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DIRECTIONAL TIME-FREQUENCY ANALYSIS WITH APPLICATIONS

Christopher Sansing

Dr. Loukas Grafakos, Dissertation Supervisor

ABSTRACT

The purpose of this dissertation is to introduce a new directionally-sensitive time-

frequency representation of a function. It is shown that we may break up a func-

tion (or signal) into individual time-frequency-direction pieces. A certain coefficient

(〈f,Gm,t,u〉) will allow one to see “how much” frequency is in the function (i.e. sig-

nal, image, etc.) in a certain time interval, and also in a certain direction. This has

been done using wavelets (ridgelets) and this dissertation introduces a similar con-

cept using time-frequency (Gabor) elements. For such elements, a Parseval formula

and a continous frame-type representation together with boundedness properties of a

semi-discrete frame operator are obtained. New spaces of functions are also presented

which are tailored to fit our time-frequency-direction analysis. Applications relating

to image processing and medical imaging are also presented along with development

of some algorithms.



“So where does this leave the philosophers, the scholars, and the world’s

brilliant debaters? God has made them all look foolish and has shown their

wisdom to be useless nonsense. Since God in his wisdom saw to it that

the world would never find him through human wisdom, he has used our

foolish preaching to save all who believe.”

Paul’s letter to the Corinthians 1

11 Corinthians 1:20-21, New Living Translation
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Introduction

The idea behind this work was born from two different concepts that blended together

in a very natural and useful way. Those two concepts are the Radon transform and

time-frequency analysis.

The Radon transform, named after Johann Radon, originated in his classical 1917

paper [49] entitled Über die Bestimmung von Funktionen durch ihre Integralwerte

längs gewisser Mannigfaltigkeiten. This translates to On the determination of func-

tions from their integrals along certain manifolds, and a good translation of this paper

into english can be found in [18].

The Radon transform is the collection of integrals of a function over all hyper-

planes. Radon proved in two and three dimensions that a function satisfying certain

regularity conditions can be completely determined from its integrals over all hyper-

planes. Specifically for n = 2, it was shown that

f(x, y) = − 1

π

∫ ∞

0

dF(x,y)(q)

q
,

where

F(x,y)(q) =
1

2π

∫ 2π

0

F (x cos(u) + y sin(u) + q, u)du,

and F (p, u) is a line integral of f over the line perpendicular to the direction u and

distance p from the origin. This collection of line (or hyperplane for n 6= 2) integrals

2



is what has been called the Radon transform. It is usually denoted in the literature

as

Ruf(p) =

∫

u·x=p

f(x)dx.

Extensions to higher dimensions have been studied in [36] and the Radon transform

has been utilized in some important applications over recent decades. One such exam-

ple is computerized tomography where an object’s internal components can be studied

non-invasively through the use of x-ray technology. Here the x-rays act as collections

of “line” integrals and a discrete Radon transform is inverted giving the actual density

of the interior of the object at (theoretically) any point. There are, of course, many

other obstacles such as noise and discretization of the problem to consider so that

the theory can be implemented on a digtal computer. Besides computerized tomog-

raphy [44], the Radon transform is used in many other medical imaging modalities

[45],[55] and in areas such as astronomy, electron microscopy, optics, seismic activ-

ity, and general image processing with more applications being developed even now

[42],[48],[52].

The Radon transform is a very interesting and remarkable operator. While it is

fairly transparent and seemingly elementary in nature, its uses and relations to other

areas of mathematics [29] and science allow it to transcend to a classical transform

which has been studied for almost a century now and is still a topic which receives a

lot of research and interest.

Time-frequency analysis is a theory that allows one to investigate simultaneous

time and frequency information of a function or “signal” [9],[14],[22],[32]. This corre-

3



sponds to information about a function f and its Fourier transform f̂ . The analysis

here is restricted by the Heisenberg uncertainty principle which states it is actually

impossible to “know” the exact frequency of a signal at a specific instant. Heisenberg

stated it in the following way in his famous uncertainty paper [35], “The more pre-

cisely the position is determined, the less precisely the momentum is known in this

instant, and vice versa.”

One of the main tools of time-frequency analysis is the short-time Fourier trans-

form which allows one to obtain localized information of time and frequency of a

function. It is related to the classical Fourier transform in the following manner:

Vgf(x, ω) =

∫

Rn

f(t)g(t− x)e−2πit·ωdt

for x, ω ∈ Rn, where g is a function of essential compact support. This is essentially

the Fourier transform of a small piece of the function f , hence the name short-time

Fourier transform.

The short-time Fourier transform can itself be broken up into the main building

block of time-frequency analysis, modulation and translation, given by

Txh(t) = h(t− x), Mωh(t) = e2πiω·th(t).

Time-frequency analysis is a very useful and applicable theory which has found

its use in signal processing and other scienctific aspects of time and frequency. Some

of the main results are that a suitable function (or signal) can be broken into time-

frequency components (or coefficients) and can then be reconstructed using these

components. Many applications of Fourier analysis in the real world are based on

4



decomposing functions into components and “putting them back together.”

Now we get to the purpose of this research, and that is to combine these two well-

developed concepts of the Radon transform and time-frequency analysis to create

a new time-frequency-direction analysis which uses the directional sensitivity of the

Radon transform along with time-frequency localization to generalize the concept of

time-frequency analysis to account for direction. In short, it provides a way to localize

information in time, frequency, and direction. Instead of simply asking “how much”

frequency there is in a signal at a certain time, we are now going to ask “how much”

of a certain frequency there is in a signal at a certain time (or point in space) along

a certain direction or hyperplane.

This work is divided into three parts. The first part gives a brief introduction to

several of the topics that are essential to understanding the later results. It consists

of chapters on the Radon transform, time-frequency analysis, and frame theory. All

of these concepts were crucial in forming the ideas and later results of this research.

The second part includes the new results of this work. Chapter 3 contains the

initial idea to apply a time-frequency representation to the Radon transform of a

functions at different directions. Here is where we first mention the concept of the

Gabor ridge function given by

gm,t,u(x) = e2πim(u·x−t)g(u · x− t).

These functions will form the building block of the time-frequency-direction anal-

ysis presented here. One thing proven in this work is that one can reconstruct some-

thing related to the original function using a continuous representation involving the

5



Gabor ridge functions:

B(f) = Cg,ψ

∫

Sn−1

∫

R

∫

R
〈f, gm,t,u〉ψm,t,udmdtdu.

Chapter 4 includes an alternate representation utilizing certain weights that ac-

tually allow us to reproduce the original function in a similar way:

f = Cg,ψ

∫

Sn−1

∫

R

∫

R
〈f, Gm,t,u〉Ψm,t,udmdtdu.

Parseval-type formulas and orthogonality relationships are also obtained. Next

the continuous theory is viewed in a way which can be implemented and applied in a

discrete setting.

This leads us to Chapter 5, where a semi-discrete reproduction formula is pro-

duced. We also view some of the analysis involved in the discretization such as

apodizing functions, analysis and reconstruction operators, and a representation for-

mula. This will allow us to show how these representations might be used in an

algorithm of some kind.

Finally, in Chapter 6, new classes of functions are presented which are shown to

be appropriate function classes to study our time-frequency-direction analysis. They

are built from the modulation spaces Mp,q of time-frequency analsyis and have a rep-

resentation which is built from the perspective of time-frequency-direction analysis.

‖f‖Gp,q,r
s

=

(∫

Sn−1

‖(R̂ufω̂s)
∨‖r

Mp,qdu

)1/r

,

where ωs is some weight to be later determined.

It is shown that these function spaces are closely related to other classical functions

6



spaces and that we may extend many of our properties of time-frequency-direction

analysis to these spaces as they are very natural for this type of analysis.

The last part of this work consists of chapters on algorithm development, image

processing, and medical imaging. These chapters go into some of the applications

that have already been found for this type of analysis.
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Part I

Preliminaries

8



Chapter 1

Radon Transform

In this chapter, the Radon transform will be presented and some of its properties will

be reviewed as they will be useful in later parts of this work. For an introduction to

the Radon transform along with more of its properties, one may consult [36], [44],

[18].

The Radon transform has many applications in different areas including image

processing, medical imaging (which will be mentioned in a later section), and in

other areas of mathematics and applied sciences.

The Radon transform was presented in two and three dimensions in the original

work of Johann Radon in 1917 [49]. It was later generalized and also studied in a

discrete form (Hough transform [27]).

Some of the aspects that will be used and studied in this work are the inver-

sion of the Radon transform along with some of its properties and applications to

computerized tomography.

9



1.1 Definition of the Radon Transform

There are many different representations of the Radon Transform. For the purposes

of this work, we will use the following definition (for an explanation of the Schwartz

class of functions, please see Appendix A.1.1):

Definition 1.1.1 Let f ∈ L1(Rn). If u ∈ Sn−1 and s ∈ R, then the Radon transform

of f is given by

Rf(u, s) =

∫

x·u=s

f(x)dx (1.1)

or, equivalently

Rf(u, s) =

∫

Rn

f(x)δ(s− x · u)dx. (1.2)

In (1.2), δ denotes the Dirac delta distribution (see Appendix A.2.1). This can be

regarded as a “function” given by the following for x ∈ R:

δ(0) = ∞,

δ(x) = 0 ∀x 6= 0,
∫

R
δ(x)dx = 1.

The Radon transform is the integral of f (or collection of integrals) over the

hyperplane(s) perpendicular to u with signed distance s from the origin. We will

usually write the Radon transform with dependence on u implied and dependence of

s emphasized as follows:

Ruf(s) = Rf(u, s).

10



Figure 1.1: Radon Transform

In the case of n = 2, the Radon transform is a “collection” of all line integrals

of the function f . For a fixed direction u, Ruf(s) is the integral of f over the line

perpendicular to u, s units from the origin (see Figure 1.1).

The Radon transform gets its name from Johann Radon, who in 1917 studied this

transform and was interested in how to invert it [49]. He wanted to know how to

reconstruct a function f from these hyperplane integrals. He succeeded and several

decades later his work became extremely useful in many applied settings such as

medical imaging. The Radon transform is also seen in many scientific texts, both

pure and applied, and its usefulness is becoming more apparent [5].

One property of the Radon transform is that it is an even function defined on the

unit cylinder (Z = Sn−1 × R). That is, R−uf(−s) = Ruf(s). This is because the

hyperplane perpendicular to direction u with signed distance s from the origin and

the hyperplane perpendicular to direction −u with signed distance −s from the origin

are the same hyperplane. Here we are using the convention that −u is the vector in

11



the opposite direction of u.

The Radon transform may be extended to a homogeneous function of degree −1.

This is easily seen from the fact that the δ distribution is homogeneous of degree −1

(when defined on R). This means, for t ∈ R, t 6= 0:

Rf(tu, ts) =

∫

Rn

f(x)δ(ts− x · tu)dx

= |t|−1

∫

Rn

f(x)δ(s− x · u)dx

= |t|−1Rf(u, s).

Another interesting property is that the Radon transform preserves a convolution,

Ru(f ∗ g) = Ru(f) ∗Ru(g),

a fact that can be easily checked.

1.2 Inverting the Radon Transform

Inversion of the Radon transform will play an important role in this work. Radon

originally inverted the transform for n = 2, 3 and extensive work has been accom-

plished since that time. Algorithms for computer implementation have been created

and other inversion techniques have been invented. Inversion of the Radon transform

involves reconstructing a function f given the Radon transform of f for values on the

cylinder. The reasons for inversion are for both theory (inversion is always a question

to ask) and application (computerized tomography, image processing, etc.).
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1.2.1 An Initial Guess

An initial, heuristic guess at inverting the Radon transform might be to simply in-

tegrate, over the sphere, the Radon transform evaluated at u · x since these are the

hyperplanes (perpendicular to u) which intersect with the point x. So, we want to

integrate over all hyperplanes (lines if n = 2) which contain the point x. We will call

this new transform R∗. This will be another operator which takes functions defined

on Z to functions defined on Rn:

R∗g(x) =

∫

Sn−1

g(u, u · x)du.

Here g is a function defined on Z and R∗f is called the “back-projection of g.”

Then our initial guess for inversion is R∗(Ruf).

R∗(Ruf)(x) =

∫

Sn−1

Ruf(u · x)du.

While this is an interesting choice (and a useful transform we will use later), it is

not equal to f(x). We will now see that what one actually gets is a convolution of

f(x) with |x|−1.

For the following statements we are assuming f ∈ S(Rn), the Schwartz class of

infinitely differentiable, rapidly decreasing functions.

Lemma 1.2.1 With R and R∗ defined as above and f ∈ S(Rn), we have the following

calculation:

R∗(Ruf) = |Sn−2|(|x|−1 ∗ f).

13



Proof :

Here we give the simple proof from Natterer [44].

R∗(Ruf)(x) =

∫

Sn−1

Ruf(x · u)du

=

∫

Sn−1

∫

u⊥
f((x · u)u + y)dydu

=

∫

Sn−1

∫

u⊥
f(x + y)dydu,

since x− (x · u)u ∈ u⊥.

For the rest of the proof we will need the following lemma which we will prove

after this theorem is shown:

Lemma 1.2.2 For a function f ∈ S(Rn) and n ≥ 2,

∫

Sn−1

∫

u⊥
f(x + y)dydu = |Sn−2|

∫

Rn

|y|−1f(x + y)dy

So,

R∗(Ruf)(x) = |Sn−2|
∫

Rn

|x− y|−1f(y)dy

= |Sn−2| (|x|−1 ∗ f
)
.

¤

Proof of Lemma 1.2.2:

∫

Sn−1

∫

u⊥
f(x + y)dydu =

∫

Sn−1

∫

e1
⊥

f(x + ρu(y))dydu

where ρu is the rotation which takes u to e1 = (1, 0, . . . , 0) by taking the shortest

path over a great circle (if u = −e1 this is not unique, but any path over a great circle

14



Figure 1.2: Two Phantom Images: The first is f and the second is f ∗ |x|−1.

may be chosen). Switching to polar coordinates (y = rω, ω ∈ Sn−1 ∩ e⊥1 ) gives us

=

∫ ∞

0

rn−2

∫

Sn−1∩e⊥1

∫

Sn−1

f(x + rρu(ω))dudωdr

=

∫

Sn−1∩e⊥1

∫ ∞

0

rn−2

∫

Sn−1

f(x + rρu(ω))dudrdω

= |Sn−2|
∫

Rn

|y|−1f(x + y)dy.

since when u ranges over Sn−1 for a fixed ω, ρu(ω) covers uniquely Sn−1. We also used

the fact that Sn−1 ∩ e⊥1 is isomorphic to Sn−2. ¤

Consider an image which will be represented as a function defined of R2. The back

projection of the Radon transform of this function would not produce the original

image f , but a blurry version of it (see Figure 1.2).

Our new transform R∗ is actually the adjoint or dual operator of R. This means

we have the following relationship:

∫

Sn−1

∫

R
Ruf(s)g(s, u)dsdu =

∫

Rn

f(x)R∗g(x)dx,

where f ∈ S(Rn) and g ∈ S(Z).
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Proof :

∫

Rn

f(x)R∗g(x)dx =

∫

Rn

f(x)

(∫

Sn−1

g(u, x · u)du

)
dx

=

∫

Rn

f(x)

(∫

Sn−1

∫

R
g(u, s)δ(s− x · u)dsdu

)
dx

=

∫

Sn−1

∫

R

∫

Rn

f(x)δ(s− x · u)g(s, u)dxdsdu

=

∫

Sn−1

∫

R
Ruf(s)g(s, u)dsdu.

¤

Originally, the blurry aspect was fixed by using a “de-blurring” filter. For our

purposes, a filter applied to f is simply some function convolved with f in a well-

defined manner. This filtering concept led to what is the true inversion formula

(reproduces f at every x ∈ Rn) and it was noted that the filtering could be done

before or after the back-projection, which leads us to the next section.

