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Chapter 1

Introduction

1.1 Background Information

T
HE digital revolution at the turn of the 21st century has dramatically changed

society. As a result, technology driven devices are employed everywhere. A

common feature in these devices is the ability to capture a digital image. Remote

sensing satellites capture images throughout the world for both commercial and de-

fense applications. Mobile phones and digital cameras allow one to quickly and easily

obtain a photo. Charge-coupled devices (CCD) are also embedded in numerous ad-

ditional devices [1]. The immediate availability of digital images has in turn created

demand for software and applications that can readily utilize and process these im-

ages.

Standalone digital cameras are commonplace and capture high quality photos.

However, the storage space and bandwidth requirements can still be cost prohibitive.

Images are often compressed to reduce transmission and storage, but quality is de-

graded as a result of the compression process. Most mobile phones are only capable

of capturing images at a very low resolution. It is desirable to obtain a method by

which the quality of an image can be restored after compression and transmission.
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The resolution capabilities of digital imaging devices are continually improving

[2, 3]. Display devices to view these images are also capable of higher resolutions.

However, there are large archives of digital images captured at significantly lower

resolutions. It is desirable to improve the resolution of these images to leverage the

advantages of current state-of-the-art applications. Image interpolation, also known

as upsampling, aims to develop techniques to supersample these images to a larger

resolution while maintaining the detail present in the original image.

Satellite acquired remote sensing imagery is an increasingly important resource

for scientific, commercial, and military applications. Current satellites are equipped

with several CCDs capable of capturing images at multiple resolutions and in different

spectral wavelengths [4]. High resolution multispectral images include panchromatic

(Pan), where wavelengths from blue through near-infrared (IR) are captured as a sin-

gle channel of data resulting in a detail rich grayscale image with spatial resolution

of 0.6m for QuickBird [5]. Also available are lower resolution images that contain

four channels of data representing red, green, blue (RGB), and IR that are displayed

together in a multi-spectral (MS) image. The majority of applications prefer a color

image representation of remote sensing data, but also desire the more detailed infor-

mation present in the high resolution Pan image. Table 1.1 shows the capabilities of

the QuickBird remote sensing satellite [6]. The specifications of the IKONOS satellite

[7] are contained in Table 1.1.

Table 1.1: Specifications of the QuickBird satellite

Band Spectral Wavelength (nm) Spatial Resolution (m)
Blue 450 - 520 2.44
Green 520 - 600 2.44
Red 630 - 690 2.44
IR 760 - 900 2.44
Pan 450 - 900 0.61
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Table 1.2: Specifications of the IKONOS satellite

Band Spectral Wavelength (nm) Spatial Resolution (m)
Blue 444.7 - 516.0 1.0, 4.0
Green 506.4 - 595.0 1.0, 4.0
Red 631.9 - 697.7 1.0, 4.0
IR 757.3 - 852.7 1.0, 4.0
Pan 525.8 - 928.5 1.0

1.2 Problem Definition

Image interpolation, or image zooming, as presented in this thesis is formulated as

follows. Consider an input image I with dimensions 256x256. The resolution of the

image may be insufficient, perhaps due to compression, decimation, or a low resolution

CCD initially used for image capture [1]. Performing interpolation on I will increase

the dimensions by a specified zoom factor. For example, performing interpolation by

a zoom factor of two on a 256x256 image will increase the dimensions of the resulting

image I ′ to 512x512. It is common to perform interpolation using integer factors such

as two or four.

Multispectral data fusion of RGB and Pan remote sensing data is referred to

as pan-sharpening. For example, sensors onboard Quickbird, among other satellites,

capture both 2.4 meters per pixel MS and 0.6 meter Pan imagery. While the Pan

image provides a superior resolution and range of data, additional detail can be

leveraged by combining the MS and Pan imagery [8]. Moreover, imagery presented

in full color is desirable for consumer applications and publishing. Pan-sharpening

is used to enhance lower resolution MS imagery by combining channels of varying

resolution [9]. It combines the channels of color present in a MS image with the

detail and high resolution of a Pan image to produce an image that retains the detail

of the Pan image while employing the MS channels for a color fused result [10].
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1.3 Justification of Proposed Research

Current methods for image interpolation initially appear satisfactory. Edge-

adaptive zooming interpolates pixel values based on a set of criterion taken from

detecting edges and discontinuities, while maintaining computational complexity be-

low that of bicubic interpolation [11]. However, closer inspection reveals the intro-

duction of structural artifacts that can add new details near edge boundaries and

ringing artifacts near circular and oval regions of the resulting image [12]. Artifacts

are clearly undesirable. An interpolation method should not introduce new details or

information, which therefore compromises the authenticity of the image. Maintaining

authenticity is especially important for scientific, military, and medical applications

where image detail drives critical decision making.

Classic interpolation methods including bilinear and bicubic interpolation [13] are

computationally efficient and simple to implement. However, these methods suffer

from aliasing along and near edge boundaries. Areas of high contrast appear to suffer

the most noticeable aliasing effects resulting in an unsatisfactory result in most prac-

tical applications. Attempting to supersample an image to a high resolution aims to

minimize aliasing, blurring, and introduction of artifacts.

An important step in pan-sharpening is accurately upsampling the images. With-

out accurate interpolation, the fused data will result in color bleeding beyond their

original boundaries. It is desirable to enhance features of the Pan image without los-

ing detail. Bicubic interpolation is commonly employed to upsample the MS image,

yielding a reasonable result. However, color bleeding and aliasing are still significant

concerns.
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1.4 Proposed Scope of Research

Adaptive Bilateral Extensor (ABE) interpolation is introduced in this thesis and

leverages the following applications:

• ABE image interpolation applied to a decimated or subsampled target image

resulting in a superior super-resolution image compared to current state-of-the-

art methods.

• Bilateral Interpolation for lossless quality original images.

• ABE interpolation for pan-sharpening of remote sensing imagery.

1.5 Thesis Organization

The organization of this thesis is outlined as follows. Chapter 1 begins with

providing background information and motivation for the research proposed in this

thesis. A formal presentation of the problems addressed are next explained. The

introductory chapter is concluded with justification for the research proposed in this

work.

Current and classic algorithms employed for image interpolation are discussed at

the beginning of Chapter 2. The extensor formulation is next presented, providing

a detailed mathematical foundation for the extensor-based interpolation algorithm.

Chapter 3 follows by introducing the mathematical formulation of the two dimen-

sional structure tensor employed for ABE interpolation.

Chapter 4 begins with an introduction to bilateral filtering. It follows by formulat-

ing a novel adaptive bilateral image interpolation algorithm. The ABE interpolation

algorithm is then presented as a combination of extensor-based interpolation and bi-

lateral filtering.
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A discussion of desirable properties for image quality evaluation begin Chapter

5. The metrics chosen for performance evaluation of image interpolation algorithms

are then introduced. Results obtained for image upsampling are next presented. It

follows with analysis and discussion of results compared to current state-of-the-art

interpolation techniques. Qualitative and quantative comparisons are presented and

discussed with respect to current interpolation algorithms.

