
________________________________________________________________________ 

ON THE SIMULATIONS OF CORRELATED  

NAKAGAMI-M FADING CHANNELS 

USING 

SUM –OF-SINUSOIDS METHOD 

________________________________________________________________________ 

 

A Thesis Presented to the Faculty of Graduate School of 

University of Missouri-Columbia 

 

In Partial Fulfillment 

Of the Requirements for the Degree of 

Master of Science 

 

By 

Dhiraj Dilip Patil 

Dr. Chengshan Xiao, Thesis Supervisor 

December 20006 



The undersigned, appointed by the dean of the Graduate School, have examined the 

[thesis] entitled 

 

ON THE SIMULATIONS OF CORRELATED NAKAGAMI-M FADING CHANNELS 

USING  

SUM-OF-SINUSOIDS METHOD 

 

presented by Dhiraj Dilip Patil, a candidate for the degree of MASTER OF SCIENCE, 

and hereby certify that, in their opinion, it is worthy of acceptance. 

Dr. Chengshan Xiao 

Dr. Justin Legarsky 

Dr. Haibin Lu 



_______________________________________________________________________ 

DEDICATION 

________________________________________________________________________ 

 

........... Thanks, Family and Friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



_______________________________________________________________________ 

ACKNOWLEDEMENTS 

________________________________________________________________________ 

 

 

I would like to thank my research advisor Dr. Chengshan Xiao. Without his enthusiasm 

and inspiration, this work would not be possible. He not only suggested me research topic 

but also provided encouragement, sound advice and excellent teaching in timely manner, 

which helped me to achieve my goals. I would like to thank my parents and brother for 

their constant support throughout the duration of my graduate studies.  I would like to 

thank all my close friends especially Amit Gandhi, who always have been very helpful 

throughout these years of a degree. 

 

 

 

 

 

 

 

 

 

 

 

 ii



________________________________________________________________________ 

TABLE OF CONTENTS 

________________________________________________________________________ 

 

ACKNOWLEDEMENTS................................................................................................. ii 

TABLE OF FIGURES.................................................................................................... vii 

LIST OF TABLES ........................................................................................................... ix 

LIST OF ABBREVATIONS............................................................................................ x 

ABSTRACT...................................................................................................................... xi

 

CHAPTER 1...................................................................................................1 

INTRODUCTION............................................................................................................. 1 

1.1) Motivation .................................................................................................................. 1 

1.2) Problem Definition .................................................................................................... 3

 

CHAPTER 2...................................................................................................5 

THEORETICAL BACKGROUND & DEFINITIONS................................................. 5 

2.1) Multipath Propagation.............................................................................................. 5 

2.2) Time Dispersion Parameters .................................................................................... 9 

2.3) Multipath Fading..................................................................................................... 11 

2.4) Types of Fading........................................................................................................ 12 

2.4.1) Rayleigh Fading.............................................................................................. 12 

 iii



2.4.1.1) Effect of Motion ...................................................................................... 13 

2.4.1.2) Phasor Representation ............................................................................. 14 

2.4.1.3) Probability Distribution Function............................................................ 15 

2.4.2) Rician Fading.................................................................................................. 15 

2.4.2.1) Phasor Representation ............................................................................. 16 

2.4.2.2) Probability Density Function................................................................... 16 

2.4.2.3) Rician Factor............................................................................................ 17 

2.4.3) Nakagami Fading............................................................................................ 18 

2.5) Other Topics Pertaining to Nakagami-m Distribution ........................................ 20 

2.5.1) Definitions and General Formulae ................................................................. 20 

2.5.1.1) Level Crossing Rate (LCR) ..................................................................... 20 

2.5.1.2) Average Fade Duration (AFD) ................................................................ 20

 

CHAPTER 3.................................................................................................22 

LITERATURE REVIEW .............................................................................................. 22 

3.1) Theory of Nakagami Fading................................................................................... 22 

3.1.1) Discussion of Nakagami Probability Density Function ................................. 23 

3.1.1.1) Outline of the Original Derivation........................................................... 24 

3.1.1.2) Properties of m-distribution..................................................................... 25 

3.2) Generation of Nakagami Signals............................................................................ 26 

3.2.1) Generation of Correlated Nakagami Fading Signals...................................... 26 

3.2.2) Generation of Nakagami Signals for m < 1.................................................... 27 

3.2.3) Generation of Uncorrelated Nakagami Signals .............................................. 28 

 iv



3.3) Higher Order Statistics of Nakagami-m Distribution.......................................... 29 

3.4) Idea Behind research Problem ............................................................................... 30

 

CHAPTER 4.................................................................................................31 

SUM-OF-SINUSOIDS MODEL FOR NAKAGAMI-m FADING CHANNELS ..... 31 

4.1) Preliminaries ............................................................................................................ 31 

4.1.1) Clarke’s Rayleigh Fading Model.................................................................... 31 

4.1.2) Pop-Beaulieu Simulator.................................................................................. 32 

4.1.3) Improved Rayleigh Fading Model.................................................................. 33 

4.2) Nakagami and Other Distributions........................................................................ 35 

4.2.1) Relationship between Gaussian, Gamma and Nakagami Random Variables 36 

4.3) Sum-of-Sinusoids based Nakagami-m Simulator ................................................. 39 

4.3.1) Higher Order Statistics ................................................................................... 41 

4.3.1.1) Squared Autocorrelation function ........................................................... 41 

4.3.1.2) Level Crossing Rate (LCR) ..................................................................... 42 

4.3.1.3) Average Fade Duration (AFD) ................................................................ 42

 

CHAPTER 5.................................................................................................43 

GENERATION OF CORRELATED NAKAGAMI-m FADING CHANNEL: A 

DECOMPOSITION TECHNIQUE .............................................................................. 43 

5.1) Introduction ............................................................................................................. 43 

5.2) Relationship between covariance matrices of different distributions................. 44 

5.2.1) Determination of Ry from Rz .......................................................................... 45 

 v



5.2.1.1) Relationship between variances of Gamma and Nakagami RV.............. 45 

5.2.1.2) Cross-correlation ..................................................................................... 45 

5.3) Direct Sum Decomposition ..................................................................................... 46 

5.4) Algorithm ................................................................................................................. 49

 

CHAPTER 6.................................................................................................50 

SIMULATION ANALYSIS AND DISCUSSIONS...................................................... 50 

6.1) Analysis of Sum-of-Sinusoids Technique .............................................................. 50 

6.1.1) Simulated and Theoretical PDF, Autocorrelation, Received field Intensity, 

Level Crossing Rate and Average Fade Duration for different values of m ............ 54 

6.1.2) Discussions ..................................................................................................... 65 

6.2) Analysis of Decomposition Technique ................................................................... 66 

6.2.1) Simulated and Theoretical PDF for m=2.18 and m=2.5 ................................ 70 

6.2.2) Discussions ..................................................................................................... 76

 

CHAPTER 7.................................................................................................77 

CONCLUSION AND SCOPE OF FUTURE WORK ................................................. 77 

APPENDIX...................................................................................................................... 79 

A.1) Derivation of Level Crossing Rate NR .................................................................. 79 

A.2) Derivation of Average Fade Duration  TR ............................................................ 81

 

REFERENCES ............................................................................................83 

 

 vi



________________________________________________________________________ 

TABLE OF FIGURES 

________________________________________________________________________ 

 

Figure 2.1: Typical Multipath Propagation Environment................................................... 7 

Figure 2.2: Large scale and Small scale fading. ................................................................. 8 

Figure 2.3: Fading Channel Manifestations...................................................................... 10 

Figure 2.5: Angle of Arrival and position of moving vehicle........................................... 13 

Figure 2.6: Phasor diagram of scattered waves (blue) and resultant Rayleigh fading 

envelope (black)........................................................................................................ 14 

Figure 2.7: Phasor diagram of scattered waves (blue) dominant component (orange) and 

resultant Rician Fading Envelope (black)................................................................. 16 

Figure 6.1.1: Improved Jake’s Model ............................................................................... 52 

Figure 6.1.2: Nakagami Simulator Architecture............................................................... 53 

Figure 6.1.3: Simulated and Theoretical PDF for m=0.5 ................................................. 54 

Figure 6.1.4: Simulated and Theoretical PDF for m=1 .................................................... 55 

Figure 6.1.5: Simulated and Theoretical PDF for m=2.18 ............................................... 55 

Figure 6.1.6: Simulated and Theoretical PDF for m=3.99 ............................................... 56 

Figure 6.1.8: Normalized Simulated and Theoretical Autocorrelation for m=0.5............ 57 

Figure 6.1.9: Normalized Simulated and Theoretical Autocorrelation for m=1............... 57 

Figure 6.1.10: Normalized Simulated and Theoretical Autocorrelation for m=2.18........ 58 

Figure 6.1.11: Normalized Simulated and Theoretical Autocorrelation for m=3.69........ 58 

Figure 6.1.12: Received Field Intensity in dB for m=0.5 ................................................. 59 

 vii



Figure 6.1.13: Received Field Intensity in dB for m=1 .................................................... 60 

Figure 6.1.14: Received Field Intensity in dB for m=3.69 ............................................... 60 

Figure 6.1.15: Level Crossing Rate in log-scale for m=0.5.............................................. 61 

Figure 6.1.16: Level Crossing Rate in log-scale for m=2.18............................................ 62 

Figure 6.1.17: Composite Level Crossing Rate in log-scale ............................................ 62 

Figure 6.1.18: Average Fade Duration in log-scale for m=0.5......................................... 63 

Figure 6.1.19: Average Fade Duration in log-scale for m=1.0......................................... 64 

Figure 6.1.20: Average Fade Duration in lo-scale for m=2.18......................................... 64 

Figure 6.1.21: Average Fade Duration in lo-scale for m=1.0........................................... 65 

Figure 6.2.1 Graphical Comparison of Gamma and Nakagami Cross-Correlation 

Coefficients. .............................................................................................................. 68 

Figure 6.2.2 Simulated and Theoretical PDF for branch 1 and m=2.18........................... 70 

Figure 6.2.3 Simulated and Theoretical PDF for branch 2 and m=2.18........................... 71 

Figure 6.2.4 Simulated and Theoretical PDF for branch 3 and m=2.18........................... 71 

Figure 6.2.5 Simulated and Theoretical PDF for branch 4 and m=2.18........................... 72 

Figure 6.2.6 Composite Simulated and Theoretical PDF for m=2.18 .............................. 72 

Figure 6.2.7 Simulated and Theoretical PDF for branch 1 and m=2.5............................. 74 

Figure 6.2.8 Simulated and Theoretical PDF for branch 2 and m=2.5............................. 74 

Figure 6.2.9 Simulated and Theoretical PDF for branch 3 and m=2.5............................. 75 

Figure 6.2.10 Simulated and Theoretical PDF for branch 4 and m=2.5........................... 75 

Figure 6.2.11 Composite Simulated and Theoretical for m=2.5 ...................................... 76 

  

 

 viii



________________________________________________________________________ 

LIST OF TABLES 

________________________________________________________________________ 

 

Table: - 6.2.1 Comparison of different parameters for m=2.18........................................ 70 

Table 6.2.2 Comparison of different parameters for m=2.5 ............................................. 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ix



________________________________________________________________________ 

LIST OF ABBREVATIONS 

________________________________________________________________________ 

 

PDF:   Probability Density Function 

CDF:    Cumulative Density Function 

BER:    Bit Error Rate 

S/N or SNR:  Signal to Noise ratio 

T/R:   Transmitter/Receiver 

RMS:   Root Mean Square 

LCR:    Level Crossing Rate 

AFD:    Average Fade Duration 

dB:   Decibel 

 

 

 

 

 

 

 

 

 

 

 x



________________________________________________________________________ 

ABSTRACT 

________________________________________________________________________ 

 

Signal Fading can drastically affect the performance of terrestrial communication 

systems. Fading caused by multipath propagation can degrade the bit-error-rate (BER) 

performance of a digital communication system resulting data loss or dropped calls in a 

cellular system. So it is essential to understand the nature of multipath fading 

phenomenon and how to anticipate when such phenomenon occurs in order to improve 

radio performance. 