1.2.2 True Inversion

As was seen, simple back-projection of the Radon transform is not enough to repro-

duce f . Now, a true inversion formula will be presented. Notice that R∗ still plays

an important role, but we need something extra called a filter. For this reason, the

true inversion formula is often call the filtered back-projection.

Before the inversion formula is presented, a very useful theorem is needed. In

the theorem below we use the usual convention for the Fourier transform of the

Radon transform where we consider a one-dimensional Fourier transform (see Ap-
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pendix A.1.2) of the variable in R.

R̂uf(σ) =

∫

R
Ruf(s)e−2πisσds.

Theorem 1.2.3 (Fourier Slice Theorem) Let f ∈ L1(Rn). Then the

n-dimensional Fourier transform of the function is related to the 1-dimensional Fourier

transform of its Radon transform by

R̂uf(σ) = f̂(σu).

Proof :

R̂uf(σ) =

∫

R
Ruf(s)e−2πisσds =

∫

R
e−2πisσ

∫

u⊥
f(su + y)dyds.

Now, making a change of variables (x = su + y), we have s = u · x and dx = dyds

leaving

R̂uf(σ) =

∫

Rn

f(x)e−2πiσu·xdx = f̂(σu).

¤

So, this theorem says that if we take a central slice of the Fourier transform of

our function f , then it will be equal to the Fourier transform of Ruf in the direction

u that the slice was taken.

One way to view Theorem 1.2.3 is that if we take the Fourier transform of the

Radon transform for every direction u ∈ Sn−1, we can “build” the Fourier transform

of our function f .

We may now prove the actual inversion formula.
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Theorem 1.2.4 (Inversion Forumula) Let f ∈ S(Rn). Then the following inver-

sion formula holds:

f(x) =
1

2

∫

Sn−1

(R̂uf(ξ)|ξ|n−1)∨(u · x)du.

Proof :

We first express f using the Fourier transform and then convert to polar coordinates

and apply Theorem 1.2.3 to obtain

f(x) =

∫

Rn

f̂(ξ)e2πix·ξdξ

=

∫

Sn−1

∫ ∞

0

f̂(ru)e2πix·u|r|n−1drdu

=

∫

Sn−1

∫ ∞

0

R̂uf(r)e2πix·u|r|n−1drdu.

Finally, since the R̂uf is even (a simple consequence of the eveness of Ruf), we

get the result intended:

f(x) =
1

2

∫

Sn−1

∫ +∞

−∞
R̂uf(r)e2πix·u|r|n−1drdu

=
1

2

∫

Sn−1

(R̂uf(ξ)|ξ|n−1)∨(u · x)du.

¤

1.3 Medical Imaging: An Application

One of the many applications of the Radon transform is in the area of medical imaging.

A brief overview of the transform’s usefulness in computerized tomography (CT) will
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be presented here, but the transform is used is many more advanced medical imaging

modalities (MRI, PET, etc.)

It was Radon who first showed that a function (or density) could be reconstructed

from infinitely many projections. It was not until the 1960’s and 70’s that scientists

first realized this transform of Radon could be used to study, without intrusion, the

inside of the human body. Olendorf developed the first prototype CT scanner in 1961

and Hounsfield developed the first clinical CT scanner in 1972, helping him win a

joint Nobel prize in medicine with Cormack for their work in CT [20].

1.3.1 Computerized Tomography

The idea of computerized tomography (τ óµos is the Greek work for slice) is to consider

a 2D cross section or “slice” of an object and try to visualize it by sending x-rays

through it at different directions and measuring the intensity of the x-ray as it exits

the other side. From this data, one can easily approximate the Radon transform,

albeit discretely, and using the inversion formula works towards an algorithm that

will give back the density.

In a clinical setting, x-rays are sent through a patient and the ratio of intensities

of the x-rays before and after they are sent through the patient are collected.

Suppose we consider the attenuation coefficient µ(x), for x ∈ R2, of a slice of

an object at the point x. The attenuation coefficient is simply the “density” of the

object at at certain point (i.e. it is how much x-ray is absorbed when an x-ray of a

certain frequency passes through it).

It has been shown [20] that x-ray beam intensity traveling through a material of
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attenuation µ0 decreases according to the equation

I = I0e
−µ0x,

where I is the observed intensity of a x-ray after it passes through a distance x, and

µ the attenuation of the material.

Assuming the beam is traveling along a line l, through material with an attenua-

tion depending on position µ(x), then we have

I

I0

= exp

[
−

∫

l

µ(x)ds

]

or,

− log

(
I

I0

)
=

∫

l

µ(x)ds.

Therefore, if we have a continuous collection of x-ray intensities (i.e. all lines l

along directions u ∈ [0, π)), we have the values of the Radon transform of µ and may

invert it to find µ at any point x ∈ R2 (see Figure 1.3).

So, what is the attenuation in terms of the patient? It is the density of the different

tissues in the body. They are a measure of the amount of x-ray intensity absorbed by

a certain tissue. These are often expressed in Hounsfield units which are normalized

with respect to water and given by

Htissue =
µtissue − µwater

µwater

· 1000.

Below is a table of some attenuation coefficients of different tissues in the body

where we are assuming an x-ray of 100 keV(kiloelectron volts) since the attenuation

actually depends on the energy of the x-ray.
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Figure 1.3: Example of an x-ray through different tissues (attenuation values).

Material Attenuation
Coefficient

Water 0
Air -1000

Bone 1086
Blood 53
Fat -61

Brain white/gray -4
Muscle 41

Soft Tissue 51

So, once all of this data is collected, we may use our filtered back-projection

formula to recover µ, which, in the clinical setting, when visualized, will give an

image of the inside of a patients body.

There are obvious problems with this. The main one is that it is physically

impossible to collect all the data we need (a continuous collection). Also, there

are certain convergence issues and quantization errors that arise. For this reason the

filtered back-projection formula will need to be replaced with a discrete approximation
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algorithm.

1.3.2 Filtered Back-projection Implementation

In practice, we can only obtain values of the Radon transform of µ on a discrete set

of lines. Once the values of the Radon transform on a discrete set are known, one

needs to implement an algorithm to approximate µ. This has been achieved and very

robust algorithms are now used in modern CT machines. We will now discuss briefly

how this can be accomplished. For a more detailed explanation, one may consult [2].

We will assume first that f has compact support. This is a normal assumption that

makes sense in the case of CT. For a function f ∈ S(R2), our filtered back-projection

formula becomes

f(x) =
1

2

∫ π

0

(R̂uf(ξ)|ξ|)∨(x · u)du.

Working towards a discretization of the above formula, the operators for back-

projection and filtering are considered separately. We define the discrete filtering

operator as follows using a discrete convolution (∗d).

Ruj
f ∗d ω(s) =

q∑

l=−q

ω(s− sl)Ruj
f(sl),

where we are assuming to know the values of the Radon transform at the discrete set

of pairs (uj, sl), where l = −q, . . . , q, j = 1, . . . , p, where uj ∈ S1 and sl = hl, h = 1
q
.

Instead of using |ξ| for our filter, we will apply a different filter in our algorithm

for reasons of convergence and noise. Basically our filter will be ω̂(ξ) = |ξ|φ̂(ξ), where

φ̂(ξ) is a low-pass filter such that 0 ≤ φ̂ ≤ 1 and φ̂(ξ) = 0 for |ξ| ≥ a.

The function φ is called an apodization function and it will play an important
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role later in this work. This function is crucial for our algorithms to be properly

implemented. Some example of apodizing or apodization functions commonly used

are listed in the following chart:

Name Filter

Band-limited φ̂(ξ) = χ[−a,a](ξ)

Shepp-Logan φ̂(ξ) = 1
2

sin(πξ
2a

)
πξ
2a

Hann φ̂(ξ) = 1 + cos(πξ
a

)

Hamming φ̂(ξ) = α + (1− α) cos(πξ
a

)

The next step is to discretize the back-projection operator. This is done using a

Riemann sum:
∫ π

0

g(x · u, u)du ≈
p∑

j=1

g(x · uj, uj),

where we may get as close the function as we want by summing over more and more

projections. There are many more technical details necessary to form a working

algorithm. These details will be brought up when necessary.

Some examples of a phantom reconstructed from different numbers of projections

are shown in Figure 1.4. The first image (top left), is the original image. This is a

classical image used in studying algorithms for medical imaging. It represents a slice

of the human head, with the inner ellipses being part of the brain. Basically, each

ellipse is given some attenuation value and then we use a computer to implement

the algorithm by taking integrals over a discrete set of lines and using the filtered

back-projection in the way described in this section. The other images are of the

reconstructions of the data using 10, 25, 50, and 320 projections (or directions). The

last image on the second row is the error of the 320 projection approximation. Finally,

the last image is what the projection data looks like. This is a graph of the Radon
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transform (320 projections) data where the horizontal axis is the affine parameter s

and the vertical axis is the angular variable u.
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Figure 1.4: Original phantom with reconstruction using 10,25,50, and 320 projections.
The last figure on the second row is the error of the 320 projection approximation.
The final figure is a plot of Radon transform data for the 320 projection case.
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Chapter 2

Frame Theory and Time-Frequency
Analysis

Time-frequency analysis is a very interesting and applicable field of mathematics. It

has close ties to frame theory, harmonic analysis, physics, and many other related

fields. The general idea is that one can study a function or “signal” with fine details

in both space and frequency. The ever-present force working against this is, of course,

the uncertainty principle of Heisenberg [35]. There are very ingenious ways, however,

to overcome this obstacle and derive as much information as possible from a signal.

The first section of this chapter will be a brief introduction of frame theory intro-

ducing all the necessary properties that will be used later and that are necessary to

understand the next sections on time-frequency analysis and Gabor frames.

For a comprehensive and well-written reference of time-frequency analysis, see

[32]. Also, an extensive survey of frame theory was accomplished by Casazza [10].
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2.1 Frame Theory

A frame is an extension of the concept of an orthonormal basis to an overdetermined

system. The idea is that if we consider the `2 norm of the frame coefficients 〈f, ej〉, it

is comparable to the norm of the function f . The concept is solidified by the following

definition:

Definition 2.1.1 (Frame) A sequence {ej : j ∈ J} in a separable Hilbert space H

is called a frame if there exists A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑
j∈J

|〈f, ej〉|2 ≤ B‖f‖2,

where ‖ · ‖ is ‖ · ‖H.

The constants A,B in the above definition are called frame bounds. If A = B, then

{ej} forms what is called a tight frame.

Definition 2.1.2 (Frame Operator) We will also define the frame operator S on

H by

Sf =
∑
j∈J

〈f, ej〉ej.

Some of the important properties of S, which we will state without proof, are the

following (for proof, see [32]):

(i) S maps H onto H and is a positive invertible operator satisfying

AIH ≤ S ≤ BIH,

and

B−1IH ≤ S−1 ≤ A−1IH.
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(ii) The frame operator S is self-adjoint

(iii) The optimal frame bounds are B = ‖S‖op and A = ‖S−1‖−1
op where ‖ · ‖op is

the operator norm of S.

We now want to look at a very important part of frame theory and that is the abil-

ity to reconstruct a function from is frame coefficients. First, we need to understand

in what sense
∑

j∈J cjej converges to a function f ∈ H.

Lemma 2.1.3 Let {ej} be a frame for H. Suppose f =
∑

j∈J cjej for some sequence

{cj} ∈ l2(J), then for every ε > 0 there exist a finite subset F (ε) ⊆ J such that

‖f −
∑
j∈G

cjej‖ < ε

for all finite subsets G ⊇ F and we say that the series
∑

j∈J cjej converges uncondi-

tionally to f ∈ H.

For a proof of this lemma, see [32].

We now present the following classical theorem concerning the reconstruction of

a function f from the frame coefficients.

Theorem 2.1.4 If {ej} is a frame with frame bounds A,B > 0, then {S−1ej} is a

frame with frame bounds B−1, A−1 > 0, which we will call the dual frame. Also, every

f ∈ H has non-orthogonal expansions

f =
∑
j∈J

〈f, S−1ej〉ej

and

f =
∑
j∈J

〈f, ej〉S−1ej,
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where both sums converge unconditionally in H.

For a detailed proof of the previous theorem, one may consult [32].

The inverse frame operator S−1 also has a simple coefficient expansion given by

S−1f =
∑
j∈J

〈f, S−1ej〉S−1ej.

This implies S−1 is the frame operator with respect to the dual frame {S−1ej}.

2.2 Time-Frequency Analysis

Time-frequency analysis allows us to see how much of a certain frequency there is

at a certain time (or point in space) in our function or signal. Only certain aspects

of it will be presented in this section. The opponent of time-frequency analysis, the

uncertainty principle, will be presented first. Following this, the short-time Fourier

transform will be defined and the question of inversion will be answered.

2.2.1 The Uncertainty Principle

The uncertainty principle (due to Heisenberg [35]) basically says that one cannot

know both the position and velocity of a moving particle at the same instant. In the

context of L2(R), this may be expressed in a theorem.

Theorem 2.2.1 (Uncertainty Principle, Heisenberg [35]) If f ∈ L2(R), and

a, b ∈ R, then

‖(x− a)f‖2‖(ξ − b)f̂‖2 ≥ 1

4π
‖f‖2

2.

An uncertainty principle on Rn was produced by Donoho and Stark [19]. For a

presentation of this principle one needs the concept of a function being ε-concentrated.
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Definition 2.2.2 A function f ∈ L2(Rn) is ε-concentrated on a measurable set D ⊆

Rn, if
(∫

Dc

|f(x)|2dx

)1/2

≤ ε‖f‖2.

Theorem 2.2.3 (Donoho, Stark [19]) Assume f ∈ L2(Rn), f 6= 0, is

ε1-concentrated on D ⊆ Rn and f̂ is ε2-concentrated on E ⊆ Rn. Then,

|D||E| ≥ (1− ε1 − ε2)
2.

2.2.2 Short-time Fourier Transform

One of the main tools we have in our possession to find frequency information about

a function or signal is the Fourier transform. Applying the Fourier transform to a

function for which it is well defined will give you a new function which describes “how

much” of a certain frequency component is in the function. The main disadvantage of

this is that it describes how much of that component there is in the complete function,

not a part of the function restricted to a certain time (or space) interval. The Fourier

transform is global in nature and the goal of this section is to present ways that have

been studied to determine how much frequency there is in a function at a certain

time, which as we saw in the previous section is not possible in the most literal sense.

So, one naturally moves to the next best thing and that is a new transform which

give frequency information for, not a specific instant in time, but a small interval of

time. Small in the sense that the uncertainty principle is not violated (i.e. not to

small).

With this in mind, the following clever invention is introduced:
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t0 x

f(t)g(t−x)

g(t−x)g(t)

f(t)

Figure 2.1: Short-time Fourier Transform

Definition 2.2.4 (Short-time Fourier Transform) Let g be some non-zero func-

tion (called a window function). Then the short-time Fourier transform (STFT) of a

function f with respect to the window g is given by

Vgf(x, ξ) =

∫

Rn

f(t)g(t− x)e−2πit·ξdt, for x, ξ ∈ Rn. (2.1)

In the above definition g simply acts like a cut-off function (although one usually

takes some smooth window function). Therefore, the STFT is simply the Fourier

transform of a truncated version of f . We restrict f to an interval of time (using

g) and then take the Fourier transform of that restriction. This can be done with g

translated wherever one wants which is why there are two variables in the definition

of the STFT, one for the position of g and the other is the normal frequency variable

of the Fourier transform (see Figure 2.1).

Another way to write the STFT is to use modulation and tranlation operators.

They are defined as follows:

Txf(t) = f(t− x) (2.2)
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and

Mξf(t) = e2πiξtf(t). (2.3)

Then the STFT can simply be written in the following way:

Vgf(x, ξ) = 〈f, MξTxg〉. (2.4)

Some properties of the STFT will now be presented leading up to the next section

where they will be discretized giving the general concept of a Gabor frame.

One important property of the STFT is the orthogonality property. We present

it here without detailed proof (it is a simple application of Parseval’s formula and

Fubini’s theorem).

