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NOMENCLATURE 

Symbol Description Units 
 P1  Cylinder chamber 1 pressure  Pa 
 P2  Cylinder chamber 2 pressure  Pa 
 x   Cylinder piston position  m  
 x&   Cylinder piston velocity  m/s 
 y   Spool valve position  m  
 y&   Spool valve velocity  m/s  
 b  Cylinder viscous friction coefficient  N-s/m  
 β  Fluid bulk modulus  Pa  
 Ps  Supply pressure  Pa  
 Pr  Reservoir pressure  Pa  
 P0  Atmospheric pressure  Pa  
 ζ  Damping ratio  -    
 ωn  Natural frequency  rad/s  
 Ksp  Spool valve servomotor gain  m/mA 
 u  Input signal  ma   
 Q  Flow rate  m3/s 
 Qleak  Leaked flow rate  m3/s  
 Cd  Discharge coefficient  -  
 Av  Open valve area  m2  
 ρ  Fluid density  kg/m3  
 V   Cylinder chamber volume  m3  
 V&   Change in cylinder chamber volume  m3/s 
 A  Piston area  m2  
 xmin  Fully retracted cylinder position  m  
 xmax  Fully protracted cylinder position  m  
 m  Piston mass  kg  
 Fc  Piston friction force  N  
 Tt  Truth simulation sample time  s  
 Ts  EKF sample time  s  
 Pk  Error covariance matrix  - 
 Φk  State transition matrix  -  
 Vk  Process noise matrix  -  
 Kk  Kalman gain matrix  -  
 Ck  Output matrix  -  
 Wk  Measurement noise matrix  -  
 x̂   State estimate vector  -  
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Symbol Description Units 
my    Measurement vector  - 

 σ  Standard deviation  -  
 σ2  Covariance  -  
 kel  External leakage coefficient  m3/s/Pa  
 kil  Internal leakage coefficient  m3/s/Pa  
 r  Error residual vector  -  
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ABSTRACT 

In this work an extended Kalman filter (EKF) is used to detect a variety of faults 

in a simple hydraulic actuator system.  The system includes a constant supply pressure 

feeding a spool valve, which controls a double-rod cylinder with no applied load.  Much 

interest exists in detecting faults in their early stages in the hopes that machine downtime 

and repair costs can be kept to a minimum.  This EKF model employs two different 

techniques for identifying the presence of system faults.  In one case, parameters of 

interest are included in the state-space model as augmented states.  Faults are then 

introduced into these new states, and the EKF successfully detects the faults by tracking 

the new post-fault parameter values.  The second method is an indirect approach for 

identifying unmodeled faults.  These faults become apparent through analysis of the 

difference between a state measurement and estimate, known as error residual data.  It is 

shown that, for this simple hydraulic system, this extended Kalman filter detects system 

faults confidently and promptly. 

 

 

 

 

 

 

 

 

 



 
1

 
 

 

Chapter 1 

INTRODUCTION 

 

Much interest is directed towards detecting a fault in its early states before high-

cost damage occurs to reduce the cost of lost machine-hours and repairs due to fault-

related damage in a fluid power system.  This work describes a fault detection method for 

a hydraulic actuator system.  An extended Kalman filter (EKF)-type state estimator is 

used here to detect a variety of hydraulic system faults.   

 

1.1 Fault Detection Scheme 

The EKF requires a state-space model of the system.  State-space representation is 

typically the smallest number of physical variables that fully describe a system’s 

behavior.  In this case, there are six states: two cylinder chamber pressures, cylinder 

piston position and velocity, and valve position and velocity.  The state-space model for 

this work will be augmented with two additional states, cylinder viscous friction 

coefficient and fluid bulk modulus, that previously were considered to be constant 

parameters.  Estimates of two augmented states are compared to expected values for 

those parameters to determine the existence of a fault.  A deviation in friction coefficient 

might indicate the presence of foreign substances in the system, general degradation of 

system materials, or even a major event altering the piston’s alignment.  Gross changes in 

fluid bulk modulus could indicate the presence of entrained air or some other 

contaminant in the hydraulic fluid.   
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The EKF directly estimates viscous friction coefficient and fluid bulk modulus to 

detect the presence of modeled faults by comparing the value of augmented states to 

expected ranges for each parameter for the course of a normal operation.  However, 

leakages are identified indirectly.  Changes in parameters that are not estimated (such as 

leakage coefficients) are reflected by changes in error residuals, which are the difference 

between a parameter’s estimate and its measured value.  This model assumes sensors are 

in place for three measurements: two cylinder chamber pressures and the piston position.  

Thus, error residual data are available for those three states.  Some types of faults are 

more apparent in the residuals for particular states than in others.  For example, leakages 

are more apparent from the pressure residuals than from the piston position residual.  

This EKF scheme can detect internal leakages across the cylinder from the high-pressure 

chamber to the low-pressure chamber, as well as external leaks from the chambers to 

atmosphere.  Besides leakages, an examination of the error residual data should be 

capable of indicating the presence of any type of fault that is not modeled by the EKF. 

