibrations, 

experimental studies of string and cable vibrations, and large deformation packaging 

analysis of highly flexible beams. In the second chapter, we present a detailed literature 

review of string dynamics. It begins with an overview of the history of equations of 

motion of strings and then a summary of dynamical phenomena of strings observed in the 

literature.  

In the third chapter, finite-amplitude vibrations of a string subjected to a harmonic 

base-excitation are investigated. Exact equations of motion are derived based on a fully 

nonlinear model. Two different approaches are followed when the method multiple scales 

is applied to this weakly nonlinear problem. In the direct approach, the excitation 

displacement is assumed to be linearly distributed along the string when the discretization 

is applied to the governing differential equations and the boundary conditions are 

considered as a restriction to the solvability condition. The modulation equations 

obtained from the two approaches are identical except a small difference in the forcing 

terms caused by small damping. Frequency responses are obtained by solving the 

obtained algebraic equations. Influences of system parameters, e.g., damping values and 

excitation amplitudes, on the dynamic responses are investigated. Bifurcations of limit -

cycle solutions are studied using numerical integration.  
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In the fourth chapter, we describe in detail the usage of a 3D motion analysis 

system to characterize nonlinear dynamics of strings. It begins with a detailed description 

of the system and data acquisition devices. Then the experimental procedure is presented 

and discussed. Frequency responses curves were obtained for three strings that had 

different but small sag-to-span ratios. The string with richer responses was specially 

studied by focusing on modal analysis of various typical responses. 

The experiments presented in this chapter reveal planar and non-planar (e.g., 

whirling) vibrations, as predicted by the theory. Branches of planar responses represent a 

transition from one mode to the next mode; the amplitude of the lower one decreases and 

that of the other increases when the excitation frequency increases. Branches of non-

planar responses are motions mainly composed of one single mode. However, for some 

cases, small-amplitude vibrations of other modes participate in both planar and non-

planar vibrations, making the vibration profile plot more complex and irregular. The 

hysteretic phenomenon is revealed by the sudden lose of stability of one branch when the 

excitation frequency is swept up and down. Small sag does not make the string far from 

being a cable at the first cross over (Chapter 5), but it causes the observed small-

amplitude ( )1: 2 :ωΩ resonance. Modal decomposition analysis of responses to higher-

frequency excitations showed that the use of four modes may not be enough for accurate 

modal decomposition. 

Attempts to quantitatively match the experimental results with the theoretical ones 

were not very successful. The difficulty in making such comparisons is mostly due to 

following reasons. One of them is the inability to precisely measure the system 

parameters such as axial stiffness, longitudinal wave speeds, and damping. The other one 
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is the discrepancy originating from the nature of the external excitation. In theoretical 

analysis, the excitation is applied to one of the two ends of the string. However, to avoid 

the longitudinal vibration, the excitation is applied to a location very close to one of the 

two fixed boundaries and only the vibration between the attachment point of the shaker 

and the other end is considered. This arrangement, however, constrained the out-of-plane 

motion at the shaker attachment point and decoupled the cable vibration into two 

components for out-of-plane response. Additionally, we used a level to adjust the position 

of the shaker and tried to make the excitation vertical. This may not be as good as 

desired. Moreover, the theoretical prediction is accurate for weakly nonlinear problems 

only. Our studies, however, were out of the weakly nonlinear range because the vibration 

amplitudes were quite large and the frequency bandwidth was so wide that its limits were 

possibly beyond the natural frequencies of the next mode or the previous mode. 

Theoretically predicted coexisting clockwise and counterclockwise whirling motions 

were not observed. This may be due to the intrinsic asymmetry of the experimental set-

up. 

In the fifth chapter, we begin with a review of the nonlinear dynamics of cables. 

The methods for and observations from numerical simulations and experiments are 

summarized. Then the linear theory of cable vibration is introduced. The crossover 

phenomena between natural frequencies of in-plane and out-of-plane and symmetric and 

anti-symmetric modes are presented. In our experiments, theoretically predicted isolated 

and simultaneous internal resonances were observed for the cable around the first 

crossover. A theoretically unpredicted simultaneous internal resonance were also 

observed and explained. 
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The sixth chapter presents the derivation of a geometrically exact beam theory for 

highly flexible beams undergoing large deformations. The exact beam theory accounts 

for large displacements, large rotations, initial curvatures, extensionality and transverse 

shear strains. The concepts of local displacements, Jaumann stress and strain measures, 

and orthogonal virtual rotations are used to derive the geometrically exact beam theory. 

The extended Hamilton principle is used to derive fully nonlinear governing equations. 

The geometrically exact beam theory is used in the numerically exact packaging analysis 

of a highly flexible triangular frame using a multiple shooting method. 

In the last chapter, important tasks for future research are listed and discussed. 

 



 13

CHAPTER 2 

LITERATURE REVIEW OF STRING DYNAMICS 

 

 

We present a comprehensive literature review of string dynamics in this chapter. 

It begins with an overview of the history of equations of motion of strings and the review 

is followed by a summary of dynamical phenomena observed and presented in the 

literature.  

 

2.1 Introduction 

The research on string vibration has a long history. As people know more and 

more about string dynamics, the topics changed from planar linear vibrations to planar 

nonlinear vibrations, then to non-planar nonlinear vibrations; from periodic to quasi-

periodic vibrations, then to chaotic vibrations and from stable vibrations to modulated 

and unstable vibrations. In the case of free vibration with sufficiently small initial 

displacements, the variation of tension in a string is so small that it is reasonable to 

assume the tension to be constant. However, the most important non-linear phenomena 

like whirling motion (i.e., ballooning or galloping) and jump phenomena in the frequency 

response curve (FRC) are not expected in numerical simulations based on this 

assumption. In the case of forced vibration, the variation of tension due to large 

amplitude vibration would be significant no matter how small the driving amplitude 
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might be, especially if the driving frequency is close to a resonance one. Moreover, the 

excited planar vibration may become unstable due to the modal coupling between the 

vibrations in two transverse polarizations and then circular (whirling, ballooning or 

tabular) motions are expected. The derivation of nonlinear equations of motion is the 

ground work for the investigation of vibrating strings and hence one of the major topics 

in the history of research on string vibrations. Early studies on various topics based on 

inaccurate equations of motion were often questioned by following studies that presented 

better and/or more accurate ones, normally having more reasonable nonlinear terms or 

parameters. So, it is quite meaningful to present a summary of historical assumptions and 

derivations of equations of motion in a dissertation specializing in nonlinear vibration and 

dynamics of strings.  

 

2.2 Equations of Motion 

In this chapter, x represents the longitudinal coordinate of a point of the string 

under pretension. 0 ,dx dx and dx represent infinitesimal lengths of the string without 

pretension, under pretension and during vibration, respectively. ,u v and w represent 

displacements of the string in the longitudinal direction 1x and two transverse directions 

2x and 3x  respectively. The undeformed length of the string is 0L , the deformed length of 

the string under pretension T is L , and the strain under pretension 0e . The tension during 

vibration is represented byT , and the strain during vibration is e . m represents the mass 

per unit length of the string under pretension. 1c and 2c represent the longitudinal and 

transverse wave speeds, respectively. ( ) ( )x
x= ∂ ∂ and ( ) ( )t

t= ∂ ∂ . E is the 
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elasticity modulus and A is the cross-sectional area of the string. For convenience, we 

replace x by x and T by T in our following presentation. 

 

2.2.1 Planar Linear Vibration 

Early research interests in vibrating strings were due to its wide applications in 

musical instruments. At that stage, linear models were used in the research of string 

vibration. Only some basic characteristics of string vibrations were obtained. In a linear 

model, the displacement gradient tan( , ) ( , ) 1t w x t xθ = ∂ ∂ <<  is assumed to be small, 

which ensures the transverse displacement ( , )w x t  to be small compared with the length 

of the string. The tension is assumed to have no variation along the length and so there is 

no longitudinal vibration. Also, as the vibration is small, the tension has no variation with 

respect to time. So, the tension is constant (i.e., ( , )T x t T= ) in both temporal and spatial 

domains. Some basic results were obtained based on above assumptions. The first of 

them is the relation between the free undamped frequency and the tensionT , the length 

L of the string under pretension, and the mass per unit length m , in the following form 

(Taylor, 1713): 

1
2

Tf
L m

=                                                           (2.2.1) 

Another one is the linear wave equation (D’Alembert, 1749) 

2
w xx ttc w w=                                                             (2.2.2) 

with a solution (D’Alembert, 1751) 

( ) ( ) ( ), w ww x t f x c t g x c t= − + +                                         (2.2.3) 
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where wc T m= is the transverse wave propagation velocity and ( ),f x t  and ( ),g x t are 

functions determined by initial and boundary conditions. Apparently, transverse 

displacements v and w   are uncoupled in this model.  

 

2.2.2 Planar Non-linear Vibration 

Experimentally observed string dynamics shows complex nonlinear phenomena 

which cannot be explained by linear models. There are several causes for the non-linear 

large-amplitude vibrations. Some of the most important ones are the variation of tension 

during vibration, the cross-section contraction, and the longitudinal vibration, which may 

even make small-amplitude vibrations behave nonlinearly. The relation between the 

fundamental transverse frequency wω  and longitudinal one uω  was found by Poisson 

(1829) to be 

u

w

L
L

ω
ω

∆
=                                                             (2.2.4) 

where L∆ is the elongation due to T . For planar vibration, the formula for the strain of 

an initially tensioned vibrating string is 

( ) ( )2 21 1x x
dx dxe u w

dx
−

= = + + −                                          (2.2.5) 

The equations of motion are 

( )cos ttx
T Auθ ρ=                                                       (2.2.6) 

( )sin ttx
T Awθ ρ=                                                       (2.2.7) 
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Following above equations, Carrier (1945, 1969) obtained the following equations 

governing both longitudinal and transverse vibrations: 

( )[ ] ( )[ ]ϕτα
η

ϕτ
ξ

2
2

2

2

2

11 +
∂
∂

=+
∂
∂                                                        (2.2.8) 

( )( )[ ] ( )( )[ ]2/122
2

2
2/12

2

2

1111 ϕτα
η

ϕτ
ξ

−+
∂
∂

=−+
∂
∂                              (2.2.9) 

where non-dimensional quantities  

2 T EAα = , ( )T T Tτ = − , x Lξ π= , ( )t L T Aη π ρ=  

are used and ( )( ) ( )2sin , 1xx t wϕ θ α τ= = + . Neglecting the longitudinal vibration and 

assuming  

( ) ( )2 2 21 1 2x x xe dx dx dx u w w= − = + + − ≈  

and 

2 2xT T w= + , ( )2 2 2sin 1x x xw w wθ = + ≈  

Lee (1957) obtained the following governing equation for planar non-linear vibrating 

strings 

 23
2 x xx ttT EAw w Awρ⎛ ⎞+ =⎜ ⎟

⎝ ⎠
                                              (2.2.10) 

where the tension is a function of both spatial and temporal variables. Lee also carried out 

an experiments to check the frequency response. The hardening effect and discontinuities 

of amplitudes (i.e., jump phenomena) under frequency sweeping were detected. If the 

tension throughout the length of the string is considered to be the same and equal to the 
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average over the string with the longitudinal vibration u  being neglected (Oplinger, 

1960), 

( ) 2

0
2

L

xT T EA L w dx= + ∫                                                 (2.2.11) 

and the following Kirchhoff (1883) nonlinear partial differential equation describing the 

transverse vibration of strings can  be obtained as 

( ) 2

0
2

L

x xx ttT EA L w dx w Awρ⎡ ⎤+ =⎢ ⎥⎣ ⎦∫                                       (2.2.12) 

 

2.2.3 Non-planar Non-linear Vibration 

The first successful experiment of non-planar periodic motion (i.e., whirling) of 

strings was performed by Harrison (1948). Using the Kirchhoff equation, Oplinger 

(1960) numerically investigated frequency response and repeated Harrison’s experiment. 

The experimental and numerical frequency response curves showed a good agreement 

between branches that represent planar small-amplitude responses. Out-of-plane 

vibrations happen only in a small range around the resonance frequency, and it was 

suggested that the stability theory of Mathieu and Hill be used to analyze the observed 

out-of-plane motion. Using the energy method, Murthy and Ramakrishna (1965) defined 

the potential energy as 

( ) ( )( ) ( )22 2 2 2

0
/ 2 8 ,

L

x x x x wP T v w EA T v w f x t w dx⎡ ⎤= + + − + +⎢ ⎥⎣ ⎦∫                    (2.2.13) 

and the kinetic energy as 

( )2 2

02
L

t t
AK v w dxρ

= +∫                                                   (2.2.14) 

Defining the Lagrangian L K P≡ −  and using 
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t x t x

L L L K P
v t v x v t v x v
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − = +
∂ ∂ ∂ ∂ ∂

                                        (2.2.15) 

t x

L L L
w t w x w
∂ ∂ ∂ ∂ ∂

= −
∂ ∂ ∂

                                                                   (2.2.16) 

the equations of motion can be obtained using the Euler-Lagrange equations to be 

( )2 2 2 2 2
2 1 1

3 1 0
2 2tt xx xx x x xv c v c v v c v w

x
∂

− − − =
∂

                                   (2.2.17) 

( )2 2 2 2 2
2 1 1

3 1
2 2

w
tt xx xx x x x

fw c w c w w c w v
x Aρ
∂

− − − =
∂

                            (2.2.18) 

where 2
2c T Aρ=  and 2

1c EA Aρ= are the squares of the transverse and longitudinal wave 

speeds, respectively. Akulenko (1996) obtained equivalent equations in the following 

form 

( ) ( )2 21/ 2tt xx x xx x x xxAv Tv EA T v h v v w wρ ⎡ ⎤= + − + +⎣ ⎦                         (2.2.19) 

( ) ( )2 21/ 2tt xx x xx x x xx wAw Tw EA T w h w w v v fρ ⎡ ⎤= + − + + +⎣ ⎦                (2.2.20) 

where ( )2 2 2
x xh v w= + . The last terms on the left-hand sides of equations (2.2.19) and 

(2.2.20) represent the coupling effect between w and v components of the vibration. The 

equation of Lee (1957) appears as a special case of above equations when the out-of-

plane component v  is ignored. Moreover, these equations reduce to linear ones if the 

term ( )( )22 2 8x xEA T v w− +  which indicates the variation of potential energy P due to the 

change of tension, is ignored in equation (2.2.13). Apparently, whether this term can be 

ignored or not depends on the ratio 

( ) ( ) ( )22 2 2 2 2 2/ 2 8 4x x x x x xT v w EA v w T EA v w⎡ ⎤ ⎡ ⎤+ + = +⎣ ⎦⎢ ⎥⎣ ⎦
                    (2.2.21) 
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which in turn depends on the amplitude indicator ( )2 2
x xv w+ . Attacking (2.2.17) and 

(2.2.18) using the method of harmonic balance, Murthy and Ramakrishna (1965) 

numerically investigated the frequency response and compared with experimental results. 

Whirling motion and jump phenomena were recorded for the string subjected to external 

planar excitations.  

Instead of formulating the potential and kinetic energies using actual 

displacements v and w , Miles (1965) represented the transverse displacement and 

excitation forces using non-dimensionalized Fourier series as 

{ } ( ) ( ) ( ){ } ( ), , sinn nv w L t t n x Lε π α β π=                                (2.2.22) 

{ } ( ) ( ) ( ){ } ( ), , sinv w n nf f L A t B t n x Lµ π π=                            (2.2.23) 

where both ε and µ are dimensionless scale parameters to be determined. Keeping only 

the dominant terms and substituting them into the Lagrangian, the governing equations 

were obtained to be in the following different form: 

 ( ) ( ) { } { } ( )1 2 2 21 2 3 , 1,0 cosD tδ α β α β ω−⎡ ⎤+ + + =⎣ ⎦                  (2.2.24) 

where 2 29 16eδ µ= and e is the strain under pretension. For cases with only the first 

mode being considered ( ) ( ){ } { } ( )1 1, 1,0 cosA t B t tω= . 

In above models, the longitudinal motion 0u =  was assumed under transversely 

excited vibrations. Narashimha (1968) examined this assumption and declared that it was 

neither necessary nor justifiable. Actually, he found out that the couplings between the 

longitudinal motion and two transverse ones were through a parameter which was a 

product of a large quantity (the ratio of longitudinal to transverse wave speeds) and a 
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small one (essentially proportional to the amplitude of forcing), and it may be important 

even if the amplitude is small. Knowing this important but previously neglected fact, he 

obtained the following equations 

( ) ( )
2

2 2 21
1 2 0

2 ,
2

L

tt t x x xx
cp p c v w dx v F x t m
L

δω
⎡ ⎤

+ − + + =⎢ ⎥
⎣ ⎦

∫                        (2.2.25) 

where ( ),p v w≡ , and δ and 1ω are damping ratios for the fundamental mode and the 

fundamental frequency of transverse linear vibration, respectively. These equations were 

adopted by following researchers like Miles (1984), Johnson and Bajaj (1989), and Bajaj 

and Johanson (1992). 

Considering the longitudinal motion and its effect on the variation of tension, 

Anand (1969) defined the tension as 

( )2 22 2x x x
dx dxT T EA dx T EA u v w

dx
−⎛ ⎞= + = + + +⎜ ⎟

⎝ ⎠
                       (2.2.26) 

Starting from equation (2.2.26), he obtained the following nonlinear equations of motion 

for vibrating strings 

( ) ( )( )2 2 2 2 2
1 1 2 2 0tt xx x xu c u c c x v w− − − ∂ ∂ + =                                            (2.2.27) 

( )( ) ( )( )2 2 2 2 2
2 1 2 2 0tt v t xx x x x xv v c v c c x v u v wµ ⎡ ⎤+ − − − ∂ ∂ + + =⎣ ⎦                  (2.2.28) 

( )( ) ( )( )2 2 2 2 2
2 1 2 2 0tt w t xx x x x xw w c w c c x w u v wµ ⎡ ⎤+ − − − ∂ ∂ + + =⎣ ⎦              (2.2.29) 

where ( )1/ 2
2c T Aρ= and ( )1/ 2

1c EA Aρ= are the transverse and longitudinal wave speeds 

in the linear theory for string vibration. Because 2 2
1 2 1c c EA T= >> for typical metallic 

strings, we have the following simplified equations 
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( )( )2 2 2 2
1 1 2 0tt xx x xu c u c x v w− − ∂ ∂ + =                                                       (2.2.30) 

( ) ( )( )2 2 2 2
2 1 2 0tt v t xx x x x xv v c v c x v u v wµ ⎡ ⎤+ − − ∂ ∂ + + =⎣ ⎦                           (2.2.31) 

( ) ( )( )2 2 2 2
2 1 2 0tt w t xx x x x xw w c w c x w u v wµ ⎡ ⎤+ − − ∂ ∂ + + =⎣ ⎦                        (2.2.32) 

If the longitudinal inertia term ttu  is neglected, then we have 

( )( )2 21
2xx x xu x v w= − ∂ ∂ +                                                        (2.2.33) 

and equations (2.2.31) and (2.2.32)  can be further simplified to 

( )
2

2 2 21
2 0

0
2

L

tt v t xx xx x x
cv v c v v v w dx
L

µ+ − − + =∫                                           (2.2.34) 

( ) ( )
2

2 2 21
2 0

,
2

L

tt w t xx xx x x w
cw w c w w v w dx f x t
L

µ+ − − + =∫                             (2.2.35) 

which are the most widely used equations for string vibration analysis. Using above 

equations, Anand (1969) studied the inter-modal coupling, oscillatory characters of 

amplitudes, and energy transfer between vibrations in two directions. 

Looking at the history of research on string vibrations, we can see that at the 

beginning, it focused on planar vibrations using linear equations with the tension being 

assumed to be constant along the string during the vibration. This was followed by planar 

vibrations using equations with nonlinear terms accounting for the variation of tension. 

Then, out-of-plane vibration was considered and nonlinear equations for non-planar 

vibrations were derived. The longitudinal motion was not considered to be influential on 

string dynamics until Narashimha (1968) proposed the model that accounted for the 

coupling between two transverse vibrations and the coupling between transverse and 

longitudinal vibrations. This model was used by many following researchers.  
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The deformation-induced stretch that results in a tension varying with time and 

location was the main reason for various nonlinear phenomena experimentally observed 

and theoretically predicted. Usually, it is appropriate to assume the cross section is 

constant during vibration for most strings. However, for a string with a small elasticity 

modulus, its vibration is accompanied sectional contraction. Consequently, Poisson’s 

effect becomes another source of nonlinearity. We derive fully nonlinear string equations 

including Poisson’s effect in Chapter 3 using the principle of mass conservation. Leisa 

(1994) did not consider Poisson’s effect (i.e., setting 0A A≡ ) but used a varying mass 

density. Because of the conservation of mass, we have 

0 0
0 0 0

01
dxdx dx dx dx dx
dx e

ρρ ρ ρ ρ= = = =
+

                                 (2.2.36) 

Substituting Eq. (2.2.36) and T EAe= into the equations of motion obtained by applying 

Newton’s second law to the differential element yields 

2

2

( , )[ ( , ) cos( ( , ))] ( , ) u x tT x t x t dx A x t dx
x t

θ ρ∂ ∂
=

∂ ∂
                                 (2.2.37) 

 
2

2

( , )[ ( , ) sin( ( , ))] ( , ) v x tT x t x t dx A x t dx
x t

θ ρ∂ ∂
=

∂ ∂
                                  (2.2.38) 

The following coupled, nonlinear partial differential equations describing the large-

amplitude planar longitudinal and transverse free vibration of elastic strings are obtained 

( ) ( ) ( ) ( )
( )

2
2

0 0 0 03/ 22 2

1 1
1 1

1

x xx x x xx
xx tt

x x

u v v u u
EA e v EA e v

u v
ρ

+ − +
+ − − =

⎡ ⎤+ +⎣ ⎦

         (2.2.35) 
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( ) ( ) ( )
( )

2
2 ,

0 0 03/ 22 2

1
1 1

1

xx x x x xx
xx tt

x x

u v v u u
EA e u EA e u

u v
ρ

− +
+ − + =

⎡ ⎤+ +⎣ ⎦

                  (2.2.35) 

 

2.3 Nonlinear Dynamics of Strings 

In this section, we review the string dynamics experimentally and theoretically 

observed and presented in the literature. We started with review of out-of-plane 

vibrations. Murthy and Ramakrishna (1964) were the first to successfully predict jump 

(both upward and downward) and hysteresis phenomena of vibration using a model 

without longitudinal vibration. It was pointed out that the out-of-plane vibration is 

basically due to internal resonance and it may happen even if the driving force is small.  

Based on the inaccurate equations of motion in which the longitudinal 

displacement is inappropriately neglected, Miles (1965) studied the stability of nonlinear 

response of a string subjected to a transverse harmonic excitation with a frequency 

around the first natural frequency. Three different bifurcation frequencies were detected. 

They are now known to be the forward pitchfork point 1σ , where the stable planar 

vibration is transformed to (or from) the stable non-planar vibration when the excitation 

frequency increases (or decreases); the reversed pitchfork bifurcation point 5σ , where the 

non-planar vibration is transferred into the planar one when the excitation frequency 

increases; and the saddle node bifurcation point 2σ , where the planar lower-amplitude 

vibration is transferred into the non-planar larger-amplitude one when the excitation 

frequency decreases. Using the first-order approximation, he investigated the inter-modal 

coupling and focused on the modal coupling between the first mode and the third one.  In 
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the doubt of the existence of nonlinear coupling among the normal modes of two 

perpendicular planes shown by Miles using inaccurate equations of motion, Feng(1995) 

investigated the inter-coupling of planar vibration modes using the amplitude modulation 

equations obtained by attacking the equations of motion derived by Narasimha (1968) 

using the method of multiple scales. The results showed that the one-to-three inter-modal 

coupling caused by cubic nonlinearity will not actually take place because there are no 

such coupling terms in the amplitude equations. 

Anand (1966) investigated nonlinear resonant vibrations of stretched strings by 

including viscous damping. It was found that the resonant frequency is a function of the 

driving force and it increases with the driving force. For a fixed damping, the response is 

qualitatively related to the driving force. Non-planar vibration and jump phenomena are 

possible only if the driving force is large and the responses are linear for cases of small 

excitations. 

Narasimha (1968) carefully examined the assumption 0u = used in previous 

studies. It was argued that this assumption was neither necessary nor justifiable. The 

exact equations of motion were first formulated and approximate solutions were provided 

for cases with small strains. The responses in the absence of damping were studied. It 

was shown that planar response was unstable at sufficiently large amplitude and the 

critical stable amplitude fell to zero if the string was excited at one of its linear natural 

frequencies or their sub-harmonics. 

Anand (1969a) rederived the equations of motion to include the coupling of 

longitudinal and transverse vibrations. It was shown that temporal and spatial variables 

were separable. The time-dependent parts of the equations were solved by the method of 
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variable amplitude and phase. It was found that there was a continuous exchange of 

energy between two mutually perpendicular transverse components. The path of one 

point was traced in polar coordinates and shown to be an ellipse with slowly rotating and 

shrinking axes. 

Using the method of Hill and van der Pol, Anand (1969b) investigated the 

stability of damped forced vibrations and undamped free vibrations based the equations 

he derived before (Anand, 1969a). The regions of stability for the forced vibrations were 

plotted. As a continuation of previous work, Anand (1973) studied the negative resistance 

phenomenon, i.e., the amplitude of response increase as the driving force is reduced and 

vice versa. 

Miles (1984) was the first one to construct the widely used averaged equations in 

a four-dimensional phase space, in which the coordinates are the slowly varying 

amplitudes of a sinusoidal motion of the dominant mode at the driving frequency. Using 

the four autonomous first-order non-linear ordinary differential equations, he performed 

an exhaustive study on the fixed-point solutions and their stability. It was found that the 

average equations lost (gained) stability through a forward (reverse) Hopf bifurcation and 

therefore suggested the possible existence of strange attractors in the branch of modulated 

motion. However, he did not observe any chaotic response for admissible parameter 

values of damping and resonant offset because the solutions always terminated at the 

lower planar fixed point solution.  

Yasuda and Torii (1985, 1986) studied multiple-mode planar responses to 

excitations near the second resonant frequency (1985) and the first, third and fourth 

resonant frequencies (1986). They performed an experiment study on a thin steel strip to 
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validate their theoretical results. Both numerical results and experimental validations 

showed that possible responses were pure harmonics; harmonics with sub-harmonics, 

super-harmonics and super-sub-harmonics, and the so-called summed and differential 

(modulated) motion. Their time-deflection (amplitude) plots and spectrum analysis 

results showed that the participation of each mode was different at different locations of 

the strip and varied under different excitations. The results were clearly and easily 

observed in our experiments as shown later in Chapter 4. 

Tufillaro (1989) simulated the nonlinear string vibration using a simple single-

mode model of a mass-spring system. For planar motion, the governing equation was of 

the forced Duffing form. By constructing the bifurcation diagrams for both planar and 

whirling motions, various nonlinear phenomena were predicted, including periodic, 

quasi-periodic and chaotic motions. Because many modes may be excited under complex 

vibrations, multi-mode analysis was recommended. 

In addition to a detailed summary of the analysis of the amplitude modulation 

equations, Johnson and Bajaj (1989) and Bajaj and Johnson (1992) performed extensive 

bifurcation analyses of nonlinear string vibrations and predicted the existence of quasi-

periodic torus-doubling bifurcations and chaotic motions as well as the phenomena of 

boundary crisis. It was shown that the averaged equations with small enough damping 

possessed a solution branch that begin with planar response became non-planar through 

pitchfork bifurcation, and then became modulated motion through a Hopf bifurcation. 

Limit cycle solutions of the Hopf branch exhibited several period-doubling bifurcations 

and then merged with the planar periodic branch as the parameters varied. No chaotic 

motion was observed in the period doubling process of the Hopf branch. For smaller 
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damping, an isolated limit-cycle branch that included two sub-branches (one stable 

periodic solution and one unstable periodic solution) was created by a global saddle node 

bifurcation. The unstable isolated branch eventually merged with the stable Hopf branch 

via a saddle-node bifurcation. While the stable isolated branch went through a cascade of 

period-doubling bifurcations and resulted in the formation of a Rossler type attractor. As 

the damping was decreased further, another isolated branch was created and the unstable 

part of this branch merged with the stable part of the previous isolated branch in exactly 

the same manner as the first isolated branch was created and the unstable isolated branch 

was merged with the Hopf branch. The creation and merge of the isolated branch 

culminated in the formation of a homoclinic orbit originating from a saddle focus. The 

eigen-value structure of the saddle focus and Sil’nikov’s theorem were used to interpret 

the bifurcation behavior. Away from the homoclinicity frequency, a series of bifurcations 

resulted in the formation of a Lorenz type chaotic attractor. At low values of damping, 

the Lorenz type attractor abruptly disappeared in a frequency interval. This phenomenon 

was explained using the concept of boundary crisis. 

Molteno and Tufillaro (1990) were the first to report experimental observations of 

torus-doubling bifurcations leading to chaotic vibration of a string. They identifed the 

types of non-linear motions by using the Poincare sections of trajectories. Correlation 

dimensions were calculated to confirm the existence of chaotic attractors. Other nonlinear 

behaviors like hysteresis, period-doubling and chaotic transience were recorded also. 

Molteno (1994) and Molteno and Tufillaro (2004) did a more detailed experimental study 

of string dynamics by examining different values of parameters. Interesting non-linear 

phenomena like boundary crisis and intermittent transition to chaos, which were 
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predicted by Johnson and Bajaj (1989) and Bajaj and Johnson (1992), were observed. It 

was shown, that for large damping, the experimental results agreed well with the 

prediction of averaged equations with small damping. Tufillaro, et al. (1995) performed a 

topological time series analysis of experiments on string dynamics using a synchronized 

model, in which the experimental data were used to estimate the topological parameter 

values in order to quantitatively characterize the chaotic attractor.  

Using the four known coupled, autonomous ordinary differential equations, 

O’Reilly and Homles (1992) and O’Reilly (1992) performed local bifurcation analysis, 

especially which of chaotic responses, of nonlinear vibration of a string subjected to 

planar harmonic excitations. The global bifurcations and mechanisms that lead to chaotic 

motions in non-Hamiltonian systems, the averaged equations in the presence of forcing 

and damping, and Hamiltonian systems without damping but with forcing were all 

investigated and compared. It was stated that “For the non-Hamiltonian system, the 

mechanism is a pair of homoclinic orbits to a fixed point of saddle-focus type, and, for 

the integrable Hamiltonian system, the mechanism is a pair of (nearly) homoclinic orbits 

to a fixed point of saddle-center type”. Comparisons of the numerical and experimental 

results showed good qualitative agreements but poor quantitative agreements. 