Theorem 2.2.5 (Orthogonality [32]) Let f1, f2, g1, g2 ∈ L2(Rn). Then

〈Vg1f1, Vg2f2〉 = 〈f1, f2〉〈g1, g2〉. (2.5)

where the first inner product above is on L2(R2n).

This leads to the following corollary relating the L2 norms of the STFT and the

functions f and g.

Corollary 2.2.6 Let f, g ∈ L2(Rn), then

‖Vgf‖2 = ‖f‖2‖g‖2.

Finally, an important formula which allows inversion of the STFT to reconstruct

the function f will be presented. It is now a simple corollary of Theorem 2.2.5.
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Corollary 2.2.7 (Inversion formula for the STFT) Suppose g, ψ ∈ L2(Rn) and

〈g, ψ〉 6= 0. Then for all f ∈ L2(Rn), we have

f =
1

〈g, ψ〉
∫

Rn

∫

Rn

Vgf(x, ξ)MξTxψdξdx. (2.6)

2.3 Gabor Frames

In the previous section we developed a continuous reproduction from time-frequency

elements which were time-frequency shifts of a non-zero window function. In this

section, we present an introduction to Gabor frames which utilizes the previous in-

formation on frame theory and time-frequency analysis.

Consider the set of time-frequency shifts with a non-zero window function g ∈

L2(Rn) and lattice parameters α, β > 0

{TαkMβng : k, n ∈ Zn}.

We call this a Gabor system Gg,α,β. If G is a frame for L2(Rn), it is called a Gabor

frame or Weyl-Heisenberg frame. The Gabor frame operator is then given by

Sf =
∑ ∑

k,n∈Zn

〈f, TαkMβng〉TαkMβng.

Theorem 2.3.1 (Walnut [57]) If Gg,α,β is a frame for L2(Rn), then there exists a

dual window ψ ∈ L2(Rn), such that the dual frame of Gg,α,β is Gψ,α,β. As a conse-

quence, every f ∈ L2(Rn) can be expressed as

f =
∑∑

k,n∈Zn

〈f, TαkMβng〉TαkMβnψ

=
∑∑

k,n∈Zn

〈f, TαkMβnψ〉TαkMβng
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with unconditional convergence in L2(Rn).

We also have the following norm equivalences:

A‖f‖2
2 ≤

∑ ∑

k,n∈Zn

|〈f, TαkMβng〉|2 ≤ B‖f‖2
2,

B−1‖f‖2
2 ≤

∑∑

k,n∈Zn

|〈f, TαkMβnψ〉|2 ≤ A−1‖f‖2
2.

For proofs of the above statements, please refer to [32]. This dual window ψ is

just another window function which is obtained from g in the following manner.

Corollary 2.3.2 If Gg,α,β is a frame for L2(Rn) with dual window ψ = S−1g ∈

L2(Rn), then the inverse frame operator is given by

S−1f =
∑∑

k,n∈Zn

〈f, TαkMβnψ〉TαkMβnψ.

2.3.1 Boundedness of the Frame Operator

In the continuous setting, we saw that one could produce a reproduction formula with

any L2-functions g and ψ. This is due to the vastness of information achieved from a

continuous formula. When we look at the discrete case, we will see that only certain

window functions will give us a reproduction formula.

First, we need to define the Wiener space of functions.

Definition 2.3.3 A function g ∈ L∞(Rn) belongs to the Wiener space W if

‖g‖W =
∑

n∈Zn

ess sup
x∈[0,1]n

|g(x + n)| < ∞.
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There is another classical result which is often called Walnut’s representation

which is a different way to express the Gabor frame operator. From this follows the

boundedness of the Gabor frame operator from Lp to Lp [57].

Before this is presented, we need to define the correlation function of the pair

(g, ψ) by

Gj(x) =
∑

k∈Zn

g(x− j

β
− αk)ψ(x− αk),

for n ∈ Zn.

Theorem 2.3.4 (Walnut’s Representation [57]) Let g, ψ ∈ W (Rn) and let α, β >

0. Then the operator

Sf =
∑∑

k,j∈Zn

〈f, TαkMβng〉TαkMβnψ

can be written as

Sf = β−n
∑

j∈Zn

Gj · T j
β
f.

Also, S is bounded on all Lp-spaces, 1 ≤ p ≤ ∞ with operator norm

‖S‖Lp→Lp ≤ 2n

(
1

α
+ 1

)n (
1

β
+ 1

)n

‖g‖W‖ψ‖W .

We extend the above result to boundedness on Lp for 0 < p < 1. For this, we will

need slightly stronger restrictions on the window and dual functions g, ψ. First we

will need a lemma which we will state here without proof. For a proof, see [32].

Lemma 2.3.5 If g, ψ ∈ W (Rn), then Gn ∈ L∞(Rn), and

‖Gj‖∞ ≤
(

1

α
+ 1

)n

‖T j
β
g · ψ‖W . (2.7)
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Theorem 2.3.6 (Walnut’s Representation for 0 < p < 1) Let g, ψ ∈ W such

that ‖g‖W (p) and ‖ψ‖W (p) are finite, where

‖f‖p
W (p) =

∑

k∈Zn

‖f · Tkχ[0,1]n‖p
∞.

Then the frame operator Sf (as in the previous theorem) is bounded on Lp spaces for

0 < p < 1.

Proof :

For 0 < p < 1, we have the following variant of the triangle inequality:

‖f + g‖p
p ≤ (‖f‖p

p + ‖g‖p
p).

So, starting with Walnut’s representation, we have

‖Sf‖p
p ≤ β−np

(∑

j∈Zn

‖Gj · T j
β
f‖p

p

)

≤ β−np
∑

j∈Zn

‖Gj‖p
∞‖T j

β
f‖p

p

≤ β−np

(∑

j∈Zn

‖Gj‖p
∞

)
‖f‖p

p.

Now the question is when is
∑

j∈Zn ‖Gj‖p
∞ < ∞?

From Lemma 2.3.5,

‖Gj‖∞ ≤
(

1

α
+ 1

)n

‖T j
β
g · ψ‖W ,

‖Gj‖p
∞ ≤

(
1

α
+ 1

)np

‖T j
β
g · ψ‖p

W ,
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∑

j∈Zn

‖Gj‖p
∞ ≤

(
1

α
+ 1

)np ∑

j∈Zn

‖T j
β
g · ψ‖p

W

=

(
1

α
+ 1

)np ∑

j∈Zn

(∑

k∈Zn

‖(T j
β
g · Tkχ[0,1]n) · (ψ · Tkχ[0,1]n)‖p

∞

)

≤
(

1

α
+ 1

)np ∑

k∈Zn

(∑

j∈Zn

‖T j
β
g · Tkχ[0,1]n‖p

∞

)
‖ψ · Tkχ[0,1]n‖p

∞.

From a simple counting argument (see [32], page 112) we have

∑

j∈Zn

‖T j
β
g · Tkχ[0,1]n‖p

∞ ≤ (2β + 2)np
∑

l∈Zn

‖g · Tlχ[0,1]n‖p
∞.

So, this finally imples that

‖Sf‖p
p ≤ β−np

(
1

α
+ 1

)np

(2β + 2)np‖g‖p
W (p)‖ψ‖p

W (p).

¤

2.3.2 Existence

A theorem on the existence of Gabor frames by Walnut is presented.

Theorem 2.3.7 (Walnut [57]) Let g ∈ W (Rn) and α > 0 be chosen such that for

constants a, b > 0

a ≤
∑

k∈Zn

|g(x− αk)|2 ≤ b < ∞ a.e. (2.8)

Then there exists a value β0 > 0 such that Gg,α,β is a Gabor frame for all β ≤ β0.

This theorem basically says that if g is any function from the Wiener class and

α, β > 0 are “small enough,” then we have a Gabor frame for L2(Rn) using our window

function g in an appropriate way. The proof involves the correlation functions along

with some of their properties.
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Example 2.3.1 If g ∈ L∞([0, 1]n) and α, β ≤ 1, then the frame operator S is simply

given by

Sf(x) =

(
β−n

∑

k∈Zn

|g(x− αk)|2
)

f(x).

This can been seen by simply considering Walnut’s representation (Theorem 2.3.4)

and evaluating what the correlation functions (Gj) would be in this case.

In the above example all of the things we discussed in this section apply in an

obvious fashion. For example, G(g, α, β) will be a frame with frame bounds β−na and

β−nb where

a ≤
∑

k∈Zn

|g(x− αk)|2 ≤ b a.e.

Also, G(g, α, β) is a tight frame if and only if
∑

k∈Zn |g(x − αk)|2 is constant almost

everywhere.
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Part II

Results
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Chapter 3

Initial Idea

The initial idea was to create a certain directional time-frequency representation. In

this direction, we took a basic Gabor-like element and introduced a new parameter

that accounted for “direction.” This turned out to be a useful continuous represen-

tation, but not the “right one” in the sense that it does not reproduce the original

function f , but another function closely related to f which we have seen in the first

chapter. This initial chapter of results describes the work at this initial stage.

The next chapter presents the necessary work to establish a true continuous rep-

resentation formula and generalize time-frequency analysis to include a directional

parameter. Our goal is to create an analogy between elements of time-frequency

analysis and a new time-frequency-direction analysis. To do this, we take the con-

cepts of the Radon transform and classical time-frequency analysis and combine them

to form the new theory which lends itself to many applications to be presented in

part three of this work.
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3.1 Gabor Ridge Functions

We begin by introducing a concept that will be fundamental in this work. We take a

time-frequency element (see chapter 2) and add to it a sense of directional sensitivity

by evaluating it at the point u ·x, where x is an element of Rn and u is some direction

from Sn−1.

Definition 3.1.1 (Gabor Ridge Function) Let g(x) ∈ S(R) be some real-valued

(non-zero) window function. We construct a Gabor element on R with g in the

following way:

gm,t(s) := e2πim(s−t)g(s− t), for s, t, m ∈ R.

Then we call the following function a Gabor ridge function.

gm,t,u(x) := gm,t(u · x), for x ∈ Rn, (3.1)

where u ∈ Sn−1 and m, t ∈ R.

These functions are constant along the direction u⊥ and modulate in a Gabor

(time-frequency) manner in the direction u (see Figure 3.1).

In the rest of this work, we will use the following definition for the inner product

of two functions f, h ∈ L2(Rn) (or two functions for which the following integral is

defined):

〈f, h〉 =

∫

Rn

fh dx.

The general question of this theory is what information are we actually collecting

when we calculate 〈f, gm,t,u〉 and also what can we do with this information. While
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Figure 3.1: Gabor Ridge Functions

this will be explained in more detail later, a brief idea should be presented.

Given a certain gm,t,u for specific m, t and u, and a function f for which 〈f, gm,t,u〉 is

defined, what we collect is actually directional time-frequency information. Consider

the case of f and g defined for x ∈ R2 (this corresponds to the visualization provided

by Figure 3.1). When we pair f and gm,t,u we pick up time frequency information

of f in the direction of u because of the directional modulations of gm,t,u and the

parameters m and t control the modulations and translations of the classical time-

frequency theory. It is important to note here that gm,t,u /∈ L2(Rn), so we need to be

careful about where our function f is defined. It should be noted, however, that if

we consider our function f as a function on L2(Ω), where Ω is some compact set in

Rn, the Radon transform and inverse Radon transform are well-defined, making this

another good space to work with.

The first idea was to see if f was equal to

∫

Sn−1

∫

R

∫

R
〈f, gm,t,u〉ψm,t,udmdtdu (with

du being the Lebesgue measure on Sn−1) for any functions g, ψ ∈ S(Rn). This is
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actually not the case. We get something close to the original function, the back-

projection of the Radon transform of f as was defined in the first chapter. For the

rest of this work du will stand in place of µndu for the spherical integration.

Theorem 3.1.2 Let f ∈ L1(Rn). Given any other functions g, ψ ∈ S(R), we have

the following:

B(f) = R∗(Ruf) =
1

〈g, ψ〉
∫

Sn−1

∫

R

∫

R
〈f, gm,t,u〉ψm,t,udmdtdu. (3.2)

Before this is proved, a lemma is needed concerning the relationship of the Radon

transform with our representation.

Lemma 3.1.3 With f, g defined as in Theorem 3.1.2 , we have the following equality:

〈f, gm,t,u〉 = 〈Ruf, gm,t〉.

Proof :

First fix a direction u ∈ Sn−1. Then

〈f, gm,t,u〉 =

∫

Rn

f(x)e−2πim(u·x−t)g(u · x− t)dx

=

∫

R

(∫

u·x=s

f(x)e−2πim(u·x−t)g(u · x− t)dx

)
ds

=

∫

R
e−2πim(s−t)g(s− t)

(∫

u·x=s

f(x)dx

)
ds

=

∫

R
Ruf(s)gm,t(s)ds

= 〈Ruf, gm,t〉.

which is well-defined since Ruf ∈ L1(R) (f ∈ L1(Rn)), and g ∈ S(R).

∫

R
|Ruf(s)|ds ≤

∫

Rn

|f(x)|dx.
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¤

The previous lemma is of course valid for functions f, g, and ψ in a much more

general sense. The proof only requires restrictions of the functions so that appropriate

integrals converge and manipulations may be made.

This lemma is interesting because is shows the natural appearance of the Radon

transform into this directionally sensitive ridge function. We did not force it in by

definition, it just arose from the fact that our Gabor ridge function depends upon

u ∈ Sn−1.

Now Theorem 3.1.2 may be proved.

Proof :

We continue as follows, noting that 〈Ruf, gm,t〉 = 〈f, gm,t,u〉 by the previous lemma:

∫

Sn−1

∫

R

∫

R
〈f, gm,t,u〉ψm,t,udmdtdu

=

∫

Sn−1

∫

R

∫

R
〈Ruf, gm,t〉ψm,t,udmdtdu

=

∫

Sn−1

∫

R

∫

R

(∫

R
R̂uf(σ)ĝm,t(σ)dσ

)
e2πim(u·x−t)ψ(u · x− t)dudmdt

=

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)ĝ(σ −m)e2πiσte2πim(u·x−t)ψ(u · x− t)dσdudmdt.

where we used that

〈h, k〉 = 〈ĥ, k̂〉

if h ∈ L1(R) and k ∈ S(R) and the fact that ĝm,t(σ) = ĝ(σ − m)e−2πiσt by the

properties of modulations and translation acting under the Fourier transform.
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Next, a change of variables (σ −m → m) is made leaving us with,

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)ĝ(m)e2πiσte2πi(σ−m)(u·x−t)ψ(u · x− t)dσdudmdt.

Combining the exponentials yields

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)ĝ(m)e2πiσu·xe−2πimu·xe2πimtψ(u · x− t)dσdudmdt.

Next we integrate over m, noting that

∫
ĝ(m)e2πim(t−u·x)dm = g(u · x− t).

∫

R

∫

Sn−1

∫

R
R̂uf(σ)g(u · x− t)e2πiσu·xψ(u · x− t)dσdudt.

Finally, we integrate over the translation variable t and recognize the inverse

Fourier transform of the Radon transform at the point u · x:

〈ψ, g〉
∫

Sn−1

∫

R
R̂uf(σ)e2πiσu·xdσdu.

= 〈ψ, g〉
∫

Sn−1

Ruf(u · x)du

= 〈ψ, g〉B(f),

where the above integral converges absolutely since f ∈ L1(Rn):

∫

Sn−1

∫

R
|R̂uf(σ)|dσdu

≤
∫

Sn−1

∫

|σ|≤1

|f̂(σu)|dσdu +

∫

Sn−1

∫

|σ|>1

|f̂(σu)||σ|n−1dσdu

≤ Cn‖f‖L1 + ‖f‖L1(|x|>1)

since ‖f̂ ‖L∞ ≤ ‖f‖L1 .

¤

So this means we have a reconstruction formula for the backprojection of f which

we saw in the first chapter is f convolved with a certain weight. We will present an
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example using this formula to show a visualization of the results. To do this a discrete

algorithm was necessary. This algorithm will be presented later in this work.