 

1.2 Literature Survey 

Fault detection in hydraulically actuated systems has drawn interest recently.  The 

use of state observers in fault detection schemes has become especially common in the 

last five years.  The work presented here draws much from two different recently 

published fault detection methods.  The determination of unmodeled faults through the 

analysis of EKF error residual data is described in detail by An and Sepehri [1, 2].  Also, 

a direct fault detection method through the estimation of augmented states with an EKF is 

presented by Chinniah et. al [3].  Song and Sepehri [4] show a similar process of 
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detecting faults through the use of parametric estimation employing a standard state 

observer.  The procedure described in this work attempts to combine these two fault 

detection schemes into one algorithm.  State estimators have become common for the 

application of fault detection.  Shields et. al [5] describe a general overview of fault 

detection observers for nonlinear systems.  The decision to use an EKF-type state 

observer for this work was influenced by its strong track record in fault detection systems 

in a wide range of applications, including, but not limited to, hydraulic actuators.  For 

example, Hagiyev and Caliskan [6] successfully demonstrated the use of a Kalman to 

detect faults in flight control systems.  A collection of various fault detection techniques 

is provided by Venkatasubramanian et. al [7].  Frank [8] discusses the effect of system 

uncertainty on an observer-based fault detection system.  While state observers are 

commonly used in fault detection systems, there are some alternative approaches.  An 

analytical redundancy (AR) approach is used by Chow and Willsky [9].  For yet another 

method for detecting faults, De Parsis and Isidori [10] discuss a purely geometric 

technique.  It is clear there are numerous fault detection techniques available, each 

offering different advantages over other methods.   

 

1.3 Thesis Outline 

Chapter 2 describes the system model and presents the equations of motion.  

Additionally, the 2nd-order Euler integration method for state propagation is provided.  

Chapter 3 illustrates the EKF algorithm.  Its equations and propagation loop are 

described, as well as its background and advantages for use as an on-site estimator for 

fault detection.  In Chapter 4, the EKF model is verified against the true simulation.  Also 
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described in this chapter is how the EKF error bounds from its error covariance matrix 

serve as a self-diagnostic tool for the filter.  Chapter 5 presents the fault detection 

algorithm.  First, the augmented states (cylinder viscous friction coefficient and fluid bulk 

modulus) are directly estimated to determine the presence of faults modeled by the EKF.  

Also, unmodeled faults, in the form of external and internal leakages, are detected by the 

EKF indirectly through the use of error residual data from the three measured states.  

Finally, Chapter 6 presents a summary of this fault detection method and approach, the 

overall conclusions of the results shown in this work, and potential future work to expand 

this research.  
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Chapter 2 

SYSTEM MODEL 

 

2.1 System Overview 

 The hydraulic system used for this examination is a simplified version of a 

desktop rig hydraulic actuator system used by An and Sepehri [1], which has been scaled 

to the approximate physical size of the Caterpillar 320c Excavator.  The model is 

composed of a double-rod actuator controlled by a spool valve, shown in Fig. 2.1.1. 

 

 

Fig. 2.1.1 – Schematic of the hydraulic actuator system 
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2.2 Equations of Motion 

 The spool valve dynamics are characterized by the following second-order 

equation: 

                                               uKyyy nspnn
222 ωωζω =++ &&&                                          (2.2.1) 

where y is the valve position, u is the input signal, ωn is the natural frequency, ζ is the 

damping ratio, and Ksp is the gain for the valve electromechanical servomotor.  The input 

signal used for the simulations presented here is a sinusoid with a 2 second period, so the 

frequency is 0.5 Hz.  The valve position determines the volumetric flow rate, Q, through 

the valve. 
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The pressure is given by P, Cd is the discharge coefficient, Av is the open valve area, 

which is a function of valve position, and ρ is fluid density.  Subscripts ‘1’ and ‘2’ denote 

the two pressure chambers, and subscripts ‘s’ and ‘r’ denote ‘supply’ and ‘reservoir’ 

values for pressure, respectively.  Ps and Pr are both considered to be constants for this 

system. 

 The effect on the cylinder pressures from the flow through the valve is 

characterized by the pressure rise-rate equation: 
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where β is the fluid bulk modulus, V is chamber volume described in Eq. (2.2.5), and 

QLeak is the leaked flow from the chamber (internal or external).  Unless otherwise noted, 

QLeak is nominally zero.  The rate of change of V depends on the piston area A and the 

piston velocity. 
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                                                            xAV && =                                                             (2.2.6) 

V0 is the volume of hydraulic fluid in the supply lines, and xmin and xmax are the minimum 

and maximum piston positions, respectively. 

 The following equation shows the piston dynamics, derived using a force balance 

on the piston with no applied load: 

                                                ( )[ ]cFAPP
m

x −−= 21
1

&&                                                 (2.2.7) 

where x is piston position, m is piston mass, and Fc is the friction force on the piston, 

which is given by 

                                                           xbFc &=                                                              (2.2.8) 

This is a simple linear viscous friction model, with b as the friction coefficient.     
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2.3 State Propagation 

 Equations (2.2.1-2.2.6) can be converted to state-space representation to obtain 

the following six state model, which will be used as the baseline model for this project.  