The Nakagami-m distribution has gained widespread application in the modeling of 

physical fading radio channels. The primary justification of the use of Nakagami-m 

fading model is its good fit to empirical fading data. It is versatile and through its 

parameter m, we can model signal fading conditions that range from severe to moderate, 

to light fading or no fading. 

This research work discusses the generation of Nakagami-m fading samples from sum-

of-sinusoids method in which Nakagami process is generated by taking square root of 

Gamma process. Gamma process itself can be realized using Gaussian processes. We 

have used Improved Jake’s Model to characterize the low-pass Gaussian Processes. We 

also studied second order statistics e.g. ensemble autocorrelation of this simulator and 

essential properties like Level Crossing Rate and Average Fade Duration. It has been 

found that simulation and theoretical results have very good fit. Furthermore, we 

extended this methodology to n-branch vector Nakagami-m fading channel for diversity 

 xi



reception. We have found excellent agreement of the simulation results to its theoretical 

counterparts.  
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_______________________________________________________________________ 

CHAPTER 1 

INTRODUCTION 

________________________________________________________________________ 

1.1) Motivation 

In the recent years, radio-engineering requirements have become more stringent and 

necessitate not only more detailed information on median signal intensity, but also much 

more exact knowledge on fading statistics in both ionospheric and tropospheric modes of 

propagation. Such circumstances demanded a large number of experiments and number 

of theoretical investigations to be performed. Field tests in a mobile environment are 

considerably more expensive and may require permission regulatory authorities. It is 

difficult to generate repeatable field test results due to random, uncontrollable nature of 

the mobile communication path. Atmospheric conditions and cost also play a key role in 

field test measurements. These limitations can be overcome by means of simulation. 

A simulation is an imitation of some real phenomenon, state of affairs, or process. The 

act of simulating generally entails representing certain key characteristics or behaviors of 

a selected physical or abstract system. Simulation is used in many contexts, including the 

modeling of natural systems or human systems in order to gain insights into their 

functioning. Other contexts include simulation of technology for performance 

optimization. Simulation can be used to show eventual real effects of alternate conditions 

and courses of action. 
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Key issues in simulation include acquisition of valid source information about the 

referent, selection of key characteristics and behaviors, the use of simplifying 

approximations and assumptions within the simulation, and the fidelity and validity of 

simulations results. 

The main motive to run simulations can be described 

• Simulation as a technique: - Investigate the detailed dynamics of a system 

• Simulation as a heuristic tool: - Develop hypothesis, models and theories. 

• Simulation as a substitute for an experiment: - Perform numerical experiments 

• Simulation as pedagogical tool: - Gain understanding of a process. 

Approximations and assumptions are used extensively to simplify the simulation model. 

The most commonly used assumptions and approximations involve time invariance 

(stationarity) and linearization. While most practical systems, when observed over a long 

period of time and over a wide dynamic range of input signal, might exhibit time-varying 

and non-linear behavior. However they can be well approximated by linear and time-

invariant models over short time intervals and for low signal levels [23]. 

Having discussed briefly why we need simulation, let’s turn our attention to mobile radio 

channel and network simulators in the communication systems. 

Mobile radio channel simulators thus, are essential for repeatable systems tests in the 

development, design or test laboratory. The Rayleigh or Nakagami fading simulator can 

be used to test the performance of radios in a mobile environment in the lab, without the 

need to perform measurements whilst actually mobile. The mobile fading simulation can 

also be if required be replicated, and the effects can be varied according to the ‘velocity’ 
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of the mobile receiver. This allows the comparison of the performance of different 

receivers under standardized conditions that would not normally be possible in actual 

mobile testing situations. In case of mobile radio channel simulator, important 

assumption is time invariance. It implies that over the simulation interval, system 

components and properties of signal do not change.   

Network Fading Simulator can also be used for the performance analysis of different 

modulation-demodulation schemes. Typically random binary sequences are generated 

and modulated using the desired modulation schemes (e.g. QPSK, PSK etc). This binary 

sequence is then detected under the presence of additive white Gaussian noise and 

multiplication noise. This multiplicative noise typically has Rayleigh or Nakagami 

distribution and can be generated by network fading simulator. Thus, a plot of Bit Error 

Rate (BER) and signal to noise ration (S/N) can be obtained. This plot can be used to 

demonstrate well-known effect called flooring. 

 

1.2) Problem Definition 

The main objective of this work can be summarized below 

1.) Design a sum-of-sinusoids method to generate correlated Nakagami fading 

environment 

2.) Apply decomposition technique and using above method to generate probability 

density function of correlated diversity system for given covariance matrix and 

given fading parameters. 
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However, a brief history of wireless fading environment, analysis and the related research 

work material is discussed in order to maintain the continuity. 

 

The organization of rest of the thesis is as follows. Chapter 2 briefly explains the fading 

environment, key features and various definitions used. Chapter 3 presents brief literature 

review of Nakagami fading channels and existing algorithms to generate of fading 

samples for different fading parameters. Chapter 4 is dedicated to sum-of-sinusoids 

method to generate correlated fading samples; higher order statistics including ensemble 

autocorrelation, level crossing rate and average fade duration.  Chapter 5 discusses the 

application of the same method in case of diversity systems with given covariance matrix 

and fading parameters. The results of these two simulations have been discussed in 

chapter 6. The conclusion and scope of future work are discussed in chapter 7. Appendix 

of derivations is also provided. 
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________________________________________________________________________ 

CHAPTER 2 

THEORETICAL BACKGROUND & DEFINITIONS 

________________________________________________________________________ 

In this chapter, we will develop theoretical background, which inspired this work. We 

will discuss a typical multipath propagation path, multipath fading, and different types of 

multipath fading phenomenon briefly. 

 

2.1) Multipath Propagation 

A typical mobile radio communication environment including PCS and digital cellular 

transmission link consists of an elevated base station antenna or multiple antennas and a 

relatively short distance line-of-sight (LOS) propagation path, followed by many non 

LOS propagation paths and a mobile antenna or antennas mounted on a moving vehicle 

or more generally on the transmitter/receiver (T/R) or transceiver of the mobile or 

portable unit. In such an environment, the transmitted waves often do not reach the 

receiving antenna directly. Man-made or natural obstacles usually block the emitted 

electromagnetic waves. The received waves are a superimposition of waves coming from 

all the direction due to reflection, diffraction and scattering caused by obstacles. This 

effect is known as Multipath Propagation. 
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Due to this effect, the received signal consists of an infinite sum of delayed, phase-shifted 

and attenuated replicas of transmitted signal. The superposition can be constructive or 

destructive depending upon the phase of each replica. 

 

In addition to the Multipath propagation, Doppler Effect has an adverse effect on the 

transmission characteristics of the mobile radio channel. The Doppler Effect is the 

apparent change in frequency and wavelength of the wave perceived by an observer 

moving relative to the source of waves. Due to the movement of the vehicle, the Doppler 

Effect causes a frequency shift of each of the partial waves. 

Even the smallest, slowest movement causes time variable multipath, thus random time 

variable signal reception. For example, assume user is sitting in a stationary vehicle in a 

parking lot, near a busy freeway. Although user is stationary, part of environment 

surrounding him is moving at a speed of 100 km/hr. The automobiles on freeway become 

“reflectors” of the radio signal. If during the transmission or reception, user is also 

moving (100km/hr), the randomly reflected signals vary at faster rate. The Doppler 

spread is a measure of the spectral broadening caused by the time rate of change of the 

mobile radio channel and is defined as the range of frequencies over which received 

Doppler spectrum is non-zero. 

The following figure shows a typical multipath propagation environment. 
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Figure 2.1: Typical Multipath Propagation Environment. 

Besides Multipath Propagation, Multipath Fading, Shadowing and Path Loss characterize 

the radio propagation environment. 

• Multipath propagation leads to the random fluctuations in amplitude and phase of 

the received signal due to the movement of receiver and/or the transmitter over a 

few wavelengths or short time duration. Depending upon the speed of the mobile 

unit fades of 30 to 40 db or more below the mean value of received signal have 

been observed. The phenomenon of rapid fluctuations of the received signal 

strength over short distance or short duration is called “small scale effect”. 

• The ‘large scale’ effects caused the received power to vary gradually due to 

signal attenuation determined by the geometry of the path profile in its entirety. 

This phenomenon is affected by prominent terrain contours (hills, mountains, 

trees, buildings, billboards etc.) between the transmitter and receiver. The receiver 

is often represented as being “shadowed”. The statistics of large-scale fading 

provides a way of computing an estimate of path loss as a function of distance. 
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• Shadowing: The density of the obstacles between transmit and receive antennas 

depends very much on the physical environment. E.g. outdoor plains have very 

little by way of obstacles while indoor planes pose many obstacles. This 

randomness in the environment is captured by modeling the density of the 

obstacles and their absorption behavior as random numbers. The overall 

phenomenon is known as ‘Shadowing’. 

The duration of shadow fades last for multiple seconds or minutes and hence 

occurs at much slower time-scale compared to multipath fading. 

 

 

Figure 2.2: Large scale and Small scale fading. 

The figure 2.2 illustrates the relationship between small-scale and large-scale fading. 