In all of these studies, strings were excited transversely. Melde (1895) fixed one 

end of a string and attached the other end to a large tuning fork so that the motion of the 

tuning fork was parallel to the axis of the string, causing a parametric excitation. He 

observed that the string could be made to oscillate transversely although the force was 

along the axis of the string. Nayfeh, Nayfeh and Mook (1995) studied the nonlinear 

response of a taut string subjected to an excitation having components both parallel and 
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perpendicular to its axis. The method of multiple scales was applied directly to the two 

governing partial differential equations (and corresponding boundary conditions) 

obtained by neglecting the longitudinal inertia term of the three-equation model (Nayfeh 

and Mook, 1979). A continuation method was then employed to determine the 

equilibrium solutions of the modulation equations and their stability. An experimental 

study was conducted and the results were found to be in good agreement with the 

theoretical predictions both qualitatively and quantitatively. 
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CHAPTER 3 

NUMERICAL DYNAMIC CHARACTERISTICS OF 

STRINGS 

 

 

In this chapter, finite but small-amplitude vibrations of strings subject to boundary 

excitations are investigated. Exact equations of motion are derived based on a fully 

nonlinear model. Two different approaches are followed when the method multiple scales 

is applied to this weakly nonlinear problem. The excitation displacement is assumed to be 

linearly distributed along the string when the discretization approach is applied to attack 

the governing differential equations and the boundary conditions are considered as 

constraints on the solvability condition in the direct approach. The modulation equations 

obtained from the two approaches are identical except the forcing terms, which are 

different but almost equal due to small damping. Frequency responses curves are 

obtained by solving the obtained algebraic equations describing modulation. The effects 

of different parameters (e.g. damping and forcing) on the dynamics of the system are 

investigated. Bifurcations of limit-cycle solutions of the modulated branch are 

investigated in detail. 
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3.1 Modeling of Taut Strings 

3.1.1 Fully Nonlinear Model 

Fig. 3.1(a) shows the deformed configuration of a taut, linearly elastic, uniform 

and homogeneous string and the inertial coordinate system 1 2 3x x x . Moreover 

( )0xρ denotes the mass density of the unloaded string, ( )0 0A x  denotes the unloaded 

cross-section area, and ( ) ( )
0 0x

x= ∂ ∂ . The coordinates of P are ( ),0,0x  

with 0

0 0 00

x
x x e dx= + ∫ , 0e denotes the static axial strain due to pretension, 

and 0

0 00

L
L e dx∆ = ∫ . The coordinates of P are ( )1 2 3, ,x x x , and the dynamic displacements 

of P are ,u v and w along the axes 1 2,x x , and 3x , respectively. Thus,  

  1x x u= + , 2x v= , 3x w=                                                 (3.1.1) 

 
 
Fig. 3.1: A string: (a) the deformed configuration of a taut string, where 1 2 3x x x  is a 
Cartesian, inertial coordinate system, and (b) the free-body diagram of a differential 
string element. 0P : the position of the observed particle when the string is not loaded; P : 
the deformed position of 0P under a static pretension; P : the deformed position of 

0P under the static pretension and dynamics loads; 0x : the un-deformed length measured 
from support AS to the observed particle; ( )0x x : the corresponding statically deformed 

length under pretension; ( )0x x : the corresponding dynamically deformed arc-length; 0L : 
un-deformed total length; L∆ : extension of the string due to pretension; andT : tension of 
the string during vibration.  
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0 0xT T dx+
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It follows from Eq. (3.1.1) and Fig. 3.1(b) that the axial strain during vibration, e , defined 

with respect to the initial un-tensioned length is given by 

( ) ( )0 0 0

20 0 2 2
0

0

1
1 1x x x

e dx dx
e e u v w

dx
+ −

= = + + + + −                                      (3.1.2) 

If the initial tensioned state ( )x  is used to define e , e has form (Leissa, 1994): 

( ) ( ) ( )

( ) ( )

2 2 22 2
0 0 0 0

2 2 2
0

1 1 1 1 1

1 1 1

x x x

x x x

e e e u e v e w

u v w e

= + + + + + + + −⎡ ⎤⎣ ⎦

= + + + + −
                   (3.1.3) 

where 

 ( )0 01dx e dx= +  or 0

0 0 00

x
x x e dx= + ∫ .                                            (3.1.4) 

If Poisson’s effect is considered, the tension during vibration is 

( ) ( )2
0 0, 1T x t EAe EA e eυ= = −                                                      (3.1.5) 

where ( )2
0 1A A eυ= − is the contracted cross section. Using Newton’s second law, we get 

the following equation 

( ) ( )

( ) ( ){ }0 0 0

0

0 1 2 3
0

1 1 i i i

tt tt tt u t v t w t

x x x u v w

m u v w u v w

T e e u v w f f f
x

µ µ µ+ + + + +

∂ ⎡ ⎤= + + + + + + + +⎣ ⎦∂

1 2 3 1 2 3

1 2 3

i i i i i i

i i i
                 (3.1.6) 

where 0 0 0m Aρ= ; ( ) ( )t
t= ∂ ∂ ; ( )1, 2,3k =ki are the base vectors of 1 2,x x and 3x axes 

respectively; ,u vµ µ , wµ are the damping coefficients per unit length of the un-deformed 

string along 1 2 3, ,x x x directions; and , ,u v wf f f denote the distributed dynamic loads per 

unit length of the un-deformed string along 1 2 3, ,x x x directions. Setting each coefficient of 

the base vector equal to zero, we obtain the equations of motion as 
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( )00
0

0

1

1
x

tt u t u

e u T
m u u f

x e
µ

⎧ ⎫+ +∂ ⎪ ⎪+ = +⎨ ⎬∂ +⎪ ⎪⎩ ⎭
                                    (3.1.7) 

0
0

0 1
x

tt v t v

v T
m v v f

x e
µ

⎧ ⎫∂
+ = +⎨ ⎬∂ +⎩ ⎭

                                                    (3.1.8) 

0
0

0 1
x

tt w t w

w T
m w w f

x e
µ

⎧ ⎫∂
+ = +⎨ ⎬∂ +⎩ ⎭

                                                (3.1.9) 

Because either the displacements or the forces along the 1x , 2x and 3x directions are known 

at the ends, the boundary conditions are to specify 

( )001

1
xe u T

u or
e

+ +

+
                                                        (3.1.10) 

0

1
xv T

v or
e+

                                                                        (3.1.11) 

0

1
xw T

w or
e+

                                                                      (3.1.12) 

at 0 0x = and 0L , equations (3.1.7) - (3.1.12) are fully non-linear and they account for 

Poisson’s effect and pretension. 

 

3.1.2 Approximate Equations of Motion without Poisson’s Effect 

Neglecting Poisson’s effect (i.e. 0=υ ), we find from (3.1.5) that  

( ) ( ) eEAeeEAEAetxT 0
2

00 1, =−== υ                                        (3.1.13) 

and 000 mAAm === ρρ . Hence (3.1.7) – (3.1. 9) become 

( )00
0 0 0

0

1

1
x

tt u t u

e u
A u u EA e f

x e
ρ µ

⎧ ⎫+ +∂ ⎪ ⎪+ = +⎨ ⎬∂ +⎪ ⎪⎩ ⎭
                                 (3.1.14) 
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0
0 0 0

0 1
x

tt v t v

v
A v v EA e f

x e
ρ µ

⎧ ⎫∂
+ = +⎨ ⎬

∂ +⎩ ⎭
                                            (3.1.15) 

0
0 0 0

0 1
x

tt w t w

w
A w w EA e f

x e
ρ µ

⎧ ⎫∂
+ = +⎨ ⎬∂ +⎩ ⎭

                                          (3.1.16) 

The boundary conditions are to specify the following primary or secondary variables: 

u  or 
( )00

0

1

1
xe u

EA e
e

+ +

+
                                                        (3.1.17) 

v  or 0
01

xv
EA e

e+
                                                                     (3.1.18) 

w  or 0
01

xw
EA e

e+
                                                                    (3.1.19) 

at 0 00x and L= . Knowing 0

0 0 00

x
x x e dx= + ∫ , we define ( )0

0

1dx e
dx

α ≡ = + .  So (3.1.14) – 

(3.1.16) can be changed from the description based on the static un-deformed state 0x to 

that on the static equilibrium state x . For convenience, we replace x by x and obtain from 

(3.1.14) – (3.1.16) that 

( )
0 0 0

1
1

x
tt u t u

u
A u u EA e f

x e
α

ρ µ α
+⎧ ⎫∂

+ = +⎨ ⎬∂ +⎩ ⎭
                                  (3.1.20) 

0
0 0 1tt v t x v

EA eA v v v f
x e

αρ µ α ∂ ⎧ ⎫+ = +⎨ ⎬∂ +⎩ ⎭
                                            (3.1.21) 

0
0 0 1tt w t x w

EA eA w w w f
x e

αρ µ α ∂ ⎧ ⎫+ = +⎨ ⎬∂ +⎩ ⎭
                                        (3.1.22) 

Next, we approximate (3.1.20) – (3.1.22) for small but finite-amplitude vibrations. It 

follows from (3.1.3) that 
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( )2 2 21 1x x xe u v wα= + + + −                                              (3.1.23) 

Taylor’s expansion of (3.1.23) yields 

( ) ( )2 2 2 3 2 21 31
1 2 2x x x x x x x x

e u u v w u u v w
e

α α= − + − + + + − + +
+

                   (3.1.24)  

Substituting (3.1.24) into (3.1.20) – (3.1.22) and assuming thatα , E and 0A are constant, 

we obtain the following approximate equations: 

( )2 2 2
0 0 0 0

1
2tt u t xx x x x uA u u EA u EA u v w f

x
ρ µ α α ∂ ⎡ ⎤⎛ ⎞+ = + − + +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

                    (3.1.25) 

( ) ( )2 2 2
0 0 0 0

11
2tt v t xx x x x x x vA v v EA v EA v u u v w f

x
ρ µ α α α ∂ ⎧ ⎫⎛ ⎞+ = − + − + + +⎨ ⎬⎜ ⎟∂ ⎝ ⎠⎩ ⎭

      (3.1.26) 

( ) ( )2 2 2
0 0 0 0

11
2tt w t xx x x x x x wA w w EA w EA w u u v w f

x
ρ µ α α α ∂ ⎧ ⎫⎛ ⎞+ = − + − + + +⎨ ⎬⎜ ⎟∂ ⎝ ⎠⎩ ⎭

         (3.1.27) 

As we know, the density changes even if Poisson’s effect is not considered. Updating the 

density from the static un-deformed state 0ρ to the dynamics state ρ by following the 

mass conservation, we have 

( ) ( ) ( )00
0

0

1
1 1

A e
e e

A
ρ ρ ρ
ρ

+
= = + → = +                                           (3.1.28) 

and ( ) ( )0 0 0 0, 1T x t EA e EA α= = − . Hence we get the final form of the approximate 

equations as 

        ( ) ( )2 2 2 2 2
1 1 2

1
2tt u t xx x x x uu u c u c c u v w f

x
µ ∂ ⎧ ⎫⎛ ⎞+ − = − − + +⎨ ⎬⎜ ⎟∂ ⎝ ⎠⎩ ⎭

                        (3.1.29) 

( ) ( )2 2 2 2 2 2
2 1 2

1
2tt v t xx x x x x x vv v c v c c v u u v w f

x
µ ∂ ⎧ ⎫⎡ ⎤+ − = − − + + +⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

              (3.1.30) 
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( ) ( )2 2 2 2 2 2
2 1 2

1
2tt w t xx x x x x x ww w c w c c w u u v w f

x
µ ∂ ⎧ ⎫⎡ ⎤+ − = − − + + +⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

                (3.1.31) 

where 
0 0

u
u A

µµ
ρ

=  and 
0 0

u
u

ff
Aρ

= for u and the same relations for v and w , and 

2 2
2 0
1

0 0 0

EA Ec
A

α α
ρ ρ

= =                       (3.1.32) 

( ) ( )02
2

0 0 0 0 0

1 1EA ETc
A A

α α α αα
ρ ρ ρ

− −
= = =        (3.1.33) 

Equations (3.1.29) – (3.1.31) are the same as (7.5.9) – (7.5.11) of Nayfeh and Mook 

(1979). However, the wave speed 1c  in the axial (longitudinal) direction given by 

(3.1.32) is slightly different from (7.5.12) of Nafeh and Mook. The difference is due to 

the fact that the whole strain (strain due to initial pretension and vibration) is defined 

based on the un-deformed length whereas the deformed length under initial pretension 

was used by Nayfeh and Mook to define the strain during vibration. This difference is 

small for typical metallic strings in the elastic range. Using (3.1.24), the boundary 

conditions shown in (3.1.17)-(3.1.19) can be expressed as 

u  or ( )2 2
0

1
2x x x xEA u u v wα⎡ ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                             (3.1.34) 

v  or ( )2 2 2
0

11
2x x x x xEA v u u v wα⎡ ⎤− + − + +⎢ ⎥⎣ ⎦

                                      (3.1.35) 

w  or ( )2 2 2
0

11
2x x x x xEA w u u v wα⎡ ⎤− + − + +⎢ ⎥⎣ ⎦

                                    (3.1.36) 

 

3.1.3 The Two-Equation Model 



 38

In this section, we condense the three-equation model (3.1.29) – (3.1.31) into a 

two-equation model. To accomplish this, first we consider the linear undamped free 

oscillation problem. Neglecting the damping, forcing, and nonlinear terms in (3.1.29) – 

(3.1.31), we obtain the following uncoupled equations 

2
1 0tt xxu c u− =                                                                     (3.1.37) 

2
2 0tt xxv c v− =                                                                    (3.1.38) 

2
2 0tt xxw c w− =                                                                     (3.1.39) 

Next, we consider the boundary conditions: 

0=== wvu at 0=x and x L=                                                  (3.1.40) 

It follows from (3.1.37) and (3.1.40) that the mode shapes of the axial motion are given 

by 

sin n xu
L
π

=                                                                     (3.1.41) 

corresponding to the natural frequencies 

1
n

n c
L
πω =                                                                      (3.1.42) 

where n is a positive integer. Similarly, the mode shapes of the transverse motion in the 

2x  and 3x  directions are given by 

sin m xv
L
π

=  and sin k xw
L
π

=                                                    (3.1.43) 

corresponding to the natural frequencies 

2
m

m c
L
πω =   and 2

k
k c

L
πω =                                                      (3.1.44) 

where m  and k are positive integers. 



 39

It follows from (3.1.32), (3.1.33) and the fact 01 e+=α  that 

( )0 00 01

2 0 0 0 0

1 1EA eEA ec
c T EA e e

α + +
= = =                                           (3.1.45) 

which is very large (several hundreds) for typical metals in the elastic range. Hence, for a 

given frequency order (i.e., nkm == ), the transverse frequencies are much less than the 

longitudinal frequencies according to (3.1.42) and (3.1.44). Consequently, if the 

excitation frequencies are much smaller than the fundamental longitudinal 

frequency ( )1 1c Lω π= , the longitudinal inertia in (3.1.29) can be neglected, as shown 

below. Hence, (3.1.30) and (3.1.31) describe the two-equation model for strings. Next, 

we give a formal derivation of the two-equation model. To analyze the nonlinear 

response of the string to an excitation having a frequency close to the mth transverse 

linear natural frequency and being applied at the right end, we normalize the 

displacements and time by using L  and 2L m cπ  as 

2, , , ,m c tx u v wU V W
L L L L L

πξ τ≡ ≡ ≡ ≡ ≡  

Hence (3.1.29) becomes 

( ) ( )
2 2 2

1 2 2 22 2
2 2

1 1 1

1
2u

c cm c m c LU U U U V W
c c cττ τ ξξ ξ ξ ξ
π πµ

ξ

−⎛ ⎞ ∂ ⎡ ⎤⎛ ⎞+ − = − +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦⎝ ⎠
          (3.1.46) 

where the distributed longitudinal excitation ( )uf t is assumed to be zero. For typical 

metallic strings in the elastic range, ( )2
2 1 1c c <<  and hence the terms proportional to 

Uττ and Uτ can be neglected in (3.1.46). Hence we have 
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( )2 21
2

U U V Wξξ ξ ξ ξξ
∂ ⎡ ⎤⎛ ⎞= − − +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

                                            (3.1.47) 

Integrating (3.1.47) once with respect to ξ  yields 

( ) ( )2 21
2

U U V W bξ ξ ξ ξ τ⎛ ⎞= − − + +⎜ ⎟
⎝ ⎠

                                           (3.1.48) 

where ( )b τ  depends on the boundary conditions. Equation (3.1.48) shows that Uξ is of 

order ( ) ( )2 2O V O Wξ ξ= . Hence, to the order ( )2 2,O V Wξ ξ , (3.1.48) becomes 

( ) ( )2 21
2

U V W bξ ξ ξ τ= − + +                                                          (3.1.49)  

Because the force is assumed to be imposed at the right end 

( )0, 0U τ =  and ( ) ( )1,U LFτ τ≡                                               (3.1.50) 

Integrating (3.1.49) once and using (3.1.50) yields 

( ) ( )2 2

0

1
2

U V W d b
ξ

ξ ξ ξ τ ξ= − + +∫                                                (3.1.51) 

where 

( ) ( ) ( )
1 2 2

0

1
2

b V W d LFξ ξτ ξ τ= + +∫                                              (3.1.52) 

In terms of dimensional variables, (3.1.49) and (3.1.52) becomes 

( ) ( )2 21
2x x xu v w b t= − + +                                                           (3.1.53) 

( ) ( ) ( )2 2

0

1
2

L

x xb t LF t v w dx
L

= + +∫                                               (3.1.54) 

Hence 

( ) ( ) ( )2 2 2 2

0

1 1
2 2

L

x x x x xu v w LF t v w dx
L

= − + + + +∫                      (3.1.55) 
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Substituting (3.1.55) into (3.1.30) and (3.1.31), neglecting 2
2c  in 2 2

1 2c c− , and keeping 

terms up to cubic nonlinearity, we obtain the following two-equation model: 

( ) ( ) ( )
2

2 2 21
2 0

,
2

L

tt v t xx xx xx x x v
cv v c v h t v v v w dx f x t
L

µ+ − = + + +∫                    (3.1.56) 

( ) ( ) ( )
2

2 2 21
2 0

,
2

L

tt w t xx xx xx x x w
cw w c w h t w w v w dx f x t
L

µ+ − = + + +∫                (3.1.57) 

where ( ) ( )2
1h t c LF t= is due to the longitudinal excitation. Narasimha (1968) carefully 

argued that motions in which 0u = when 0uf =  are generally not possible and the most 

significant nonlinear problem arises when ( )2 2,u O v w= , as employed in deriving 

(3.1.56) and (3.1.57) . If 0u =  and 0uf = , then it follows from (3.1.29) that ( )2 2
x xv w+  is 

independent of x . This is possible only if the string is straight or it is helical all the time, 

including when 0t = . Clearly such a motion cannot exit except under very special initial 

conditions and/or excitations. Therefore, in general 0u ≠ . Moreover, whenever the 

motion is planar ( ). ., 0i e w = , 2
xv  cannot be independent of x  if v is to be zero at the ends 

unless 0≡v , i.e., the string is straight. However, experiments (Harrison, 1948; Murthy 

and Ramakrishna, 1965; Molteno and Tufillaro, 1990; S, Nayfeh, Nayfeh. And Mook, 

1995) show that, when a string is excited by forces acting in a given plane below a 

critical frequency, then the motion is also in the same plane and hence u  cannot be zero 

below that frequency. Moreover, there is no reason whatsoever to expect that with or 

without the onset of whirling motions that u will vanish.  



 42

3.2 Multiple-Scale Analysis 

To analyze the coupled nonlinear equations (3.1.56) and (3.1.57), we employ the 

method of multiple scales (Nayfeh, 1979). There are two approaches of using the method 

of multiple scales to attack the problem. For the discretization approach, the multiple 

scale analysis is applied to the ordinary differential equations obtained by discretizing the 

governing partial differential equations using spatial eigen-functions of the linear 

problem. For the direct treatment approach, the multiple scale analysis is directly applied 

to the governing partial differential equations. In our analysis, the excitation displacement 

is assumed to be linearly distributed along the string when the discretization approach 

was applied. In the direct approach the boundary conditions were considered as a 

restriction to the solvability condition. We discuss the differences between the results 

obtained from the two approaches.  

 

3.2.1 Discretized Model 

Using the Galerkin method, the spatial dependence can be eliminated from the 

equations of motion. Partial differential equations are discretized into ordinary 

differential equations in time and so the spatial coordinates and the temporal variables are 

separated. For a string only transversely excited, ( ) 0h t =  and equations (3.1.56) and 

(3.1.57) become 

( ) ( )
2

2 2 21
2 0

,
2

L

tt v t xx xx x x v
cv v c v v v w dx f x t
L

µ+ − = + +∫                                     (3.2.1) 

( ) ( )
2

2 2 21
2 0

,
2

L

tt w t xx xx x x w
cw w c w w v w dx f x t
L

µ+ − = + +∫                                  (3.2.2)  
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The string with one end fixed and the other being periodically excited in the w direction 

has the following non-homogeneous boundary conditions 

(0, ) 0v t =  and ( , ) 0v L t =                                                            (3.2.3) 

(0, ) 0w t =   and ( )( , ) cosw L t b t B t= = Ω                                            (3.2.4) 

If the base displacement is assumed to be linearly distributed along the string 

( , ) ( , ) ( )xw x t w x t b t
L

= +                                                            (3.2.5) 

where ( ) cos( )b t B t= Ω denotes the base motion with a frequency Ω  and an amplitude 

B . ( , )w x t is the relative displacement of the string with respect to rigidly displaced 

position 3 ( )xx b t
L

= . It follows from (3.2.5) that 

2

sin( )

cos( )

t t t t

tt tt tt tt

x x

xx xx

x xw w b w B t
L L
x xw w b w B t
L L
bw w
L

w w

= + = − Ω Ω

= + = − Ω Ω

= +

=

                                        (3.2.6) 

The boundary conditions become 

(0, ) 0, ( , ) 0v t v L t= =                                                                (3.2.7) 

(0, ) 0, ( , ) 0w t w L t= =                                                               (3.2.8) 

Substituting above equations into the governing equations (3.2.1) and (3.2.2) and 

assuming the damping coefficients for vibrations in the two planes are the same 

(i.e. v wµ µ µ= = ), for the same mode, the governing equations read 

( )
2

2 2 21
2 02

L

tt t xx xx x x
cv v c v v v w dx
L

µ+ − = +∫                                           (3.2.9) 
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( ) ( )
22 2

2 2 21 1
2 0 0

2 ,
2 2

L L

tt t xx xx x x xx x w
c c b bw w c w w v w dx w w dx f x t
L L L L

µ
⎛ ⎞⎛ ⎞+ − = + + + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫   (3.2.10) 

where w  is replaced by w for convenience and ( ) 2, cos( ) sin( )w
x xf x t B t B t
L L

µ= Ω Ω + Ω Ω  

As we know, the linear normal modes for transverse vibrations are 

( ) sinm
m xv x

L
π

=  and ( ) sink
k xw x

L
π

=                                          (3.2.11) 

Hence, following the Galerkin procedure, we can represent the solution of the nonlinear 

equations (3.2.9) and (3.2.10) as 

( ) ( )
1

, sink
k

k xv x t t
L
πη

∞

=

=∑ , ( ) ( )
1

, sink
k

k xw x t t
L
πζ

∞

=

=∑                             (3.2.12) 

which satisfy exactly the transformed boundary conditions given in (3.2.7) and (3.2.8). 

Substituting (3.2.12) into (3.2.9) and (3.2.10) yields 

( )

( )

2

1 1

42
2 2 2 21

1 1

sin sin

sin
4

k k k k
k k

k k k
k k

k x k x
L L

c k xk k
L L

π πη ω η µ η

π πη η ζ

∞ ∞

= =

∞ ∞

= =

+ +

⎡ ⎤ ⎡ ⎤⎛ ⎞= − +⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
                                   (3.2.13) 

( )

( ) ( )

2

1 1
42 2

2 2 2 21
2

1 1

sin sin

2sin ,
4

k k k k
k k

k k k w
k k

k x k x
L L

c k x bk k f x t
L L

π πζ ω ζ µ ζ

π πζ η ζ
π

∞ ∞

= =

∞ ∞

= =

+ +

⎡ ⎤⎡ ⎤⎛ ⎞= − + + +⎜ ⎟ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
         (3.2.14) 

Multiplying (3.2.13) and (3.2.14) with sin n x
L
π and integrating the results from 

0=x to x L= , we obtain 

( )
42

2 2 2 2 21

1

2
4n n n n n n k k

k

c n k
L
πη ω η µ η η η ζ

∞

=

⎛ ⎞+ + = − +⎜ ⎟
⎝ ⎠

∑                                 (3.2.15) 
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( ) ( )
42 2

2 2 2 2 21
2

1

22
4n n n n n n k k wn

k

c bn k F t
L
πζ ω ζ µ ζ ζ η ζ

π

∞

=

⎡ ⎤⎛ ⎞+ + = − + + +⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

∑    (3.2.16) 

where 

2

0

1 sin
2

L

n
n x dx

L L
π µµ µ≡ =∫                                                             (3.2.17) 

( ) ( )
0

2 , sin
L

wn w
n xF t f x t dx

L L
π

≡ ∫                                                      (3.2.18) 

Therefore, the distributed-parameter problem consisting of (3.2.1) - (3.2.4) has been 

transformed into an infinite system of nonlinearly coupled ordinary differential equations.  

For the case of primary resonance of the mth mode in the w direction, we define the 

following order for the forcing term so that it counters the effect of nonlinear terms.  

3 *( ) cos( ) cosb t B t B tε= Ω = Ω , 2
mω ε σΩ ≡ +                              (3.2.19) 

whereε is a small dimensionless measure of the amplitude used as a bookkeeping device. 

Correspondingly 

( )3 * coswn wnF F tε= Ω                                                                           (3.2.20) 

Moreover, we order the damping to be ( )2εΟ so that its influence balances the influence 

of nonlinearity and resonance. Thus, we replace nµ with 2
nε µ . To determine the second-

order approximate solution of (3.2.15) and (3.2.16) for this case, we use the method of 

multiple scales and assume that 

( ) ( ) ( )++= 203
3

201 ,, TTTTt nnn ηεεηη                                              (3.2.21) 

( ) ( ) ( )++= 203
3

201 ,, TTTTt nnn ζεεζζ                                               (3.2.22) 

Substituting (3.2.21) and (3.2.22) into (3.2.15) and (3.2.16) and equating coefficients of 

like powers ofε , we obtain 
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Order ε : 

2 2
0 1 1 0n n nD η ω η+ =                                                             (3.2.23) 

2 2
0 1 1 0n n nD ζ ω ζ+ =                                                             (3.2.24) 

Order 3ε : 

( )
2 2 4

2 2 2 2 21
0 3 3 0 2 1 0 1 1 1 14

10

2 2
4n n n n n n n k k

k

c nD D D D k
L
πη ω η η µ η η η ζ

∞

=

⎡ ⎤+ = − − − +⎢ ⎥⎣ ⎦
∑             (3.2.25) 

( ) ( )

2 2
0 3 3

2 2 4
2 2 2 *1

0 2 1 0 1 1 1 1 3 04
10

2 2 cos
4

n n n

n n n n k k n
k

D

c nD D D k F T
L

ζ ω ζ

πζ µ ζ ζ ζ η
∞

=

+ =

⎡ ⎤
− − − + + Ω⎢ ⎥⎣ ⎦

∑
              (3.2.26) 

The solutions of (3.2.23) and (3.2.24) can be expressed as 

( ) 0
1 2

mi T
n vnA T e ccωη = +                                                           (3.2.27)    

( ) 0
1 2

mi T
n wnA T e ccωζ = +                                                           (3.2.28) 

Substituting (3.2.27) and (3.2.28) into (3.2.25) and (3.2.26) yields 

( ) ( )

( )

0 0 0

0

2 2 4
2 2 ' 1
0 3 3 4

0

22 2 2

1

2
4

n n n

n

i T i T i T
n n n m vn n vn vn vn

i T
vk wk vk vk wk wk

k

c nD i A A e A e A e
L

k A A e A A A A cc

ω ω ω

ω

πη ω η ω µ −

∞

=

+ = − + − +

⎡ ⎤× + + + +⎣ ⎦∑
            (3.2.29) 

 
( ) ( )

( )

0 0 0

0 0

2 2 4
2 2 ' 1
0 3 3 4

0

22 2 2 *
3

1

2
4
1
2

m m m

m

i T i T i T
n n n m wn n wn wn wn

i T i T
vk wk vk vk wk wk n

k

c nD i A A e A e A e
L

k A A e A A A A F e cc

ω ω ω

ω

πζ ω ζ ω µ −

∞
Ω

=

+ = − + − +

⎡ ⎤× + + + + +⎣ ⎦∑
        (3.2.30) 

Using (3.2.19) in (3.2.20) and setting the secular terms in (3.2.29) and (3.2.30) to zero 

yields 

( ) ( ) ( )
2 2 4

' 2 2 2 21
4

1
2 2 0

4n vn n vn vn vk vk wk wk vn wn vn
k

c ni A A A k A A A A n A A A
L
πω µ

∞

=

⎡ ⎤
+ + + + + =⎢ ⎥⎣ ⎦

∑            (3.2.31) 
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( )

( ) ( ) 2

'

2 2 4
2 2 2 2 *1

4
1

2

12 0
4 2

wnn wn wn

i T
n vk vk wk wk vn wn wn wn nm

k

i A A

c n A k A A A A n A A A F e
L

σ

ω µ

π δ
∞

=

+

⎡ ⎤
+ + + + + =⎢ ⎥⎣ ⎦

∑
     (3.2.32)  

Expressing the vnA and wnA in the polar form as 

1
2

vni
vn vnA a e β= , 1

2
wni

wn wnA a e β=                                            (3.2.33) 

we separate (3.2.31) and (3.2.32) into real and imaginary parts. If n m≠ , the imaginary 

parts of the secular equations are given by 

( ) ( )
2 3 3

' 21
3

2

sin 2 2 0
32vn n vn wn vn wn vn
c na a a a

L c
πµ β β+ + − =                              (3.2.34)   

( ) ( )
2 3 3

' 21
3

2

sin 2 2 0
32wn n wn vn wn vn wn
c na a a a

L c
πµ β β+ + − =                             (3.2.35) 

when n m≠ . Adding vna times (3.2.34) to wna times (3.2.35) yields 

' ' 2 2 0vn vn wn wn n vn n wna a a a a aµ µ+ + + =                                            (3.2.36) 

which can be written as 

( )2 2 2 2

2

0vn wn n vn n wn
d a a a a

dT
µ µ+ + + =                                            (3.2.37) 

Because nµ  are positive, 2 2 0vn wna a+ → as 2T or t →∞ because the derivatives of 2 2
vn wna a+  

w.r.t. 2T is negative. Therefore, 0vna →   and 0wna → as t →∞  for n m≠ . The long-term 

non-linear response of the string is governed by (3.2.31) and (3.2.32) with vnA and 

wnA being equal to zero if n m≠ . In other words, the mth  mode, and the response of the 

string is governed by 



 48

( ) ( ) ( )
2 3 3

' 2 21
3

2

2 2 0
4v m v v v v w w v w v

c mi A A A A A A A A A A
L c
πµ ⎡ ⎤+ + + + + =⎣ ⎦                       (3.2.38) 

( ) ( ) ( )
2*2 3 3

' 2 21
3

2 2

2 2
4 2

i T
wm

w m w w v v w w v w w
LF ec mi A A A A A A A A A A

L c m c

σπµ
π

⎡ ⎤+ + + + + = −⎣ ⎦     (3.2.39) 

where the subscript m on vmA  and wmA has been dropped. Hence, the long term nonlinear 

response of the string to the primary resonance of the m th mode is governed by a two-

degree-of-freedom model, which can be obtained from (3.2.15) and (3.2.16) by 

setting 0n nη ζ= = for n m≠ . The result is 

( )
2 4 4

2 2 21
42

4m m m m m m m m
c m

L
πη ω η µ η η η ζ+ + = − +                                          (3.2.40) 

( ) ( )
2 4 4

2 2 2 *1
42 ,

4m m m m m m m m wm
c m F x t

L
πζ ω ζ µ ζ ζ η ζ+ + = − + +                        (3.2.41) 

Moreover, the transformed end excitation can be written as 

( ) ( )2 2 2, cos( ) sin( ) cosw m m
x x xf x t B t B t B t
L L L

µ µ α= Ω Ω + Ω Ω = Ω Ω + Ω −           (3.2.42) 

where ( )tan mα µ= Ω . Substituting wf  into (3.2.18) and integrating yields 

( ) ( )( ) 12 22 cos 1 m
wm mF t B t

m
µ α

π
−= Ω Ω + Ω − −                                (3.2.43) 

Because ( )3 *( ) cos( ) cosb t B t B tε= Ω = Ω , we have 

( )3 * coswm wmF F tε α= Ω −  with ( ) 1* * 2 22 1 m
wm mF B

m
µ

π
−= Ω Ω + −                    (3.2.43) 

Correspondingly, 

 ( ) ( )
* *

1* 2 2 2 2

2 2

2 1 1
2 2

m mwm
wm m m

LF L Bf B
m c m c m m

µ µ
π π π π

−= − = Ω Ω + − = Ω + −             (3.2.45) 
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If mµ Ω , 

( ) ( ) ( )
** *

12 21 1 1m m m
wm

m c B cB Bf
m m L L

π
π π

−≈ Ω − = − = −                                          (3.2.46) 

where *B is the excitation amplitude. The governing modulation equations (3.2.38) and 

(3.2.39) become 

( ) ( ) ( )
2 3 3

' 2 21
3

2

2 2 0
4v v v v v w w v w v

c mi A A A A A A A A A A
L c
πµ ⎡ ⎤+ + + + + =⎣ ⎦                               (3.2.47) 

( ) ( ) ( ) ( )
2

*2 3 3
2' 2 21

3
2

1
2 2

4

m
i T

w w w v v w w v w w

B cc mi A A A A A A A A A A e
L c L

σπµ
−⎡ ⎤+ + + + + =⎣ ⎦       (3.2.48) 

where 2 mµ  becomes mµ because of (3.2.17) and, for convenience, mµ  is replaced by µ . 

We note that mµ Ω is assumed.  

 

3.2.2 Direct Treatment 

In this approach, the method of multiple scales is applied directly to the non-linear 

integral-partial differential equations of motion and associated boundary conditions to 

determine the approximate solutions. We follow the derivation procedure of Nayfeh 

(1995). The damping and forcing terms are ordered similarly for the same reason as in the 

discretized approach, i.e., 

( )3( ) cosb t B tε= Ω , 2µ ε µ=                                                    (3.2.49) 

Assuming asymptotic solutions for v  and u as 

( ) ( ) ( )3
1 0 2 3 0 2, , , , ,v x t v x T T v x T Tε ε= + +                                           (3.2.50) 

( ) ( ) ( )3
1 0 2 3 0 2, , , , ,w x t w x T T w x T Tε ε= + +                                         (3.2.51) 
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we rewrite the boundary conditions as 

( ) :o ε  

1(0, ) 0v t = , 1( , ) 0v L t =                                                                 (3.2.52) 

1(0, ) 0w t = , 1( , ) 0w L t =                                                               (3.2.53) 

( )3 :o ε  

3 (0, ) 0v t = , 3 ( , ) 0v L t =                                                                    (3.2.54) 

3(0, ) 0w t = , 3
3 ( , ) ( ) cosw L t b t B tε= = Ω                                         (3.2.55) 

Without separating the temporal and spatial variables, we substitute (3.2.50) and (3.2.51) 

into governing equations (3.2.1) and (3.2.2) and equating coefficients of like power 

ofε and obtain 

( ) :o ε  

2
2 2 1
0 1 2 2 0vD v c

x
∂

− =
∂

                                                                   (3.2.56) 

2
2 2 1
0 1 2 2 0wD w c

x
∂

− =
∂

                                                                  (3.2.57) 

( )3 :o ε  

2 22 2 2
2 2 3 1 1 1 1
0 3 2 0 1 2 0 12 2 0

2
2

Lv c v v wD v c D v D D v dx
x L x x x

µ
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = − − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∫                  (3.2.58) 

2 22 2 2
2 2 3 1 1 1 1
0 3 2 0 1 2 0 12 2 0

2
2

Lw c w v wD w c D w D D w dx
x L x x x

µ
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = − − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∫              (3.2.59) 

Applying boundary condition (3.2.52) and (3.2.53) to equations (3.2.56) and (3.2.57), we 

obtain the general solution of the first-order problem as 
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( )0 0
1

1 2

sinn ni T i T n
vn vn

n

xv A e A e
c

ω ω ω∞
−

=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑                                               (3.2.60) 

( )0 0
1

1 2

sinn ni T i T n
wn wn

n

xw A e A e
c

ω ω ω∞
−

=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑                                             (3.2.61) 

where the vnA and wnA are unknown functions of 2T at this order of approximation. They 

are to be determined by imposing the so-called solvability or consistency conditions at 

the second order approximation by requiring the third-order problems, shown by 

equations (3.2.58) and (3.2.59) and boundary conditions (3.2.54) and (3.2.55), to have 

solutions and yield uniform expansions. 

