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ABSTRACT

Soybean (Glycine max [L.] Merr) is considered an excellent protein source for both 

humans and livestock. Presently the protein fraction of soybean accounts for 75% of the 

value of the crop. Further improvement of quantity and quality of soybean protein is vital 

for maintaining the utility of this versatile plant derived nutrient. Although high protein 

soybean lines are currently available, the cysteine and methionine content is still not 

adequate to meet the dietary  needs of livestock and poultry, two major consumers of 

soybean meal. Currently, rations for these animals are supplemented with synthetic 

methionine, a procedure costing the animal industry millions of dollars annually. Efforts 

to enhance the sulfur amino acid content of soybean protein to meet FAO standards 

through genetic engineering and traditional breeding have met with limited success. 

Expression of genes for exogenous high methionine proteins in soybeans has not 

substantially  increased the overall sulfur amino acid content. A possible explanation is 

that the availability  of sulfur amino acids in developing seeds may be limiting. 

Effectively increasing the accumulation of sulfur amino acids in soybean will require 

metabolic engineering of the sulfur assimilatory pathway. In an attempt to improve the 
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nutritional quality of soybean seed proteins, molecular techniques are being employed to 

manipulate key enzymes involved in sulfur assimilation. As a first  step, the molecular 

cloning and characterization of two key enzyme in sulfur assimilation are reported here: 

Serine acetyltransferase (SAT), catalyzes the formation of O-acetylserine (OAS) from 

serine and acetylCoA, and O-acetylserine (thiol) lyase (OAS-TL), catalyzes the final step 

in cysteine biosynthesis. Both genes were overexpressed in soybean in an attempt to 

increase the overall cysteine content. Western blot analysis and enzyme activity assays 

revealed that SAT is present  in low levels in soybean, which could explain the low 

concentration of cysteine in soybean seeds. Plants overexpressing SAT showed elevated 

levels of SAT protein and enzyme activity, suggesting that overexpression of SAT could 

elevate cysteine concentration to adequate levels. Transgenic plants expressing OAS-TL 

exhibited resistance to oxidative stress and heavy metals. In conclusion, this study 

demonstrates the importance of SAT and OAS-TL in cysteine biosynthesis and show that 

production of cysteine and related sulfur-containing compounds can be enhanced by 

genetic manipulation of the enzymes involved is sulfur assimilatory pathway.
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CHAPTER 1

INTRODUCTION: AN OVERVIEW OF SOYBEAN NUTRITIONAL 

VALUE AND ECONOMIC IMPORTANCE

Soybean (Glycine max [L.] Merr), a well known crop to ancient  Chinese, was first 

recorded 5000 years ago in northeast China. The distant evolutionary ancestor of soybean 

is considered to be perennial vining plants that gave rise to the wild and weedly form of 

soybean, the Glycine soja (Hermann, 1962). Soybean spread from China to the rest of the 

Orient when traders took soybeans with them on sea voyages (Ho, 1969), but they 

remained unknown in the West until 1765 when it was first  introduced to the United 

States (Hymowitz and Harlan, 1983). But it  was not till the 1920s, that U.S. farmers first 

began growing soybeans in commercial quantities, mainly for animal feed. However, by 

the Second World War, when edible oils and traditional sources of protein were in short 

supply, soybean began to make its valuable contribution to the human diet, establishing 

soybean as one of the world’s major economic crop.

Today processed soybeans are the largest source of protein feed and vegetable oil in 

the world. The United States is the world's leading soybean producer (Fig. 1; Soybean: 

world supply  and distribution, 2006) and exporter, with U.S. soybean exports reaching 

1,103 million bushels for the crop year 2004, an amount corresponding to 35% of the 

total U.S. soybean production (Oil crops outlook report, 2006). Soybeans equal about 
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90% of U.S. total oilseed production, while other oilseeds such as cotton seed, sunflower 

seed, and cottonseed account for the remainder (Fig. 2; U.S. oilseeds supply and 

distribution, 2006). Planted soybean acreage in 2004 was estimated to be 75.2 million 

acres yielding a farm value for U.S. soybean production of $17.9 billion, the second-

highest value among U.S. produced crops, trailing only corn. In Missouri, 27% of the 

cropland is planted by soybeans establishing soybean as the number one crop in the state. 

The year 2004 approximately $537.7 million was contributed to the economy of Missouri 

ranking the state number seven in the production of soybean among other states (State 

fact sheet:MO, 2006).

The economic importance of soybean is related to its nutritional value. Soybean is 

considered an excellent  source of protein, with an average protein content around 40%. 

The nutritional value of soybean is mainly  derived by two groups of seed proteins 7S and 

11S, designated β-conglycinin and glycinin, respectively  (Nielsen, 1996; Krishnan, 

2000). Glycinin (11S) has a relatively  high methionine content. In contrast, β-conglycinin 

is limited in this amino acid, thus lowering the overall content of sulfur-containing amino 

acids in soybean (Nielsen, 1985). Under the old protein scoring method, which used 

Protein Efficiency Ratio (PER), soybean protein was considered inferior to animal 

protein because methionine and cysteine were limiting and prevented optimal growth in 

rats (Young, 1991). Humans do not have as high a need for the sulfur-containing amino 

acids, methionine and cysteine, as rats; therefore, the PER score for soybean protein was 

considered an inaccurate score for humans. The new scoring method, the Protein 
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Digestibility Corrected Amino Acid Score (PDCAAS), has been recommended by the 

Food and Agricultural Organization (FAO) and World Health Organization (WHO) 

Expert Consultation on Protein Quality Evaluation (FAO/WHO, 1991). The PDCAAS 

method is based on a food protein’s amino acid content, digestibility and ability to supply 

essential amino acids in the amounts adequate to meet human needs, thus providing a 

more accurate and concise evaluation for the quality of a protein. The amino acid content 

standard for the PDCAAS is based on the requirements of a two- to five-year old child. 

This represents the most demanding amino acid requirements of any age group except 

infants. Soybean protein isolates and concentrates receive a score of 1.00, which is the 

highest rating and comparable to milk or eggs (Fig. 3).

Recently  there have been numerous reports doubting the validity  of the PDCAAS. 

The main controversy is around the antinutritional agents and the bioavailability of amino 

acids, factors that PDCAAS doesn’t take under consideration. Soybean meal protein 

contains protease inhibiting agents, including the Kunitz trypsin inhibitor and 

chymotrypsin inhibitor. These agents could cause pancreatic hypertrophy when raw 

soybeans are ingested (Booth et al., 1960). Food processing steps like heat and alkaline 

treatment are required to eliminate or lower the effect of the protease inhibitors. Though 

excessive treatment could downgrade the quality of soybean protein, since these steps 

induce the production of lysinoalanine in soybean protein isolate (Sarwar, 1997), 

minimize amino acid availability and, as a result, reduce animal weight gain (Lee and 

Garlich, 1992). Taking into consideration the bioavailability of individual amino acids 
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and amino acid analysis, it  was shown in chicken that soybean meal protein is limiting in 

methionine and cysteine, whereas soybean protein concentrate and isolate were limiting 

in the sulfur containing amino acids and threonine (Emmert and Barker, 1995). 

Nevertheless, soybean is considered an excellent nutrient source for humans.

Although, the use of soybean in the food industry  for humans has been grown 

tremendously the past few years with the production of soymilk, tofu, soy flour etc., 

soybeans are mainly  used as a high-protein feed ingredient in livestock and poultry 

production. However, the limitation of sulfur-containing amino acids in soybean is a 

constraint because animals cannot produce these amino acids (Finkelstein et al., 1988) 

and as a result grain-soybean meal rations do not cover the dietary requirement for sulfur 

amino acids of young swine and poultry. An estimated $100 million is spent annually by 

the poultry and swine industry to supplement feeds with synthetic methionine in order to 

achieve optimal growth and development of animals consuming grain-soybean meal 

rations (Imsande, 2001). Since soybean is the principal seed meal used in feeds, 

developing soybean cultivars with high sulfur amino acid content could influence the 

economy and production of the livestock and poultry industry.

Conventional plant breeding methods have had limited success in the past to increase 

the overall sulfur protein content in soybean. Madison and Thompson (1988) identified 

soybeans cell culture lines that overproduce methionine. These lines accumulate 

methionine 8.7 fold higher than the parental lines. In 2001 Imsande produced, by a 

standard mutagenic procedure, high sulfur lines showing 31% higher methionine than 
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what is present in average soybean cultivar. The same lines had an increased cysteine 

content of appoximately  20%. It has been shown that the ratio between 11S and 7S 

globulins determines the content of sulfur amino acids (Peak et al., 1997; 2000). Since 7S 

globulins are deficient in sulfur-containing amino acids, attempts have been made to raise 

cultivars that down-regulate or do not express these proteins at all (Kitamura and 

Kaizuma, 1981; Ladin et al., 1984; Tsukada et al., 1986). Although, this was a promising 

approach of traditional plant  breeding, the plants showed developmental abnormalities 

and were not able to reproduce (Kitagawa et al., 1991). Recently, a line from a Japanese 

wild soybean collection that  completely lacks the 7S globulin protein was identified 

(Hajika et al., 1996). Soybean cultivars of this trait  showed normal growth and 

development (Teraishietal., 2001). The entire absence of the β-conglycinin protein could 

serve as an approach to increase the overall content of sulfur in soybean seed. However 

further investigation is needed to establish the effect of such a modification on the 

nutritional value of soybean.

In recent years, molecular biology and genetic engineering have opened new horizons 

in plant research providing useful tools for optimization of soybean seed protein content 

by expressing heterologous genes for proteins high in sulfur. The sulfur-rich 2S albumin 

gene (BNA) from the Brazil nut (Bertholletia excelsa) has been successfully expressed in 

Arabidopsis thaliana, Brassica napus and Nicotiana tabacum (Clercq et al., 1990). 

Expression of the BNA gene in bean (Phaseolus vulgaris) resulted in 14 to 23% increase 

in methionine content when compared to untransformed plants (Aragao et al. 1999). 
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Similar results were obtained in transgenic soybean lines, but the increase in methionine 

content was accompanied by a reduction in protease inhibitors, a protein rich in cysteine 

(Townsend and Thomas, 1994; Streit et al., 2001). The expression of the Brazil nut 2S 

albumin provides a promising approach of increasing the sulfur content of grain-legumes. 

However, the BNA protein has been identified as a potential allergen (Nordlee et al., 

1996) and preventing the commercial production of soybeans transformed with the BNA 

gene. Transgenic lupin (Lupinus angustifolius L.) seeds expressing a seed-specific gene 

for the sulfur-rich sunflower albumin (SSA), revealed 94% increase in methionine and 

12% decrease in cysteine, resulting in a net 19% increase in total sulfur amino acid 

content (Molvig et al., 1997). Expression of the same gene in rice resulted to a minimal 

increase in total sulfur amino acid content. Interestingly enough, the demand for sulfur 

driven by the SSA expression caused a re-allocation of the limited sulfur reserves from 

the endogenous storage seed proteins to the new sulfur “sink” in the transgenic lines 

(Hagan et al., 2003), indicating that the available sulfur for incorporation to the seed 

could be in moderate or diminished amounts. In another study, based on the same 

strategy, amino acid analysis on transgenic soybeans expressing a 15 kDa maize sulfur-

rich zein protein under the β-phaseolin promoter confirmed a 12 to 20% increase in 

methionine and 15 to 35% increase in cysteine content compared to control lines. 

However, this increase is not adequate to cover the dietary need (Tabe and Higgins, 

1998). Recently, an 11 kDa methionine-rich delta-zein protein was expressed in soybean, 

but the overall methionine content was not enhanced in these transgenic plants (Kim and 
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Krishnan, 2004). Expression of exogenous high methionine proteins alone is not 

sufficient to enhance substantially  the overall sulfur amino acid content in soybean. It is 

possible that the supply of methionine or cysteine is only  moderate during seed 

development, and thus preventing the high accumulation of the heterologous expressed 

proteins. Metabolic engineering and genetic manipulation of the enzymes involved in 

sulfur assimilatory  pathway could potentially increase the accumulation of sulfur amino 

acids. As a first step, one must elucidate the machinery and the various regulatory steps 

involved in the sulfur metabolism pathway.
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Figure 1: World soybean production for the crop year 2004.  The United States, Brazil and Argentina are 
the top soybean production countries in the world (adopted from PDS/EAS 2006).
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Figure 3: Protein Digestibility Corrected Amino Acid Score (PDCAAS) for soybean and other high protein 
foods.
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CHAPTER 2

SULFUR METABOLISM IN PLANTS: THE PAST, THE PRESENT 

AND THE FUTURE

Sulfur (S) is an essential macronutrient for plants. Only  0.1% of the plant dry  matter 

corresponds to sulfur, fifteen times less than nitrogen, establishing sulfur as the least 

abundant macronutrient in plant tissue. However, sulfur is essential for protein structure 

and a fundamental element in a vast array  of compounds with critical catalytic and 

electrochemical functions. Sulfur can be found in the amino acids cysteine (Cys) and 

methionine (Met) (Giovanelli et al., 1980; Saito, 1999). The thiol group  of cysteine is 

important for the formation of disulfide bridges. The reversible formation of disulfide 

bonds between not adjacent cysteine residues, described as cysteinyl moiety, is essential 

for the tertiary  structure of proteins and, therefore, catalytic activity of enzymes (Aslund 

and Beckwith, 1999). In addition, the thiol group  is crucial for the function of antioxidant 

metabolites (glutathione, phytochelatins;), several cofactors (biotin, turgorin, 

phytosulfokine, thiamine pyrophosphate, lipoic acid, coenzyme A, Nod factors, 

thioredoxins), enzymes (nitrite reductase, ferredoxin:thioredoxin reductase) and structural 

components (sulfolipids) (Noctor et  al., 1998; Rauser, 1995; Schlenk, 1965 Leustek et al., 

2000).
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Higher plants utilize sulfur mainly  in the form of anionic sulfate (SO4-2). Other forms 

of sulfur can be employed, like the gaseous pollutant sulfur dioxide, but sulfate remains 

the primary source for plants, since it  is relatively abundant in the environment. Sulfate is 

absorbed actively by the rhizosphere through the roots. Sulfur remains in the form of 

unmetabolized sulfate during translocation throughout the plant (Saito, 2004). Multiple 

transport steps are required for sulfate to reach the mesophyll cells of leaf tissue, where 

sulfur assimilation is believed to occur. This translocation is enabled by plasma 

membrane-localized sulfate transporters that exhibit 12 domains spanning through the 

plasma membrane and belonging to a large family  of cotransporters (Hawkesford, 2003). 

Several genes have been identified that code for sulfate transporters, including 14 in 

Arabidopsis (Yoshimoto et al., 2002). The family of sulfate transporters is divided into 

five different groups according to their amino acid sequence and they are named SULTR 

1 to 5. Each member shows distinct properties in translocation of sulfate, patterns of 

expression and tissue specificity. Evidence of how sulfate transporters function exists 

only for groups 1 and 2, that  are classified as H+/SO4-2 transporters, and action is allowed 

by electrochemical gradient established by the plasma membrane proton ATPase pump 

(Buchner et al., 2004b). High affinity  sulfate transporters of groups 1 and 2 are localized 

at the root epidermal cells and are involved in the uptake of sulfate into the plant 

(Takahashi et al., 2000). The long distance translocation from the root to the shoot is 

mediated by high affinity  members of group 3 and movement of sulfate within the cell is 

mediated by the other subfamilies (Buchner et al., 2004b; Kataoka et al., 2004; 
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Yoshimoto et al., 2003). When sulfate reaches the epidermal cells, it  can either be stored 

in the vacuole or enter the sulfur metabolic pathway.

The sulfur assimilatory pathway involves several regulatory steps that leads to the end 

product cysteine (Fig. 1). The pathway  begins with the activation of sulfate by ATP 

sulfurylase to form adenosine 5’-phosphosulfate (APS) and resumes with a two step 

reduction to sulfide by APS reductase and sulfite reductase. A relatively minor extension 

of this pathway  is the phosphorylation of APS to 3’-phosphoadenosine-5’-phosphosulfate 

(PAPS), driven by APS kinase, and serves as a donor of activated sulfate for sulfation of 

jasmonates, flavonoids, glucosinolates and other compounds. The activation and 

reduction of sulfate occur exclusively  in the plastids (Brunold and Sutter 1989; Lunn et 

al. 1990). However, a cytosolic isoform of ATP sulfurylase exists, which presumably is 

produced by structural genes for the plastidic isoforms, but it uses a different translational 

start codon (Hartzfeld et al., 2000). The function of the cytosolic ATP sulfurylase is yet 

unclear, since reduction of APS takes place entirely in plastids, but a possible action 

could be in generating APS for sulfation reactions (Rotte and Leustek, 2000). 