Small-scale fading superimposed on large-scale fading can be easily identified. The 

typical antenna displacement between the small-scale fading nulls is half wavelength. In 
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figure 2.2 b) large-scale fading m (t) has been removed in order to view small scale 

fading . )(0 tr

Path Loss models describe the signal attenuation between transmit and receive antennas 

as a function of propagation distance and other parameters. Some models can include 

many details of terrain profile to determine the attenuation. 

The large -scale effects determine a power level averaged over an area of tens or 

hundreds of meters and therefore called the ‘area-mean’ power. Shadowing introduces 

more additional fluctuations, so the local mean power fluctuates around area mean power. 

The ‘local-mean’ is averaged over a few tens of wavelengths, typically 40 wavelengths. 

This ensures that the rapid fluctuations of the received power caused by multipath effects 

are largely removed. The following figure shows the fading channel manifestations. 

 

2.2) Time Dispersion Parameters 

Along with Doppler spread, the term Coherence time is used to describe time varying 

nature of fading channel in a small-scale region. Coherence time is a statistical measure 

of time duration over which the channel impulse response is essential invariant. If the 

reciprocal bandwidth of the base-band signal is greater than the coherence time of the 

channel, then the channel will change during the transmission of the base-band message 

causing signal distortion. Coherence time and Doppler spread are inversely proportional. 

Thus, Doppler spread and Coherence time together describe time varying nature of fading 

channel.  

Time dispersive nature of channel is characterized by Delay spread and Coherence 

bandwidth. 
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Coherence bandwidth is a statistical measure of the range of frequencies over, which 

channel can be considered “flat”. I.e. channel which passes all spectral components with 

approximately equal gain and linear phase. Delay spread is a natural phenomenon caused 

by reflected and scattered propagation paths in radio channel. RMS Delay spread and 

Coherence bandwidth are inversely proportional. 

 

 

 

Figure 2.3: Fading Channel Manifestations 
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2.3) Multipath Fading 

Multipath Fading is characterized by envelope fading (non-frequency-selective amplitude 

distribution), Doppler Spread (time selective or time variable random phase noise) and 

time-delay spread (variable propagation distance of reflected signals cause time 

variations in the reflected signals). These signals cause frequency selective fades. These 

phenomena are summarized in figure 2.3. 

Doppler Spread is defined as the spectral width of a received signal when a single 

sinusoidal carrier is transmitted through the multipath channel. If a carrier wave (an 

unmodulated sinusoidal tone) having a radio frequency ‘ ’, then because of Doppler 

spread ‘ ’, we receive a smeared signal spectrum with spectral components between 

‘ - ’ and ‘ + ’. This effect may be interpreted as temporal decorrelation effect of 

random multipath faded channel and is known as ‘time-selective fading’. The effect of 

time-delay spread can be interpreted as a frequency-selective fading effect. This effect 

may cause severe distortions in the demodulated signals and can impose limits on the bit-

error-ratio (BER) performance of high-speed wireless communication systems. 

cf

df

cf df cf df

The following figure shows the relationship between different phenomena. 
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Figure 2.4: Multipath Fading, Shadowing and Path Loss Phenomenon 

 

2.4) Types of Fading 

In the literature, many models from the probability distribution function point of view 

have been discussed and researched. Out of these models, Rayleigh, Rician and 

Nakagami Fading models are most widely used. We will now discuss these models in 

brief [5]. 

 

2.4.1) Rayleigh Fading 

Rayleigh fading is caused by multipath reception. The mobile antenna receives a large 

number of, say N, reflected and scattered replicas of same signal. Because of constructive 
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and destructive interference, the instantaneous received power seen by mobile antenna 

becomes a random variable, dependent upon the location of the antenna. Let’s discuss the  

basic mechanisms of mobile reception. In case of an unmodulated carrier, the transmitted 

signal is given by the following equation. 

)cos()( ψ+= twtS c  

 

2.4.1.1) Effect of Motion 

Let the n-th reflected wave has with an amplitude and phase nc nφ  arrive at an angle 

nα relative to the direction of motion of mobile antenna. 

 

 

 

Figure 2.5: Angle of Arrival and position of moving vehicle 

 

The Doppler shift of this wave is given by 

nn
vf α
λ

cos=Δ  

Where v is the speed of mobile antenna and nα  is the angle of arrival. 
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2.4.1.2) Phasor Representation 

 

 

Figure 2.6: Phasor diagram of scattered waves (blue) and resultant Rayleigh fading 

envelope (black) 

The received unmodulated signal r (t) can be expressed as  

)]()(2cos[)(
1

nnc

N

n
n tffctr φψπ ++Δ+= ∑

=

 

The inphase-quadtrature representation is given by 

)sin()()cos()()( twtQtwtItr cc −=  

Inphase and quadrature components of received signal are given by the following 

equations respectively. 

)2sin()(

)2cos()(

1

1

n
c

N

n
n

n
c

N

n
n

c
tfctQ

c
tfctI

φψπ

φψπ

++=

++=

∑

∑

=

=  
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Provided that N is sufficiently large and all are equal, then by central limit theorem, 

then I (t) and Q (t) can be shown as zero-mean stationary Gaussian processes. 

nc

 

2.4.1.3) Probability Distribution Function 

If we express r (t) as: - 

)](2cos[)()( ttftRtr c θπ +=  

Then probability distribution function of amplitude and phase are given by respectively. 

)
2

exp()( 2

2

2 σσ
RRRp −=                       0≥R

                                  
π

θ
2
1)( =p                                            πθπ ≤≤−  

The preceding equations show that received signal has Rayleigh distributed envelope R 

(t) and a uniformly distributed phase )(tθ . 

 

2.4.2) Rician Fading 

Rician fading is similar to Rayleigh fading except for the fact that there exists a strong 

line-of-sight component along with reflected waves. Redefined Rician models also 

consider 

• That the dominant component can be a Phasor sum of two or more dominant 

components. E.g. the line-of-sight, plus a ground reflection. This combined signal 

is then mostly treated as a deterministic process. 
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• That the dominant wave can be subjected to the shadow attenuation. This is a 

popular assumption in the modeling of satellite channels. 

Besides the dominant component, mobile antenna receives a large number of reflected 

and scattered waves. 

 

2.4.2.1) Phasor Representation 

The following diagram shows the Phasor representation of Rician fading phenomenon. 

 

 

Figure 2.7: Phasor diagram of scattered waves (blue) dominant component (orange) and 

resultant Rician Fading Envelope (black) 

 

2.4.2.2) Probability Density Function 

In order to obtain the probability density function of signal amplitude we observe random 

processes I (t) and Q (t) at one particular time instant . If the number of scattered waves 

are sufficiently large and are independent and identically distributed, then by central limit 

0t
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theorem, I ( ) and Q ( ) are zero-mean stationary Gaussian processes. But due to the 

deterministic dominant term, it has no longer zero mean. Transformation of variables 

show that the amplitude and phase have joint PDF  

0t 0t

}
2

cos2exp{
2

),( 2

22

2, σ
φρρ

πσ
ρφφ

−+
−=

Cpf p  

Here,  is local-mean scattered power and 2σ
2

2C is power of the dominant component. 

The PDF of the amplitude can be found as  

fρ (ρ) = fρ,φ
−π

π

∫ (ρ,φ)dφ  

 

= fρ (ρ) =
ρ

σ 2 exp{−
ρ2 + C 2

2σ 2 }I0( ρC
σ 2 ) 

Where is modified Bessel function of First kind and zero order, defined as 0I

I0(x) =
1

2π
exp(−x cosφ)dφ

−π

π

∫  

 

2.4.2.3) Rician Factor 

The Rician factor K is defined as the ratio of signal power in dominant component to the 

(local-mean) scattered power. 

Thus 2

2 2/
σ

C
PowerScattered

rDirectPoweK ==  
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2.4.3) Nakagami Fading 

The Nakagami Distribution described the magnitude of the received envelope by the 

distribution 

 

}exp{)(
)(

2)(
2

12

p

mm

p

mrrm
m

rp
Ω

−
ΩΓ

= −           r ≥ 0,Ω ≥ 0            
2
1

≥m  

( )2rEp =Ω  Is an instantaneous power. 

)var(
)(
2

2

r
rEm =  Is a fading figure or shape factor. 

 

Nakagami Fading occurs for multipath scattering with relatively larger time-delay 

spreads, with different clusters of reflected waves. Within any one cluster, the phases of 

individual reflected waves are random, but the time delays are approximately equal for all 

the waves. As a result the envelope of each cluster signal is Rayleigh Distributed. The 

average time delay is assumed to differ between the clusters. If the delay times are 

significantly exceed the bit period of digital link, the different clusters produce serious 

intersymbol interference.  

The following are the facts about Nakagami Fading. 

• If the envelope is Nakagami Distributed, the corresponding power is Gamma 

distributed. 

• The parameter ‘m’ is called fading figure or shape factor and denotes the severity 

of fading. 
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• In the special case m=1, Rayleigh fading is recovered, with an exponentially 

distributed instantaneous power. 

• For m > 1, the fluctuations of the signal strength are reduced as compared to 

Rayleigh Fading. 

• For m=0.5, it becomes one-sided Gaussian distribution. 

• For m= , the distribution becomes impulse. I.e. no fading. ∞

• The sum of multiple independent and identically distributed Rayleigh-fading 

signals has Nakagami Distributed signal amplitude. 

• The Rician and Nakagami model behave approximately equivalently near their 

mean value. While this may be true for main body of the probability density, it 

becomes highly inaccurate for tails. As the outage mainly occurs during the deep 

fades, these quality measures are mainly determined by the tail of the probability 

density function. (For the probability to receive less power). 

The Rician distribution can be closely approximated by using following relation between 

Rice Factor ‘K’ and Nakagami Shape Factor ‘m’. 

)12(
)1( 2

2

2

+
+

=

−−

−
=

K
Km

mmm
mmK

               1>m

Since the Rice distribution contains a Bessel function while the Nakagami distribution 

does not, the Nakagami distribution offers closed form analytical expressions, which are 

otherwise difficult to achieve. 
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2.5) Other Topics Pertaining to Nakagami-m Distribution 

In order to design any simulator for fading model, it is necessary to study its correlation 

and higher order statistics. It provides the knowledge about the behavior of simulator for 

different parameters. The Probability Density Function (PDF) and Cumulative Density 

Function (CDF) are mainly known as first-order characteristics and can only be used to 

obtain static metrics associated with the channel, such as the Bit Error Rate (BER). The 

two quantities, Level Crossing Rate (LCR) and Average Fade Duration (AFD) 

statistically characterize a fading communication channel.  

 

2.5.1) Definitions and General Formulae 

2.5.1.1) Level Crossing Rate (LCR) 

Level Crossing Rate is defined as the number of times per unit duration that the envelope 

of a fading channel crosses a given value in the negative direction. 