Preliminary information on satellite remote sensing data begins Chapter 6. It con-

tinues with the ABE interpolation algorithm for the application of pan-sharpening.

Results and comparison to other interpolation algorithms for pan-fusion are next pre-

sented. This thesis concludes with a summary of accomplishments and dialogue for

future work in Chapter 7.
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Chapter 2

Extensor Formulation

Overview

This chapter begins with an overview of classic image interpolation algorithms and then introduces

the isotropic extensor algorithm developed by Palaniappan et. al. [12] and Li [14]. Low order

interpolants are first discussed. The recently developed edge-directed interpolation method by Or-

chard and Li [15] is also described as it will be used as a comparison method for benchmarking.

The mathematical formulation and background information regarding the extensor-based method is

described as it will be extended to the proposed adaptive bilateral extensor in Chapter 4.

2.1 Previous Work

N
UMEROUS algorithms to solve the issue of image interpolation have been

proposed in the past several decades. A simple naive method is nearest

neighbor interpolation. Nearest neighbor interpolation proceeds by selecting as the

interpolated value the pixel with the smallest spatial distance to the current pixel

position in the interpolated domain. One advantage of this process is that the color

table of the image remains intact. This property is very desirable for image editing
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software when examining an image at high zoom factors. While computation of this

algorithm is efficient, nearest neighbor interpolation produces blocky structures and

significant aliasing along edge boundaries.

A related method more widely used is bilinear interpolation which utilizes the four

nearest pixels to a point (x, y) to be interpolated. By formulating four equations and

solving for the unknown variables, we can obtain coefficients a · · ·d and use

I ′
xy = ax + by + cxy + d (2.1)

to obtain the pixel intensity I ′
(x,y) [16]. Bilinear interpolation maintains computational

efficiency and improves over that of nearest neighbor interpolation, though aliasing

along edge boundaries still persists. Perhaps the most well known classic interpolation

method is bicubic interpolation formulated as [13].

I ′
x′y′ =

3
∑

i=0

3
∑

j=0

Dijx
iyj (2.2)

where Dij represents the respective distances between pixels. Bicubic interpolation

is one of the best methods currently available for image interpolation producing well

defined edges with minimal aliasing. However, the computational complexity of this

method is high, requiring significant execution time to generate the resulting image.

Several methods have been proposed recently that improve on classic interpolation

methods. Cubic convolution improves on classic interpolation methods, but requires

computationally expensive operations to implement [17]. Edge-directed interpolation

introduced adaptation based on covariance information, maintaining a correspondence

between the low-resolution original image and the high-resolution interpolated result

[15]. A data-adaptive method is then employed with covariance-based adaptive and

bilinear interpolation. While producing a visually pleasing result, a closer inspection
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reveals that edge-directed interpolation introduces new features and swirling artifacts

that are not present in the original image. A method proposed in [18] employs a gra-

dient search algorithm to enhance performance near edge boundaries. An isotropic

extensor-based (IE) method utilizing a nonlinear mapping between the spatial dis-

tance and pixel intensity produces results better than that of bilinear interpolation

while preserving texture and underlying information [12]. However, it is unable to

completely overcome aliasing along edge boundaries.

Classic image interpolation methods produce a reasonable approximation to a

supersampled result. However, these linear methods cannot prevent aliasing along

edge boundaries. Nearest neighbor and bilinear interpolation especially suffer from

this undesirable effect. Recent methods attempt to minimize aliasing along edges by

employing data adaptive methods. Unfortunately, these often introduce artifacts and

features that are not present in the original image.

2.2 Isotropic Extensor-Based Formulation

An isotropic extensor-based algorithm is presented in this thesis based on the pre-

vious work in [12, 14]. Its foundation is rooted in the hypothesis that a transformation

matrix T can be found to express a mapping that exists between pixel intensities and

their euclidean distance. A supersampled image I ′ is obtained from a decimated image

I by utilizing the mapping between intensities and their lifted-distances. A function

which can raise a d-dimensional vector into a superspace of N dimensions is hereafter

known as an extensor function. An N -dimensional matrix consisting of N extensor

functions will be defined as an extensor matrix, where d represents the dimension

of the data. We consider d as two dimensions in this thesis since we are working

with digital images. Certain mathematical properties are preferable to possess for

extensor functions. One such property common to many types of transformations is
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f(Lx) = Lf(x) given a linear transformation L and extensor function f . It also may

be desirable to have a similar property hold for restricted transformations such as ro-

tation and scaling. Additional classes of extensor functions may also be satisfactory

to a visual inspection.

The class of extensor functions utilized in this thesis are defined based on the

euclidean distance between pairs of pixel index values within a specified area known

as an extensor window. It is often an isotropic area, formulated as

X =
1

K



















ϕ11 ϕ12 · · · ϕ1N

ϕ21 ϕ22 · · · ϕ2N

...
...

...
...

ϕN1 ϕN2 · · · ϕNN



















N×N

(2.3)

where

ϕij = h( ~Xi − ~Xj) =
∥

∥

∥

~Xi − ~Xj

∥

∥

∥
, i, j = 1, 2, ..., N (2.4)

and
∥

∥

∥

~Xi − ~Xj

∥

∥

∥
denotes the Euclidean distance and X1, X2, ..., XN are a lexicograph-

ical ordering of the pixel positions between pixel position ~Xi and ~Xj; with both being

within the extensor window; K denotes the normalization term based on the desired

zoom factor.

Let φy denote a single extensor at pixel y in Eq 2.3 formulated as

ϕy = Ext(~y) =



















∥

∥

∥

~X1 − ~y
∥

∥

∥

∥

∥

∥

~X2 − ~y
∥

∥

∥

...
∥

∥

∥

~XN − ~y
∥

∥

∥



















(2.5)
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(i, j + 1)

(i + 2, j)
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~X8
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1 2

Fig. 2.1: Pixel indexes with respect to the current pixel (i, j) (left). ~Xi for each
pixel i in the extensor window (middle) where i is an index based on lexicographic
ordering of the pixels in the window. Distance calculation for one row of X for an
isotropic extensor window containing nine positions (right). In this figure, ~ϕT

1 =
[ϕ11, ϕ12, · · · , ϕ1N ] = [0, 1, 2, 1,

√
2,
√

3, 2,
√

3, 2
√

2]

The intensity domain is denoted by G̃, corresponding to g intensity dimensions,

where g=1 for grayscale and g=3 for RGB color images, holds the current intensity

values within the extensor window. It is employed to solve for the pixel intensity

transformation matrix T by

T3×NXN×N = G̃3×N (2.6)

Solving for the transformation matrix T will reveal the mapping to interpolate the

intensity value at a specified index as

T3×N = G̃3×NX−1
N×N (2.7)

Utilizing Eq 2.3 and Eq 2.4 we are assured a distance matrix that is positive definite,

and henceforth it is invertible [11]. Correcting the intensity for constant regions
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y

||~Xi − ~y||

Fig. 2.2: ~ϕy calculated based on values
within the extensor window. The sam-
ple distance calculation is from location
~Xi to ~y, the pixel position to interpo-
late.