Consider the image presented in Figure 3.2. We reconstructed the image by

breaking into time-frequency-direction components as discussed in this section and

putting them back together. What you see is a blurry version of the original image,

just as we suspect from the backprojection of the Radon transform of the image.

3.2 A Parseval Formula

The next step was to get some type of Parseval formula even though we don’t yet

have a true reproduction formula. This idea is to get some sense of (L2) energy

conservation of our transform. We will now see what we actually get when we look

at

∫

Sn−1

∫

R

∫

R
|〈f, gm,t,u〉|2dmdtdu.

〈f, gm,t,u〉 = 〈Ruf, gm,t〉

=

∫

R
Ruf(s)e−2πim(s−t)g(s− t)ds

= (Ruf ∗ g̃−m,0)(t)

where g̃(x) = g(−x).

Before we continue notice that the function shown above is in L2(R) by Young’s

inequality,

‖Ruf ∗ g̃−m,0‖2 ≤ ‖Ruf‖1‖g̃−m,0‖2

where Ruf ∈ L1(R) since f ∈ L1(Rn).
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Figure 3.2: Example Reconstruction: The top picture is the original and the bottom
picture is the reconstructed version using the methods of this chapter which recon-
strusts the back-projection of Ruf instead of f . This reconstruction is inadequate
and will be improved in the next chapter.
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So, we now have

∫

Sn−1

∫

R

∫

R
|〈f, gm,t,u〉|2dmdtdu =

∫

Sn−1

∫

R

∫

R
|(Ruf ∗ g̃−m,0)(t)|2dudmdt

=

∫

R

∫

Sn−1

‖Ruf ∗ g̃−m,0‖2
2dudm

=

∫

R

∫

Sn−1

‖(Ruf ∗ g̃−m,0)̂ ‖2
2dudm

=

∫

R

∫

R

∫

Sn−1

|(Ruf ∗ g̃−m,0)̂ (ξ)|2dudmdξ

=

∫

R

∫

R

∫

Sn−1

|f̂(ξu)|2|ĝ(ξ + m)|2dudmdξ

= ‖g‖2
2

∫

R

∫

Sn−1

|f̂(ξu)|2dudξ.

where we used our previous result to work with a function of the variable t. We then

used Parseval’s formula and integrated over the variable m.

So, we don’t get ‖f‖2
2, but we get something that we should expect because of

what our “reproduction formula” gave us.

‖g‖2
2

∫

R

∫

Sn−1

|f̂(ξu)|2dudξ = 2

∫ ∞

0

∫

Sn−1

|f̂(ξu)|2dudξ

= 2

∫ ∞

0

∫

Sn−1

|f̂(ξu)|2|ξ|n−1du
dξ

|ξ|n−1
.

Now, by a change of variables (y = ξu) we have,

2

∫

Rn

|f̂(y)|2 dy

|y|n−1

= 2c(n)

∫

Rn

∣∣∣∣
(

f ∗ 1

|x|
)

(̂y)

∣∣∣∣
2

dy

= 2c(n)

∥∥∥∥f ∗ 1

|x|

∥∥∥∥
2

2

(n ≥ 2),

which is a multiple of the L2 norm of the back-projection of the Radon transform

which we obtained from the continuous representation formula.
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Here, the constant c(n) =
Γ(n−1

2
)

π
n−1

2
arises from the definition of |̂x|z as a distribution

(see Appendix A.2.2).

3.3 Concluding Remarks

This first initial guess left a few things to be desired to get the type of representation

we were looking for. We wanted some type of directional Gabor element that would

allow us to break up our function, analyze it, and reconstruct it in an appropriate

way. We do have a hope for this because being able to reconstruct the backprojection

of the function essentially tells us we have “enough” information to do the actual

reconstruction of f . We know this from the Radon inversion formula mentioned in

the first chapter.

Also, we have seen already how to work with the Radon transform and if one

looks closely it can already be seen exactly why we don’t reconstruct f and why we

will need something called “weighted Gabor ridge functions.”

It should be noted that this chapter and the next extend the theory that was first

mentioned [56]. This paper is a nice precursor to both Gabor ridge functions and the

ridgelet analysis developed by Candes and Donoho.

The next chapter will be similar to this one with the exception that we use our

knowledge of Radon inversion to alter our Gabor ridge functions in an appropriate

way.
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Chapter 4

A Continuous Transform

What we saw in the last chapter is that more is required to reproduce a function f in

the way we are attempting. A hint should be that the original inversion of the Radon

transform (which our representation is closely related to) required a filtered form of

back-projection. Following this idea, we define a more suitable class of Gabor ridge

functions. We then apply these new ridge functions in the same fashion as before and

the theory that we were originally interested in comes to fruition.

4.1 Weighted Gabor Ridge Functions

Again we start with a definition to solidify notation. It is technically incorrect to

continue to use the term Gabor in reference to our function as we are about to make

them more involved than just a simple time-frequency element. However, as will be

seen, the functions are still essentially time-frequency elements and Gabor theory will

play a crucial role in the development.

In what follows we will use the operator Dαf , which is a form of differential
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operator (for α > 0) given by

Dαf = (f̂(ξ)|ξ|α)∨.

Definition 4.1.1 (Weighted Gabor Ridge Function) Let g(x) ∈ S(R) be some

real-valued (non-zero) window function. We define the gm,t’s and gm,t,u’s as before:

gm,t(s) := e2πim(s−t)g(s− t), for s ∈ R,

gm,t,u(x) = e2πim((u·x)−t)g((u · x)− t), for x ∈ Rn.

Now, we introduce weighted functions (denoted by upper case letters):

Gm,t(s) := Dn−1
2

(gm,t)(s) =
(
ĝm,t(σ)|σ|n−1

2

)∨
(s), for s ∈ R, (4.1)

We also define

Gm,t,u(x) := Gm,t(u · x), for x ∈ Rn. (4.2)

It would be interesting and useful to determine the Fourier transform of our

Gm,t,u’s. We calculate this and present it in the following theorem.

Theorem 4.1.2 (Fourier transform of Gm,t,u) The Fourier transform of Gm,t,u on

Rn is as follows:

Ĝm,t,u(ξ) = ĝ(u · ξ −m)e−2πi(u·ξ)t|u · ξ|n−1
2 δ(ξ − (u · ξ)u)

Proof :

For this proof, we will prove the more general statement that for any function h on
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R for which the one-dimensional Fourier transform is well-defined, when extended to

Rn in the following way:

H(x) = h(u · x)

has an n-dimensional Fourier transform which is a distribution and is given by

Ĥ(ξ) = ĥ(u · ξ)δ(ξ − (u · ξ)u).

Ĥ(ξ) =

∫

Rn

h(u · x)e−2πix·ξdx

=

∫

R
. . .

∫

R
h(u · x)e−2πix1·ξ1e−2πix2·ξ2 . . . e−2πixn·ξndx1dx2 . . . dxn

where we have divided Rn into n variables ranging over R by writing x as the part

of x in the u direction and the other n − 1 directions that make up the orthogonal

complement of u:

x = (x · u)u + x′, x′ ∈ u⊥,

ξ = (ξ · u)u + ξ′, ξ′ ∈ u⊥.

Then we have that u · x = x1 and we arrive at the result:

∫

Rn−1

∫

R
h(x1)e

−2πi(x1(ξ·u)+x′·ξ′)dx1dx′

= ĥ(u · ξ)δ(ξ′)

= ĥ(u · ξ)δ(ξ − (u · ξ)u)

where ξ − (u · ξ)u is the part of ξ corresponding to u⊥.

Now set h(s) = Gm,t(s) and we arrive at the result of this theorem. ¤
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This Fourier transform truly shows the one-dimensional nature of the Gabor ridge

functions. The Fourier transform corresponds to the one-dimensional Fourier trans-

form of Gm,t and is projected onto the line in the direction of u by the delta distri-

bution.

It turns out the extra weight applied to the Gabor ridge functions works perfectly

to reconstruct the function f instead of the back-projection. This weight corresponds

to the filter in the filtered back-projection that we saw in the first chapter concerning

the inversion of the Radon transform.

The next theorem is the backbone of our generalized theory in that it shows

reconstruction from directional Gabor elements is possible and later we will see how

to do this in a discrete sense. From this theorem we will extend other concepts of

classical time-frequency analysis.

Theorem 4.1.3 (Continuous Representation) Given a function f ∈ L1(Rn) such

that f̂ ∈ L1(Rn), and Gm,t,u, Ψm,t,u defined by (4.2), we have

f(x) = Cg,ψ

∫

Sn−1

∫

R

∫

R
〈f, Gm,t,u〉Ψm,t,udmdtdu. (4.3)

Proof :

Starting with the right-hand side of (4.3) and using Lemma (3.1.3), we have

∫

Sn−1

∫

R

∫

R
〈f, Gm,t,u〉Ψm,t,udmdtdu =

∫

Sn−1

∫

R

∫

R
〈Ruf,Gm,t〉Ψm,t,udmdtdu

where the inner product is well-defined since Ruf ∈ L1(R) and Gm,t ∈ L∞(R) since
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‖Gm,t‖∞ ≤ ‖Ĝm,t‖1. So, we may use Plancherel’s formula to arrive at

∫

Sn−1

∫

R

∫

R
〈R̂uf, Ĝm,t〉Ψm,t,udmdtdu

=

∫

Sn−1

∫

R

∫

R

(∫

R
R̂uf(σ)ĝm,t(σ)|σ|n−1

2 dσ

)
Ψm,t(u · x)dmdtdu.

Noting that ĝm,t(σ) = e2πitσĝ(σ −m), we are left with

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)e2πitσĝ(σ −m)|σ|n−1

2 (ψ̂m,t(s)|s|n−1
2 )∨(u · x)dσdmdudt.

We expand out the inverse Fourier transform, which yields

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)e2πitσĝ(σ −m)|σ|n−1

2

(∫

R
e2πi(u·x)ηψ̂(η −m)e−2πiηt|η|n−1

2 dη

)
dσdmdtdu.

Noting that the translation variable t only appears in the exponentials terms, we

combine exponentials and integrate in t.

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)ĝ(σ −m)|σ|n−1

2

(∫

R
e2πi(u·x)ηψ̂(η −m)|η|n−1

2 dη

)
e2πit(σ−η)dσdmdtdu.

=

∫

Sn−1

∫

R

∫

R

∫

R
R̂uf(σ)ĝ(σ −m)|σ|n−1

2

e2πi(u·x)ηψ̂(η −m)|η|n−1
2 δ(σ − η)dηdσdmdu.

where δ is the Dirac delta distribution.

Now we integrate over the η variable noting that
∫
R f(x)δ(x− a)dx = f(a).

∫

Sn−1

∫

R

∫

R
R̂uf(σ)ĝ(σ −m)|σ|n−1

2 e2πi(u·x)σψ̂(σ −m)|σ|n−1
2 dσdmdu.
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=

∫

Sn−1

∫

R

∫

R
R̂uf(σ)|σ|n−1e2πi(u·x)σĝ(σ −m)ψ̂(σ −m)dσdmdu.

Integrating over m yields

〈g, ψ〉
∫

Sn−1

∫

R
R̂uf(σ)|σ|n−1e2πi(u·x)σdσdu.

= 〈g, ψ〉
∫

Sn−1

∫

R
f̂(σu)|σ|n−1e2πi(u·x)σdσdu.

by the Fourier slice theorem (Theorem 1.2.3). Now we can divide the integral above

into two integrals over the cylinder as follows:

〈g, ψ〉
∫

Sn−1

∫

R
f̂(σu)|σ|n−1e2πi(u·x)σdσdu

= 〈g, ψ〉
(∫

Sn−1

∫ ∞

0

f̂(σu)|σ|n−1e2πi(u·x)σdσdu+

∫

Sn−1

∫ 0

−∞
f̂(σu)|σ|n−1e2πi(u·x)σdσdu

)
.

We make a change of variables in the second integral (σ → −σ, u → −u) leaving us

with

2〈g, ψ〉
∫

Sn−1

∫ ∞

0

f̂(σu)|σ|n−1e2πi(u·x)σdσdu.

By a change of variables (k = σu), we arrive at

2〈g, ψ〉
∫

Rn

f̂(k)e2πix·kdk = 2〈g, ψ̃〉f(x).

¤

4.2 True Reconstruction Example

Using the same image example from the previous chapter, we will now attempt to

reproduce the image using our reconstruction formula. As mentioned earlier, we have

55



to use an algorithm to produce the results and currently we do not have a discrete

form of the representation. We will look at this in the next chapter and later construct

an algorithm from this. Currently, we are just previewing some of the results which

will be explained more later.

We will begin the the same example picture (see Figure 4.1) and attempt to

reconstruct it using a discrete version of our continuous representation which we have

just developed. As should be expected, we reproduce f (actually an approximation)

as intended.

4.3 Another Parseval Formula

As should be expected, we can can show that a Parseval type of formula exists. We

will prove that ‖f‖2
2 = Cg

∫

Sn−1

∫

R

∫

R
|〈f, Gm,t,u〉|2dmdtdu for any function g ∈ S(R).

This provides us the (L2) energy conservation that we would expect. Before we do

this, a lemma is needed.

Lemma 4.3.1 Given a function f ∈ L1 ∩ L2(Rn), we have that

Dn−1
2

(Ruf) ∈ L2(R)

for almost every u ∈ Sn−1.

Proof :

‖f‖2
2 =

∫

Rn

|f̂(ξ)|2dξ
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Figure 4.1: True Reconstruction: The top picture is the original and the bottom
picture is the reconstructed version using the methods of this chapter.
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=

∫

Sn−1

∫ ∞

0

|R̂uf(σ)|σ|n−1
2 |2dσdu

=
1

2

∫

Sn−1

∫

R
|Dn−1

2
(Ruf)|2dsdu.

since Ruf is even. It follows that for almost every u ∈ Sn−1, Dn−1
2

(Ruf) ∈ L2(R).

¤

Theorem 4.3.2 (Parseval Formula) For f ∈ L1∩L2(Rn) and g ∈ S(Rn) we have

the following equality:

‖f‖2
2 = (2‖g‖2

2)
−1

∫

Sn−1

∫

R

∫

R
|〈f, Gm,t,u〉|2dmdtdu (4.4)

We start with a necessary lemma.

Lemma 4.3.3 Given f ∈ L1 ∩ L2(Rn) and g ∈ S(R) we have the following equality:

〈f,Gm,t,u〉 = (Ruf ∗Dn−1
2

(gm,0))(t)

= (Dn−1
2

(Ruf) ∗ gm,0)(t)

= Dn−1
2

(Ruf ∗ gm,0)(t).

Proof :

〈Ruf, Gm,t〉 =

∫

R
Ruf(s)(Dn−1

2
(gm,t))(s)ds

=

∫

R
Ruf(s)

(∫

R
e−2πisyĝ(y −m)e2πiyt|y|n−1

2 dy

)
ds

=

∫

R
R̂uf(y)ĝ(y −m)e2πiyt|y|n−1

2 dy

= Ruf ∗Dn−1
2

(gm,0))(t).
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¤

We may now prove Theorem 4.3.2.

Proof :

By Lemma 4.3.3, let h := (Dn−1
2

(Ruf) ∗ gm,0)(t) = 〈f, Gm,t,u〉 be a function of the

translation variable t. Then by Lemma 4.3.1 and an application of Young’s inequality

h ∈ L2(R), for almost every u ∈ Sn−1, we have

‖h‖2 ≤ ‖Dn−1
2

(Ruf)‖2‖gm,0‖1.