Incorporation of sulfide is the final step  in sulfur assimilation leading to the formation of 

cysteine. Two enzymes are committed to this step, serine acetyltransferase (SAT) and O-

acetylserine (thiol) lyase (OAS-TL). Serine and acetyl-CoA are the substrates of SAT 

which catalyzes the formation O-acetylserine (OAS). OAS is then coupled with sulfide to 

produce cysteine, reaction mediated by OAS-TL. In contrast to sulfate reduction 
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enzymes, isoforms of SAT and OAS-TL have been identified in three of the major 

compartments of plant cells, i.e. cytosol, chloroplasts and mitochondria (Saito, 2000).

The incorporation of sulfur into amino acids is regulated by a circuitous mechanism 

that involves OAS, sulfide, cysteine, glutathione and the unique enzyme complex 

between SAT and OAS-TL (Fig. 2). The cytosolic form of SAT is allosterically  inhibited 

by cysteine, whereas the mitochondrial and chloroplastic isoforms are insensitive to this 

feedback inhibition. It is proposed that the cytosolic SAT is responsible for the production 

of OAS that serves as a regulatory  factor in sulfur assimilatory gene expression (Noji et 

al., 1998; Innoue et al., 1999). Two residues at the allosteric site of SAT are responsible 

for this inhibition, glycine (Gly-277) and histidine (His-282). Both Gly-277 and His-282 

exist in Arabidopsis cytoslic SAT, which the chloroplastic isoform does not contain any 

of these residues and mitochondrial isoform contains only the Gly-277 (Saito et al., 

2000).

Specific protein-protein interactions between SAT and OAS-TL lead to the formation 

of an enzyme complex that plays an essential role in cysteine production (Bogdanova and 

Hell, 1997; Wirtz et al., 2001). The bound form of OAS-TL shows drastically lower 

catalytic activity than the free form. Kinetic studies revealed that the binding of one 

substrate to the free form of SAT does not affect  the dissociation constant of the second 

substrate. However, in the complex, SAT shows higher affinity for its substrates. This 

positive cooperativity  of SAT and the fact that OAS-TL is inactive in the complex have a 
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significant impact in the OAS rate formation and the production of cysteine (Droux et al., 

1998).

In vivo, OAS-TL concentration is in considerable excess, approximately  300-fold, 

over to SAT, indicating that only  a small fraction of OAS-TL binds to SAT. This 

distinctive difference in the molar concentration of the two enzymes controls the fate of 

sulfur assimilation. The levels of OAS and sulfide are critical regulatory factors of the 

activity of sulfur assimilatory enzymes. OAS triggers the dissociation of the complex, 

where sulfide compensates for this action, by promoting the binding of OAS-TL and 

SAT. It is believed that at  low sulfide levels, OAS accumulates and hence slows its own 

synthesis by disrupting the enzyme complex. In contrast, when sulfide builds up, OAS-

TL binds to SAT increasing the production of OAS for efficient  cysteine synthesis (Droux 

et al., 1998).

A number of environmental factors determine the rate of sulfur metabolism. The 

levels of available sulfur and nitrogen are closely related to enzymes and metabolites of 

sulfur assimilation pathway. Under sulfur starvation, where the demand for sulfur 

metabolites is high, sulfur uptake and assimilation activity is induced (Wawrzynska et al., 

2005). Studies in Brassica revealed that group  1, 2 and 4 sulfate transporters were up-

regulated during sulfur deprivation, where group 3 was not affected at  all (Buchner et al., 

2004a). The limited availability of sulfur influences nitrogen metabolism causing 

increased levels of OAS (Nikiforova et al., 2005; Kim et al. 1999), which in turn 

promotes expression of APS reductase and sulfate transporters (Smith et al., 1997; 
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Koprivova et al., 2000). Supply of external OAS in potato mimics the effect of sulfur 

starvation leading to increased APS reductase and sulfate transporter gene expression 

(Hopkins et al., 2005). In the same study, transgenic lines of potato expressing the cysE 

gene from Escherichia coli, which encodes for SAT, showed increased cysteine and 

glutathione concentrations but a marginal increase in OAS pools, indicating that sulfur 

assimilation may be driven not only by OAS, but by  depletion of sulfate, as well. In 

addition, sulfate transporter activity did not correlate with transcript  and protein 

abundance, suggesting posttranslational regulatory mechanisms must exist. In contrast to 

OAS’s positive effect, cysteine and glutathione down-regulate sulfur assimilation. In 

plants supplied with cysteine or glutathione, the elevated levels of thiols prevent sulfate 

uptake and decrease ATP sulfurylase activity, thus controlling sulfur efflux and cysteine 

production. (Lappartient and Touraine, 1996; Lappartient et al., 1999). The response of 

plants to sulfur starvation is reduced if at the same time the available nitrogen is also 

limited. Nitrogen limitation prohibits OAS accumulation and inhibits ATP sulfurylase and 

APS reductase activity, that are usually highly  expressed under sulfur depleted conditions 

(Kim et al., 1999; Koprivova et al., 2000).

Abiotic stresses, such as heavy metal and oxidative stresses, influence sulfur 

assimilation. Once plants are exposed to heavy  metals, they  produce metal ion chelators, 

termed phytochelatins, that are derived from glutathione. These compounds may  bind 

heavy  metal cations through thiol groups and thus detoxify  the metals (Rauser, 1995). As 

the synthesis of phytochelatins increases, the levels of glutathione and cysteine pools 
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decline. Therefore, the high demand for cysteine in response to heavy metal exposure 

drives the accumulation of ATP sulfurylase, APS reductase and OAS-TL (Heiss et al., 

1999; Lee and Leustek, 1999), with plants overexpressing OAS-TL showing tolerance to 

heavy  metals (Dominguez-Solis et  al., 2001). Similar results have been described for salt 

stress. Plants supplemented with sodium chloride rapidly  accumulate OAS-TL mRNA, 

cysteine and glutathione. Exposure to abscisic acid (ABA) mimicked the salt stress 

response, but mutants deficient or insensitive to ABA were not able to increase the OAS-

TL levels as a consequence of salt addition (Barosso et al., 1999). Parallel to heavy metal 

and salt  stress, oxidative stress induces sulfur metabolism. To combat oxidative stress 

caused by reactive oxygen species (ROS), plants have compiled a highly  sophisticated 

antioxidant mechanism, where glutathione has a central role. Two glutathione molecules 

can be joined together through disulfide bridges between the cysteine residues. Disulfide 

bonds can be broken by reduction, freeing the thiol groups. Glutathione utilizes this 

property  to function as an antioxidant, inactivating toxins, hormones, oxygen radicals and 

xenobiotic substances such as herbicides. The thiol group of cysteine links to the 

xenobiotic to form a conjugate, which is transferred into the vacuole. There the conjugate 

is hydrolyzed to a cysteine conjugate that is recycled (May  et al., 1998). Transgenic lines 

of tobacco overexpressing OAS-TL showed elevated cysteine and glutathione contents, 

especially when exposed to sulfur oxide. The plants, accordingly, demonstrated dramatic 

reductions in the damage caused by the oxidative stress of sulfur oxide and the ROS 

generator methyl viologen, when compared to untransformed plants (Youssefian et al., 
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2001). It is believed that oxidized glutathione derived in response to oxidative stress 

activates the APS reductase gene, APR1, which drives the production of cysteine. Under 

normal conditions the active site of APR1, APS reductase, is reduced and the enzyme is 

inactive. During oxidative stress reduced glutathione is consumed and the oxidized form 

accumulates, enabling activation of APR1. However, APR2 and APR3 genese are 

insensitive to redox regulation, indicating that these isoforms probably function in a non-

oxidative stress environment (Bick et al., 2001).

During the past few years, remarkable progress has been made in understanding 

sulfur assimilation and the various regulatory steps involved in the synthesis of sulfur-

containing metabolites. Most information comes from studies based on Arabidopsis, 

spinach and tobacco. Less is known about this pathway in soybean, a very important 

economic crop. This study was aimed increasing our information in sulfur metabolism in 

soybean with specific emphasis on SAT and OAS-TL, two key enzymes in sulfur 

assimilation. The information obtained will enhance our ability to increase the overall 

soybean sulfur content through genetic engineering.
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Figure 1: Overview of sulfur metabolism in plants. Sulfate is transported into the plant and is reduced to 
sulfide by the action of ATP sulfurylase, APS reductase and sulfite reductase. Serine acetyltransferase 
catalyzes the formation of O-acetylserine from serine and acetyl-CoA, where O-acetylserine (thiol) lyase 
combines O-acetylserine with sulfide to form cysteine. Several downstream steps lead to the production of 
methionine.
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Figure 2: Regulation of sulfur assimilation in plants. Sulfide promotes the formation of the complex 
between serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). In the complex SAT 
shows positive cooperativity, where OAS-TL is inactive. On the other hand O-acetylserine (OAS) promotes 
the dissociation of the complex, gene expression of APS reductase and sulfate transporter.. Cysteine down-
regulates ATP sulfurylase and allosterically inhibits SAT. Finally glutathione down-regulates sulfate uptake 
and ATP sulfurylase. Catalytic steps are indicated with arrows. Regulatory steps are indicated with dashed-
line arrows. Protein complex formation and dissociation are indicated with block arrows (Saito et al. 2000).
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CHAPTER 3

MOLECULAR CLONING AND CHARACTERIZATION OF A 

CYTOSOLIC ISOFORM OF SERINE ACETYLTRANSFERASE 

(SAT)

SYNOPSIS

A full-length cDNA clone encoding a cytosolic isoform of serine acetyltransferase (SAT) 

(EC 2.3.1.30) was isolated by screening a soybean seedling cDNA library with a 32P-

labeled expressed sequence tag. Nucleotide sequence analysis of the isolated cDNA 

revealed a single open-reading frame of 858 base pairs encoding a 30-kDa polypeptide. 

The deduced amino acid sequence of soybean SAT revealed significant homology with 

other plant SATs. Analysis of soybean genomic DNA by Southern blotting indicated that 

SAT is encoded by a small gene family. The authenticity of the isolated SAT cDNA was 

confirmed by the expression of the cDNA in an Escherichia coli cysteine auxotrophic 

mutant resulting in the growth of the mutant cells in minimal medium without cysteine. 

Expression of soybean SAT in E. coli resulted in the production of a 34-kDa protein that 

was subsequently purified by nickel-affinity column chromatography. The purified 

protein exhibited SAT activity, indicating that the E. coli-expressed protein is a 

functionally active SAT. The recombinant soybean SAT was inhibited by L-cysteine, the 

27



end product of cysteine biosynthetic pathway. Antibodies raised against the recombinant 

soybean SAT cross-reacted with a 34-kDa protein from Arabidopsis leaves, but failed to 

detect any proteins from soybean leaves and seeds. Reverse transcriptase polymerase 

chain reaction analysis indicated that SAT mRNA was expressed at low levels during 

soybean seed development. In comparison to Arabidopsis leaves, the SAT activity was 

several-fold lower in soybean leaves and seeds, suggesting that SAT is a low-abundance 

enzyme.

INTRODUCTION

Soybeans are renowned for their high protein and high oil composition. Although 

high protein soybean lines are available, varieties expressing adequate levels of 

methionine and or cysteine have not been developed either through traditional breeding 

or with transgenic methods. Expression of a high methionine 2S albumin from Brazil nut 

(Bertholletia excelsa) in soybeans raised the methionine content approximately 40% 

(Townsend and Thomas 1994), but that is still is not sufficient to obviate supplementation 

with synthetic methionine in diets for many animals (Imsande 2001). Brazil nut protein 

elicits allergenic responses in certain individuals and thus, the feasibility of its use was 

compromised (Nordlee et al. 1996). A 15-kDa-zein protein, which is rich in methionine, 

was successfully introduced into soybean under a seed specific promoter and this raised 

the content of methionine between 12 and 20% (Dinkins et al. 2001). This modest 

increase, however, is not sufficient to meet the demands of monogastric anmal nutrition.
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Plant nutrition studies have shown seed storage protein composition to be influenced 

by nutrient availability. A high nitrogen to sulfur ratio tends to increase the β subunit of β-

conglycinin, which is essentially devoid of cysteine and methionine while a low ratio 

somewhat enhances accumulation of glycinin (Gayler and Sykes 1985; Paek et al. 1997; 

Sexton et al. 1998a, 1998b). Exogenously applied methionine in in vitro and whole-plant 

studies has shown that increased availability will enhance the accumulation of this amino 

acid (Holowach et al. 1984; Grabau et al. 1986). These results suggest that the supply of 

methionine/cysteine to the developing seed is a limiting factor in accumulation of 

glycinin. Other studies indicate that sulfur is derived from the soil during seed filling and 

not re-mobilized from maternal tissue, suggesting assimilation or transport as limiting the 

synthesis of sulfur rich-proteins (Anderson and Fitzgerald 2001).

Sulfur is stored in ionic form in vacuoles and in amino acids within protein in leaf 

tissue. Sulfate reduction and synthesis of the amino acids occurs in chloroplasts. 

Transport to the filial tissue from maternal tissue involves both symplastic and apoplastic 

pathways because there are no known vascular connections between plant and seed 

(Anderson and Fitzgerald 2001). Harvest index experiments suggest that partitioning of 

sulfur to seed is occurring at a maximum rate. Increasing protein quality would involve 

either more sulfur uptake or greater efficiency of fixation on a whole-plant basis. It has 

been calculated that a 50% increase in sulfur-containing amino acids would require 

between a 65 and 80% increase in the rate of sulfur uptake (Sexton et al. 1998a). In a 

high-sulfur-availability environment, there was an accumulation of sulfate in the stems. 

This available pool of sulfur was not mobilized during seed filling, indicating that rates of 
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downstream reactions were not alone sufficient to reduce and assimilate sulfur into amino 

acids, or there was an insufficient sink available to accommodate the increased supply of 

these sulfur-containing amino acids (Sunarpi and Anderson 1997).

Biochemical mechanisms involved in sulfur assimilation include uptake of the sulfate 

ion from growth medium, transport, reduction, amino acid synthesis and assimilation of 

the amino acids into storage proteins (Leustek and Saito 1999; Leustek et al. 2000; Saito 

et al. 2000). Any of the preceding steps have the potential to limit production of sulfur-

rich seed storage proteins. In an attempt to improve the nutritional quality of soybean 

seed proteins, I utilized molecular techniques to identify and manipulate the enzymes 

involved in sulfur assimilation. Here, I report the molecular cloning and characterization 

of serine acetyl transferase, a key enzyme in cysteine synthesis.

MATERIALS AND METHODS

Plant material and growth conditions. Soybean cv. ‘Williams 82’ was grown at the 

Bradford Research and Extension Center near Columbia, Missouri, on a Mexico silt loam 

soil (Udollic Ochraqualf). Leaf and seed samples were collected from nodes 10 and 11 

every  five days for seven weeks beginning at growth stage R5 (Fehr and Caviness 1979). 

Seeds were sorted according to size, frozen in liquid nitrogen and stored at -80 oC. 

Arabidopsis thaliana (ecotype Columbia) plants were grown on soil (Sunshine no. 4 soil 

mix; Sun Gro Horticulture, Bellevue, WA., USA) in an environmental chamber that was 

programmed to provide an ambient temperature of 18.5oC and a 16-hour photoperiod. 
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Leaves were collected four weeks after plant emergence and enzyme analysis performed 

on the day of harvest.

SAT cDNA isolation and sequence analysis. An examination of the soybean 

expressed sequence tag (EST) database revealed that one of the clones (GenBank 

accession no. AI495784) contained nucleotide sequences showing homology to SAT. 

Based on the sequence of this soybean EST clone, two primers were designed (Forward: 

5 ’ - A C G A C C A G G G A T G G T T G T G G A - 3 ’ ; R e v e r s e : 5 ’ -

GGAGAGGAGCGTGGATTAA-3’) and used to amplify a 132-bp DNA fragment from 

soybean genomic DNA by polymerase chain reaction (PCR). The amplified PCR 

fragment was purified on a 0.8% agarose gel and radiolabeled with [α-32P] dCTP (Perkin-

Elmer Life Sciences Inc., Boston, MA, USA) using a random labeling kit (Takara Mirus 

Bio, Inc., Madison, WI, USA). A soybean seedling cDNA library constructed in lambda 

ZAP II (obtained from Dr. Joe Polacco, University of Missouri, Columbia, MO, USA) 

was screened with the radiolabeled probe following standard protocol (Sambrook et al. 

1989). After three consecutive screening steps, four positive lambda clones were 

identified by colony hybridization. Plasmids from these clones were recovered using the 

Rapid Excision Kit (Stratagene, La Jolla, CA, USA) and the clone (pSSAT1) containing 

the largest cDNA insert was chosen for further analysis. DNA sequence was determined 

by the DNA Core Facility of the University of Missouri using a Taq Dye Terminator 

Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA). The deduced amino 

acid sequence of soybean seed SAT was subjected to BLAST analysis (BLASTX, 
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National Center for Biotechnology Information - NCBI). Multiple sequence alignments 

were performed using CLUSTLAW software and BOXSHADE (University of California, 

San Diego, CA, USA; http://workbench.sdsc.edu) and phylogenic tree was constructed 

with the use of the same database.