The excitation frequency is near the mth natural frequency mω  of the string, i.e., 

2
mω ε σΩ = +                                                                  (3.2.62) 

Substituting (3.2.60) and (3.2.61) into (3.2.59), we obtain 

 ( ) ( )

( )

( ) ( )

0 0 0 0

0 0

0

2
2 2 3
0 3 2 2

' '

1 12 2

2
21

4
12 2

22 2 2 2

sin 2 sin

sin
4

2

n n n n

n n

n

i T i T i T i Tn n
n wn wn n wn wn

n n

i T i T n
n wn wn

n

i T
n vn wn vn vn wn wn vn wn

wD w c
x

x xi A e A e i A e A e
c c

xc A e A e
c c

A A e A A A A A A

ω ω ω ω

ω ω

ω

ω ωµ ω ω

ωω

ω

∞ ∞
− −

= =

∞
−

=

∂
−

∂
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞−
+ ⎜ ⎟

⎝ ⎠

+ + + + +

∑ ∑

∑

( ) 022

1

ni T

n
e ω

∞
−

=

⎡ ⎤⎣ ⎦∑

         (3.2.63) 

Equation (3.2.63) and the boundary conditions, (3.2.54) and (3.2.55) constitute an 

inhomogeneous part whose homogeneous part is the same as the first-order problem 

shown by equation (3.2.56) and (3.2.57). Because the latter problem has a nontrivial 

solution, the inhomogeneous problem given by equations (3.2.63) has a solution only if 

the solvability condition is satisfied. To determine this solvability condition, we convert 

equation (3.2.63) into a system of ordinary differential equations by assuming that 
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0 0
3 2 2

1
( , ) ( , )m mi T i T

m m
m

w x T e x T eω ωψ ψ
∞

−

=

⎡ ⎤= +⎣ ⎦∑                                            (3.2.64) 

where 2( , )m x Tψ is to be determined. Substituting equation (3.2.64) into equation (3.2.63), 

multiplying both sides by 0si Te ω− , and integrating the result with respect to 0T from 0 

to ( )2 22 2c L L cπ π = , we obtain 

( )
2 2

2 22 2
2

( , ) ,s s
s sx T x T

c x
ω ψψ ζ∂

+ =
∂

                                               (3.2.65) 

where 

( )

( ) ( ) ( ) ( )

( ) ( )

( )

2
21

2 6
12 2

2 2 2 2 2

1

2 2

'2
2 21

6 2
12 2 2

, sin
4

2 2

2

2sin 2
4

k
s k

k

n wk vn wn wk vn wn
n

wk vn wn

s s ws s ws
s n ws vn vn wn wn

n

xcx T
c c

A A A n s k A A A n s k

A A A n s k

x i A i Ac A A A A A
c c c

ωζ ω

ω δ δ

δ

ω µ ω ωω ω

∞

=

∞

=

∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎡× + − + + + − − +⎣

⎤+ + − − ⎦
⎛ ⎞ ⎧ ⎫+⎡ ⎤+ + +⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎩ ⎭

∑

∑

∑

     (3.2.66) 

and  

( )
0 0
1 0

m
m

m
δ

≠⎧
= ⎨ =⎩

                                                     (3.2.67) 

Substituting equation (3.2.64) into boundary conditions (3.2.55), multiplying both sides 

by 0si Te ω and integrating the results with respect to 0T from 0 to 22L c , we obtain the 

boundary conditions on sψ  as 

2(0, ) 0s Tψ ≡ , ( ) 2
2( , )

2
i T

s m s
BL T e σψ δ ω ω≡ −                                  (3.2.68) 
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We wish to determine the conditions for the existence of solution for the boundary-value 

problem given by equations (3.2.65) and (3.2.68). Using the method of variation of 

parameters, we find that the general solution of equation (3.2.65) can be expressed as 

( ) ( )

( ) ( )

2
2 2 1 20

2 2

2
2 2 20

2 2

( , ) , cos sin

, sin cos

x s s
s s

s

x s s
s

s

z zcx T z T dz e T
c c

z zc z T dz e T
c c

ω ωψ ζ
ω

ω ωζ
ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
= +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞

+ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫
                           (3.2.69) 

where 1e and 2e are arbitrary functions of 2T . Application of the first boundary condition 

to equation (3.2.68) yields 2 0e ≡ . Then applying the secondary boundary condition to 

equation (3.2.68), we obtain 

( ) ( ) ( )0
22

20
2

, sin cos
2

L i Ts
s m s

zc Bz T dz s e
s c

σωζ π δ ω ω
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫                        (3.2.70) 

which is the solvability condition. We note that ( )1 2e T is arbitrary. It can be chosen to be 

zero so that the amplitudes of motion are uniquely defined by the wsA . Substituting the 

expression (3.2.66) into the solvability condition and assuming m s= , we obtain the 

modulation equation governing wsA  

( )

( ) ( ) ( ) 2

'

2
2 2 2 21 2

4
12

2

2 1
4

mw wm

m i T
m wm n wn wn wn wn m wm wm wm

n

i A A

c BcA A A A A A A A e
c L

σ

µ

ω ω ω
∞

=

+ +

⎧ ⎫⎡ ⎤+ + + = −⎨ ⎬⎣ ⎦⎩ ⎭
∑

      (3.2.71) 

Thus, if the forcing frequency is near that of the sth mode, the sth mode is externally 

excited. Otherwise, the sth mode may occur only through internal resonance when the 

natural frequencies are commensurate or nearly commensurate. Similarly, we obtain the 

modulation equation governing vsA as 
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( ) ( ) ( )
2

' 2 2 2 21
4

12

2 2 0
4vm vm m vm n vn vn vn vn m vm vm vm

n

ci A A A A A A A A A A
c

µ ω ω ω
∞

=

⎧ ⎫⎡ ⎤+ + + + + =⎨ ⎬⎣ ⎦⎩ ⎭
∑ (3.2.72) 

Similarly, one can prove that both in-plane and out-of-plane modes not directly excited 

decay to zero and equations (3.2.71) and (3.2.72) become 

( ) ( ) ( ){ } ( ) 2

3 3 2
' 2 21 2

3
2

2 2 1
4

m i T
w w w w w w w w w w

m c Bci A A A A A A A A A A e
L c L

σπµ + + + + + = −           (3.2.73) 

( ) ( ) ( ){ }
3 3 2

' 2 21
3

2

2 2 0
4v v v v v v v v v v

m ci A A A A A A A A A A
L c
πµ + + + + + =                                 (3.2.74) 

which are exactly the same as equations (3.2.47) and (3.2.48).  

 

3.3 The Cartesian Form of the Averaged Equations 

The complex amplitudes vmA and wmA of the mth mode can be written in the polar 

form as 

1
1

1
2

i
vmA a e β=   2

2
1
2

i
wmA a e β=      (3.3.1) 

Substituting (3.3.1) into (3.2.47) and (3.2.48) and separating real and imaginary parts 

yields 

( ) ( )' 2
1 2 1 2 1 1 2sin sin 0a a ka a fµ γ γ+ + + =                                                (3.3.2) 

( )( ) ( )3 2 2 '
1 2 1 2 1 1 2 1 13 2 cos cosk a a a a a f aγ γ β+ + + =                                   (3.3.3) 

( )' 2
2 2 2 1 2 1sin 0a a ka aµ γ+ − =                                                                  (3.3.4)  

( )( )3 2 2 '
2 1 2 1 2 1 2 23 2 cosk a a a a a aγ β+ + =                                                     (3.3.5)  

where wmf is replaced by f , 
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1 2 12 2γ β β≡ − , 2 2 1Tγ σ β≡ − , ( ) 2

*
32

2

1
2

m i T mLFpcf e
L m c

σ

π
≡ − = , 

2 3 3
1

3
232

c mk
L c
π

≡         (3.3.6)  

 To obtain the steady-state response which corresponds to ' ' ' '
1 2 1 2 0a a γ γ= = = = , we use 

(3.3.6) and rewrite equations (3.3.2) – (3.3.5) as 

( ) ( )' 2
1 2 1 2 1 1 2sin sina a ka a fµ γ γ= − − −                                               (3.3.7) 

( )' 2
2 2 2 1 2 1sina a ka aµ γ= − +                                                                (3.3.8)  

( )( ) ( )2' 2 2 2
2 1 2 2 1

1

cos
3 2 cos

f
k a a a

a
γ

γ σ γ= − + + −                                (3.3.9) 

                          ( ) ( )( ) ( )2' 2 2
1 1 2 1

1

2 cos
2 2 cos 1

f
ka ka

a
γ

γ γ= − − −                                 (3.3.10)  

Frequency responses curves can be obtained by solving equations (3.3.7) - (3.3.10) for 

fixed point solutions. The stability of these fixed point solutions can be determined by the 

eigenvalues of the Jacobian matrix of the right-hand side of Eqs. (3.3.7) - (3.3.10). A 

given fixed point is stable if and only if the real parts of all eigenvalues are less than or 

equal to zero. If there is a pair of complex values having positive real parts, amplitude- 

and phase-modulated motions are expected. Moreover, we have 

( ) ( )1 2 2 2 2
1 1 1 1 2 1 2 1 1

1 1 1 1cos sin
2 2 2 2

i i T i i T i TA a e a e e a ia e p iq eβ σ γ σ σγ γ−= = = − = −        (3.3.11) 

where 1 1 2cosp a γ≡ , 1 1 2sinq a γ≡  and 

( ) ( )32 2 2 2
2 2 2 2 3 2 3 2 2

1 1 1 1cos sin
2 2 2 2

i T T i TA a e a e e a ia e p iq eγβ σ σ σγ γ−= = = − = −      (3.3.12) 

Here 2 2 3cosp a γ≡ , 2 2 3sinq a γ≡ and 1
3 2 2

γγ γ≡ − . Substituting above equations into 

(3.2.71) and (3.2.72), we obtain the following modulation equations in the Cartesian 
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form, which are exactly the same as those obtained by Miles (1984) using particular 

scaling and non-dimensionalization. 

' 2
1 1 1 13

4
kpp q p kq E Mσ µ= − − + +                                          (3.3.13) 

' 2
1 1 1 13

4
q kq p q kp E M fσ µ= − − + −                                      (3.3.14) 

' 1
2 2 2 23

4
kpp q p kq E Mσ µ= − − + −                                        (3.3.15) 

' 1
2 2 2 23

4
q kq p q kp E Mσ µ= − − −                                           (3.3.16) 

where                         

2 2 2 2
1 1 2 2E p q p q≡ + + + , 1 2 2 1M p q p q≡ − , 

2 3 3
1

3
0 232

c mk
L c
π

=                 (3.3.17) 

Again, note that ( )
*

21 m B cf
L

= − by the direct approach or 

( )
*

2 2 1 mBf
m

µ
π

= Ω + − by the discretized approach in which the displacement of 

excitation is assumed to be linearly distributed along the string. It is important to note 

here that the above sets of ordinary differential equations, either in polar coordinates 

(3.3.13)-(3.3.16) or in Cartesian coordinates (3.3.7)-(3.3.10),  describe the amplitude and 

phase modulations of the first-order solutions specified in equations (3.2.21) and (3.2.22) 

or (3.2.50) and (3.3.51). These equations are invariant to the transformation 

),(),( 2222 qpqp −→ which means that there is a reflective symmetry in the 

),,,( 2211 qpqp state space about the ),( 11 qp plane. Thus, if we find a steady-state 

solution, another distinct solution for the same parameters can be obtained by using this 
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mirror-image transformation, unless the solution itself is symmetric. There are other 

systems have similar amplitude equations with different coefficients that represent the 

physical parameters of the system. These systems include the weakly resonant motions of 

a spherical pendulum (Miles and Maewal, 1984b), of surface waves in a circular cylinder 

(Miles, 1984c), as well as the motions of structural components such as an elastic beam 

(Maewal, 1986) and an axis-symmetric shell (Maewal, 1987), etc.  

 

3.4 Frequency Responses 

3.4.1 The Effects of Damping 

Damping plays an important role in the possible appearance of various nonlinear 

phenomena, especially chaotic motions, in the dynamics of strings. In our investigation, 

the damping is assumed to be the same for all modes of vibrations in the two directions. 

We adopt the parameters, except the damping, from the string selected by Neyfeh and Pai 

(2004). The effects of damping on the dynamics of strings are studied in detail. 

Experimental verifications and comparisons will be presented in Chapter 4. The 

parameters of the string we studied are 

* 5 *

2 2
1 2 2 1

2.13 , 5.39 10 / sec, 0.0341 1 sec
55.7 / , 10.5 / , 0.351

L m f m
c m s c m s c c

µ

ε π

−= = × =

= = = =
                         (3.4.1) 

We chose to study the vibration composed of the sixth mode, i.e., response to a harmonic 

base excitation at sixth natural frequency ( 6m = and 6 26 c Lω π= ). Fig.3.2 presents the 

frequency response curves with different value forµ . For a large enough dampingµ , all 

responses are planar vibrations. The frequency response curves with *1.4µ µ=  are 
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plotted in Fig. 3.2(a). All steady-state responses are periodic vibrations in the plane of 

excitation, which means all input energy is absorbed by the in-plane vibration. There are 

two stable planar solutions in the frequency range ( )2 6,∆ ∆ ; one has large amplitude and 

the other has small amplitude. There is only one solution for other frequency ranges. For 

a smallµ , the planar solution is not always stable. The vibration loses or gains stability 

when the frequency detuning 2σε∆ = changes. The frequency response curves with 

*1.2µ µ=  are plotted in Fig. 3.2(b). A non-planar solution, corresponding to a periodic 

whirling motion, arises after the pitchfork bifurcation at 1∆ , where the excitation 

frequency is slightly beyond the linear natural frequency. Then the whirling motion loses 

stability at the reverse pitch fork bifurcation point 5∆ . For the whirling motion of this 

non-planar branch, we have the following observations summarized from the literature. 

As the excitation frequency increases beyond 1∆ , the amplitude of in-plane vibration does 

not increase as fast as when 1∆ < ∆ . For some damping values, it even keeps constant and 

shows the saturation phenomenon, which is indicated by the horizontal section of the 

response curve shown in Fig. 3.2(b). The out-of-plane response, however, has a rapid 

increase of amplitude, which means the input energy mostly goes into the out-of-plane 

vibration. After the out-of-plane response reaches its maximum, the amplitude of in-plane 

response increases again while that of out-of-plane response decreases as the excitation 

frequency increases. At 5∆ , the out-of-plane response disappears (i.e., 2 0a = ) and the 

vibration becomes stable planar one again. Because the model is symmetric about the 

excitation plane, the non-planar (whirling) motions can have different directions of 

whirling (clockwise or counterclockwise). These two solutions can not be distinguished 



 59

from the trajectory plotted on the 1 2a a− , but they can be distinguished from the 

trajectory plotted on the 2 2p q− plane. The solutions appear as fixed points in either the 

upper right (the first) or the lower left (the third) quadrant of the 2 2~p q plane according 

to the direction of the whirling (Reilly, 1992). 
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Fig. 3.2: The in-plane (a1) and out-of-plane (a2) frequency response curves with different 
values for µ  and a fixed excitation amplitude *f f= : (a) *1.4µ µ= , (b) *1.2µ µ= ,  
(c) *1.09µ µ= , (d) *1.015µ µ= , (e) *1.01µ µ= , (f) *1.00µ µ= , (g) *=0.98µ µ , 
(h) *=0.96µ µ , (i) *=0.85µ µ , (j) *=0.80µ µ . Solid line: planar stable solutions; dash-dot-
dash line non-planar stable solutions; dashed point line unstable solutions; dots 
modulated solutions. 1∆ : the forward pitchfork bifurcation; 5∆ : the reverse pitchfork 
bifurcation point; 2∆ , 6∆  and 3∆ , 4∆ : the tuning points of the planar and non-planar 
solution branches, respectively; *

1∆ and *
2∆ : the forward and reverse Hopf bifurcation 

points, respectively.  
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Fig. 3.2 (Continued) 
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Fig. 3.2 (Continued) 
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Fig. 3.2 (Continued) 
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Fig. 3.3: Zoom-in views of : (a) Fig.3.2 (f), (b) Fig.3.2 (i), and (c) Fig.3.2 (i) 
 
 

Fig .3.2(c) shows that, with a smaller damping, the stable non-planar solution 

becomes unstable due to Hopf bifurcations at points *
1∆ and *

2∆ . When the excitation 

increases, a pair of complex conjugate eigenvalues cross the imaginary axis from the left 

half plane to the right half plane and the solution loses its stability at *
1∆ , or from the right 

half plane to the left half plane and the solution regains its stability at *
2∆ . The frequency 

band * *
1 2∆ < ∆ < ∆  is within the frequency band defined by the two pitchfork bifurcation 

points 1∆ and 5∆ . Responses under other frequency bands are the same as those under 
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larger dampings. Steady state solutions obtained by direct numerical integration of 

(3.3.7)-(3.3.10)  are found to be essentially the same as the fixed point solutions obtained 

by solving the modulation equations (3.3.7)-(3.3.10) with ' ' ' '
1 2 1 2 0a a γ γ= = = = . The 

difference between these two solutions is small and is due to neglecting the second-order 

term of the excitation during the averaging. We have more detailed discussions on this 

topic in Chapter 7. For the fixed points on the Hopf branch, the responses are amplitude 

and phase modulated limit cycle solutions, i.e., whirling or ballooning motions according 

to the Hopf bifurcation theorem. With *1.09µ µ= (Fig. 3.2(c)), there are no further 

bifurcations and the limit-cycle solutions of the Hopf branch are stable over the entire 

detuning interval, which means all responses are continuous periodic motions. Miles 

(1984a) performed some numerical integrations around the frequency band ( )* *
1 2,∆ ∆ , and 

his results showed that all solutions converged to the lower planar solutions with small 

amplitudes. We conjecture that it is probably due to the initial conditions he selected 

were too close to fixed points of the lower planar branch. 

As shown in Figs. 3.2(c) – 3.2(j), the distance between the two Hopf bifurcation 

points increases when µ decreases. The variations of the Hopf bifurcation points on 

the µ∆ − plane and the f∆ − plane are plotted in Figs. 3.4(a) and 3.4(b), respectively. 

They reveal that, as the damping decreases or the forcing increases, the Hopf bifurcation 

range increases. It is obvious that the upper bifurcation point changes more than the 

lower one when the parameter changes. Between the two Hopf bifurcation points, The 

limit-cycle solution may becomes unstable and undergoes period doubling bifurcations.  
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Fig. 3.4: Variations of the Hopf bifurcation set ( )* *

1 2,∆ ∆  on: (a) the ~ µ∆ plane and (b)the 
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stars) Hopf bifurcation points.  
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Fig. 3.5: Solutions that reveal the invariance of the modulation in: (a) Cartesian 
coordinates, and (b) polar coordinates, where 0.108∆ =  and *1.015µ µ= . Solid dots: 
planar solutions; ∇ : unstable planar solutions; circle: limit-cycle solutions. 
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Fig. 3.2(d) shows the frequency response curves for both in-plane and out-of-plane 

vibrations when *1.015µ µ=  and *f f= . Figs. 3.5(a) and 3.5(b) show the invariance of 

the modulated solutions of the governing ordinary differential equations of both Cartesian 

and polar coordinates. Due to the trigonometric relations between the amplitudes of 

vibration and Cartesian coordinates, there are trajectories in all four quadrants of the 

Cartesian coordinates while only the first and third quadrants of the polar coordinates 

have trajectories.  Fig. 3.6 lists a series of phase plots showing the sequence of 

bifurcation of this case. The corresponding frequency spectrums are also included. The 

bifurcation sequence of the limit cycle we obtained is the same as those obtained by 

Johnson and Bajaj (1989) and Bajaj and Johnson (1992). Fig. 3.7 shows the bifurcation 

structure of the whole Hopf branch. The amplitude of the limit cycle increases as the 

detuning increases and it reaches its maximum around the midpoint of the interval, and 

then it shrinks to zero as the detuning approaches *
2∆  (see Fig. 3.2(d)). Our numerical 

investigation shows that the closer the detuning is to the two bifurcation points, the 

longer it takes for the integration to converge. Moreover, from the 2-D 2q∆ − view of the 

bifurcation structure, we observe a discontinuous increase or decrease of the amplitude 

2q  when the period-doubling happens. Although the bifurcation is rich, no chaotic 

motions are observed.  
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Fig. 3.6: Bifurcation sequence (phase plots and frequency spectrum) of the Hopf branch 
with *1.015µ µ= and *f f= : (a) 0.0940∆ = , (b) 0.1020∆ = , (c) 0.1120∆ = , 
(d) 0.1240∆ = , (e) 0.1340∆ = , (f) 0.1440∆ = , and (g) 0.1520∆ = , where 

2 2( ) n nA f a b= + and na and nb are spectral coefficients for ( )2q t  from FFT analysis. 
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Fig. 3.6 (continued) 
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Fig. 3.6 (continued) 
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Fig. 3.7: Bifurcation structure of the Hopf branch: (a) 3-D view of the structure, and (b) 

2-D 2q∆ − view of the structure, where *1.015µ µ= and *f f= . 
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Fig. 3.7 (continued) 
 

Decreasing the damping to *1.01µ µ= , Fig. 3.2(e) shows that the interval 

( )* *
1 2,∆ ∆ expands with the lower bound *

1∆ being almost unchanged while the upper 

bound *
2∆  being increased. Through a series of period-doubling bifurcations, the Hopf 

branch becomes unstable, and another coexisting branch (the isolated branch) is created 

through a global saddle node bifurcation. In other words a stable and a unstable branch of 

limit cycle solutions are created simultaneously. Together with the stable planar branch, 

there are three possible solutions within the frequency range. The frequency response 

curves of Fig. 3.2(e) are basically the same as those of Fig. 3.2(d) except that the Hopf 

bifurcation range is larger. Figs. 3.8(a)-(k) show a series of representative trajectories 

with different detuning values for this case. Figs. 3.8(a)-(d) show HP1, HP2, HP4, and 
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HP8 solutions, respectively. Here HPn denotes a Hopf branch solution having n periods. 

We note that the HP8 solution was not obtained by Johnson and Bajaj (1989) and Bajaj 

and Johnson (1992). Generally speaking, this case has the same bifurcation sequence as 

the case with *1.015µ µ= and *f f= , except that, around the middle part of the interval, 

the bifurcation shrinks and the oscillator has smaller amplitude. It is a conjecture that the 

forward and reverse bifurcation sequences of the Hopf branch in the frequency interval 

where two branches coexist is due to the constraints or stabilizing influence of the 

isolated branch. Plots in Fig. 3.9 show us the properties of the isolated branch 

with *1.01µ µ= and *f f= . At a damping of this level, the isolated branch undergoes no 

period-doubling and so the amplitude for the whole branch is almost constant (Fig. 3.9 

(b)). Fig. 3.9 (c) shows the positions and geometries of Hopf branch solution and the 

isolated branch solution on the 2 2p q− plane when 0.1280∆ = . The major difference 

between them is that the isolated branch solution has a cusp at a location close to the 

planar fixed point at ( ) ( )2 2, 0,0p q = . The cusp becomes more obvious when the damping 

is further reduced because the isolated branch solution is attracted more by the planar 

fixed point. The upside-down triangle represents the unstable planar solutions whose 2a is 

zero and so are 2p and 2q .  



 72

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Frequency (Hz)

|A
(f)

|

(a)

-14 -12 -10 -8 -6 -4 -2

x 10
-4

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5
x 10

-3

p2

q 2

 
 

-14 -12 -10 -8 -6 -4 -2 0 2

x 10
-4

-16

-14

-12

-10

-8

-6

-4

-2
x 10

-4

p2

q 2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-4

Frequency (Hz)

|A
(f)

|

(b)

 
 

-12 -10 -8 -6 -4 -2 0 2

x 10
-4

-16

-14

-12

-10

-8

-6

-4

-2
x 10

-4

p2

q 2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-4

Frequency (Hz)

|A
(f)

|

(c)

 
 
Fig. 3.8: Bifurcation sequence of the Hopf branch with *1.01µ µ= and *f f= : 
(a) 0.0980∆ = , (b) 0.1040∆ = , (c) 0.1080∆ = , (d) 0.1120∆ = , (e) 0.1160∆ = , 
(f) 0.1240∆ = , (g) 0.1340∆ = , (g) 0.1385∆ = , (i) 0.1400∆ = , (j) 0.1480∆ = , and (k) 

0.1540∆ = . 
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Fig. 3.8 (Continued) 
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Fig. 3.8 (Continued) 
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Fig. 3.8 (Continued) 
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Fig. 3.9: The isolated branch with *1.01µ µ= and *f f= : (a) 3-D view of the phase plots, 
(b) 2-D view, and (c) coexistence of the isolated branch and the Hopf branch 
at 0.1280∆ = . Solid dots: stable planar solutions; ∇ : unstable planar solutions; circle: 
limit-cycle solutions.  
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Fig. 3.9 (Continued) 

 

As the damping is further decreased to *1.005µ µ= , the bifurcation of the Hopf 

branch solution has no much difference from those of previous damping cases. The 

isolated branch, however, undergoes a period-doubling transition to chaos, resulting in a 

Rossler type chaotic attractor which encircles only one unstable (modulated) non-planar 

fixed point. Fig. 3.10 shows the bifurcation of the isolated branch solution with 

*1.005µ µ= and *f f= . There are iP1 (iPn means a period-n solution of the isolated 

branch), iP2, iP4, and chaotic attractor iPC attractor (iPc means a chaotic solutions of the 

isolated branch) of the Rossler type.   
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Fig. 3.10: Bifurcation of the isolated branch with *1.005µ µ= and *f f= : 
(a) 0.1120∆ = , (b) 0.1140∆ = , (c) 0.1155∆ = , (d) 0.1165∆ = , (e) 0.1220∆ = , 
(f) 0.1330∆ = , (g) 0.1345∆ = , and (h) 0.1360∆ = . 
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Fig. 3.10 (Continued) 
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Fig. 3.10 (Continued) 

For the case with *µ µ= and *f f= (see Fig. 3.2(f)), Fig. 3.11 shows that the 

isolated branch has iP1 and iP2 solutions and periodic solutions reappear (Fig. 3.11(h)) 

after the Rossler type attractor (Fig. 3.11(e)). According to Bajaj and Johnson (1992), this 

isolated branch is attributed to a global saddle node bifurcation. For a damping of this 

level, the isolated branch is truly isolated – not connected with any other branches of 

solutions. When the damping is further decreased, the unstable part of this second 

isolated branch mergs with the stable part of the first isolated branch by exactly the same 
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way the first isolated branch merges with the Hopf branch. For the Hopf branch of this 

case, the bifurcation is the same as those of previous cases except that a steady state HP1 

solution is obtained at the middle part of the frequency range where only HP2 solutions 

were predicted in the literature. It is reasonable to say that this is due to a more influential 

constraint (stabilizing effect) on the bifurcation of the Hopf branch by the two isolated 

branches together. Depending on the stabilizing effect, the detuning interval of the HP1 

solution might be quite small and easy to miss.  Similarly, the second isolated branch has 

the same stabilizing effect on the first isolated branch, forcing the Rossler type attractor 

to undergo reverse bifurcation leading to periodic solutions as the excitation frequency 

increases. 
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Fig. 3.11: Bifurcation of the isolated branch with *1.00µ µ= and *f f= : (a) 0.1105∆ = ; 
(b) 0.1110∆ = , (c) 0.1120∆ = , (d) 0.1125∆ = , (e) 0.1150∆ = , (f) 0.1200∆ = , 
(g) 0.1250∆ = , (h) 0.1300∆ = , (i) 0.1325∆ = , (j) 0.1340∆ = , (k) 0.1360∆ = , 
(l) 0.1390∆ = , (m) 0.1395∆ = , and (n) 0.1415∆ = . 
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Fig. 3.11 (Continued) 
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Fig. 3.11 (Continued) 
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Fig. 3.11 (Continued) 
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The frequency response curves shown in Fig. 3.2(g) with *0.98µ µ=  and *f f= . 

show that there is a frequency gap between the stable non-planar branch and the 

modulation branch. The frequency increment we used for the scanning is pretty small, but 

the gap never disappears even when the increment is further decreased. Actually, for a 

smaller damping, the whole modulation branch is discontinuous as shown in Figs. 3.2(h) 

– (j). Further work is necessary to determine the possible reasons. For the Hopf branch of 

Fig. 3.2(g), the stable limit cycle solutions do not exist continuously around the middle 

part of the frequency interval. This is consistent with the conjecture of Johnson and Bajaj 

(1989) and Bajaj and Johnson (1992) that the stable Hopf branch breaks and merges with 

the unstable solutions of the isolated branch, leading to a saddle type bifurcation. Again, 

this is due to the stabilizing effect of upper isolated branches, preventing the Hopf branch 

to period – double to infinity in a straightforward manner. As more and more isolated 

branches appear when the damping decreases, the effects become more and more 

influential and finally disconnect the Hopf branch. Similarly, the bifurcations of former 

isolated branches are influenced by following isolated branches. At the middle part of the 

detuning interval, two symmetric trajectories of the newly created isolated branch, 

located at the first and third quadrants of the polar coordinate, become connected, 

creating a new trajectory which undergoes period-doubling bifurcation and results into a 

Lorenz type chaotic attractor, as shown in Figs. 3.12(a) – (n). As the excitation frequency 

increases, the attractor undergoes period-doubling, becomes a Rossler type attractor (Fig. 

3.12(c)), changes to a Lorenz type attractor (Fig. 3.12(h)), and then shrinks back to a 

Rossler type attractor (Fig. 3.12(l)). At somewhere within the first half of the detuning 

interval, the isolated trajectories become more and more attracted by the lower planar 



 87

solution and two symmetric trajectories are connected at the planar fixed point (see Fig. 

3.12 (e)), creating the homoclinic orbit. When the two symmetric attractors are 

connected, the dynamics becomes chaotic although the trajectories themselves seem quite 

clear. This is due to the dynamic balance between the attractions from two symmetric 

modulated attractors which makes the indeterminate vibration go to the first quadrant for 

some time and the third quadrant for some other time. This phenomenon is more clearly 

shown in Fig. 3.12 (k) with a zoomed plot. As the detuning increases beyond (Fig. 

3.12(e)), the connected two symmetric Rossler type trajectories become a Lorenz type 

enclosing the two symmetric non-planar fixed points. For further detuning increase, the 

trajectory departs from the planar fixed point and undergoes period-doubling bifurcation, 

leading to the Lorenz type chaotic attractor (Fig. 3.12 (h)).  Figs. 3.13 (a) and (b) are the 

3-D and 2-D views of the bifurcation structure for the whole modulated branch.  
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Fig. 3.12: Bifurcation of the isolated branch with *0.98µ µ= and *f f= : (a) 0.1040∆ = , 
(b) 0.1050∆ = , (c) 0.1120∆ = , (d) 0.1135∆ = , (e) 0.1140∆ = , (f) 0.1150∆ = , 
(g) 0.1180∆ = , (h) 0.1230∆ = , (i) 0.1400∆ = , (j) 0.1460∆ = , (k) 0.1475∆ = , 
(l) 0.1530∆ = ,  (m) 0.1575∆ = , and (n) 0.1580∆ = .  
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Fig. 3.12 (Continued) 
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Fig. 3.12 (Continued) 
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Fig. 3.12 (Continued) 
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Fig. 3.13: The bifurcation structure of the isolated branch: (a) 3-D view of the structure, 
and (b) 2-D 2q∆ − view of the structure for the case with *0.980µ µ= and *f f= . 
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As the damping is further reduced to *0.96µ µ=  (Fig. 3.2(h)), the Hopf branch 

becomes more discontinuous no matter how small the detuning increment is used for the 

scanning (Fig. 3.2 (h)). Fig. 3.14 (a) – (h) are representative phase plots of trajectories at 

this level of damping level. We see period-doubling bifurcations of the Hopf branch and 

the isolated branch, the coexistence of solutions of two branches (Figs. 3.14(b) and (c)), 

and the transition of solutions from one branch to the other one (Fig. 3.14 (e)). The most 

distinctive feature of responses at this level of damping is that the Lorenz type attractors 

abruptly disappear over a frequency interval and the only stable solution found in this 

interval is the lower planar fixed point solution. This can be explained by the boundary 

crisis or the hetero-clinic bifurcation in which the chaotic attractor becomes tangent to 

and then intersects with the stable manifold of the saddle-type unstable planar solution 

existing between the two turning points on the planar solution branch. Figs. 3.14(g) and 

(h) are trajectories showing the boundary crisis of the isolated branch for two different 

detuning values. 
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Fig. 3.14: Bifurcation and crisis of the isolated branch with *0.96µ µ=  and *f f= : 
(a) 0.089∆ = , (b) 0.102∆ = , Hopf branch, (c) 0.102∆ = , isolated branch, (d) 0.1025∆ = , 
(e) 0.1055∆ = , (f) 0.1140∆ = , and (g) 0.1190∆ =  and (h) 0.1525∆ = , chaotic attractors 
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of the isolated branch destroyed by the boundary crisis (transient chaos). Solid dots: 
stable planar solutions; ∇ : unstable planar solutions; circle: limit-cycle solutions. 
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Fig. 3.14 (Continued) 
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Fig. 3.14 (Continued) 
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Fig. 3.14 (Continued) 
 
 

Decreasing the damping further to *0.85µ µ= , Fig. 3.2(i) shows that the 

modulation branch of the frequency response curve becomes even more discrete. The 

zoomed plots of frequency response curves around the area of the first Hopf bifurcation 

(Figs. 3.3 (b) and (c)) show that the two intervals ( )3 4,∆ ∆  and ( )*
1 3,∆ ∆  have different 

responses. The responses to excitations in the interval ( )3 4,∆ ∆ are unstable non-planar 

vibrations. The responses to excitations in the interval ( )*
1 3,∆ ∆ (a quite small interval) are 

stable non-planar vibrations. Consequently, there is a small interval ( )*
1 3,∆ ∆ in which 

there are two stable non-planar responses. Fig. 3.2 (j) shows the frequency response 

curves for the case with *0.80µ µ= and *f f= . Figs. 3.15(a) – (j) show representative 

trajectories of the modulated branch. The trajectory of the Hopf branch becomes distorted 

and, surprisingly, we obtain a chaotic attractor (Fig. 3.15(c)) following the period-

doubled solutions (Fig. 3.15 (a, b)), which was not reported by Johnson and Bajaj (1989) 

and Bajaj and Johnson (1992). The chaotic attractor is transformed into a distinct limit 
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cycle attractor as the detuning increases further (Fig. 3.15(d)). This limit cycle has a new 

geometry and undergoes period doubling bifurcation and results into chaotic attractors 

(Fig. 3.15(i)), showing a transition to the isolated branch. For further larger excitation 

frequencies, the bifurcation has the same property as those of previous cases. 
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Fig. 3.15: Bifurcation and Crisis of the isolated branch for the case with *0.80µ µ=  
and *f f= : (a) 0.092∆ = ; (b) 0.0925∆ = , (c) 0.0950∆ = , (d) 0.0970∆ = , (e) 0.0980∆ = , 
(f) 0.0985∆ = , (g) 0.0995∆ = , (h) 0.1010∆ = , (i) 0.1020∆ = , and (j) 0.1040∆ = . 
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Fig. 3.15 (Continued) 
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Fig. 3.15 (Continued) 
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Fig. 3.15 (Continued) 
 

 

3.4.2 Characteristics of the Responses and the Hysteresis 

Here we summarize the characteristics of dynamic responses of strings by 

considering a typical case. The responses with *=0.85µ µ and *f f= (see Figs. 3.2(i)) 

have all types of solutions we discussed. Sweeping the frequency monotonically, 

increasingly or decreasingly, we have the following observations: 

As shown in Fig. 3.2(i), when the excitation frequency Ω is far below the natural 

frequency (i.e., 0∆ = ) or the pitchfork bifurcation point (i.e., 1 0∆ = ∆ > ), the amplitude 
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of the planar response exhibits a steady increase with the driving frequency. 

