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MATH 464WI
History of Mathematics with Dr. Richard Delaware

The Impossible Proof:
An Analysis of Adrien-Marie Legendre’s Attempts 

to Prove Euclid’s Fifth Postulate

Abstract

Euclid’s Fifth Postulate, the controversial Parallel Postulate, has been labeled 
by mathematical scholars throughout the centuries as unnecessary, as able to 
be proved from the other four Postulates. Many throughout the centuries tried 
to give a firm proof for this claim. However, as of 1750, none had been given. 
Adrien-Marie Legendre, French mathematician who lived from 1752-1833, spent 
forty years of his life attempting to produce such a definite proof. This paper 
explores some of Legendre’s major attempts, and it demonstrates the reasons why 
they failed.

Forty years. For forty long years, Adrien-Marie Legendre [1752-1833] 
[6], the brilliant French mathematician, attempted to prove that the sum of 
the angles of a triangle is equal to two right angles, or one hundred eighty de-
grees, using only the first four Postulates and five Common Notions of Euclid. 
These attempts were scattered throughout the twelve editions of his book Ele-
ments of Geometry from 1794 to 1823 [3, 213], texts that expanded on Euclid’s 
Elements and were the “leading elementary text on the topic for around 100 
years” [6]. The proof of the sum of the angles of a triangle is fairly simple if 
one accepts Euclid’s Fifth Postulate without question. However, Legendre was 
not satisfied with this. He wanted a proof that did not utilize this postulate. 
He desired to display to everyone that Euclid’s Elements were the surest foun-
dation that could be desired for mathematics, that they were completely true 
even without the controversial Fifth Postulate. This was possible if he could 
simply construct a proof determining the exact sum of the angles of a triangle 
using only Euclid’s first four Postulates, his five Common Notions, and the 
first twenty-eight Propositions deduced from them.
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The great Greek mathematician, Euclid of Alexandria, lived three centu-
ries before the Common Era, yet his writings on the subject of geometry have 
remained the primary authority in that field for thousands of years. Euclid be-
gan his work by presenting five primary truths, which he called “Postulates”, 
along with five “Common Notions”, which we would call rules of logic. From 
only these ten statements, the remainder of Euclid’s work was built by proof. 
These ten were to be taken as true without the need of justification, for they 
appeared, for the most part, self- evident. The five Postulates are as follows:

• [It is possible] to draw a straight line from any point to any point.

• [It is possible] to produce a finite straight line continuously in a 
straight line.

• [It is possible to] describe a circle with any centre and distance [ra-
dius].

• That all right angles are equal to one another.

• That, if a straight line falling on two straight lines makes the interior 
angles on the same side less than two right angles, the two straight 
lines, if produced indefinitely, meet on that side on which are the angles 
less than the two right angles. [3, 195-202]

Observe the Fifth Postulate. The basic idea of it is that, if two continu-
ous lines, such as AB and CD below, are not parallel, they will, eventually, 
meet at a point (in the figure, they will meet on the right). If a third line is 
drawn (such as EF below) intersecting the two non-parallel lines, then the sum 
of the two interior angles that line makes with the non-parallel lines will be 
less than “two right angles” [3, 202], or one hundred eighty degrees, on the 
side where the two parallels meet.



29

This final postulate, also called the “Parallel Postulate”, caused much 
controversy among mathematicians following Euclid [3, 202]. As can easily 
be seen, it is, first of all, much longer than the first four. Moreover, the nature 
of its truthfulness is not as immediately evident. It seems that even Euclid 
himself was hesitant about the necessity of this postulate, for, while proceed-
ing with his Propositions he used the first four almost immediately and quite 
liberally, he waited to use the Parallel Postulate until his twenty-ninth Propo-
sition of Book I [2, 36]. Though many mathematicians after Euclid had argued 
about and stated opinions concerning the necessity of this postulate, none had 
been able to present a proof showing that it could be discarded. Legendre set 
himself to the task. Sadly, he was doomed to failure. Even though he was un-
successful, however, it is interesting to examine his proofs to see where they 
were exactly correct and how easily one small fault can cause the downfall of 
a proof. 