2.5.1.2) Average Fade Duration (AFD) 

Average Fade Duration corresponds to the average length of time the envelope remains 

under the threshold value once it crosses it in the negative direction. 

These quantities reflect correlation properties, and thus the second-order statistics, of a 

fading channel.  

Denoting time derivative the envelope r as R’ and Level Crossing Rate as R, the LCR 

occurring at a certain level ‘R’ is defined as 

NR = r' p(r',r = R)dr'
0

∞

∫  
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Similarly Average Fade Duration can be defined as  

 

TR =
prob(r ≤ R)

NR

TR =
FR (r)
NR (r)

 

Where is the characteristic function of channel. FR (r) = PR
0

r

∫ (α)dα

The analysis of LCR and AFD enables one to get the statistics of burst errors occurring 

on fading channel. This statistics provides useful information for the design of the error-

correcting codes, which are complicated by the presence of error bursts. Interleaver size 

can be optimized based on such statistics. Interleaving is an operation of spreading burst 

errors into random errors. Further, LCR and AFD have found a variety of applications in 

the modeling and design of wireless communication systems, such as the finite-state 

Markov modeling of fading channels, the analysis of hand-off algorithms and the 

estimation of packet error rates.  
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________________________________________________________________________ 

CHAPTER 3 

LITERATURE REVIEW 

________________________________________________________________________ 

In the last chapter we have discussed the fundamentals of a typical wireless channels and 

studied few definitions. We will discuss the brief background of Nakagami-m distribution 

and generation techniques available in the literature.  

 

3.1) Theory of Nakagami Fading 

The first work of researching and developing of digital mobile communication system is 

to understand mobile channel characteristics itself. As we have seen in second chapter, 

Rayleigh and Rician fading models have been widely used to simulate small scale fading 

environments over decades. [1] States that Rayleigh fading falls short in describing long-

distance fading effects with sufficient accuracy. M. Nakagami observed this fact and then 

formulated a parametric gamma function to describe his large-scale experiments on rapid 

fading in high frequency long-distance propagation. Although empirical, the formula is 

rather elegant and has proven useful. 

The form of Nakagami-m distribution is given below. 

p(r) =
2

Γ(m)
( m
Ωp

)m r2m−1 exp{−
mr2

Ωp

}                      
2
1

≥m  

( )2rEp =Ω  : -Instantaneous power. 
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)var(
)(
2

2

r
rEm =  : -Fading figure or shape factor. 

In addition to the m-distribution, the following two compact forms of distributions, 

)]11(
2

[)}11)(
2

(exp{2)(

)2()exp(2)(

2

0

2

0
0

2
0

2

αββααβ

σσσ

−+−=

+
−=

RIRRRp

RRIRRRRp

 

Presented by Nakagami (1940) and by Nakagami and Sasaki (1942) respectively. The 

former named “n-distribution” is frequently used in radio engineering and latter, named 

“q-distribution”, also appears in communication problems. More recently, (Nakagami, 

Wada, Fujimura, 1953) showed that the m-distribution is a more general solution with 

good approximation to the random vector problem. At the same time it was also shown 

that m-distribution includes in particular manner the two distributions stated above. Also, 

the mutual dependencies among their parameters were fully investigated, when m-

distribution and the other distributions were fully transformed. 

 

3.1.1) Discussion of Nakagami Probability Density Function 

In order to better understand the Nakagami-m probability distribution function, it is 

important to understand the derivation of it. [1] Provides the details of the Nakagami-m 

formula.  
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3.1.1.1) Outline of the Original Derivation 

A) Time Interval of Observation 

In order to observe rapid fading alone, the length of the observation of interval should be 

chosen carefully, because the effect of small fading will be more predominant for too 

long time intervals. The statistical meaning becomes ambiguous for too short time 

intervals. The length of time intervals depends upon various factors such as frequency, 

propagation path. [1] States that the optimum time interval was found out to be three to 

seven minutes. 

B) Apparatus and Observed waves 

A vertical antenna, about 1.5m long was used, the output of which after amplification, 

logarithmic compression and envelope detection was applied to the deflection plates of 

CR tube. The functional forms of distributions of the results were determined as below. 

)}21(exp{)('
2
M

x

e
M

xmxp −+=  Where x is the signal intensity in dB          (3.1) 

Upon the normalization of this equation, we get  

)0,,(M}2(exp{
)(

2)(
2

mxe
M

xm
mM

mxp x
M

xm

=−
Γ

=                                          (3.2)       

Using the transformation,
Ω

==
RXe M

x

 where 2R=Ω time average of square of 

intensity R, we get 

),,(M
)(

2)(

)1,,(M
)(

2)(

2

2

)(12

12

Ω=
ΩΓ

=

=
Γ

=

Ω
−−

−−

mXeR
m
mRp

mXeX
m

mXp

x

Rm
m

m

m

x
mXm

m

                    (3.3) (3.4) 
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This is Nakagami-m distribution formula, includes both the Rayleigh distribution and 

one-sided Gaussian distribution as special cases of m=1 and m=0.5 respectively. 

Note: - While Nakagami PDF has many attractive features, there is still no widely 

accepted general and efficient way of simulating a correlated Nakagami fading channel. 

This is partly due the fact that no temporal autocorrelation function was specified for the 

Nakagami PDF when it was proposed. 

 

3.1.1.2) Properties of m-distribution 

Now, let’s discuss basic properties of m-distribution. The main results are formulated 

below. The exact details can be found in reference [1]. 

A) Referring to the equation (3.4), the distribution has maximum value at x=0 or 

Ω=R  

π
m

M
p 21)0( =                           (m large) 

B) When x<= M in equation (3.8), ) approaches form of log-normal 

distribution. 

0,,(M mxx

 

2
)(221)( M

xm
em

M
xp

−
≈

π
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3.2) Generation of Nakagami Signals 

Unlike the generation of Rayleigh fading signals, the generation of Nakagami fading 

signals is different. Typically Rayleigh signals can be generated from two low- pass 

Gaussian processes i.e. in-phase and quadrature components and their magnitude follows 

Rayleigh distribution. However it is possible that the fading becomes more severe than 

Rayleigh fading as a result high variability in HF channels. As stated above, this fact was 

observed by Nakagami and the results of his channel measurements for some long-

distance HF communication links showed that the m-distribution in the range of 

 is useful for modeling the fading characteristics of an HF channel when 

fading is more severe than Rayleigh fading. Note that the Rayleigh distribution is a 

special case of m-distribution when m=1.  

15.0 <≤ m

Let’s discuss the various methods researched best to my knowledge to generate correlated 

and uncorrelated Nakagami-m fading waveforms. 

 

3.2.1) Generation of Correlated Nakagami Fading Signals 

It is well known that Nakagami random variable is a square root of a gamma process and 

a gamma process itself can be realized from Gaussian random variable.  Ertel and Reed 

[10] designed the method of generating tow correlated Rayleigh fading envelops of equal 

power. The idea used here is to exploit the fact that the envelope of a complex Gaussian 

variable follows Rayleigh distribution. The authors therefore were able to correlate the 

cross-correlation of these Rayleigh envelopes to their counterpart for the corresponding 

complex Gaussian variables.  Until this period, there was no general technique available 
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to simulate Nakagami fading environment. Reference [2] uses a decomposition principle 

for representing a gamma vector as a direct sum of independent vectors.  A set of 

independent vectors itself can be obtained from a set of correlated Gaussian vectors. The 

limitation of this method is all branches assume equal fading parameter. This drawback 

was addressed in reference [11], which offers more realistic model that allows arbitrary 

fading parameters, branch power and correlation matrix. The author derived a generic 

characteristic function of correlated Nakagami powered signals allowing all parameters to 

be arbitrary. [13] Provides a new algorithm to generate Nakagami-m random samples for 

arbitrary values of m, whereas the author claims that the previous generation methods are 

restricted to values of m between 0 and 1 and integer and half-integer values of m. 

Finally, [14] proposed a Nakagami-m fading simulator by incorporating pop’s 

architecture. They also proposed modified version to generate uncorrelated Nakagami-m 

fading waveforms through orthogonal walsh-hadmard code words. Original Jake’s model 

lacks the property of wide sense stationary. WSS can be achieved by inserting random 

phase in low frequency oscillators. 

 

3.2.2) Generation of Nakagami Signals for m < 1 

In the design of HF communication system, the system designer may want to ensure that 

the performance of the communication system is satisfactory not only in a Rayleigh 

fading environment but also in an environment characterized by more severe than 

Rayleigh fading. The care must be taken while investigating fading phenomenon when 

m<1. This represents more severe fading conditions than Rayleigh fading. To simulate 

Nakagami fading channels for m < 1, one needs to generate complex random process that 
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fits a given Doppler spectrum. Although there are many methods available to simulate 

Rayleigh fading channels, techniques for simulating an m-fading channel with m < 1 are 

relatively few. According to [12], complex random processes used for simulating an m-

fading channel, m< 1, can be expressed as a product of a complex Gaussian process and a 

square root beta process. The square root beta process can be realized by a nonlinear 

transformation of complex Gaussian process. The advantage of this method is one can 

avoid the difficult task of determining amplitude values for sinusoids. Although this 

method is efficient, the algorithm developed is too complex to realize. [13] Offers a 

simple solution to generate fading samples for m< 1. 

 

3.2.3) Generation of Uncorrelated Nakagami Signals 

However, the generation of independent Nakagami-m random variates is also an 

important problem with many practical applications. For example, the generation of 

independent Nakagami-m random variables is required to simulate the performance of 

channel estimators [6]-[8] and diverse systems operating in very slow Nakagami-m 

fading channels. Other techniques are use method of rejection to generate samples of 

Nakagami distribution. Reference [9] gives detailed description and proof of rejection 

method. This is a simple algorithm to generate uncorrelated Nakagami-m samples. The 

acceptance-rejection method is well known. The challenge in this method is to find the 

hat function that is both easy to compute and close enough to scaled desired probability 

density function. The regions 15.0 <≤ m and  represent fundamentally different 

fading scenarios and should be carefully handled. Suppose we need to generate samples 

of X with Nakagami-m distribution. . As mentioned above we would look for hat 

1≥m

)(Xfx
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function , that is easy to generate and which has the property that there exists some 

constant C, such that 

)(xfW

)()( xfxCf XW ≥                           For all x 

Once a suitable  has been found, generating samples of Nakagami fading samples 

is relatively easy. The efficiency of this method is given by 1/C.  

)(xfW

 

3.3) Higher Order Statistics of Nakagami-m Distribution 

While Nakagami PDF has many attractive features, there is still no widely accepted 

general and efficient way if simulating a correlated Nakagami fading channel. This is 

partly due to the fact that no temporal correlation was specified when it was proposed. 

Therefore most simulators need to make certain assumptions in order to model temporal 

autocorrelation of a Nakagami fading channel. Some analytical work has been carried out 

with respect to higher order statistics. 