For 1 4∆ < ∆ < ∆ , the increase rate of the in-plane amplitude with Ω  is lower than that 

for 1∆ < ∆ . The amplitude of out-of-plane vibration (perpendicular to the plane of the 

driving force), however, has a sharp rise as the driving frequency increases. Depending 

on the damping and excitation, the amplitude of out-of-plane response may reach a 

maximum value which is less than but pretty close to the in-plane vibration amplitude 

at 4∆ = ∆ . The vibration around 4∆ = ∆  for this part is whirling (or tubular or ballooning) 

and can be easily observed in experiments. The beginning frequency of the modulated 

motions, *
1∆ , may be either equal to or less than 4∆ , depending on the damping value. 

When the damping is small, *
1 4∆ < ∆ and there are multiple non-planar solutions. One is 

stable and periodic and the other is modulated, and there is an unstable non-planar branch 

connecting *
1∆ and 4∆ . Lower damping divides the frequency range between *

1∆ and 

4∆ into two intervals having different responses. The first one is a non-planar unstable 

branch ( )3 4,∆ ∆  and the following one ( )*
3 1,∆ ∆ , usually a pretty small interval, is a non-

planar stable one. 3∆  is a local minimum detuning for the sectional Z-shape in-plane 

curve. Figs. 3.3 (b) and (c) are the zoomed plots of the planar and non-planar response 

curves, respectively. For the interval of modulated motions, the response increases as the 

detuning increases. The detuning *
2∆  ends the modulated branch, and the modulated 

solution gains stability and becomes periodic. The reverse pitchfork bifurcation happens 

at 5∆ , where the unstable planar branch and the stable non-planar branch 

(between *
2∆ and 5∆ ) merge. This situation is clearer in the zoomed plot shown in Fig. 3.3 
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(a) for the case with *=1.00µ µ and *f f= . Increasing the excitation frequency 

beyond 5∆ , the response again becomes stable planar vibration. At *
2∆ , there is a collapse 

(jump) of the planar response, and the solution suddenly loses its stability. In other 

words, a small change of the control parameter causes the trajectory to go out of the 

immediate neighborhood. Then stable planar response of small amplitude is left for larger 

detuning.  

2∆

6∆

Increasing 
Sweeping

Decreasing 
Sweeping

 
 

Fig. 3.16: The hysteresis phenomena of the case with                         
*µ µ= and *1.2f f= . 

 

If the excitation frequency is monotonically decreased, the path the response 

follows is much simpler. The amplitude of the response monotonically increases slowly 

along the stable planar branch (the lower one) until the frequency reaches 2∆ , where the 

jump phenomenon happens again following a saddle-node bifurcation. Between the 
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saddle node bifurcation points 2∆ and 6∆ , the bi-stability phenomenon (two stable 

attractors separated or connected by unstable attractors) results in a hysteresis loop as the 

parameter (the frequency detuning∆ in this case) varies. Fig. 3.16 is a frequency response 

curve with *1.2µ µ= and *f f=  (Fig. 3.2(b)), where arrows indicate the change of the 

response when the detuning is increasingly and decreasingly swept. The response is 

simple but enough to show the so called hysteresis phenomenon. Apparently, the 

hysteresis shows the lack of reversibility as the parameter is varied. If the response 

(amplitude) increases when the excitation frequency increases, it is called a hardening 

hysteresis and, reversely, it is a softening type. 

 

3.4.3 The Effect of Excitation 

The excitation amplitude and damping are two similar parameters as far as the 

change of vibration characteristics of the response to the change of parameter is 

considered. There are similar detuning intervals in which similar responses can be 

obtained by varying the forcing or the damping. Let’s consider the case that the damping 

is fixed to be * =0.03411 secµ µ= and other parameters are kept the same as before. 

Varying the forcing amplitude f , we have following observations for the response. For a 

small enough excitation amplitude, the steady-state response is periodic and planar. Fig. 

3.17(a) is the response curve for the case with *0.6f f= . Increasing the forcing 

amplitude, the frequency response curves have the properties shown in Fig. 3.17(b) for 

the case with *0.75f f= . Out-of-plane vibration appears at the forward pitchfork 

bifurcation point 1∆  and it disappears at the reverse pitchfork bifurcation point 5∆ . 
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Increasing the excitation amplitude further, we observe a Hopf bifurcation that results in 

amplitude and phase-modulated motions. For the detuning interval ( )1 5,∆ ∆ , pitchfork, 

Hopf, reverse Hopf and reverse pitchfork bifurcation appear in succession at 1∆ , *
1∆ , 

*
2∆ and 5∆ . Fig. 3.17(c) shows the response with *1.4f f= . It has response similar to the 

case with *=0.85µ µ and *f f= (see Fig. 3.2(i)).  
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Fig. 3.17: The in-plane (a1) and out-of-plane (a2) frequency response curves under 
*µ µ=  and values of different f : (a) *0.6f f= , (b) *0.75f f= , and (c) *1.4f f= . Solid 

line: stable planar solutions; dash-dot-dash line: stable non-planar solutions; dashed line: 
unstable solutions; dots: modulated solutions. 1∆ : the forward pitchfork bifurcation; 5∆ : 
the reverse pitchfork bifurcation point; 2∆ & 6∆  and 3∆ & 4∆ : the tuning points of the 
planar and non-planar solution branches, respectively. *

1∆ and *
2∆ : the forward and reverse 

Hopf bifurcation points, respectively. 
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Fig. 3.17 (Continued) 

 

3.5. Conclusions and Discussions 

Periodic, non-periodic and planar and non-planar responses of strings subjected to 

external periodic excitations were investigated. The stability was determined by the 

eigenvalues of the Jocobian matrix of the modulation equations obtained using the 

method of multiple scales. The rich responses and bifurcations of the modulated branch 

within the detuning interval ( )1 2,∗ ∗∆ ∆ were investigated in detail. In addition to the results 
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obtained by Johnson and Bajaj (1989), Bajaj and Johnson (1992), O’Reilly (1990), 

Timothy (1994), and Timothy et al. (2004), some new phenomena were observed and a 

more detailed study of bifurcations was performed. Next, we summarized all the results 

we obtained as well as those in the literature. 

For a small damping, the modulated branch is continuous and the solution has a 

single modulation period. For a smaller damping, the modulated solution undergoes 

period doubling bifurcation. We draw the bifurcation diagrams in Fig. 3.18 by plotting 

the maximum and minimum values of the modulated amplitudes of in-plane responses. 

Fig. 3.18(a) corresponds to the case with *1.015µ µ= and *f f=  (Fig. 3.2(d)). It is 

shown that as the detuning increases, the modulated vibration undergoes forward period 

doubling and then shrinks back to a single-period attractor after the midpoint of the 

interval. The representative trajectory plots are presented in Fig. 3.6. Fig. 3.19 (a) is the 

qualitative bifurcation diagram of the modulated solution with *1.015µ µ= . 

For a smaller damping *1.010µ µ= , an isolated branch appears due to saddle node 

bifurcation around the midpoint of the modulated branch. For a damping at this level, the 

Hopf branch undergoes period doubling bifurcation while the isolated branch keeps 

periodic. The curves of the maximum and minimum of 1a of the isolated branch are 

smooth, indicating no sudden change of amplitude due to bifurcation or new creation of 

isolated branches. The bifurcation diagram of a representative case is shown in Fig.3.18 

(b) for the case with *1.010µ µ= and *f f= . The bifurcation of the Hopf branch has the 

sequence ( )1-2-4-8-4-2-4-2-1HP , whose phase plane plots are presented in Fig. 3.8. The 

qualitative bifurcation diagram is presented in Fig. 3.19(b). 
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Fig.3.18(c) shows the bifurcation by plotting the maximum and minimum in-

plane amplitude for both the Hopf branch and the isolated branch for the case 

with *1.00µ µ= and *f f= . In this case, the stable part of the isolated branch undergoes a 

cascade of period doubling which leads to the Rossler type attractor, i.e., trajectories 

encircle only one unstable non-planar fixed point. The Hopf branch undergoes period 

doubling bifurcation with the sequence ( )1-2-4-8-4-2-1-2-4-2-1HP for the whole 

modulated branch. We did not present the phase plot for this case because the trajectories 

are almost the same as those of previous cases except there is one 1HP solution. 

Examining the bifurcation diagram in Fig. 3.18(c), we see that the bifurcation is not 

symmetric, because the period doubling bifurcation in the second half interval does not 

bifurcate into 8HP as in the first half. Moreover, we see that the bifurcation shrinks back 

to the 1HP instead of the 2HP solution. The nonlinear curve of the isolated branch shown 

in Fig. 3.18(c) tells us there is period doubling bifurcation happened. The phase plots of 

the bifurcation are presented in Fig. 3. 11. We see there are more than one Rossler type 

chaotic attractors and there are periodic limit cycles between them. Johnson and Bajaj 

(1989) and Bajaj, and Johnson (1992) stated that these are newly created isolated 

branches whose unstable part are merged with the stable part of previous one by saddle 

node bifurcation, exactly the same mechanism by which the first isolated branch is 

created and merged with the Hopf branch. Moreover, they stated that the newly created 

branch seems to have a stabilizing effect on the previous branch. For example, the second 

isolated branch forces the Rossler type chaotic attractor arising from the first isolated 

branch to reversely bifurcate back to the periodic solution. Consequently, new attractors 

are created and they merge with previous ones, followed by reverse scenes in the 
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modulation branch. The stabilizing or constraint effect basically is due to the attraction of 

oscillators of the isolated branches. Being stabilized, reverse bifurcation or even 

disconnection of a branch is along with the increase of the attraction. Fig. 3.19(c) 

presents the qualitative bifurcation diagram of this situation. 

For a smaller damping *0.98µ µ= , the Hopf branch becomes discontinuous. 

There is no stable limit cycle of Hopf type in the disconnected frequency range. 

Integrations for all detuning value in this interval lead to stable limit cycles of the isolated 

branch. So, for the frequency interval where the Hopf branch is discontinuous, there are 

two attractors. One is the limit cycle of the isolated branch and the other is the lower 

planar one. The representative bifurcation diagram is presented in Fig. 3.18(d) for the 

case with *0.98µ µ= and *f f= , corresponding to the phase plane plots shown in Fig. 3. 

12. There is a corresponding unstable part of the isolated branch which will merge with 

the stable Hopf branch when it becomes disconnected, creating a saddle node bifurcation. 

Fig. 3.19(d) presents the qualitative bifurcation diagram describing these situations. 

For a even smaller damping *0.96µ µ= , as the detuning increases, a cascade of 

attractors of isolated branches appears via saddle-node bifurcation. The unstable part 

merges with the stable part of previous isolated branch in exactly the same manner as the 

first isolated branch is created and the unstable isolated branch is merged with the stable 

Hopf branch. This sequence ends with the creation of a homoclinic orbit, a trajectory that 

asymptotically approaches a saddle type fixed points as t →+∞ and t →−∞ . And the 

fixed point has eigen-values which satisfy Shilnikov’s inequality. Lorenz type chaotic 

attractors are found in the neighborhood of this homoclinic orbit. Then the isolated 

branch will disappear following the Lorenz type attractor being destroyed by the so called 
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boundary crisis, the sudden disappearance of the attractor. For the decreasing sweeping of 

detuning, there is another boundary crisis for detuning at the second half of the interval. 

For the detuning values between the two frequency ranges where the boundary crisis 

happens, there is only one stable solution, the lower planar solution. Fig. 3.18(e) shows 

the bifurcation for the case with *0.96µ µ= and *f f=  and Fig. 3.14 shows the 

corresponding phase plane plots. No limit cycle solutions are obtained by numerical 

integration for detuning between the two boundary crises. Fig. 3.19(e) presents the 

qualitative bifurcation diagram of this situation. 

Our numerical investigation for further smaller damping values, making the 

system close to a Hamiltonian one, shows similar bifurcation structures. However, for a 

small enough damping, the Hopf branch does bifurcate into chaotic attractors before it is 

merged with the isolated branch, and the trajectories are highly twisted, as shown in Fig. 

3.15 for the case with *0.80µ µ= and *f f= .  
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Fig. 3.18: The bifurcation diagrams of the modulated solutions:  (a) 
*1.015µ µ= and *f f= , only the Hopf branch exists (solid line); (b) 
*1.010µ µ= and *f f= , the appearance of the isolated branch (dashed line) ; 

(c) *1.00µ µ= and *f f= ; (d) *0.98µ µ= and *f f= ; and (e) *0.96µ µ= and *f f= , the 
appearance of boundary crisis. Circled points correspond to detunings ∆  where period 
doubling bifurcations of the Hopf branch happen.  The bifurcations of the isolated branch 
are not clear. 
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Fig. 3.19: Qualitative bifurcation diagrams of the modulated solutions: (a) 

*1.015µ µ= and *f f= ; (b) *1.010µ µ= and *f f=  the appearance of the isolated 
branch; (c) *1.00µ µ= and *f f= ; (d) *0.98µ µ= and *f f= ; and (e) 

*0.96µ µ= and *f f= , the appearance of boundary crisis.  
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CHAPTER 4 

EXPERIMENTAL DYNAMIC CHARACTERISTICS OF 

STRINGS 

 

 

In this chapter we describe in detail the usage of a 3D motion analysis system to 

characterize nonlinear dynamics of strings. We begin with a detailed description of the 

experimental set-up and the data acquisition devices. Then the experimental procedure is 

presented and discussed. At the end, frequency responses curves are obtained for the 

vibrations of three strings which have different but small sag-to-span ratios. The string 

with richer responses are carefully studied by focusing on the modal analysis of various 

typical responses.  

 
4.1 The 3D Motion Analysis System 

The lightweight nature of highly flexible structures (HFSs) precludes the 

attachment of measurement sensors (e.g., accelerometers) to the structures because as the 

mass of sensors may significantly influence the static and dynamic structural properties. 

So, a non-contacting vibration measurement device is needed for experimental 

investigation of mechanics of HFSs. Fig. 4.1(a) shows a typical set-up of an Eagle-500 

digital real-time motion analysis system for non-contact measurement of large static 

and/or dynamic deformations of HFSs. This system uses several (6 in our study) high-
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resolution CMOS (complementary metal-oxide-semiconductor) cameras to capture 

images of a structure when the visible red LED  

 

(b) 

 
 

(a) (c) 

Fig. 4.1: EAGLE-500 digital real-time motion analysis system: (a) typical set-up of a 
the system, (b) an Eagle digital camera, and (c) the Eagle hub. 

 

strobes light up the retro-reflective markers stuck on the structure. Using triangulation 

techniques and the known focal lengths (after calibrations using an L-frame with four 

markers and a T-wand with three markers) of the cameras and the known coordinates of 

the bright points (caused by the retro-reflective markers) on the 2D images inside the 

cameras, the Eagle real-time software EVaRT 4.1 automatically computes and records 

the instant 3D coordinates of the center of each retro-reflective marker that is seen by at 

least two cameras. Hence, 3D time traces of all markers are available for performing 

dynamic animation using stick figures and showing pop-up figures of displacements, 

velocities and accelerations, and they can be output to other programs for signal 

processing. The recording time length is effectively infinite and up to 600 markers can be 
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simultaneously traced because of the use of a large computer memory and a 100Mbit data 

upload rate. Because the 3D coordinates of each marker are checked and calibrated when 

more than two cameras see the marker, the measurement accuracy is pretty high. For 

example, the measurement error is far less than 1.0mm when the measurement volume is 

.222 3m××  The system's measurement power, ease of operation, simply to set up, and 

extreme accuracy have made the system a new standard for motion capture. 

 
4.1.1 Eagle Digital Camera 

The Eagle digital camera shown in Fig. 4.1(b) has a resolution of 1.3 million 

pixels. It runs with the1280 1024× full resolution up to 480 frames per second (FPS), with 

a 1280 512× resolution at 1000 FPS, and with a 1280 256× resolution at 2000 FPS. And it 

has a processing rate of 600 million pixels per second. The camera revolutionizes the 

motion capture industry with its extreme resolution, unprecedented high frame rate, 

upgradeable functionality, and ease of use. Signals from an Eagle digital camera go 

directly to the tracking computer via an Ethernet connection. The signal processing is 

embedded in the camera. This streamlined system of motion capture from camera to 

computer means less hardware and less potential for equipment problems. The FPGA 

(Field Programmable Gate Array) built into the Eagle is software and firmware 

upgradeable via the internet. The features of Eagle cameras are listed below: 

• 1-2000 Hz selectable frame rates  

• Built-in zoom provides more visual options for ease of set-up  

• High quality 35mm lenses for low optical distortion  

• Separate zoom, iris and focus settings independent of ring light  
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• Available with visible red, near red, or infrared ring lights  

• LED display panel for camera identification and status  

• 237 LED's for brighter and better light uniformity  

• Strobe ringlight with camera body heat sink  

Camera placement is the most important aspect of setting up the motion capture 

volume. If properly done, good camera placement will be rewarded with highly accurate 

results and greatly reduced editing time. There are several factors to be considered when 

deciding the number of cameras to be used. 

1)  There should be sufficient number of cameras to insure that, at all times, all 

markers will be visible by at least two cameras, and preferably the more the 

better. In general, the number of cameras must be increased when the motion of 

the subject becomes less restrained and the capture volume increases 

2)  As more cameras are used, each camera should view only a portion of the capture 

volume to achieve higher accuracy, and care should be taken to prevent too many 

cameras seeing a marker. The only requirement is that all 4 markers on the 

calibration square should be visible to at least ½ of the cameras used. It is noted 

that, when more than 5 or 6 cameras see the same marker, the accuracy of 

tracking is not increased but the computation time increases. 

3)  Camera views should not include areas outside the capture volume to ensure the 

highest possible spatial resolution. 

The motion analysis system uses a dynamic linearization technique that is 

currently available and capable of producing precise and accurate calibration. First, an L-
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frame with four markers is used for defining the XYZ axes. A 500mm wand (for large 

capture volumes) or a 150mm wand (for small capture volumes) is then used for 

establishing camera linearization parameters.  

4.1.2 Eagle Hub 

The Eagle hub shown in Fig. 4.1(c) consists of multi-port Ethernet switch (100 

Mbps) and provides power for the cameras. A single Ethernet Cat 5 cable is used for all 

signals and power between a camera and the Eagle hub. 

4.1.3 EVaRT 

The EVa real-time software (EVaRT) provides the user with a simple and 

powerful interface. Under a single software environment the user can set up, calibrate, 

capture motion in real-time, capture motion for post processing, and edit and save data in 

a chosen format. 

 

4.1.4 Triangulation Measurement 

The principle of triangulation measurement using two cameras is based on photo-

grammetry, as shown in Fig, 4.2. Here ( ), ,x y z are the coordinates of the measurement 

point with respect to the xyz coordinate system defined by the four markers on the L-

frame, ( ), ,c c cx y z are the coordinates of the lens center, ( ), ,ξ η ζ are the coordinates of 

the measurement point with respect to the ξηζ coordinate system defined by the sensor 

plane (i.e., the ηζ plane) and the optical axis (i.e., the ξ axis), f is the focus length of the 
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camera, and v and w are the image plane coordinates of the measurement point image on 

the image plane inside the camera. Here v and w represent corrected image plane  

 

Fig. 4.2 Triangulation measurement using two cameras 

coordinates obtained by using, for example, the following distortion model to correct 

perspective and optical distortion: 

( )
( )

2 4 6 2 2
1 2 3 1 2

2 4 6 2 2
1 2 3 1 1

2 2

2 2

2 2

v vr K vr K vr K r v P vwP

w wr K wr K wr K r w P vwP

r v w

∆ = + + + + +

∆ = + + + + +

≡ +

                       (4.1.1) 

where the point of symmetry for distortion has already been subtracted from v and w . If 

the image plane is perpendicular to the optical axis, the point of symmetry and the photo-

grammetric principle point coincide. iK and jP are camera parameters necessary for 

conversion from pixels to the corrected image plane coordinates (i.e., v and w ), and they 

need to be determined by performing a calibration test. Typically, the third-order radial 

distortion 1K is the dominant term. In addition, the asymmetrical terms 1P and 2P are small 

and projectively coupled to the point of symmetry and external orientation of the camera. 
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We let xi , yi and zi denote the unit vectors of the xyz coordinate system and 

1i , 2i and 3i denote the unit vectors of the ξηζ coordinate system. Then the two coordinate 

system are related by a transformation matrix [ ]T as 

[ ]
1

2

3

i i
i i
i i

x

y

z

T
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

, [ ]
c

c

c

x x
T y y

z z

ξ
η
ζ

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭

                                       (4.1.2) 

If the pointing direction of the optical axis ξ is determined by three consecutive Euler 

angles α ,β and γ with respect to the axes x , y and z respectively, we have 

[ ]
cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin
0 0 1 sin 0 cos 0 sin cos

cos cos cos sin sin sin cos
cos sin cos cos sin sin sin

sin sin cos

sin sin cos sin cos
sin

T
γ γ β β
γ γ α α

β β α α

β γ α γ α β γ
β γ α γ α β γ
β α β

α γ α β γ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+⎡
⎢= − −⎢
⎢ −⎣

−
cos cos sin sin

cos cos
α γ α β γ

α β

⎤
⎥+ ⎥
⎥⎦

              (4.1.3) 

The pointing direction of the optical axis ξ can also be determined by two Euler angles 

α and φ  (Nayfeh and Pai, 2004). 

From the similarity of two triangles and (4.1.2) we obtain the following 

collinearity equations: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

21 22 23

11 12 13

31 32 33

11 12 13

c c c

c c c

c c c

c c c

T x x T y y T z z
v f f

T x x T y y T z z

T x x T y y T z z
w f f

T x x T y y T z z

η
ξ

ζ
ξ

− + − + −
= =

− + − + −

− + − + −
= =

− + − + −

                        (4.1.4) 

To determine the eight (or seven) unknowns 
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( )
11 12 13, , , , , , ,

, , , , , ,
c c c

c c c

f x y z T T T
f x y z

φ

α β γ
                                                    (4.1.5) 

of each camera before the motion analysis system can be used for actual measurements 

one needs to perform measurements using the L-frame with four markers having known 

coordinates: 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

Marker #0: , , 0,0,0

Marker #1: , , ,0,0

Marker #2: , , ,0,0

Marker #3: , , 0, ,0

x y z

x y z x

x y z x

x y z y

=

=

=

=

      (4.1.6) 

Substituting (4.1.6) and the measured image plane coordinates iv and iw ( )0,1, 2,3i = of 

the four markers into (4.1.4) yields eight nonlinear algebraic equations that can be solved 

for the eight unknowns of each camera by iteration. 

After the calibration procedure, the eight parameters of each camera are known. 

To determine the 3D coordinates of an arbitrary marker seen by two cameras one can 

substitute the eight camera parameters of each camera and the image plane coordinates 

v and w measured by each of the two cameras into (4.1.4) to obtain four linear algebraic 

equations in the three unknowns x , y and z . One can perform the pseudo inverse of the 

4 3× constant matrix to obtain the three unknowns, which is equivalent to the linear least-

squares curve-fitting processing. 

The Eagle digital system provides simultaneous viewing of up to four different 

panels, including 3D display of different views and angles, 2D display of digital 

grayscale and threshold images, color video display (avi), XYZ graphs, and analog 

graphs. 
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4.1.5 Experimental Setup 

Fig. 4.3: The experimental setup. 

Figure 4.3 shows the experimental setup for measuring vibration of a string 

subjected to harmonic base excitations provided by a shaker.  Due to the small mass of 

the string, it can be mounted either horizontally to avoid the effect of gravity on the 

tension or vertically to avoid the effect of gravity on the initial curvature. The string was 

clamped using set-screws to the two rigid supports A and B which were horizontally apart 

by 1.475m  and were mounted on heavy weights to ensure mechanical isolation. The 

shaker head was attached to the string at 0.05x m=  from the left support. Forty-eight 

4 15mm mm×  rectangle retro-reflective markers were adhered by winding to the string 

and were distributed equally between the shaker and the other fixed support. Markers #1 

and #48 were put close to the end points. The motion analysis system shown in Fig. 4.1 

makes it possible to record the dynamic response of the whole string instead of just 

measuring one point using the experiment set-ups used by Nayfeh, Nayfeh, and 

Mook(1995), O’Reilly (1990), and Molteno et al. (2004).  

In our experiments, only six Eagle cameras were used and placed at different 

locations, approximately symmetric with respect to the string with three on each side.  

Rigid Support A Rigid Support B 

Shaker 

0.05m 1.425m 

Marker#48 Marker#1 

48 Markers

x 

z
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The location of camera were determined to make sure that the cameras had good view 

angles and at least 2 cameras could see all the 48 markers on the vibrating string all the 

time. The capture volume was set to be 31.5 1.5 1.5m× × . Then the calibration of the 

system was done using an L-frame and then a T-wand to define the coordinate 

system XYZ . 

The string was excited using a Ling Dynamics LDS V408 shaker, which had a 

maximum output force of 196 N and a frequency range of 5 to 9000 Hz, to supply the 

oscillatory boundary condition at one of the two ends. The shaker-head motion was 

monitored by means of an accelerometer mounted to the shaker head. The axis of the 

shaker was vertical and perpendicular to the line connecting the two end markers of the 

string so that the string was only transversely excited. The excitation was controlled by 

using a PCB J35CB03 shear ICP accelerometer attached to the head of the shaker for 

feed back. The accelerometer fed back the base motion to a DSC4-CE shaker controller 

that modified the AC voltage accordingly to keep the base motion harmonic. The EVaRT 

software in the computer system controlled the entire measuring system. It tracked and 

identified the markers, and provided the XYZ coordinates of all the markers at 

consecutive instants of time. The data were exported in the ASCII format and then were 

processed using our post process codes written in MATLAB. 

 

4.2 Experimental Procedure 

We performed temporal and spatial-domain data acquisitions of the vibrating 

string excited at a chosen frequency for each test. The coordinates of all the 48  markers 

on the string were recorded. Because the nonlinear vibration may depend on initial 
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conditions, the tests were carried out by continuously varying, either increasing and then 

decreasing, or decreasing and then increasing the excitation parameter (either the 

excitation frequency or the amplitude) through the desired range of the parameter. After 

the data were collected by continuously increasing the parameter value, a second set of 

data were collected by continuously decreasing the parameter value. However, such kind 

of sweeping tests may mistake nonlinear transient vibration as a steady-state one, and 

only one type of vibration for each parameter value can be obtained. In our experiments, 

we stopped each test before changing the parameter (frequency or amplitude) for the next 

test. Each test started with zero initial conditions, and hence the tests were direction 

independent of the changing direction of the parameter. After one steady state was 

recorded, we disturbed the vibration and then obtained other possible steady state 

solutions. By this way we simulated vibrations starting with different initial conditions 

and hopefully would not miss possible multiple solutions.  

First of all, we did tests by varying the excitation frequency while the excitation 

amplitude was held constant. For every parameter change, either increasing or 

decreasing, it was necessary to make sure the transient motion died out and so the steady-

state was reached before the response was captured. In general, a steady state was 

attained in one to two minutes after the excitation reached the specified amplitude. 

Normally, it takes more time for the response to reach a steady state for tests with 

parameters around where multiple solutions exist. For example, it took more time to 

reach a steady state around where the planar response branch and the non-planar branch 

were connected. Theoretically, the step size of increase or decrease of the parameter 

depends on the closeness of the excitation frequency to the bifurcation frequencies. When 
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it is close to the resonant frequency, the increase step needs to be small because various 

nonlinear phenomena exist in a small frequency range. In our experiments, we increased 

the excitation frequency by1 Hz or more when the frequency was far from the resonant 

frequency and 0.5Hz or even smaller when it was close to the resonant frequency in order 

to observe possible important phenomena like period-doubling, quasi-periodic, and 

chaotic motions. Actually, appropriate increase or decrease of the step size practically 

depends on experience. Usually, a rough first screening will give us information about an 

appropriate step size. The total number of excitation frequency increments and the 

number of excitation amplitude increments depend on the frequency range we want to 

investigate and also the capacity of our experimental apparatus. 

 

4.3 Experimental Parameters 

Our experiments were performed on a 1.425m (effective length) steel wire whose 

diameter is ( )0.4572 0.018mm in . The string was stretched with a pretensionT , which was 

provided by attaching weights to the string through a pulley before the string is fixed. 

Due to friction, the true tension in the string was smaller than that was provided by the 

weights. Although not accurate, it should be around the value with a deviation less 

than1lb as observed. The tension needs to be low to ensure that no yielding occurs in the 

string but needs to be high enough so that the small bending stiffness will not affect the 

vibration much. Also, the maximum vibratory strain, which can be determined by the 

maximum vibrating amplitude, in the string can not be too large to be out of the linearly 

elastic range of the material. As steel wires were used and only low-frequency vibrations 
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were tested in our experiments, we did not have above problems. For steel strings, the 

longitudinal wave speed uc  is much higher than the transverse ones vc and wc . This was 

assumed in the theoretical analysis.  

To reduce the inertia effect of the retro-reflective markers on the string vibration, 

the diameter of the markers is necessary to be as small as possible but visible to the 

cameras. A smaller marker diameter results in more accurate experimental results. Large 

markers cause image distortion and reduce the accuracy of the measured center locations 

(i.e., the measured or recorded center position of each marker by averaging different 

views from cameras). In our experiments, the diameter of the markers is about1.5mm . 

As far as the dynamic parameters are concerned, first of all, the natural 

frequencies need to be determined in order to have a general idea about the dynamics of 

the string. The theoretical method of using the material stiffness, mass density and cross-

sectional geometry of string to determine the natural frequencies is easy but can be used 

for reference only because of the inaccuracy caused nonlinearities and uncertain 

pretension force. Experimental approaches were preferred. There are different methods to 

determine the natural frequencies, including swept-sine or stepped-sine testing, white 

noise and chirp signal excitation, etc. Using different techniques to check the results from 

different method makes the obtained system parameter values more reliable. In the swept 

sine method, the forcing amplitude is fixed and the forcing frequency is varied slowly but 

continuously through the range of interest – a narrow band around the interest natural 

frequency. The sweeping needs to be sufficiently slow to ensure a steady state is attained. 

An excessive sweep rate leads to distortion of the frequency response curve. More 

accurate results can be obtained by doing the measurement twice, sweeping down and up, 
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and trying to make these two results close. Then, the swept-sine spectral analysis can be 

applied to get the frequency response curve. We were not able to do swept sine tests 

because of the incapability of our experimental device. Different from the swept-sine 

method, stepped-sine testing does tests at discrete frequencies. In addition to that the 

density of points needs to be appropriate. It is necessary to ensure that steady-sate 

conditions have been attained before the measurements are made. In the low-amplitude 

white noise (random noise) method, the input to the system is broad band noise and the 

output is the measured (vertical) displacement. The process needs to repeat several times 

and an average frequency response function is obtained from the FFT analysis. Note that 

swept-sine testing, stepped-sine testing, and white noise method are intended for linear 

systems with natural frequencies independent of the input forcing frequencies and 

amplitudes. So, a small input level should be kept during this process so that the response 

remains in an essentially linear regime. Using a chirp signal, the frequency contents can 

be precisely chosen between the starting and finishing frequencies of the fast sine sweep. 

The frequency resolution is determined by the number of FFT lines and the sweep range. 

Usually, the spatially (all different positions) averaged frequency response function is 

used to identify natural frequencies and mode shapes.  