Then

∫

Sn−1

∫

R

∫

R
|〈f,Gm,t,u〉|2dmdtdu =

∫

Sn−1

∫

R

∫

R
|h(t)|2dmdtdu

=

∫

Sn−1

∫

R
‖h‖2

2dmdu

=

∫

Sn−1

∫

R
‖ĥ‖2

2dmdu

=

∫

Sn−1

∫

R

∫

R
|ĥ(σ)|2dσdmdu

=

∫

Sn−1

∫

R

∫

R
|f̂(σu)|2|σ|n−1|ĝ(σ −m)|2dσdmdu.

where we have used Theorem 1.2.3.

Integrating over m yields,

‖g‖2
2

∫

R

∫

Sn−1

|f̂(σu)|2|σ|n−1dudσ.

By change of variables (k = σu),

2‖g‖2
2

∫

Rn

|f̂(k)|2dk = 2‖g‖2
2‖f‖2

2.
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where the constant 2 comes again from dividing the integral over R into two integrals

and changing variables as in Theorem 4.1.3.

It should be noted we are requiring f to be in L1 so that |〈f,Gm,t,u〉| is finite.

〈f̂ , Ĝm,t,u〉 =

∫

Rn

f̂(ξ)ĝ(u · ξ −m)e2πi(u·ξ)t|u · ξ|n−1
2 δ(ξ − (u · ξ)u)dξ

=

∫

R
f̂(λu)ĝ(λ−m)e2πi(λ)t|λ|n−1

2 dλ

which is finite if f̂ ∈ L∞(Rn) (f ∈ L1(Rn)) since ĝ(λ−m)e2πi(λ)t|λ|n−1
2 ∈ L1(R).

¤

4.4 Orthogonality Relation

From what we already know about our Gm,t,u’s, we can extend our Parseval formula

to a more general statement. The following theorem on orthogonality shows that our

transform possesses properties similar to those of the ordinary Fourier transform and

the short-time Fourier transform.

For example, there is a linear transformation G which when restricted to functions

in L1(Rn) is defined as follows:

G(f)(m, t, u) = 〈f, Gm,t,u〉.

Then we want to show that 〈f, h〉 =
∫
Sn−1

∫
R

∫
R G(f)(m, t, u)G(h)(m, t, u)dmdtdu.

This can be achieved with a simple polarization argument. We will, however,

present a proof which is slightly more illustrative and specific to this example.

Theorem 4.4.1 (Orthogonality Relation) Given two function f, h ∈ L1∩L2(Rn)
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and a window function g ∈ S(R), we have

2〈f, h〉 =

∫
G(f)(m, t, u)G(h)(m, t, u)dmdtdu. (4.5)

Proof :

By Theorem 4.3.3 we have,

∫

Sn−1

∫

R

∫

R
〈f,Gm,t,u〉〈h,Gm,t,u〉dmdtdu

=

∫

Sn−1

∫

R

∫

R
〈Dn−1

2
(Ruf) ∗ gm,0, Dn−1

2
(Ruh) ∗ gm,0〉dtdmdu

=

∫

Sn−1

∫

R

∫

R
〈(Dn−1

2
((Ruf) ∗ g−m,0)̂ , Dn−1

2
(Ruh) ∗ g−m,0)̂ 〉dtdmdu

=

∫

Sn−1

∫

R

∫

R
f̂(ξu)ĥ(ξu)|ξ|n−1|ĝ(ξ + m)|2dξdmdu

Integrating over m yields

‖g‖2
2

∫

Sn−1

∫

R
f̂(ξu)ĥ(ξu)|ξ|n−1dudξ.

By a change of variables (k = ξu) and dividing our integral over R into two

integrals, we have

2

∫

Rn

f̂(k)ĥ(k)dk

= 2〈f, h〉.

. ¤

With this extended parseval relation in hand we can easily see how this implies the

original Parseval relation and the actual reproduction formula. We can just consider

〈∫

Sn−1

∫

R

∫

R
〈f,Gm,t,u〉Gm,t,udmdtdu, h

〉
.
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This is equal to
∫

Sn−1

∫

R

∫

R
〈f, Gm,t,u〉〈h,Gm,t,u〉dmdtdu.

Of course, the last expression is equal to 〈f, h〉, by our extended Parseval. So, we

have

f = Cg

∫

Sn−1

∫

R

∫

R
〈f, Gm,t,u〉Gm,t,udmdtdu.

4.5 Comparison

It is interesting to note the similarities and differences of our new time-frequency-

direction analysis with that of standard time-frequency analysis. The new analysis

actually coincides with standard time-frequency analysis for n = 1. This can be seen

by noting that S0 just contains {−1, 1}. Therefore our new analysis gives us

∫

S0

∫

R

∫

R
〈f,Gm,t,u〉Ψm,t,udmdtdu = 2

∫

R

∫

R
〈f, gm,t〉ψm,tdmdt =

2

〈g, ψ〉f.

This is because the integral over S0 is just a sum of two integrals corresponding to x

and −x and the differential operator that was important in the reconstruction is now

just D0 = I.

Now, if we consider n = 2, for example, we see where the new analysis gives us

something different than the standard time-frequency analysis. Our new theory gives

us

f =
2

〈g, ψ〉
∫

S1

∫

R

∫

R
〈f, Gm,t,u〉Ψm,t,udmdtdu,

while the standard analysis gives us

f =
1

〈g, ψ〉
∫

R

∫

R
〈f, gm,t

2 〉ψm,t
2 dmdt,
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where g2, ψ2 are window functions defined on R2. As we can see, our new analysis

localizes time and frequency along a certain direction, while the standard analysis

localizes time and freqency at a certain point in R2.

4.6 Concluding Remarks

We have now established a theory for representation of certain functions as a contin-

uous collection of time-frequency-direction elements. Along with this theory comes

the naturally related statements like a parseval equality and orthogonality relations.

Now that we have a general theory, we may attempt to see how to discretize the con-

tinuous theory (next chapter) and address some of the analysis issues. We also want

to be able to apply this theory to some problems and to do this we need algorithms

and ideas of stability in our discrete reconstruction.

The next two chapters will discuss how to discretize this theory and present some

new functional spaces which are useful in the analysis of time, frequency, and direc-

tion.

Finally, in the last part of this dissertation, we will look at certain applications

using our algorithms to be presented.
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Chapter 5

A Semi-Discrete Reproduction
Formula

We will now show how the continuous reproduction formula can be turned into a

semi-discrete one. By this, we mean a discretization in the modulation and transla-

tion variables while leaving the integral over the sphere. Later we will show this is

sufficient because when we transform this into an algorithm we will simply need to

add up over “enough” directions to get as close to f as we want. The purpose in using

a semi-discrete formula is simply for theoretical reasons (i.e. we want to reproduce f

exactly instead of an approximation.).

5.1 Utilizing Gabor Frame Theory

We want to utilize our classical time-frequency analysis and frame theory from the

second chapter to prove our results involving a discretization of the reproduction

formula.

We move immediately to the main theorem of this chapter.
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Theorem 5.1.1 (Semi-discrete Reproduction) There exist g, ψ ∈ S(R) such that

for all f ∈ L1 ∩ L2(Rn), there exist α, β > 0 such that:

A‖f‖2
2 ≤

∫

Sn−1

∑

m∈Z

∑

t∈Z
|〈f, Gαm,βt,u〉|2du ≤ B‖f‖2

2

where A,B depend on the choice of g, α, and β. (It is possible that A = B.) Also,

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, Gβm,αt,u〉Ψβm,αt,udu.

Proof :

First note that we may move the weight from the Gabor element to the Radon

tranform of f .

〈f,Gm,t,u〉 = 〈Ruf,Gm,t〉 = 〈Dn−1
2

(Ruf), gm,t〉.

Now this just becomes a standard pairing of an element of L2(R) (Lemma 4.3.1)

with a Gabor element and there is a general theory to work with this. First of all, let

us define the Wiener class of functions.

Definition 5.1.2 The function g belongs to the Wiener class W if

‖g‖W =
∑

n∈Z
ess supx∈[0,1]|g(x + n)| < ∞.

Now, it is already known [32] that if α and β are “small enough”, and g ∈ W (R),

we have a Gabor frame for L2(R). For example, if g is some Gaussian function in

L2(R), then there exist α, β > 0 (with the conditions of Theorem 2.3.1), such that

we have the following for almost every u ∈ Sn−1:

A‖Dn−1
2

(Ruf)‖2
2 ≤

∑

m∈Z

∑

t∈Z
|〈Dn−1

2
(Ruf), gαm,βt〉|2 ≤ B‖Dn−1

2
(Ruf)‖2

2
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where A and B depend upon the choice of g, α, and β. (It is possible that A = B).

Now, notice the following:

‖Dn−1
2

(Ruf)‖2
2 =

∫

R
|R̂uf(ξ)|ξ|n−1

2 |2dξ

=

∫

R
|R̂uf(ξ)|2|ξ|n−1dξ

=

∫

R
|f̂(ξu)|2|ξ|n−1dξ.

And we know that
∫
Sn−1

∫
R |f̂(ξu)|2|ξ|n−1dξdu = 2‖f‖2

2.

So,

2A‖f‖2
2 ≤

∫

Sn−1

∑

m∈Z

∑

t∈Z
|〈f,Gαm,βt,u〉|2du ≤ 2B‖f‖2

2.

Now, the question is what does this imply concerning the reproduction of f over

a semi-discrete set of parameters? For this we will need to apply the results of frame

theory, specifically, the properties of Gabor (or Weyl-Heisenberg) frames.

Using Theorem 2.1.4, since we have the frame relationship above and Lemma 4.3.1,

we can then produce the following reproduction formula for almost every u ∈ Sn−1:

Dn−1
2

(Ruf) =
∑

m∈Z

∑

t∈Z
〈Dn−1

2
(Ruf), gαm,βt〉ψαm,βt

where ψ is the dual function of g.

We may now apply our differential operator to both sides of the equation which

gives us

Dn−1(Ruf) = Dn−1
2

Dn−1
2

(Ruf) =
∑

m∈Z

∑

t∈Z
〈Dn−1

2
(Ruf), gαm,βt〉Dn−1

2
(ψαm,βt)
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And we know that if we evaluate the left hand side of the equation at the point

u · x and integrate over the sphere we get f , since this is the filtered back projection

inversion for the Radon transform.

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈Dn−1

2
(Ruf), gαm,βt〉Dn−1

2
(ψαm,βt)(u · x)du.

So,

f =
1

2

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, Gαm,βt,u〉Ψαm,βt,u.

¤

5.2 Apodizing Functions

As we saw in the case of inverting the Radon transform for applications, it is some-

times necessary to use an apodizing function to have a stable and implementable

method of reconstruction. So, we consider a new weight η defined in the following

way:

Definition 5.2.1 (Apodizing Weight) We define a new weight by its Fourier trans-

form:

η̂(ξ) = |ξ|n−1
2 Â(ξ), (5.1)

where Â(ξ) is a function with certain decay properties like the ones in Table 1.3.2.

Now, we can consider a new reconstruction in the following way.

Definition 5.2.2 (Apodized Reconstruction) Consider f, g, ψ as defined in the
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previous theorem. Then we define a new reconstruction using our weight η by

Sη
g,ψf =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, Gη

m,t,u〉Ψη
m,t,udu (5.2)

where Gη
m,t,u = (gm,t ∗ η)(u · x).

This is closer to the actual reconstruction that will be implemented when algo-

rithms are introduced. This form of reconstruction does not reproduce f exactly, but

an approximation.

As an example, we will construct an apodized reconstruction formula using a

similar weight as was used in [44], although others suffice.

Example 5.2.1 (Apodization Example) We will attempt to choose a weight A

so that Swf approximates f ∗ δ = f . In other words we want to choose a weight Ab

so that as b tends to ∞,

Swf → f ∗ δ.

In our example we will choose ηb such that

η̂b(ξ) = |ξ|n−1
2 Âb(ξ)

where

Âb(ξ) = Â

( |ξ|
b

)
,

where 0 ≤ Â ≤ 1 and Â(σ) = 0 for σ ≥ 1 and Â is smooth.

We will use the standard low-pass filter where Â(σ) = 1 for all σ ≤ 1.

In this example we have

Sηf =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f,Gη

m,t,u〉Ψη
m,t,udu
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=

∫

Sn−1

Ruf ∗ ηb(u · x)du

=

∫

Sn−1

(Ru(f ∗R∗(Ab))̂ | · |n−1)∨(u · x)du

= f ∗R∗(Ab).

The function R∗(Ab) has been calculated [44] and is equal to a certain Bessel

function of the first kind. Specifically,

R∗(Ab)(x) = bn Jn/2(b|x|)
(b|x|)n/2

,

where Jk(x) denotes the Bessel function of the first kind of order k. Hence R∗(Ab) → δ

as b →∞.

5.3 Analysis

In this section, we will look at some of the basic and more advanced ideas involved

in the analysis of our newly constructed time-frequency-direction atoms.

5.3.1 Analysis and Reconstruction Operators

We will begin with some general aspects of frame theory and see how our weighted

Gabor frames relate. First, we will define the analysis and reconstruction operators.

Definition 5.3.1 The analysis (or coefficient) operator is given by

Cg(f) = {〈f,Gm,t,u〉 : m ∈ Z, t ∈ Z, u ∈ Sn−1}. (5.3)

The analysis operator acting on a function f ∈ L1(Rn) produces a semi-discrete

sequence.
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Definition 5.3.2 The synthesis operator is given by

Dψ({cm,t,u}) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,udu. (5.4)

The synthesis operator takes a semi-discrete sequence cm,t,u and produces a func-

tion defined on Rn.

Proposition 5.3.3 The operators C and D are adjoint to each other.

Proof :

〈C∗g ({cm,t,u}), f〉 = 〈{cm,t,u}, Cg(f)〉

=

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,u〈f, Ψm,t,u〉du

=

〈∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,u, f

〉

= 〈Dψ(g), f〉.

¤

These operators are the building blocks of what we will call our Gabor ridge frame

operator which is defined in the following way.

Definition 5.3.4 (Gabor ridge frame operator) Given a function f ∈ L1(Rn)

and functions g, ψ ∈ S(R), we call

Sg,ψf = Dψ(Cg(f)) =

∫

Sn−1

∑

t∈Z

∑

m∈Z
〈f,Gm,t,u〉Ψm,t,udu

the Gabor ridge frame operator.
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This operator will play a role in our decomposition for algorithms in the next

chapter.

5.3.2 Representation Formula and Half-filtered Operators

In the general Gabor theory there is a nice representation formula due to Walnut

which allows for more analysis and give a different perspective of the problem. A

representation formula for our semi-discrete frame is desired. Before continuing we

need to define the notion of half-filtered operators.

Definition 5.3.5 (Half-filtered Radon Transform) We define the half-filtered

Radon transform as an operator taking functions from L1(Rn) and producing a func-

tion defined on Sn−1 × R in the following way:

Rf = Dn−1
2

(Rf(u, ·))(t) = Dn−1
2

(Rf)(u, t) (5.5)

where the convolution is taken with respect to the affine parameter of the Radon trans-

form.

Definition 5.3.6 (Half-filtered Back-projection Operator) We define the half-

filtered back-projection operator taking functions from Sn−1×R to functions on Rn in

the following way:

R∗g =

∫

Sn−1

Dn−1
2

(g(u, ·))(u · x)du. (5.6)

Now we can consider our time-frequency-direction analysis in a different manner

by breaking it up into different smaller operators to analyze.

71



Theorem 5.3.7 (Representation Formula) The semi-discrete Gabor ridge frame

operator

Sg,ψf =

∫

Sn−1

∑
m

∑
t

〈f,Gm,t,u〉Ψm,t,udu (5.7)

can be written as

Sg,ψf = R∗Qf, (5.8)

where

Qf =
∑

r

Gr(s)Rf(s− r) (5.9)

and

Gr(s) =
∑

t

ψ(s− t)g(s− r − t) (5.10)

is the standard correlation function of general Gabor theory mentioned in the second

chapter.

Proof :

We start with noting that proving this theorem simply requires us to establish that

Qf =
∑

m∈Z

∑

t∈Z
〈f,Gm,t,u〉ψm,t. (5.11)

This is because it can easily be seen that if the previous statement is true, then

R∗Qf =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f,Gm,t,u〉Ψm,t,udu,

thus proving the theorem.