The state vector is 

                                                TyyxxPP ],,,,,[ 21 &&=x                                                   (2.3.1) 

These states are integrated using a modified second-order Euler integration technique, 

which is shown in the following two equations: 

                                                  tkkk Txxx &+=∗
+1                                                         (2.3.2)  

                                          ( )tkkkk T∗
+

∗
++ ++= 111 2

1 xxxx                                               (2.3.3) 

The subscript k denotes the current step, and k+1 indicates the state at the next 

subsequent step.  The superscript (*) represents an intermediate value used for the second 

Euler integration step.  The sample time for the truth simulation, Tt, is 1 ms.  The values 

for all of the parameters described in this chapter can be found in Table 2.3.1.  These 

parameters are chosen to reflect the hydraulic system used for the bucket circuit on the 

Caterpillar 320c excavator. 
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Table 2.3.1 – System model parameter values. 

Parameter Value 

Damping ratio (ζ) 0.733 

Natural frequency (ωn) 30 rad/s 

Spool valve servomotor gain (Ksp) 10-3 m/mA 

Flow coefficient (Cd) 0.62 

Density (ρ) 850 kg/m3 

Supply pressure (Ps) 106 Pa 

Reservoir pressure (Pr) 101(103) Pa 

Fluid bulk modulus (β) 1.57489(109) Pa 

Supply line volume (V0) 2.2295(10-3) m3 

Piston area (A) 8.422(10-3) m2 

Piston mass (m) 766 kg 

Viscous friction coefficient (b)  17,000 N-s/m 
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Chapter 3 

EXTENDED KALMAN FILTER 

 

3.1 Background 

The Kalman filter (KF) is a recursive state estimator developed by R.E. Kalman 

in 1960.  A variation of the KF, called the extended Kalman filter (EKF) is used here.  

The EKF differs from the standard KF in one aspect: the KF assumes a linear system, 

while the EKF requires a system linearization with each step.  Because much literature 

exists thoroughly describing the derivation of the Kalman filter, only the final equations 

and a brief description is presented here.  The EKF, just like the basic KF, is made up of 

two stages; first, the EKF parameters for the next iteration are predicted, then the 

parameters are corrected using the update equations.   

 

3.2 EKF Equations 

 The a priori state estimate, −x̂ , is predicted ahead using the single-step Euler 

integration routine.  The over-hat (^) indicates the variable is an estimate, and the 

superscript (-) denotes the best estimate before correcting for the current state 

measurement.  The EKF Euler integration step has a different sample time, Ts, which is 

10 ms. 

                                                  skkk Txxx &̂ˆˆ 1 +=−
+                                                         (3.2.1) 

An initial guess for the state estimate, ),0(x̂  is required from the user to start the EKF 

loop.  kx&̂  is a vector of the nonlinear right-hand side of the state-space model, and is a 

function of the previous state estimate and the user input, as seen in Eq. (3.2.2). 
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                                                                 ],ˆ[ˆ uxfx =&                                                    (3.2.2) 

The initial state estimates can be seen in Table 4.1.1.  The other step comprising the 

prediction stage is the projection for the error covariance matrix, −P : 

                                              k
T
kkkk VPP +ΦΦ=−

+1                                                    (3.2.3) 

Vk is the process noise covariance matrix, which can be manually “tuned” to improve 

tracking, and Φk is the discrete state transition matrix (STM), which is the discrete 

Jacobian matrix of the nonlinear state equations.  
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Only the first two terms of Eq. (3.2.4) are used, as all additional terms have a negligible 

effect. 

After the next values for the state estimate and error covariance matrix are 

predicted, the Kalman gain matrix, K, state estimate, and error covariance terms are 

updated, as seen in Eqs. (3.2.5-3.2.7).  The KF is considered an optimal state estimator 

because the gain matrix K is formulated such that it minimizes the diagonal terms of the 

error covariance matrix for the next step. 

                                            ( ) 1−−− += k
T
kkk

T
kkk WCPCCPK                                          (3.2.5) 

                                              ( )−− −+= kkkmkkk CKx xyx ˆˆˆ ,                                            (3.2.6) 

                                                    ( ) −−= kkkk PCKIP                                                   (3.2.7) 

Wk is the measurement noise matrix, which is determined by sensor specifications and 

shown in Eq. (3.2.9), ym is the new vector of measurements (P1, P2, x), and Ck is the 

output matrix from the state space formulation, which is shown in the following equation: 
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Wk is a diagonal matrix containing the variances (σ2) of the sensors.  It is important to 

recognize that these are the squares of standard deviations, because, for a Gaussian 

distribution, about 68% of the data will exist between ±1σ from the mean, which is zero.  

So, by Eq. (3.2.9), the pressure transducers for both of the cylinder chambers have a 

measurement accuracy of 1 kPa, and the piston position sensor has an accuracy of 1 mm.   