Isolation of soybean genomic DNA and Southern blotting. Genomic DNA from 

soybean leaf (cv. Williams 82) was isolated by the hexadecyltrimethylammonium 

bromide (CTAB) method (Saghai-Maroof et  al. 1984). Ten µg aliquots of genomic DNA 

were digested overnight at 37οC with either BamHI, EcoRI, or HindIII. After 

electrophoretic fractionation on 0.8% agarose gel, the DNA was partially hydrolyzed (15 

min depurination in 0.25 N HCl, 30 min denaturation in 0.4 M  NaOH) and transferred to 

Hybond N+ membrane (Amersham Biosciences, Piscataway, NJ, USA). Prehybridization 

of the membrane proceeded overnight in a buffer containing 10% (w/v) bovine serum 

albumin (BSA), 500 mM Na2HPO4, 10 mM EDTA, 7% (w/v) SDS, 100 µg/ml salmon 

sperm DNA, in a total volume of 20 ml at 65οC. With the addition of the [α-32P] dCTP 

labeled SAT probe, hybridization was initiated in the same solution and allowed to 

proceed at  65oC for 24 h. Following hybridization, the membrane was washed twice with 

2x SSC, 1% (w/v) SDS, once with 1x SSC, 1% (w/v) SDS and then twice with 0.1x SSC, 

1% (w/v) SDS. Each wash was carried out for 10 min at  65οC. Hybridizing bands were 

detected by autoradiography, using a DuPont (Wilmington, DE, USA) Cronex Lightening 

Plus intensifying screen for signal enhancement.
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Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) 

analysis. Total RNA from developing soybean seeds was extracted using Trizol Reagent 

(Invitrogen, Carlsbad, CA, USA) and treated with DNase I (Invitrogen) to remove 

contaminating DNA. The extract was subjected to reverse transcriptase polymerase chain 

reaction (RT-PCR) using OneStep RT-PCR kit (Qiagen, Valencia, CA, USA) in a total 

volume of 50 µl. Primers specific for soybean SAT (Forward: 5’- 

C C A A C ATAT G AT G C C G A C G G G G T TA C C G G C - 3 ’ ; R e v e r s e : 5 ’ - 

GGTTGCGGCCGCTCAAATGATATAATCTGACC -3’), soybean storage protein 

glycinin (Forward: 5’- TTCGCCCCTGAATTCTTGAAAGAAGCG3’; Reverse: 5’- 

CTCAAAGTTATCGCTCTGGGATTT -3’) and soybean 18S rRNA (Forward: 5’- 

G C T T A A C A C AT G C A A G T C G A A C G T T G - 3 ’ , R e v e r s e : 5 ’ -

ACCCCTACACACGAAATTCCACTC -3’) was employed in the reaction mixture. 

Glycinin and 18S rRNA served as internal and loading controls, respectively. The thermal 

cycler program was 50oC for 30 min, 95oC for 15 min, 26 cycles at 94oC (1 min), 58 oC 

(1 min), and 72oC (1 min), followed by a final cycle of 10 min at 72oC. Polymerase chain 

reaction products were separated on a 0.8% (w/v) agarose gel and quantified using the 

GeneWizzard bio-imaging system (LabRepco, Horsham, PA, USA).

Expression of soybean SAT in E. coli and antibody production. Serine 

acetyltransferase cDNA functioned as the template for amplifying the coding region of 

the soybean SAT by PCR. The N- and C-terminal specific primers were 5’-

C C A A C ATAT G AT G C C G A C G G G G T TA C C G G C - 3 ’ a n d 5 ’ -
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GGTTGCGGCCGCTCAAATGATATAATCTGACC -3’, which included a NdeI and a 

NotI restriction site, respectively, to facilitate cloning. The PCR product was purified 

from an agarose gel, digested with NdeI and NotI (Takara Mirus Bio, Inc.) and ligated 

into the NdeI / NotI site of E. coli expression vector pET 28(a)+  (Calbiochem-

Novabiochem, San Diego, CA, USA) using the ExTaq ligase kit (Takara Mirus Bio, Inc.). 

The resultant plasmid, pSSAT10, was introduced into ER2566 E. coli strain (New 

England Biolabs, Beverly, MA, USA) by heat shock at 42οC for 1 min. Cultures of the 

ER2566 E. coli strain carrying the pSSAT10 plasmids were used to inoculate 100 ml 

Luria Broth medium in the presence of 100 µg/ml kanamycin, and grown at 37oC. When 

the culture reached an optical density of 0.9 (O.D.600nm), isopropyl-beta-D-

thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM and growth 

was allowed to continue overnight at 37οC. Recombinant SAT protein was purified under 

native conditions according to Hoffmann and Roeder (1990) at 4οC. Cells from the 

overnight-induced culture were harvested by centrifugation (4050g, 20 min, 4οC), 

resuspended in 5 ml of extraction buffer (10 mM Tris.HCl [pH 7.9], 10% glycerol, 0.5 M 

NaCl, 0.1% nonidet-P40, 5 mM DTT) and incubated on ice for 30 min. The suspension 

was centrifuged (11,300g; 10 min; 4οC) and imidazole was added to a final concentration 

of 1mM to the supernatant. After the supernatant was passed through a Ni-NTA agarose 

column (Qiagen), it was washed with two column volumes of BC100 (20% glycerol, 20 

mM Tris.HCl [pH 7.9], 100 mM KCl, 5 mM dithiothreitol (DTT) and 0.5 mM PMSF) 

containing 20 mM imidazole and eluted with 5 ml of BC100 containing 80 mM 
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imidazole. Utilizing the DC Standard Protein Assay Kit (Bio-Rad Laboratories, 

Richmond, CA, USA), protein concentrations were spectrophotometrically determined 

using bovine serum albumin as a standard. Antibodies to the recombinant soybean SAT 

were raised in rabbits as described previously (Krishnan and Okita 1986).

Functional expression of soybean SAT in a cysteine-auxotrophic E. coli mutant. 

The JM39/5 Cys- E. coli mutant [F+, cysE51, recA56] (E. coli Genetic Stock Center, Yale 

University, New Haven, CT, USA) was transformed with pSSAT10 or the cloning vector 

pET-28a. For the genetic complementation of the cysteine requirement, the transformed 

E. coli cells were cultured on M9 agar plates (Sambrook et al. 1989) supplemented with 

100 µg/ml kanamycin and 1 mM IPTG) at 37oC for 2 days in the presence or absence of 

cysteine.

Immunoblot analysis. Total protein extracts from Arabidopsis leaf, soybean leaf and 

soybean seed were fractionated by SDS-PAGE (Laemmli 1970) using a Mighty Small II 

electrophoresis system (Hoefer Scientific Instruments, San Francisco, CA, USA). The 

proteins were resolved on a slab gel (10 × 8 × 0.75 cm) consisting of a 13.5% (w/v) 

separation gel and a 4% (w/v) stacking gel. Electrophoresis was carried out at 20 mA 

constant current per gel at room temperature. After the completion of electrophoresis, the 

gels were equilibrated with electrode buffer (25 mM Tris, 192 mM glycine, and 20% 

methanol, pH 8.3) for 15 min. Proteins from the gels were electroblotted onto pure 

nitrocellulose membrane (Midwest-Scientific, Valley Park, MO, USA) as described by 

Burnett (1981). The membranes were washed with TBS (80 mM Tris-HCl, 200 mM 
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NaCl, pH 7.5) for 5 min and incubated with TBS containing 5% (w/v) nonfat dried milk 

for 1 hr with gentle agitation at room temperature. Following this incubation, the 

membranes were incubated overnight with polyclonal antibodies raised against 

Arabidopsis SAT (obtained from Dr. Thomas Leustek, Rutgers University, NJ, USA) or 

antibodies raised against soybean recombinant SAT. Antibodies were diluted 1:2,000 in 

TBS containing 5% (w/v) nonfat dried milk. Following washes in TBST (TBS containing 

1% (v/v) Tween 20) (3 x 10 min), the blots were incubated with HRP-conjugated goat 

anti-rabbit IgE (1:5,000 [v/v] dilution) in TBST containing 5% (w/v) nonfat dried milk 

for 1 hr with gentle agitation at room temperature. Final washes were carried out with 

TBST (3 × 10 min) and TBS (1 × 5 min). Immunoreactive polypeptides were visualized 

using the SuperSignal West Pico Chemiluminescent Substrate system (Pierce 

Biotechnology, Rockford, IL, USA).

SAT assays. Recombinant soybean SAT activity was assayed according to Noji et al 

(1998). The reaction mixture contained 50 mM Tris-HCl (pH 8.0), 0.1 mM  acetyl-CoA, 1 

mM L-serine, and a known amount of the purified recombinant soybean SAT in a final 

volume of 1 ml. The reaction was initiated by the addition of L-serine and the decrease in 

acetyl CoA was monitored spectrophotometrically. Serine acetyltransferase specific 

activity was calculated using the molar extinction coefficient for acetyl-CoA of ε=4500 at 

232 nm. The kinetic parameters were determined by  using the appropriate rate equations 

and the GraFit 5.0 software from Erithacus Software (Sigma-Aldrich Corp., St. Louis, 

MO, USA)
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Serine acetyltransferase activity from the crude plant  extracts was determined by  the 

method of Kredich and Tompiks (1966). This enzyme assay is based on the disulfide 

exchange between CoA liberated by acetyl-CoA during the reaction and dithiobis 2-

nitrobenzoic acid (DTNB). Production of thionitrobenzoic acid was followed 

spectrophotometrically  at 412 nm. Freshly harvested soybean and Arabidopsis tissue 

samples (200 mg) were ground in a chilled mortar and pestle with 2 ml of ice-cold 

extraction buffer [100 mM  Tris-HCl, pH 8.0, 100 mM  KCl, 20 mM MgCl2, 1% Tween 80 

and 10 mM DTT]. The samples were transferred to microcentrifuge tubes and spun 

(11,600g; 10 min; 4 oC). The clear supernatant obtained after centrifugation was used to 

measure SAT activity. The enzyme reaction mixture contained 0.1 mM acetyl-CoA, 50 

mM Tris pH 7.6, 1 mM DTNB, 1 mM  EDTA and 1 mM L-serine in 1 ml final volume. 

Subsequent to reaction initiation by addition of enzyme at room temperature, the initial 

velocity  was estimated by monitoring the increase in absorbance at 412 nm. Rates were 

calculated using an extinction coefficient for thionitrobenzoic acid of ε=13,600 at 412 

nm. Protein concentrations were determined spectrophotometrically  using the DC 

Standard Protein Assay Kit (Bio-Rad Laboratories).

RESULTS

Isolation of a cDNA encoding SAT from soybean. Screening a soybean seedling 

cDNA library with a radiolabeled 132-bp DNA fragment of an EST clone (GenBank no. 

AI495784) resulted in the isolation of four possible SAT encoding sequences. Restriction 
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enzyme digestion of the DNA isolated from these four cDNA clones revealed the same 

restriction pattern, and one clone (pSSAT1) was chosen for further analysis. Nucleotide 

sequencing demonstrated that  the cDNA insert was 1044 bp and contained a single, open-

reading frame (ORF) of 858 bp, which could encode a 326 amino acid protein. The 

deduced molecular weight of this protein was 30.3 kDa with an isoelectric point  of 7.82. 

The soybean SAT nucleotide sequence has been deposited in the GenBank and appears 

under accession number AF452452. Computer-assisted BLAST analysis showed that 

soybean SAT had significant homology with SATs from different sources (Fig. 1A). The 

boxed amino acid sequences in Fig. 1A were conserved between species and presumed 

involved in binding acetyl-CoA. The underlined region at the C-terminus of the protein is 

implicated in the allosteric inhibition by cysteine. Amino acids, Gly-277 and His-282, 

considered the residues principally involved in the interaction with cysteine (Inoue et al. 

1999), are indicated by asterisks. Soybean SAT shows amino acid sequence similarities to 

the following enzymes: watermelon SAT, 82%; spinach SAT, 78%; onion SAT, 76%; 

Arabidopsis SAT-c, 76%; Arabidopsis SAT-p, 52%, and Arabidopsis SAT-m, 54%. The 

amino acid sequence between watermelon SAT and soybean SAT was 81% identical. A 

phylogenetic tree revealed that soybean SAT is closely related to the cytosolic SAT from 

several other plant species (Fig. 1B). This prediction is consistent with our observation 

that the soybean SAT exhibits neither chloroplastic nor mitochondrial amino terminal 

transit peptide.

38



Southern blot analysis was performed using soybean genomic DNA to determine the 

SAT copy number in the soybean genome. DNA was digested using BamHI, EcoRI, or 

HindIII, transferred to a nylon membrane, and probed with 32P-labeled SAT cDNA. 

Under stringent hybridization conditions (see materials and methods), I was able to detect 

one hybridizing band in both the BamHI and HindIII digested genomic DNA (Fig. 2). In 

the case of EcoRI digestion, detection of two hybridizing bands is consistent with the fact 

that an internal EcoRI site exists within the coding region of SAT. The foregoing 

observations suggest that a single gene encodes the isolated cDNA SAT. However, a few 

weakly  hybridizing bands were detected when the blot was hybridized under less 

stringent conditions. These bands possibly represent other SAT-related sequences in the 

genome of soybean.

Functional complementation of JM39/5 cysteine E. coli auxotroph by soybean 

SAT. The authenticity of the isolated SAT was further verified by  expressing the soybean 

cDNA in a cysteine auxotrophic mutant. Escherichia coli JM39/5 lacks the gene for SAT 

and therefore is unable to grow in the absence of cysteine. To determine if soybean SAT 

can complement an E. coli cysteine auxotroph, the mutant E. coli was transformed with 

either the empty protein expression vector pET28a or the plasmid pSSAT10, which 

contains the coding region of the soybean SAT in the pET28a vector. Only E. coli JM39/5 

cells transformed with pSSAT10 were able to grow in the absence of cysteine, indicating 

that the isolated cDNA codes for a functional SAT (Fig. 3).
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Temporal expression of SAT mRNA during seed development. To monitor the 

SAT gene expression during seed development, Ι performed semi-quantitative RT-PCR 

analysis using total RNA isolated from seeds harvested at different developmental stages. 

The SAT mRNA was found to accumulate at low levels when compared to that of the 

glycinin, a major seed storage protein of soybean (Fig. 4). There was a small increase in 

the SAT expression levels during the seed developmental stages 3 and 4 followed by a 

decline in the expression at stage 5 (Fig. 4). The glycinin gene was expressed abundantly 

during the early stages of seed development with maximum expression detected at stage 

2 followed by a gradual decline during the later stages of seed development (Fig. 4). In 

contrast to either the SAT or glycinin mRNA accumulation patterns, 18S RNA was 

expressed at similar levels at all stages of seed development (Fig. 4).

Expression of soybean SAT in E. coli. To characterize the soybean SAT, an initial 

attempt was made to purify SAT from developing soybean seeds by column 

chromatography. The quantity of purified protein recovered was not adequate for detailed 

biochemical analysis. Therefore, the soybean SAT was expressed in E. coli by cloning the 

coding region of the gene and placing it under the control of the T7 promoter. This 

process resulted in the introduction of six histidine residues to the N-terminus region. The 

expression of the 6X His-tagged recombinant protein was induced by the addition of 1 

mM isopropyl-β-D-thiogalactoside to the culture media. Total protein from the induced 

cultures, when resolved by SDS-PAGE, revealed the presence of an abundant 34-kDa 

protein (Fig. 5). The soybean SAT recombinant protein was purified by Ni-affinity 

column chromatography (Fig. 5). Since the recombinant protein has N-terminal His-tag, 
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the molecular mass of this protein is slightly larger than the one deduced from the DNA 

sequence analysis. Recombinant soybean SAT was also purified under native conditions 

to perform enzyme analyses.

Immunoblot analysis of SAT accumulation. Antibodies were generated against  the 

purified recombinant soybean SAT and used to detect the protein in different organs. 

Repeated attempts to detect the SAT in both the leaves and seeds by  immunoblot analyses 

were unsuccessful. This indicated that either the quality of soybean SAT antibody was 

poor or the concentration of SAT in soybean leaves and seeds was too low to be detected 

by Western blot analyses. Since the soybean SAT antibody reacted strongly against 

nanogram quantities of the purified recombinant SAT in Western blots, inability to detect 

SAT in soybeans could be related to their low abundance. To exclude the possibility that 

soybean SAT antibody was of poor quality, antibodies raised against Arabidopsis SAT 

(Dr. Thomas Leustek, Rutgers University, NJ, USA) were used to perform Western blot 

analyses. Arabidopsis SAT antibodies reacted strongly  against a 34-kDa protein from 

Arabidopsis leaves, but did not recognize any proteins in soybean leaves or developing 

soybean seeds (Fig. 6). The soybean SAT antibodies also strongly reacted against the 34-

kDa protein from Arabidopsis leaves (Fig. 6). These observations suggest  that soybean 

leaves and seeds contain a very low concentration of endogenous SAT. Further 

investigation was conducted by measuring the activity  of SAT in crude plant  extracts. 