So, to prove (5.11), we start with the left hand side,

∑

r∈Z
Gr(s)Rf(s− r)
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=
∑

r∈Z

∑

t∈Z
ψ(s− t)g(s− r − t)

∫

R
e2πi(s−r)σR̂uf(σ)|σ|n−1

2 dσ

=
∑

r∈Z

∑

t∈Z
ψ(s− t)g(s− r − t)

∫

R
e2πisσe−2πirσR̂uf(σ)|σ|n−1

2 du

=
∑

m∈Z

∑

t∈Z
ψ(s− t)ĝ(σ −m)e−2πi(s−t)(σ−m)

∫

R
e2πisσR̂uf(σ)|σ|n−1

2 du.

where we are using that

∑

r∈Z
g(s− r − t)e−2πirσ =

∑

m∈Z
ĝ(σ −m)e−2πi(s−t)(σ−m)

by the Poisson summation formula [30]. Simplifying the last line of the previous

calculation leads to

∑

m∈Z

∑

t∈Z

∫

R
ψ(s− t)ĝ(σ −m)e2πisme2πitσe−2πitmR̂uf(σ)|σ|n−1

2 dσ

=
∑

m∈Z

∑

t∈Z

(∫

R
R̂uf(σ)ĝ(σ −m)e2πitσ|σ|n−1

2 dσ

)
ψ(s− t)e2πim(s−t)

=
∑

m∈Z

∑

t∈Z
〈f,Gm,t,u〉ψm,t.

¤

These new operators are very natural to study because they form an isometry

on L2 in that [Rf,Rh] = 〈f, h〉 for functions f, h ∈ L1 ∩ L2(Rn). This is a simple

calculation and is closely related to the orthogonality relation of chapter four.

[Rf,Rh] = [Dn−1
2

(Ruf), Dn−1
2

(Ruf)]

= [Ruf,Dn−1(Ruh)]

= 〈f,R∗(Dn−1(Ruh))〉

= 〈f, h〉.
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5.4 Concluding Remarks

In this chapter we have extended our continuous theory to a semi-discrete one. Using

the classical time-frequency (Gabor) analysis, a semi-discrete reproduction formula

was presented along with the new concept of an apodizing reproduction which will

be implemented in the algorithms and applications later (where the spherical integral

will finally need to be discretized).

Analysis and reconstruction operators analogous to classical one were presented

and several properties were shown to extend to the time-frequency-direction analysis.

The concept of half-filtered operators (which form an isometry) was produced and

a representation theorem (comparable to Walnut’s [57]) was shown.
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Chapter 6

The Functional Spaces G
p,q,r
s

We will now look at some new functional spaces that measure the quantitative prop-

erties of Gabor ridge functions. These spaces are built from the knowledge of our

reproduction formula and semi-discrete frame properties of our weighted Gabor ridge

functions. They are the functional spaces that naturally lend themselves to time-

frequency-direction analysis. They are built from the basic modulation spaces which

naturally lend themselves to time-frequency analysis. We will also see that these

spaces are rich in substance and not simply constructed spaces with sparse elements.

The motivation behind finding functional spaces where everything is well-behaved

is based on the fact that functions in very nice spaces do not always act well under

the Radon transform. For example, consider the following function in L2(Rn):

f(x) = (2 + |x|)−n
2 (log(2 + |x|))−1

The Radon transform of f is infinity everywhere (for all u ∈ Sn−1 and all s ∈ R).

There has been some recent work on what spaces f should be in so that the Radon

transform is well-defined. A newer result by Madych [40] shows that if f ∈ Lp(R2)

for some p satisfying 4
3

< p < 2, then the Radon transform exists almost everywhere
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and the Radon inversion formula exists almost everywhere.

We will start with a brief overview of modulation spaces as the later sections will

use these spaces.

6.1 Modulation Spaces

We will now look at a certain class of functions which, with its norm, attempts to

measure the size of the time and frequency components of the short-time Fourier

transform in a standard way. This is another classical theory of time-frequency anal-

ysis and we follow closely [32] for the brief overview.

6.1.1 Definition of Modulation Spaces

We will start with a definition of a mixed norm Lp space.

Definition 6.1.1 (Definition of Lq(Lp)) Let 1 ≤ p, q < ∞. Then the mixed-norm

space Lq(Lp)(R2n) contains all measurable functions on R2n, such that the norm

‖F‖Lq(Lp) =

(∫

Rn

(∫

Rn

|F (x, ω)|pdx

)q/p

dω

)1/q

< ∞

If either p or q equal ∞, then the norm is replaced by the essential supremum giving,

‖F‖Lq(L∞) =

(∫

Rn

(
ess sup

x∈Rn

|F (x, ω)|dx

)q

dω

)1/q

< ∞

and

‖F‖L∞(Lp) = ess sup
ω∈Rn

(∫

Rn

|F (x, ω)|pdx

)1/p

< ∞

It is also easy to extend this to sequences on Z2n.
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Definition 6.1.2 (Discrete mixed-norm spaces `q(`p)) `q(`p) contains all

sequences (ajk)j,k∈Zn of C such that the norm

‖ajk‖`p,q =


∑

j∈Zn

(∑

j∈Zn

|ajk|p
)q/p




1/q

< ∞

Now as we begin to venture into the time-frequency aspect of these spaces we will

start by defining a generalization of something we have seen before, that being the

Wiener class of functions.

Definition 6.1.3 (W (Lp,q)) Let F be a measurable function on R2n. Consider the

following sequence

ajk = ess sup
x,ω∈[0,1]n

|F (x + j, ω + k)|.

Then if this sequence belongs to `p,q, we say the function F belongs to W (Lp,q) with

the norm

‖F‖W (Lp,q) = ‖a‖`q(`p).

The previous “Wiener class” we have seen can now be identified as W (L1,1).

We are now ready to actually define what we mean by a modulation space.

Definition 6.1.4 (Modulation Spaces Mp,q) For a fixed non-zero window g ∈

S(Rn) and 1 ≤ p, q ≤ ∞, the modulation space Mp,q contains all tempered distri-

butions f ∈ S ′(Rn) such that the short-time Fourier transform of f , Vgf ∈ Lq(Lp).

The norm on Mp,q is

‖f‖Mp,q = ‖Vgf‖Lq(Lp).
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Let’s take a closer look at how this norm operates. Expanding out ‖f‖Mp,q gives

us (∫

Rn

(∫

Rn

|〈f, gm,t〉|pdm

)q/p

dt

)1/q

< ∞.

This norm calculates the measure of the time and frequency components of our

function f . Consider the space M2 := (M2,2). Our norm on this space is

(∫

Rn

∫

Rn

|〈f, gm,t〉|2dmdt

)1/2

.

From general time-frequency analysis we know that ‖f‖M2 = ‖g‖L2‖f‖L2 for f, g ∈

L2(Rn). So, for any g ∈ S(R), we have that the functional space M2 is the space L2.

Finally, we may also define the discrete version of Mp,q and call it mp,q given by

the following norm:

‖f‖mp,q =


 ∑

m∈Zn

(∑

t∈Zn

|Vgf(m, t)|p
)q/p




1/q

< ∞

6.1.2 Properties of Modulation Spaces

We will now look at some important properties of modulation spaces which we will

use in the later sections.

Proposition 6.1.5 Below is a list of properties known for modulation spaces which

can be easily verified.

(a) Mp,q(Rn) is a Banach space for 1 ≤ p, q ≤ ∞.

(b) Mp,q is invariant under time-frequency shifts and ‖TxMωf‖Mp,q ≤ C‖f‖Mp,q .

(c) If p = q, then Mp is invariant under the Fourier transform.
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Theorem 6.1.6 If g ∈ M1 and f ∈ Mp,q, then Vgf ∈ W (Lp,q) and

‖Vgf‖W (Lp,q) ≤ C‖Vgg‖W (L1)‖f‖Mp,q . (6.1)

Theorem 6.1.7 If f ∈ W (Lp,q) is continuous, then for all α, β > 0, f |αZn×βZn (the

restriction of f to the grid αZn × βZn) is in `p,q, and

‖f |αZn×βZn‖`p,q ≤ Cα,β‖f‖W (Lp,q).

Theorem 6.1.8 If gm,t,u ∈ M1 then Vgf ∈ W (L1).

We can also see what the dual modulation spaces are as a consequence os duality

with mixed-norm Lp,q spaces.

Proposition 6.1.9 (Duality of Modulation Spaces) If 1 ≤ p, q ≤ ∞, then

(Mp,q)∗ = Mp′,q′ under the duality

〈f, h〉 =

∫ ∫

R2n

Vgf(y)Vgh(y)dy

for f ∈ Mp,q and h ∈ Mp′,q′, where 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1.

For a proof of these theorems and properties, we refer the reader to [32].

6.2 Definition of the Spaces Gp,q,r
s

We will start with a definition of the spaces.

Definition 6.2.1 (The Functional Space Gp,q,r
s ) For a given function f ∈ L1(Rn),

we say f ∈ Gp,q,r
s if the following norm is finite:

‖f‖Gp,q,r
s

=

(∫

Sn−1

‖(R̂ufω̂s)
∨‖r

Mp,qdu

)1/r

,
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where ωs = (|ξ|n−1
2 (1 + |ξ|2) s

2 )∨ and ω = ω0.

We will also define a semi-discrete version of this space which we will denote by

gp,q,r, not to be confused with the window function g.

Definition 6.2.2 We say that a semi-discrete sequence {cm,t,u}m,t,u defined on Sn−1×

Z× Z we say it belongs to gp,q,r if the following norm is finite:

‖{cm,t,u}‖gp,q,r =

(∫

Sn−1

‖{cm,t,u}‖r
`q(`p)du

)1/r

.

The idea is that these functional spaces are the type of functional spaces that are

specifically tuned to our weighted Gabor ridge function expansions. Analogous to the

way modulation spaces are the “right” function spaces for the mathematical analysis

of time-frequency theory, these new functional spaces are the “right” functional spaces

for time-frequency-direction theory.

6.3 Relation to other Functional Spaces

As with the modulation spaces we will denote Gp,q,r
s by just Gp

s when p = q = r and

by Gp when p = q = r and s = 0.

Proposition 6.3.1 Let f ∈ L1 ∩ L2(Rn) and g ∈ S(R), then ‖f‖G2 = ‖g‖L2‖f‖L2

Proof :

Recall that ω̂(ξ) = |ξ|n−1
2 .

‖f‖2
G2 =

∫

Sn−1

‖(R̂ufω̂)∨‖2
M2

du
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=

∫

Sn−1

∫

R

∫

R
|Vg((R̂ufω̂)∨)|2dmdtdu

=

∫

Sn−1

∫

R

∫

R
|〈f, Gm,t,u〉|2dmdtdu

= ‖g‖2
L2‖f‖2

L2

with the last statement justified by Theorem 4.3.2 and the fact that

Vg(h) = 〈f, gm,t〉.

¤

This very easy proposition is a catalyst for the next two sections of this chapter

which proves the boundedness of our semi-discrete frame operator

Sg,ψf =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, Gαm,βt,uΨαm,βt,u〉du

on the spaces Gp,q,r.

Theorem 6.3.2 The functional space G2
s is the classical Sobolev space Hs.

Proof :

‖f‖2
G2

s
=

∫

Sn−1

‖(R̂ufω̂s)
∨‖2

M2
du

=

∫

Sn−1

∫

R

∫

R
|Vg((R̂ufω̂s)

∨)|2dmdtdu

=

∫

Sn−1

∫

R

∫

R
|〈(R̂ufω̂s)

∨, gm,t〉|2dmdtdu

=

∫

Sn−1

‖(R̂ufω̂s)
∨‖2

L2du

=

∫

Sn−1

∫

R
|f̂(σu)|2|σ|n−1(1 + |σ|2)sdσdu
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= 2

∫

Rn

|f̂(z)|2(1 + |z|2)sdz

= 2‖f‖2
Hs .

¤

6.4 Boundedness of the Frame Operator on the

Spaces Gp,q,r

The most interesting and useful aspect of these new functional spaces for us is the

fact that our semi-discrete frame operator is bounded on these spaces. This section

will show how we prove this along with showing how natural it is to work with these

spaces when working with our time-frequency-direction analysis.

Let us start by recalling some definitions involving the analysis and synthesis

operators of S.

Cg(f) = 〈f, Gm,t,u〉.

Dψ({cm,t,u}) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,udu.

We can now look at our frame operator Sf as DψCgf . This is convenient as we

can prove boundedness results for both C and D.

Theorem 6.4.1 (Boundedness of Cg) If g ∈ M1, then Cg is bounded from Gp,q,r

into gp,q,r for 1 ≤ p, q, r ≤ ∞, and lattice parameters α, β > 0 such that

‖Cg‖op ≤ C(α, β)‖Vgg‖W (L1)

independently of p and q.
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Proof :

By Theorem 6.1.6, Vg((R̂ufω̂)∨) ∈ W (Lp,q) for g ∈ M1 and (R̂ufω̂)∨ ∈ Mp,q.

Vg((R̂ufω̂)∨) is continuous and |Cgf(m, t)| = |Vg((R̂ufω̂)∨)(αm, βt)|, so by Theorem

6.1.7 and (6.1)

‖Cg(f)‖r
gp,q,r =

∫

Sn−1

‖Cgf‖r
`p,qdu

=

∫

Sn−1

‖Vg((R̂ufω̂)∨)|αZn×βZn‖r
`p,qdu

≤ Cα,β

∫

Sn−1

‖Vg((R̂ufω̂)∨)‖r
W (Lp,q)du

≤ Cα,β‖Vgg‖r
L1

∫

Sn−1

‖(R̂ufω̂)∨‖r
Mp,qdu

= Cα,β‖Vgg‖r
L1‖f‖r

Gp,q,r .

¤

So we see that Cg acts very naturally on the space Gp,q,r and maps functions of

this class into semi-discrete sequences in the space gp,q,r. We will now prove a similar

boundedness property for Dψ.

We first need another theorem which we will state without proof. For a nice proof

of the following theorem, one may refer to [32].

Theorem 6.4.2 For a fixed window g0 ∈ M1, the short-time Fourier transform,

Vg0(Dg({cm,t})) = Vg0

(∑

m∈Z

∑

t∈Z
{cm,t}gm,t

)
,

is in Lp,q(R2n) and

‖Vg0(
∑

m∈Z

∑

t∈Z
{cm,t}gm,t)‖Lp,q ≤ C‖Vgg‖W (L1)‖{cm,t}‖`p,q .
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Theorem 6.4.3 (Boundedness of Dψ) If g ∈ M1, then Dψ is bounded from gp,q,r

into Gp,q,r for 1 ≤ p, q, r ≤ ∞ with the following norm estimate

‖Dg‖op ≤ ‖Vg0g0‖W (L1).

Proof :

Consider a semi-discrete sequence {cm,t,u}.

‖Dψcm,t,u‖r
Gp,q,r =

∫

Sn−1

‖((Ru(Dψcm,t,u))̂ ω̂)∨ ‖r
Mp,qdu

Now, we need to understand what Ru(Dψcm,t,u) is actually equal to. Let us expand

the synthesis operator.

Dψ(cm,t,u) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,udu

=

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uDn−1

2
(ψm,t)(u · x)du

=

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uDn−1

2
(ψm,t) ∗ ω ∗ ω∗(u · x)du

where ω∗ is chosen such that ω ∗ ω∗ ≡ δ. This can be done by choosing ω∗ such that

ω̂∗(σ) = |σ| 1−n
2 . Then,

Dψc = B
(∑

m∈Z

∑

t∈Z
cm,t,uψ

m,t ∗ ω∗
)

.