We will explore Legendre’s journey by looking at four proofs demon-
strating the core of his research. The first of these establishes, correctly, that 
the parallel postulate can be proven, given the knowledge that the angles of a 
triangle sum to two right angles. Second, we will look at Legendre’s successful 
proof that the angles of a triangle must sum to less than or equal to two right 
angles. Finally we will look at two of his unsuccessful, yet brilliant, attempts 
at ascertaining, without the Fifth Postulate, that this sum is strictly equal to 
two right angles. Throughout these proofs, my comments will be inserted in 
[square brackets]. Unless otherwise noted, I have also drawn all figures in this 
paper. We will now proceed with our exploration.

As an integral portion of his succession of proofs, Legendre uses the 
idea of the Postulate of Archimedes, which is as follows:
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Let A1 be any point upon a straight line between the arbitrarily chosen points 
A and B. Take the points A2, A3, … so that A1 lies between A and A2, A2 lies 
between A1 and A3, etc. moreover let the segments AA1, A1A2, A2A3,… be all 
equal. Then among this series of points, there always exists a certain point An 
such that B lies between A and An. 

[Thus, for any line segment AB, we are able to choose n sufficiently large so 
that the sum of the segments AA1, A1A2,… An-1An is greater than the length of 
the segment AB.]

With this information available to him, Legendre moved towards the 
first step in his plan. He decided that he would approach the postulate from 
an indirect route. If it could be known that the angles of a triangle add to two 
right angles, then the parallel postulate would immediately follow. In Euclid’s 
Elements this is not shown, but rather its converse appears in Proposition 
I-32. It rested on the assumption that the Fifth Postulate is true, not Legen-
dre’s desired goal. Thus, he chose to begin by proving the opposite direction. 

Legendre’s First Proof
If the Angles of a Triangle Sum to Two Right Angles, the Fifth Postulate is True [5, 18]

If two straight lines AB, CD, make with a third EF, two interior angles, on the same side, the 
sum of which is greater or less than two right angles, the lines AB, CD, produced sufficiently 
far, will meet.

Preliminary: The Postulate of Archimedes [1, 23]
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[Proof:] Demonstration. Let the sum [of the two interior angles on the right 
side of EF,] BEF + EFD be less than 2 right angles;

Through the point F draw an oblique line FM, meeting [line] AB in [point] M; 
the angle AMF will be equal to GFM, since, by adding to each the same quan-
tity EFM + FEM, the two sums are each equal to two right angles. 

[We know from our hypothesis that the angles of a triangle add to two right 
angles. Therefore, in triangle FEM: 

draw FG so as to make the angle EFG equal to AEF; we shall have the sum 
BEF + EFG equal [because EFG = AEF] to the sum BEF + AEF [which com-
poses a straight line], and consequently equal to two right angles; and, since 
[the original sum] BEF + EFD is less than two right angles, the straight line 
DF will be comprehended in [be located within] the angle EFG.
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(EFM + FEM) + AMF = 2 Right angles

Also,
 

EFM + GFM = EFG = AEF
Further, AEF + FEM = 2 Right angles.

Thus, (EFM + GFM) + FEM = 2 Right angles].

Take now [on line AB] MN = FM, and join FN; the exterior angle AMF, 
of the triangle FMN, is equal to the sum of the two opposite interior angles 
MFN, MNF. 

[Again, the angles of a triangle sum to two right angles, by hypothesis. Thus, 
as follows:

Forming a straight line, 	      AMF + FMN = 2 Right angles
In triangle FMN,  		       FMN + MFN + MNF = 2 Right angles
So,                                                AMF + FMN = FMN + MFN + MNF

                             Therefore, AMF = MFN + MNF.] 

[A]nd these [angles, MFN and MNF] are equal to each other, since they are 
opposite to the equal sides MN, FM [of the isosceles triangle FMN]; conse-
quently the angle AMF, or its equal MFG, is double of [the angle] MFN; there-
fore the straight line FN divides into two equal parts the angle GFM [MFG],

[MFG = AMF = MFN + FNM = 2MFN.]

and [line FN] meets the line AB in a point N situated at a distance MN [equal 
to FM].
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It follows from the same demonstration, that if we take [on line AB] NP 
= FN, we determine, upon the line AB, the point P of the straight line FP, 
which makes the angle GFP equal to half the angle GFN, or one fourth of the 
angle GFM.