SAT activity was readily  detected in Arabidopsis leaves, while significantly lower 

activities were detected from soybean leaves and seeds (Fig. 7).
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Catalytic properties of the recombinant soybean SAT. Serine acetyltransferase 

catalyzes the formation of OAS from L-serine and acetyl-CoA. This enzyme is regulated 

by feedback inhibition by  cysteine (Saito et al. 2000). Enzyme activity and cysteine 

inhibition of recombinant soybean SAT were measured. According to the Michaelis-

Menten model, the calculated Km value for L-serine was 2.27 (mM) with a Vmax of 11.34. 

Acetyl-CoA showed a Km of 0.31 (mM) with a Vmax of 14.32. These values are similar to 

those obtained for the cytosolic form of SAT from A. thaliana (Noji et al. 1998) and 

spinach (Noji et al. 2001). It has been demonstrated that only  the cytosolic form of SAT 

in Arabidopsis was inhibited by  cysteine, while the chloroplastic and mitochondrial forms 

are insensitive to this inhibition (Inoue et al. 1999, Noji et al. 1998). The activity of 

soybean SAT diminished as the concentration of cysteine increased (Fig. 8), suggesting 

that the isolated cDNA codes for a cytosolic isoform of SAT. Soybean SAT showed 

competitive inhibition in response to acetyl-CoA, and noncompetitive inhibition in 

presence of L-serine, with Ki values of 7.6 µM and 11.2 µM respectively.

DISCUSSION

In this study, Ι isolated a full-length cDNA clone encoding a soybean SAT. Two lines 

of evidence indicate that the cloned cDNA codes for a functional SAT. Expression of the 

soybean SAT cDNA in the E. coli cysteine auxotroph rescued bacterial growth in cysteine 

deficient media and produced a 34-kDa protein, which showed SAT activity. Serine 

acetyltransferase has been purified from several plant species including A. thaliana 
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(Roberts and Wray 1996; Howarth et al. 1997; Murillo et al. 1997), Spinacea oleracea 

(Noji et  al. 2001), Citrullus vulgaris (Saito et al. 1995) and Allium tuberosum (Urano et 

al. 2000). The molecular weight of SAT isolated from this diverse group  of plants ranges 

from 30 to 42-kDa. Based on N-terminal signal sequences and subcellular localization 

studies, SAT can be classified as a cytosolic (SAT-c), plastidic (SAT-p), or mitochondrial 

(SAT-m) isoform. Direct evidence for the specific subcellular location of these isoforms 

was provided by transient  expression studies utilizing a chimera of N-terminal sequences 

and green fluorescent protein (GFP) (Saito et al. 2000). Subcellular location of SAT-p-

GFP in Arabidopsis leaves varied in a time-dependent manner. In 4-week-old leaves the 

SAT-p-GFP was localized in the chloroplasts, while in 6-week-old leaves, about 90% of 

the SAT-p-GFP was found in the cytosol suggesting that the subcellular location of SAT 

changes with plant developmental stages (Saito et al. 2000).

The subcellular compartmentation of SAT plays an important role in regulation of the 

enzyme. In A. thaliana, the cytosolic isoform of SAT is subject to cysteine inhibition, 

whereas the plastidic and the mitochondrial isoforms are insensitive to this feedback 

mechanism. (Inoue et al. 1999). The soybean recombinant SAT also shows feedback 

inhibition by cysteine. The amino acid sequence of soybean SAT reveals neither 

chloroplastic nor mitochondrial signal sequences (Fig. 1A). Deletion studies have 

established that the amino acid residues Gly-277 and His-282, lying within a short 

carboxyl-terminal domain, are primarily responsible for cysteine feedback inhibition 

(Inoue et al. 1999). These residues are conserved among the cytosolic isoforms of SAT 
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(Fig. 1A). The preceding data indicate that the isolated soybean SAT encodes a cytosolic 

isoform.

Serine acetyltransferase contains a catalytic domain, a protein-protein interaction 

domain, and an allosteric domain (Saito et al. 2000). The interaction domain facilitates 

complex formation with O-acetylserine (thiol)-lyase (OAS-TL). Wirtz et al. (2001), using 

computational modeling and site-directed mutagenesis, demonstrated that the protein-

protein interaction domain lies at the carboxyl terminus of the enzyme. The amino acid 

sequences in this region are highly conserved in all of the SATs (Fig. 1A). The SAT-OAS-

TL complex formation is regulated by OAS. Bimolecular interaction analysis using A. 

thaliana showed that accumulation of OAS promoted dissociation of the complex, 

resulting in an active OAS-TL, while low levels OAS had the opposite effect (Bogdanova 

and Hell 1997, Berkoqitz et  al. 2001). Kinetic studies revealed that when in a complex 

with OAS-TL, the Km of SAT decreases. O-acetylserine (thiol)-lyase is inactivated while 

complexed with the SAT (Droux et al. 1998). Based on conservation of amino acid 

sequences, it is apparent that soybean SAT contains the same distinct domains seen in the 

enzymes from other species. I have shown that soybean recombinant SAT is inhibited by 

L-cysteine. Since SAT forms a complex with OAS-TL, and the kinetic properties of the 

individual enzymes and enzyme-complex are distinct, it is important to determine if the 

enzyme-complex is also inhibited by cysteine. I have recently cloned OAS-TL from 

soybean and expressed this protein in E. coli (Chronis and Krishnan 2003). The 

availability of recombinant soybean OAS-TL and SAT will facilitate studies designed to 
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elucidate the mechanism and regulation of cysteine synthesis.

Southern blot  analysis has shown that a multigene family encodes the isoforms of 

SAT in A. thaliana (Roberts and Wray  1996). Sequencing of the Arabidopsis genome has 

revealed the presence of five genes, which putatively encode SAT. Southern blot analysis 

indicates that soybean SAT is probably encoded by a small gene family. Isolation and 

characterization of the remaining members of this gene family  and their products will 

enhance our understanding of sulfur assimilation in soybeans. Serine acetyltransferase 

activity in soybean leaves is significantly lower when compared to enzyme activity from 

Arabidopsis leaves (Fig. 7). I was unable to detect accumulation of SAT in soybean 

leaves and seeds by western blot analysis suggesting that the protein was present at 

extremely low levels. In contrast, western blot analysis indicated OAS-TL was present in 

substantial amounts in soybean seed (Chronis and Krishnan 2003). It  has been reported 

that OAS-TL is present at a 300-fold molar excess over SAT (Leustek 2002, Ruffet et  al. 

1994). These findings suggest disparate amounts of SAT and OAS-TL may play an 

important role in the regulation of soybean sulfur assimilation. Recently, it has been 

proposed that calcium-induced phosphorylation is involved the control of cysteine 

synthesis (Yoo and Harmon 1997, Harmon et al. 2003). In vitro experiments have shown 

SAT to be a substrate of a calcium-dependent protein kinase. Phosphorylated SAT was 

insensitive to cysteine feedback inhibition (Yoo and Harmon 1997, Harmon et al. 2003). 

Thus, it appears that the SAT is also regulated by post-translational modification.
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One of my goals is to increase the sulfur amino acid content of soybean seed proteins 

by genetic manipulation. Since my studies show that SAT is a low-abundance enzyme in 

soybean, over-expression of this enzyme may  facilitate increased cysteine synthesis. It 

has been shown that expression of watermelon SAT in transgenic Arabidopsis resulted in 

over accumulation of OAS and cysteine (Noji and Saito 2002). However, this 

accumulation occurred only  in plants transformed with the SAT that had a point mutation 

of Gly-277 to Cys, thus preventing feedback inhibition by cysteine. Similarly, transgenic 

potato plants expressing the cysE gene of E. coli, which encodes for SAT, exhibited 

significantly higher levels of cysteine compared to wild type (Hesse et al. 2000). These 

results suggest that a similar approach could be employed to enhance cysteine synthesis 

in soybeans.
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Figure 1: (Α) Multiple alignment of the amino acid sequence of SAT from different plants.  An underlying 
line at the C-terminus indicates the principal allosteric site for cysteine inhibition. Residues primarily 
responsible for this inhibition,  Gly-277 and His-282, are indicated by asterisks. Boxed area corresponds to 
the binding region of acetyl-CoA. Dashes indicate gaps to facilitate best alignment. Green shading indicates 
conserved residues; red shading indicates residues showing more than 60% identity; yellow shading 
indicates those residues showing more than 60% similarity; (Β) Phylogenetic tree of SAT. The phylogenetic 
tree was constructed using the University of California Data Base. Escherichia coli SAT (Accession No. 
NC_000913), Salmonella typhimurium SAT (Accession No. X59594), Arabidopsis SAT-m [identical to 
Sat-1 (Roberts and Wray 1996)], Arabidopsis SAT-p [identical to SAT1 (Murillo et al. 1997)], Arabidopsis 
SAT-c [identical to SAT52 (Howarth et al.  1997)], watermelon SAT2 (Saito et al. 1995),  spinach SAT 
(Accession No. D88529), Allium tuberosum ASAT5 (Urano et al.  2000; Accession No. AB040502), Glycine 
max SAT1 (this study; Accession No. AF452452).
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Figure 2: Southern blot analysis of soybean genomic DNA. Ten µg of soybean genomic DNA was 
restricted with BamHI (lane 1), EcoRI (lane 2), and HindIII (lane 3) and resolved on a 0.8% agarose gel. 
The gel was blotted to Hybond N+ membrane followed by hybridization with 32P-labeled soybean seed 
SAT cDNA. The positions of the Lambda HindIII molecular weight markers are shown.
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Figure 3: Functional complementation of Cys- Escherichia coli JM39/5 by transformation with the 
expression vector carrying soybean SAT cDNA clone. The E.coli cysteine-auxotroph was transformed with 
pSSAT10 and streaked on M9 minimal agar plates in the presence (left plate) or absence of 0.5 mM 
cysteine (right plate). The empty vector pET28a was used as a negative control.
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Figure 4: Semi-quantitative reverse transcriptase (RT)-PCR detection of SAT and glycinin mRNA in 
developing soybean seeds. Total RNA, isolated from soybean seeds harvested at 7-day intervals beginning 
at the R5 growth stage (lanes 1 to 5), was used as a template for RT-PCR. The 18S ribosomal mRNA was 
used as quantitative control.  Band intensity was quantified using the GeneWizzard bio-imaging system and 
the values are indicated. Bands with the strongest signal were treated as 100%.
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Figure 5: Expression and purification of the recombinant SAT. Cells of the Escherichia coli ER2566 strain 
were transformed with the plasmid pSSAT10. Protein expression was achieved by the addition of 1 mM 
IPTG to the transformed E.coli culture.  The recombinant protein was purified on a Ni-NTA agarose 
chromatography column. Proteins were resolved on a 12.5% SDS-PAGE and visualized by staining with 
Coomassie Brilliant Blue. Lanes: M, Protein molecular weight markers (phosphorylase b, 97 400; bovine 
serum albumin, 66 200; ovalbumin, 45 000; carbonic anhydrase,  31 000; soybean trypsin inhibitor, 21 500; 
lysozyme, 14 400); 1. total protein from uninduced cultures; 2. total protein from IPTG-induced cultures; 3. 
purified recombinant soybean SAT.
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Figure 6: Western blot detection of SAT from Arabidopsis thaliana and soybean. Total proteins from 
Arabidopsis leaves (lane 1), soybean leaves (lane 2), and developing soybean seeds (lane 3) along with 
protein molecular weight markers (lane M) were resolved on a 12.5% SDS-PAGE gel. Fractionated 
proteins were visualized by staining with Coomassie Brilliant Blue (Panel A) Proteins from two identical 
gels were transferred to nitrocellulose and probed with the either Arabidopsis SAT antibodies (Panel B) or 
soybean recombinant SAT antibodies (Panel C).  Note that both antibodies react with a 34-kDa protein from 
Arabidopsis leaves, but not with soybean proteins.

52



Figure 7: Serine acetyltransferase activity in soybean and Arabidopsis thaliana. Crude protein extracts 
from Arabidopsis leaves (sample 1), soybean leaves (sample 2), and developing soybean seeds (sample 3) 
were used to determine SAT activity. The production of thionitrobenzoic acid was followed 
spectrophotometrically at 412 nm. Bars represent the standard error of the mean.
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Figure 8: Soybean recombinant SAT undergoes feedback inhibition by cysteine. Bars represent the 
standard error of the mean.
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CHAPTER 4

MOLECULAR CLONING AND CHARACTERIZATION OF O-

ACETYLSERINE (THIOL) LYASE (OAS-TL) FROM SOYBEAN

SYNOPSIS

Soybean (Glycine max [L.] Merr.) is a good protein source for both humans and 

livestock. However, soybean seed proteins are deficient  in the sulfur-containing amino 

acids, cysteine and methionine. This deficiency has stimulated efforts to improve the 

amino acid composition of soybean seed proteins. Our overall goal is to improve the 

sulfur amino acid content of soybean seed proteins by genetic manipulation. The 

objective of this study was to isolate and characterize O-acetylserine (thiol) lyase (OAS-

TL), a key enzyme that catalyzes the last  step  in the production of cysteine. A full-length 

cDNA clone encoding a cytosolic isoform of OAS-TL was isolated by screening a 

soybean seed cDNA library  with a 32P-labeled expressed sequence tag (EST). Nucleotide 

sequence analysis of the cDNA revealed a single open-reading frame of 978 base pairs 

(bp) encoding a 34 kDa protein. The authenticity of the isolated cDNA was confirmed by 

the functional complementation of an Escherichia coli cysteine auxotrophic mutant. 

Reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed that OAS-

TL mRNA was abundant at early stages of seed development. Western blot analysis using 
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antibodies generated against the recombinant soybean OAS-TL demonstrated that the 

abundance of this protein gradually declined during later stages of seed development. The 

OAS-TL activity peaked in young developing seeds and declined steadily during the time 

period when the bulk of seed storage protein accumulation occurred. Thus, elevating the 

specific activity of OAS-TL during later stages of seed development could lead to an 

increase in cysteine synthesis in soybean seeds.

INTRODUCTION

Soybeans typically contain about 40% protein and 20% oil. Because of their high 

protein content, they are widely used as a protein source both for humans and animals. In 

the United States, soybeans are mainly used as animal feed. Soybean proteins are under-

represented in sulfur-containing amino acids (methionine and cysteine). Unlike plants, 

animals have a dietary requirement for sulfur amino acids. As a consequence, animal 

diets are often supplemented with synthetic sulfur amino acids to achieve optimal growth. 

The use of supplemental amino acids costs the poultry and swine industry approximately 

100 million dollars annually. Therefore, improving the sulfur-amino acid content  of 

soybean proteins will greatly benefit the livestock industry  and improve the overall 

profitability of soybean farmers.

Soybean seed proteins are classified into 7S and 11S proteins and these together 

represent about 70% of the total seed protein (Nielsen, 1996; Krishnan, 2000). The 11S 

proteins are named glycinin, while the 7S proteins are known as β-conglycinin. The 11S 
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glycinin contains more of the sulfur-containing amino acids than the 7S β-conglycinin. 

The β-conglycinin is made up of three subunits, namely α’, α, and β. The β-subunit lacks 

methionine (Coates et  al., 1985) and is considered to be of very poor nutritional quality. 

Elimination or reduction of the β-subunit of β-conglycinin, therefore, may lead to 

improvement of the nutritional quality  of soybean seed proteins. In fact, soybean seed 

storage protein mutants have been obtained that have low levels of 7S globulins and such 

mutants have 15% more methionine than other cultivars (Kitamura and Kaizuma, 1981). 

Imsande in 2001 reported the isolation of soybean mutant lines with a methionine over-

producing phenotype. It was reported such mutants had approximately 20% greater 

methionine and cysteine concentration in their seeds. The nutritional quality  of soybean 

seed storage proteins has also been enhanced by expressing heterologous proteins that are 

rich in methionine. Introduction of methionine-rich 2S albumin from Brazil nut 

(Bertholletia excelsa) drastically  improved the methionine content of soybean (Nordlee et 

al., 1996). However, the introduced Brazil nut protein was an allergen, and consequently, 

the transgenic soybeans were not commercialized. Interestingly, transgenic soybeans 

expressing Brazil nut 2S albumin showed lower accumulation of Kunitz trypsin inhibitor 

(KTI) and chymotrypsin inhibitor (CI). The protease inhibitors are rich in sulfur-

containing amino acids and the heterologous expression of 2S Brazil nut  albumin has 

presumably shunted the sulfur amino acids from the protease inhibitors (Streit et al., 

2002). This study indicates that there is a limitation in the sulfur amino acid pool in 

developing soybean seeds.
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I am interested in improving the protein quality of soybean seed storage proteins. One 

of the approaches that I have undertaken is genetic manipulation of enzymes that are 

involved in the sulfur biosynthetic pathway. In spite of the importance of sulfur amino 

acids in determining the protein quality  of soybean, very little is known about  sulfur 

metabolism in soybean. Therefore my objective was to identify and characterize enzymes 

involved in the cysteine biosynthetic pathway in soybeans. The cysteine biosynthetic 

pathway is responsible for the fixation of inorganic sulfur into L-cysteine (Leustek et  al., 

2000). Cysteine is the first reduced sulfur-containing compound and serves as the sulfur 

donor for methionine. The cysteine biosynthetic pathway involves several enzymatic 

steps (Leustek and Saito, 1999). O-acetylserine (thiol) lyase [OAS-TL; EC 4.2.99.8] 

catalyzes the formation of cysteine from O-acetylserine (OAS) and hydrogen sulfide with 

the release of acetic acid.