The EKF equations form a recursive loop providing a current state estimate at 

each time step.  Because this loop only requires the previous step’s information, data 

storage is not needed.  This makes the EKF ideal for “on site” type applications where 

large memory storage is unavailable or inconvenient.  The KF loop can be seen in Fig. 

3.2.1 [11].  Notice the discrepancy between Eq. (3.2.1) and the state estimate projection 

depicted in the figure.  The equation in the figure, which uses the state transition matrix 

to project ahead in time for the next step, is a more general formulation of the EKF loop, 

which assumes a linear model.  This approach prefers to use the nonlinear right-hand side 

equations and a first-order Euler integration step to project the state estimate forward in 

time. 
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Fig. 3.2.1    Recursive Kalman filter loop 

 

3.3 EKF Uncertainty Model 

  The measurement noise, process noise, and error covariance matrices are very 

important to the EKF model because, together, they describe the model uncertainty.  The 

sensor accuracy, Wk, tempers the Kalman gain matrix.  If the sensors are excessively 

noisy, then the gain matrix becomes smaller. The EKF is less aggressive in correcting for 

the deviation between measurement and estimate if it has less confidence in the 

measurement itself.  The process noise covariance matrix, Vk, is a less intuitive quantity.  

It is a diagonal matrix containing each state’s contribution to the overall uncertainty of 

the model.  If the preferred level of performance is not achieved, the user can manually 

adjust these values to improve results.  Vk directly contributes to the error covariance 

matrix, Pk, as seen in Eqs. (3.2.2) and (3.2.6).  The error covariance matrix is extremely 

useful as a constantly updating diagnostic tool for the filter itself.  The diagonal terms of 
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Pk will be used to measure the filter performance in tracking the states.  Before entering 

the EKF loop, an initial guess for Pk is required from the user, then the matrix evolves 

with each new estimate.  The process noise matrix, Vk, as well as the initial user input for 

Pk, can be found in the appendix. 
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Chapter 4 

EKF MODEL VERIFICATION 

 

4.1 State Tracking 

 In order for the EKF to confidently detect faults, the performance on the baseline 

nominal system must first be checked to ensure it is properly tracking the states.  The 

tracking for all six states will be shown for this trial, but throughout the rest of this report, 

for the sake of brevity, only the relevant plots or enough plots to demonstrate the EKF 

performance will be shown.  The initial conditions for both the truth simulation and the 

EKF state estimate are shown in Table 4.1.1.   

Table 4.1.1 – Initial conditions for EKF loop. 

State True Value Estimate 

1P  8(106) Pa 5(106) Pa 

2P  8(106) Pa 5(106) Pa 

x  0.45 m 0 

x&  0 0 

y  0 0 

 y&  0 0 

 

The state estimates are arbitrarily chosen with only the intention of being near the 

unknown true initial condition.  For this simulation, the two cylinder chamber pressures, 

P1 and P2, are both taken to be half of the supply pressure, Ps.  The other four estimates 
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are zero, implying a neutral starting condition.  This simulation, as well as all others in 

this work, receives a 0.5 Hz sinusoidal input signal. 

 The true value and the EKF estimate are shown for all six of the physical states in 

Figs. 4.1.1-4.1.6.  It should be noted that all of the states exhibit the same periodicity as 

the input signal.  Ideally, there should be no discernible difference between the state 

estimate and the true state.  It can be seen from these six plots that, at least by casual 

inspection, the EKF is tracking well.  Obviously the estimate is not perfectly matched to 

the true state value.  Figure 4.1.7 displays an enlarged view of a region of P1 that exhibits 

chatter, which is the most difficult portion of the state to track, and it can be seen that the 

deviation between the estimate and the true value is insignificant for the purposes of state 

estimation.  So it appears that, even “under the microscope,” the EKF is performing 

soundly. 

 

Fig. 4.1.1    Pressure 1 – True value and estimate (6-state EKF, nominal simulation) 

 



 
17

 
 

 

 

Fig. 4.1.2    Pressure 2 – True value and estimate (6-state EKF, nominal simulation) 

 

 

Fig. 4.1.3    Piston position – True value and estimate (6-state EKF, nominal 

simulation) 
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Fig. 4.1.4    Piston velocity – True value and estimate (6-state EKF, nominal  

simulation) 

 

Fig. 4.1.5    Spool valve position – True value and estimate (6-state EKF, nominal 

simulation) 
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Fig. 4.1.6    Spool valve velocity – True value and estimate (6-state EKF, nominal 

simulation) 

 

Fig. 4.1.7    Pressure 1 – Close-up view of true value and estimate (6-state EKF, 

nominal simulation) 
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4.2 EKF Error Bounds 

 In addition to being able to check state estimates by inspection, the EKF includes 

its own diagnostic tool.  The diagonal terms of the error covariance matrix Pk provide 1-σ 

error bounds for state estimates.  These error bounds provide a check of the filter’s 

accuracy.  If the EKF is performing correctly, about 68% of the estimation error signal 

should lie within the error bounds.  This diagnostic is based on the standard deviation of a 

normally distributed random process, which is the structure of the uncertainty and noise 

matrices.  It should be noted that the ±1-σ error bounds for P1 in Fig. 4.2.1 are near 1 

kPa.  This is an artifact of the measurement accuracy for the pressure transducer used in 

the measurement noise matrix, Wk, which was assumed to also be 1 kPa, seen in Eq. 