[GFP = ½ GFN = ½ (½ GFM) = ¼ GFM]

We are able, therefore, in this manner, to take successively the half, the 
fourth, the eighth, & [et]c., of the angle GFM [which is greater than angle 
DFM], and the lines which form these divisions meet the line AB in points 
more and more distant, but easily determined, since [by construction] MN = 
FM, NP = FN, PQ = PF, & [et]c. Indeed, it will be remarked that each succes-
sive distance of the points of intersection from the fixed point F, is not exactly 
double the distance of the preceding point of intersection; since FN, for 
example, is less than FM + MN, or 2FM [FN < 2FM] [This is from Euclid’s Prop-
osition I-20, “In any triangle [such as FMN], the sum of any two sides [such as 
FM and MN] is greater than the remaining one [FN]” [3 286]. In our case, 
FM = MN, so 2FM > FN]; we have, in like manner, FP < 2FN, FQ < 2 FP, & [et]c.

But, by continuing to subdivide the angle GFM, in this manner, we shall 
soon arrive at the angle GFZ less than the given angle GFD [as shown by the 
Postulate of Archimedes]; [I]t will nevertheless be true that FZ produced will 
meet AB in a determinate [calculable] point [Z]; therefore, for a still stronger 
reason, the straight line FD, comprehended in [contained within] the angle 
EFZ, will meet AB.

[End of proof].
	

With this portion of his task accomplished, Legendre moved to the next 
step in his plan: proving that the sum of the angles of a triangle must not be 
greater than two right angles.

We will now proceed with Legendre’s second proof.
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On the same side of the line let n equal [lower] triangles be constructed, 
having for their third angular points B1B2…Bn.

The segments B1B2, B2B3,…,Bn-1Bn, which join these vertices, are equal 
[by construction] and can be taken as the bases of n equal [upper] triangles, 
B1A2B2, B2A3B3,…,Bn-1AnBn.

Legendre’s Second Proof
Angles of A Triangle Sum to Less Than or Equal to Two Right Angles [1, 55-56]

[Proof:] Let n equal segments A1A2, A2A3,…,AnAn+1 be taken one after the 
other on a straight line
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				         [1, 56]
[The upper triangles B1A2B2, B2A3B3,…,Bn-1AnBn have two sets of sides 

equal, B1A2,…,Bn-1An and B2A2,…,BnAn. Further, the angle these sides form, 
angle α in the figure, is the difference between two right angles (a straight 
line) and the two lower vertices of the first set of triangles, which are congru-
ent by construction. Thus, each angle α is equal to all other angles α, so the 
triangles are congruent].

The figure is completed by adding the [upper] triangle Bn An+1 Bn+1 
which is equal to the others.
	

Let the angle B1 of the [lower] triangle A1B1A2 be denoted by β, 	
and the angle A2 of the consecutive [upper] triangle by α.
	
Then [we claim] β ≤ α.
	
[Proof of claim:] In fact, if [by way of contradiction] β > α, by comparing 
the two triangles A1B1A2 and B1A2B2, which have two equal sides, we would 
deduce A1A2 > B1B2.

[From Euclid’s Proposition I-24, we know that “If two triangles have the 
two sides equal to the two sides respectively, but have the one of the angles 
contained by the equal straight lines greater than the other, they will also 
have the base greater than the base.” [3, 296] If β is greater than α, the base 
opposite β, which is A1A2, will be greater than the base opposite α, namely 
B1B2].	

Further… the broken line A1B1B2… Bn+1An+1 is greater than the 
segment A1An+1[.]
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[A fact that can be shown as follows: by construction, segments A1An+1 and 
B1Bn+1 are straight lines, which are joined at their endpoints by segments 
A1B1 and Bn+1An+1.

By Euclid’s proposition I-20, also known as the triangle inequality,  “In 
any triangle two sides taken together in any manner are greater than the 
remaining one” [3, 286]. Knowing this, 

A1B1 + An+1B1 > A1An+1 = n A1A2
 
Hence, certainly it is also true that the sum of three sides of the above figure 
is greater than the remaining side, A1An+1.Therefore, the following inequality 
is true:]

[Continuing Legendre’s proof:]
A1B1 + n B1B2+ An+1 Bn+1 > n A1A2

[A1B1 +  An+1 Bn+1 > n A1A2 - n B1B2]
ie,   2A1B1 > n (A1A2 - B1B2).

But if n is taken sufficiently great, this inequality contradicts the Postulate of 
Archimedes [described above].

Therefore A1A2 is not greater than B1B2, and it follows that it is impossible 
that β > α.

Thus, we have β ≤ α. [End of proof of claim.]