Cysteine is the principal starting material for the synthesis of sulfur-containing amino 

acids, coenzymes, and sulfolipids (Leustek et al., 2000). In spite of the importance of this 

enzyme in sulfur metabolism, no molecular characterization of this enzyme in soybean 

has been reported. Here, I report the molecular cloning and characterization of OAS-TL 

from soybean, an enzyme that catalyzes the final step  of the cysteine biosynthetic 

pathway.
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MATERIALS AND METHODS

Plant material. Soybeans cv. “Williams 82” were field-grown at the Bradford 

Research and Extension Center near Columbia, Missouri, on a Mexico silt  loam soil 

(Udollic Ochraqualf). Samples were collected from nodes 10 and 11 over time starting 

from the R5 stage (Fehr and Caviness, 1979). Seeds from four replications were collected 

for each time point. The pod walls were split open and seeds were frozen immediately in 

liquid nitrogen and stored at –80oC until use.

cDNA Isolation and sequence analysis. Total RNA from developing soybean seeds 

was isolated by the LiCl precipitation procedure (Lizzardi, 1983). Poly (A)+ RNA was 

isolated by  oligo (dT)-cellulose chromatography. A cDNA library of soybean seed poly 

(A)+ RNA was constructed in lambda ZAP II following the manufacturer’s protocol 

(Stratagene, La Jolla, CA). To isolate the OAS-TL cDNA clone, we synthesized primers 

( F o r w a r d : 5 ’ G G G T TA C A A G C T C ATA AT TA C 3 ’ ; R e v e r s e : 5 ’ 

GCACCTGTCATTGTACCACGAG 3’) based on published sequence of a EST clone 

(GenBank accession no. AW509442). These primers were utilized to amplify a 300 bp 

fragment from soybean genomic DNA. The polymerase chain reaction (PCR) fragment 

was purified from agarose gel and radiolabeled with [α-32P] dCTP (PerkinElmer Life 

Sciences Inc., Boston, MA) using a random labeling kit (Takara Bio Inc., Shiga, Japan). 

The soybean seed cDNA library  was screened with the radiolabeled probe according to 

standard protocol (Sambrook et al., 1989). Three positive lambda clones were identified 
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of the Rapid Excision Kit (Stratagene, La Jolla, CA). One of the positive clones (pSCS1) 

was chosen for further analysis. The cDNA insert was sequenced with a Taq Dye 

Terminator Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) at the DNA 

core facility of the University of Missouri using appropriate primers synthesized by 

Integrated DNA Technologies (Coralville, IA). The nucleotide sequence and the derived 

amino acid sequence of soybean seed OAS-TL were subjected to BLAST analysis 

(BLASTX, National Center for Biotechnology Information - NCBI). Restriction enzyme 

analysis was performed using NEBCutter 1.0 (New England Biolabs, Beverly, MA). 

Multiple sequence alignments were performed using CLUSTLAW software (European 

Bioinformatics Insitute, Germany; http://www.ebi.ac.uk/clustalw) and BOXSHADE 

(Pasteur Institute, France; http://bioweb.pasteur.fr/seqanal/interfaces/boxshade.html). A 

phylogenic tree was constructed with the help of the University of California Data Base 

(University of California, San Diego, CA; http://workbench.sdsc.edu).

Isolation of soybean genomic DNA and southern blotting. Genomic DNA from 

soybean leaf (cv. Williams 82) was isolated by the standard 

hexadecyltrimethylammonium bromide (CTAB) method. Ten µg of genomic DNA were 

digested with BamHI, EcoRI and HindIII overnight at 37oC. The digested samples were 

fractionated on a 0.8% (w/v) agarose gel. After electrophoresis, the DNA was partially 

hydrolyzed (15 min depurination in 0.25 N HCl; 30 min denaturation in 0.4 M  NaOH) 

before transfer to Hybond N+ membrane (Amersham Biosciences, Piscataway, NJ). After 

transfer, the filter was prehybridized overnight in hybridization buffer at 65oC (1% [w/v] 
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BSA, 500 mM Na2HPO4, 10 mM EDTA, 7% [w/v] SDS, 100 µg/ml salmon sperm DNA, 

total volume of 20 ml). Hybridization was performed at 65oC for 24 h with [α-32P] dCTP 

labeled OAS-TL probe. Following hybridization, the membrane was washed two times 

with 2x SSC, 1% (w/v) SDS , once with 1x SSC, 1% (w/v) SDS and finally two more 

times with 0.1x SSC, 1% (w/v) SDS. Each wash was carried out for 10 min at 65oC. 

Hybridizing bands were detected by autoradiography, using a DuPont (Wilmington, DE) 

Cronex Lightening Plus intensifying screen for signal enhancement.

Reverse transcriptase polymerase chain reaction (RT-PCR). analysis. Total RNA 

from developing soybean seeds was extracted using Trizol Reagent according to the 

manufacturer’s protocol (Invitrogen, Carlsbad, CA). Total RNA (0.1 µg) was used for the 

reverse transcriptase (RT) reaction. Prior to RT-PCR, the RNA was treated with DNase I 

(Invitrogen, Carlsbad, CA) to remove any contaminating DNA. The RT reaction was 

carried out in a volume of 50 µl using the OneStep RT-PCR kit (Qiagen, Valencia, CA). 

Primers were designed from the 5’ end and 3’ end of the open-reading frame (ORF) of 

O A S - T L . T h e f o r w a r d a n d r e v e r s e p r i m e r s w e r e 5 ’ -

C C A A C A T A T G A T G G C T G T T G A A A G G T C C G G - 3 ’ a n d 5 ’ -

GGTTGCGGCCGCTCAGGGCTCAAAAGTCATGC-3’, respectively. The thermal 

cycler program was 50oC for 30 min, 95oC for 15 min, 30 cycles at  94oC (1 min), 58oC (1 

min), and 72oC (1 min), followed by a final 10 min at 72oC. A 700 bp fragment of 

soybean 18S rRNA was also reverse-transcribed under similar conditions and used as a 

loading control. Primer sequences were as follows: Forward: 5’-
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G C T T A A C A C A T G C A A G T C G A A C G T T G - 3 ’ , R e v e r s e : 5 ’ -

ACCCCTACACACGAAATTCCACTC-3’. The PCR products were separated on a 7 g 

kg-1 agarose gel and photographed using an Eagle Eye II still video system (Stratagene, 

La Jolla, CA).

Western blot analysis. Seed proteins isolated from soybeans at different 

developmental stages were separated by  SDS-PAGE (Laemmli, 1970) using a Mighty 

Small II electrophoresis system (Hoefer Scientific Instruments, San Francisco, CA). The 

proteins were resolved on a slab gel (10 × 8 × 0.75 cm) consisting of a 13.5% separation 

gel and a 4% stacking gel. Electrophoresis was carried out at 20 mA constant current per 

gel at room temperature. After the completion of the electrophoresis, the gels were 

equilibrated with electrode buffer (25 nM1 Tris, 192 mM  glycine, and 20% [v/v] 

methanol, pH 8.3) for 15 min. Proteins from the gels were electroblotted onto pure 

nitrocellulose membrane (Midwest-Scientific, Valley Park, MO) essentially as described 

by Burnett (1981). The membranes were washed with TBS (80 mM Tris-HCl, 200 mM 

NaCl, pH 7.5) for 5 min and incubated with TBS containing 5% (w/v) nonfat dried milk 

for 1 hr at  room temperature. Following this, the membrane was incubated overnight with 

polyclonal antibodies raised against soybean recombinant OAS-TL (Chronis and 

Krishnan, unpublished) that was diluted 1:5,000 in TBS containing 5% (w/v) nonfat dried 

milk. Following three washes in TBS containing 0.8 g L-1 of Tween 20 (TBST) for 10 

min each, the blot was incubated with HRP-conjugated goat anti-rabbit IgE (1:5,000 [v/v] 

dilution) in TBST containing 5% (w/v) nonfat dried milk for 1 hr with gentle agitation at 
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room temperature. Final washes were carried out with TBST (3 × 10 min) and TBS (1 × 5 

min). Immunoreactive polypeptides were visualized using horseradish peroxidase color 

development procedure recommended by  the manufacturer (Bio-Rad Laboratories, 

Richmond, CA).

Complementation of NK3 Cys- E. coli auxotroph. We amplified the coding region 

of soybean OAS-TL with gene-specific primers (Forward 5’-

CCAACATATGATGGCTGTTGAAAGGTCCGG-3’ and Reverse 5 ’ -

GGTTGCGGCCGCTCAGGGCTCAAAAGTCATGC-3’) to which NotI and NdeI 

restriction sites were introduced at the 5’and 3’ ends, respectively. The PCR product was 

cloned into the NdeI and NotI sites of the expression vector pET 28(a)+ (Calbiochem-

Novabiochem, San Diego, CA) resulting in pSCS10. The NK3 Cys- E. coli mutant 

[ΔtrpE5 leu-6 thi hsdR hsdM+ cysK cysM], (obtained from Dr. Kazuki Saito, Chiba 

University, Chiba, Japan) was transformed with pSCS10 and the cloning vector pET-28a 

served as a negative control. For the genetic complementation of the cysteine 

requirement, the transformed E. coli cells were plated on M9 agar plates (Sambrook et 

al., 1989) supplemented with 100 mg L-1 kanamycin, 1 mmol L-1 IPTG and 0.2 g kg-1 

leucine and tryptophan (Saito et al., 1992).

Determination of OAS-TL activity. The OAS-TL activity  was determined according 

to the protocol of Warrilow and Hawkesford (1998). Soybean seed samples (200 mg) 

were ground in a chilled mortar and pestle with 2 ml of ice-cold extraction buffer [100 

mM Tris-HCl pH 8.0, 100 mM1 KCl, 20 mM  MgCl2, 1% Tween 80 and 10 mM 
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dithiothreitol (DTT)]. The samples were transferred to microcentrifuge tubes and 

centrifuged at 4ºC for 10 min at 12 000 g. The clear supernatant was saved and used 

immediately for measuring the OAS-TL activity. Protein concentrations from seed 

extracts were determined spectrophotometrically with the help  of DC Standard Protein 

Assay Kit (Bio-Rad Laboratories, Richmond, CA). The enzyme reaction mixture 

contained 5 mM OAS, 3 mM sodium sulphide, 10 mM DTT and 0.1 M sodium phosphate 

pH 8 in total volume of 0.2 ml. The reaction was initiated by the addition of OAS and the 

mixture was incubated at  26ºC for 10 min. After the incubation period, 0.15 ml aliquots 

were removed and mixed with 0.35 ml of acidic ninhydrin reagent (1.3% ninhydrin in 1:4 

HCl: HOAc) and heated at 100oC for 10 min to allow color development. After cooling 

on ice, 0.7 ml of ethanol were added and absorbance measured at 550 nm. One unit of 

enzyme activity  is defined as the conversion of 1 nmol of OAS into cysteine min-1 under 

the stated assay conditions. Assays were performed three times and each time was 

represented by two replications.

RESULTS

Isolation of a cDNA encoding OAS-TL from a soybean seed cDNA library. To 

isolate the OAS-TL cDNA clone from soybean seed cDNA library, I synthesized primers 

corresponding to 5’ and 3’ of an EST clone (AW509442) encoding OAS-TL. These 

primers were utilized to amplify a 300 bp fragment from soybean genomic DNA. This 

PCR product was labeled with 32P and used as a hybridization probe to screen a soybean 

seed cDNA library  constructed in lambda ZAP II vector resulting in the isolation of three 
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putative clones. Subsequent restriction enzyme digestion of the DNA isolated from the 

three positive cDNA clones showed the same restriction pattern for all of them, and one 

of these clones (PCS1) was chosen for further studies. The physical map of this cDNA 

clone is shown in Fig. 1A. To characterize the putative OAS-TL cDNA clone, the 

nucleotide sequence was determined at  the DNA core facility of the University  of 

Missouri. The nucleotide sequence revealed that the cDNA was 1267 bp  long (Fig. 1A). 

Analysis of the DNA sequence using the ORF finder program identified a 978-bp-long 

ORF. The predicated ORF encodes a protein of 326 amino acids with a molecular mass of 

34.2 kDa (Fig. 1B). The theoretical isoelectric point of the protein was estimated to be 

5.83. O-acetylserine (thiol) lyase is a pyridoxal phosphate-dependent enzyme, and a 

lysine residue at  the N-terminal region of this protein is involved in binding this cofactor 

(Saito et al. 1993). This lysine residue and the sequence around it are also conserved in 

soybean OAS-TL (Fig. 1B). The BLASTX program and pairwise amino acid comparison 

of the soybean seed OAS-TL showed significant homology to OAS-TL from plants and 

bacteria. Soybean OAS-TL had 81% identity with Oryza sativa, 80.5% identity with 

Arabidopsis and 53.3% identity with E. coli OAS-TL (Fig. 2). A phylogenetic tree 

revealed that the OAS-TL isoforms could be divided into three major groups 

(chloroplastic, mitochondrial and cytosolic) based on their cellular location. Soybean 

OAS-TL was closely related to the cytosolic isoforms of OAS-TL from several other 

plant species (Fig. 2B). This prediction is consistent with my observation that the 

soybean OAS-TL lacks an amino terminal chloroplastic or mitochondrial transit peptide.
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To determine the gene copy number of OAS-TL in soybean genome, I performed 

Southern blot analysis using genomic DNA that was digested with different restriction 

enzymes. The restricted DNA was transferred to a nylon membrane and probed with 32P-

labeled OAS-TL cDNA. Under stringent hybridization conditions, I was able to detect 

more than one hybridizing band (Fig. 3) in the different restriction digestions. This 

observation suggests that the OAS-TL is probably encoded by a multigene family in 

soybean.

Functional complementation of NK3 cysteine E. coli auxotroph by soybean OAS-

TL. To verify if the isolated cDNA clone codes for a functional OAS-TL, I expressed the 

soybean cDNA in E.coli NK3, a cysteine auxotroph. This mutant lacks the gene for OAS-

TL and therefore cannot grow in medium without supplemental cysteine. I cloned the 

coding region of the soybean OAS-TL in a protein expression vector (pET28a) resulting 

in a plasmid pSCS10. Escherchia coli NK3, transformed with pSCS10, was able to grow 

on M9 minimal medium without cysteine (Fig. 4). The cysteine auxotroph and the mutant 

carrying the cloning vector, however, were unable to support the growth in the absence of 

cysteine (Fig. 4). These results confirm that the cDNA isolated from soybean seed cDNA 

library codes for a functional OAS-TL.

Temporal expression of OAS-TL mRNA during seed development. For 

comparison of the OAS-TL gene transcription levels during seed development, we 

performed RT-PCR analysis using total RNA isolated from seeds at different 

developmental stages. Using primers designed to amplify the entire coding region of the 
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OAS-TL, I was able to obtain 1.0 kb RT-PCR product (Fig. 5). The RT-PCR product, 

which was abundant during the early stages of seed development, declined perceptibly at 

the late stages of seed development (Fig. 5). To exclude the possibility that the decline in 

the OAS-TL mRNA at later stages of seed development was due to differences in the 

amount of total RNA used as template in RT-PCR reactions, I performed control reactions 

by amplifying a 700 bp 18S ribosomal RNA. As expected, the abundance of the 18S 

ribosomal RNA RT-PCR products remained constant throughout the seed development 

(Fig. 5). The results from the RT-PCR analysis indicate that mRNA encoding the OAS-

TL is abundant during the early stages and declines during the later stages of seed 

development.

Accumulation of OAS-TL polypeptide during seed development. Proteins 

extracted from developing soybean seeds when resolved by  SDS-PAGE revealed the 

presence of prominent storage proteins (Fig. 6A). The 72 kDa and the 70 kDa and 

proteins are the α’ and α subunits of β-conglycinin. The 52 kDa β-subunit of β-

conglycinin, which accumulates at late stages of seed development, was present  only at 

very low concentration. The 37 kDa and the 21 kDa abundant  proteins represent the 

acidic and basic subunits of glycinin (Fig. 6A). To monitor the accumulation of the OAS-

TL during seed development, Western blot analysis was performed using polyclonal 

antibodies raised against the purified soybean OAS-TL (Chronis and Krishnan, 

unpublished). The OAS-TL antibodies recognized a single 34 kDa protein from the total 

seed protein extract (Fig. 6B). The OAS-TL was detected throughout the seed 

71



development, but was present at relatively higher concentration during the early stages of 

seed development (Fig. 6B). This protein accumulation followed a similar trend as the 

RNA accumulation pattern.

OAS-TL activity declines during seed development. The activity of OAS-TL was 

measured at different stages of seed development. The OAS-TL activity, which was 

measured spectrophotometrically, was readily detected in soybean seed extracts. The 

specific activity  of the enzyme was highest during the earliest stage of seed development 

and declined eight fold during the last stage of seed development examined in this study 

(Fig. 8). The results from RT-PCR, Western blot analysis, and the enzyme activity assays 

all revealed similar temporal accumulation patterns.