(3.2.8).  Similarly, the measurement accuracy for the piston position sensor has an 

accuracy of 1 mm, and the ±1-σ error bounds for piston position, x, in Fig. 4.2.2 are close 

to 1 mm.  By inspection of Figs. 4.2.1 – 4.2.3, it can be seen that at least 68% of the 

estimation error signal falls within the ±1-σ error bounds, so it appears that the filter is 

indeed tracking well. 
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Fig. 4.2.1    Pressure 1 estimate error and error bounds (6-state EKF, nominal 

simulation) 

 

Fig. 4.2.2    Piston position estimate error and error bounds (6-state EKF, nominal 

simulation) 
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Fig. 4.2.3    Spool valve velocity estimate error and error bounds (6-state EKF, 

nominal simulation) 
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Chapter 5 

FAULT DETECTION 

 

5.1 Fault Detection Scheme 

 The six states estimated by the EKF up to this point are the minimum number of 

physical states necessary to fully describe the hydraulic actuator’s dynamics.  Additional 

“augmented states” will now be added to the EKF model, enabling the filter to track 

changes in those new states, as well as the original six.  These augmented states already 

appear in the state-space representation, but are considered constant parameters.  Indeed, 

if no fault occurs, these parameters will likely behave as constants throughout the course 

of system operation.  A fault will be introduced into the truth simulation and if the EKF 

fault detector is performing properly, that fault will be reflected non-constant behavior 

for the estimates of the augmented states. 

 

5.2 Viscous Friction Coefficient 

The first augmented state is viscous friction coefficient, b, shown in Eq. (2.2.8), 

and is now the seventh state.  Before introducing any faults, it is prudent to check the 

accuracy of the state estimates with this new augmented state added.  Figure 5.2.1 shows 

that, after a brief time when the estimate is bad, the EKF manages to track the constant 

friction coefficient very well.  The brief transient phase where the estimate is poor for 

approximately the first second of the simulation is due to the lack of knowledge the EKF 

has of the initial conditions of the true system model.  Recall from Table 4.1.1 that the 

filter does not know the initial conditions of the truth model, it only requires a guess in 
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the “ballpark range” for each state.  The same is true for viscous friction coefficient; for 

this simulation, the nominal value for b is 17,000 N-s/m (constant) and the initial state 

estimate, )0(b̂ , is assumed to be 10,000 N-s/m.  The estimation plot in Fig. 5.2.1 and the 

error bounds found in Fig. 5.2.2 support the statement that the filter is accurately 

tracking, with at least 68% of the estimation error signal falling within the ±1-σ error 

bounds.  It is also worth noting that adding a seventh augmented state to the EKF does 

not degrade the estimates of any of the other six classic states.  As an example, the data 

from the first state, P1, is presented in Figs. 5.2.3 and 5.2.4. 

 

Fig. 5.2.1    Friction coefficient – True value and estimate (7-state EKF, nominal 

simulation) 
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Fig. 5.2.2    Friction coefficient estimate error and error bounds (7-state EKF, 

nominal simulation) 

 

Fig. 5.2.3    Pressure 1 – True value and estimate (7-state EKF, nominal simulation)                           
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Fig. 5.2.4    Pressure 1 estimate error and error bounds (7-state EKF, nominal 

simulation) 

 The EKF has shown that it can directly estimate b, so we will now test its ability 

to detect faults that result in a change in friction coefficient.  At 4 seconds into the 

simulation, the true value of b will decrease by 23.5% instantaneously.  The EKF model 

has no knowledge of this fault.  From the results in Figs. 5.2.5 and 5.2.6 it is apparent that 

the filter is able to track this type of fault b, as well over 68% of the error points lie 

within the error bounds.  Similar to the no-fault estimate of friction coefficient (Fig. 

5.2.1), the estimate needs a short time, about one second, to “catch up” to the true value 

before leaving the transient phase and tracking well.  Then after the fault occurs, a similar 

time period is needed for the estimate to settle on the new post-fault value of b.  It seems 

clear that this 7-state EKF model is effective as a detector of faults in viscous friction 

coefficient. 
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Fig. 5.2.5    Friction coefficient – True value and estimate (7-state EKF, 23.5% fault 

in b at t = 4 seconds) 

 

Fig. 5.2.6    Friction coefficient estimate error and error bounds (7-state EKF, fault: 

23.5% decrease in b at t = 4 seconds) 
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5.3 Fluid Bulk Modulus 

 The eighth and final state added to this fault detection model is fluid bulk 

modulus, β.  The same process described previously for adding friction coefficient as an 

augmented state will be used here.  First, the tracking for the 8-state no-fault system will 

be checked.  The “true” value for β is 1.57489(109) Pa, and the initial state estimate, 