The fundamental frequency of transverse vibration can be determined by FFT 

analysis of the decaying free oscillation of the string disturbed by a small initial 

transverse displacement. We plucked the string at the middle point and hence the initial 

shape of the string was a triangle consisting of many harmonics. As the high frequency 

harmonics died out quickly and only the primary harmonic was left for a longer time, the 

fundamental frequency was obtained by analyzing the later part of the time domain data. 
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Due to the initial curvature, possible uneven gravity distribution, unrealistic pluck by a 

finger and other reasons, the string was observed to undergo non-planar vibration. In our 

experiments, we plucked the string many times until an approximately pure planar 

vibration was obtained and captured. The recorded data we used for the determination of 

the primary frequency and damping ratio is shown in Fig.4.4. We see the decay of the 

vibration is smooth and the vibration is mostly planar. After the fundamental frequency is 

obtained, other natural frequencies can be roughly deduced by using the linear string 

vibration theory, the tension force, and the mass density. 
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Fig. 4.4: The experimental data used for damping calculation. 

The longitudinal wave speed can be determined by detecting the longitudinal 

motions of the markers. As suggested by Nayfeh, Nayfeh, and Mook (1995), a piece of 

tape can be attached to the string so that the longitudinal motion can be determined. 

However, the longitudinal wave speed of the steel wires, 4000 ~ 6000m s , is very high 

and beyond the measurement capability of the motion analysis system. By assuming two 

frames to be captured when the elastic wave starts at one end and arrives at the other end, 

the maximum wave velocity that can be measured by the motion analysis system, uc , is 
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( )/ 1 2000sec 1.425 2000uc L m s= = ×   

which is lower than the wave speed of the steel wires. Here L is the length of the string. 

Hence this approach is just theoretically possible but practically impossible for our 

studies. On the other hand, the pulse-echo technique is a simple, quick, and accurate 

method for measuring the speed of waves in solids. It sends an electric or ultrasonic pulse 

produced by instant connection of a circuit or ultrasound transducer and receives the echo 

of the wave pulse. The longitudinal wave speed then can be calculated as: 

2
u

Lc
t

=
∆

 

where 2L is the wave traveling distance and t∆ is the time from sending to receiving the 

pulse wave.  

The damping ratio ζ  was determined using the logarithmic decrement method 

(Meirovitch, 1986). The logarithmic decrement ijδ  between the ith and jth peaks of the 

time trance (e.g., Fig. 4.4) is given by 

1 ln i
ij

j

x
j i x

δ =
−

 

Several ijδ  with different values of j i− need to be calculated and an averaged 

logarithmic decrement δ  is adopted, and then the damping ratioζ  is determined as 

( )2 2 22

δ δζ
ππ δ

= ≈
+

 

The system parameters identified using above methods for our experiments are 

listed in following table: 
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Table 4.1 Parameters of the Steel Wire 

Parameter Symbol Measured/calculated Values 

Damping ratio ζ (assuming v wζ ζ ζ= = ) 0.005~0.01 

Length L  1.474 m 

Diameter d  0.4572 mm 

The 1st natural frequency 1ω  
17.5 ,25 ,17.5Hz Hz Hz  for 

the 1st, 2nd, and 3rd cases 

Tension force 0T  2 lbf≈  

Young’s modulus E  9 2200 10 /N mm×  

Mass per unit length m  0.0013 /kg m 

 

4.4 Frequency Response 

The excitation amplitude of the shaker was fixed to be 1mm  for frequency 

sweeping. The in-plane and out-of-plane response amplitudes of each marker were the 

lengths of the major and minor axes of the elliptic trajectories obtained by curve fitting. 

The frequency response curve for a marker was obtained by plotting the excitation 

frequency with respect to the response amplitude of the chosen marker. Although the 

response curves of different markers are different due to their different positions, they 

show the same dynamic characteristics of the string. The frequency response curve of 

each marker should show the same hysterestic phenomena if it exists. The frequency 

response spectrum of each marker’s time trace was obtained by FFT analysis. 
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We did experiment for the string with three different sag-to-span ratios. The sag-

to-span ratios were small, and hence the wire behaved more like strings. The lower and 

upper limits of the excitation frequency range are limited by the experimental system. 

Lower or higher excitation frequencies made the system out of control when a closed 

loop excitation was used. This was due to the influences of large variation of the tension 

force on the shaker during the vibration. The first string had a sag-to-span ratio of1/ 801 

and its static equilibrium configuration is shown in Fig 4.5 (a). For this case, we only 

examined the responses to harmonic excitations around the first natural frequency and the 

scanning range was from 12Hz to 35Hz only. The in-plane and out-of-plane frequency 

response curves of marker 25 are shown in Figs 4.5(b) and (c), respectively. The second 

string is tightly tensioned and the sag-to-span ratio was less than1 1000 . Fig. 4.6(a) 

shows its static equilibrium configuration. The frequency range was from 

15Hz to53.5Hz . The in-plane and out-of-plane frequency response curves of marker 25 

are shown in Fig. 4.6(b) and (c), respectively. The third string had a sag-to-span ratio 

of1/ 756 , and was considered as a string because its elasto-geometric parameter showen 

later in Chapter 5 was determined to be 0.2171 , which is much less than 2 . Hence it 

behaved more like a string than a cable although it had small sag. The frequency range 

was from 15Hz to 53.5Hz also. The static equilibrium configuration is shown in Fig. 

4.7(a). The in-plane and out-of-plane frequency responses of marker 9 are shown in Figs. 

4.7(b) and (c), respectively. Marker 9 was chosen because, at this location, the third-

mode vibration had a peak value. It was practically impossible for the out-of-plane 

response to be completely zero even under planar vibration because the markers had non-

zero sizes. Consequently, solid dots corresponding to small amplitudes in the plots often 
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appear in the out-of-plane response curves. Figs. 4.6(b) and (c) reveal that the second 

string had a tension force larger than that of the first and third string (i.e., 0 2T lbf≈ ) 

because the first natural frequency of the second string was about 25 Hz ( >17.5 Hz ) 
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Fig. 4.5: The first string with a sag-to-span ratio of 1 801 : (a) the static equilibrium 
configuration plotted using the curve fitted data and the original data, (b) the in-plane 
frequency response curves, and (c) the out-of-plane frequency response curve of marker 
25. Dots represent out-of-plane response and circles represent in-plane response. 
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Fig. 4.6: The second string with a sag-to-span ratio of 1 1000 : (a) the static equilibrium 
configuration; (b) the in-plane frequency response curves, and (c) the out-of-plane 
frequency response curve of marker 25. Dots represent out-of-plane response and circles 
represent in-plane response. 
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Fig. 4.7: The third string with a sag-to-span ratio of 1 756 : (a) the static equilibrium 
configuration; (b) the in-plane frequency response curves, and (c) the out-of-plane 
frequency response curves of marker 9. Dots represent out-of-plane response and circles 
represent in-plane response. 

 

Because the third string had richer responses, we concentrated our study on this 

string. Based on the major vibration types, we divide the responses into seven branches 

that are marked as B1- B7 in Figs. 4.7 (b) and (c). For convenience of following analysis, 

each continuous response curve is divided into planar branch and non-planar branches. 

The first branch B1 is the one whose response starts from a translation motion (under a 

low-frequency excitation) to a planar vibration of the first mode (under an excitation 

close to the first natural frequency). The second, fourth and sixth branches represent non-

planar vibrations mainly composed of the first, second, and third modes, respectively. 

The third, fifth, and seventh branches represent transitions of a planar vibration from the 

first to the second, the second to the third, and the third to the fourth mode, respectively. 

Based on the number of different types of responses to one excitation frequency, we 

divide the excitation frequency range into five subintervals. The subintervals are marked 

as S1- S5 in Fig. 4.7(b) and (c). We are going to do moda1 analysis of typical types of 
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responses of each branch in Section 4.5. In this section, we concentrate on different types 

of responses of each subinterval. By this way, we investigate the losing and gaining 

stability of one branch of response, the appearance or disappearance of one type of 

response as the excitation frequency changes. 

The first subinterval S1 from 10Hz to17.5Hz is. The B1 (10Hz to14.2Hz ) is a 

stable planar and the B2 (14.5Hz to17.5Hz ) is a stable non-planar vibration of the first 

mode. Starting from18Hz , the second subinterval S2 has two kinds of stable responses. 

The first one is the B2, which is the non-planar first-mode vibration. The response 

amplitude of this branch increases with the excitation frequency. The second one starts 

with a planar vibration consisting of the first and second modes (B3). The amplitude of 

the first mode decreases and that of the second mode increases when the excitation 

frequency increases. This type of vibration belongs to the third branch (B3), which 

represents the transition of vibration from the first mode to the second mode. Starting 

from 28.5Hz , a small amplitude in-plane vibration consisting of the first and second 

modes loses stability, and the vibration becomes a non-planar one mainly consisting of 

the second mode (B4). The second subinterval lasts to32Hz . The third subinterval S3 

starts from 33Hz and lasts to37Hz . These are three different types of response for each 

excitation frequency in this interval. Except the two non-planar solutions (B2 and B4) 

that also exist in the second subinterval, the third one is a planar response (B5) which 

consists of the second and third modes. At the end of this subinterval, the response of 

non-planar vibration composed of the first mode (B2) loses stability and disappears. The 

frequency around which the hysteresis phenomenon 
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Fig 4.8: The typical trajectories of responses of each subinterval. The labels and scales 
for all figures are shown in (a). The excitation frequency Ω (Hz), the major and minor 
axes (mm) 1r and 2r of the fitted ellipse, and the frames per excitation period ( )fpp for 
each case are given in Table 4.2. 
 
Table 4.2: Parameters values for Fig.4.8. 

Fig. ( )HzΩ  ( )1r mm  ( )2r mm fpp  Fig. ( )HzΩ Ω ( )1r mm  ( )2r mm  fpp  

(a) 14.2 0.53 2.84 36 (i) 40 4.74 5.26 14 
(b) 17.5 6.16 7.29 30 (j) 49 6.39 6.81 11 
(c) 28 14.79 15.67 20 (k) 53 7.20 7.45 10 
(d) 32 17.67 18.43 17 (l) 37 0.31 1.16 15 
(e) 37 20.94 21.61 15 (m) 40 0.32 1.54 14 
(f) 28 0.30 2.19 20 (n) 49 2.08 2.54 11 
(g) 32 2.62 3.29 17 (o) 50 2.29 2.61 11 
(h) 37 4.05 4.60 15 (p) 53 0.29 0.93 10 
 

 

happens when the excitation frequency increases is 37Hz . The fourth subinterval S4 

starts from38Hz and has two types of stable responses. From 38Hz to 41Hz , they are the 

planar vibration of B5 and the non-planar vibration of B4. From 42Hz  to 50Hz , the 

planar response that mainly consists of the second and third modes (B5), becomes non-

planar vibration mainly consisting of the third mode (B6). The responses are similar to 

those of the second subinterval except that the contributing modes are different. The last 

available subinterval S5 is from 50Hz to 53Hz . A type of planar response mainly 

consisting of the third and fourth modes is added to the two types of responses of 

subinterval S4. This interval is similar to the third subinterval.  

In general, we can summarize the responses under the increasing frequency 

scanning as follows. Initially, there is no out-of-plan vibration and the motion is strictly 

planar. As the excitation frequency is increased, the planar vibration becomes unstable at 
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excitation corresponding to 1∆ in the theoretical prediction (see Fig. 3.2), which is just a 

little bit above the natural frequency. The in-plane vibration loses stability and the out-of-

plane vibration is not zero any more. As the whirling or ballooning motion appears, the 

trajectory changes from a vertical line to an ellipse as shown in Fig. 4.8. At this 

frequency, the response curve is not second-order continuous because the slope decreases 

(see Fig. 4.5(b)), indicating that the input energy is no more completely fed into the 

planar vibration only. As the frequency is increased further, the major and minor axes of 

the ellipse, representing the amplitudes of in-plane and out-of-plane vibrations, increase 

with the minor axis 2r  growing at a little bit faster rate than the major axis 1r . Just as the 

ellipse is about to become a circle (i.e., 1 2r r= ), the ballooning motion loses stability and 

the hysteresis phenomenon happens. The response to higher frequency excitations 

actually depends on the properties of the string. After the hysteretic frequency, 

corresponding to 6∆ in the theoretical prediction shown in Chapter 3, the only stable 

response would be a planar vibration of small amplitude as presented in the literature. 

However, there are two types of responses in our case, one is a planar vibration (B5) and 

the other is a non-planar one (B4). This is because the natural frequencies of a string with 

a small tension are closely spaced and the damping is small. Thus, the effective frequency 

range of each natural mode becomes wider. These planar and non-planar responses 

persist and the amplitudes increase as the excitation is increased further. 

Although we did not actually decreasingly sweep the frequency, we used different 

disturbances to simulate different initial conditions, by which the responses supposed to 

be obtained by sweeping decreasingly were also captured. The planar response was often 
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obtained by exciting the initially still string, and the non-planar response was obtained by 

giving a disturbance to the planar vibration. Plotting the obtained planar and non-planar 

response amplitudes versus the detuning, one can see the hysteretic phenomenon as 

shown in Figs. 4.7(b) and (c). When Ω decreases the planar vibration mainly consisting 

of two neighboring modes loses stability at theoretically predicted 2∆ and jumps to a 

large-amplitude ballooning motion at a frequency close to the natural frequency as shown 

in Fig. 3.2. For a frequency below 2∆  but larger than 1∆ (where non-planar vibration 

starts), only ballooning vibration mainly consisting of one mode exists. The typical 

trajectories of responses at each subinterval are plotted in Fig. 4.8. Reading vertically, we 

can observe the appearing and disappearing (losing stability) of each branch. Reading 

horizontally, we can see the different responses to excitations within that frequency 

subinterval. We did not observe non-linear vibrations of period-doubled, quasi-periodic, 

torus-doubled, or chaotic type. This is probably due to the large damping of our test 

strings because these phenomena happen only for strings of pretty small damping 

(O’Reilly, 1990). All the responses of the three tested strings were periodic which was 

verified by their frequency spectra.  

 

4.5 Modal Analysis 

Although our experimental string responses were periodic, most vibrations 

consisted of several modes due to linear and nonlinear modal couplings. Depending on 

the closeness of the excitation frequency to the neighboring natural frequencies, the 

contributing modes with natural frequencies close to the excitation frequency carry 

different weights. In our low frequency tests, the vibrations were mainly composed of the 
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first four modes. Hence, to investigate the contributions of the first four linear normal 

modes to the experimental operational deflection shapes at ktt = , we assume 

                                             ∑
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ikikk xtatbtxw φ                           (4.5.1) 

where ( )b t  is the shaker’s z-direction displacements during excitation and ia  denotes the 

modal displacement of the ith linear mode. In our following analysis, 

( )( )1, 2,3, 4iCZ t i = and ( )( )1, 2,3, 4iCY t i =  are used to represent the modal 

displacements for in-plane and out-of-plane responses, respectively. To obtain the value 

of )( ki ta  by least-squares fitting, we define a spatial-domain error function Ex as 
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where ŵ  denote experimental data. ( )1,kt k N= are the recorded time instants and 

N  is chosen to be 92 or 102 for convenience in FFT analysis of the time domain data. 

nm is the number of markers in this study. The equations for determining )( ki ta  are 
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The standard deviation SD of the fitted displacement profile at each time instant can be 

calculated as 

nmExSD /≡                               (4.5.4) 

Moreover, one can check the displacement of the marker at mxx = to see how much its 

curve-fitted displacement ( ),m kw x t from Eq. (4.5.1) matches with its experimental 

one ( )ˆ ,m kw x t , and this can be quantified using the following time-domain error function 
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                                ( ) ( )
21024

1

ˆ, ,m k m k
k

Et w x t w x t
=

= −⎡ ⎤⎣ ⎦∑                                             (4.5.5) 

Considering the linear combination of two modes vibrating at the same frequency 

              
( ) ( ) ( ) ( )2 1

1 1max 1 2 2max 2

( )sin ( )sin sin

,

w x t x t x t

a a

φ φ α α

φ φ φ φ

= Ω + Ω + = Φ Ω +

≡ ≡
              (4.5.6) 

where 

( ) ( ) ( )
( )

12 2 1
2 1 2 1

2 1

sin
2 cos , tan

cos
x

φ α
φ φφ α φ α

φ φ α
−Φ ≡ + + ≡

+
 

If the phase difference α between these two harmonics is 0≠α  or ( )180 π , the phase 

for the combined vibration,α , is a function of x and hence it is called a complex mode. A 

complex mode is one in which each point of the structure has its own amplitude and 

phase. Consequently, each point of the structure will reach its own maximum deflection 

at a different time instant in the vibration cycle. The zero deflection positions will be 

reached at different time instants also.  

Next, we perform typical response studies of each branch. The first branch (B1) in 

Figs. 4.7(b) and (c) is the response to a low-frequency excitation. The vibration under the 

low-frequency excitation was mostly dominated by the movement of the end support 

because the string was vibrating with small amplitude. The vibration could not be well 

measured because the response amplitude and the magnitude of the marker ( )1 ~ 2mm  

were close to the excitation amplitude ( )1mm . Fig. 4.9(a) shows the 52 curve-fitted 

consecutive vibration profiles when the string was excited at10Hz . As expected, the 

frequency spectrum of the vibration of marker 25 around the midpoint of the string is 

complicated because of a lose signal-to-noise ratio and multiple-mode vibration.  
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Fig. 4.9: Response to an excitation at 10HzΩ = : (a) 52 curve-fitted consecutive vibration 
profiles (0.098 sec), and (b) the frequency spectra of marker 25.  
 

For a higher excitation frequency at14.2Hz , we had a better capture of the motion 

because it had larger amplitude, as shown in Fig.4.10 (a). The frequency spectrum of 

marker 25 (Fig. 4.10 (b)) is much clearer with one major harmonic at the excitation 

frequency. Although the string was still not fully excited, complex behaviors of the 

vibration was obvious. Although the largest deformation was around the midpoint of the 

string, close examination shows that profiles at different times have different locations of 

maximum deflections. We see traveling waves (e.g., the dotted one) in Fig. 4.10 (a), 

which are profiles having more than one local maximum. This irregular vibration shape is 

the result of the interference of the incident sine wave started by the excitation with a 

reflected sine wave in a rather non-sequenced and untimely manner. 
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Fig. 4.10: Response to an excitation at 14.2HzΩ = : (a) 37 curve-fitted consecutive 
vibration profiles (0.069 sec), and (b) the corresponding frequency spectra of marker 25.  
 

The B2 branch in Figs. 4.7(b) and (c) is the whirling motion mainly consisting of 

the first mode, and there is no node except the two support ends. As shown in Fig. 4.7, 

the amplitude of vibration increases with the excitation frequency. The curve-fitted 

vibration profiles shown in Fig. 4.11(a) are clearly separated, whcih indicates that the 

string came back to the same position after some time and so it was periodic. Close 

examination of the vibration profiles, we find that there are exactly 16 profiles 

( ( ) ( )560 35FPS Hz= ). This is verified by the trajectory of marker 25 shown in Fig. 

4.11(b), which has 16 discrete dots indicating that the string came back to the same 

position after 16 frames (i.e., one period). Fig. 4.11(c) and (d) show that the periodic 

harmonic vibrations in both planes are exactly at the excitation frequency. Fig. 4.11(a) 

also shows that there are crossovers between the profiles at different time instants. This 

tells us the vibration was composed of more than one mode. The unsymmetrical 

crossovers indicate obvious participation of anti-symmetric modes. The modal 

coordinates and corresponding frequency spectra presented in Figs. 4.11(e) - (h) show the 
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existence of the second mode (first anti-symmetric mode) vibrating at both one time 

( )Ω and two times ( )2Ω  of the excitation frequency for both XY- and XZ- plane 

vibrations. The Ω  component is caused by linear coupling because the forcing function 

has a spatial distribution non-orthogonal all linear modes and the 2Ω  component is due 

to a 1 2: 1: 2ω ω = internal resonance. This phenomenon cannot be explained by a string 

model in which only cubic nonlinearity is considered. It reveals that the complicate 

unexpected situations may happen at real experiments and a more accurate theoretical 

predication asks for a more accurate theoretical model capable of simulating real 

vibrations. Moreover, close examination of Fig. 4. 11(a) shows the crossovers between 

profiles of the XY-plane vibration is more serious than that of the XZ-plane vibration. 

This is because the amplitude of the 2Ω  harmonic of the XY-plane vibration is much 

larger than that of the Ω harmonic (Fig. 4. 11(h)). For the XZ-plane vibration, the 

amplitudes of the Ω  and 2Ω  harmonics have about the same magnitude (Fig. 4. 11(f)). 

This is true for most of our tests of this branch and we believe it is because the XZ-plane 

vibrations were influenced by the gravity. The time domain error function ( )Et x of 

marker 25, the spatial domain error function ( )Ex t , and the standard deviation ( )SD t of 

the modal decompositions are shown in Figs. 4.11(i) and (j), respectively. The small 

values of error functions indicate that four modes are enough for an accurate modal 

decomposition for this response. 
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Fig. 4.11: Response to an excitation at 35HzΩ = : (a) 32 curve-fitted consecutive 
vibration profiles (0.055 sec), (b) the trajectory of marker 25, (c) the frequency spectrum 
of the Z-direction vibration of marker 25, (d) the frequency spectrum of the Y-direction 
vibration of marker 25, (e) the modal coordinates of the Z-vibration; (f) the frequency 
spectra of the modal coordinates of the Z-vibration, (g) the modal coordinates of the Y-
vibration, (h) the frequency spectra of the modal coordinates for the Y-vibration, (i) error 
functions of the modal decomposition of the Z-vibration, and (j) error functions of the 
modal decomposition of the Y-vibration.  
 
 

The B3 branch in Figs. 4.7(b) and (c) represents the transition from the first-mode 

planar vibration to the second-mode one. Fig. 4.12 shows the responses when the string 

was excited at 17.75HzΩ = . Fig. 4.13 shows the response when the string was excited 

at 22HzΩ = . Fig. 4.14 shows the response when the string was excited at 28HzΩ = . 

Figs. 4.12(a), 4.13(a), and 4.14(a) show the obvious transition of the vibration from the 
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one mainly consisting of the first mode to the one mainly consisting of the second mode. 

From the modal coordinates and frequency spectra (Figs. 4.12 (b) and (c), Figs. 4.13(b) 

and (c), and Figs. 4.14(b) and (c)), we see that the first and second modes are the major 

component and are always in phase or have a phase difference of π  for these three cases. 

Comparing the amplitudes of the first and second modes of these cases, we see that the 

first-mode amplitude decreases and the second-mode increases, indicating a gaining 

participation of the second mode. Due to linear coupling, some higher modes had small 

but nontrivial amplitudes and vibrated at the excitation frequency, making the vibration 

complicated. 
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Fig. 4.12: Response to an excitation at 17.75HzΩ = : (a) 64 curve-fitted consecutive 
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vibration profiles (0.111 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration of marker 25, and (d) error 
functions for the modal decomposition of the Z-vibration.  
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Fig. 4.13: Response to an excitation at 22HzΩ = : (a) 50 curve-fitted consecutive 
vibration profiles (0.089 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration of marker 13, and (d) error 
functions of the modal decomposition of the Z-vibration.  
 

The B4 branch in Fig. 4.7(b) and (c) represents a whirling motion mainly 

composed of the second mode and so there is one node at the middle of the string. This 

branch has similar properties as the B2 branch. Figs. 4.15 (a) – (j) are representative plots 

of the response when the string was excited at 29.5HzΩ = . The clearly separated curve-
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fitted vibration profiles (Fig. 4.15 (a)) tell us that the vibration was periodic. The 

trajectory of marker 13 (Fig. 4.15 (b))  
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Fig. 4.14: Response to an excitation at 28HzΩ = : (a) 40 curve-fitted consecutive 
vibration profiles (0.07 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration of marker 13, and (d) error 
functions of the modal decomposition of the Z-vibration.  
 

has exactly 18 points, which indicates the vibration come back to the same position after 

one excitation period. The frequency spectra of the vibrations of marker 13 (Fig. 4.15 (c, 

d)) show us the vibrations were periodic at the excitation frequency also. Figs. 4.15 (e) – 

(h) are the modal coordinates and corresponding frequency spectra of the in XY- and XZ-
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plane vibrations, respectively. They show that the vibrations were dominated by the 

second mode. However, there are modes other than the second mode. Actually, it was the 

participation of the symmetric modes vibrating at the excitation frequency made the inner  
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Fig. 4.15: Response to an excitation at 29.5HzΩ = : (a) 36 curve-fitted consecutive 
vibration profiles (0.066 sec), (b) the trajectory of marker 13, (c) the frequency spectra of 
the Z-direction vibration of marker 13, (d) the frequency spectra of the Y-direction 
vibration of marker 13, (e) the modal coordinates of the Z-vibration, (f) the frequency 
spectra of the modal coordinates of the Z-vibration; (g) the modal coordinates of the Y-
vibration; (h) the frequency spectra of the modal coordinates of the Y-vibration, (i) error 
functions of the modal decomposition of the Z-vibration, and (j) error functions of the 
modal decomposition of the Y-vibration.  
 
node unclear. And, participation of modes different from the second mode caused the 

crossover between different profiles shown in Fig. 4.15(a). 

The B5 branch in Figs. 4.7(b) and (c) represents a transition from the second-

mode planar vibration to the third-mode planar vibration. It has similar properties as the 
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B3 branch. Fig. 4.16 shows the results when the string was excited at 33HzΩ = . Fig. 4.17 

are plots of responses when the string was excited at 35HzΩ = . Fig. 4.18 shows the 

results when the string was excited at 37HzΩ = . Fig.4.19 shows the results when the 

string was excited at 40HzΩ = . First of all, from the modal coordinates shown in Figs. 

4.16(b) – 4.19(b) we see the second and third modes are always in phase for all cases. 

Comparing the amplitudes of the second and third modes, we see that the second-mode 
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Fig. 4.16: Response to an excitation at 33HzΩ = . (a) 32 curve-fitted consecutive 
vibration profiles (0.059 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  
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Fig. 4.17: Response to an excitation at 35HzΩ = : (a) 32 curve-fitted consecutive 
vibration profiles (0.055 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  

 

decreases and that of the third mode increases, indicating a gaining participation of the 

third mode. Due to linear modal coupling, the first mode is not negligible when 

33HzΩ = and 35HzΩ = , and the fourth mode is not negligible when 

37HzΩ = and 40HzΩ = . Traveling waves are evident due to the participations of modes 

with phase differences being neither 0 nor π  for all cases. Each profile seems to have a 

different location of maximum deflection.  
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Fig. 4.18: Response to an excitation at 37HzΩ = : (a) 30 curve-fitted consecutive 
vibration profiles (0.052 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  
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Fig. 4.19: Response to an excitation at 40HzΩ = : (a) 28 curve-fitted consecutive 
vibration profiles (0.048 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  
 

The B6 branch in Figs. 4.7(b) and (c) has non-planar responses similar to those of 

B2 and B4 branches, but they are mainly composed of the third mode. The amplitudes of 

these higher-mode vibrations are smaller than those of lower-mode vibrations of B2 and 

B4. Consequently, the measured vibration profiles have lower relative precision. Fig. 

4.20 shows the responses when the string was excited at 41HzΩ = . Fig. 4.21(a) shows 

the vibration profiles when the string was excited at 50HzΩ = . It is a typical response for 

branch B6. It is obvious that the major components of the vibrations in both planes  
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Fig. 4.20: Response to an excitation at 41HzΩ = : (a) curve-fitted consecutive vibration 
profiles (0.047 sec), (b) the trajectory of marker 8, (c) the frequency spectra of the Z-
direction vibration of marker 8, (d) the frequency spectra of the Y-vibration of marker 8, 
(e) the modal coordinates of the Z-vibration, (f) the frequency spectra of the modal 
coordinates of the Z-vibration, (g) the modal coordinates of the Y-vibration, (h) the 
frequency spectra of the modal coordinates of the Y-vibration, (i) error functions of the 
modal decomposition of the Z-vibration, and (j) error functions of the modal 
decomposition of the Y-vibration.  
 

are the third mode. As the excitation frequency increases, the fourth mode may be excited 

by linear modal coupling due to the closeness of the excitation frequency to the fourth 

natural frequency. Fig.4. 22 (a) shows the very complex vibration when the string was 

excited at 53HzΩ = . For the out-of-plane vibration (Fig.4. 22 (g) and (h)), the amplitude 

of the third mode is much larger than other contributing modes so both nodes  
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Fig. 4.21: Response to an excitation at 50HzΩ = : (a) 22 curve-fitted consecutive 
vibration profiles (0.038 sec), (b) the trajectory of marker 8, (c) the modal coordinates of 
the Z-vibration, (d) the frequency spectra of the modal coordinates of Z-vibration, (e) the 
modal coordinates of the Y-vibration, (f) the frequency spectra of the modal coordinates 
of the Y-vibration, (g) error functions of the modal decomposition of the Z-vibration, and 
(h) error functions of the modal decomposition of the Y-vibration.  
 

 are clear. For the in-plane vibration (Fig. 4.22(e) and (f)), the amplitudes of the third and 

fourth modes are of smaller difference and so the right node is not as clear. The other 

reason for the unclear node is that the right node is close to the excitation support and so 

the influence of the support displacement on this node is more serious. This is especially 

serious for higher-mode vibrations because they have small amplitudes. Figs. 4.22(e) and 

(g) show that the phase difference between the two major linear components, the third 

and fourth modes, of the XY- and XZ-plane vibrations. Note that the phase difference 

between the third and fourth modal coordinates changes with the excitation frequency, 

indicating these two linear modes move independently and cannot be combined into one 

nonlinear normal mode. Figs. 4.22(c) and (d) show the frequency spectra of the XZ- and 

XY-plane vibrations of marker 8. Both contain frequency harmonics with small but not 

negligible amplitudes. Consequently, four modes may not be enough for an accurate 

modal decomposition of this high frequency vibration. 
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Fig. 4.22: Response to an excitation at 53HzΩ = : (a) curve-fitted consecutive vibration 
profiles (0.036 sec), (b) the trajectory of marker 8, (c) the frequency spectra of Z-
vibration of marker 8, (d) the frequency spectra of the Y- vibration of marker 8, (e) the 
modal coordinates of the Z-vibration, (f) the frequency spectra of the modal coordinates 
of Z-vibration, (g) the modal coordinates of the Y-vibration, (h) the frequency spectra of 
the modal coordinates of the Y-vibration, (i) error functions of the modal decomposition 
of the Z-vibration, (j) error functions of the modal decomposition of the Y-vibration.  
 

The solutions of B7 were not studied in detail because the shaker was often out of 

control for excitations at this frequency range. We only got responses for three different 

excitations. Figs. 4.23 and 4.24 show the results when the string was excited at 50HzΩ =  

and 53HzΩ = , respectively.  
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Fig. 4.23: Response to an excitation frequency at 50HzΩ = . (a) curve-fitted consecutive 
vibration profiles (0.038 sec), (b) the modal coordinates for the Z-vibration, (c) the 
frequency spectra of the modal coordinates for the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  
 

The curve-fitted profiles shown in Fig. 4.23(a) are clearly separated because the vibration 

was periodic. The number of separated discrete profiles of the left half of the string is 

different from that of the right half, indicating that the vibration consists of two or more 

modes. Figs. 4.23(b) and (c) show that the displacement profiles are mainly dominated by 

the third and fourth linear normal modes and these two major two components are in 

phase. 
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Fig. 4.24: Response to an excitation at 53HzΩ = : (a) 20 curve-fitted consecutive 
vibration profiles (0.036 sec), (b) the modal coordinates of the Z-vibration, (c) the 
frequency spectra of the modal coordinates of the Z-vibration, and (d) error functions of 
the modal decomposition of the Z-vibration.  
 

The second linear mode’s contribution to the vibration is small and its phase is 

0180 different from that of the third and fourth modes. The contribution of the first linear 

normal mode is mainly due to the gravity-induced sag. It seems that the characteristics of 

responses of this branch to higher frequency excitations are similar to the corresponding 

low-frequency branches. For higher-mode vibrations, the influence of gravity and initial 

curvature on the natural frequency decreases. This can be explained by the crossover of 
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the natural frequencies of cables as shown later in Chapter 5. For strings with non-zero 

small sags (i.e., cables with a small elasto-geometric parameter), only natural frequencies 

of low-order in-plane symmetric modes are affected by the sag while those of high-order 

modes keep almost unchanged. The commensurable relations between natural 

frequencies of higher in-plane and out-of-plane modes still exist and it is possible for the 

various resonances to happen. Hence, more linear normal modes are necessary for 

accurate decomposition of high frequency vibrations. 

The strings we considered are not strings under the strict definition of a string. 

However, because their sap-to-span ratios and hence elasto-geometric parameters are 

small, it is reasonable and appropriate to consider them as strings. As expected, the 

experiments showed more properties of a string than those of a cable. There are two types 

of responses. The first type is planar vibration mainly composed of two neighboring 

modes and represents the transition phase from the lower mode to the next one. As the 

excitation frequency increases, the amplitude of the lower one decreases while that of the 

other increases. These two linearly coupled modes are always in phase or out of phase. 

Lower and higher modes may be excited due to linear coupling, making the vibration 

more complicated. The second type is non-planar vibration mainly composed of a single 

mode for both in-pane and out-of-plane responses. For some cases, linear coupling 

happens and makes the vibration complex. For most cases, the phase differences between 

different modes change with the excitation frequency, which indicates the modes move 

independently and so cannot be combined into one non-linear normal mode. The concept 

of non-linear normal mode is thus questionable for modal decomposition of string 

vibration. The string we tested was not as straight and tensioned as assumed in the 
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theoretical model. So, the theoretically impossible 1: 2 internal resonance was 

experimentally observed, but the magnitude was small.  