[15] Provides the exact formula for LCR and AFD for m =
n
2

 where n is non-negative 

integer value. But the simulation has shown that results agree with theoretical results for 

any m. Analytical LCR and AFD for diversity techniques have been thoroughly 

considered in [16]. The LCR and AFD expressions are rearranged such that it can be 

expressed as the product of the PDF of received signal and an integral involving the 

conditional derivative of this signal. Depending upon different diversity schemes, first 

term can be found in the literature or can be derived. The conditional PDF in second term 

can found by examining the expression for derivative of received sign. We have seen the 
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brief background research work being carried best to my knowledge. Let’s state the idea 

behind the research problem in next section. 

 

3.4) Idea Behind research Problem 

Having discussed the brief background in this area, there are very few articles in the 

literature based of sum of sinusoids method for the generation of correlated Nakagami 

fading signals. The references [2] and [14] motivated work behind this research. 

In chapter 4, the details of sum of sinusoids method will be introduced. We will briefly 

discuss the statistical properties of the proposed simulator and will study higher order 

statistics including level crossing rate and average fade duration of fading signals. Based 

on the principle used in this chapter 4, we will see an application of this method to 

generate probability density function for 4 branch diversity system with given covariance 

matrix and given fading parameter in chapter 5. The detailed analysis and results are 

discussed in chapter 6. 
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________________________________________________________________________ 

CHAPTER 4 

SUM-OF-SINUSOIDS MODEL FOR NAKAGAMI-m FADING 

CHANNELS 

________________________________________________________________________ 

4.1) Preliminaries 

The well-known mathematical model due to Clarke and its simplified simulation model 

by Jake’s have been widely used to simulate Rayleigh fading channels for past four 

decades. However, Jakes presumed a correlation among phase shifts conveniently. 

Therefore Jake’s model is not Wide Sense Stationary property. However, Nakagami-m 

distribution has gained attention recently because it can model signals in severe, 

moderate, light, and no fading environment by adjusting its shape parameter, m. Actually 

sum of mutually exclusive Hoyt and Rician models is the Nakagami-m distribution. Let’s 

briefly take look at basic models, which lead to Nakagami fading model. 

 

4.1.1) Clarke’s Rayleigh Fading Model 

The base-band signal of the normalized Clarke’s two-dimensional (2-D) isotropic 

scattering Rayleigh fading model is given by [18] as 

g(t) =
1
N

exp[ j(wd
n=1

N

∑ t cosαn + φn )]            (4.1) 
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Where N is number of propagation paths,  is the maximum angular Doppler 

frequency, 

wd

αn ,φn  are the angel of arrival and initial phase of nth propagation path 

respectively. Both αn ,φn  are uniformly distributed over[−π ,π ]. 

According to Central Limit Theorem, the real part, gc(t) = Re[g(t)] and the imaginary 

part gs(t) = Im[g(t)] can be approximated as Gaussian Processes for large number of N. 

However, the fading statistics for finite number of N of Clarke’s model are not available 

in the literature. 

The autocorrelation and cross-correlation function of the quadrature components and the 

autocorrelation of the complex envelope and the squared envelope of fading signal are 

given below. 

Rgcgc(τ) = Rgsgs(τ) =
1
2

J0(wdτ)       (4.2) 

Rgcgs(τ ) = Rgsgc (τ ) = 0          (4.3) 

Rgg (τ ) = J0 (wdτ )            (4.4) 

R
|g | 2 |g | 2 (τ ) =1+ J0

2(wdτ) −
J0

2(wdτ )
N

      (4.5) 

Where J0(.) is the zero-order Bessel function of first kind. [19]. 

 

4.1.2) Pop-Beaulieu Simulator 

Based on Clarke’s model given by (4.1), Pop-Beaulieu proposed a class of wide sense 

stationary Rayleigh fading simulator by setting αn =
2πn
N

 in g (t) 

The low-pass fading processes take form 
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Xc (t) =
1
N

cos(wd
n=1

N

∑ t cos 2πn
N

+ φn )        (4.6) 

Xs(t) =
1
N

sin(wd
n=1

N

∑ t cos 2πn
N

+ φn )        (4.7) 

However they mentioned that even though their simulator is wide sense stationary, it 

might not model higher-order statistical properties.  

The autocorrelation and cross-correlation function of the quadrature components and the 

autocorrelation of the complex envelope and the squared envelope of fading signal are 

given below. 

RXcXc (τ ) = RXsXs(τ) =
1

2N
cos(wd

n=1

N

∑ τ cos 2πn
N

)      (4.8) 

RXcXs(τ ) = −RXsXc (τ ) =
1

2N
sin(wd

n=1

N

∑ τ cos 2πn
N

)     (4.9) 

RXX (τ) = 2RXcXc(τ) + j2RXcXs(τ)       (4.10) 

R
|X | 2 |X |2

(τ ) =1+ 4R2
XcXc(τ) + 4R2

XcXs(τ) −
1
N

      (4.11) 

It has been found that the second order statistics of this modified model with N = ∞  are 

same as the desired ones of the original Clarke’s model.  

 

4.1.3) Improved Rayleigh Fading Model 

Based on Clarke’s model and the Pop-Bealieu Simulator, An improved simulation model 

is given by an Improved Rayleigh Fading Simulator. 

The normalized low-pass fading process of improved sum-of-sinusoids is given by 

Yc (t) =
1
N

cos(wd
n=1

N

∑ t cosαn + φn )                                                                          (4.12) 
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Ys(t) =
1
N

sin(wd
n=1

N

∑ t cosαn + φn )       (4.13) 

With αn =
2πn + θn

N
     n=1, 2, 3, 4…N and θn  and φn  are uniformly distributed 

over [−π ,π ] for all values of n. 

We can note that this model differs from Clarke’s model in that it forces the angle of 

arrival αn  between the intervals 2πn − π
N

, 2πn + π
N

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ . The important difference between 

this model and Pop-Beaulieu simulator is the introduction of random variables θn  to the 

angle of arrival.  

The autocorrelation and cross-correlation of quadrature components, and the 

autocorrelation function of the complex envelope and the squared envelope of fading 

signal Y (t) are given by following equations. 

RYcYc(τ) = RYsYs(τ) =
1
2

J0(wdτ)                               (4.14) 

RYcYs(τ) = RYsYc(τ) = 0           (4.15) 

RYY (τ) = J0(wdτ)             (4.16) 

R
|Y |2 |Y | 2

(τ ) =1+ J0
2(wdτ) − fc (wdτ,N) − f s(wdτ,N)      (4.17) 

Where 

fc (wdτ,N) =
1

2π
cos(wdτ cosγ)dγ

2πk−π
N

2πk +π
N

∫
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ n=1

N

∑
2

      (4.18) 

 

fs(wdτ,N) =
1

2π
sin(wdτ cosγ)dγ

2πk−π
N

2πk+π
N

∫
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ n=1

N

∑
2

      (4.19) 
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Comparing equations (4.2), (4.3) with (4.14), (4.15), we can easily see that first order 

statistics of improved Rayleigh fading simulator are similar to those of Pop-Beaulieu’ 

simulator equations. However, second-order statistics are different and are given by 

(4.16) and (4.17). 

 

4.2) Nakagami and Other Distributions 

As seen in chapter 2, the Nakagami-m probability distribution function is given by 

following equation. 

pR (r) =
2

Γ(m)
( m
Ωp

)m r2m−1 exp{−
mr2

Ωp

}     r ≥ 0,Ω ≥ 0            
2
1

≥m    (4.20)  

Where  is a gamma function andΓ(.) Ω = E[z2] is the second moment of R.   

The shape parameter or fading figure m is defined as ratio of the moments and is given 

by 

m =
Ω2

E (R2 − Ω)[ ]2  

In order to understand sum-of-sinusoids method, let’s review of relationships among 

important distribution functions i.e. normal, gamma and Nakagami. 
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4.2.1) Relationship between Gaussian, Gamma and Nakagami Random 

Variables 

The Nakagami-m random processes Z can be obtained through the gamma random 

process G, by a mapping functionG = Z 2 . 

We know that the Gamma distribution is the sum of a set of statistically independent and 

identically distributed central chi-square distributions.  

A mapping formℵ= x 2 , where x is a normal distribution with zero mean and variance σ 2 

characterizes the central chi-square distribution.  

These relationships can be summarized as below. 

X(0,σ 2) − − − − − −− >ℵ(m,Ω) − − − − − −− > NK(m,Ω)  

Where X, ℵ and NK are normal, chi-square and random variables.  

The probability distribution function of central chi-square random variable is given by 

pχ (χ) =
1

2πχσ 2
exp(− χ

2σ 2 ),            χ ≥ 0        (4.21) 

With its characteristic function as 

Ψχ ( jv) = (1− jv2σ 2)
−

1
2         (4.22) 

It follows that the characteristic function of the central chi-square distribution with n-

degrees of freedom, U with independently and identically distributed RV= x i
2

i=1

n

∑ x i , i=1, 

2, 3…n is given by 

ΨU ( jv) = (1− jv2σ 2)
−

n
2          (4.23) 

The inverse transform of this characteristic function yields its corresponding probability 

distribution function and is given by following equation. 
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pU (u) =
1

Γ
n
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 2σ 2( )

n
2

u
n
2

−1
exp −

u
2σ 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

       (4.24) u ≥ 0

The first moment and variance of this PDF can be easily found as 

E [U] = nσ 2 and  respectively. σU
2 = 2nσ 4

If we let m=n/2, a positive integer, then the probability distribution function is given by 

[20, pp. 829]. 

pU (u) =
1

Γ m( ) U
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m um−1 exp −
u

U /m
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
      (4.25) 

⎭
u ≥ 0

With 

U = E U[ ]= 2mσ 2. 

On the other hand, Gamma distribution is given by following equation, 

pG (g) =
1

Γ(a)ba ga−1 exp −g
b

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟                          a > 0, b > 0   (4.26) g ≥ 0

Comparing (4.25) and (4.26), we can draw an important conclusion about the relationship 

between Gamma distribution and the central chi-square distribution that the gamma 

distribution is equivalent to the central chi-square with 2m degrees of freedom. 

If a=m and b= Ω
m

 and the mean U = G = E[G] = 2mσ 2 = Ω 

Consequently, the Nakagami-m distribution can be written in the following form, 

pZ (z) =
2

Γ(m)(Ω
m

)m
z2m−1 exp{−

z2

Ω /m
}      (4.27) 

Which is exactly same as equation (4.20) with Ω = 2mσ 2  and  
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E (Z 2 − Ω)2[ ]= E (G − G)2[ ]= 2.(2m).σ 4  

Characteristic function of equation of (4.26) is given by 

ΨG ( jv) = (1− jv Ω
m

)−m          (4.28) 

Comparing equation (4.28) with (4.23), 

We can deduce the following relationship, 

ΨG ( jv) = ΨU ( jv){ }
2m
n          (4.29) 

With 2m > n and n=1, 2… 

Having investigated theoretical relationships, we can generate Nakagami fading signals 

as given below. 