From this it readily follows that the sum of the angles of the triangle A1B1A2 is 
less than or equal to two right angles.
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[To see how, as Legendre states, his claim “readily follows”, observe the above 
figure. Let the two angles which form a straight line with α be called θ and σ. 
Thus, α + θ + σ = 2 right angles.

Observe:            
β ≤ α

β + θ ≤ α + θ
β + θ + σ ≤ α + θ + σ

          
Sum of the angles of triangle A1B1A2 ≤ two right angles.]
[End of proof]
 
Legendre, at this point, had the first portion of his project accomplished. He 
then had to prove the second half: that the angles of a triangle were not just 
less than or equal to two right angles, they were strictly “equal to”.

Legendre’s Third Proof
 The First Attempt at Proving that the Angles of a Triangle Sum to Two Right Angles 

[4, 205-207]

[Proof] Let us call p the side [of the triangle] in question, A and B the two 
adjacent angles, C the third angle.
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The angle C must be entirely determinate [determined], when the angles A 
and B are known with the side p; for if several angles C could correspond to 
the three given things A, B, p, there would be as many different triangles, 
which would have a side and the two adjacent angles of the one equal to 
a side and the two adjacent angles of the other, which is impossible [by 
Euclid’s Proposition I-26, which states “If any two angles [A and B] equal to 
two angles respectively, and one side [p] equal to one side, namely… the side 
adjoining the equal angles…, they will also have the… remaining angle [C, 
equal] to the remaining angle.” [3, 301]. This Proposition  reveals the Angle-
Side-Angle triangle congruency property]; therefore the angle C must be a 
determinate function of [entirely determined by] the three quantities A, B, p; 
which may be expressed thus

C = Φ : (A, B, p) 
[C is a function, which Legendre here calls “Φ”, of angle A, angle B, and side p].

	
Let the right angle be equal to unity [which is 1], then the angles A, B, C, will 
be numbers comprehended between 0 and 2 [Since each angle is positive, 
and their sum A + B + C ≤ 2 by Legendre’s second proof above, then 
0 < A, B, C < 2.]; and, since
 

C = Φ : (A, B, p)

[Claim:] we say that the line p does not enter into function Φ [the function Φ 
does not depend on p]. 

[Proof of claim:] Indeed we have seen that C must be entirely determined 
by the data A, B, p, merely, without any other angle or line whatever; but the 
line p is of a nature heterogeneous to [different than] the numbers [angles] A, 
B, C; and, if, having any equation whatever among A, B, C, p, we could deduce 
the value of p in A, B, C, it would follow that p is equal to a number [angle], 
which is absurd [it is in this statement that Legendre has drawn an unjusti-
fied conclusion, as will be discussed below]; therefore, p cannot enter into the 
function Φ, and we have simply

C = Φ : (A, B)….

[End of proof of claim.]
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This formula proves already that, if two angles of a triangle are equal to two 
angles of another triangle, the third must be equal to the third; and, this being 
supposed, it is easy to arrive at the theorem we have in view.

Legendre continued from this point, but we omit the remainder of his 
proof, as it was in the noted portion that he made an error that caused the 
rest of his argument to fail. Here we only remark on his error. In the proof 
following this one, however, a thorough explanation of that included error 
will be discussed. Here Legendre seems to conclude that a function, Φ, cannot 
map the triple of domain elements (line segment p, angle A, and angle B) to 
the range element angle (C), since he could then, by rearranging the function, 
write or “solve for” the line segment p from this “equation” as a combina-
tion of angles, forcing it to be an angle too. However, we know from our 
experience with functions that a general function has no such limitation. For 
example, trigonometric functions take input values that are angles but pro-
duce output values that are not. It is in this false assumption that Legendre’s 
argument fails. 

[End of discussion].
	

Legendre had not succeeded the first time. He was not one to give up 
easily, however, as his forty years of research proved. In his twelfth and final 
edition of his Elements, another famous attempted proof is found towards 
the same goal [3, 215]. Though logical in most respects, one key flaw can be 
found which is fatal to the argument.

Legendre’s Fourth Proof
 TThe Second Attempt at Proving the Angles of a Triangle Sum to Two Right Angles. [3, 215]

[Proposition] 57. In any triangle, the sum of the three angles is equal to two 
right angles.
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[Proof:] Demonstration. Let ABC be the proposed triangle, in which we sup-
pose* that AB is the greatest side, and BC the least, and that, consequently, 
ACB is the greatest angle, and BAC the least [which is true from Euclid’s 
Proposition I-18, “In any triangle the angle opposite the greater side is 
greater” [3, 283].]