)0(β̂ , is 1.5(109).  Figures 5.3.1 and 5.3.2 indicate the 8-state EKF model appears to be 

effective as a state estimator.  From Fig. 5.3.1, the steady-state tracking does not look as 

good as that of the other states, but 68% of the estimate error values lie within the ±1σ 

error bounds shown in Fig. 5.3.2.  Recall that, for a Gaussian distribution, about 68% of 

the data is ±1σ from the mean.  The noise is considered to be “white noise” in this case, 

which is Gaussian and has a zero mean.  This indicates that the EKF is indeed performing 

well.  Once again, the tracking performance of the six original physical states (P1, P2, x, 

x& , y, y& ) and b, the other augmented state, does not differ from the results shown 

previously in Figs. 4.1.1-4.1.6 and Fig. 5.2.1.  This affirms that the EKF still tracks well 

with the addition of a second augmented state to create an 8-state system. 
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Fig. 5.3.1    Bulk modulus – True value and estimate (8-state EKF, nominal 

simulation) 

 

Fig. 5.3.2    Bulk modulus estimate error and error bounds (8-state EKF, nominal 

simulation) 
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 As in the case with friction coefficient, a substantial change in fluid bulk modulus 

will be introduced mid-simulation to check the ability of the EKF, which has no 

knowledge of the existence of any faults in the truth model, to detect faults in β.  At 12 

seconds into the simulation, the true value of β will instantaneously decrease to 60% of 

its original value.  This type of change in bulk modulus occurs with the presence of 1% 

entrained air.  The results of the fault are seen in Figs. 5.3.3 and 5.3.4.  Figure 5.3.3 

shows that the EKF detects the change in β and arrives upon the post-fault value very 

quickly.  It is noted that in Fig. 5.3.4, except for the unsurprising deviation at the 

occurrence of the fault, around 68% of the estimate error signal lies within its anticipated 

1-σ error bounds.  Although the fault at 12 seconds causes some transient error, the 

steady-state tracking remains acceptable for bulk modulus. 

 

Fig. 5.3.3    Bulk modulus – True value and estimate (8-state EKF, 60% fault in β at 

t = 12 seconds) 
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Fig. 5.3.4    Bulk modulus estimate error and error bounds (8-state EKF, 60% fault 

in β at t = 12 seconds) 

 

5.4 External Leakage 

 Another type of fault very common in hydraulic systems is the leakage of 

hydraulic fluids from a pressure chamber, whether it be internal leakage across the 

cylinder to the low pressure side, or external leakage out of the system entirely.  Both of 

these leakage flowrates are shown in the model schematic in Fig. 2.1.1.  The first 

unmodeled fault to be examined is external leakage.  Leaked flow is modeled as a 

leakage coefficient, kel with units of m3/Pa-s multiplied by a pressure difference, as seen 

in Eq. (5.4.1). 

                                                  )( 0PPkQ elleak −=                                                      (5.4.1) 

In the case of external leakage, P0 is atmospheric pressure.   
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 Unlike the previous examples of friction coefficient and fluid bulk modulus, it is 

not feasible to directly estimate leakage coefficients because they are such small 

numbers, usually on the order of 10-12 m3/Pa-s.  There is such a large difference in order 

between leakage coefficients and the other states (for example, around 20 orders of 

magnitude difference with bulk modulus) that this EKF simply cannot estimate and track 

leakage coefficients if they were included as additional augmented states due to 

numerical difficulties.  Instead, error residual data from the EKF will be used to indirectly 

detect leakages.  Recall that the error residual is the difference between a sensor 

measurement and its corresponding state estimate, given in Eq. (5.4.2).   

                                                         xyr ˆC−=                                                           (5.4.2) 

Because only three states are measured, P1, P2, and x, r contains information relating to 

those states only.  In the absence of a system fault, the error residuals should be nearly 

zero.  Because the measurements are subjected to white noise, which is equally positive 

and negative and also has a zero mean, an error residual plot of a nominal simulation 

resembles a white noise plot, as seen in Fig. 5.4.1. 
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Fig. 5.4.1    Error residual for pressure 1 (8-state EKF, nominal simulation) 

Using error residual data is an indirect approach to fault detection because it will 

reveal unmodeled faults.  In this case, the possibility of leakage is not modeled by the 

EKF, so it cannot possibly have any knowledge of the existence of a leakage fault.  So 

rather than directly estimating leakage, such as was done previously with b and β, the 

error residual data will be paramount in indicating the presence of a fault.  Because r is 

the difference between a state estimate and its measurement, it should grow large when a 

fault is present and assume a value near zero otherwise.  In order to make faults more 

apparent, some manipulation of the error residual is needed.  The mean value will be 

used, because that is easier to monitor than a change in magnitude of a white noise signal, 

such as is shown in Fig. 5.4.1.  But rather than a regular mean, it is appropriate to use a 

running average, so the error residual average is not biased by a relatively large amount 

of pre-fault data, making it difficult to determine the occurrence of a fault.  And finally, 

because r resembles white noise, it has a zero mean, so the absolute value of the error 
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residual data will be used.  This should provide a positive mean that will assume a value 

near zero for a nominal simulation and grow larger with the occurrence of a fault.  These 

corrections are shown in Eq. (5.4.3): 