DISCUSSION

Although the role of OAS-TL in cysteine biosynthesis has been extensively  studied in 

several plants, to my knowledge this is the first report to identify a full-length cDNA 

clone of OAS-TL in soybean (GenBank accession no. AF452451). The amino acid 

sequence of the soybean OAS-TL cDNA shows significant homology to those of other 

plant species and bacteria. Soybean OAS-TL contains the conserved PXXSVKDR motif 

that is characteristic of cysteine synthase. The lysine residue in this conserved motif has 

been shown to bind the co-factor pyridoxal 5’-phosphate. The OAS-TL has been purified 

from several plant species including Arabidopsis thaliana (Hesse and Altmann, 1995), 

spinach (Saito et al., 1992; Warrilow and Hawkesford, 1998), the green algae 
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Chlamydomonas reinhardtii (Ravina et al., 1999), rice (Nakamura et al., 1999), Allium 

tuberosum (Ikegami et al., 1993; Urano et al., 2000), Citrullus vulgaris (Ikegami et al., 

1988a), and Brassica juncea (Ikegami et al., 1988b). The enzyme consists of two 

identical monomers and a tightly bound co-factor pyridoxal 5’-phosphate (Rolland et al., 

1996). Two to four isoforms of the enzyme have been isolated in higher plants by 

chromatographic separations and cDNA isolations (Ikegami et al., 1993; Kuske et al., 

1996; Saito et al., 1992, 1993, 1994a, b; Warrilow and Hawkesford, 1998; Nakamura et 

al., 1999; Jost et al., 2000). The different isoforms of OAS-TL have been located in 

cytosol, plastids, and mitochondria. In A. thaliana, four genomic clones (oasA1, oasA2, 

oasB, and oasC) that encode OAS-TL have been identified and characterized. The oasA1, 

oasB, and oasC encode isoforms found in cytosol, the plastids, and the mitochondria, 

respectively. Based on the amino acid sequence homology, our soybean OAS-TL appears 

to be related to the cytosolic isoforms.

The OAS-TL plays an important role in linking sulfur and nitrogen assimilatory 

pathways and controlling the flux between these two pathways (Leustek and Saito, 1999; 

Leustek et  al., 2000). Consequently, cysteine synthesis depends on the availability  of 

sulfur, OAS, and the activity of OAS-TL. The accumulation of soybean seed storage 

proteins is regulated by  sulfur and nitrogen availability. Under excess nitrogen supply, the 

accumulation of the β-subunit of β-conglycinin is enhanced, while that of glycinin is 

inhibited (Gayler and Sykes, 1985; Paek et  al., 1997). Kim et al. (1999) have shown that 

the promoter of the β-subunit of β-conglycinin is up-regulated by sulfur deficiency and 
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down-regulated by nitrogen deficiency. Further, they have shown that OAS accumulates 

in soybean cotyledons that were cultured under sulfur deficiency. This study  clearly 

establishes the pivotal role of OAS in regulating the accumulation of the soybean seed 

storage proteins. Since OAS-TL uses OAS as a substrate it  should be interesting to 

examine if nitrogen and sulfur deficiency also influence its activity in soybean.

The activity  of ATP sulfurylase, an enzyme that catalyzes the adenylation of sulfate, 

has been investigated in developing soybean seeds (Sexton and Shibles, 1999). It was 

reported that the ATP sulfurylase activity  was highest in seeds harvested 15 days after the 

R5 stage (about 1600 nmol ATP g fresh wt-1 min-1) and reached low levels (about 250 

nmol ATP g fresh wt-1 min-1) at  the R7 stage. I have observed similar changes in the 

OAS-TL specific activity. The RT-PCR results indicated that OAS-TL mRNA was barely 

present in mature seeds and this led to the observed decline in OAS-TL activity during 

the later stages of seed development. It remains to be seen if a similar decline in ATP 

sulfurylase mRNA also occurs during seed maturation. The decline in the activity of two 

enzymes involved in the biosynthesis of cysteine may explain the low content of sulfur-

rich amino acids in soybean seed proteins. Because the bulk of seed storage proteins are 

synthesized during the mid-stage of seed development, it would be desirable to have 

sufficient supply  of cysteine during this period. However, the decline in the activity  of 

OAS-TL and ATP sulfurylase during this period indicates that  the supply of sulfur-amino 

acids may be limiting. The limitation on cysteine can be overcome by manipulating the 

expression levels of enzymes involved in cysteine biosynthetic pathway.
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The cysteine biosynthetic pathway is tightly regulated at several levels (Leustek and 

Saito, 1999; Leustek et al., 20000; Noji and Saito, 2002). The end product of sulfur 

assimilation, cysteine, is an allosteric inhibitor of the cytosolic form of serine 

acetyltransferase (SAT; EC 2.3.1.30). Serine acetyltransferase catalyses the formation of 

OAS from acetyl-CoA and serine. The OAS-TL activity  is also regulated by its 

interaction with SAT (Bogdanova and Hell, 1997; Droux et al., 1998). OAS-TL and SAT 

form an enzyme complex through specific protein-protein interactions. In the bound 

form, SAT shows positive cooperativity, meaning higher affinity  for its substrates. On the 

other hand, OAS-TL is completely  inactivated in the bound form. OAS triggers the 

dissociation of the complex, and sulfide counteracts the action of OAS (Bogdanova and 

Hell, 1997; Droux et al., 1998). A lag in sulfide production will result  in accumulation of 

OAS, which will slow its own synthesis by promoting the dissociation of the complex. 

Alternatively, the accumulation of sulfide will act as positive regulator in the association 

of SAT and OAS-TL thereby speeding the formation of OAS. Because the level of OAS 

influences the composition of soybean seed storage proteins (Kim et al., 1999), it will be 

important to clone and characterize soybean SAT, the enzyme responsible for the 

generation of OAS.
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Figure 1: (A) Partial restriction map of soybean cDNA encoding the OAS-TL. The long arrow indicates 
the location of the open-reading frame (ORF); (B) Nucleotide sequence and deduced amino acid sequence 
of OAS-TL cDNA from soybean seed. The sequenced region covers 1267 nucleotides. The ORF for OAS-
TL begins at position 82 and ends at position 1059 encoding a 34.2 kDa protein. The lysine residue that 
binds to pyridoxal 5’-phosphate is circled. The nucleotide sequence of OAS-TL cDNA from soybean 
appears in the GenBank database as accession No. AF452451.
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Figure 2: (A) Multiple alignment of the deduced amino acid sequence of OAS-TL. The sequences from 
rice (Accession No. Q9XEA8), Arabidopsis (Accession No. NP_193224), and E. coli (Accession No. 
P11096] are aligned with that of the soybean sequences from this study (Accession No. AF452451). Dashes 
indicate gaps to facilitate best alignment.  Red shading indicates conserved residues; green shading indicates 
residues showing more than 60% identity; yellow shading indicates those residues showing more than 60% 
similarity. The active site lysine (white on red), the substrate loop (white on orange), and residues that 
interact with pyridoxal phosphate (white on blue) are indicated; (B) Phylogenic tree of OAS-Tl. The 
phylogenic tree was constructed using the University of California Data Base.  Cytosolic isoforms: Glycine 
max (Accession No. AF452451), Arabidopsis thaliana (Accession No. NP_193224), Solanum tuberosum 
(Accession No.  BAB20861), Brassica juncea (Accession No. O23733), Spinacea oleracea (Accession No. 
Q00834),  Citrulus lanatus (Accession No. Q43317), Oryza sativa (Accession No. Q9XEA8), Zea mays 
(Accession No. P80608), Allium tuberosum (Accession No. BAA93051), and Triticum aestivum (Accession 
No. P38076). Chloroplastic isoforms: Capsicum anuum (Accession No. P31300), Spinacea oleracea 
(Accession No. D14722),  Nicotiana tabacum (Accession No. AJ299249), Solanum tuberosum (Accession 
No. O81155), and Arabidopsis thaliana (Accession No. S48695).  Mitochondrial isoform: Arabidopsis 
thaliana (Accession No. X81973). Bacterial OAS-TL: Escherchia coli (Accession No. P11096), 
Nostocaceae (Accession No. NC_003272), Thermosynechococcus elongates (Accession No. NC_004113), 
Synechocystis (Accession No. P73410), and Mesorhizobium loti (Accession No. NC_002678).
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Figure 3: Southern blot analysis of soybean genomic DNA. Ten µg of soybean genomic DNA was 
restricted with BamHI (lane 1), EcoRI (lane 2), and HindIII (lane 3) and resolved on a 0.8% agarose gel. 
The gel was blotted to Hybond N+ membrane followed by hybridization with 32P-labeled soybean seed 
OAS-TL cDNA insert. The positions of the Lambda HindIII molecular weight markers are shown at the left 
side of the figure.
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Figure 4: Functional complementation of Cys- E. coli NK3 by transformation with the expression vector 
carrying soybean OAS-TL cDNA clone. The E.coli cysteine-auxotroph was transformed with pSCS10 and 
was streaked on M9 minimal agar plates with 0.5 mM cysteine (right plate) or without cysteine (left plate). 
The empty vector pET28a was used as a negative control.
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Figure 5: Reverse transcriptase (RT)-PCR detection of OAS-TL mRNA in developing soybean seeds. 
Seeds were harvested. Total RNA isolated from soybean seeds harvested at 7-day intervals from 5 days 
after R5 stage (lanes 1 to 6) was used as a template for RT-PCR. The 18S ribosomal mRNA was used as 
quantitative control. Sizes of the molecular weight markers are indicated on the right side of the figure.
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Figure 6: Accumulation of OAS-TL during soybean seed development. (A) Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) analysis of protein profiles of developing soybean seeds. 
Total seed proteins isolated from six different developmental stages (lanes 1 to 6) were resolved on a 10% 
SDS-polyacrylamide gel and stained with Coomassie brilliant blue; (B) Western blot analysis.  Total protein 
from developing soybean seeds was resolved by SDS-PAGE, transferred to nitrocellulose, and probed with 
antibodies raised against the soybean OAS-TL. Note that the antibody specifically recognizes a 34 kDa 
protein from the soybean seed extracts. The numbers in kDa shown at the sides of the figures represent Bio-
Rad (Richmond, CA) protein molecular weight markers (phosphorylase b, 97 400; bovine serum albumin, 
66 200; ovalbumin, 45 000; carbonic anhydrase, 31 000; soybean trypsin inhibitor, 21 500; lysozyme, 14 
400).
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Figure 7: OAS-TL activity in soybean seeds. Seed samples from nodes 10 and 11 were collected at weekly 
intervals starting from R5 and cysteine synthase activity was measured using crude seed extracts. 
Formation of cysteine was determined with an OAS-ninhydrin assay.  Bars represent the standard error of 
the mean.
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CHAPTER 5

TRANSGENIC STUDIES: OVEREXPRESSION OF O-
ACETYLSERINE (THIOL) LYASE (OAS-TL) AND SERINE 
ACETYLTRANSFERASE (SAT) IN ARABIDOPSIS AND SOYBEAN

SYNOPSIS

Soybean (Glycine max [L.] Merr) is considered an excellent source of nutrient for 

humans and a main component of animal feed. Despite its nutritional value, the quality of 

soybean protein is lowered by the low content on sulfur amino acids, cysteine and 

methionine. In an effort to enhance the levels of cysteine and methionine in soybean, the 

coding sequence of serine acetyltransferase (SAT; EC 2.3.1.30), that produces O-

acetylserine (OAS) from serine and acetylCoA, and O-acetylserine (thiol) lyase (OAS-

TL; EC 4.2.99.8), the enzyme which converts OAS to cysteine, was introduced into the 

genome of soybean plants under the control of the cauliflower mosaic virus 35S 

promoter. Arabidopsis plants were also transformed with the same constructs. Since SAT 

is inhibited by cysteine (Cys), chimeric Cys insensitive forms of SAT were produced and 

used for plant transformation along with the sensitive wild type enzyme. Crude leaf 

extracts of the transgenic plants exhibited elevated levels of OAS-TL and SAT activity. 

Soybean SAT protein could not be detected by  western blot analysis of wild type plants, 

indicating that  the endogenous SAT levels are extremely low. Soybean transgenic plants 
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expressing either the Cys sensitive or insensitive form of SAT showed elevated SAT 

protein levels with enzyme activity  reaching up to 20-fold higher than wild-type plants in 

some cases. Transgenic Arabidopsis plants expressing the OAS-TL gene displayed 

resistance to heavy  metals and oxidative stress caused by methyl viologen. Similarly, 

transgenic soybean plants also exhibited tolerance to photooxidative stress. In conclusion, 

the results presented here demonstrate the importance of SAT and OAS-TL in cysteine 

biosynthesis and their protective role against heavy metals and oxidative stress.

INTRODUCTION

Soybean (Glycine max [L.] Merr) seeds with their 40% protein and 20% oil content 

are considered an excellent nutrient source. However, this nutritional value is 

compromised due to the low concentration of sulfur-containing amino acids, cysteine and 

methionine. Although traditional breeding methods have resulted in high protein soybean 

varieties, there has been only limited success in improving the cysteine and methionine 

content of soybean seed. Genetic engineering is a promising approach for improving 

soybean seed composition. Recently, several studies have reported the successful 

expression of heterologous proteins rich in sulfur in soybean. Transgenic soybean lines 

expressing the Brazil nut 2S albumin (BNA) protein showed an increase of the total 

methionine content upto 40% (Townsend and Thomas, 1994). Unfortunately, the BNA 

protein was identified as a potential allergen (Nordlee et al., 1996) and thus the 

commercial production of soybeans transformed with the BNA gene was abandoned. In 
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another study, soybeans expressing a 15 kDa maize sulfur-rich zein protein under the β-

phaseolin promoter exhibited a 12 to 20% increase in methionine and 15 to 35% increase 

in cysteine content compared to untransformed lines. However, this increase is not 

adequate to cover the dietary need (Tabe and Higgins, 1998). Expression of the 11 kDa 

methionine-rich delta-zein protein in soybean failed to increase the overall content of 

sulfur amino acids (Kim and Krishnan, 2004).

It is clear that expression of exogenous sulfur rich proteins alone is not sufficient to 

raise the overall soybean sulfur amino acid content to significant levels. One possibility is 

that the available methionine or cysteine for incorporation is limiting during seed 

development, and thus preventing increased accumulation of the heterologous expressed 

proteins. Recent studies have shown that genetic manipulation of the enzymes involved 

in the sulfur assimilatory pathway could potentially increase the cysteine and methionine 

content in plants. O-acetylserine (thiol) lyase (OAS-TL; EC 4.2.99.8) or the 

synonymously termed cysteine synthase, catalyses the last committed step in cysteine 

biosynthesis, where O-acetylserine (OAS) combines with sulfide. OAS-TL cDNA clones 

have been isolated from Arabidopsis (Hell et al., 1994; Barroso et al., 1995; Hesse and 

Altmann, 1995), spinach (Saito et al., 1992, 1993, 1994; Hell et  al., 1993; Rolland et al., 

1993), watermelon (Noji et al., 1994), wheat (Youssefian et  al., 1993), bell pepper 

(Romer et al., 1992), Allium tuberosum (Urano et al., 2000) and soybean (Chronis and 

Krishnan, 2003). It has been demonstrated that OAS-TL is induced under sulfur 

starvation and to a greater extent when both sulfur and nitrogen are depleted (Takahashi 
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and Saito, 1996). Transgenic tobacco overexpressing a cytosolic and chloroplastic 

isoform of OAS-TL from spinach displayed tolerance to toxic sulfur dioxide and sulfite 

(Noji et al., 2001). Furthermore, these transgenic plants showed resistance to paraquat 

(methyl viologen), a herbicide that generates active oxygen species. Levels of cysteine 

and glutathione (GSH), major end products of sulfur assimilation involved in plant 

defense under oxidative stress, were significantly elevated in resistant tobacco plants 

when compared to control plants (Noji and Saito, 2002). Similar results were obtained 

with tobacco plants overexpressing the wheat OAS-TL gene. Transformed plants were 

resistant to exposure to sulfur dioxide and showed drastically reduced levels of chlorosis 

following methyl viologen treatment. Cysteine and GSH concentration was considerably 

higher in transgenic tobacco plants. In addition Cu/Zn superoxide dismutase mRNA and 

activity were induced by cysteine and GSH (Youssefian et  al., 2001). Arabidopsis plants 

overexpressing OAS-TL exhibited tolerance to cadmium chloride, compatible with the 

high cysteine biosynthesis requirements for the production of GSH and phytochelatins 

during exposure to heavy metals (Dominguez-Solis et al., 2001). Although 

overexpression of OAS-TL in transgenic plants resulted in an increase in cysteine 

content, OAS-TL activity can be controlled endogenously  by serine acetyltransferase 

(SAT; EC 2.3.1.30), thus establishing an upper limit for the extent of increase. SAT 

catalyses the formation of OAS from acetylCoA and serine and has been isolated from 

several plants species, including watermelon (Saito et al., 1995), spinach (Noji et al., 

2001), Arabidopsis thaliana, Allium tuberosum (Urano et al., 2000) and soybean (Chronis 
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and Krishnan, 2004). SAT is capable of binding OAS-TL to form a complex. The 

formation of the complex is promoted by sulfide and its dissociation by OAS. In this 

complex OAS-TL is completely inactive (Bogdanova and Hell, 1997; Droux et al., 1998). 