~X

Fig. 2.3: Calculation of ϕi. The ith row
of extensor matrix X, which are the dis-
tances from ~X1 to each of the pixel loca-
tions within the extensor window. Note
that the origin of every vector (i.e. dis-
tance calculation) is the same position
~X1.

within the extensor window ensures a uniform interpolation throughout, leading to

G̃ =













G1,1 − µ1 G1,2 − µ1 · · · G1,N − µ1

G2,1 − µ2 G2,2 − µ2 · · · G2,N − µ2

G3,1 − µ3 G3,2 − µ3 · · · G3,N − µ3













3×N

, ~µ =













µ1

µ2

µ3













(2.8)

where µ = [µ1 µ2 µ3]
T is the local mean within the interpolation window. Suitable

representations for the correction factor include the mean or median value within the

extensor window. Finally, we can solve for the interpolated pixel intensity values by

Izy = T ~ϕy = G̃X−1ϕy + ~µ (2.9)

where Izy denotes the interpolated value in the resulting image at pixel location ~y

with extensor representation ϕy.
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Chapter 3

Two-Dimensional Structure Tensor

Based Orientation Estimation

Overview

The first implement to the isotropic structure tensor is to incorporate information about the local

image structure, particularly edges. The adaptive structure tensor, based on the paper by Nath and

Palaniappan [19], is utilized in the adaptive bilateral extensor interpolation algorithm as introduced

in Chapter 4 is then presented.

3.1 Two Dimensional Structure Tensor Based Edge and

Orientation Estimation

E
DGE and orientation estimation is performed utilizing the adaptive structure

tensor algorithm. The summary of the adaptive structure tensor algorithm in

this chapter is based on the paper by Nath and Palaniappan [19]. Consider a small

region of an image, denoted as Ω(y), with center location x and current location

y. The actual gradient of Ω(y) is denoted by v(x). The error vector between the
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Fig. 3.1: Gradient and edge orientations of a pixel located in an ideal edge

estimated and actual gradients is expressed by

||e(x, y)|| = ||g(y)−
(

gT (y) ,v(x)
)

v(x)|| (3.1)

An illustration of the error is provided in Figure 3.1. To obtain the best possible

estimate of v(x), ρ(||e(x, y)||2) is minimized by integrating over Ω such that the

magnitude of v and g is of unit length. Hereafter referred to as the least-squares

error functional, the total error over Ω is expressed as

eLS(x) =

∫

Ω

ρ
(

||e(x, y)||2
)

W (x, y) dy (3.2)

where W (x, y) is a Gaussian weighting function that enhances the gradient when eval-

uating the structure tensor with respect to the center pixel inside Ω and ρ(||e(x, y)||) =

||e(x, y)||2. This equation can then be simplified into two parts as

eLS(x) =

∫

Ω

(gTg)W (x,y)dy−
∫

Ω

(vT(ggT)v)W (x,y)dy (3.3)

The minimization of Eq 3.3 can also be turned into a maximization problem. If the

constraint ||v|| = 1 is applied, then maximizing the second term of Eq 3.3 can be
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solved using Lagrange multipliers as

ELS(x,y) = vT

(
∫

Ω

(

ggT
)

W(x, y)dy

)

v + λ(1− vTv) (3.4)

eLS(x, y) can now be differentiated to find the boundaries of the function. This is

equivalent to the standard eigenvalue problem and solving for v to obtain the best

possible estimate, v̂.

J(x, W ) v̂ = λ v̂ (3.5)

where

J(x, W ) =

∫

Ω

(

ggT
)

W (x,y) dy

represents the least-squares structure tensor with weighting kernel W at position x.

The least squares estimate of the gradient at x employing the available information in

Ω is obtained via the maximum eigenvector in 3.5. Additionally, the Geman-McClure

robust function [20]

ρ (||e(x,y)||, m) =
||e(x,y)||2

m2 + ||e(x,y)||2 = 1− m2

m2 + ||e(x,y)||2 (3.6)

is utilized as it is more robust to outliers and m is a tuning parameter for devaluing

outlying data. The error function employing a Geman-McClure robust function can

be presented from 3.6 as

eGM =

∫

Ω

W (x,y) dy −
∫

Ω

m2

(gTg − vT (ggT)v + m2)
W (x,y) dy (3.7)

Assuming the same constraints as discussed above for the Gaussian function and again

employing Lagrange multipliers and differentiating as above results in the Geman-
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McClure robust tensor function.

J(x,v,W ) =

∫

Ω

m2

(gTg − vT (ggT)v + m2)2

(

ggT
)

W (x,y) dy (3.8)

An iterative process can then be utilized to converge 3.8 to a local minimum within

Ω as follows.

J(x,vi, W )vi+1 = λvi+1 (3.9)

The above discussion utilizes a fixed size Gaussian window to estimate edge ori-

entation. As evidenced in [19], a spatially varying window provides a more accurate

estimate of orientation and is utilized in this thesis. An isotropic Gaussian window is

used initially and then adapted based on size and orientation to refine the edge orien-

tation estimate. The spatially adaptive Gaussian kernel employed, denoted Wi(x, y),

is defined as

Wi(x, y) = Ke−( 1

2
(y−x)T UT

i−1
Λ

−2

i
Ui−1(y−x)) (3.10)

where

Λi =







√
2R1

i 0

0
√

2R2
i






(3.11)

and K is a scalar associated with the Gaussian function. Initially, the Gaussian

window is isotropic to begin computation. Ui contains the eigenvectors (e1
i , e

2
i ), U−1

is initialized to the coordinate axes, and λ1
i > λ2

i are the eigenvalues of the struc-

ture tensor at the ith iteration. The Gaussian window size is updated based on the

eigenvalues at each iteration as

R1
i+1 =

λ1
i

λ1
i + λ2

i

R1
i (3.12)
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Fig. 3.2: The first iterations of the spatially adaptive Gaussian window algorithm
used in the adaptive structure tensor computation. R1

i , R
2
i are the semi-major and

minor axes, respectively, at iteration i and Ωi is the corresponding neighborhood.

and

R2
i+1 =

λ2
i

λ1
i + λ2

i

R2
i (3.13)

The kernel is also updated by the following equation

Wi+1(x, y) = Ke−( 1

2
(y−x)TU

T

i Λ
−2

i+1
Ui(y−x)) (3.14)

and

Λi+1 =







√
2R1

i+1 0

0
√

2R2
i+1






(3.15)

The kernel equation is now modified to account for the adaptive kernel as

J(x, vi, Wi+1)vi+1 = λvi+1 (3.16)

The above presented technique is employed to adapt the extensor window size
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and orientation in the ABE interpolation algorithm. The iterative process depicting

the adaptive spatial kernel size is shown in Figure 3.2. Details of the algorithm and

incorporation of the adaptive structure tensor are presented in the following chapter.
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Chapter 4

Adaptive Bilateral Extensor (ABE)

Interpolation

Overview

Bilateral filtering adapts to local tonal structure and will be incoporated in the proposed adaptive

bilateral extensor algorithm. Possible bilateral kernel functions are next described. It is followed

by a novel image interpolation algorithm based on the adaptive bilateral filter with results and

discussion. An adaptive bilateral formulation of extensor-based interpolation is proposed that is

able to dynamically adapt the extensor kernel based on the image structure and image intensity

information within an adaptive neighborhood of the current pixel location.