 

4.6 Conclusion and Discussion 

Our experiments successfully recorded planar and non-planar/whirling vibrations, 

hardening effect, and modal coupling predicted by theoretical investigations. Branches of 

planar responses represent a transition between two neighboring modes, from the lower 

one to the higher one. The amplitude of the lower one decreases and that of the other one 

increases for increasing excitation frequency sweeping. Branches of non-planar responses 

are motions mainly composed of one single mode. However, for some cases, other modes 

may participate in both planar and non-planar vibrations, making the vibration profile 

more complex and irregular although the other modes have relatively small amplitudes. 

The hysteretic phenomenon was also verified by the sudden lose of stability of one 

branch and jumping to another branch for increasing and decreasing frequency 

sweepings. A pretty small sag, small enough to make the string far from being a cable at 

the first cross over (see later in Chapter 5), accounts for the observed small amplitude 

1: 2 internal resonance, which may happen theoretically only in cables. The modal 

decompositions of responses under higher-frequency excitations show four modes may 

not be enough for accurate modal decomposition. 

Attempts to quantitatively match the experimental results with the theoretical 

results were not fully successful. The difficulty in making such comparisons is mostly 

due to following reasons. One of them is the inability to precisely measure the parameters 

like axial stiffness, longitudinal wave speeds, and damping, etc, of the tested string. The 
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other one accounts for the discrepancy originates from the nature of the external 

excitation. In theoretical analysis, the excitation is applied to one of the two ends of the 

string. However, to avoid the longitudinal vibration, the excitation is applied at a location 

very close to one of the two fixed boundaries, and only the vibration between the 

attachment point of the shaker and the other end is considered. This arrangement, 

however, constraints the out-of-plane motion at the shaker attachment point and tends to 

decouple the cable response into two components, at least that of the out-of-plane 

response. Additionally, we used a level to adjust the position of the shaker and tried to 

make the excitation vertical. This may not be as good as desired. Moreover, the 

theoretical prediction is accurate for weakly nonlinear problems only. Our studies, 

however, are out of the weakly nonlinear range because the vibration amplitudes are quite 

large and the frequency detuning interval is so wide that its limits are possibly beyond the 

natural frequencies of neighboring modes. Theoretically predicted coexisting clockwise 

and counterclockwise whirling motions (O’Reilly, 1990) were not observed. This may be 

due to the intrinsic asymmetry of the experimental set-up. 
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CHAPTER 5 

EXPERIMENTAL DYNAMIC CHARACTERISTICS OF 

CABLES 

 

 

In this chapter, we begin with a review of nonlinear dynamics of cables. The 

methods for and observations from numerical investigation and experimental testing are 

summarized. Then the linear theory of cable vibration is introduced. The crossover 

phenomenon of natural frequencies of in plane and out-of-plane, and symmetric and anti-

symmetric modes are presented. In our experiments, theoretically predicted isolated and 

simultaneous internal resonances were observed for the cable around the first frequency 

crossover. A theoretically unpredicted simultaneous internal resonance was also 

observed. 

 

5.1 Review of Nonlinear Cable Oscillations 

Cables have some distinct mechanic properties such as flexibility, lightweight, 

and zero buckling strength. Due to these special characteristics, on one hand, cables are 

widely used in mechanical, civil, ocean and aerospace engineering. Most popular 

applications are suspension bridges and cable-stayed bridges, power transmission lines, 

aerial tramways, mooring cables, cable nets, etc. On the other hand, because of their 

flexibility and lightweight, the oscillations of cables subjected to external loads seriously 
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impair the performances of the devices or structures in which cables are used. So, it is 

meaningful to do thoroughly theoretical and experimental investigations on cable 

dynamics. The 3D motion analysis system has distinct features as stated before in 

Chapter 4, and the system makes it possible for us to obtain more insightful dynamic 

characteristics of cables. In this section, we give a historical review of cable dynamics 

first. 

Strings are tensioned cables. Cables are loose strings. Increasing the sag of a 

string from zero, the behavior of a string decreases and that of a cable increases. 

Physically speaking, cables are similar to strings and hence dynamics of string is similar 

to that of cables of small sag-to-span ratios. Considering the sag as a parameter, the 

dynamics of cables of zero sag is that of strings. However, early linear cable theories, in 

which inextensibility was assumed, failed to reconcile with the taut string theory. 

Noticing this discrepancy, Irvine and Caughey (1974) did a thorough investigation about 

the transverse horizontal vibration, including anti-symmetric and symmetric in-plane 

vibrations. It was shown that, to the first order, the transverse horizontal motion (both 

symmetric and anti-symmetric out-of-plane vibrations) and the anti-symmetric in-plane 

motion, which consist of an anti-symmetric vertical component and a symmetric 

longitudinal component, introduce no additional tension during the vibration. The 

symmetric in-plane mode, however, introduces additional tension due to the elasto-

geometry parameter that accounts for the effects of cable geometry and elasticity. The 

frequency of the symmetric in-plane mode varies with the elasto-geometry parameter and 

there are cross-over points where the frequencies of the symmetric in-plane modes and 

corresponding anti-symmetric modes are equal. 
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Triantafyllou (1984a, 1984b, 1987, and 1991) did a serial review of research 

conducted on the linear and non-linear dynamics of cables and other mooring systems. 

Triantafyllou (1984a, 1984b) investigated the effect of the inclination angle on the first 

two natural frequencies of an elastic, inclined cable with a small sag. The phenomenon he 

termed “frequency avoidance”, by which he meant the natural frequencies do not cross 

over due to the inclination, was introduced.  

Luongo, Rega, and Vestroni (1982) studied the changes of frequencies and 

amplitudes of mono-frequency oscillations, both of the in-plane extensional type and the 

out-of-plane pendulum type, due to the variation of the elasto-geometric parameter in the 

presence of nonlinear coupling but in the absence of internal resonance. For the in-plane 

type motion, the drift of the midpoint of the trajectories on the state plane (symmetry 

breaking), one of the signatures of nonlinearities, was observed. The effects of quadratic 

and cubic nonlinearities on the frequency response functions were studied respectively. 

For the out-of-plane pendulum vibration, the study was focused on those of cables around 

the first cross-over point.  

Luongo, Rega, and Vestroni (1984) investigated the planar non-linear free 

vibrations of an elastic cable. It was shown that the behavior was initially hardening for a 

cable with a small elasto-geometric parameter (i.e., a string), due to the prevailing cubic 

nonlinearities. As the value of the parameter increased, the response was softening for 

low-amplitude vibrations and became hardening as the amplitude increased, 

corresponding to a transition from a vibration dominated by quadratic nonlinearity due to 

initial curvatures to a vibration dominated by cubic nonlinearity due to the stretching 

effect. The drift of the midpoint of oscillation was evidenced in the temporal law of 
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motion, and this was especially apparent for cables vibrating with larger amplitudes. The 

non-dimensionalization with respect to the sag or span was discussed. Two different 

procedures to discretize the partial differential equations were discussed. In the first 

approach, the longitudinal inertial force was neglected and so the additional cable tension 

was a function of time only and could be derived from the longitudinal equation of 

motion. Applying this relation to the equation of transverse vibration, the unique partial 

integro-differential equation was obtained. In this procedure, only one shape function was 

necessary to describe the transverse vibration when applying Galerkin discretization and 

neglecting the longitudinal inertia force. The nonlinear relations between the 

displacements of longitudinal and transverse directions were exactly treated. In the 

second approach, two eigen-functions, one for the longitudinal displacement and the 

other for the transverse displacement, was necessary. However, these two components 

did not exactly satisfy the nonlinear relation describing the longitudinal equation of 

motion but did in an average sense via an integral method. These two approaches resulted 

in different coefficients for cubic terms, but not for the quadratic terms. Another 

approach was proposed in which the perturbation method was applied to the equations 

first and then the Galerkin procedure was then applied to each obtained equation.  Similar 

to the second approach, two eigen-functions were necessary and the nonlinear relation 

between the longitudinal and transverse displacements was asymptotical. Rega, Vestroni, 

Benedettini (1984) studied the dependence of frequencies of pre-stressed and slack cables 

on the amplitude of oscillation of one particular mode, the first and second in-plane 

symmetric modes and the first anti-symmetric one, respectively, by varying the 

mechanical and geometrical properties of the cable. The dependence of hardening or 
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softening on the amplitude was verified. The larger the sag-to-span ratio and the higher 

the mode number, the stronger were the effects of nonlinearities. Moreover, it was shown 

that the crossover frequency was no more fixed which was the same as the linear cases 

due to the amplitude-dependent frequencies. So there were different crossover 

frequencies and the number of crossover points was infinite instead of just one as 

predicted in the linear theory. Benedettini, and Rega, Vestroni (1986) investigated the 

influence of modal coupling between in-plane and out-of-plane modes in the absence of 

internal resonance for the free cable oscillation when different initial conditions were 

applied. It was shown that the responses to even small initial amplitudes differed notably 

from the linear one due to the strong the modal coupling of a slack cable. Benedettini and 

Rega (1987) studied the nonlinear dynamics of an elastic cable subject to a planar 

excitation with the assumption that the deformed geometry was parabolic. A high-order 

perturbation analysis was accomplished to determine the frequency response equations, 

the time law, and the region of instability of steady solutions. Numerical results were 

presented for a nearly taut string and a suspended cable. It was shown that the string had 

purely hardening response because of prevailing cubic nonlinearity due to stretching and 

the cable has dominantly softening response under small-amplitude vibration and 

hardening response under large-amplitude vibration because of the additional quadratic 

nonlinearity due to the curvature. The dependence of responses on the initial conditions 

and multiple solutions was investigated also. 

Takahashi and Konishi (1987a) investigated the non-linear non-planar free 

vibration of cables. The intra-planar coupling was studied and it was found that the 

geometrical nonlinearity was generally a hardening type but a softening type for some 
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particular sag-to-span ratios. Takahashi and Konishi (1987b) studied the non-planar 

vibration of cables under in-plane sinusoidal forcing using a multiple-degree-of-freedom 

model. Using the harmonic balance method and considering two out-of-plane modes, the 

unstable regions were constructed and compared with responses having simple 

parametric resonance, with only one out-of-plane mode.  

Al-Noury and Ali (1985) studied the influence of geometrical non-linearity 

(function of the sag-to-span ratio) on the responses of parabolic cables. The spatial 

problem was solved using the Galerkin method and the temporal problem was attacked 

using a perturbation method. The investigations were presented for responses to a 

transverse excitation, a vertical excitation, and a transverse excitation with interactions 

between vertical and transverse modes having closely spaced frequencies.  

Rao and Iyengar (1991) studied the vibration with 1:2 internal resonance between 

the first symmetric in-plane and out-of-plane modes of a cable dominated by quadratic 

nonlinearity using a quasi-static model in which the influence of the longitudinal inertia 

was neglected while that of the longitudinal vibration was retained. The external 

excitation was a combination of an in-plane harmonic component and a uniform lateral 

load one.  

Pakdemirli, Nayfeh, and Nayfeh (1995) considered the one-to-one internal 

resonance between the in-plane and out-of-plane modes as well as primary resonance of 

in-plane modes. They focused the investigation on the difference between two 

approaches used for the problem. The discretization approach applied the method of 

multiple scales to the ordinary differential equations obtained by discretizing the partial 

differential equations using the spatial eigen-functions of the linear problem. The direct 
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approach directly applied the method of multiple scales to the governing partial 

differential equations. It was shown that the discretization approach was inaccurate and 

yielded predictions qualitatively different from those by the direct approach. In the 

discretization approach, the spatial variation of the quadratic terms was erroneously 

assumed to be the same as that of the linear terms and hence quadratic terms in the 

original system were eliminated during the linear discretization process because they are 

orthogonal to the linear mode shape. 

Using statistics methods and Monte Carlo simulations, Chang, Ibrahim and 

Afaneh (1996) investigated the single 2:1 internal resonance response between the first 

in-plane and out-of-plane symmetric modes of a suspended cable excited by an in-plane 

random force generated numerically from a normal distribution using an inverse 

Cumulative Distribution Function (CDF) technique. Chang and Ibrahim (1997) and 

Ibrahim and Chang (1999) investigated the multiple internal resonances (2:1:2) between 

the first in plane and the first two out-of-plane modes of a cable excited by a random in-

plane loading. The on-off intermittency of auto-parametrically excited modes, the energy 

exchange between coupled modes in the neighborhood of internal resonance and the 

saturation phenomenon were observed. It was found that both the excitation level and the 

internal damping had significant effects on the region of modal interaction. 

Benedettini and Rega (1994), and Benedettini, Rega and Alaggio (1995) 

considered primary and sub-harmonic resonances of an initial parabola cable using a 

four-degree-of-freedom model, accounting for the planar and non-planar symmetric and 

anti-symmetric motions. Possible (single and multiple) internal resonance solutions, uni-

modal, bimodal, tri-modal and complete solutions were discussed, especially considering 
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the dependence on the relative damping ratios between different modes. Rega, Alaggio 

and Benedettini (1997) and Benedettini and Rega (1997) experimentally investigated the 

nonlinear response of an elastic cable made of nylon wire carrying eight equally spaced 

concentrated masses and hanged at two supports which were given either in-phase or out-

of-phase vertical harmonic excitations. The cable was adjusted to be at the first cross-

over so internal resonances might happen between the first planar and non-planar 

symmetric and anti-symmetric modes. Responses to the variation of the control 

parameters, (i.e., the excitation frequency and forcing) were measured and analyzed. The 

meaningful ranges of the control parameters include those having internal resonances 

(e.g., the one half sub-harmonics), the primary and super-harmonic resonances of the 

anti-symmetric modes, and the corresponding one fourth sub-harmonic, one half sub-

harmonic and primary resonances of the out-of-plane symmetric mode. The local 

analysis, focusing on the modal interaction, participation, competition and bifurcation for 

different small ranges of the control parameter spaces, and the global analysis, focusing 

on a large region of the control parameter space, were the major works of these two 

papers.  

Lee and Perkins (1992) studied the existence and stability of weakly nonlinear, 

periodically forced cable oscillation containing a two-to-one internal resonance between 

the symmetric in-plane and out-of-plane modes. The governing differential equations 

were derived using the Hamilton’s principle and discretized using a two-degree-of-

freedom model. Both first order and second order perturbation analyses were applied to 

the discrete model. The steady state solutions obtained by the first-order and second-

order expansions, and direct numerical integration starting from differential initial 
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conditions were compared for three cases with different damping, frequency and forcing 

levels. It was shown that the in-plane vibration saturated for the first-order expansion but 

actually was disrupted by the second-order corrections. The stable and unstable branches 

of in-plane response were degenerated in the first-order expansion but actually were split 

by the second-order corrections. The asymmetry and jump phenomenon of the frequency 

response were observed also. Perkins (1992) considered a suspended cable subjected to a 

very small tangential oscillation at one support in the presence of a two-to-one internal 

resonance between the symmetric in-plane and out-of-plane modes. The quasi-static 

assumption in which the longitudinal inertial force was neglected was adopted to 

combine the longitudinal equation of motion with transverse ones. The obtained 

governing differential equations had variable coefficients for both in-plane and out-of-

plane vibrations, and inhomogeneous terms for the in-plane vibration only. This told us 

that the support oscillations led to parametric excitation for the out-of-plane vibration and 

simultaneous parametric and external excitations for the in-plane vibration. The 

amplitude-forcing and amplitude-frequency response for various internal and external 

detuning cases were investigated. The disruption of the saturation phenomenon due to the 

parametric resonance was shown in the amplitude-forcing plots. The separation of 

parametric and external resonances due to internal detuning was shown in the amplitude-

frequency plots. An experiment was carried out for a cable around the cross over region 

and the results were in well qualitative agreement with theoretical predictions. Lee and 

Perkins (1995) studied the simultaneous resonances of a suspended cable using a three-

degree-of-freedom model (symmetric in-plane, and symmetric and asymmetric out-of-

plane modes). A second-order perturbation method was adopted and the detuning for two 
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modes excited by different internal resonances were ordered differently so that the 1:1 

resonance appeared with cubic nonlinearities at the second order and the 2:1 resonance 

appeared with quadratic nonlinearities at the first order. Four classes of solutions were 

found: pure in-plane response, 1:1 internally resonant response, 2:1 internally resonant 

response and simultaneous 1:1 and 2:1 internally resonant response. The stabilities of 

these solutions were determined with respect to perturbations in all three modes by 

linearizing the autonomous equations about each singular point. Pitchfork, saddle node 

and Hopf bifurcations were observed. The Poincare section of the quasi-periodic 

vibration between Hopf bifurcations f and g represents a cross section of a torus attractor. 

It was shown that the stable and unstable 2:2:1 periodic solutions defined the transition 

between stable periodic solutions dominated by quadratic nonlinearities (2:1) and those 

dominated by cubic nonlinearities (2:2).  Lee and Perkins (1995a) experimentally studied 

the isolated and simultaneous internal resonances for a suspended cable driven by 

harmonic, planar excitations. Two types of response tests were conducted with one of the 

parameters (excitation frequency and amplitude) hold constant while the other one varied. 

Isolated 2:1 and 1:1 resonances and simultaneous 2:2:1 resonance was observed for 

cables with some particular curvatures.  

Luongo and Piccardo (1998) investigated the galloping motion of a cable at the 

first cross-over point under a transverse wind flow excitation. Both analytical solutions 

by perturbation analysis and numerical ones by numerical integration were developed and 

compared. As well as aerodynamic non-linearities, geometric nonlinearities (the major 

factors responsible for the coupling phenomena) were considered for this aero-elastic 

oscillation problem. The critical values of the mean wind speed for bifurcations 
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(appearance and disappearance of mono-modal and bimodal gallopings) were detected 

and 1:2 internal resonance was verified. 

Studies of Benedettini and Rega (1994), Benedettini, Rega and Alaggio (1995), 

and Lee and Perkins (1995) were conducted by applying the method of multiple scales to 

a set of second-order ordinary-differential equations obtained by discretization using the 

Galerkin procedure. Rega, Lacarbonara, Nayfeh and Chin (1997, 1999) investigated the 

multiple resonance of a suspended cable near the first crossover by applying the method 

of multiple scales directly to the second-order governing differential equations of motion 

and associated boundary conditions (direct approach) and to the four-degree-of-freedom 

Galerkin discretized model (discretizatioin approach). In order to render their 

reconstituted modulation equations derivable from a Lagrangian, it was necessary to 

include the homogeneous solutions of the second-order problem. The results were 

inconsistent because there were some coefficients depending on arbitrary constants. 

Moreover, the frequency response curves from the two approaches showed quantitative 

as well as qualitative differences even with the same choice of equation constants. This 

was due to the fact that the influence of nonlinearities on the responses represented by the 

coefficients of the modulation equations were not accurately evaluated because the 

coefficients, supposed to be determined by infinite eigen-modes, were actually 

determined by only the first several ones assumed in the dicretization approach. To 

overcome the inconsistencies, Nayfeh, Arafat, Chin and Lacarbonara (2002) firstly 

rewrote the two governing partial differential equations as a system of four first-order (in 

time) ones. Then, the method of multiple scales was applied directly to these first order 

equations instead of second order ones as before, and the second-order uniform 
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asymptotic expansions of the solution were obtained. It was shown that the modulation 

equations, obtained by the method of reconstitution (Nayfeh, 1985) and governing the 

dynamics of the amplitudes and phases of the four interacting modes, satisfied all of the 

symmetry conditions, and therefore they were derivable form a Lagrangian. Furthermore, 

all of the coefficients of the non-linear terms in the modulation equations were 

determined uniquely, and hence the solution was systematic and consistent. 

Arafat and Nayfeh (2003) investigated the nonlinear response of shallow 

suspended cables subjected to primary resonance excitations. The influence of the 

number of terms retained in the application of the discretization approach on the accuracy 

of the predicted effective non-linearity was especially investigated. The results from 

direct treatment and discretization approach were compared for responses to four 

resonant excitations – harmonic excitations at the resonant frequencies of the first 

symmetric and anti-symmetric in-plane and out-of-plane modes. It was assumed that the 

directly excited mode was not involved in an auto-parametric resonance with any of other 

modes. It was shown that only the symmetric in-plane modes contributed to the effective 

non-linearity. Discretization of single-mode, or even two-mode and three-mode for some 

cases, might result in qualitative error by predicting the effective non-linearity as 

hardening while in fact it was softening. The solutions converged to the direct approach 

solutions once enough modes were retained in the discretization procedure. 
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5.2 Summary of Theories 

5.2.1 Linear Theory for the Free Vibration of Suspended Cables 

Cables and strings are one-dimensional structures that can only sustain 

longitudinal tension loads because they have negligible flexural, torsional, and shear 

rigidities and zero buckling loads. A taut string is a straight cable under pretension with a 

sag-to-span ratio close to zero. A cable is a string with sag. The commonly used 

governing partial differential equations for cable vibrations were derived by Lee and 

Perkins (1995) as 

( ) ( ) ( ) ( )
2

2 2
2

ˆ ˆcosl
t l ss tt w t

t

cc c g t w g t F s t w w
c

µ⎡ ⎤+ + + Ω = +⎣ ⎦                      (5.2.1) 

                              ( )2 2 ˆt l ss tt v tc c g t v v vµ⎡ ⎤+ = +⎣ ⎦                                                   (5.2.2) 

where ( ) ( )2 2 2
20

2
t

s sg t v c w v ds⎡ ⎤= − + +⎣ ⎦∫ , w is the dynamic in-plane displacement, v is 

the dynamic out-of-plane displacement, ˆwµ is the damping coefficient of the in-plane 

vibration, ˆvµ the damping coefficient of the out-of-plane vibration, lc is the longitudinal 

wave speed, and tc is the transverse wave speed. We see there are quadratic and cubic 

terms which are due to the initial curvature and the stretching during the vibration, 

respectively. Increasing the sag, the quadratic nonlinearity effect is expected to increase 

because the curvature increases and the cubic nonlinearity effect is expected to decrease 

because the corresponding possible stretching decreases. When the cubic nonlinearity 

dominates over the quadratic nonlinearity, the behavior of taut strings is dominant due to 

the stretching during vibration. When the quadratic nonlinearity dominates over the cubic 

nonlinearity, the behavior of cable is more evident due to the prominent influence of the 
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initial curvature. As a result, just like what was shown in many experimental 

observations, there are much discrepancy between the dynamics of cables and that of 

strings though they are similar as far as the geometry is concerned. Basically, this is 

because the frequencies of the in-plane symmetric modes of cables are dependent on the 

elasto-geometry parameter, which results in the well known cross-over phenomenon, 

while those of other modes are kept unchanged. 

Let’s start from an important parameter for the dynamics of cables and sagged 

“strings”. The elasto-geometric parameterκ , defined as 

( ) ( )( )3 22 8 1 8d L EA mgL d Lκ ⎡ ⎤≈ +
⎣ ⎦

                                     (5.2.3) 

describes the geometry and material of a cable and governs the nature of solutions to the 

linear governing differential equation of cables. In most practical problems, it is the sag-

to-span ratio d L , rather than the cable elasticity term ( )( )21 8EA mgL d L⎡ ⎤+
⎣ ⎦

, that 

dictates the value of 2κ and so the dynamics. We discussed in previous chapters that for a 

taut string, the elasto-geometric parameter is close to zero due to zero or small 

sag ( )0d ≈ . The natural frequencies of a taut string are n n vn c Lω λ π= = with 

1,2,3,n =  for in-plane and out-of-plane modes, where vc T Aρ= is the transverse 

wave velocity, T the tension, and Aρ the mass per unit length. Keep in mind that n is an 

odd number for symmetric modes and n is even for anti-symmetric modes. Increasing the 

sag and so the elasto-geometric parameter from zero, a string will behave more like a 

cable. For a cable, the normalized out-of-plane mode shapes are given by 

( )2 sinn n sχ π= corresponding to the natural frequencies n nλ π= with 1,2,3,n = . The 
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anti-symmetric in-plane modes have mode shapes ( )2 sinn n sφ π= corresponding 

natural frequencies n nω π= with 2,4,6,n = (Nayfeh and Pai, 2004). They are 

independent of the sag d  and have the same properties as those of a taut string. The 

reason is that no additional tension is induced during vibrations that are composed of 

these modes. The mode shapes and natural frequencies of symmetric in-plane modes are 

different. For example, with the increase of sag from zero, the frequency of the first 

symmetric in-plane mode (i.e., ( )1 2 sin sφ π= ) grows from 1ω π= to a value close to 

but less than the natural frequency of the third out-of-plane mode, 3 3λ π= , and the 

corresponding mode shape changes from ( )sin sπ  (no inner node) towards ( )sin 3 sπ  

(two inner nodes), as shown in Fig. 5.1. During  

 

κ/π >2

κ/π =2

κ/π <2

 

Fig. 5.1: The first symmetric in-plane mode of a horizontal, small-sag elastic cable with 
the elastic-geometric parameter around the first crossover ( 2κ π = ). 
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the process, there is a point called (the first) cross-over point when a specific sag 

makes 2κ π= , and hence the frequency of the first symmetric mode and the frequency of 

the first anti-symmetric mode are equal, i.e., 1 2 2ω ω π= = . The mode shape of the first 

symmetric mode at the first crossover is tangential to the horizontal line at the supports, 

as shown in Fig. 5.1. Considering the tension variation, the natural frequencies of the 

symmetric in-plane modes are the roots lβ  of a non-linear equation (Irvine and Caughey, 

1974)  

( ) ( ) ( )32tan 2 2 4 2l l lβ β κ β= −                                      (5.2.4) 

Obviously, the solutions are closely dependent on the elasto-geometric properties of the 

cable. The graphical solution for the first non-zero root is shown in Fig. 5.2. The first root 

is always larger than 1λ but smaller than 3λ for , 0d κ ≠ . From above analysis, we can see 

the frequency of the first out-of-plane symmetric mode is the lowest natural frequency of 

any given cable. Except when the internal resonance exists between the in-plane and out-

of-plane modes, the cable may have free out-of-plane vibration because the out of plane 

motion induces no additional tension to any first-order cable stretching and so less energy 

is necessary for the cable to be excited. We note here that additional tension is induced in 

the nonlinear range (Srinil, Rega, and Chucheepsakul, 2003). As a common sense, it is 

geometrically impossible for an inextensible (i.e., no stretch) cable to oscillate in a 

symmetric mode because stretching is required for such deformations. For 2κ π < , the 

frequency of the first symmetric in-plane mode 1ω  is less than the frequency of the first 

anti-symmetric in-plane mode and the relation between the first few natural frequencies 
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is 1 2 2 12ω ω λ λ< = = . When 2κ is very small, equation (5.2.4) is reduced 

to ( )tan 2lβ = −∞ , whose roots are equal to the natural frequencies of out-of-plane  
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Fig. 5.2: Graphical solution for the first non-zero root of equation (5.2.4), which 
describes the relation between the natural frequency ( lβ ) of the first symmetric in-plane 
mode of a horizontal, small sag elastic cable with its elastic-geometric parameter around 
the first crossover ( 2κ π = ). 
 

symmetric modes nω , ( ) ( )2 1
n

l nβ π= − where 1,2,3,n = . At 2κ π ≈ , called the first 

avoidance or cross-over point, the frequency of the first symmetric in-plane mode (S-I), 

anti-symmetric in-plane mode (A-I) and the first anti-symmetric out-of-plane mode (A-

O) are equal and are twice the natural frequency of the first symmetric out-of-plane mode 

(S-O), and the relation between them is 1 2 2 12ω ω λ λ≈ = = . Due to the commensurable 

relation between these frequencies, various internal resonances may happen.  

For 2κ π > , the frequency of the first symmetric in-plane mode is larger than the 
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frequency of the first anti-symmetric in-plane mode 1 2 2 12ω ω λ λ> = = . When 2κ is very 

large, 1ω is almost equal to 3λ and the dynamics of the cable will not much influenced by 

the change ofκ . This is the reason why the assumption of inextensibility (i.e., neglecting 

the stretching) is appropriate for a cable with a large sag-to-span ratio. Similar properties 

exhibit for a cable around the second and other avoidance or cross over points 

where 2 , 2,3n nκ π ≈ = , each corresponding to the natural frequency relation 

2 1 2 2 2n n n nω ω λ λ− ≈ = =  and marking a transition of the nth  symmetric in-plane mode 

from a typical response of “elastic and taut cables” to one of “stiff and sagged cables” 

with two inner nodes added and more dynamic tension induced. The first three crossover 

points are plotted in Fig. 5.3. 
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Fig.5.3: Variation of the first few non-dimensional natural frequencies with the 
parameterκ π . A-O/I: Anti-symmetric (Out of/In) plane mode, S-O/I: Symmetric (Out 
of/In) plane mode. 
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5.2.2 Resonances and Modal Interactions 

For a cable at the neighborhood of the first crossover point (the most studied 

case), isolated and simultaneous resonances may happen. This is because the frequencies 

of symmetric and anti-symmetric in-plane and out-of-plane modes are related 

as 2 1 2 2 2 , 1,2,3,n n n n nω ω λ λ− ≈ = = = , which makes the response of the excited mode 

(the first symmetric in-plane mode) become a parametric excitation to other three modes 

through quadratic and cubic nonlinearities. At the first cross over 

point 2κ π ≈ , 1 2 2 12ω ω λ λ≈ = =  and theoretically possible isolated resonances between 

the first two in-plane and out-of-plane modes are 

internal resonance between the 1st S-I and 1st A-I modes, 1 2: 2 : 2ω ω ≈  

internal resonance between the 1st S-I and 1st A-O modes, 1 2: 2 : 2ω λ ≈  

internal resonance between the 1st A-I and 1st A-O mode, 2 2: 2 : 2ω λ =  

internal resonance between the 1st S-I and 1st S-O modes 1 1: 2 :1ω λ ≈  

internal resonance between the 1st A-I and 1st S-O modes 2 1: 2 :1ω λ =  

internal resonance between the 1st A-O and 1st S-O modes 2 1: 2 :1λ λ = . 

Possible simultaneous internal resonances may happen between the symmetric in-plane 

and anti-symmetric and symmetric out-of-plane modes became 1 2 1: : 2 : 2 :1ω λ λ ≈  and 

between anti-symmetric in-plane and anti-symmetric and symmetric out-of-plane modes 

became 2 2 1: : 2 : 2 :1ω λ λ ≈ . For these cases, 1:2 super-harmonic resonance, in which the 

resonant frequency is two times of the excitation frequency, and 2:1 sub-harmonic 

resonance, in which the resonant frequency is a half of the excitation frequency, may 
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happen. Actually,  multiple resonance 4 2 4 2: : : 4 : 2 : 4 : 2ω ω λ λΩ = = is possible if the 

excitation is close to the natural frequency of the second anti-symmetric mode. These 

phenomena, not recorded before, were observed in our experiments.  

 

5.3 Experimental Observations 

Loosing the string studied in Chapter 4, we obtained a cable with initial 

curvatures. As the cable was made of steel and had a length only about 1.4m and a 

diameter less than 0.5mm, the change of the pretension due to loosing did not change the 

length much. So, it is appropriate for the cable to use the same spatial distribution of 

markers as the string. Except the curvature which is dependent on the elasto-geometrical 

parameterκ , parameters of the cable (i.e., the length, diameter, and mass density) are 

kept unchanged.  

 

5.3.1 Experimental Identifications 

Following the same procedure of frequency scanning we did for the string testing 

in Chapter4, we obtained the displacements of all markers in the time domain using the 3-

D motion analysis system. Based on these time domain data, we perform the vibration 

analysis. There are many qualitative and quantitative measures that can be used to 

analyze the experimental data. We may use one or some of these measures to identify the 

dynamic characteristics of the vibration, depending on the properties of typical responses. 

The frequency spectrum obtained by FFT analysis is by far one of the most 

widely used measures. The spectrum of a periodic, a period-doubled, a quasi-periodic, 
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and a chaotic signal has one spike, one primary spike with rationally related sidebands 

representing sub-harmonic and super-sub-harmonics, two spikes not rationally related, 

and a broad band of frequencies, respectively. For beating signals, the spectrum has two 

spikes with slightly different frequencies and no sidebands. Autocorrelation function is 

another tool for signal processing related to FFT. It is a time domain function measuring 

how much a signal resembles a delayed version of itself. For a periodic signal, the 

autocorrelation is one at zero and other integral times of the period and zero at  odd 

integral times of one half of the period. For other instants, it is between one and zero. For 

a chaotic signal, it is one at zero time delay and essentially zero at other delays. Due to 

the possible presence of a principle frequency component, the auto-correlation function 

may decay to zero after some time instead of immediately. So, the functions are periodic 

of a unit amplitude for periodic signals and non-periodic of a non-zero amplitude for 

quasi-periodic signals. Pincare sections can be obtained by sampling the position of any 

marker on the cable once per period (stroboscopic map) or a chosen time interval. For a 

periodic signal, the Poincare map has only one point because the vibration comes back to 

the same position after one period. For period-doubled, period-4, and period-8 signals, 

the map has two, four, and eight points, respectively. For a quasi-periodic signal, it has 

many points along the trajectory and the dimension of the map is one, which means the 

vibration is possible at anywhere of the trajectory during the vibration.  For a chaotic 

signal, the map is an attractor and has a dimension between one and two for a two 

dimension flow. The correlation/fractal dimension calculated from experimental data 

helps verify the existence of a strange attractor, as well as provides a measure of its 

fractal structure. The exponential growth rate of a dynamic system responding to an 
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infinitesimal perturbation is called the Lyapunov exponent. For regular motions, the 

Lyapunov exponent 0λ ≤  and for chaotic motion 0λ > . Showing the probability of the 

chaotic trajectory visiting some particular region of the attractor, the Probability 

Distribution Functions (PDFs) provides a statistical measure of a chaotic dynamics for 

the probability or invariant distribution of the attractor. 

 

5.3.2 Experimental Results 

The tested cable had a sag-to-span ratio1 321before the test and 1 378 after the 

test and the elasto-geometric parameters κ π were 2.84 and 1.7441, correspondingly. Fig. 