                                                          
n

r
r

k

nki
i

avg

∑
−==                                                       (5.4.3) 

where n is the window size of the average.  For this simulation, the window size is a 4 

second span, or, twice the period of the input function.  Figure 5.4.2 shows the running 

average of the error residual data for a nominal simulation.  Because the state estimates 

are initially very bad, the error residuals exhibit a very large spike before settling out to a 

nearly constant value.  By neglecting the initial transient spike, the value of the error 

residual average can be seen in Fig. 5.4.3.  For all future trials, the running average will 

be artificially held to zero for the first 5 seconds of the simulation to prevent the initial 

transient phase from skewing the results.  Notice that the steady-state value is “small,” 

but not zero.  Again, this is because the average of the absolute value of ri is being used , 

not just the mean of ri.  So instead of a zero mean, a user should look for the error 

residual value described by Eq. 5.4.3 to be “flat,” such as in Fig. 5.4.3, to signify a good 

estimation process.  A different type of error residual profile indicates the presence of an 

unmodeled fault. 
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Fig. 5.4.2    Running average of error residual for pressure 1 (8-state EKF, nominal 

simulation) 

 

Fig. 5.4.3    Close-up view of running average of error residual for pressure 1 (8- 

state EKF, nominal simulation) 
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An external leakage will now be introduced into the system.  At 16 seconds, an 

external leakage coefficient of 1.589(10-12) m3/s-Pa is introduced into chamber 1, as seen 

in Fig. 5.4.4.  It is clear that the pressure profile has been altered by the fault at 16 

seconds, but it is not obvious until viewing the close-up view of P1, shown in Fig. 5.4.5, 

that the state estimate also suffers.  Not surprisingly, the estimate for P1 becomes very 

poor at this point, and Fig. 5.4.6 confirms this, where it is apparent that at least 68% of 

the error data does not fall within the ±1-σ error bounds.  It can be seen from Fig. 5.4.7 

that the piston position drifts lower over time after the fault at 16 seconds, but the leak 

does not affect it enough to significantly impact the position estimate, as seen by the error 

bound plot in Fig. 5.4.8. 

 

Fig. 5.4.4    Pressure 1 – True value and estimate (8-state EKF, external leakage at t 

= 16 seconds) 
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Fig. 5.4.5    Close-up view of pressure 1 – True value and estimate (8-state EKF, 

external leakage at t = 16 seconds) 

 

Fig. 5.4.6    Pressure 1 estimate error and error bounds (8-state EKF, external 

leakage at t = 16 seconds) 
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Fig. 5.4.7    Piston position -- True value and estimate (8-states EKF, external 

leakage at t = 16 seconds) 

 

Fig. 5.4.8    Piston position estimate error and error bounds (8-state EKF, external 

leakage at t = 16 seconds) 
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It may seem that this data makes the presence of a fault quite apparent, making 

the use of error residual data redundant.  Unfortunately, this information is only available 

with access to all of the “true” simulation data.  This is most likely not the case for the 

vast majority of potential on-site applications for this fault detection method.  Therefore, 

these types of error bound plots, such as Figs. 5.4.6 and 5.4.8, are useful for off-line 

validation of the EKF model, but not for actually indicating the presence of faults. 

This external leakage fault is also apparent from the error residual data for P1, 

which can be found in Fig. 5.4.9.  The running average holds near zero until the fault 

occurs, and then very clearly deviates to a non-zero value, indicating the fault has been 

detected by the EKF.  The running average of the error residual for piston position can be 

seen in Fig. 5.4.10.  Although any deterioration of the piston position estimate due to the 

fault cannot be detected through visual inspection, the error residual data indicate the 

estimate did suffer.   
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Fig. 5.4.9    Running average of error residual for pressure 1 (8-state EKF, external 

leakage at t = 16 seconds) 

 

Fig. 5.4.10    Running average of error residual for piston position (8-state EKF, 

external leakage at t = 16 seconds) 
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It should be remembered that this fault detection method is not the same as that 

used previously for faults in friction coefficient and fluid bulk modulus.  Those 

parameters were added to the state-space representation as augmented states, and directly 

estimated by the EKF to indicate the presence of a fault.  This is an indirect method for 

fault detection; rather than directly estimating a system error, this method uses the 

discrepancy between a state measurement and its EKF estimate to signal the presence of 

an unmodeled fault. 

 

5.5 Internal Leakage 

 Besides external leakage, there is also interest in detecting internal leakage 

between cylinder chambers.  Internal leakage is characterized by the passage of hydraulic 

fluid from the high-pressure chamber to the low-pressure chamber across the cylinder.  