4.1 Bilateral Filtering

T
HE bilateral filter was originally proposed in [21] and is outlined as follows.

Bilateral filtering was principally designed to remove noise from an image.

Simple methods for denoising, such as low-pass filtering, blur edges in the resulting

image [21]. Depending on the amount of filtering required, significant distortion of
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the original image may be present in the processed result. More advanced methods

including anisotropic diffusion [22] require an iterative process and significant compu-

tational cost to denoise an image. Bilateral filtering, as proposed in [21], is formulated

as a noniterative process that only requires a single pass over an image.

The bilateral filter removes background noise while preserving the structural as-

pects of an image by considering both the spatial and intensity domains. Following

the original notation of [21], a low-pass domain filter is formulated as

h(x) = kd
−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ, x)dξ (4.1)

where

kd(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ, x)dξ (4.2)

is a normalization term and c(ξ, x) is a kernel function that measures the spatial

closeness between the center position x within a region and ξ that resides at a nearby

point. The second component consists of a range filter defined by

h(x) = kr
−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(ξ)s (f (ξ) , f(x)) dξ (4.3)

where

kr(x) =

∫ ∞

−∞

∫ ∞

−∞
s(f(ξ), f(x))dξ (4.4)

corresponds to the normalization term and s(f(ξ), f(x)) represents a kernel function

that measures the closeness of pixel intensity between the center pixel of a neigh-

borhood, f(x), and a nearby pixel f(ξ) within the region. Each of the above filters

contains desirable properties for noise removal. By combining them together, we filter

the image based on the spatial distance and intensity difference.

The domain filter will intuitively show preference to those pixels located nearby
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Fig. 4.1: Comparison of (left to right) Gaussian, Tukey, and Geman-McClure kernel
functions

in terms of spatial distance. However, the range filter will measure closeness of pixels

in the region based on the difference in pixel intensity. If the region contains an edge

boundary, only those pixels whose intensity is close to that of the center pixel will

be given preference, while the pixels on the opposite side of the edge boundary will

be biased against. Combining together the properties of the domain and range filters

yields the bilateral filter

h(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ, x)s (f(ξ), f(x)) dξ (4.5)

and normalization factor k defined as

k(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ, x)s(f(ξ), f(x))dξ (4.6)

Several possibilities exist to represent the kernel weighting functions employed in

the bilateral filter. The original formulation [21] employs a Gaussian kernel computed

as

w(x, σ) = e−
1

2(
x

σ
)
2

(4.7)

Some other well-known candidates are the Tukey robust estimator [20] defined as
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Fig. 4.2: 512x512 Lena Sjöoblom with areas utilized for bilateral filtering.

w(x, σ) =











(

1−
(

x
σ

)2
)2

if |x| ≤ σ

0 otherwise











(4.8)

and the Geman-McClure function [20] formulated as

w(x, σ) = 1− x2

σ2 + x2
(4.9)

In each of the above kernel formulations, σ is the standard deviation and x is

the input value to the filter (pixel intensities or spatial distance) for the bilateral

filter. Figure 4.1 graphically illustrates each of the candidate kernels. In combining

the spatial and intensity domain filters, σd denotes the value employed for filtering

in the spatial domain and σi denotes usage in the intensity domain. To preserve

the color table of the original image, σi values combine all colors channels together

for filtering. A textured region of Lena’s hat in Figure 4.2 is utilized to compare

the kernel function’s performance with σd = 10 and several values of σi as shown in

Figure 4.3. The Tukey kernel function is chosen for use in this thesis for its ability
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Fig. 4.3: Comparison of (top to bottom) Gaussian, Tukey, and Geman McClure
kernels for bilateral filtering with σd = 10 and σi = 10, 30, 100 in each of the columns
(left to right) respectively.

to retain features and textures better than that of the Gaussian or Geman-McClure

kernels as evidenced in the above comparison.
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Fig. 4.4: Depiction of original pixels,
denoted in black, in the interpolated re-
sult.

Fig. 4.5: Computation of bilateral
weights for Ixy.

4.2 Bilateral Interpolation Algorithm

One major drawback of current interpolation methods is the aliasing incurred

along edge boundaries. It follows that the bilateral filter has the potential to pro-

duce improved results as compared to current interpolation methods due to its edge

preserving properties. The following is a adaptation of the bilateral filter to image

interpolation hereafter known as bilateral interpolation.

Interpolation begins by distributing the original pixels from the input image evenly

as illustrated in Figure 4.4 where black represents the original pixels and white de-

notes interpolated pixels. Next, the bilateral filter weights are computed using the

Tukey kernel on the original image. The weights utilized for each pixel within the

interpolation window, usually 3x3, are computed and stored such that each origi-

nal pixel value is associated with its bilateral filter weights as shown in Figure 4.5.

Next, interpolation proceeds for the unknown pixels in the supersampled space. An

unknown pixel intensity I ′
xy is interpolated using the bilateral filter weights from the

nearest original pixel. The interpolated value is obtained from convolving the original
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Fig. 4.6: A 128x128 portion of Lena processed using bilateral interpolation
(without extensor component) by a factor of two with σi = 90.

pixels in the interpolation window with the bilateral weights.

4.3 Bilateral Interpolation Results

Results of bilateral interpolation are illustrated in the following. Interpolation is

first performed using a center 128x128 region of the decimated Lena image in order

to compare the result with current interpolation methods. As shown in Figure 4.6,

the aliasing present in the decimated input image is enhanced, especially along the

brim of the hat and the shoulder. This is clearly not desirable and is of poor visual

quality. However, advantage can be taken of this since the aliased edge boundaries

present in the input image are well preserved. While not suitable for low quality

images, employing a high quality input image, free of aliasing, may produce a visually

superior result. Figure 4.7 illustrates bilateral interpolation using the original Lena

image. The result is a high quality interpolated image equivalent to that of bicubic
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Fig. 4.7: Hat brim region of the original Lena image interpolated by a factor of 2
using bilateral interpolation (left) with σi = 120, σd = 10 and bicubic interpolation
(right)

interpolation. However, a method which can interpolate a decimated image without

producing aliasing artifacts is needed. The edge-preserving property of the bilateral

filter inspires development of a new extensor-based interpolation algorithm formulated

in the following section.