5.4 shows the XY and YZ projections of the cable before the test. The main reason for 

the change of sags was that the geometry was essentially changed. Although the cable is 

flexible, there is still small but influential bending stiffness and hence the static 

equilibrium configuration was not only determined by its weight. After the high speed 

oscillation, the geometry of the cable was not exactly the same as the one before the 

vibration tests. Although this change of geometry was small, the change of parameter was 

not small because the material was steel and the span was so small (less than 2m) 

according to (5.2.3). Another reason was that the markers were not firmly stuck to the 

cable. So the effective positions of the markers and hence the sag might be changed due 

to high speed rotation.  Moreover, although the camera precision was pretty high 

(0.01mm), the measurement accuracy was lower because of the large size of markers 

(more than 1mm). Moreover, pretty small rotation or deformation happened to the 

markers might change the lights reflected back to the cameras and the recorded positions 

of the markers in the camera system. Then the measured or recorded positions of markers 
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at two different times might be quite different. Fortunately, the parameterκ π was around 

2 before and after the test, which means the cable was around the first crossover during 

the test. And consequently, it is still valid to use this cable to investigate the nonlinear 

properties, especially those internal resonances that may happen only to cables at the 

crossovers. The excitation frequency range we tested was from 10Hz to53Hz .  
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Fig. 5.4: The static equilibrium configuration of the cable (X-Y and X-Z views) before 
the test with a sag-to-span ratio 1 321 , corresponding to an elasto-geometric 
parameter 2.84κ π = . 

 

 The modal coordinates which indicate the participations of modes are more 

meaningful for the investigation of cable dynamics dominated by modal coupling. The 

frequency response curves are plotted as detuning versus the modal coordinates of the 

responses, instead of detuning versus the response of one marker as those in Chapter 4 for 

strings. Because there are four modal coordinates for one response and there are possible 
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multiple responses for one excitation, one figure with four responses will be too 

complicated. To present the results clearly, we plot the response in two different ways. 

The first is to plot the contributions of some particular linear normal mode to all tested 

excitations. Fig.5.5 shows plots of contributions of the first four linear normal modes to 

the responses in the X-Z plane to all tested excitations. Fig.5.6 are plots of contributions 

of the first four linear normal modes to the responses in the X-Y plane to all tested 

excitations. From these plots, we see some resonances that will be explained later. Based 

on the number of different responses obtained, the scanned frequency range can be 

divided into five subintervals, S1, S2, S3, S4 and S5, as marked in the plots. Based on the 

major contributing mode for the vibration, the recorded frequency responses can be 

named as several different continuous Branches (B1, B2, B3 and B4). Note that we did 

not present the frequency response curve for one marker for all excitations and hence 

mark the branch divisions in the curves as we did for string experiment. The second type 

of plot is the contributions of all four linear normal modes to responses of a branch versus 

all excitations of this branch. Fig.5.7 are plots of contributions of the first four linear 

normal modes to the responses in the X-Z plane for different branches, and Fig. 5. 8 are 

plots of contributions of the first four linear normal modes to the responses in the X-Y 

plane for different branches.  

From 10Hz to12Hz is the first subinterval (S1). The only response to an excitation 

frequency within this subinterval is the first-mode vibration. From 10Hz to11Hz , the 

response is planar and changes from incompletely excited to fully excited. From 

11.5Hz to12Hz , the response becomes non-planar. All responses to excitations within 

this subinterval belong to B1. 
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Fig. 5.5: Contributions of the first four linear normal modes to the responses in the X-Z 
plane: (a) the first mode, (b) the second mode, (c) the third mode, and (d) the fourth 
mode. 
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Fig. 5.6: Contributions of the first four linear normal modes to the responses in the X-Y 
plane: (a) the first mode, (b) the second mode, (c) the third mode, (d) the fourth mode. 
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Fig. 5.7: Contributions of the first four linear normal modes to the responses in the X-Z 
plane for different branches: (a) Branch#1, (b) Branch#2, (c) Branch#3, and (d) 
Branch#4. 
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Fig. 5.8: Contributions of the first four linear normal modes to the responses in the X-Y 
plane: (a) Branch#1, (b) Branch#2, (c) Branch#3, and (d) Branch#4. 

 

The second subinterval (S2) is from 12.5Hz to 21Hz . Within this interval, two 

different responses were obtained at each excitation frequency. The non-planar vibration 

of the first mode (B1) was stable and its amplitude increased as the frequency increased. 

The other one started to appear at12.5Hz . It was a vibration transition from the first 

mode to the second mode (B2), and from planar to non-planar. Actually, as the second 

mode participated more and more, the vibration experienced period-doubling before it 

became fully non-planar and the trajectory was one full ellipse. The third subinterval (S3) 

starts from 22Hz to 34Hz and has three different responses. Besides the two responses 

(B1 and B2) shown in S2, the third mode came into the response starting from 

22Hz (B3). The newly appeared response was a transition from the second mode to the 

third mode. At the beginning, the response was planar. The stable region for this planar 

response was so small that for some excitations, we did not obtain any stable response. 

The response always jumped to a non-planar vibration of the second mode. At the end of 

this interval, the response became a non-planar vibration of the third mode. At35Hz , the 

beginning of the fourth subinterval, vibrations representing a transition from the third 
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mode to the fourth mode appear (i.e., B4). The other three types of responses, non-planar 

vibration of the first, second and third modes (B1, B2 and B3) remained. Four different 

responses existed within this excitation interval. Due to the capability of the motion 

analysis system, we did not get very accurate measurements of these small-amplitude 

higher-mode vibrations. This interval lasted to38Hz . At39Hz , the non-planar vibration 

of the first mode (B1) lost stability and disappeared. The left three types of responses 

remained in the frequency range from 39Hz to53Hz , which is the fifth subinterval (S5).  

Table 5.1 shows our records for of the experimental responses.  

The first branch (B1) represents both planar and non-planar vibrations mainly 

composed of the first mode. This is verified by Fig. 5.7 (a) in which the contribution of 

the first linear normal mode is larger than other modes. This branch starts from 

10Hz with a planar vibration, becomes non-planar at 12Hz , and lasts till 38Hz at which 

the non-planar vibration of the first mode loses stability and disappears. Although the 

cable is at the first crossover and so various modal couplings may happen, internal 

resonances are not very evident in the response plots. This is because the directly excited 

planar vibration of the first mode has a amplitude larger than those of other modes. Fig. 

5.9 shows plots of one of the two typical responses when the string was excited 

at 13.5HzΩ = . The frame rate was 513FPS and the recording time length was 2 seconds. 

Correspondingly, the total number of the captured frames is 1026NF =  and the number 

of frame per excitation period is513 13.5 38= frames. Fig.5.9 (a) shows the first 38 curve 

fitted consecutive vibration profiles. The total used 

time ( )38 1 513 0.07212sec 0.072secT = − = ≈ , which was the rounded value shown 
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Fig. 5.9: Response to an excitation at 13.5HzΩ = : (a) 38 consecutive vibration profiles 
(0.072 sec), (b) trajectories of marker (2, 6, 10, 15, 25), (c) trajectories of marker (25, 30, 
35, 40, 44, 47), (d) the frequency spectra of the Z-vibration of marker 25, (e) the 
frequency spectra of the Y-vibration of marker 25, (f) the frequency spectra of the Z-
vibration of marker 10, (g) the frequency spectra of the Y-vibration of marker 10, (h) the 
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modal coordinates of the X-Z plane vibration, (i) the frequency spectra of the modal 
coordinates of the X-Z plane vibration, (j) the modal coordinates of the X-Y plane 
vibration, and (k) the frequency spectra of the modal coordinates of the X-Y plane 
vibration. 
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 in the experimental output data file. The vibration profiles on the X-Y and X-Z planes 

are not symmetric and there are intersections between different profiles. This means the 

vibration waves are traveling or propagating, which is due to the participations of modes 

(mainly the second mode) other than the first one. Moreover, the vibration profiles in the 

two planes tilt to different directions. This is due to different phases of the two major 

vibration components (the first and second linear normal mode) for vibrations in the two 

polarized planes. This can be seen in from the time-domain traces of the modal 

coordinates shown in Fig. 5.9(h) and (j). Fig. 5.9(h) and (j) also show that the major 

modes are the first and second modes that have amplitudes about 10mm and 2mm, 

respectively. Higher modes are negligible compared with these two. The frequency 

spectra of the modal coordinates show that the first mode vibrated at the excitation 

frequency. The second mode vibration contained two harmonics. The first one is Ω  with 

a small amplitude and the other one is 2Ω  with a larger amplitude. The first one is due to 

linear coupling because the excitation frequency is not close enough to the natural 

frequency of the first or the second linear normal mode. The second one is due to 1:2 

internal resonance. So, internal resonances 1 1 2 2: : : 1:1: 2 : 2ω λ ω λΩ = = between the 

first symmetric and anti-symmetric in-plane and out-of-plane modes happened. 

Here 1ω = Ω means the in-plane symmetric mode is directly excited and has a 

frequency 1ω  equal to the excitation frequencyΩ . This type of simultaneous internal 

resonances was not theoretically predicted and studied before. We conjecture that this is 

because the cross-over and corresponding commensurable relations between frequencies 

does not really exist though the cable is at the first crossover based on the linear theory. 
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The cable behaved more like a string and the commensurable relations of frequencies of a 

string dominated the vibration. However, the quadratic nonlinearity due to initial 

curvature exists and consequently the 1:2 simultaneous resonances happened. Figs. 

5.9(d)-(g) show the frequency spectra of in-plane and out-of-plane vibrations of marker 

25 (approximately the midpoint of the cable) and marker 10 (about 1/4 span of the cable). 

Again, the major harmonics were 13.5406Hz ≈ Ω and 27.08 2Hz ≈ Ω for vibrations in both 

planes. We note that amplitudes of the 2Ω components in two planes of marker 10 are 

much larger than those of marker 25. This is consistent with the fact that the 1/4 location 

was at the peak of the second mode shape.  

Figs. 5.9 (b) and (c) are trajectories of markers 2, 6, 10, 15, and 25 and markers 

25, 30, 35, 39, and 43 plotted in one figure, respectively. It is interesting to see the shapes 

of the trajectories, which was not shown or observed by previous researchers because 

their experimental could measure only one point. Using the major harmonics and their 

amplitudes of the responses in two directions, we numerically simulated the vibration and 

obtained trajectories almost the same as above experimental results. The number of 

points in each trajectory reveals that the vibration was periodic and had a frequency Ω  

because each maker came back to the same position after exactly one excitation period. 

At the end of this branch, responses were fully excited first-mode vibrations. Fig. 5.10 

show the vibration profiles when the cable was excited at 38HzΩ = . The major harmonic 

is the first symmetric mode for both in-plane and out-of-plane vibrations. The second 

mode (the first anti-symmetric mode), though with a small amplitude, are not negligible 

and accounts for the unobvious but discernible crossovers between different profiles. 
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Fig. 5.10: Response to an excitation at 38HzΩ = : (a) 28 consecutive vibration profiles 
(0.051 sec), and (b) trajectory of marker 25. 
 

The second branch (B2) started at 12.5Hz  with planar vibrations mainly 

composed of the first and second modes. It existed in the whole frequency range of our 

test. At the beginning, the multi-mode planar vibrations were basically due to linear 

coupling because the excitation was not close to the natural frequencies of neighboring 

linear normal modes. Also small damping makes modes with natural frequencies close to 

the excitation frequency to be excited. As the excitation frequency increased, the second 

mode participated more and more and finally took over the first mode, and became the 

predominant component of the non-planar vibration. As the excitation frequency was 

close to the natural frequency of the second mode, multi-mode resonances due to 

nonlinear coupling happened.   

Fig. 5.11 show the response of the cable excited at 18HzΩ = , a typical non-planar 

response of the second branch. The frame rate used was 522FPS and the recording time 

length was 2 seconds. Correspondingly, the total number of captured frames 

was 1044NF = and the number of frame per excitation period was522 18 29= .  
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Figs. 5.11(a) and (b) show 29 and 58 curve-fitted consecutive vibration profiles 

respectively. The time length is ( )29 1 522 0.054secT = − = for Fig. 5.11(a) and 

0.109sec for Fig. 5.11(b). These profiles indicate that the vibration as periodic because 

the cable came back to the same position and had the same shape after some time. The 29 

asymmetric profiles shown in Fig. 5.11(a) indicate that the period of the vibration was 

longer than the excitation one because the vibration did not come back to the same 

position after one excitation period. The 58 symmetric profiles shown in Fig. 5.11(b) 

indicate that the period was doubled because the cable came back to the same position 

after two excitation periods. These profiles sow that the wave was traveling and different 

parts of the cable passed through their zero or maximum deflection positions at different 

time instants, which is an important characteristic of complex vibration.  
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Fig. 5.11 (Continued) 
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Fig. 5.11 (Continued) 



 207

0 500 1000 1500
0

50

100
(o)

X (mm)

Et

0

20

40

E
x

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

SD

Time (sec)

0 500 1000 1500
0

100

200
(n)

X (mm)

Et

0

20

40

E
x

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

SD

Time (sec)

 

Fig. 5.11: Response to an excitation at 18HzΩ = : (a) 29 consecutive vibration profiles 
(0.054 sec), (b) 58 consecutive vibration profiles (0.109 sec), (c) trajectory of marker 15, 
(d) trajectory of marker 25, (e) trajectory of marker 35, (f) Poincare section of marker 15 
by sampling once per excitation period, (g) Poincare section of marker 15 by sampling 
once per two times excitation period, (h) the frequency spectra of the vibration in the X-Z 
plane of marker 15, (i) the frequency spectra of the vibration in the X-Y plane of marker 
15,  (j) the modal coordinates of the X-Z plane vibration, (k) the frequency spectra of the 
modal coordinates of the X-Z plane vibration, (l) the modal coordinates of the X-Y plane 
vibration, (m) the frequency spectra of the modal coordinates of the X-Y plane vibration. 
(n) error functions of the modal decomposition of the X-Z plane vibration, (o) error 
functions of the modal decomposition of the X-Y plane vibration. 
 

Figs. 5.12 and 5.13 show instant profiles of the in-plane and out-of-plane 

vibrations during two excitation periods (58 frames in 0.109 seconds). It is obvious that, 

during the 0.109 seconds, the vibration in the X-Y plane finished only one period while 

the vibration in the X-Z plane finished two periods. In Fig. 5.12, frames#1-#26 belong to 

the first period, and frames from #30 to #58 belong to the second period but they have the 

same shapes as frame #1 - #26. In Fig. 5.13, the out-of-plane vibration, however, shows 

distinctive shapes for all time instants, except the beginning one and ending one. 
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Fig. 5.12: The instant profiles of the in-plane (X-Z) vibration during two excitation 
periods (58 frames). The solid line denotes the vibrating profile and the dashed line 
denotes the static equilibrium configuration. 
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Fig. 5.13: The instant profiles of the out-of-plane (X-Y) vibration during two excitation 
periods (58 frames). The solid line denotes the vibrating profile and the dashed line 
denotes the static equilibrium configuration. 
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Figs. 5.11 (j) – (m) show the time-domain plots of the modal coordinates of the 

XY- and XZ-plane vibrations and their corresponding frequency spectra. The X-Z plane 

vibration was mainly composed of the first anti-symmetric mode vibrating at the 

excitation frequency ( )2ωΩ =   with an amplitude about 2mm. The modal coordinate of 

the first mode had a negative shift about 4mm which is equal to the initial sag of the 

cable. The X-Y plane vibration was mainly composed of the first symmetric mode 

vibrating at ( )12 λΩ = and the first anti-symmetric mode vibrating at Ω ( )2λ= . These 

two modes had approximately the same amplitude of 1.6mm. The participations of these 

two modes caused the cross-over of profiles, and hence the node was not clear. 

Vibrations of higher modes are negligible compared with these two. The 

2 2 1: : 2 : 2 :1ω λ λ =  resonances between the first in-plane anti-symmetric mode and the 

first out-of-plane anti-symmetric and symmetric modes happened. Fig. 5.11(e) shows that 

the phase difference between the two major modes is not 0 or π , which is another 

character of complex vibration. Thus the concept of nonlinear normal mode is 

questioned. Fig. 5.11(j) show that the phases of the first harmonic (although negligible) 

and the second one are the same. The X-Z plane vibration was not complex and we see 

no traveling waves in Fig. 5. 11 (a).  

Figs. 5.11-(c) - (e) show trajectories (Y-Z views) of markers 15, 25 and 35 for the 

whole test period. Compared with that of marker15, the trajectory of marker 35 is an 

upside-down version of the trajectory of marker 15, which is expected because the 

vibration profiles were anti-symmetric with respect to the mid-point of the cable. The 

trajectory of marker 15 was two ellipses with a finite number (58) of dots evenly 
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distributed along the two ellipses, indicating it is a periodic motion. The trajectory of 

marker 25 has a V shape because it is at the middle position where the semi-minor axis of 

the ellipse shrinks to almost zero while the semi-major axis of the ellipse does not. The 

arrows indicate the vibration route. The number of dots is two times of the number of 

frames captured during one excitation period, which means the vibration period is 

doubled. The dots in Fig.5.11- (f) and (g) are Poincare section plots of marker 15, 

obtained by sampling the position of the targeted marker once per period and once per 

two periods respectively. There are two dots in Fig. 5.11(f) and only one dot in Fig. 

5.11(g), which means marker 15 came back to the same position after two periods instead 

of one. Period-doubling is verified again. The excitation period is 1/T = Ω  

, 1/ 25 0.04T Hz s= = in this case. So the total recorded number of frames in the Poincare 

section for the two seconds is1000 /(500 0.04) 50× = . Figs. 5.11 (c) and (e) show that the 

vibrations of markers 15 and 35 consisted of two components, one made the ellipse and 

the other accounted for the sway of the ellipse. This is consistent with the results shown 

Fig. 5.11 (a) and (b), which reveals that there are multi-mode vibrations in the X-Y plane. 

For markers closer to the middle point, the minor and major axes of the trajectory will be 

smaller. We note that the swing of the ellipse still exists. Figs. 5.11 (h, i) are frequency 

spectra of vibrations of markers 15 in the X-Y and X-Z planes, respectively. We choose 

to analyze the time domain data of marker 15 because the second mode had a peak 

around this marker. The amplitudes of the first and second modes at marker 15 are closer 

compared with those at other marker locations and so the participation of the second 

mode is more discernible. For the X-Y plane vibration, there are two major harmonics as 

shown in Fig. 5.11(i). One is 1 9.18Hz 2λ = ≈ Ω  with a magnitude about 1.2mm and the 
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other is 2 18.75Hzλ = ≈ Ω  with an amplitude about 1.5mm verifying that marker 15 is 

around the peak position of the second mode. For the X-Z plane vibration shown Fig.5.11 

(h), there is only one major harmonic which has a frequency 2 18.75Hzω = ≈ Ω . It took 

two excitation periods for the first symmetric mode vibrating at frequency 1λ to finish 

one complete period, making the period of vibration doubled. The frequency spectrum of 

marker 25 is of a chaotic type. This is because of the inaccurate measurement of the 

vibration due to the small vibration amplitude, and hence the modes can not be 

distinctively decomposed. Simultaneous internal resonances 2 2 1: : 2 : 2 :1ω λ λ = , where 

2 2: 2 : 2ω λ = is a primary resonance and 2 1: 2 :1ω λ = is a 1 2 sub-harmonic 

resonance, happened between the first anti-symmetric in-plane mode, the first anti-

symmetric and the first symmetric out-of-plane mode. The frequency spectra of 

vibrations of marker 35 in the X-Y and X-Z planes have the same properties as those of 

marker 15. Figs.5. 11(n, o) are spatial and temporal domain errors of the decomposition, 

Ex, Et and SD of vibrations in the X-Y and X-Z planes. The pretty small values of the 

error functions indicate that four modes are enough for an accurate decomposition of this 

response.  

At the end of the second branch, it was a fully excited first anti-symmetric mode 

vibration. Fig. 5.14(a) shows the curve-fitted vibration profiles when the cable was 

excited at53Hz . The exclusively dominant harmonic is the first anti-symmetric mode 

for both in-plane and out-of-plane responses. Other participating modes, though with 

small amplitudes, are not completely negligible and account for the asymmetry of the 

vibration profiles. Additionally, we point out here that the local coordinate system XYZ 
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defined specific markers might not be really vertical and horizontal, and the Z direction 

might not be exactly the excitation direction. This might cause the artificial crossovers 

between different profiles. Comparing Fig. 5.14(a) with Fig. 5.11(a), and with other 

responses of this branch, we see that the amplitude of the first symmetric out-of-plane 

mode increased first due to the existence of the 1 2 sub-harmonic resonance and then it 

became almost zero, indicating the disappearance of resonance. The amplitudes of the 

first anti-symmetric mode of the in-plane and out-of-plane vibrations increased as the 

excitation frequency increased. 
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Fig. 5.14: Response to an excitation at 53HzΩ = : (a) 20 consecutive vibration profiles 
(0.036 sec), (b) trajectory of marker 12. 
 

The third branch (B3) started with a planar vibration mainly composed of the 

second and third modes. As the excitation frequency increased, the third mode 

participated more and more and finally became the predominant component. Under some 

low-frequency excitations, we did not obtain stable planar response, which might be due 

to the stable frequency interval was too small. Under higher-frequency excitations, the 

responses were mainly composed of the second symmetric mode for the in-plane and out-
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of-plane vibrations.  Fig. 5.15 shows the vibration profiles when the cable was excited 

at 53HzΩ = . It is obvious that the major mode is the second symmetric mode for both in-

plane and out-of-plane vibrations. 
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Fig. 5.15: Response to an excitation at 53HzΩ = : (a) 20 consecutive vibration profiles 
(0.036 sec), and (a) trajectory of marker 8.  
 

The fourth branch (B4) started at 35Hz with a non-planar vibration consisting of 

multiple modes.  Theoretically predicted planar vibration representing the transition from 

the third mode to the fourth mode was not observed. It might be due to the closeness of 

the excitation to integral times of the natural frequencies of all neighboring modes and 

hence both linear and nonlinear couplings happened. Small damping makes the effective 

response interval of each mode wider and so neighboring modes can be more easily 

excited by linear coupling. Because the cable was at the first crossover point, some 

modes might be excited by nonlinear modal coupling. Figs. 5.16 (a) and (b) show 15 and 

30 consecutive vibration profiles respectively when the cable was excited at35Hz . The 

vibration completed a cycle in two excitation periods. Figs. 5.16(g)-(j) show the modal 

coordinates and corresponding frequency spectra of the XY- and XZ-plane vibrations. 
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The third (the second symmetric 3ω ) and fourth (the second anti-symmetric 4ω ) modes 

were excited simultaneously through linear modal coupling because the excitation 

frequency was close to the third and fourth natural frequencies. The second mode (the 

first anti-symmetric one 2ω  ) was excited by the 1 2 sub-harmonic 

resonance 4 2: 2 :1ω ω =  due to quadratic nonlinearity. Vibrations in both planes had the 

same harmonics but their vibration profiles were different. This is due to different 

contributions from participating modes. As the excitation frequency increased, the fourth 

in-plane mode (the second anti-symmetric in-plane mode 4ω ) was more and more 

directly excited. The third mode (the second symmetric in-plane mode 3ω ), was excited 

due to linear coupling and initially had a small amplitude, but its amplitude decreased as 

the excitation frequency increased. The second mode (the first anti-symmetric mode 2ω ) 

was excited by the 1 2 sub-harmonic resonance because of quadratic nonlinearity, and 

was excited more and more in both planes.  

Figs.5.16 (c)-(f) show frequency spectra of markers 10 and 20 in the X-Y and X-Z 

planes. They confirm above conclusions. Figs. 5.17 (a) and (b) show 13 and 26 

consecutive vibration profiles respectively when the cable was excited at 40HzΩ = . First 

of all, the vibration completed a cycle in two excitation periods, as shown in Fig. 5.17(b). 

We see that the major vibrating modes were the second mode (the first anti-symmetric 

mode) and the fourth mode (the second anti-symmetric mode) for both in-plane and out-

of-plane vibrations.  Figs. 5.17 (m)-(p) show the modal coordinates and corresponding 

spectra for the XY- and XZ-plane vibrations. The two major components with large 

amplitudes were the second and fourth modes for vibrations in both planes and they 
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vibrated at 2Ω and Ω , respectively. Simultaneous resonances 

4 2 4 2: : : 2 :1: 2 :1ω ω λ λ = happened. The fourth mode 4λ  was excited by the 1:1 

resonance. The second mode, both the first anti-symmetric in-plane and out-of-plane 

mode with frequencies 2ω and 2λ , were excited by the 2:1 internal resonance because of 

the quadratic nonlinearity. Figs. 5.17 (i)-(l) show the frequency spectra of the XY- and 

XZ-plane vibrations of marker 7 (close to the peak of the fourth mode) and marker 12 

(close to the peak of the second mode). It is shown that, at marker 7, the amplitude of the 

fourth mode had a larger amplitude, and the second mode had a larger amplitude at 

marker 2. Figs. 5.17 (c)-(f) show the trajectories of markers 8, 19, 32, and 44, 

respectively. Due to the contributions of different modes at different locations were not 

the same and the asymmetry of two major modes, the trajectories were not symmetric and 

had preferred directions. They all had two close loops. They were about symmetric with 

respect to the middle node of the cable between the trajectories of markers 8 and 32 and 

markers 19 and 44, and they were anti-symmetric with respect to the 1/4 point of the 

cable between the trajectories of markers 8 and 19 and markers 32 and 44. This can be 

explained by the anti-symmetry of the two main contributing modes. Moreover, because 

markers 32 and 44 are close to the excitation end, their responses were more influenced 

by the support-end vibration, which was not small compared with the small amplitudes of 

the excited higher modes. The Poincare sections of marker 32 shown in Figs. 5.17(g) and 

(h) reveal that there were two points if sampling once per period and only one point if 

sampling once every two periods. This tells us the period of vibration was doubled. 

Simultaneous resonances 4 2 4 2: : : 2 :1: 2 :1ω ω λ λ = are verified again. Fig. 5.18 shows 



 217

plots of responses of the cable excited at 53HzΩ = . They verified our above observations 

on the responses of Branch#4 again. 

 

5.4. Conclusion and Discussion 

The forced vibration of a cable at the first crossover, with the elasto-geometric 

parameter 2κ π ≈ , was experimentally investigated using a 3-D motion analysis 

system. Isolated and simultaneous resonances were observed. These include 

(1) : 1:1, 1, 2,3, 4i i iω λΩ = = =  (happen on branches B1, B2, B3, and B4) 

(2) 1 1 2 2: : : 1:1: 2 : 2ω λ ω λΩ = = (happen on branch B1). 

(3) 2 2 1: : 2 : 2 :1ω λ λΩ = = (happen on branch B2) 

(4) 4 2 4 2: : : 4 : 2 : 4 : 2ω ω λ λΩ = = (happen on branch B4) 

where 1 2 3, ,λ λ λ , and 4λ are the frequencies of the first and second symmetric and anti-

symmetric out-of-plane modes, respectively. 1 2 3, ,ω ω ω , and 4ω  are the frequencies of 

the first and second symmetric and anti-symmetric in-plane modes respectively. 

Whenever there is an excited mode vibrating at one half of the excitation frequency, the 

vibration period is doubled (i.e., cases (3) and (4)). Quasi-periodic and chaotic motions 

were not observed. This might be due to the use of a large frequency increment (1Hz ) or 

the frequency interval of these responses were too small so that they were missed. The 

natural frequencies were changed by the quadratic and cubic nonlinearities.  
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Fig. 5.16: Response to an excitation at 35HzΩ = : (a) 15 consecutive vibration profiles 
(0.027 sec), (b) 30 consecutive vibration profiles (0.055 sec),  (c) the frequency spectra of 
the vibration in the X-Z plane vibration of marker 10, (d) the frequency spectra of the X-
Y plane vibration of marker 10,  (e) the frequency spectra of the X-Z plane vibration of 
marker 20, (f) the frequency spectra of the X-Y plane vibration of marker 20,  (g) the 
modal coordinates of the X-Z plane vibration, (h) the frequency spectra of the modal 
coordinates of the X-Z plane vibration, (i) the modal coordinates of the X-Y plane 
vibration, and (j) the frequency spectra of the modal coordinates of the X-Y plane 
vibration.  
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Fig. 5.17 (Contined) 
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Fig. 5.17: Response to an excitation at 40HzΩ = : (a) 13 vibration consecutive profiles 
(0.023 sec), (b) 26 consecutive vibration profiles (0.048 sec), (c) trajectory of marker 8, 
(d) trajectory of marker 19, (e) trajectory of marker 32, (f) trajectory of marker 44, (g) 
Poincare section of marker 32 by sampling once per excitation period, (h) Poincare 
section of marker 32 by sampling once every  two excitation periods, (i) the frequency 
spectra of the X-Z plane vibration of marker 7, (j) the frequency spectra of the X-Y plane 
vibration of marker 7, (k) the frequency spectra of the X-Z plane vibration of marker 12, 
(l) the frequency spectra of the X-Y plane vibration of marker 12, (m) the modal 
coordinates of the X-Z plane vibration, (n) the frequency spectra of the modal coordinates 
of the X-Z plane vibration, (o) the modal coordinates of the X-Y plane vibration, and (p) 
the frequency spectra of the modal coordinates of the X-Y plane vibration.  
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Fig. 5.18: Response to an excitation at 53HzΩ = : (a) 10 consecutive vibration profiles 
(0.017 sec), (b) 20 consecutive vibration profiles (0.036 sec), (c) the frequency spectra of 
the X-Z plane vibration of marker 10, (d) the frequency spectra of the X-Y plane 
vibration of marker 10, (e) the frequency spectra of the X-Z plane vibration of marker 18, 
(f) the frequency spectra of the X-Y plane vibration of marker 18, (g) the modal 
coordinates of the X-Z plane vibration, (h) the frequency spectra of the modal coordinates 
of the X-Z plane vibration, (i) the modal coordinates of the X-Y plane vibration, and (j) 
the frequency spectra of the modal coordinates of the X-Y plane vibration.  
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CHAPTER 6 

PACKAGING ANALYSIS OF HIGHLY FLEXIBLE 

TRIANGULAR FRAMES 

 

This chapter presents the derivation of a geometrically exact beam theory for 

highly flexible beams undergoing large deformations by following Nayfeh and Pai 

(2004). The theory fully accounts for large displacements, large rotations, initial 

curvatures, extensionality and transverse shear strains. The concepts of local 

displacements, Jaumann stress and strain measures, and orthogonal virtual rotations are 

used to derive the geometrically exact beam theory. The extended Hamilton principle is 

used to derive fully nonlinear governing equations. Then the geometrically exact beam 

theory is presented in terms of first-order ordinary differential equations and is applied to 

the packaging analysis of a highly flexible triangular frame using multiple-shooting 

method. 

 
6.1 Reference Line Deformation 

 
Fig. 6.1 A rotating clamped-free beam. 
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A naturally curved and twisted beam, as shown in Fig. 6.1, is considered. Three 

coordinate systems are used in order to model the large deformations of beams. The 

system xyz is an orthogonal curvilinear coordinate system, where the axis x denotes the 

undeformed reference line of the beam and s  is the undeformed arc length from the root 

of the beam to the reference point on the observed cross section. The system abc  is a 

rectangular coordinate system attached to the beam root and is used for reference in 

calculating initial curvatures. The system ξηζ  is a local orthogonal curvilinear 

coordinate system, where the axes ξ  represents the deformed reference line and the axes 

η  and ζ  represent the deformed configurations of the axes y  and z . Moreover, 

,x yi i and zi are the unit vectors along the axes x , y  and z , respectively; ,a bi i  

and ci are the unit vectors along the axes ,a b and c , respectively; and 

1 2,i i and 3i are the unit vectors along the axes ,ξ η and ζ , respectively.  

The undeformed position vector R of the reference point of the observed cross 

section is represented by  

R ( ) ( ) ( )a b cA s B s C s= + +i i i     (6.1.1) 

Also, the undeformed angles ,21θ ,22θ  and 23θ  of the axis y with respect to the abc  

system are assumed to be known and given by 

             )(cos),(cos),(cos 1
23

1
22

1
21 cy

-
by

-
ay

- ii   ii   ii ⋅=⋅=⋅= θθθ               (6.1.2) 

where i2θ  are functions of s only and 1800 2 ≤≤ iθ . Differentiating Eq. (6.1.1) with 

respect to s yields 
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where ( ) ( ) s∂∂≡′ / . Because of Eqs. (6.1.2) and (6.1.3) and yxz iii ×= , we obtain 
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where the transformation matrix ][ xT  is given by 
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Using Eqs. (6.1.4) and (6.1.5), the orthonomality property of ix, iy, and iz, (e.g., 

xyyxxx iiii  ii ⋅′−=⋅′=⋅′ ,0 ) and the identity Tx1x ][T][T =−  (because ][T x  is a unitary 
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where 1k , 2k , and 3k  are the initial curvatures with respect to the axes x, y, and z, 

respectively, and they are functions of s and are given by 
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Following Alkire (1984), we use two sequential Euler angles α  and φ  to describe the 

rotation of the observed element from the undeformed position to the deformed one, as 

shown in Fig. 6.2. The angle α represents the bending rotation of the element about the 

axis n. The system xyz  is rigidly translated and then rotated by an angle α  about the axis 

n to produce the intermediate system 11zyξ . The transformation relating the unit vectors 

of these two systems is 
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where 2i ˆ  and 3i ˆ  are unit vectors along the 1y  and 1z , respectively. The transformation 

matrix )]([ αB  is due to the bending rotationα , which rotates the axis x to the axis ξ , the 

axis y to the axis 1y , and the axis z to the axis 1z . The angle between y and 1y , and the 

angle between z and 1z  are not equal to α  because the planes 1yy  and 1zz  are not 

perpendicular to the axis n. The intermediate system is then rotated by an angle φ  about 

the axis ξ  to produce the system ξηζ . The transformation matrix that relates the unit 

vectors along the axes of these two systems is given by 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

3̂

2̂

1

3

2

1

cossin0
sincos0

001

i
i
i

i
i
i

φφ
φφ                (6.1.10) 

The second rotation φ  is related to the torsional motion about the bent reference axisξ . 
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Hence, the transformation which relates the undeformed coordinate system xyz to the 

deformed coordinate system ξηζ  is 
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where TTT ][][ 1 =−  since ][T  is a unitary matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.2:  Two successive Euler angle rotations of a differential beam element. 
 