Suppose that the 2m/n is an integer value, then  

Gamma random variable is a sum of statistically independent and identically distributed 

central chi-square distributions. This can be formulated by following equation 

G = U j
j=1

2m
n

∑              (4.30) 

Where U is a follows chi-square distribution. 

Now, the central chi-square distribution can be characterized by a mapping, ℵ= x 2  where 

x is the normal distribution with zero mean and given variance 

This relationship takes the following form, 

U = xi
2

i=1

n

∑              (4.31) 

Combining equations (4.30) and (4.31) 
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G = xi
2

i=1

n

∑
j=1

2m
n

∑

G = xk
2

k=1

2m

∑

          (4.32) 

Thus we have established the relationship between a set of Gamma random variables and 

Normal random variables, which only demands ‘2m’ to be an integer value. 

Furthermore, Nakagami random process Z, can be obtained from Gamma random process 

G by a mapping 

G = Z 2

OR

Z = G

 

Thus we have established the relationship between Nakagami and Gamma distributions. 

Next we will see realization of actual Nakagami random process. 

 

4.3) Sum-of-Sinusoids based Nakagami-m Simulator 

In this section, we will discuss how to design new Nakagami-m simulator [14] using 

above relationships and existing Rayleigh fading models. 

We can write equation (4.32) as 

G = α Xk
2

k=1

P

∑ + βX 2
p +1         (4.33) 

With P = 2m⎣ ⎦ as an integer part. If m is real, the correlated remainder term  is 

added to improve the accuracy of the Nakagami simulator.  

X 2
p +1
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The weights α  and β  play an important role in adapting integer and fractional part to 

achieve better efficiency. 

We can infer from the equation (4.33) 

Referring to the details of equations in [2], we can write 

ℵ2(2m)=
d
α ℵk

2

k=1

P

∑ (1) + βℵ2
p +1(1)       (4.34) 

=
d

 Indicates that both left hand side and right hand side have same distribution. 

Taking the first moments of equation (4.34) and noting the fact that  

and , we get 

E ℵ2(m)[ ]= m

var ℵ2(m)[ ]= 2m

Pα + β = 2m

Pα 2 + β 2 = 2m

 

Solving these two equations, we obtain 

α =
2Pm ± 2Pm(P +1− 2m)

P(P +1)
       (4.35) 

β = 2m −αP           (4.36) 

Therefore the architecture of Nakagami-m simulator is given by    

G(t) = α Xk
2

k=1

P

∑ (t) + βXP +1
2 (t)         (4.37) 

Where X is a Gaussian process. Using equations, (4.12) and (4.13) we get 

G(t) = α Yc,k
2

k=1

P

∑ (t) + βYs
2(t)         (4.38) 

Equation (4.38) represents Gamma process and resultant Nakagami-m random process is 

given by 
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Z(t) = G(t) = α Yc,k
2

k=1

P

∑ (t) + βYs
2(t)        (4.39) 

The equation (4.39) represents new sum-of-sinusoids based Nakagami-m simulator.4. 

 

4.3.1) Higher Order Statistics 

4.3.1.1) Squared Autocorrelation function 

The squared envelope autocorrelation function is given by following equation 

R
gz

2 (t1, t2) = E G(t1),G(t2)[ ]        (4.40) 

SinceG = Z 2 , squared autocorrelation of Nakagami sequence is nothing but the 

autocorrelation of gamma sequence. 

Therefore, we can write 

R
gz

2 (t1, t2) = pα 2E Yc,i
2 (t1),Yc, j

2 (t2)[ ]i= j
+ β 2E Ys

2(t1),Ys
2(t2)[ ]+ p( p −1)α 2E Yc,i

2 (t1),Yc, j
2 (t2)[ ]i≠ j

+

                   pαβ E Yc,k
2 (t1),Ys

2(t2)[ ]+ pαβ E Ys
2(t1),Yc,k

2 (t2)[ ]

(4.41) 

Referring to [14], we can write squared autocorrelation of Nakagami sequence as 

R
gz

2 (t1,t2) = m2 + mJ0
2(wmτ ) + mJ4

2(wmτ ) + (Pα 2 − β 2)J0(wmτ)J4 (wmτ) +

                   4Pαβ 2
π

sin(4α)cos(
0

π
2∫ wmτ cosα)dα

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2   (4.42) 

The equation (4.42) represents Nakagami-m squared envelope autocorrelation associated 

with (4.39). 
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4.3.1.2) Level Crossing Rate (LCR) 

The Level crossing rate at which envelope crosses a given level R as discussed in 

previous section is given by 

NR = R'
0

∞

∫ p(R',r = R)dR'  

Referring to Appendix A. 1 for detailed derivation of level crossing rate, and is given by  

NR = 2π fm
mm−0.5

Γ(m)
r2m−1 exp(−mr2)       (4.40) 

This is an exact and closed form expression for the level crossing rate of the Nakagami-m 

fading signal. 

 

4.3.1.3) Average Fade Duration (AFD) 

The average duration of fades TR  below r=R is given by 

TR =
p(r ≤ R)

NR

=
1

NR

p(r)dr
0

R

∫  

Referring to the derivation in Appendix A. 2, we can formulate the result as below 

TR =
2 m ψ(m,ρ)[ ]

2π fd ρ(2m−1) exp(−mρ2)
       (4.41) 

Where   ψ(a,b) = z2a−1

0

b

∫ exp(−az2)dz
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________________________________________________________________________ 

CHAPTER 5 

GENERATION OF CORRELATED NAKAGAMI-m FADING 

CHANNEL: A DECOMPOSITION TECHNIQUE 

________________________________________________________________________ 

In the previous chapter we have seen the sum of sinusoids method to generate Nakagami-

m fading samples. It is fairly simple method to generate samples from Gaussian 

processes, which itself can be easily generated. In this chapter we will use Direct Sum 

Decomposition method to generate multi-branch Nakagami channel with given 

covariance matrix and fading parameter.  

 

5.1) Introduction 

A different approach should be adopted to generate correlated Nakagami vector with an 

arbitrary covariance matrix. We know that Nakagami variable is a square root of Gamma 

variable. A decomposition principle introduces a gamma vector as set of independent 

vectors, which in turn can be produced from a set of correlated Gaussian processes such 

as given in previous chapters. The reference [2] provides details of decomposition 

technique. Only key points pertaining to sum of sinusoids method are presented in this 

chapter. 
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5.2) Relationship between covariance matrices of different distributions 

Our aim is to generate n –by-1 correlated Nakagami vector Z with fading parameter m 

and covariance matrix Rz . [2] 

We define,  

x ~ N(0,Rx )     y ~ GM(m,Ry )     z ~ NK(m,Rz ) Indicate that x, y, z follow joint 

Gaussian, Gamma and Nakagami distribution. 

As shown before, there are no direct methods to generate Nakagami sequence in 

literature; direct sum decomposition method will be used. 

The approach here used is 

Xk − − − − − − − − > Y − − − − − − − −− > Z  

Where Xk  is a set of independent Gaussian vectors. Gaussian vectors are easy to generate 

and Nakagami vector can be obtained by taking square root of gamma vector, which is 

denoted as 

Z = Y (1/ 2)         (5.1) 

The characteristic function of gamma vector is given by 

φy (s) = det(I − SA)−m          (5.2)      

Where S is a diagonal matrix of the variables in the transform domain. The positive-

definite matrix A is determined by the covariance matrix structure of y, and is given by 

A(k, l) =
Ry (k, l)

m
 I.e.   Ry = mA2      (5.3) 

Given Rz , we need systematic approach to determine Ry,Rx . 
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5.2.1) Determination of Ry from Rz 

In typical problem like this we have been given cross-coefficient matrix of end process. 

I.e. Nakagami process. We will first establish the relation between variance of Gamma 

and Nakagami Vectors and Relation between cross-correlation coefficient matrices of 

both the processes. 

The resultant covariance matrix for gamma RV will is given by 

 Ry (i, j) = v(i, j) var(yi)var(y j )     (5.4) 

 

5.2.1.1) Relationship between variances of Gamma and Nakagami RV 

Suppose that we want to determine the variance of gamma process y in terms of variance 

of Nakagami Process z.  

var[y] =
var2[z]

m
1−

1
m

Γ2(m +
1
2

Γ2(m)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

−2

        (5.5) 

 

5.2.1.2) Cross-correlation 

Given covariance structure of Nakagami sequence, the cross-correlation coefficient 

matrix can be calculated as 

ρi, j =
Rz (i, j)

Rz (i,i)Rz( j, j)
         (5.6) 

Using equation (5.5), the cross-correlation coefficient matrix v(i, j)  of gamma vector can 

be calculated from the recursive algorithm in [2]. 
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Having calculated the correlation matrix v (i, j) and variance from equation (5.4), the 

covariance matrix is given by equation (5.3).  

In the next section, we will see direct sum decomposition to generate Nakagami n by 1 

fading sequence. 

 

5.3) Direct Sum Decomposition 

From statistical theory we know that gamma vector can be represented in terms of a set of 

Gaussian vectors as given below 

U = X 2 

The characteristic function of Gamma vector U is given by 

φu(S) = E exp( ju1t1 + ju2t 2+...+ juntn )[ ]

φu(S) = (2π )−0.5n
−∞

∞∫ det(Rx )−0.5 exp(−0.5xT Rx
−1x + xT Sx)dx

φu(S) = det(I − 2SRx )−0.5

    (5.7) 

Observing that equation (5.2) and (5.7) has similar forms, we can write equation (5.2) as 

φu(S) = ∏
k=1

2m
det(I − 2SRx )−0.5         (5.8) 

Ry = m(2Rx )2 = 4mRx  

Solving above equation, we get the covariance matrix of Gaussian vectors as below 

Rx =
1

2 m
Ry

1/ 2                                                                                                      (5.9) 

The probability density function of independent variables is Fourier transformed to the 

product in characteristic function domain. When transformed back to the original domain, 
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left hand side of equation (5.8) is simply equal gamma random vector i.e. Y whereas right 

hand side yields a sum of U. This can be written in the following form 

Y = U K
k=

2m

∑ = Xk
2

k=1

2m

∑          (5.10) 

This expression assures that the Nakagami vector has the same direct-sum decomposition 

as that of its scalar counterpart and the correlation is uniquely determined by the 

correlation of Gaussian vectors. 