4.4 Adaptive Bilateral Extensor Interpolation Algorithm

A novel algorithm for image interpolation known as Adaptive Bilateral Extensor

(ABE) interpolation is presented in this thesis. The bilateral filter, B(~x), utilized for

extensor-based image interpolation is defined as

B(~x) =
1

k(~x)

∑

~p∈Ω

W (~x− ~p, σd)g(I~p − I~x, σi)I~p (4.10)

where W () is the spatial kernel obtained from the adaptive structure tensor and g() is

the tonal weighting function based on intensity difference and I~p is the image intensity

at location ~p. The Tukey robust kernel function is used for W () and g(). The tuning

parameters σi, σd weight the respective distances in the kernel functions such that

smaller values give less weight to outliers. The bilateral filter is incorporated into the
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Fig. 4.8: Mask ~m based on included pixels (in black), excluded pixels (patterned),
pixels to interpolate (in white). The pixel to be interpolated is identified as Iz(y) and
is within the group of black labeled pixels in this example.

extensor formulation by modifying Eq 2.9 as

Iz(~y) = Tϕy

=
(

G̃I~m

)

↓

(

~m~mTX
)−1

↓→ (I~m ~ϕy)→ + ~µ (4.12)

= ˆ̃GX−1 ~̂ϕy + µ (4.13)

In Eq 4.13, ↓→ subscript represents the operator that removes zero columns and zero

rows from a matrix, ↓ is the operator that removes corresponding zero columns, and

→ represents the operator that removes corresponding zero rows from a vector. The

vector ~m represents a mask computed within region Ω in lexicographical order based

on the bilateral filter B(x) that identifies which pixels will be used within the extensor

interpolation stage.

An example is shown in Figure 4.8 for a 3x3 region Ω in which there is an edge

structure. I~m is a diagonal matrix where the diagonal elements are from mask vector

~m in the image, so that the pixels can be grouped into two regions (labeled black and
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gray). The mask vector ~m is computed as shown below:

mi =











1 if B(~x) ≤ σi

0 otherwise
(4.14)

where

σi =
1

2b

b
∑

i=1

(

max I
(i)
~p −min I

(i)
~p

)

(4.15)

with the additional condition that ~p ∈ Ω for max I
(i)
~p and min I

(i)
~p . The bilateral filter

value B(~x) is used as a threshold value for each pixel location ~x (or lexicographical

position i in mask ~mi) to determine if the pixel is to be included or excluded from

the extensor. The tonal tuning parameter σi is automatically computed using half

the average range of pixel intensities for each channel within region Ω as shown in Eq

4.15. We can write Eq 4.12 in a simplified form as

Iz(~y) =
(

G̃I~m

)

↓

(

~m~mTX
)−1

↓→ (I~m ~ϕy)→ + ~µ (4.16)

= ˆ̃GX̂−1ϕ̂y + µ (4.17)

where ˆ̃G = Im, X̂ = ~m~mTX, ϕ̂y = Imϕy. The extensor matrix X for this example is

shown in Eq 4.18 corresponding to the region Ω from Figure 4.8.

X =





























ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 ϕ19

ϕ21 ϕ22 ϕ23 ϕ24 ϕ25 ϕ26 ϕ27 ϕ28 ϕ29

ϕ31 ϕ32 ϕ33 ϕ34 ϕ35 ϕ36 ϕ37 ϕ38 ϕ39

ϕ41 ϕ42 ϕ43 ϕ44 ϕ45 ϕ46 ϕ47 ϕ48 ϕ49

ϕ51 ϕ52 ϕ53 ϕ54 ϕ55 ϕ56 ϕ57 ϕ58 ϕ59

ϕ61 ϕ62 ϕ63 ϕ64 ϕ65 ϕ66 ϕ67 ϕ68 ϕ69

ϕ71 ϕ72 ϕ73 ϕ74 ϕ75 ϕ76 ϕ77 ϕ78 ϕ79

ϕ81 ϕ82 ϕ83 ϕ84 ϕ85 ϕ86 ϕ87 ϕ88 ϕ89

ϕ91 ϕ92 ϕ93 ϕ94 ϕ95 ϕ96 ϕ97 ϕ98 ϕ99





























9x9

(4.18)

The actual mask for pixel Iz[i] from Figure 4.8 is shown in Eq 4.19. To illustrate
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the ↓→ operator, Eq 4.20 shows the result of removing the zero rows and columns.

(

~m~mTX
)

=





























ϕ11 0 0 ϕ14 ϕ15 0 ϕ17 ϕ18 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

ϕ41 0 0 ϕ44 ϕ45 0 ϕ47 ϕ48 0
ϕ51 0 0 ϕ54 ϕ55 0 ϕ57 ϕ58 0
0 0 0 0 0 0 0 0 0

ϕ71 0 0 ϕ74 ϕ75 0 ϕ77 ϕ78 0
ϕ81 0 0 ϕ84 ϕ85 0 ϕ87 ϕ88 0
0 0 0 0 0 0 0 0 0





























9x9

(4.19)

X̂ =
(

~m~mT X
)

↓→ =













ϕ11 ϕ14 ϕ15 ϕ17 ϕ18

ϕ41 ϕ44 ϕ45 ϕ47 ϕ48

ϕ51 ϕ54 ϕ55 ϕ57 ϕ58

ϕ71 ϕ74 ϕ75 ϕ77 ϕ78

ϕ81 ϕ84 ϕ85 ϕ87 ϕ88













5x5

(4.20)

The pixel intensity represented by G̃ and subsequently multiplied by Im, denoted

as ˆ̃G, is computed similar to that of X̂ as

ˆ̃
G = G̃Im =





Gr,1 − µr Gr,2 − µr · · · Gr,9 − µr

Gg,1 − µg Gg,2 − µr · · · Gg,9 − µg

Gb,1 − µb Gb,2 − µb · · · Gb,9 − µb





3×9

































1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0
1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0
1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0

































9×9

(4.21)

ˆ̃
G =





Gr,1 − µr 0 0 Gr,4 − µr Gr,5 − µr 0 0 Gr,7 − µr Gr,8 − µr 0
Gg,1 − µg 0 0 Gg,4 − µg Gg,5 − µg 0 0 Gg,7 − µg Gg,8 − µg 0
Gb,1 − µb 0 0 Gb,4 − µb Gb,5 − µb 0 0 Gb,7 − µb Gb,8 − µb 0





3×9

(4.22)

ˆ̃
G↓ =





Gr,1 − µr Gr,4 − µr Gr,5 − µr Gr,7 − µr Gr,8 − µr

Gg,1 − µg Gg,4 − µg Gg,5 − µg Gg,7 − µg Gg,8 − µg

Gb,1 − µb Gb,4 − µb Gb,5 − µb Gb,7 − µb Gb,8 − µb





3×5

(4.23)

Equation 4.12 for solving for an interpolated pixel value can also be expressed
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using permutation matrices. For example,













a b c

d e f

g h i

























0 1 0

1 0 0

0 0 1













=













b a c

e d f

h g i













(4.24)

The permutation matrices allow the nonzero elements to move to the top-left corner

of the matrix and the zero elements to shift to the bottom. The equation to solve for

an interpolated pixel value can be expressed using permutation matrices as

Iz(~y) =
(

G̃Im

)

↓

(

mmT X−1
)

↓→ (I~m ~ϕy)→ + ~µ (4.25)

= ˆ̃GX̂−1ϕ̂y + µ (4.26)

=
(

ˆ̃GP T
)

↓
(PXP )−1

↓→ (Pϕy)→ + µ (4.27)

where

P =





























1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1





























9×9

(4.28)

Note that P−1 = P T using the above notation. In Eq 4.16, if l is the number of zero

elements in vector ~m, corresponding to the last l columns (indicating the number of

excluded pixels from the extensor) then ↓ indicates to remove the last l columns and

→ indicates removal of the last l rows. The permutation matrix in Eq 4.28 shifts

the non-zero values to the left and top of the matrix. The remaining zero rows and

columns are subsequently removed by the ↓→ operator.