Through the point A, and the middle point I of the opposite side BC, draw the 
straight line AI, and produce it to C’, making AC’ = AB; produce also AB to B’, 
making AB’ double of AI [so, AB’ = 2AI]. If we designate by A, B, C, the three 
angles of the triangle ABC, and by A’, B’, C’, the three angles of the triangle 
AB’C’, 
[Claim:] we say that [angles] C’ = B + C, and A = A’ + B’; from which we de-
duce [by adding the two equations] A + B + C = A’ + B’ + C’; that is, the sum 
of the three angles is the same in the two triangles.
(*This supposition does not exclude the case in which the mean [middle 
length] side AC [with a length here between that of the greatest side AB and 
the least side BC] is equal to one of the extremes AB or BC). 

[Proof of claim] To prove this, [choose point K on AB’ so as to] make AK = 
AI, and join C’K; we shall have the triangle C’AK = BAI.
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For, in these two triangles, the angle A’ is common, and the side AC’ = AB [by 
construction], and AK = AI [by construction]. Therefore [by Euclid’s I-4] the 
third side C’K is equal to the third BI, and consequently the angle AC’K=ABC, 
and the angle AKC’=AIB.

We say now that the triangle B’C’K is equal to the triangle ACI [we will omit 
the proof of this statement, as it is very similar to the previous demonstration. 
The above figure displays a diagram of the proof]. 
[Proof continued] It hence follows [from knowledge of these two sets of 
triangles], 

1. That the angle AC’B’, designated by C’, is composed of two angles, equal, 
respectively, to the two angles B [= AC’K] and C [= KC’B], of the [original] 
triangle ABC, and that, accordingly, we have  C’ = B + C; 
2. That the angle A of the triangle ABC is composed of the angle A’, or CAB’, 
which belongs to the triangle AB’C’, and the angle CAI, equal to B’, of the 
same triangle, which gives A = A’ + B’; therefore A + B + C = A + B’ + C’. 
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Moreover, since, by hypothesis, we have AC < AB, and,  [by congruent 
triangles, AC = C’B’ and AB = AC’,] consequently, C’B’ < AC’, it will be seen, 
that, in the triangle AC’B’, the angle at A, designated by A’ [opposite from B’C’], 
is less than B’ [opposite from AC’]; and, as the sum of the two [A’ + B’] is equal 
to the angle A of the proposed triangle, it follows that the angle A’ < ½ A.
    

 
If we apply the same construction to the triangle AB’C’, in order to form a 
third triangle AC”B”, designating the angles by A”, B”, C”, respectively, we 
shall have, in like manner, the two equations C” = C’+ B’, and A’ = A”+ B”, 
which gives A’ + B’ + C’ = A”+ B”+ C”.Thus the sum of the three angles is the 
same in these three triangles. We have, at the same time, the angle A”< 1/2 A’, 
and, consequently, A”< 1/4 A.
	 Continuing indefinitely the series of triangles AC’B’, AC”B”, [et]c., 
we shall arrive at a triangle a b c, in which the sum of the three angles will 
always be the same as in the proposed triangle ABC, and which will have the 
angle a less than any given term of the decreasing progression 1/2 A, 1/4 A, 1/8 A, 
& [et]c.

We may therefore suppose this series of triangles continued until the angle a 
is less than any given angle… 

[I]t will hence be seen that the sum of the three angles of the triangle  
[the final triangle] reduces itself to the single angle c’ [when a is “less than 
any given angle”].
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In order to obtain the exact measure of this sum, let us produce the side 
a’c’ toward d’, and designate the exterior angle b’c’d’ by x’, added to the angle 
c’ of the triangle a’b’c’, will make a sum equal to two right angles; thus denot-
ing the right angle by D, we shall have 
 
c’ = 2D - x’ ; 

therefore the sum of the angles of the triangle a’c’b’ will be  
2D + a ’+ b’ - x’.