 
Next we represent )]([ αB  in terms of the displacements u, v, and w of the reference point 

of the observed cross section. First, we relate )]([ αB  to α  and the components 1n , ,2n  and 

3n  of the unit vector n ( zyx nnn iii 321 ++= ). To accomplish this, we derive an expression 

for the transformation of an arbitrary vector r undergoing a rotation by an angle α  about 

an axis n. In Fig. 6.3, we show a plate OAB rotated by an angle α  about
____
OA . The line 

____
OA  is perpendicular to

____
OB , and n, ,aj  bj , and âj  are unit vector. It follows from Fig. 6.3 

that 

arr j   n   r θθ sincos +=                 (6.1.12) 
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arr ˆsincosˆ j   n   r θθ +=                    (6.1.23) 

             baa j   j    j αα sincosˆ +=                  (6.1.34) 

It follows from Eq. (6.1.12) and Fig. 6.3 that 

rn
rn
rnj ×=

×
×

=
θsin

1
rb                   (6.1.45) 

Moreover, it follows from Eq. (6.1.15) and Fig. 6.3 that 

[ ]nnrrnr)nnjj )(
sin
1(

sin
1

⋅−=××=×=
θθ rrba       (6.1.56) 

Substituting Eqs. (6.1.14)-(6.1.16) into Eq. (6.1.13) and using the identity nr ⋅=θcosr  

yields 

rnrnnrr ×++⋅−= ααα sincos))(cos1(ˆ                (6. 1.67) 

which shows the relation between the arbitrary vector r and its rotated vector r̂ . In Fig. 

6.2, because xi  is transformed into 1i  by the rotationα , it follows from Eq. (6.17) that 

)(sincos)cos1( 2311 zyx nnn iii ni −++−= ααα       (6. 1.78) 

Similarly, because yi  is transformed into 2̂1 ii =y  and zi  is transformed into 3̂1 ii =z , we 

have 

( ) ( )zxy nnn iii ni 1322̂ sincoscos1 +−++−= ααα    (6. 1.89) 

( ) )(sincoscos1 1233̂ yxz nnn iii ni −++−= ααα    (6. 1.20) 

It follows from Eqs. (6.1.18) - (6.1.20) and (6.1.9) that 
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where [ ]I  is a 33×  identity matrix. 

Next, we relate in  and α  to u, v, and w. To this end, we show in Fig. 6.4 the 

relationship between the reference line and the Euler angles α  andφ . It follows from Fig. 

6.4 and Eqs. (6.1.6) and (6.1.7) that the displacement vectors of points p and q are 

     zyx wvup iiiD   : ++=1                   (6.1.102) 
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1 3 2 3 1 2 1
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Fig. 6.3:  The rotation of a vector r through an angle α with respect to the axis n. 

 

Thus, the vector from the deformed reference point p̂  to the deformed reference point 

q̂ is 
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Therefore, it follows from Eqs. (6.1.24) and (6.1.11) that 
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where e denotes the axial strain along the deformed reference line and 
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It follows from Eq. (6.1.24) and Fig. 6.4 that the relationship between the axial strain e 

and the displacements is  
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  (6.1.157) 

A rotation axis n and a rotation angle α about the n axis are used to define the bending 

rotation. As shown in Fig. 6.4, the axis n is chosen to be 
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                   (6.1.168) 

Substituting for 1i  from Eq. (6.1.25) into Eq. (6.1.28) yields 
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Substituting Eq. (6.1.29) into Eq. (6.1.21), assuming 1800 <≤ α , and using the 

relationship  
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we obtain                  
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Therefore from Eq. (6.1.11) we have 
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Fig. 6.4:  Relationship between the reference line and the Euler angles. 
 
 

Moreover, φ  is the Euler angle related to the twisting angle of the observed cross section 

with respect to the deformed reference axis ξ  and e is the axial strain along the axis ξ . It 

follows from Eq. (6.1.32) that 2iT and 3iT can be represented in terms of  

φandTTT 13,1211,  as 
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Because [ ]T  is a unitary matrix, we have the identity 

                                                 [ ] [ ] 1−= TT T                                                                (6.1.34) 

Differentiating Eq. (6.1.11) with respect to s yields 
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where 1ρ  is the deformed twisting curvature and 32 ρρ and  are the deformed bending 

curvatures. We note that iρ  are not real curvatures because the differentiation is with 

respect to the undeformed differential length ds, instead of the deformed length (1+e)ds. 

Post-multiplying Eq. (6.1.36) by [ ]T  and using Eq. (6.1.34) yields 
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Using Eqs. (6.1.35), (6.1.36), (6.1.11) and (6.1.4), one can show that 
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      313212111233322322131 kTkTkTTTTTTT +++′+′+′=  

where we used the identities 1 2 3 2 3 1,× = × =i i i i i i and 3 1 2× =i i i . Substituting Eq. 

(6.1.33) in Eq. (6.1.38), one can show that 
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Equation (6.1.39) shows that 11 k−≠′ ρφ  because of the initial curvatures ik  and the 

deformation induced iT1 . In other words, φ  is not the actual twisting angle. 

 

6.2 Constitutive Equation and Strain-Displacement Relation 

Jaumann strains ijB  are chosen for this study because they are fully nonlinear 

objective strains and are work conjugate to Jaumann stresses ijJ . For beams consisting of 

laminated orthotropic layers, Jaumann stresses and strains are related as 
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where [ ]Q  is the transformed, reduced material stiffness matrix and is symmetric. If [ ]Q  

is the 66×  material stiffness matrix of the ith layer with respect to the layer’s material 

direction, the transformed material stiffness matrix [ ]Q̂  can be obtained by coordinate 

transformation using the angle between the material direction and the structural 

coordinate x . Then the 66×  matrix [ ]Q̂  can be reduced to the 33×  matrix [ ]Q  in Eq. 

(6.2.1) by assuming 0233322 === JJJ . 

For an isotropic material, one can assume that 
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                                                            (6.2.2) 

where E is Young’s modulus, G( )1/( υ+= E ) is shear modulus, and υ  is Poisson’s ratio. 

Because rigid-body displacements do not result in any strain energy, to calculate 

the elastic energy we only need to deal with the strainable, local displacement field U. 

The local displacement field of a beam can be assumed to be 

1 1 2 2 3 3u u u= + +U i i i  
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where t is the time; 321 , uanduu  are local strainable displacements with respect to the 

axes ξ, η and ζ , respectively; );,0,0,(),(0 tsutsu ii ≡  0iii θθθ −≡ ; 321 , θθθ and  are the 

rotation angles of the observed cross section with respect to the axes ,ζand,η,ξ  

respectively; 302010 , θθθ and  are the initial rotation angles (after the rigid-body 
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displacements u, v, w and φ ) of the observed cross section with respect to the axes 

,ζandη,,ξ  respectively. Furthermore, iii k−= ρρ ; 321 , ρρρ and  are the deformed 

curvatures with respect to the axes ,ζandη,,ξ  respectively;  321 , kandkk  are the initial 

curvatures with respect to the axes x, y, and z, respectively. Moreover, e is the 

extensional strain of the reference line, and 65 γγ and  are the shear rotation angles at the 

reference point and with respect to the axes y and –z, respectively. 11g  is the torsion 

induced out-of-plane warping function; 15g  and 16g  are shear-induced out-of-plane 

warping functions; 22g , 23g , 32g  and 33g  are bending-induced in-plane warping 

functions; and 24g  and 34g  are extension-induced in-plane warping functions. Because 

0
iu  are defined as ),,0,0,(),(0 tsutsu ii ≡  0)0,0(| )0,0(),( === ijzyij gg . 

Because the system ξηζ  is a local coordinate system attached to the observed 

cross section and the unit vector 1i  is tangent to the deformed reference axis, we have 
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It follows from Eqs. (6.2.3), (6.2.4), (6.1.35) and (6.1.36) that 
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(6.2.4)
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Without performing any complex polar decomposition, Jaumann strains ijB  can be 

derived using the local displacement field as 
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The eandi ′′ρ  in Eq. (6.2.6) will be neglected because these secondary effects are 

important only in the study of in-plane and torsional warping restraint effects around the 

two boundary points of a thick beam. Furthermore, the nonlinear terms 

eand ijiji ργρρρ ,  are secondary effects due to the coupling of curvatures and 

warpings. For thick beams, the deformed curvatures iρ  cannot change very much from 

the undeformed curvatures ik  before structural failure. For thin beams, the warpings are 

(6.2.5)

(6.2.6)
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negligible. Hence, iρ  will be replaced with ik  in these nonlinear terms. Therefore, 

without significant loss of accuracy, Eq. (6.2.6) can be simplified as 

( ) ( )
( ) ( )
( )

11 2 3 1 11 5 15 6 16 2 2 32 3 33 34 3 2 22 3 23 24

12 1 1 11 5 15 6 16 3 1 11 5 15 6 16 1 2 32 3 33 34

13 1 1 11 5 15 6 16 1 2 22 3 23 24 2 1 11 5 1

y y y

z z z

B e z y g g g k g g eg k g g eg
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B y g g g k g g eg k g g

ρ ρ ρ γ γ ρ ρ ρ ρ
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ρ ρ γ γ ρ ρ ρ γ
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= + + + + + + − +( )5 6 16gγ+

 (6.2.7) 

 
These strains can be put in matrix form as 
 

{ } [ ]{ }ψε S=                                                                      (6.2.8) 
where 

{ } { }TBBB 131211 ,,≡ε  
 

and 
 

{ } { }Te 5632156 ,,,,,,, γγρρργγψ ′′≡  
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         (6.2.9) 

 
The variation of the elastic energy V can be obtained from Eqs. (6.2.1), (6.2.2), (6.2.8) 

and (6.2.9) as 
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                        (6.2.10) 

 
where A is the cross-sectional area, L is the curvilinear beam length, 

{ } { }TJJJ 131211 ,,=σ  and 
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Here [ ]D  is a 88×  symmetric matrix; 321 , λλ andF  are stress resultants work-

conjugate to 56, γγ ande , respectively; iM  are stress moments work-conjugate to 

321 , ρρρ and , respectively; and 32 mandm  are stress moments work-conjugate to 

65 γγ ′′ and , respectively. Inverting Eq. (6.2.11) yields 
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                           (6.2.12) 

where ]ˆ[ 1D  is a 86×  matrix, and ]ˆ[ 2D  is a 82×  matrix. We note that substituting the 

[ ]S  in Eq. (6.2.9) and the [ ]Q  in Eq. (6.2.1) into Eq. (6.2.11) yields a full 88×  matrix 

][D  for composite beams. 

In beam theories, the influence of warping functions is nothing but modifications 

of the stiffness matrix ][D , as shown in Eqs. (6.2.11) and (6.2.9). For thin beams, most of 

the influences of warpings are negligible except that the decrease of torsional stiffness 

due to torsional warping and the decrease of flexural rigidity due to transverse shear 
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warpings are significant and cannot be neglected. If in-plane and torsional warpings are 

neglected and Timoshenko’s beam theory (.i.e., the first-order shear theory) is adopted to 

account for transverse shear strains, we have 

ygzgggggggg ========= 161511343224233322 ,,0                         (6.2.13) 

The strain-displacement relations in Eqs. (6.2.7) and (6.2.9) become 

                                  653211 γγρρ ′+′+−+= yzyzeB   

                                 12 1 3 6 3 5(1 )B z yk zkρ γ γ= − + + +  

                                 13 1 2 5 2 6(1 )B y zk ykρ γ γ= + − −  

{ } [ ]{ } { } { }TeS 5632156 ,,,,,,,, γγρρργγψψε ′′≡=                                 (6.2.14) 
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Here 65 γγ and  are energy-averaged shear rotation angles, and the actual shear rigidities 

accounting for non-uniform shear strains and the actual torsional rigidity accounting for 

torsional warping can be accounted for by modifying ][D  and { }F̂  as 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

88187386858483182381

78377276757473372271

6867666564636261

5857565554535251

48474645444434241

38137336353433132331

28327226252423322221

1817161514131211

][

DcDcDDDDcDcD
DcDcDDDDcDcD

DDDDDDDD
DDDDDDDD
DDDDDcDDD
DcDcDDDDcDcD
DcDcDDDDcDcD

DDDDDDDD

D                           (6.2.15) 

{ } { } [ ]{ }ψDmmMMMFFFF T =−= 23321321 ˆ,ˆ,,,,,,ˆ  
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where 21 candc  are shear correction factors accounting for non-uniform shear strains 

over the cross section, and 3c  is the shear coupling factor accounting for the effect of 

coupling between 56 γγ and . Moreover, 4c  is used to account for the influence of 

torsional warping on the torsional rigidity. We note that 32,32 ˆˆ, mandmFF  are work-

conjugate to the energy-averaged shear deformations 6556 ,, γγγγ ′−′ and , respectively, 

and 32 FandF  also represent the actual transverse shear forces acting on the cross 

section. 

If the material is isotropic and homogeneous, if the cross section is rectangular, 

and if the origin of xyz is the area centroid, one can obtain from Eqs. (6.2.11), (6.2.13) 

and (6.2.14) and Fig. 6.1 that 
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The shear correction factors 1c , 2c , and 3c  can be calculated using an energy-equivalent 
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first-order shear-deformation theory (Pai and Schulz, 1999), and 4c  is obtained using the 

theory of elasticity (Timoshenko and Goodier, 1970). 

 

6.3 Governing Equations 

Variations of the unit vectors ji  are due to virtual rigid-body rotations of the 

coordinate system ξηζ  and are given by 
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                                              (6.3.1) 

where 1δθ , 2δθ , and 3δθ  are virtual rigid-body rotations with respect to the 

axes ζandηξ, , respectively. We note that iδθ  are infinitesimal rotations and hence they 

are vector quantities. Moreover, iδθ  are along three perpendicular directions and hence 

they are mutually independent. 

Using the extended Hamilton principle, Jaumann stress and strain measures, the 

first-order shear theory, and the concept of orthogonal virtual rotations iδθ , one can 

show that (Pai and Nayfeh, 2002) 
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where 1q , 2q , and 3q  are distributed forces per unit length along the axes x, y, and z, 

respectively; 4q , 5q , and 6q  are distributed moments per unit length along the axes ξ, η, 

and ζ, respectively; and Twvuuvw },,{}{ δδδδ ≡ . The rotary inertias of highly flexible 

beams are negligibly small and are neglected here. The equations governing fully 

nonlinear deformation of beams become 
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where TFFFF },,{}{ 321≡  and TMMMM },,{}{ 321≡ . The boundary conditions are 

of the form 
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where xF , yF , and zF  are the projections of stress resultants along the axes x, y, and z, 

respectively, and 1δθ , 2δθ , and 3δθ  are virtual rotations with respect to the axes ξ, η, 

and ζ, respectively. They are given by 
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                                                      (6.3.5) 

( )

1323122211213

1333123211312

2333223221311

TTTTTT

TTTTTT

TTTTTT

δδδδθ

δδδδθ

δδδδθ

++=

++−=

++=

                                         (6.3.6) 

Equations (6.3.3) and (6.3.4) are the equations of motion and boundary conditions for 

beams undergoing large deformations. 

It follows from equations (6.3.3) and (6.1.36) that 

)()()( 31321211132231 qwmTqvmTqumTFFF −+−+−+−=′ ρρ                              (6.3.7a) 

)()()( 32322212113312 qwmTqvmTqumTFFF −+−+−+−=′ ρρ                             (6. 3.7b) 

)()()( 33323213121123 qwmTqvmTqumTFFF −+−+−+−=′ ρρ                              (6. 3.7c) 

432231 qMMM −−=′ ρρ                                                                                         (6. 3.7d) 

( ) 5313312 1 qFeMMM −++−=′ ρρ                                                                         (6. 3.7e) 

( ) 6221123 1 qFeMMM −+−−=′ ρρ                                                                         (6. 3.7f) 

32ˆ Fm =′                                                                                                                      (6. 3.7g) 

23ˆ Fm −=′                                                                                                                    (6. 3.7h) 

Also we obtain from Eqs. (6.1.37), (6.1.36) and (6.1.7) that 

21331231221311 kTkTTTT −+−=′ ρρ                                               (6. 3.7i) 

31111332222312 kTkTTTT −+−=′ ρρ                                               (6. 3.7j) 

11221133223313 kTkTTTT −+−=′ ρρ                                              (6.61k) 

Substituting Eq. (6.3.7j) and Eq. (6.3.7k) and into Eq. (6.1.39) one can show that 
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Moreover, it follows from Eq. (6.1.26) that 

1123 )1(1 Tewkvku ++−+−=′                                                                     (6. 3.7m) 

1231 )1( Teukwkv ++−=′                                                                              (6. 3.7n) 

1312 )1( Tevkukw ++−=′                                                                              (6. 3.7o) 

And, it follows from Eqs. (6.2.12) and (6.2.15) that 
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                         (6. 3.7p, q) 

Eqs. (6.3.7a-q) are the seventeen governing differential equations. The seventeen 

unknown dependent variables are 

),(,,,,,,,,ˆ,ˆ,,,,,, 5613121132321321 γγφ wvuTTTmmMMMFFF                      (6.3.8) 

It can be seen from Eq. (6.3.4) that there are only sixteen boundary conditions, and hence 

the order of the system is sixteen. Consequently, there are only sixteen of the seventeen 

unknown variables are independent and one of the differential Eqs. (6.3.7a-q) is 

redundant, which is because 1i  is a unit vector and hence 

                                                     12
13

2
12

2
11 =++ TTT                                                    (6.3.9) 

In other words, 11T  is known when 12T  and 13T  are specified. However, using the 

seventeen equations instead of using sixteen equations makes the programming easier 

and the numerical results from the redundant equation can be used to double-check the 

results, especially to check whether 12
13

2
12

2
11 =++ TTT is satisfied. We note that Eqs. 
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(6.3.7g,h), and (6.3.7p,q) govern the shear deformations 5γ  and 6γ , and Eqs. (6.3.7a-f) 

and (6.3.7i-o) govern the bending and torsional deformations, and they are the same as 

the 13 equations of the 3D Euler-Bernoulli beam theory (Pai and Palazotto, 1996). 

Because 5γ  and 6γ  do not appear in Eqs. (6.3.7a-o) and they are usually 

unknown at boundaries, it is not necessary to integrate Eq. (6.3.7p,q). Hence, we can 

integrate only Eqs. (6.3.7a-o). After iii mandMF ˆ,  are obtained from the multiple 

shooting process, one can obtain 65 γγ and  using Eq. (6.2.12), and 65 γγ ′′ and  using Eq. 

(6.3.7p,q).  

Equations (6.2.11) and (6.2.16) show that, for isotropic beams, 0ˆ 522 =′= γifmM  

and/or .1/0ˆ,1 26331 ==′== corandifmMandc γ  If 65 γγ ′′ and  are negligibly small 

and/or ,121 ≈≈ cc  one can replace 32 ˆˆ mandm  with 32 MandM  in Eq. (6.2.12) and the e 

and iρ  needed in Eqs. (6.3.7a-f) and (6.3.7i-o) can be represented in terms of 

only ii MandF . Consequently, one needs to solve the 13 equations shown in Eqs. (6.3.7a-

f) and (6.3.7i-o). After ii MandF  are obtained from the multiple shooting method, one 

can obtain 32 ˆˆ mandm  by integrating Eqs. (6.3.7g-h), 65 γγ and  using Eq. (6.2.12), and 

65 γγ ′′ and  using Eq. (6.3.7p,q). 

 
6.4 Eigenvalue Analysis 

To derive linear natural frequencies of vibrations with respect to a nonlinearly deformed 

static configuration we assume 

wwwvvvuuu ~,~,~ +=+=+=    (6.4.1) 
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where u , v , and w  denote large static displacements, and u~ , v~ , and w~  denote small 

dynamic displacements. If the dynamic displacements are assumed to be harmonic at a 

natural frequencyω , we have 

wwvvuu ~,~,~ 222 ωωω −=−=−=    (6.4.2) 

Substituting Eqs. (6.4.1) and (6.4.2) into Eqs. (6.3.7a-o) and using Taylor’s expansions 

yields the following first-order expansions: 
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~~~~~~

~~~~~
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FFFFF
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ωωω
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  (6.4.3c) 

323223231
~~~~~ MMMMM ρρρρ −−+=′      (6.4.3d) 

33131331312
~~)1(~~~~~ FeFeMMMMM +++−−+=′ ρρρρ    (6.4.3e) 

22212112123
~~)1(~~~~~ FeFeMMMMM −+−−−+=′ ρρρρ    (6.4.3f) 

32
~~ Fm =′           (6.4.3g) 

23
~~ Fm −=′           (6.4.3h) 

21331231231221321311
~~~~~~~ kTkTTTTTT −+−−+=′ ρρρρ     (6.4.3i) 

31111332232222322312
~~~~~~~ kTkTTTTTT −+−−+=′ ρρρρ    (6.4.3j) 
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 11221133233223323313
~~~~~~~ kTkTTTTTT −+−−+=′ ρρρρ     (6.4.3k) 
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111123
~~)1(~~~ TeTekwkvu +++−=′       (6.4.3m) 

121231
~~)1(~~~ TeTekukwv +++−=′       (6.4.3n) 

131312
~~)1(~~~ TeTekvkuw +++−=′       (6.4.3o) 

0=′ω           (6.4.3p) 

where 
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Equations (6.4.3a-p) are the sixteen govern differential equations. The sixteen unknown 

dependent variables are 

         ωφ ,~,~,~,~,~,~,~,~,~,~,~,~,~,~,~
13121132321321 wvuTTTmmMMMFFF             (6.4.4) 

Equation (6.4.3p) is based on the fact that the natural frequencyω is the same for every 

point of the beam.     

 

6.5 Packaging Analysis of a Triangular Frame 

We investigate the packaging deformation of a triangular frame in this section. 

The packaging is a large deformation process which can be depicted in Fig. 6.5.  The 

frame has a equilateral triangle geometry. Each side is a flexible slender beam. Fig. 6.6 

shows the actual geometry and the coordinate system used for geometrically exact 

modeling and analysis. The beam has following material properties and dimensions: 

144 , 0.32, 1 , 0.25 , 1 12E GPa v l ft b in h in= = = = =  

To make the numerical iteration smooth, the triangular frame is modeled as three 

straight flexible beam connected by three circular sections. The joints have a length 3rπ  

and a curvature 2 1k r= . The twisting angleθ  always increases from 0 to 0180 no matter 
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Fig. 6.5: The packaging of a triangular frame. 
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Fig. 6.6: The geometry of a triangular frame 

what packaging scheme is used. The value of twisting moment 3M̂ , however, does not 

increase monotonically when θ  increases from 0 to 0180 . Thus the deformation could be 

stable and controllable if θ  instead of 3M  is used as the control parameter. Note that the 

twisted angle with relative to its original position of the top branch, or the bottom branch, 

is θ  and the total twisted angle of the frame is 2θ . As the triangular frame and the 

deformation of the packaging process are both symmetric with respect to the axis, it is 

appropriate to analyze only one half of the triangular frame. Then, the packaging process 
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is modeled as a two-point boundary value problem describing the deformation of the 

curved beam from point A and the middle point of B. The problem can be solved by 

directly attacking the corresponding differential equations (6.3.7a-q). The solutions are 

uniquely determined by the specified boundary conditions and the coefficients of the 

equations. The boundary conditions are 

At 0s = : 13 0u v w Tφ= = = = = , 12 sinT θ= , 11 cosT θ=  

              At s L= : 13 0zu v F Tφ= = = = = , 12 sinT θ= , 11 cosT θ=   

The multiple shooting method (Stoer 1980) is an efficient numerical method 

which provides results as accurate as necessary for BVPs and the obtained solutions are 

numerically exact. It has been successfully applied for many large deformation problems 

of highly flexible structures, including a cantilever beam subjected to an end moment; 

first, second, and third mode buckling of a cantilever; a cantilever subjected to transverse 

end load; a cantilever subjected to uniformly distributed transverse load; a fixed-free half 

circular ring subjected to a tangential end load; a circular ring subjected to twisting; a 

clamped-free beam rotating at a constant angular velocity Ω ; a cantilever L-frame 

subjected to a concentrated force at one of the two corners at the tip of the L-frame; a 

circular arch subjected a concentrated load; and a helical spring subjected to an axial 

displacement (Pai, 1996, 2002). We are going to use the multiple shooting method to do 

the packaging analysis of the triangular frame. Fig. 6.7 shows the three dimensional 

views and 2D projections of the deformed geometries before the penetration happens 

at 2 3θ π< . The penetration is the cross over between two branches, which happens only 

in the numerical simulation. Figs. 6.7(a)-(h) are solutions from the multiple shooting 

analysis, and Figs. 6.7(i)-(p) are experimental results obtained using the 3D motion 
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system introduced in Chapter 4. We note that the experimental frame has the following 

material properties and dimensions, which are different from those of the numerical 

model: 

200 , 0.32, 1.25 , 2.5 , 1.25E GPa v L m b mm h mm= = = = =  
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Fig.6.7 Three-dimensional views and 2D projections of the deformed geometries 
when 12: 12 : 23 36θ π π π= , where (a)-(h) are numerical solutions, and (i)-(p) are 
experimental results. 
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Fig.6.7 (Continued) 
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Fig.6.7 (Continued) 
 

 
The two frames have different material properties and dimensions but they show similar 

deformation process during packaging. We did not obtain numerically exact simulation 

results for the deployment process after penetration. Fig. 6.8 show the experimental 

three-dimensional views and 2D projections of the deformed geometries after penetration 

happened at 2 3θ π> . In our experiments, the contact of two branches began when the 

twisting angle was close to 0 2 3θ π≈ . The exact value of 0θ  depends on the bending and 

twisting stiffness of the frame, which is in turn dependent on the geometry and material 

of the frame. For the frame we studied, 0 117 180θ π≈ .   
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Fig. 6.8: Experimental three-dimensional views and 2D projections of the deformed 
geometry when 0 2 3θ θ π> ≈ . 

 

Practically speaking, the contact can be modeled by applying either a 

concentrated force at the contacting point or a distributed force at the contacting area. 
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The force should be perpendicular to the branch, and it should neither be too large so that 

the two branches are obviously detached nor too small so that penetration happens in the 

numerical simulation. Normally, distributed-load (represented by the 1 2,q q and 3q in the 

governing equations) is adopted in the numerical simulation as it guarantees a better 

convergence for our program. In real situation, the frame may be packaged by applying 

twisting moments. However, depending on the smoothness of the surfaces of the frame, 

the friction force due to the contact may prevent a smooth packaging. Also, because the 

direction and magnitude of the contact force can not be exactly determined, this approach 

cannot strictly simulate the real contact and the packaging process. Moreover, unsmooth 

deployment is not allowed for high precision space structures.  However, to certain 

extent, it provides us knowledge about the deformed geometry during the packaging 

process. Fig. 6.9 shows the deformed geometry obtained using the contact approach. 
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Fig. 6.9: The deformed geometry obtained by simulating the contact when 8 9θ π= . 
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6.6 Conclusion and Discussion 

We were not fully successful in simulating the packaging of the highly flexible 

triangular frame. The main reason is that in the packaging scheme by applying twisting 

moments, we did not find an efficient numerical algorithm to simulate the contact yet or 

mathematically saying, an algorithm to solve the two-point boundary value problem with 

internal restriction. However, we believe there are exact solutions and we will keep 

working on it. Meanwhile, one may consider other deployment schemes for packaging. 

During our experiments, we observed that the packaging process could be smooth and no 

contact between two branches if deformation paths of points N1 and N3 (see Fig.6.6) are 

perpendicular to the plane defined by the two connecting sections at N1 and N3 at every 

point of the deformation path. This can be realized by dividing the deformation into many 

steps and restricting the loads to be perpendicular to the deformed plane defined by the 

two connecting sections at every step. The finite element method is a more suitable 

method for analyzing this problem. 
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CHAPTER 7 

RECOMMENDATIONS FOR FUTURE WORK 

 

 

In this dissertation, we performed both theoretical and experimental studies of 

vibrations of strings and cables, and packaging analysis of highly flexible triangular frames. 

Here we recommend some tasks in each area for future research. 

 

7.1 Theoretical Study of Nonlinear Vibration of Strings 

As a classical problem in structural dynamics, nonlinear string vibration continuously 

inspires the interests of researchers. Many articles on meaningful topics that are related to 

various applications have been presented in the literature. Based on the work done in this 

dissertation, a more insightful investigation on the string vibration is possible. For this 

purpose, it is necessary to do more detailed studies, including trying cases with damping and 

forcing at various levels (especially those with rich bifurcations) and frequency scanning 

using smaller increment (especially around the bifurcation points). The bifurcations and the 

creation and vanish of the isolated and Hopf branches need to be studied in detail. Study by 

direct integration is a useful approach because the asymptotic solutions from perturbation 

analysis neglect higher-order nonlinear effects, which may be important when the vibration 

amplitude increases. Another important issue in string dynamics we did not studied in this 

dissertation is the corresponding relations between the solutions of the averaged system 
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(equations (3.3.7) - (3.3.10)) and those of the original non-autonomous system (equations 

(3.1.56) – (3.1.57)) . The original non-autonomous system can be directly solved by 

numerical integration. The stability of the periodic solutions is determined by the 

engenvalues (Floquent multipliers) of the associated monodromy matrix. Generally speaking, 

between the averaged system (the first-order approximation) and the original system, there 

are some connections that can be determined by using the following theory of integral 

manifolds: 

(1) A hyperbolic (with eigenvalues away from the imaginary axis) fixed-point 

constant solution corresponds to a hyperbolic periodic solution of the original system; 

(2) A steady-state periodic limit-cycle solution of the averaged system corresponds to 

an amplitude modulated motion with the basic period of natural time of the original system. 

The period of the modulation is determined by the slow time scale; 

(3) A hyperbolic periodic orbit corresponds to an invariant closed curve in the 

Poincare map and a hyperbolic invariant torus. In other words, limit-cycle solutions of the 

averaged system imply a 2-torus for the original system. And, a cascade of period-doubling 

bifurcations implies a series of torus-doubling bifurcation in the corresponding non-

autonomous system. 

Above observations are not always true. Firstly, the correspondences are valid only 

for cases with small enough excitation amplitude. If the higher-order (second order) terms are 

not neglected in the averaging, then its disturbing effect on the system may change the 

connection quantitatively or even qualitatively. Consequently, the averaging results may not 

be valid for problems of physical interest. Secondly, the correspondence may not be accurate 

for solutions close to the bifurcation points because there is shifting between the bifurcation-
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points of two systems although the frequency response agrees qualitatively if the excitation is 

small enough. As the excitation strength reduces, the difference becomes smaller. If the 

excitation strength increases, the shifting of the bifurcation points may become pretty large 

so that even the bifurcation sequence changes. Moreover, the shifting is not only in the 

detuning but also in the damping as well, which means the same bifurcation sequence, if not 

shifted in the detuning, exist in the averaged system and the original system having different 

damping values.  

For more complex solutions like aperiodic, asymptotic (in time), and chaotic 

behavior, the connections between two systems are to be determined. 

 

7.2 Experimental Study of Nonlinear Vibration of Strings 

More experimental tests of strings and cables using the 3D motion analysis system 

are meaningful and contributive to the understanding of dynamics of strings and cables. It is 

expected that the experimental results can be improved by testing strings and cables made of 

materials less stiff and by adjusting the set-up and the sag-to-span ratio. Complex nonlinear 

phenomena such as period-doubled, quasi- periodic and chaotic vibrations may become 

observable.  Moreover, we recommend analyzing the experimental nonlinear time series 

using the Hilbert-Huang transformation (HHT). HHT provides the instantaneous frequency 

and amplitude of the vibration. Together with other contributive properties, HHT is 

extremely efficient for analyzing nonlinear and non-stationary data to extract different 

nonlinearities, hardening and softening effects, etc...  
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7.3 Experimental Study of Nonlinear Vibration of Cables 

There are much more experimental studies needed for cable vibrations because it has 

more complex dynamic phenomena as well as wider industrial applications. As we know, the 

crossover phenomenon, the basis for resonant vibration of cables in current nonlinear studies, 

is valid for linear theory only. And so it cannot exactly predict and explain the nonlinear 

resonant vibrations as observed in our experiments. By doing more extensive vibration tests, 

the relation between the elasto-geometry parameter (describing the relation between the 

tension, geometry (span, sag), and material) and the excitations can be better understood 

better. Also, the influence of cable inclination on its dynamics can be effectively studied 

using the 3D motion analysis system. 

 

7.3 Packaging Analysis of Highly Flexible Triangular Frames 

Our experiment for the packaging of a highly flexible triangular frame is successful. 

However, we did not finish the numerical simulation of the packaging due to convergence 

issue of the algorithm. Finite element procedure, famous for its robust convergence and 

convenience for force and displacement control for solid mechanics problems, may help us 

attack this large deformation problem. It is a problem involving both large displacements and 

rotations. Pai (1989, 1990 and 2004) developed a geometrically exact beam theory which is 

powerful for the analysis of large deformation problems and can be used to develop the beam 

element needed for our analysis. The necessary future work is to develop a finite element 

iteration procedure that can model and determine appropriate loadings to guarantee a smooth 

and controllable packaging.  
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