4.4 Adaptive Bilateral Extensor Interpolation Algorithm 31

Detection and orientation of edges throughout the image is calculated as explained

in Chapter 3. The strength of an edge boundary is calculated from the eigenvalues as

τedge =
√

λ1 − λ2 (4.29)

where τedge is the confidence signifying the strength of the gradient. The orientation

angle θ is obtained from v1 and v2 by

θ = − arctan

(

v2

v1

)

− π

2
, θ ∈ [0, π] (4.30)

which produces the orientation of the gradient at a given pixel. The π
2

term is em-

ployed to obtain the orientation along the edge. θ is then used to orient the extensor

window, enabling more information from near the edge to be incorporated. Inter-

polation of a given pixel proceeds as follows. If τedge is less than a predetermined

threshold for a given pixel, it not a sufficiently strong edge and we employ a standard

extensor window of 5x5 centered at xij to interpolate its color intensity. In the case

that τedge meets or exceeds the threshold, an elliptical extensor region β is employed

as follows. The size of the extensor region with major radius α1 and minor radius α2

is calculated as

α1 =
1√
λ1

, α2 =
1√
λ2

(4.31)

where the size is computed with respect to the interpolated domain. It is then ro-

tated by angle θ to orient the extensor along the edge as shown in Figure 4.9 where

filled dots represent original pixels and white dots represent values to interpolate.

The black and patterned dots illustrate an edge boundary.

Interpolation proceeds via a multi-step process. It begins by interpolating the

specified image, I, using an isotropic extensor to obtain an initial estimate of the in-
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Fig. 4.9: Pixels included for in-
terpolation using adaptive bilateral
extensor

xij

Fig. 4.10: Pixels included in regu-
larization of xij .

Initialize using
Isotropic
Extensor

Regularization
Interpolated

ResultBilateral Extensor

Interpolate using

Structure Tensor

Compute Adaptive
Green

Red

Blue

Fig. 4.11: Diagram of Adaptive Bilateral Extensor Interpolation algorithm.

terpolated values in the supersampled domain. This estimate is then used to initialize

the bilateral filter. Computation continues until

δ(k+1)I = |I(k+1) − I(k)| ≤ T (4.32)

Figures 4.12 and 4.13 illustrate the convergence of the actual edge direction as the

process iterates. Once the intensity values have converged for each interpolated pixel,

the process is transposed and new intensity values are computed for each of the orig-

inal pixel values in the image using the interpolated intensities computed previously.

This final step ensures that original pixel intensities are smoothly integrated with the

interpolated pixel values as depicted in Figure 4.10. A diagram of the interpolation

process is shown in Figure 4.11. The complete interpolation algorithm is outlined as

follows:
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Fig. 4.12: Estimate of edge at it-
eration Ik
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Fig. 4.13: Estimate of edge at it-
eration I(k+1)

4.4.1 Adaptive Bilateral Extensor Algorithm

1: //First pass through image to compute adaptive structure tensor

2: for each original pixel in the image do

3: Compute adaptive structure tensor [see Chapter 3] to identify local image

structure parameters [λ1, λ2]

4: //Estimate local edge strength

5: τedge ←
√

λ1 − λ2

6: end for

7: //Second pass through image to selectively apply ABE interpolation

8: for each interpolated pixel do

9: i ← Position of next pixel in Ω

10: if τedge ≥ 0.001 then

11: //Use ABE interpolation near strong image gradients

12: extensorWidth ← 1√
λ2[i]

13: extensorHeight ← 1√
λ1[i]

14: //Compute ~m within the extensor window

15: for each original pixel i in the extensor window do
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16: σi = 1
2b

∑b

i=1

(

max I
(i)
~p −min I

(i)
~p

)

17: ~m[i] ← B(~x) = 1
k(~x)

∑

~p∈Ω W(~x− ~p, τedge)g(I~p − I~x, σi)I~p

18: end for

19: Iz[i]← Tϕ[i] =
(

I~mG̃
)

↓

(

~m~mT X
)−1

↓→ (I~m · ϕ[i])→ + ~µ

20: else

21: //Use isotropic window size

22: extensorWidth ← 5

23: extensorHeight ← 5

24: Iz[i]← Tϕ[i] = G̃X−1ϕ[i] + ~µ

25: end if

26: end for

27: //Perform regularization on original pixels

28: extensorWidth ← 3

29: extensorHeight ← 3

30: while all original pixels not regularized do

31: if Ii is original then

32: Iz[i]← Tϕ[i] = G̃X−1ϕ[i] + ~µ

33: end if

34: end while



35

Chapter 5

Performance Evaluation Metrics

and Results

Overview

Results of the ABE interpolation algorithm are presented in this chapter. It begins with a discussion

of the desirable characteristics sought in an evaluation technique. Next, evaluation metrics utilized in

this thesis are introduced. Discussion of the ABE interpolation algorithm and a critical comparison

to other state-of-the-art techniques are then presented. The chapter concludes by examining the

effect of regularization on the ABE algorithm.

5.1 Image Evaluation Metrics

I
N assessing the quality of an interpolated image, objective metrics are desired

to combine with a subjective assessment in order to obtain a suite of quality

metrics for evaluation. Methods including mean squared error (MSE) and signal to

noise ratio (SNR) are convenient to compute. While they produce a tangible result,

they do not accurately capture perceptual or structural quality. It is desirable to
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have an objective method independent of human assessment that is sensitive these

qualities.

Objective metrics capturing elements of the human visual system are currently

an active area of research. Current methods of quality assessment discuss the need

to develop a metric which models the human visual system’s (HVS) own assessment

of image quality. One recent method formulates a new technique combining loss of

correlation with mean and variance distortion to capture structural differences, rather

than attempting to base quality on a combination of pixel differences [23].

A technique known as structural similarity (SSIM) achieves an objective metric

for evaluation by separating the measurement into luminance, contrast, and structure

[24]. The three components are then assessed by a comparison function and combined

to produce the resulting similarity index value.

Three facets of comparison are employed in this thesis. Holding with traditional

techniques, SNR [25] is computed as

SNR = 10 log10

∑M

i=0

∑N

j=0 I(i, j)2

∑M

i=0

∑N

j=0 (I(i, j)− I ′(i, j))2
(5.1)

where I(i, j) is the pixel from the original image, I ′(i, j) is the pixel value from the

interpolated image, and M , N are the height and width, respectively of the images.

Multi-channel images are first converted to grayscale before comparison using

Igrayscale = 0.299Ired + 0.587Igreen + 0.114Iblue (5.2)

which is a standard RGB to grayscale conversion as defined by the National Tele-

vision System Committee (NTSC) [26] and Ichannel represents the pixel value of a

specific color channel. This provides a familiar result consistent with many existing

works. Also employed is a method of comparison consisting of a human visual assess-
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ment, providing feedback and analysis beyond a quantitative assessment of quality.