Therefore Nakagami sequence is given by 

Z = Y (1/ 2)

Z = Uk
k=1

2m

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(1/ 2)

  

From equation (5.10) we can write 

Z = Xk
2

k=1

2m

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

(1/ 2)

         (5.11)  

This expression allows us to obtain correlated Nakagami vector from set of independent 

Gaussian vectors. 

From Equation (5.5) and (5.9) we can write 

Rx = ς var[z(k)]                                        k = l

    = ς var[z(k)]  var[z(l)]  v(k,l){ }1/ 2       k ≠ l 
     (5.12) 

Where  

ς =
1

2m
1−

1
m

Γ2(m + 0.5)
Γ2(m)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

        (5.13) 

If size of x is not very large (for diversity application), we can generate samples of 

independent Gaussian random variables from covariance matrix Rx found above. 
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We can use the technique of Cholskey Decomposition to decompose Rx  such that 

Rx = LL'         (5.14) 

Where ‘denotes Hermition transpose and L is lower triangular matrix obtained after 

decomposition 

Next step is to generate independent and identically distributed Gaussian sequence with 

zero mean and unit variance. This can be generated using rand function in Matlab or any 

Gaussian random process given in chapter 4 

Ek ≈ N(0,I)         (5.15) 

Therefore we can write correlated Gaussian vector in terms of i.i.d. Gaussian vectors as  

Xk = L * Ek          (5.16) 

This is a simple method to generate correlated Nakagami fading channel for diversity 

application.  

In previous section, it was assumed that m holds integer value.  If ‘m’ is real, different 

approach is taken. 

As discussed in previous chapter, integral part of ‘2m’ is given by 

P = 2m⎣ ⎦ 

Therefore, Y can be written as 

Y (t) = α Xk
2

k=1

P

∑ (t) + βXP +1
2 (t)        (5.17) 

and corresponding correlated Nakagami vector channel for diversity applications is given 

by 

Z(t) = Y (t) = α Xk
2

k=1

P

∑ (t) + βXP +1
2 (t)       (5.18) 
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When ‘m’ is real, β  provides fine correction to the process. When ‘m’ is a multiple of ½, 

β  is always zero. Therefore no correction is provided. This is exactly what we have seen 

earlier in section (5.3), Direct Sum Decomposition. 

 

5.4) Algorithm 

Given cross-correlation matrix ρ(i, j) of end process i.e. Nakagami Process, variance 

vector Pz = Rz(i,i) the following steps are taken to generate correlated Nakagami fading 

channel. 

• Determine the cross-correlation of gamma RV using algorithm in [2 equations 20-

23] 

• Determine Rx  using equations (5.12) and (5.13) 

• Determine Xk  using method of Cholskey Decomposition. 

• Determine Gamma RV Y as 

  

Y = Xk
2

k=1

2m

∑                                  2m = integer

  = α Xk
2

k=1

P

∑   +β XP +1
2                otherwise

• The Desired Nakagami vector Z is given by 

 Z = Y (1/ 2) 
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________________________________________________________________________ 

CHAPTER 6 

SIMULATION ANALYSIS AND DISCUSSIONS 

________________________________________________________________________ 

This chapter is mainly divided into two sections  

• Sum of Sinusoids 

• Direct Sum decomposition for correlated Nakagami fading channel for 

diversity application. 

 

6.1) Analysis of Sum-of-Sinusoids Technique 

In order to realize sum-of-sinusoids, we used improved Jake’s Model. However, other 

low-pass Gaussian processes given in section 4.1  

Let’s review original Jake’s Model and improved model in short. 

The Inphase and quadrature processes suggested by Jakes are given below 

 

Xc (t) =
4
N

an
n=1

M +1

∑ cos(wnt)

Xs(t) =
4
N

bn
n=1

M +1

∑ cos(wnt)

       (6.1.1) 

Where different Parameters are given below 

N=4M+2 and wd = 2πfd  is maximum Doppler frequency. 
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an = 2cosβn                            n =1,2,3,..., M

    = 2 cosβM +1                    n = M +1

bn = 2sinβn                            n =1,2,3,..., M

    = 2 sinβM +1                    n = M +1

wn = πn
M

                                n =1,2,3,..., M

    =
π 
4

                                  n = M +1

βn = wdcos 2πn
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟                    n =1,2,3,..., M

    = wd                                  n = M +1

                                                            (6.1.2) 

It was shown that the signal produced by above model is not Wide sense Stationery [21] 

as autocorrelation not only depends upon time difference but also on time advancement.  

One more drawback is that inphase and quadrature components share same frequency 

values. 

The improvement suggested is to add random phases to low frequency oscillators. By 

adding random variables we are able to reduce correlation between the two processes. 

The inphase and quadrature processes of the new model are given below 

Xc (t) =
4
N

an
n=1

M +1

∑ cos(wnt +ψn )

Xs(t) =
4
N

bn
n=1

M +1

∑ cos(wnt +ψn )

       (6.1.3) 

Where ψn  is a uniformly distributed over interval −π ,π[ ]. 

Using equation (4.39), we can write  
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Z(t) = G(t) = α Xc,k
2

k=1

P

∑ (t) + βXs
2(t)       (6.1.4) 

The figures (6.1.1) and (6.1.2) show graphical representation of equations (6.1.2) and 

(6.1.4) 

 

 

Figure 6.1.1: Improved Jake’s Model  
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Figure 6.1.2: Nakagami Simulator Architecture. 

 

This is the realization of sum-of-sinusoids method for Nakagami-m fading channels. We 

have used the following data. 

N=No. Of Samples-50000; fd =Maximum Doppler Frequency=100 Hz; Ts=Sampling 

Period =0.00025 sec. The ensemble average of autocorrelation is carried out over 25 

iterations in order to get better estimate.  
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6.1.1) Simulated and Theoretical PDF, Autocorrelation, Received field 

Intensity, Level Crossing Rate and Average Fade Duration for different 

values of m 

 

 

Figure 6.1.3: Simulated and Theoretical PDF for m=0.5 
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Figure 6.1.4: Simulated and Theoretical PDF for m=1 

  

Figure 6.1.5: Simulated and Theoretical PDF for m=2.18 

 55



 

 Figure 6.1.6: Simulated and Theoretical PDF for m=3.99 

            

Figure 6.1.7:  Composite Simulated and Theoretical PDF 
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Figure 6.1.8: Normalized Simulated and Theoretical Autocorrelation for m=0.5 

  

 Figure 6.1.9: Normalized Simulated and Theoretical Autocorrelation for m=1 
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Figure 6.1.10: Normalized Simulated and Theoretical Autocorrelation for m=2.18 

 

Figure 6.1.11: Normalized Simulated and Theoretical Autocorrelation for m=3.69 
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The ensemble normalized autocorrelation and reference autocorrelation plots are above. 

The received field intensity in dB scale is shown below. 

 

 

 

Figure 6.1.12: Received Field Intensity in dB for m=0.5 

 

As we can see that fades around 40 dB or more can be seen for m=0.5 which is the worst 

case of fading in Nakagami environment. The intensity of fading decreases as ‘m’ 

increases. 
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Figure 6.1.13: Received Field Intensity in dB for m=1 

 

Figure 6.1.14: Received Field Intensity in dB for m=3.69 
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Level crossing rate and Average fade Duration are another important second order 

statistics of any simulator.  

LCR and AFD for sum-of-sinusoids based simulator are given by equations (4.40) and 

(4.41) 

 

Level Crossing Rate:-    

Theoretical Equation: - NR = 2π fm
mm−0.5

Γ(m)
r2m−1 exp(−mr2)  

 

 

Figure 6.1.15: Level Crossing Rate in log-scale for m=0.5 
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Figure 6.1.16: Level Crossing Rate in log-scale for m=2.18 

  

Figure 6.1.17: Composite Level Crossing Rate in log-scale 
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Average Fade Duration: - TR  

Theoretical Equation: -   TR =
2 m ψ(m,ρ)[ ]

2π fd ρ(2m−1) exp(−mρ2)
 

 

Figure 6.1.18: Average Fade Duration in log-scale for m=0.5 
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Figure 6.1.19: Average Fade Duration in log-scale for m=1.0 

 

Figure 6.1.20: Average Fade Duration in lo-scale for m=2.18 
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Figure 6.1.21: Average Fade Duration in lo-scale for m=1.0 

 

6.1.2) Discussions 

• The plots above show that the simulated data matches closely with theoretical 

probability density functions. 

• For m=0.5, simulated data follows half-Gaussian distribution, m=1 it follows 

Rayleigh distribution which is consistent with the features of Nakagami 

distribution pointed out in section 2.4.3. For higher values of m, e.g. m=3.99, it 

exhibits Gaussian distribution. 

• The sample autocorrelation function shows very close agreement with theoretical 

autocorrelation function implemented by equation (4.42).  
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• As the value of m increases, autocorrelation function approaches unity, which can 

be easily seen, from the graph. 

• It has been verified that probability density functions match with theoretical ones 

given by other low-pass Gaussian processes.  

• The received signal intensity in dB plots shows that m=0.5 is severe case of 

fading. As m increases, the severity of fading decreases leading to no fading 

condition for  m = ∞

• Although the probability density functions match well, there will be some errors 

due to the mismatch of first two moments of the distribution. 

• We also studied important second order characteristics. I.e. Level crossing rate 

and Average fade duration. The plots for both show excellent agreement with 

theoretical results. 

 

6.2) Analysis of Decomposition Technique 

In this section, analysis has been carried out for arbitrary covariance matrix and m=2.18 

and 2.5 

Our aim is to generate multi-branch data, which follows a joint Nakagami fading with the 

cross-correlation data obtained which matches closely with [21] 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1.000       0.795       0.604        0.372
0.795       1.000       0.795        0.604
0.604       0.795       1.000        0.795
0.372       0.604       0.795        1.000

 zρ
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With variance vector Pz = [ 2.16   1.59  3.32  2.78 ]    (6.2.1) 

Next step is to calculate correlation matrix of corresponding Gamma vectors. 

There are two possible ways to obtain it. 

When all the diversity branches have same m-parameter, the relationship between gamma 

correlation coefficient ρy and the corresponding Nakagami correlation coefficient is 

given by the expression (139) in [1], 

For n=1, we get 

ρz =
Γ2(m + 0.5)

Γ(m)Γ(m +1) − Γ2(m + 0.5) × [2 F1(−0.5,−0.5;m,ρy ) −1]
 

 

Where  is the hypergeometric function. 2 F1(*)

Numerically, ρz  and ρy are equal. Therefore we can either directly equate ρy with ρz  

which is shown by the graph below or we can calculate using an algorithm mentioned in 

section [5.4]  

The figure shows the value of ρz , vs. ρy as computed from above equation for m=1, 5 and 

10.It clearly shows that ρy is almost identical to ρz . 
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Figure 6.2.1 Graphical Comparison of Gamma and Nakagami Cross-Correlation 

Coefficients. 