So,

Dn−1
2

(Ru(Dψc)) = Dn−1
2

(
RuB

(∑
m

∑
t

cm,t,uψ
m,t ∗ ω∗

))

=
∑

m∈Z

∑

t∈Z
cm,t,uDn−1

2
(ψm,t) ∗ ω∗

=
∑

m∈Z

∑

t∈Z
cm,t,uψ

m,t.
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where we are justified in viewing this as a convolution because ω∗ looks like |s|n−3
2

near 0 (for n ≥ 2), as is therefore locally integrable. Finally, by Theorem 6.4.2 we

have the following:

‖Dψcm,t,u‖r
Gp,q,r =

∫

Sn−1

‖Dn−1
2

(Ru(Dψcm,t,u))‖r
Mp,qdu

=

∫

Sn−1

‖
∑

m∈Z

∑

t∈Z
ψm,t‖r

Mp,qdu

=

∫

Sn−1

∥∥∥∥∥Vg0

(∑

m∈Z

∑

t∈Z
cm,t,uψ

m,t

)∥∥∥∥∥

r

Lq(Lp)

du

≤ ‖Vg0g0‖W (L1)

∫

Sn−1

‖cm,t,u‖r
`q(`p)du

= ‖Vg0g0‖W (L1)‖cm,t,u‖r
gp,q,r .

¤

We may now finish with the main statement of this section which is a simple

corollary of the Theorem 6.4.1 and Theorem 6.4.3.

Corollary 6.4.4 (Boundedness of Sg,ψ = DψCg) If g, ψ ∈ M1 such that

Vg((R̂ufω̂)∨) ∈ Mp,q, then our semi-discrete frame is bounded on Gp,q,r for all 1 ≤

p, q, r ≤ ∞ and α, β > 0 with the following norm estimate:

‖Sg,ψ‖op ≤ C(α, β)‖Vgg‖W (L1)‖Vψψ‖W (L1),

independent of p, q, and r.

6.5 Characterization of Gp,q,r

We also have a corollary which extends the concept of our frame from L1∩L2 to Gp,q,r,

by characterizing these spaces using our weighted Gabor ridge functions, similar to
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[28].

Corollary 6.5.1 Assume g, ψ ∈ M1 such that Sg,ψ = I on L1 ∩ L2(Rn). Then

f =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f,Gm,t,u〉Ψm,t,udu

=

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, Ψm,t,u〉Gm,t,udu

with unconditional convergence in Gp,q,r if p, q, r < ∞. Also, there are constants

A,B > 0 such that for all f ∈ Gp,q,r

A‖f‖Gp,q,r ≤




∫

Sn−1


∑

m∈Z

(∑

t∈Z
|〈f, Gm,t,u〉|p

)q/p



r/q

du




1/r

≤ B‖f‖Gp,q,r .

Proof :

We have seen that both the coefficient and synthesis operators are bounded on Gp,q,r

and gp,q,r, we know that f = DψCgf hold for all f ∈ Gp,q,r. The norm equivalence is

all just a coincidence of our norm estimates for C and D.

‖f‖Gp,q,r = ‖DψCgf‖Gp,q,r ≤ ‖Dψ‖op‖Cg‖gp,q,r

≤ ‖Dψ‖op‖Cg‖op‖f‖Gp,q,r .

Note: we can choose A = ‖Dψ‖−1
op and B = ‖Cg‖−1

op . ¤

6.6 Concluding Remarks

What we have established in this chapter are a set of functional spaces that are tailored

for the analysis of time, frequency, and direction. We have seen the motivation for

these spaces in the modulation spaces of time-frequency analysis and have shown that

they are actually rich spaces which can be shown by their relationship to other spaces.
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Finally, we were able to show boundedness of our frame operator on these new

spaces along with an extension of the the concept of a frame from functions in L1∩L2

to functions in Gp,q,r.
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Part III

Applications
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Chapter 7

Algorithm Development

To begin to study the applications of this theory, we need to look at possible algo-

rithms to be implemented and what type of things need to be accomplished to apply

this theory in a completely discrete setting.

This chapter simply shows how algorithms were constructed, although the author

admits that there may be better ways to implement this theory on a computer.

Pseudocode will be used to present the general ideas of the algorithms used. In all

the algorithms we are assuming n = 2. Please note the algorithms included here

are not complete and they are just to give an idea of how one might implement this

theory.

7.1 Breaking Things Down

The first thing we need to do is to break down our theory into different pieces which

we would like to generate algorithms for. We will start with the analysis and synthesis

operators from the previous chapter. As a reminder, they were defined as

Cg(f) = 〈f, Gm,t,u〉,
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Dψ({cm,t,u}) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,udu.

Together, they form the general frame operator Sg,ψ.

Sg,ψ = Dψ(Cg(f)) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f,Gm,t,u〉Ψm,t,udu.

The applications involving manipulations of the coefficients come in between the

analysis and synthesis process and we will also look at those topics in the later chap-

ters.

7.2 Analysis Operator Cg

To create an algorithm for the analysis operator, it is helpful to remember what type

of analysis we are doing. The best way to view the analysis of Cg is as time-frequency

analysis on the Radon transform of the function. Recall that

Cg(f) = 〈f,Gm,t,u〉 = 〈Dn−1
2

(Ruf), gm,t〉.

So, we continue with the presentation of our algorithm with comments and explana-

tions where necessary. We will start with an algorithm for computing Dn−1
2

(Ruf).

The first thing we calculate is the discrete Radon transform for a specified set of

angles. In other words, we calculate

Ruj
f(si) =

∫

uj ·x=si

f(x)dx.

A simple example of the Radon transform algorithm is given below. This algo-

rithm simply approximates line integrals by summing over a discrete matrix of values

(image) that is iteratively rotated to consider line integrals from different directions.
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1 ************* RADON TRANSFORM ******************

PROGRAM NAME: radon

% INPUTS: theta - vector of angular directions

% data - 2d array of data

5 %

% OUTPUT: proj - radon projections

************************************************

% First the initial data should be zero padded so

10 % that data isn’t lost in the rotations. This is

% a simple procedure.

n = length(theta)

for i = 1 to n

15 tmp = rotateimage(data, 90-theta(i))

proj(:,i) = columnsum(tmp)

end

ENDPROGRAM

In the last algorithm we are using an image rotating subroutine which will be left

out for the purpose of clarity, but this subroutine is important in that it generates a

new matrix of values corresponding to a rotated version of the original. Obviously,
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some interpolation must be utilized in this process.

Now that we have the Radon transform of a function, we need to apply an ap-

propriate weight ω. The general weight (for n = 2) from the definition of Cg is the

following weight (along with its Fourier transform):

ω̂(σ) = |σ| 12 .

The filter that we will actually apply will be an apodized one corresponding to

Table 1.3.2 and the apodized reconstruction of chapter five Definition 5.2.2. Our

actual filter will have the following form:

ω̂(σ) = |σ| 12 Â(σ).

To apply this filter we will create an algorithm to compute (R̂ufω̂)∨ since there

are already fast algorithms for the Fourier transform. We begin with a algorithm that

designs the filter for later use.

1 ************* FILTER DESIGN ********************

PROGRAM NAME: filter

% INPUTS: type - type of filter to be used

% num - number of filter values

5 % d - fraction of nyquist rate

%

% OUTPUT: filter - the filter that will be used

************************************************
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10 size = 2^nexthighestpowerof2(2*num)

% Start with a ramp filter

filter = 2*[0:(size/2)]/size

l = 2*pi*[0:len(filter,2)-1)]/size %frequency axis

15 if type = ’ram-lak’

% already done

else if type = ’shepp-logan’

filter = filter * (sin(l)/(2*d)) / (l/(2*d))

else if type = ’hamming’

20 filter = filter * (.54 + .46 * cos(l/d))

else if type = ’hann’

filter = filter * (1+cos(l/d))/2

end

25 ENDPROGRAM

Now, given that we have our filter, we calculate the (discrete) convolution of

Ruj
f ∗d ω by multiplication in the frequency domain. That is, we calculate the

following:

IFFT (FFT (Ruj
f)FFT (ω)) = Ruj

f ∗d ω

where FFT and IFFT stand for the fast Fourier transfrom and inverse fast Fourier

transform respectively. There are already many good algorithms currently available
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for these operations (Cooley-Tukey, [16]).

1 ************* WEIGHT CONVOLVE ******************

PROGRAM NAME: weight

% INPUTS: data - input data to be weighted

% filter- filter used as weight

5 %

% OUTPUT: wdata - weighted data

************************************************

% Zero pad radon data

10 data(length(filter))=0

fproj = fft(data)

ffilter = fft(filter)

newproj = fproj*ffilter

15 wdata = real(ifft(newproj))

%Truncate the data

wdata(length(data)+1:end) = [empty]

20 ENDPROGRAM

The previous algorithms generate a discrete filter and implements it using mul-
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tiplication in the frequency domain. We now need to consider an algorithm for a

discrete time-frequency (Gabor) analysis.

1 *************** GABOR FRAME ********************

PROGRAM NAME: gabor

% INPUTS: g - window function

% f - function data (discrete signal)

5 % a - time spacing

% b - frequency spacing

%

% OUTPUT: gabor(:,:) - gabor (TF) coefficients

************************************************

10

% This program really just calculates the STFT

% of a function, which coincides with a gabor

% frame expansion.

15 % Check that length of f is divisible by a

if (a divides length(x))

continue

else

ERROR, end

20 end
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for j = 0 to length(x)/b-1

tmp = f*shift(g,j)

gabor(j+1,:) = fft(tmp)

25 end

ENDPROGRAM

Applying all of these alogrithms together will generate a set of time frequency

coefficients for Rui
f ∗d ω for a discrete range of ui ∈ Sn−1. They are applied in the

following order.

General algorithm:

Step 1: Apply discrete Radon transform (radon).

Rui
f

Step 2: Generate filter and convolve with data (filter, weight).

Rui
f ∗d ω

Step 3: Calculate time-frequency information for the data (gabor).

〈Rui
f, gm,t〉

Step 4: Do this for all directions and collecte coefficients.

〈f, Gm,t,ui
〉
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7.3 Synthesis Operator Dψ

To create an algorithm for the synthesis operators we need to look at all the compo-

nents of it. Recall that

Dψ({cm,t,u})(x) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,u(x)du

=

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uDn−1

2
(ψm,t)(u · x)du

≈
∑
uj

∑

m∈Z

∑

t∈Z
cm,t,uj

(ψm,t ∗d ω)(uj · x).

Now that we have established the filtering operation and Gabor expansion, our

reconstruction from coefficients Cgf only needs one new piece of computation called

backprojection. This involves the integral over the sphere in our continous theory

and will become a discrete sum in our application now.

1 ************* BACKPROJECTION *******************

PROGRAM NAME: backproject

% INPUTS: theta - vector of angular directions

% data - direction dependent radon data

5 %

% OUTPUT: backp - backprojection of data

************************************************

% Before the following code is implemented, x and y

10 % variables should be initialized for the correct
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% coordinates based on radon data.

for i = theta

newdata=data(:,i)

15 s = x*cos(i) + y*sin(i)

a = floor(s)

backp = (s-a)*newdata(a+1) + (s+1-a)*newdata(a)

end

20 ENDPROGRAM

The above algorithm is one simple way of calculating a discrete backprojetion

based on linear interpolation which works surprisingly well as was shown by Ra-

machandran and Lakshminarayanan [50].

So to calculate Dψ we just need to implement the following general algorthithm.

General algorithm:

Step 1: Reconstruct using only time-frequency data (gabor).

∑

m∈Z

∑

t∈Z
cm,t,uψ

m,t

Step 2: Generate filter and convolve with data (filter, weight).
(∑

m∈Z

∑

t∈Z
cm,t,uψ

m,t

)
∗d ω

Step 3: Backproject over the discrete set of directions (backproject).

∑

ui∈Sn−1

∑

m∈Z

∑

t∈Z
cm,t,ui

Ψm,t,ui
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Our last step is approximately equal to

Dψ({cm,t,u}) =

∫

Sn−1

∑

m∈Z

∑

t∈Z
cm,t,uΨm,t,udu.

In step 1, we just need to apply the gabor code as before, but with the “dual”

window function ψ which can be calculated from g. There are some very fast and

efficient algorithms already developed for this [6].

7.4 Concluding Remarks

What we have seen here are the basic building blocks of the theory as they could be

implemented on a digital computer. We have seen how to discretely implement our

continuous operators Cg and Dψ which together form our general frame operator Sg,ψ.

All of the applications take place between the coefficients and synthesis operator.

The actual time-frequency-direction coefficients can be used in many ways (to enhance

or denoise images, for example). What we will see in the final chapters are some

examples of these applications and how the coefficients are altered to produce many

different results.
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Chapter 8

Image Processing

Applications involving image processing were readily available as the structure of the

Gabor ridge function lends itself to directional frequency information. This allows

for many different generalized image processing techniques such denoising, filtering,

enhancement, etc. The added benefit is being allow to do all of these things in a

directionally sensitive manner.

We will start by looking at filtering by direction and then move onto other topics

including edge detection, image enhancement, and compression.

8.1 Filtering By Direction

Image processing depends heavily on the idea of filtering either by changing pixel

values directly or altering the frequency content of the image. We will use these

concepts to introduce filtering by direction in which we have more control over the

direction(s) over which our filtering is being done and therefore how it affects the

actual image.

First we will see what happens when certain time-frequency-direction information
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is altered. In the first example (see Figure 8.1) we see the original head phantom along

with its time-frequency-direction coefficients at directions of 45 and 125 degrees.

Now we are interested in working with the time-frequency-direction information to

see how the image is affected. Here it should be noted that it is not truly appropriate

to call the affine parameter “time,” but it should be understood in context. If we,

for example threshold the high frequency content, we see that (see Figure 8.2) the

end result of the phantom image is blurry, but only on edges which are tangent to

the directions we have chosen to threshold. Here we reduced by a sizable factor

the time-frequency-direction coefficients which correspond to the angles from 0 to 45

degrees.

We now continue with the same experiment, but this time we amplify high fre-

quency content in the same angular interval. What we see now is that the image is

actually sharpened in the angular range and specifically on edges which are tangent

to the directions in the range.

8.2 Robust Edge Detection

There is also an application to edge detection. The Radon transform itself has been

specifically used to find edges in other image processing algorithms. We are also able

to detect edges in images as our time-frequency-direction coefficients are large when

the direction is tangent to a certain edge. The added benefit is that we are actually

able to detect edges of different thickness. The difference in the thickness of the edges

can be detected by the actual coefficients.
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Figure 8.1: Time-frequency-direction coefficients corresponding to 25 and 125 degrees.
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Figure 8.2: Reconstructed Phantom with Thresholding
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Figure 8.3: Reconstructed Phantom with Sharpening
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An added benefit is that edge detection in the presence of noise is also an easy

task as the noise (which we will see in a later section) only corresponds to very small

coefficients.

We will do two examples of edge detection. By edge detection we mean an analysis

of coefficients that allows us to determine where edges of an image might be. In the

first example (see Figure 8.4), we see that the coefficients pick out well the lines

(edges) of varying thickness in our image. We also see that the thickness of the edge

affects the coefficients in that the wider edges have larger coefficients corresponding

to lower frequencies that the thinner lines. Notice that the small square made up

of a few pixels in the data is visible in the coefficients, but in a very minimal sense,

especially in comparison to the edges. Also notice that the horizontal line is not

“visible” at all, but would be if we considerd coefficients corresponding to 90 degrees,

in which case the others would no longer be visible.

The next example (see Figure 8.5) shows the robustness of the edge detection in

displaying the coefficients of the same data with varying leves of noise added. Each

example is a higher order of magnitude of noise. One can see how the lines are easy

to detect on the coefficients with minimal noise and the difficulty increases with the

noise, although a good algorithm should still be able to find these eges. In a later

section we will consider the topic of denoising an image.
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Figure 8.4: We have our edge phantom data along with the coefficients corresponing
to 0 degrees represented by an intensity image and a three-dimenstional surface.
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Figure 8.5: We have differing levels of noise added to our data and the corresponding
coefficients.
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8.3 Image Enhancement

In this section we will apply our new theory to image enhancement. There are many

ways to “enhance” an image. One of the most common ways is to actually enhance

(make sharper or more defined) the edges or curvilinear singularities of the image.