SAT is allosterically inhibited by cysteine, but only the cytosolic form and not the 

plastidic or the mitochondrial isoform of SAT (Noji et al., 1998; Noji et al., 2001; Urano 

et al., 2000). Experiments with chimeric SATs from watermelon and Arabidopsis 

revealed that  SAT protein bears two distinct allosteric sites for inhibition by cysteine, one 

in the N-terminal and the other at the C-terminal. Two residues at the C-terminal 

allosteric site, Gly-277 and His-282, are primarily responsible for the sensitivity to 

cysteine (Innoue et al., 2000). To further understand the inhibition of SAT by cysteine and 

enhance the cysteine production in plants, Noji and Saito (2002) transformed Arabidopsis 

plants with a cysteine sensitive and insensitive SAT encoding gene. Although the SAT 

enzyme activity  was significantly increased in cell-free extracts of all transformed plants, 

levels of OAS and cysteine were only higher than the wild type in the plants expressing 

the insensitive SAT, indicating that endogenously cysteine does inhibit SAT activity. 

Potato plants overexpressing the cysE gene from Escherichia coli, that  codes for a 

cysteine insensitive form of SAT revealed remarkably higher SAT activity and increased 

levels of cysteine and GSH (Harms et al., 2000).

All previous evidence indicates that cysteine biosynthesis can be enhanced by 

manipulating the enzymes involved in sulfur assimilation. Here I report, generation of 

transgenic Arabidopsis and soybean expressing OAS-TL and SAT genes previously 
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isolated from soybean (Chronis and Krishnan, 2003; 2004). The results obtained from 

this study should aid our efforts to increase the overall cysteine and methionine content of 

soybean.

MATERIALS AND METHODS

Plasmid construction. Isolation of OAS-TL and SAT cDNA clones from soybean has 

been described previously (Chronis and Krishnan, 2003; Chronis and Krishnan, 2004). A 

unique SpeI site was created by PCR at position 819 of the SAT open reading frame 

(ORF) to facilitate single substitution of Gly-268 with Ala and His-273 with Arg, and 

double substitution of both residues. The region from position 819 and downstream to the 

stop codon of the SAT ORF was amplified using the primers: 5’-

A A C C A C T A G T T T T A T C T C T G A G T G G T C A G - 3 ’ a n d 5 ’ -

GGTTGCGGCCGCTCAAATGATATAATCTGACC-3’; SpeI and NotI, annotated with 

bold letters, were created in these two primers. Amplification of the SAT coding region 

from position 819 and upstream to the start codon was carried out using the same forward 

primer (5’-CCAACATATGATGCCGACGGGGTTACCGGC-3’) and different  reverse 

primers to enable the point mutations at the SAT allosteric site (5’-

G G T T A C TA G T AT G G T C C ATA G A C T C C G C A G G - 3 ’ , G l y : A l a ; 5 ’ -

G G T T A C TA G T A C G G T C C ATA G A C T C C C C A G G - 3 ’ , H i s : A rg ; 5 ’ -

GGTTACTAGTACGGTCCATAGACTCCGCAGG-3’, double substitution), to which 

NdeI and SpeI restriction sites, indicated with bold letters, were introduced at the 5’ and 
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3’ ends respectively. Each amplified fragment was individually inserted into pGEM-T 

easy vector (Promega, Madison, WI, USA). Utilizing unique restriction sites created by 

PCR, each flanking region from the start to 819 position was paired with the fragment 

starting from 819 position to stop codon and cloned to pGEM-T easy vector resulting in 

plasmids pGSAT3 (Gly substitution), pGSAT4 (His substitution) and pGSAT5 (double 

substitution). In similar approach, a plasmid with the SAT ORF lacking the allosteric site 

was created by amplifying the coding region with forward (5’-

CCAACATATGATGCCGACGGGGTTACCGGC-3’; NdeI indicated with bold letters) 

and reverse (5’-GGTTGCGGCCGCTCACACATCCTCATGCTTAGAGGG C-3’; NotI 

indicated with bold letters). The amplified fragment was inserted into pGEM-T easy 

vector resulting in pGSAT6.

Constructs of modified SATs for overexpression in Escherichia coli were created as 

described previously (Chronis and Krishnan, 2004). Fragments from pGSAT3, pGSAT4, 

pGSAT5 and pGSAT6 were excised with NdeI / NotI double digestion and cloned into the 

NdeI and NotI sites of the expression vector pET 28(a)+ (Calbiochem-Novabiochem, San 

Diego, CA) resulting in pESAT3, pESAT4, pESAT5 and pESAT6 respectively, with a 6-

His N-terminal fusion part. For overexpression of OAS-TL and SATs in plants five 

different plasmids were prepared. In the case of OAS-TL the coding region was amplified 

from pSCS1 (Chronis and Krishnan, 2003) with primers 5’-

C C A A G G A T C C A T G C C G A C G G G G T T A C C G G C - 3 ’ a n d 5 ’ -

GGTTGCGGCCGCGGGCTCAAAAGTCATGCTTT-3’ (BamHI and NotI indicated 
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with bold letters). The PCR product was cloned into the intermediate vector pHK10 in 

the BamHI / NotI sites, resulting in plasmid pHCS1 with a fused 6X-His tag at end of the 

ORF. In the same manner, the coding region of native and modified SATs was amplified 

from pSSAT1 (Chronis and Krishnan, 2004), pGSAT5 and pGSAT6 with forward primer 

(5’-CCAAGGATCCATGCCGACGGGGTTACCGGC-3’, BamHI restriction site in bold 

letters) and reverse primer (5’-GGTTGCGGCCGCAATGATATAATCTGACC-3’ for 

a m p l i f i c a t i o n f r o m p S S AT 1 , p G S AT 3 a n d p G S AT 5 ; 5 ’ -

GGTTGCGGCCGCCACATCCTCATGCTTAGAGGGC-3’ for amplification from 

pGSAT6; NotI restriction site in bold letters). The amplified fragments were introduced to 

the intermediate vector, resulting in plasmids pHSAT1, pHSAT3, pHSAT5 and pHSAT6 

with the 6X-His tag at the end of each ORF. As a final step, the inserts from the 

intermediate plasmids of OAS-TL and SAT were digested with BamHI / XbaI and cloned 

into the corresponding sites of pZ35S1, resulting in pZCS1, pZSAT1, pZSAT3, pZSAT5 

and pZSAT6 respectively. These final plasmids consisted of cauliflower mosaic virus 35S 

promoter (CaMV 35S), the different OAS-TL and SAT gene coding region, together with 

the cassette containing the CaMV 35S promoter, the bar-coding region and the 3’-region 

of the nopaline synthase gene (nos).

Overexpression of chimeric SATs in Escherichia coli (E. coli). Overexpression of 

the modified SATs was carried out using the ER2566 E. coli strain (New England 

Biolabs). A preparative culture (100 ml LB, 100 µg/ml kanamycin) of ER2566 strains 

carrying each SAT plasmid were grown at 37oC to an optimal density of 0.9 (550 nm) and 
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induced by addition of isopropyl-β-thiogalactopyranoside (IPTG) to a final concentration 

of 1 mM. Induction was continued for 18 hr at 37oC. Recombinant SAT proteins were 

purified under native conditions according to Hoffmann and Roeder (1990) at 4oC. Cells 

from the overnight-induced cultures were harvested by centrifugation (4050g, 20 min, 

4oC), resuspended in 5 ml of extraction buffer (10 mM Tris.HCl [pH 7.9], 10% glycerol, 

0.5 M NaCl, 0.1% nonidet-P40, 5 mM DTT) and incubated on ice for 30 min. The 

suspensions were centrifuged (11,300g; 10 min; 4 oC) and imidazole was added to a final 

concentration of 1mM to the supernatants. The supernatants were passed through a Ni-

NTA agarose column (Qiagen) and washed with two column volumes of BC100 (20% 

glycerol, 20 mM Tris.HCl [pH 7.9], 100 mM KCl, 5 mM dithiothreitol (DTT) and 0.5 

mM PMSF) containing 20 mM imidazole. Elution was carried out with 5 ml of BC100 

containing 80 mM imidazole. Utilizing the DC Standard Protein Assay Kit (Pierce, 

Rockford, IL, USA), protein concentrations were spectrophotometrically determined 

using bovine serum albumin as a standard.

Plant material and transformation. Transformation of Arabidopsis was performed 

following the simplified floral dipping method of Clough and Bent (1998). Arabidopsis 

thaliana plants (ecotype Columbia) used for inoculations with Agrobacterium 

tumefaciens were grown in a moist potting soil (Premier Pro-mix potting soil, BareRoots 

Hydroponics ,Waterville, VT, USA) under 24 hr constant light at 22oC. When the primary 

bolts emerged, plants were clipped to increase growth and proliferation of many 

secondary bolts. Typically 3 to 4 days after clipping plants were inoculated with A. 

tumefaciens carrying pZCS1, pZSAT1, pZSAT5 and pZSAT6 plasmids. Overnight culture 
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of A. tumefaciens was resuspended in 5% (w/v) sucrose to a final OD600 of 0.8 containing 

0.05% (v/v) of the surfactant Silwet L-77, and aerial parts of the plants were dipped for a 

few seconds with gentle agitation. After inoculation dipped plants were placed under a 

transparent plastic dome to increase humidity for 16 to 24 hrs. For selection of transgenic 

Arabidopsis plants, seeds were germinated in wetted soil. When cotyledons were fully 

opened plants were sprayed to saturation with 0.005% (w/v) glufosinate ammonium 

solution (Sigma-Aldrich Corp., St. Louis, MO, USA). Application of glufosinate 

ammonium was carried out for 3 consecutive days and repeated one more time 5 days 

after last application. Resistant plants were screened by western blot analysis for the 

presence of CS1, SAT1, SAT5 and SAT6 proteins and left  to grow under constant 

illumination at 22oC till seeds were harvested.

Production of transgenic soybean lines (cv. Williams 82) was carried out by 

Agrobacterium-cotyledonary node transformation (Hinchee et al., 1988) utilizing 

glufosinate ammonium as a selective agent (Zhang et al., 1999). Plants were transformed 

with Agrobacterium carrying pZCS1, pZSAT1 and pZSAT5 plasmids. Regenerated 

transgenic soybean plants were screened for tolerance to glufosinate by a leaf-painting 

assay as described earlier (Zhang et al., 1999). The presence of the heterologous proteins 

in glufosinate-resistant plants was confirmed by western blot analysis.

Western blot analysis. Total protein extracts from Arabidopsis leaf and soybean leaf 

were fractionated by  SDS-PAGE (Laemmli 1970) using a Mighty Small II 

electrophoresis system (Hoefer Scientific Instruments, San Francisco, CA, USA). The 
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proteins were resolved on a slab gel (10 × 8 × 0.75 cm) consisting of a 13.5% (w/v) 

separation gel and a 4% (w/v) stacking gel. Electrophoresis was carried out at 20 mA 

constant current per gel at room temperature. After the completion of electrophoresis, the 

gels were equilibrated with electrode buffer (25 mM  Tris, 192 mM  glycine, and 20% 

methanol, pH 8.3) for 15 min. Proteins from the gels were electroblotted onto pure 

nitrocellulose membrane (Midwest-Scientific, Valley Park, MO, USA) as described by 

Burnett (1981). Immunoblot analysis was performed following conventional western blot 

analysis with antibodies raised against soybean SAT and soybean OAS-TL as described 

previously (Chronis and Krishnan, 2003; 2004) and against the His tag of the 

recombinant proteins according to manufacturer’s protocol (SuperSignal West HisProbe 

Kit; Pierce Biotechnology, Rockford, IL, USA).

Enzyme activity assays. SAT activity was assayed according to Noji et al (1998). 

The reaction mixture contained 50 mM  Tris-HCl (pH 8.0), 0.1 mM acetyl-CoA, 1 mM  L-

serine, and a known amount of the purified recombinant soybean SAT in a final volume 

of 1 ml. The reaction was initiated by the addition of L-serine and the decrease in acetyl 

CoA was monitored spectrophotometrically. SAT specific activity was calculated using 

the molar extinction coefficient for acetyl-CoA of ε=4500 at 232 nm. Cysteine inhibition 

effect on recombinant SAT activity was determined by  following the deviation in SAT 

specific activity as concentration of [L]-cysteine in the enzyme reaction mixture 

increased. The kinetic parameters were determined by using the appropriate rate 

equations and the GraFit 5.0 software from Erithacus Software (Sigma-Aldrich Corp., St. 
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Louis, MO, USA). SAT activity from the crude plant extracts was determined by the 

method of Kredich and Tompiks (1966). Freshly  harvested soybean and Arabidopsis 

tissue samples (200 mg) were ground in a chilled mortar and pestle with 2 ml of ice-cold 

extraction buffer [100 mM  Tris-HCl, pH 8.0, 100 mM  KCl, 20 mM MgCl2, 1% Tween 80 

and 10 mM DTT]. The samples were transferred to microcentrifuge tubes and spun down 

(11,600g; 10 min; 4oC) and the clear supernatant was used to measure SAT activity. The 

enzyme reaction mixture contained 0.1 mM acetyl-CoA, 50 mM Tris pH 7.6, 1 mM 

DTNB, 1 mM  EDTA and 1 mM L-serine in 1 ml final volume. Subsequent to reaction 

initiation by addition of enzyme at room temperature, the initial velocity was estimated 

by monitoring the increase in absorbance at  412 nm. Rates were calculated using an 

extinction coefficient for thionitrobenzoic acid of ε=13,600 at 412 nm. Protein 

concentrations were determined using the Coomassie Plus Protein Assay Kit (Pierce 

Biotechnology, Rockford, IL, USA).

OAS-TL activity from soybean and Arabidopsis leaf tissue was measured according 

to the ninhydrin method (Warrilow and Hawkesford, 1998). Protein extracts were 

obtained by grinding samples (200 mg) in a chilled mortar and pestle with 2 ml of ice-

cold extraction buffer [100 mM Tris-HCl pH 8.0, 100 mM KCl, 20 mM MgCl2, 1% 

Tween 80 and 10 mM dithiothreitol (DTT)]. The samples were transferred to 

microcentrifuge tubes and centrifuged at 4ºC for 10 min at 12,000 g. The clear 

supernatant was saved and used immediately  for measuring the OAS-TL activity. Protein 
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concentration from plant extracts was determined spectrophotometrically with the help of 

Coomassie Plus Protein Assay Kit (Pierce Biotechnology, Rockford, IL, USA).

Heavy metal stress. Tolerance to heavy metal stress was determined according to 

Dominguez-Solis et al. (2001). Wild type A. thaliana (ecotype Columbia) and transgenic 

seeds were surfaced sterilized by treatment for 90 seconds in ethanol, then with 50% (v/

v) bleach for 5 min, and rinsed three times with sterile water. Seeds were germinated on 

solid MS medium with and without 250 µM  CdCl2. The plants were grown in a growth 

chamber under constant illumination (25 µE m-2 s-1) at 22oC.

Treatment of leaf discs with paraquat. The effect of oxidative stress and tolerance 

of transgenic soybean and Arabidopsis plants to reactive oxygen species (ROS) was 

established according to Noji et al. (2001). Leaf soybean discs (7 mm) and whole 

Arabidopsis leaves from wild type and transgenic plants of similar age were submerged 

in solution that contained 2 µM paraquat (methyl viologen; Sigma-Aldrich Corp., St. 

Louis, MO, USA) and 0.1% (w/v) Tween 20, followed by exposure to constant 

illumination (25 µE m-2 s-1) at 22oC for 24 to 48 hr, and they were then examined visually 

for damage.