Setting margin for relative error to be up to 4 digits, Algorithm converges in few steps. 

We get correlation vector for gamma RV as 

v= [1.0000    0.8078    0.6197    0.3874]      (6.2.2) 

Next step is to calculate covariance matrix of correlated Gaussian Random vector from 

equations (5.12) and (5.13). 

The value of ς  found out to be ς =2.1366      (6.2.3) 

Now using equations (5.12), (6.2.1), and (6.2.2) and (6.2.3) we get, 

Rx = 4.6085    3.5538    4.4976    3.2542 
        3.5538    3.3924    4.4059    3.5311 
        4.4976    4.4059    7.0834    5.8258 
        3.2542    3.5311    5.8258    5.9313 
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Now, we use Cholskey decomposition method to decompose Rx  to get Lower Triangular 

matrix L. 

Using L above and m=2.18, using equations (4.35) and (4.36), 

We get α = 1.0390  and β = 0.2038 

Independent and identical Gaussian sequence can be generated using in-built rand 

function in MATLAB. 

Thus we generate N =50000 samples for each diversity branch, using steps given in 

section (5.4), we generate fading samples for each diversity branch. 

Estimated covariance matrix for Nakagami vector channel found out to be 

˜ R z= 2.1380    1.4613   1.6079    0.9109 
       1.4613    1.5912    1.8145    1.2604 
       1.6079    1.8145    3.3338    2.4009 
       0.9109    1.2604    2.4009    2.7681 
 

Corresponding cross-correlation coefficients are  

˜ ρ z =[1.0000    0.7985    0.6073    0.3762] 

And estimated variance vector is 

˜ P z = [2.1380    1.5912     3.3328    2.7681] 

The following table summarizes the results and relative errors among different 

parameters. 
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Parameter Theoretical Values Practical Values Error 
(%) 

Cross-Correlation 
Coefficients ˜ ρ z  

[1 0.795   0.604 0.372] [1    0.7985    0.6073    0.3762] 
 

0.43 
0.543 
1.12 

Variance Vector  ˜ P z [2.16 1.59 3.32 2.78] [2.1380    1.5912     3.3338  
2.7681] 

1.18 
0.075 
0.384 
0.43 

Mean Fading 
Power ˜ Ω  

20.0736    14.7808 
30.8751    25.8691 

20.0930   14.7907 30.8837 
25.8604 

0.09 
0.067 
0.028 
0.033 

 

Table: - 6.2.1 Comparison of different parameters for m=2.18 

6.2.1) Simulated and Theoretical PDF for m=2.18 and m=2.5 

The data sample used is 50000 and no. Of bins to obtain histogram of data used is 40. 

 

Figure 6.2.2 Simulated and Theoretical PDF for branch 1 and m=2.18 
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Figure 6.2.3 Simulated and Theoretical PDF for branch 2 and m=2.18 

 

Figure 6.2.4 Simulated and Theoretical PDF for branch 3 and m=2.18 
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Figure 6.2.5 Simulated and Theoretical PDF for branch 4 and m=2.18 

 

Figure 6.2.6 Composite Simulated and Theoretical PDF for m=2.18 
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Similar results have been obtained for m=2.5 which are given below. 

Correlation coefficients for gamma vectors found out to be 

v= [1.0000    0.8061    0.6178    0.3856] 

And ς =2.1145  

Estimated covariance matrix for Nakagami vector channel found out to be 

˜ R z= 2.1539    1.4731    1.6195    0.9175 
        1.4731    1.5853    1.8284    1.2727 
        1.6195    1.8284    3.3188    2.4268 
        0.9175    1.2727    2.4268    2.7857 
 

Corresponding cross-correlation coefficients are  

˜ ρ z =[1.0000    0.7972    0.6057    0.3746] 

And estimated variance vector is  

˜ P z = [2.1539 1.5853 3.3188 2.7857] 

 

Parameter Theoretical Values Practical Values Error 
(%) 

Cross-Correlation 
Coefficients ˜ ρ z  

[1 0.795   0.604 0.372] [1    0.7972    0.6057    0.3748] 
 

0.29 
0.28 
0.83 

Variance Vector  ˜ P z [2.16 1.59 3.32 2.78] [2.1539    1.5853     3.3188    
2.757] 

0.28 
0.296 
0.036 
0.74 

Mean Fading 
Power ˜ Ω  

22.8366   16.8102   
35.1006   29.3915 

22.8046      16.7947 
35.0820       29.3898 

0.15 
0.095 
0.053 
0.006 
 

 

Table 6.2.2 Comparison of different parameters for m=2.5 

The following graphs show the simulated and theoretical results obtained for m=2.5 
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Figure 6.2.7 Simulated and Theoretical PDF for branch 1 and m=2.5 

 

Figure 6.2.8 Simulated and Theoretical PDF for branch 2 and m=2.5 
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Figure 6.2.9 Simulated and Theoretical PDF for branch 3 and m=2.5 

 

Figure 6.2.10 Simulated and Theoretical PDF for branch 4 and m=2.5 
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Figure 6.2.11 Composite Simulated and Theoretical for m=2.5 

 

6.2.2) Discussions 

• Simulated data using decomposition technique is in close agreement with 

theoretical probability density function for each branch 

• The absolute percentage error in simulated and theoretical values for correlation 

coefficients is relatively small and even smaller for variance vectors. The same 

conclusion can be drawn for mean fading power. 

• For the same fading parameter, Nakagami distribution moves towards right with 

increasing mean fading power and its maximum value is controlled by mean 

fading power which can be observed by figures (6.2.6) and (6.2.11). 
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________________________________________________________________________ 

CHAPTER 7 

CONCLUSION AND SCOPE OF FUTURE WORK 

________________________________________________________________________ 

In this thesis, we have seen the efficient sum of sinusoids method to generate Nakagami-

m fading signal and its application to generate correlated vector fading channel for 

diversity application.  

The idea used here is to represent correlated Nakagami vector as a non-linear function of 

a set of independent Gaussian vectors. We have also seen direct sum decomposition 

technique of determining covariance matrix of the Gaussian vectors from the specified 

covariance matrix of the Nakagami-m fading channel. In the original derivation fading 

parameter m is assumed to be multiple of ½.  For m real, the decomposition expression 

consists of two parts, a principal factor and fine correction parameter. In the sum-of-

sinusoids, we chose Improved Jake’s Model to represent low pass Gaussian processes.  

The theoretical and simulated PDF and autocorrelation appear to match well with small 

errors, which can be accounted for mismatch of first two moments. We can conclude 

from the received intensity plots that the fading is severe for m=0.5 and its severity 

reduces gradually as m increases leading to no fading condition when m approaches to ∞ . 

The Normalized autocorrelation have better match to its theoretical counterpart and it 

reaches unity when m approaches∞ . We have seen other higher order statistics like Level 

Crossing Rate and Average fade Duration. The simulation results provide excellent match 

with theoretical results. Furthermore the sum-of-sinusoids method along with direct sum 
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decomposition when applied to vector channels for diversity applications, found to 

deliver excellent match of theoretical and simulated probability density functions. 

 

Future Research Work 

The further research scope includes accurate simulation of continuous Nakagami-m 

phasor processes with arbitrary parameters and accurate statistics in terms of envelope, 

phase distribution and moments. 
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________________________________________________________________________ 

APPENDIX 

________________________________________________________________________ 

A.1) Derivation of Level Crossing Rate NR  

The following equation represents Level Crossing Rate NR  at which envelope crosses a 

given level R in the positive direction  

rdRrrprN R &&& ),(
0

== ∫
∞

        (1) 

Where Ýr  is a derivative of r with respect to time‘t’. 

According to [15 equation 12], )
2

exp(
2
1)|( 2

2

σσπ &

&

&
&

rrrp −=  Where  

2/σβσ v=&           (2) 

is a Standard Deviation of zero mean Gaussian distributed random variables. 

The joint distribution of r&  and r is given by 

),( rrp & = =)()|( rprrp & )
2
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2
1

2

2

σσπ &

&

&

r
− 2
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Ω

)m r2m−1 exp{−
mr2

Ω
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Note that  is independent of  and hence we can write )|( rrp & )(rp &

),( rrp & =          (4) )()( rprp &

Therefore =  rdRrrprN R &&& ),(
0

== ∫
∞
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0
∫
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&
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2
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2
1)( 2

2
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∞
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2
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   Substituting in equation (4) we get dt/2=rdr   dt        =rdr2         2 &&&&& tr =

NR =
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Solving above equation we get 
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Define 

ρ =
R

Rrms

=
R
Ω

       βv = 2π
λ

v = 2πfd

σ =
Ω

2m

      (7) 

Combining equations (2) and (7) we get 

m
fm

Ω
= πσ&           (8) 

Substituting equation (8) in equation (6) we get, 

NR =
πfd
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Solving equation (9) we get, 
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From equation (7), we get R = ρ Ω  

Substituting value of R in equation (10) and simplifying further we get Level Crossing 

Rate as 

( ) )exp(
)(

2 22/12 ρρ
π

mm
m

f
N md

R −
Γ

=
−       (11) 

This is the closed form expression for Level Crossing Rate for Nakagami-m fading 

signal. 

 

A.2) Derivation of Average Fade Duration  TR  

The average fade duration TR  below r = R is given by  

[ ]
R

R
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R N
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N
RrpT

∫
=

≤
= 0

)(
        (12) 

rdmrrm
m

drrp
R

m

m
m

R

∫∫ Ω
−

ΩΓ
=

−

0

212

0

)exp(
)(

2)(       (13) 

Let r
Ω1/ 2 = z          dr = Ω1/ 2dz               r2

Ω
= z2  

And corresponding integral limits are  

r− > R         z = R
Ω

= ρ

r− > 0          z = 0
 

Equation (13) becomes, 
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Simplifying Equation (14) we get, 

dzmzzm
m

rp mm )exp(
)(

2)( 2

0

12 −
Γ

= ∫ −
ρ

      (15) 

Define dzmzzm m )exp(),( 2

0

12 −= ∫ −
ρ

ρψ       (16) 

Thus equation (15) becomes 

p(r) =
2

Γ(m)
mmψ(m,ρ)         (17) 

Substituting equation (17) and (11) in equation (12) we get 

TR =

2
Γ(m)

mmψ(m,ρ)

2π fd

Γ(m)
mρ2( )m−1/ 2

exp(−mρ2)
 

After simplification, we get closed form expression for AFD as 

TR =
2 mψ(m,ρ)

2π fd ρ2m−1 exp(−mρ2)
        (18) 

This is the closed form expression for Average Fade Duration for Nakagami-m fading 

signal. 
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