But we may imagine the triangle a’c’b’ to vary in its angles and sides, so 
as to represent the successive triangles which are derived ultimately from the 
same construction [described above], and which approach more and more the 
limit at which the angles a’ and b’ are nothing. At this limit, the straight line 
a’c’d’ is confounded [coincides] with a’b’, and the three points a’, c’, b’, are in 
the same straight line [as shall be explained below, it was in this assumption 
that Legendre made an error]; 
then the angles b’ and x’ become nothing at the same time with a’, and the 
quantity 2D + a’ + b’ - x’, which is the measure of the three angles of the tri-
angle a’c’b’, reduces itself to 2D; therefore, in any triangle, the sum of the three 
angles is equal to two right angles.
[End of Legendre’s proof]
	

It appeared, at this point, that Legendre was convinced that he had 
finally reached the end of his quest, for he did not produce another edition 
of the Elements. He had, in his mind, proved that the sum of the angles of 
a triangle is equal to two right angles. And his demonstration was rather 
remarkable. Using only what is laid out in Euclid’s Elements up to Proposition 
I-28, he had shown how he could create numerous triangles having the same 
angle sum. But, as had been shown so many times before, the necessity of the 
Fifth Postulate held. We will now bring certain portions of Legendre’s proof 
into question.

J.P.W. Stein, in the 1824-1825 edition of the Journal “Annales des Math-
ematiques: Pures et Appliques” [Annals of Mathematics: Pure and Applied], 
showed that Legendre’s proof was faulty. 
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Below is Stein’s argument, shown with all vertex labels changed to match 
those in Legendre’s proof above.

J.P.W. Stein’s Demonstration of the Fault in Legendre’s Triangle Proof [8]

[As can one can see from reading it, Legendre’s proof is] based primarily on 
the principle of apparent evidence, that when the limit of angle A is zero, the 
limit of the distance to the side AB from any point C on the side AC is equal to 
zero, which amounts to saying that, at the limit, point C will fall on [the line 
AB].
		
However, it is easy to prove that this principle cannot be admitted.
	
[Proof] Indeed, divide the angle BAC in two successive, four, eight, ..., equal 
parts by lines  AC’, AC”. [These points] are [successively] lowering BC [in a 
direction] perpendicular to AC; we have made KB’ = AK, and being lowered to 
it is [BC, and we continually lower the height of the triangle, cutting the sides 
successively in half in this manner]. It is easy to demonstrate that, however 
far we push the operation, we will constantly have [BI = IC, B’I’ = I’C’, and AK 
= KB’, etc] Thus, in this construction, the limit of the angles A, A’, A”, etc., is 
zero, as [demonstrated] above. However, when considering the point C, the 
limit [for it to], fall on AC remains rather a constant distance from the right 
[when the angle A(n) is equal to zero, the limit, the side B’C’ is not equal to 
zero, thus has not reached its limit. It still has a “constant distance” remaining 
to move to the right].

It would be easy, moreover, to imagine a construction in which the 
decrease of the angles [A, A’, A”], etc, would be faster than the terms of 
the progression [of the sides BC, B’C’, B”C”, etc., which decrease in the 
manner] 1, 1/2, 1/4, 1/8, etc. or however and point C moves constantly 
[towards the line AB], or remain in a distance [from AB that is changing 
by a constant rate] or at least remain a greater distance [than the limit of 
angle A] over a given length.
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We must therefore conclude that the demonstration cannot be accepted so far 
as we have evidence that the distances of the points [C’, C”, C’’’], and so on, 
[from the line AB] has [still a value greater than zero] when the correct angle 
A(n) have [reached the limit of] zero. [We must then conclude] that [proving 
that the angles of a triangle sum to two right angles] probably could not be 
done without relying on principles presupposed, that of the theory of parallel 
already established…The principle [Legendre presented] is based on an obvi-
ous falsehood [that both the angle a’ and the side c’b’ have the same limit, 
namely, zero. They, in fact, do not].
[End of proof.] 
	 The task of proving the parallel postulate is, as first shown in 1868, 
impossible [3, 219]. There simply is no way to prove it. Legendre appeared to 
have come to this opinion following this blundered proof, for it was his final 
attempt to place the postulate on a more certain foundation. As stated above, 
it was, in his own lifetime, shown to be flawed. Several years later, in the 
year before he died, he stated, “It is nevertheless certain that the theorem on 
the sum of the three angles of the triangle should be considered one of those 
fundamental truths that are impossible to contest and that are an enduring ex-
ample of mathematical certitude.” [7] Legendre, hence, had chosen to content 
himself with accepting the postulate in its postulate state, without prior proof. 
In the realm of Euclidean geometry, the Fifth Postulate had stood the test of 
time. That fact, to Legendre and his research spanning half his lifetime, would 
have to be enough proof in itself.
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