RESULTS

Construction of chimeric SATs and expression in E. coli. SAT protein harbors 

several domains with distinct functions (Fig. 1), including a catalytic domain, a protein-

protein interaction domain with OAS-TL and two allosteric sites for cysteine binding. 
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Point mutation studies in Arabidopsis and watermelon revealed that between the two 

allosteric domains in SAT protein only the C-terminal domain containing amino acid 

residues glycine (Gly) at position 277 and histidine (His) at position 282 are responsible 

for SAT sensitivity to cysteine (Innoue et al., 2000). In this study I produced insensitive 

forms of the cytosolic soybean SAT, by performing point mutations to the previously 

isolated SAT cDNA from soybean (Chronis and Krishnan, 2004). A unique SpeI site was 

introduced to the cDNA sequence of SAT downstream of the Gly  and His residues at the 

C-terminal to enable these substitutions. Four different SAT genes were generated 

resulting in four different plasmids for overexpression in E. coli: (1) pESAT3 (Gly 

residue was substituted with alanine (Ala)), (2) pESAT4 (His residue was substituted with 

arginine (Arg)), (3) pESAT5 (double substitution of Gly and His with Ala and Arg 

respectively) and (4) pESAT6 (complete elimination of the allosteric site). The chimeric 

SATs (SAT3, SAT4, SAT5 and SAT6) were overexpressed in E. coli and purified under 

native conditions (Fig. 2). As expected, SAT6 protein is smaller in size than the other 

recombinant proteins, since it is missing 19 amino acids at the C-terminal. In order to 

make sure that these mutations did not modify the enzyme properties of SAT, the Km and 

Vmax values of the recombinant SATs were measured. Kinetic analysis revealed 

comparable properties between mutated and native SAT, though the mutated SATs were 

not inhibited by cysteine (Table I). Even at high cysteine concentrations, the activity of 

the mutated SATs was not influenced, while native SAT enzyme activity  was diminished 

as cysteine levels increased (Fig. 3).
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Expression of SAT and OAS-TL in soybean and Arabidopsis. Native forms of 

SAT and those insensitive to cysteine inhibition and OAS-TL were expressed both in 

soybean and Arabidopsis. For expression of SAT in plants, three different constructs were 

designed: (1) pZSAT1 containing the wild-type soybean SAT, (2) pZSAT5 expressing the 

SAT5 gene with the double substitution of Gly  and His residues, and (3) pZSAT6 where 

the allosteric site of SAT was completely  eliminated (Fig. 4A). A construct for expression 

of OAS-TL was also created (pZCS1; Fig. 4B). All plasmids for plant transformation 

possess the same elements. SAT and OAS-TL genes were placed under the control of the 

CaMV 35S promoter, and a BAR cassette was incorporated in every plasmid to allow 

selection of transgenic plants resistant to glufosinate ammonium. Finally, a 6x His tag 

was introduced at the end of the ORF of each gene just before the STOP codon for 

confirmation of true transgenes by western blot analysis (see immunoblot analysis of 

transgenic plants). Soybeans were transformed with pZSAT1, pZSAT5 and pZCS1 

plasmids, while Arabidopsis plants were transformed with all four constructs (pZSAT1, 

pZSAT5, PZSAT6 and pZCS1).

Immunoblot analysis of transgenic plants. In order to confirm the overexpression 

of SAT and OAS-TL in transgenic plants, total leaf protein was isolated from transgenic 

soybean and Arabidopsis plants showing resistance to glufosinate ammonium and 

resolved by SDS-PAGE. Proteins were subjected to western blot analysis with polyclonal 

antibodies raised against SAT (Chronis and Krishnan, 2004) and OAS-TL (Chronis and 

Krishnan, 2003). Western blots clearly  showed the expression of SAT1, SAT5 and SAT6 
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proteins (Fig. 5A, 6A, 7A) and OAS-TL (Fig. 8A) protein in Arabidopsis plants. To 

further confirm the existence of introduced SAT and OAS-TL genes in transgenic 

Arabidopsis western blot analysis was performed with the same plant tissue samples but 

utilizing His tag antibodies. The antibody reacted with a single band corresponding to the 

expected size of SAT and OAS-TL His tagged proteins (Fig. 5B, 6B, 7B) or OAS-TL 

(Fig. 8B). In a previous study (Chronis and Krishnan, 2004) SAT protein could not be 

detected in wild type soybean plants by western blot analysis. Interestingly in transgenic 

soybean plants expressing SAT1 and SAT5 protein a single 34 kD protein was detected 

(Fig. 9A, 10A). The same pattern of expression was detected when the antibody against 

the His tag was used, indicating true overexpression of SAT in soybean (Fig. 9B, 10B). 

OAS-TL expression was also confirmed in soybean plants by  western blot with 

antibodies against both OAS-TL and His tag (Fig. 11).

Enzyme activity assays in transgenic plants. Total leaf extracts from Arabidopsis 

and soybean that showed tolerance to glufosinate ammonium were used to determine the 

SAT and OAS-TL enzyme activity. SAT activity was enhanced in transgenic Arabidopsis 

when compared to wild type, with SAT5 and SAT6 plants displaying relatively  higher 

activity than SAT1, which is inhibited by  cysteine (Fig. 12). In soybean plants expressing 

SAT1 and SAT5 protein, the activity of SAT was significantly enhanced (~20-fold). 

Transgenic plants expressing the cysteine insensitive SAT5 showed higher activity than 

those expressing SAT1 (Fig, 13). Similarly, plants expressing OAS-TL exhibited elevated 

activity in both Arabidopsis (Fig. 14) and soybean (Fig. 15).
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Effect of cadmium chloride in transgenic Arabidopsis expressing OAS-TL. The 

effect of the cadmium ion on the transformed plants was tested by  growing wild type and 

transgenic Arabidopsis in MS medium containing 250 µM CdCl2. The transgenic 

Arabidopsis plants overexpressing the OAS-TL gene were able to germinate and grow on 

this medium (Fig. 16D). Wild type seeds germinated poorly in the presence of the metal 

compared to control plants (Fig. 16A), and a few plants that germinated slowly did not 

produce leaves and died after 5–7 days (Fig. 16C).

Effect of photooxidative stress in transgenic Arabidopsis and soybean plants. The 

enhanced tolerance of transgenic Arabidopsis and soybean plants to active oxygen 

species was determined by treating leaf discs of soybean and whole detached leaves of 

Arabidopsis plants with paraquat. Paraquat is a reagent that  generates active oxygen 

species in chloroplasts under constant illumination (Dodge, 1975). After a 24 hr 

incubation in 2 µM  paraquat, wild type leaves of Arabidopsis developed chlorosis (Fig. 

17C), an effect not seen in leaves from transgenic plants (Fig. 17D). Untransformed 

soybean leaf discs showed similar results with severe chlorosis after a 48 hr exposure to 

light (Fig. 18C), whereas transgenic leaf discs tolerated paraquat (Fig. 18D).

DISCUSSION

In this study, transgenic soybean and Arabidopsis plants were generated that 

overexpressed OAS-TL and cysteine feed back sensitive and insensitive forms of SAT. 

SAT is a crucial enzyme in sulfur metabolism, that catalyzes the formation of OAS. The 
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enzyme bears two distinct allosteric domain for cysteine inhibition. Two amino acid 

residues (Gly and His) located in the C-terminal of the protein are essential for the 

allosteric inhibition of SAT (Fig. 1). Only the cytosolic form of SAT, that contains both of 

these residues, is inhibited by cysteine, whereas the plastidic and mitochondrial isoforms 

are insensitive (Innoue et al., 2000). Four different insensitive forms of the soybean SAT 

were produced here with substitutions of either Gly or His, or by altering both residues 

and by  complete elimination of the allosteric site. The kinetic parameters of the 

recombinant proteins were comparable to the wild type SAT with no significant 

differences, establishing that these modifications did not alter the activity  of the enzyme 

(Table 1). These modifications rendered the SAT insensitive to cysteine inhibition (Fig. 

3). Western blot analysis confirmed the overexpression of SAT and OAS-TL in transgenic 

Arabidopsis (Fig. 5 to 8) and soybean plants (Fig. 9 to 11). Interestingly enough, the SAT 

protein could not be detected in soybean wild type plants by western blot analysis, but the 

signal was evident in transgenic plants, indicating the low endogenous levels of SAT in 

soybean. Enzyme activity assays from the transformed plants reflected the results of the 

western blot with SAT activity in transgenic Arabidopsis plants being 4 times higher than 

the wild type (Fig. 12). In some transgenic plants the SAT activity  was increased 20 fold 

(Fig. 13). Plants transformed with the insensitive forms of SAT showed higher activity 

compared to the ones transformed with the cytosolic form of SAT (Fig. 12 and 14). This 

difference can be explained due to inhibition of SAT from the endogenous cysteine. 

Plants overexpressing OAS-TL showed 3-fold higher activity than the wild type in both 
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Arabidopsis (Fig. 14) and soybean (Fig. 15). Previous studies have shown that 

overexpression of OAS-TL increased levels of cysteine and downstream products, like 

phytochelatins (Dominguez-Solis et al., 2001) and GSH (Noji et al/, 2001; Youssefian et 

al., 2001). Phytochelatins are derivatives of GSH and bind heavy metal cations through 

the thiol group and thus detoxify  them. Arabidopsis plants that overexpress OAS-TL 

were resistant to cadmium chloride and germinated normally, while wild type seeds were 

either unable to germinate or produce leaves in the presence of cadmium (Fig. 16), 

indicating that overexpression of OAS-TL presumably  leads to overproduction of 

phytochelatins and tolerance to heavy metals. Transgenic soybean and Arabidopsis plants 

were tolerant to methyl viologen, a ROS generator compound that triggers the production 

of GSH (Fig. 17 and 18). GSH functions as an antioxidant that  inactivates toxins, 

hormones, oxygen radicals and xenobiotic substances such as herbicides. The transgenic 

Arabidopsis and soybean plants tolerates exposure to methyl viologen as indicated by the 

lack of chlorosis suggesting that overexpression of OAS-TL could lead to accumulation 

of GSH.

All previous studies involving transgenic plants have shown that overexpressing SAT 

and OAS-TL leads to elevated levels of OAS (Hopkins et  al., 2005; Riemenschneider et 

al., 2005) and cysteine (Harms et al., 2000; Hopkins et al., 2005; Noji et al. 2001; Wirtz 

and Hell, 2003; Youssefian et al., 2001). However, improvement in crop nutrient quality 

cannot be achieved solely by enhancing the rates of biosynthesis of essential amino acids. 

Free amino acids are easily lost or degraded during crop processing and large quantities 
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of free cysteine or methionine are regarded as deleterious for plant metabolism. 

Considering that the concentration of seed proteins are much higher than that of free 

amino acids and proteins are less susceptible to degradation, it  is desirable to express 

heterologous seed proteins that  are rich in sulfur amino acids. To accumulate sufficient 

amounts of transgenic proteins genetic engineering must manage to achieve high 

expression rates, enhanced translation rates, increased protein stability, good nutritional 

accessibility and low allergenicity. The best candidate for genetic manipulation of the 

enzymes involved in sulfur metabolism seems to be SAT. It has been shown that 

overexpressing SAT in plants increases the levels of OAS and cysteine more than plants 

overexpressing OAS-TL (Youssefian et  al., 2001). This study has established that SAT is 

present in extremely low levels in soybean (as shown from the western blot  analysis and 

enzyme activity assays). It must be noted though that better results could be obtained if 

the insensitive form of SAT is expressed, so that  cysteine inhibition is not a factor. 

Crosses between soybean plants overexpressing a form of SAT insensitive to cysteine 

with plants expressing heterologous sulfur rich proteins could enhance the nutritional 

value of soybeans to meet the dietary requirement for sulfur amino acids in animal feed.
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Figure 1: Graphic representation of SAT domain structure. The C and N terminal allosteric domains are 
with blue color and the catalytic domain with red. G and H indicate the Gly-277 and the His-282 
responsible for the L-cysteine inhibition in the C-terminal domain, respectively (adopted from Saito et al., 
2000).
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Figure 2: Expression and purification of the native and recombinant SATs. Lanes: M, Protein molecular 
weight marker; 1. purified native SAT1; 2. purified recombinant SAT3 (Gly:Ala); 3. purified recombinant 
SAT4 (His:Arg); purified recombinant SAT5 (Gly:Ala,  His:Arg); purified recombinant SAT6 (complete 
elimination of allosteric site).
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Figure 3: Native SAT1 undergoes feedback inhibition by L-Cys while the recombinant SATs are 
insensitive. Bars represent the standard error of the mean. (SAT1 ◆, SAT3 ■, SAT4 ▲, SAT5 ●, SAT6 o).
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Figure 4: (A) Generic maps of SAT constructs used for soybean and Arabidopsis transformation. Each 
construct bears a 6x His tag at the end of the ORF, a CaMV 35S promoter and a BAR cassette for selection. 
Plasmid pZSAT1 bears the native cytosolic form of SAT. In pZSAT5 there is a double substitution of both 
Gly-268 and His-273 with Ala and Arg respectively, where pZSAT6 lacks completely the allosteric site of 
SAT; (B) Genetic map of the pZCS1 plasmid used for transformation of soybean and Arabidopsis plants. 
The CaMV 35S promoter, 6x His tag, BAR cassette, NOS terminator are indicated.
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Figure 5: Western blot analysis of transgenic Arabidopsis plants transformed with pZSAT1. Lane 1 is wild 
type Arabidopsis (ecotype Columbia) and lanes 2 to 11 are independent transgenic lines showing resistance 
to glufosinate ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His 
antibody.
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Figure 6: Western blot analysis of transgenic Arabidopsis plants transformed with pZSAT5. Lane 1 is wild 
type Arabidopsis (ecotype Columbia) and lanes 2 to 11 are independent transgenic lines showing resistance 
to glufosinate ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His 
antibody.
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Figure 7: Western blot analysis of transgenic Arabidopsis plants transformed with pZSAT6. Lane 1 is wild 
type Arabidopsis (ecotype Columbia) and lanes 2 to 11 are independent transgenic lines showing resistance 
to glufosinate ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His 
antibody.
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Figure 8: Western blot analysis of transgenic Arabidopsis plants transformed with pZCS1. Lane 1 is wild 
type Arabidopsis (ecotype Columbia) and lanes 2 to 11 are independent transgenic lines showing resistance 
to glufosinate ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His 
antibody.
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Figure 9: Western blot analysis of transgenic soybean plants transformed with pZSAT1. Lane 1 is wild type 
soybean (cv. Jack) and lanes 2 to 11 are independent transgenic lines showing resistance to glufosinate 
ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His antibody.
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Figure 10: Western blot analysis of transgenic soybean plants transformed with pZSAT5. Lane 1 is wild 
type soybean (cv. Jack) and lanes 2 to 11 are independent transgenic lines showing resistance to glufosinate 
ammonium. Total protein leaf samples blotted against (A) SAT antibody and (B) His antibody.
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Figure 11: Western blot analysis of transgenic soybean plants transformed with pZCS1. Lane 1 is wild type 
soybean (cv. Maverick) and lanes 2 to 11 are independent transgenic lines showing resistance to glufosinate 
ammonium. Total protein leaf samples blotted against (A) OAS-TL antibody and (B) His antibody.
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Figure 12: Serine acetyltransferase activity in Arabidopsis. Crude protein extracts from Arabidopsis wild 
type leaves (sample 1), and selected transgenic plants (samples 2 and 3 carrying the pZSAT1 plasmid; 4 
and 5 carrying the pZSAT5 plasmid; 6 and 7 carrying the pZSAT6 plasmid) were used to determine SAT 
activity. The production of thionitrobenzoic acid was followed spectrophotometrically at 412 nm. Bars 
represent the standard error of the mean.
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Figure 13: Serine acetyltransferase activity in soybean plants. Crude protein extracts from soybean wild 
type leaves (sample 1),  and selected transgenic plants (samples 2 to 4 carrying the pZSAT1 plasmid; 5 to 7 
carrying the pZSAT5 plasmid) were used to determine SAT activity.  The production of thionitrobenzoic 
acid was followed spectrophotometrically at 412 nm. Bars represent the standard error of the mean.
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Figure 14: O-acetylserine (thiol) lyase activity in Arabidopsis.  Crude protein extracts from Arabidopsis 
wild type leaves (sample 1), and selected transgenic plants (sample 2 to 7) were used to determine OAS-
TL activity. Formation of cysteine was determined with an OAS-ninhydrin assay. Bars represent the 
standard error of the mean.
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Figure 15: O-acetylserine (thiol) lyase activity in soybean. Crude protein extracts from soybean wild type 
leaves (sample 1), and selected transgenic plants (sample 2 to 9) were used to determine OAS-TL activity. 
Formation of cysteine was determined with an OAS-ninhydrin assay.  Bars represent the standard error of 
the mean.
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Figure 16: Cadmium chloride tolerance of Arabidopsis seedlings. (A) wild type Arabidopsis grown on MS 
medium without cadmium chloride; (B) transgenic Arabidopsis carrying the pZCS1 plasmid grown on MS 
medium without cadmium chloride; (C) wild type Arabidopsis grown on MS medium containing 250 µM 
CdCl2; (D) transgenic Arabidopsis carrying the pZCS1 plasmid grown on MS medium containing 250 µM 
CdCl2.
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Figure 17: Effect of oxidative stress on Arabidopsis plants after 24 hr incubation with methyl viologen. (A) 
wild type Arabidopsis (control); (B) transgenic Arabidopsis carrying the pZCS1 plasmid (control); (C) wild 
type Arabidopsis incubated with 2 µM methyl viologen; (D) transgenic Arabidopsis carrying the pZCS1 
plasmid incubated with 2 µM methyl viologen.
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Figure 18: Effect of oxidative stress on soybean plants after 48 hr incubation with methyl viologen. (A) 
wild type soybean (control); (B) transgenic soybean carrying the pZCS1 plasmid (control); (C) wild type 
soybean incubated with 2 µM methyl viologen; (D) transgenic soybean carrying the pZCS1 plasmid 
incubated with 2 µM methyl viologen.
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