The above described SSIM metric is also included for structural quality evaluation

independent of a human visual inspection and is described in the following section.

5.1.1 Structural Similarity Quality Evaluation

The SSIM image quality evaluation metric provides a numerical comparison be-

tween an original and distorted image signal, resulting in a measure of the perceived

quality of the distorted image with reference to the original, expressed as a percentage

of closeness. Following the notation of [24], a perfect quality image x is compared

to a distorted signal y using components of luminance, contrast, and structure. The

luminance measure is defined as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(5.3)

where

µ =
1

N

N
∑

i=1

xi (5.4)

and µ represents the mean intensity of the image. C1 = (K1L)2 is a small constant

value to maintain numerical stability and L is the number of colors in the image.

The HVS is more sensitive to relative luminance change as compared to absolute

luminance, which is shown above. Therefore the luminance measure is altered to

account for this by allowing µy = (1 + R)µx leading to

l(x, y) =
2(1 + R)

1 + (1 + R)2 + C1

µ2
x

(5.5)

where R represents the size of luminance change relative to background luminance.

The contrast comparison function is defined similar to that of luminance, except that
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the standard deviation of mean intensity is employed as a measure of contrast by

σx =

(

1

N − 1

N
∑

i=1

(xi − µx)
2

)

1

2

(5.6)

The contrast comparison function is then defined as

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(5.7)

where C2 is defined similar to C1 as discussed above. The structural component is

evaluated after variance normalization and luminance subtraction. The structural

correlation is specifically defined as the dot product between the normalized, lumi-

nance subtracted signals as

s(x, y) =
σxy + C3

σxσy + C3
(5.8)

where

σxy =
1

N − 1

N
∑

i=1

(xi − µx)(yi − µy) (5.9)

and commonly C3 = C2

2
. The overall SSIM metric can now be defined as

SSIM(x, y) = [l(x, y)]α [c(x, y)]β [s(x, y)]γ (5.10)

where [α, β, γ] > 0 are weights that allow emphasis to be placed on different com-

ponents. A common weight distribution is uniform with [α, β, γ] = 1. Additionally,

K1 = 0.01, K2 = 0.03, and K3 = 0.015 for the implementation utilized here. Previ-

ous works on structural similarity [27, 28] use a fixed size square window by which

the metric is computed. It is observed that this produces ”blockiness” in the index

map near the window edges. To prevent this, an 11x11 Gaussian weighting function

(
∑N

i=1 wi = 1) is utilized, requiring the following modification to µx, σx, and σxy
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respectively

µx =

N
∑

i=1

wixi (5.11)

σx =

(

N
∑

i=1

wi(xi − µx)
2

)

1

2

(5.12)

σxy =

N
∑

i=1

wi (xi − µx) (yi − µy) (5.13)

The mean value of the overall SSIM index map is taken to provide a single value for

an overall measure of quality between image signals X and Y denoted as

Q(X, Y ) =
1

M

M
∑

j=1

SSIM(xj , yj) (5.14)

5.2 Interpolation Results

The ABE interpolation algorithm is qualitatively compared to bicubic [13], edge-

directed [29], isotropic extensor (IE) [12], and the original images from which a dec-

imated source image is obtained. Numerical metrics SNR and SSIM [30] are also

employed for a numerical comparison. The house, airplane (F-16), and red brick

house images are utilized for detailed analysis, shown in Figures 5.2, 5.21, and 5.29,

respectively with regions further utilized as labeled. All images are obtained from

the USC Signal and Image Processing Institute’s image repository [31]. The original

images are first subsampled by a factor of two in each direction by removing the even

rows and columns as shown in Figure 5.1. The decimated images are then interpo-

lated using the above described methods. A size of 7x7 is employed for computation

involving the IE algorithm. The implementation of bicubic interpolation is performed

using Matlab. Table 5.1 summarizes the parameters employed for interpolation us-

ing the IE and ABE algorithms. Other methods utilized for comparison use default
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Fig. 5.1: Depiction of decimation employed before interpolation. The original image
with rows and columns marked for removal (left). Resulting decimated image (right).

values for all parameters.

It is interesting to note the technique that each interpolation algorithm employs

to handle three channel color images and observe if the technique effects the quality

of the interpolated result. The Matlab implementation of bicubic interpolation oper-

ates on each channel separately. In contrast, edge-directed interpolation works with

all color channels simultaneously. Isotropic extensor and adaptive bilateral extensor

also handle the color channels together for processing. Results and comparison of the

ABE interpolation algorithm are now presented in the following.

Table 5.1: Parameter values used for extensor-based interpolation methods

Parameter Isotropic Extensor (IE) Adaptive Bilateral Extensor (ABE)
Extensor Size 7x7 Adaptive or 5x5
Overlapping Yes Yes

τedge N/A Adaptive (λ1, λ2)
σi N/A Automatic (Eq 4.15)
σd N/A Automatic (Adaptive Structure Tensor)

Analysis begins utilizing the tire region of the house image. As shown in Figures

5.5-5.8, the ABE method prevents aliasing along edge boundaries, whereas the bicu-
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Fig. 5.2: Original house image with re-
gions of interest as labeled.

Fig. 5.3: Decimated tire region of
house image.

Fig. 5.4: Original tire region of
house image.

Fig. 5.5: Bicubic interpolation by
factor two.

Fig. 5.6: IE interpolation by factor
two.
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Fig. 5.7: Edge-Directed interpola-
tion by factor two.

Fig. 5.8: ABE interpolation by
factor two.

Fig. 5.9: Decimated leaves region. Fig. 5.10: Original leaves region.
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bic, edge-directed, and IE algorithms suffer from significant aliasing. An analysis of

the SSIM and SNR numerical metrics reveals that the ABE is superior to that of the

former algorithms as shown with other images in Tables 5.2 and 5.3. All statistics are

computed with a decimated image interpolated by a factor of two and subsequently

compared to the original image.

Consideration of the leaves region at a zoom factor of four is shown in Figures

5.11-5.14. Patterning is present in the tree leaves in the bicubic and edge-directed

images. Significant artifacts are present in the edge-directed image, almost as though

it is an oil painting rather than an interpolated result. The ABE interpolation al-

gorithm produces no patterning or artifacts for a visually superior result to that of

the other algorithms. To complete analysis of the house image, Figures 5.17-5.20

illustrate the trees region at a zoom factor of eight. The bicubic and IE interpolation

algorithms preserve the trees satisfactorily, however, aliasing is present in the jagged

edge of the roof shown in the left portion of the image. The edge-directed method

produces a smooth roof line, but creates swirling artifacts in the trees while the ABE

algorithm maintains the detail of the trees and produces a smooth roof line, free of

aliasing for an improved result as compared to the other algorithms.
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Fig. 5.11: Bicubic interpolation by fac-
tor four.

Fig. 5.12: IE interpolation by factor
four.
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Fig. 5.13: Edge-directed interpolation
by factor four.