This can be done in a very systematic using our general theory. The time-frequency-

direction coefficients are largest when there is an edge in our image. The larger the

coefficient, the stronger the edge. A smaller coefficient corresponds to a faint edge.

In image enhancement the goal is to enhance the faint edges and not disturb the

stronger edges. We do this by multiplying all the coeffcients cm,t,u by y(cm,t,u) (as was

used in [54]) defined as
(m

n

)p

if |c| ≤ cmin

(
m

|c|
)p

if cmin < |c| ≤ cmax

1 if |c| > cmax

where m, n, cmin, and cmax are constants to be determined and change depending

upon the specific problem.

In our first example (see Figure 8.6), we see our orginal image along with a display

of coefficients corresponding to 0 degrees. We then apply the function above to

our coefficients and reconstruct the function using new coefficients. In these new

coefficients we can that larger coefficients are not affected as much, while the smaller

ones are altered producing an image with much more detail. We do a similar example

with a more natual image (see Figure 8.7). Although there seems to be no good reason
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for enhancing this particular image, it is interesting to see what is actually enhanced.

Notice that the areas in the original image corresponding to curvilinear singularities

(edges) are dramatically increased in the resulting image. Notice the texture in the

closing and the objects in the image background. One can actually make out ridges

of texture that were not apparent in the original image.

The next two examples are much more interesting in that it can be seen why

certain images might need to be enhanced. The first is an example of a satellite

image of the planet Saturn (see Figure 8.8). The second is a similar example using a

satellite image of the planet Mars (see Figure 8.9). In both of these, more information

of the original image seems to be available in the enhanced reconstructions. In reality,

the information was alredy there and we are just emphasizing the fainter edges.

8.4 Image Compression

In this section we will introduce the application to image compression. Image com-

pression can be accomplished whenever one can represent an image with fewer coef-

ficients than the original image required. This can be done with wavelets coefficients

(as in current JPEG-2000 technology) and it can also be achieved with our general

time-frequency-direction coefficients as we will show in the examples of this section.

In image compression, certain small coefficients are set to zero and not used in the

reconstruction of the image. This is not truly a “compression” until one introduces bit

allocation and entropy coding which we will not discuss in the work. The general idea

is that setting most of the coefficients to zero guarantees nice compression as these
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Figure 8.6: The top is the the original image along with its coefficients correspoding to
0 degrees. The image on the bottoms is the enhanced version along with it coefficients
corresponding to 0 degrees.
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Figure 8.7: Another example of image enhancement.
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Figure 8.8: An enhance picture of Saturn.
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Figure 8.9: An enhanced picture of Mars.
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algorithms are already developed and in use. The zero coefficients are compressed

using entropy coding and this greatly reduces the size of the file.

With this brief introduction in mind, we will introduce examples of images recon-

structed using only a certain percentage of the original coefficients and calculate the

mean square error (MSE)

MSE =
∑
j∈J

|fj − gj|2

of the original and reconstructed version. These example will show the application

to image compression very well.

8.4.1 Examples

In our first example (see Figure 8.10), we take an artwork image and represent it with

varying levels of coefficients and consider the MSE for each reconstruction. Please

note what we are actually calculating is the MSE between the reconstructions with

fewer coefficients versus the “full” amount of coefficients as that is what would usually

be included in a digital file.

It is interesting to note that even with 10 percent of the coefficients, the recon-

structed image is very visually close to the original image. The places where there

is obvious blurryness or error is away from edges, where time-frequency-direction

coefficients would be smaller and therefore set to zero.

Also, the explanation for apparent smoothing out of the reconstruction is that the

original image was 120 × 160 pixels and the algorithms are developed to produce a

512× 512 image.
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Figure 8.10: Going left to right, top to bottom, we have have the original pic-
ture, along with reconstructions using 10% (MSE=0.2184), 20% (MSE=0.0367), 30%
(MSE=0.0136), 50% (MSE=0.0022), and 100% (MSE=0) of the available coefficients.

115



As another example (see Figure 8.11) we will use another picture with more con-

trast in it than the previous. Again we see the images quality is very high even using

only 20% of the available coefficients.

8.4.2 Why Does This Work?

The compression results look promising, but why do they work so well? The answer

is a culmination of all the previous sections. We saw that the edges of an image are

represented well with the largest of the coefficients. When we compress an image by

throwing out a certain percentage of ceofficients, we are throwing out the smallest of

the coefficients which, as we have seen, either correspond to noise or some insignificant

part of the image. When we reconstruct the image with a small percentage of the

largest coefficients, we are able to still preserve our most contrasting edges giving us

a good representation of the original image.
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Figure 8.11: Going left to right, top to bottom, we have have the original picture,
along with reconstructions using 10%, 20%, 30%, 50%, and 100% of the available
coefficients.
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Chapter 9

Medical Imaging

As we have already seen, the Radon transform plays an integral role in most current

medical imaging modalities. With this in mind, we can begin to explore the different

avenues in medical imaging where this time-frequency-direction analysis can play a

role. One such application is in the area of local tomography (or lambda tomography).

The usual process of computerized tomography is global in nature. Local tomogra-

phy, although slightly less accurate, is local and therefore has some usefulness and

advantages above the usual process. In the next few sections, we will look at the use

our our theory in computertized tomography along with the setting of local tomog-

raphy and how the weighted Gabor ridge functions can play a role in reconstruction

and denoising of medical images.

9.1 Computerized Tomography

As seen in the first chapter, computerized tomography (CT) is a product of taking the

Radon transform of an object (x-rays) and inverting that algorithmically to generate

the density image. Our system is tailored specifically for medical imaging because of
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its inherent relationship with the Radon transform.

9.1.1 Applications to Computerized Tomography

Our system actually simulates the reconstruction done in a CT machine except for the

extra time-frequency elements. This could be duplicated commercially by program-

ming the CT machine to compute Gabor frame coefficients for a certain weighted

Radon transform as it is obtained from the x-ray detectors. Analysis can then be

done of these coefficients and the images can be processed after that. What we will

see in this section is an example of a reconstructed CT image (using a standard

phantom image) and then a denoising application by using the extra properties of the

time-frequency-direction coefficients.

First let us simply use our system to reconstruct a standard phantom image. In

this example (see Figure 9.1), we have the original image and the reconstructed image

using directions from 0 to 180 degrees.

What is reconstructed in the algorithm is essentially the following:

CT =
180∑
u=1

256∑
m=1

256∑
t=1

〈original, Gm,t,u〉Ψm,t,u

9.1.2 Denoising in Computerized Tomography

Denoising is possible using our general theory by setting to zero some of the coefficients

which correspond to noise (small coefficients) versus those which correspond to the

actual image. As we have seen large coefficients correspond to edges or curvilinear

singuarities of our image. Small coefficients correspond point singularties such as

noise.
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Figure 9.1: The first image is the original head phantom and the second is the simu-
lated CT reconstruction using our system.

Figure 9.2: Here we have an image of a head phantom with Gaussian noise and the
denoised image.
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Figure 9.3: Here we have an image of a head phantom with uniform noise and the
denoised image.

9.2 Local Tomography

Local tomography (also called lambda tomography) involves reconstructing a func-

tion related to f instead of f itself [51]. In local tomography we are constructing the

function Lf = Λf + µΛ−1f , where Λ =
√−∆ (square root of the positive Laplacian)

and µ is some constant which may depend upon f . This is a strictly local reconstruc-

tion and it has been shown that Lf produces an image that still “looks like” f . By

this we mean that certain aspects of the function f are preserved. For example, since

Λf is an invertible elliptic operator, f and Λf have precisely the same singularities.

Λf is “cupped,” however, within regions of constant density. The extra term µΛ−1f

is an attempt to neutralize this cupping.
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Both Λ and its inverse can be defined in terms of their Fourier transform by

(Λf)̂(ξ) = |ξ|f̂(ξ)

(Λ−1f)̂(ξ) = |ξ|−1f̂(ξ).

Notice that Λ−1 is just the non-filtered backprojection (for n = 2) that we have

seen before. This is what produced the blurry image instead of reconstructing f . It

will now serve as a useful tool in local tomography. It is a local operation as it only

backprojects the lines that intersect a point x. This is why we got a blurry picture

before because we actually need all the line integrals to reconstruct f(x).

9.2.1 Applications to Local Tomography

We can implement a local tomographic reconstruction process using our weighted

Gabor ridge functions. The system, however, has to be altered to account for a

construction of Lf instead of a reconstruction of f .

Definition 9.2.1 (Gabor ridge functions with altered weights) We will define

new Lambda Gabor ridge functions with a special weight in the following way:

GΛ
βm,αt,u =

(
Dn

2
(gβm,αt)

)
(u · x).

For our current example (n = 2), that corresponds to

GΛ
βm,αt,u =

(
D1(g

βm,αt)
)
(u · x).

This allows us to be able to create a new representation which allows for analysis

of time, frequency, and direction for local tomography. A reconstruction for Lf is
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now simply given by:

Lf =

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, GΛ

βm,αt,u〉ΨΛ
βm,αt,udu+

+µ

∫

Sn−1

∑

m∈Z

∑

t∈Z
〈f, gβm,αt,u〉ψβm,αt,udu.

Notice in the above reconstruction formula that the second term is the formula

from chapter 3 concerning our first attempt at a reconstruction for f . It turns out to

be a useful addition to the application for local tomography.

Lets look at an example of reconstruction using our method in this section. We

will take the original head phantom and, using our method, construct the image of

Lf (see Figure 9.4).

9.2.2 Denoising in Local Tomography

Given that our system is well suited for local tomography, we can also apply our

denoising algorithm in a local tomographic setting. What you will will see in the

next example (see Figure 9.5) is the local tomographic reconstruction of Lf that

has been denoised in the same way we denoised in the CT example (setting to zero

coefficients below a certain threshold).
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Figure 9.4: From left to right, top to bottom, we have the original head phantom,
Λf , Λ−1f , and the local reconstruction Lf = Λf + Λ−1f .
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Figure 9.5: From left to right, top to bottom, we have the original head phantom
with gaussian noise, Λf , Λ−1f , and the local reconstruction Lf = Λf + Λ−1f .
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Appendix A

Tools from Fourier Analysis

We briefly mention in a little more detail some of the tools used in this dissertation.

For an excellent reference on harmonic analysis, one may consult [30] which has many

basic properties and advanced analysis along with justifications.

A.1 The Fourier Transform on the Schwartz Class

A.1.1 The Schwartz Class S(Rn)

The Schwartz space is a natural space on which to consider the Fourier transform

initially because of inversion begin well-defined. It can be extended, however, to

much more general classes of functions. For functions in L1, Fourier inversion makes

sense only if f̂ is also in L1, which is not always the case. In what follows, C∞

will represent the class on infinitely differentiable functions and a multiindex alpha

is an n-tuple of nonnegative integers (α1, α2, . . . , αn) where ∂αf = ∂α1
1 . . . ∂αn

n and

|α| = α1 + · · ·+ αn.

Definition A.1.1 (The Schwartz Class S(Rn)) A function f ∈ C∞ is said to be

in the Schwartz class S(Rn) if for all multiindices α, β, there exist positive constants
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Cα,β such that

ρα,β = sup
x∈Rn

|xα∂βf(x)| = Cα,β < ∞.

In other words, the function f along with all of its partial dervative decay faster than

the reciprocal of any polynomial.

As an example, g(x) = e−|x|
2

is in the Schwartz class, but h(x) = (1 + |x|100)−a

for a > 0 is not in Schwartz since it decays like the reciprocal of a fixed polynomial

function.

A.1.2 The Fourier Transform

Given a function f ∈ S(Rn), we call the following the Fourier transform of f :

f̂(ξ) =

∫

Rn

f(x)e−2πix·ξdx,

where x, ξ ∈ Rn. We may also find the inverse Fourier transform of a function

f ∈ S(Rn) by

f∨(x) = f̂(ξ)e2πix·ξdξ.

Theorem A.1.2 (Properties of the Fourier transform) For functions f, g ∈ S(Rn),

we have

1.
∫

Rn

f(x)ĝ(x)dx =

∫

Rn

f̂(x)g(x)dx,

2. Fourier Inversion

(f̂)∨ = (̂f∨) = f,
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3. Plancherel’s Identity

∫

Rn

f(x)g(x)dx =

∫

Rn

f̂(ξ)ĝ(ξ)dξ,

4. Parseval’s Identity

‖f‖L2 = ‖f̂‖L2 = ‖f∨‖L2 ,

5.
∫

Rn

f(x)g(x)dx =

∫

Rn

f̂(x)g∨(x)dx.

A lot of other very useful properties follow from the definition of the Fourier

transform. We will now introduce some notation and view some of these properties

in the form of a proposition.

For a function f defined on Rn, x ∈ Rn, and a > 0, we can define translation,

dilation, and reflection by

Ty(f)(x) = f(x− y)

δa(f)(x) = f(ax)

f̃(x) = f(−x).

Also, for f, g ∈ L1(Rn) we define the convolution f ∗ g by

(f ∗ g)(x) =

∫

Rn

f(y)g(x− y)dy.

Proposition A.1.3 For f, g ∈ S(Rn), y ∈ Rn, b ∈ C, α a multiindex, and a > 0 we

have

1. ‖f̂‖L∞ ≤ ‖f‖L1 .
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2. f̂ + g = f̂ + ĝ.

3. b̂f = bf̂ .

4.
̂̃
f =

˜̂
f.

5. f̂ =
˜̂
f.

6. T̂y(f) = M−yf̂ .

7. (Myf(x))̂ = Tyf̂ .

8. δ̂a(f) = a−nδa−1(f̂ ).

9. (δαf)̂(ξ) = (2πiξ)αf̂(ξ).

10. (δαf̂ )(ξ) = ((−2πiξ)αf(x))̂(ξ).

11. f̂ ∈ S(Rn).

12. f̂ ∗ g = f̂ ĝ.

A.2 Distributions

Certain functions may not be easy to work with directly and it may be useful to look

at how they act on spaces of “test” fuctions. In some cases, we may want to consider

an object that is not a function at all, but is well-defined as an action on a class on

“nice” functions.
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A.2.1 Definition of a Distribution

We will call the class on infinitely differentiable functions with compact support

C∞
0 (Rn). This will be our space of test functions.

We can now view a distribution as a linear functional acting on our set of test

functions. We will view a distribution u acting on a test function f with the following

notation:

〈u, f〉.

Proposition A.2.1 A linear functional u acting on C∞
0 (Rn) is a distribution if and

only if for every compact K ⊆ Rn, there exist a C > 0 and an integer m such that

|〈u, f〉| ≤ C
∑
α≤m

‖∂αf‖L∞ ,

for all f ∈ C∞ with support in K.

An example used in this dissertation was the Dirac delta function

〈δ, f〉 = f(0).

We can also extend functions which are locally integrable to distributions since they

act well on test functions.

A.2.2 The distribution |x|α

We begin with a definition for the distribution |x|α.

Definition A.2.2 (The distribution |x|α) The distribution |x|α acts on test func-

tions f ∈ S(Rn) in the following way:
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〈|x|α, f〉 =

∫

Rn

π
α+n

2

Γ
(

α+n
2

) |x|αf(x)dx. (A.1)

These distribution coincide with the locally integrable functions

π
α+n

2 Γ

(
α + n

2

)−1

|x|α

when <(z) > −n, the definition only making sense for that range of z′s.

The definition of this distribution can be extended to all z ∈ C in the following

way.

Theorem A.2.3 (Fourier transform of |x|α) The fourier transform of |x|α, for

x ∈ Rn only exists in a distributional sense and is given by the following formula:

(
π−

α
2

Γ
(−α

2

) |x|α
)

̂ =
Γ

(
α+n

2

)

π
α+n

2

|ξ|−n−α.
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