The leaked flow is similar to that of Eq. (5.1), but atmospheric pressure, P0, is replaced 

by the lower of the two cylinder chamber pressures as can be seen in Eq. (5.5.1),  
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                                                    (5.5.1) 

 Like in the previous cases, the simulation is run for a time to allow the transients 

to settle, and then a fault is introduced into the truth model.  At 16 seconds, an internal 

leakage with a coefficient of 11.503(10-12) m3/s-Pa is instituted.  Once again, the initial 

transient errors have been manually set to zero to give a clear view of the impact of a 

fault on the error residual.  The results are shown in Figs. 5.5.1-5.5.3.  As in the case of 

external leakage, it is obvious that 68% of the error signal data does not fall within the 
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±1-σ error bounds, clearly indicating a fault.  Although the tracking and the estimation 

errors do not appear by inspection to be significantly better than those from the external 

leakage trial, the impact of an internal leakage on the system is roughly 2-3 times less 

severe than that of an external leakage.  Figure 5.5.3 shows the running average of the P1 

error residual clearly indicates a fault is detected, but notice the post-fault value is smaller 

than on the external leakage error residual plots.  The P2 error residual data, which is not 

shown, reflects the same results as those shown for P1.  It is apparent that this EKF fault 

detection scheme does indeed detect the presence of internal leakages. 

 

Fig. 5.5.1    Pressure 1 – True value and estimate (8-state EKF, internal leakage at t 

= 16 seconds) 
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Fig. 5.5.2    Pressure 1 estimate error and error bounds (8-state EKF, internal 

leakage at t = 16 seconds) 

 

Fig. 5.5.3    Running average of error residual for pressure 1 (8-state EKF, internal 

leakage at t = 16 seconds)
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Chapter 6 

SUMMARY AND CONCLUSIONS 

 

6.1 Summary 

 A scheme for detecting various types of faults in a hydraulic actuator system was 

desired.  The method described within this work employs an extended Kalman filter as a 

state estimator.  An EKF-type state observer has two substantial advantages over other 

traditional state observers.  Firstly, the EKF uses a recursive algorithm, eliminating the 

need for data storage.  This is especially useful for off-road hydraulic equipment, where 

large amounts of computer storage are commonly not available or convenient.  

Additionally, the EKF algorithm contains an error model which accounts for process and 

measurement noise, two quantities that frequently have significant impact in large 

hydraulic machines. 

The EKF uses two different techniques for determining the presence of a fault, 

one direct and the other indirect.  The direct fault detection method involves including 

system parameters as augmented states and tracking changes in the state estimates for 

those augmented states after introducing a fault in the truth simulation.  This technique is 

considered to be a direct fault detection method because the fault itself (a parametric 

change) is estimated by the EKF.   

The indirect method uses error residual data to determine unmodeled system 

faults.  In this work, the unmodeled faults are external and internal leakages.  The error 

residuals are the difference between a state’s measurement and its estimate.  To make 

faults more apparent, the running average of the absolute value of the error residuals is 
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analyzed.  In the absence of a fault, the error residual data profile should display a flat 

line with a value near zero.  When a fault occurs, the error residual becomes larger in size 

and irregular in profile, indicating that a fault has been flagged by the EKF. 

 

6.2 Conclusions 

The results presented in Chapter 5 indicate that the EKF scheme presented here 

proves to be an effective fault detection tool in this hydraulic actuator system.  In the case 

of fault detection via the estimate of augmented states, it was found that the EKF tracks 

faults accurately and promptly.  This claim of good tracking is confirmed by the EKF 

embedded diagnostic tool, the ±1-σ error bounds derived from the error covariance 

matrix.  When the EKF is performing well, around 68% of a state’s error signal should lie 

within those bounds, which was found to be the case for all of the augmented state faults 

presented here.   

Similarly, it was found that the EKF is useful in indicating the presence of 

unmodeled faults, such as leakages.  The running average of the error residual maintained 

a near-constant value close to zero until a fault occurs.  After a fault takes place, the error 

residual data profile dramatically changes, making the existence of a fault apparent to an 

operator. 

 

6.3 Future Work 

There is much room for expansion on this work.  The system model used here is 

extremely simple.  A more complicated and realistic model would be instructive in 

proving the effectiveness of this EKF fault detection scheme.  This applies to several 
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areas of the system model, notably, adding a pump model for the supply pressure and 

also by providing a more realistic cylinder friction model.  Another natural hardware 

extension is the inclusion of a load cell on the cylinder.  This would be a simple addition, 

and would add one more physical state to the baseline model.  Additionally, authentic 

operator stick input may be more useful than the sinusoid input signal used here.  There is 

a possibility that including irregular input will damage state estimates, but it is expected 

that this EKF scheme will still perform well.  Because of this uncertainty, the addition of 

user input is especially valuable for model validation.  And perhaps the most important 

possible future development is the hardware validation of this fault detection scheme.  

Until the fault detection algorithm is loaded on a machine and tested, much will remain 

uncertain. 
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Appendix A 

 

The EKF matrices requiring user input are provided here.  C is the output matrix for the 

three measurements, P1, P2, and x.  W and V are the sensor and process noise matrices, 

respectively.  The terms making up these two matrices have the structure of covariance 

(σ2) terms.  P- is the initial error covariance matrix upon entering the EKF loop.  This 

matrix is then updated and evolves according to the EKF algorithm. 
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