Fig. 5.14: ABE interpolation by factor
four.
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Fig. 5.15: Decimated trees region. Fig. 5.16: Original trees region.

Fig. 5.17: Bicubic interpolation by factor eight.



5.2 Interpolation Results 47

Fig. 5.18: IE interpolation by factor eight.
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Fig. 5.19: Edge-Directed interpolation by factor eight.
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Fig. 5.20: ABE interpolation by factor eight.
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Fig. 5.21: Original airplane (F-16) image with region of interest as labeled.

The airplane (F-16) image is next compared in the text region shown in Figure

5.21 to compare interpolation algorithms on the fine details of written text. Figures

5.22 and 5.23 depict the decimated and original images respectively. To obtain an

accurate assessment of the compared interpolation algorithms, the selected region is

evaluated at a zoom factor of eight, the results obtained are in Figures 5.24-5.27.

The bicubic method produces blocky text and heavy aliasing along the wing of the

plane. The IE algorithm produces aliasing around the text in the resulting image

and the edge-directed method produces swirling artifacts not present in the original

image. However, the ABE interpolation algorithm maintains the original text, free of

artifacts and aliasing providing for a visually more pleasing result.

Fig. 5.22: Decimated airplane (F-
16) image.

Fig. 5.23: Original airplane (F-16)
image.
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Fig. 5.24: Bicubic interpolation by factor eight.

Fig. 5.25: IE interpolation by factor eight.
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Fig. 5.26: Edge-Directed interpolation by factor eight.

Fig. 5.27: ABE interpolation by factor eight.
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Fig. 5.28: Decimated red brick
house image.

Fig. 5.29: Original sampling of red
brick house image.

The red brick house image is utilized for comparison in this thesis for its sharp edge

boundaries and unique textures to provide additional facets of comparison between

interpolation techniques. The decimated image is shown in Figure 5.28 adjacent to

the original in Figure 5.29 with the region further considered as labeled. Evaluation

proceeds with the gutter region. The decimated image is shown in figure 5.30 and

original in Figure 5.31. The region is interpolated by a factor of eight as shown in

Figures 5.32-5.35. Swirling artifacts are clearly visible in the edge-directed image,

especially near the top of the gutter drain, whereas the other interpolation methods

do not introduce new information to the image. Aliasing is present in the bicubic

and IE methods, whereas the ABE interpolation algorithm produces a smooth, well-

defined result.

Fig. 5.30: Decimated image of
pipe region.

Fig. 5.31: Original image of pipe
region.
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Fig. 5.32: Bicubic interpolation of
pipe region by factor eight.

Fig. 5.33: IE interpolation of pipe re-
gion by factor eight.

Fig. 5.34: Edge-Directed image of pipe
region at factor eight.

Fig. 5.35: ABE Interpolation of pipe
region at factor eight.



5.2 Interpolation Results 55

Fig. 5.36: Region of remote sensing image at 2.4 meters per pixel.

Remote sensing data are utilized in numerous applications and often require inter-

polation. Figure 5.36 shows a region of a MS image at 2.4 meters per pixel employed

for interpolation with regions used for further analysis as denoted. Results of inter-

polation techniques are illustrated in Figures 5.39-5.42 for upsampling by a factor

of eight, which is employed to readily discern the differences between interpolation

algorithms. The source image employed for the house region is shown in Figure 5.37.

The bicubic method appears to result in crossing patterns near the edges of shapes in

the image providing an irregular patterning while the IE method results in irregular

object boundaries most noticeable when viewing the pool. The edge-directed inter-

polation results in an oil painting look to the result where artifacts are introduced

to the image along object boundaries and are not an accurate representation of the

source image. The ABE is slightly smoother than bicubic and IE methods, providing

a uniform boundary to objects without aliasing or artifacts. Focusing on the pools

region at zoom factor eight, original image in Figure 5.38 and results shown in Fig-

ures 5.43-5.46, reveals somewhat noticeable aliasing in the bicubic and IE methods.
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Moreover, the edge-directed image is clearly swirling edge boundaries and creating

new information not present in the original. The ABE image maintains the overall

structure of the image while preventing aliasing and maintaining image authenticity.

Fig. 5.37: Original house region. Fig. 5.38: Original pools region.

Fig. 5.39: Bicubic interpolation by fac-
tor four.

Fig. 5.40: IE interpolation by factor
four.

Fig. 5.41: Edge-directed image by fac-
tor four.

Fig. 5.42: ABE interpolation by factor
four.
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Fig. 5.43: Bicubic interpolation by factor eight.

Fig. 5.44: IE Interpolation by factor eight.
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Fig. 5.45: Edge-directed image by factor eight.

Fig. 5.46: ABE interpolation by factor eight.
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Table 5.2: Comparison of SSIM for selected interpolation algorithms. The decimated
image is interpolated by a factor of two and numerically compared to the original
image as a percent of similarity.

Image Filename ABE Edge Directed IE Bicubic

4.2.04 80.56% 78.53% 78.32% 79.29%

4.1.05 77.25% 76.32% 74.58% 75.54%

4.2.05 81.55% 80.76% 80.92% 80.44%

4.2.03 48.00% 45.73% 46.10% 45.90%

4.2.02 73.81% 71.36% 72.00% 71.09%

boat.512 66.07% 65.68% 64.37% 65.74%

5.2.08 69.02% 68.64% 67.35% 68.57%

4.1.01 83.84% 82.78% 82.94% 82.48%

4.1.08 89.49% 88.99% 89.19% 88.73%

house 72.92% 71.69% 71.69% 71.30%

2.1.01 54.84% 54.52% 53.77% 53.55%

2.1.02 46.57% 45.38% 45.04% 45.22%

4.2.06 70.99% 70.67% 70.02% 68.87%

4.1.06 71.45% 71.09% 70.56% 70.06%
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Table 5.3: Comparison of SNR for selected interpolation algorithms. The decimated
image is upsampled by a factor of two and compared to the original image.

Image Filename ABE Edge Directed IE Bicubic

4.2.04 21.3898 20.7823 20.5550 19.1551

4.1.05 20.3910 20.1531 19.7802 17.9652

4.2.05 22.0037 21.8095 21.7618 20.1303

4.2.03 14.9326 14.3525 14.4194 13.9720

4.2.02 25.4642 25.1693 25.1009 22.0406

boat.512 19.0125 14.9894 14.8407 14.5656

5.2.08 15.2723 13.5923 13.1822 12.7825

4.1.01 16.5395 16.3440 16.2465 14.2055

4.1.08 23.0329 22.6778 22.7898 19.1551

house 19.9427 19.6792 19.5957 19.2263

2.1.01 16.6905 16.3954 16.3170 15.6062

2.1.02 15.9903 15.4980 15.5083 14.7383

4.2.06 18.7727 18.5180 18.4471 17.3961

4.1.06 16.4644 16.3559 16.1978 15.0873
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Fig. 5.47: Region of decimated image
for regularization.

Fig. 5.48: Region of original image
for regularization.

Fig. 5.49: Interpolation factor two
with regularization.

Fig. 5.50: Interpolation factor two
without regularization.

5.3 Effect of Regularization

Regularization is utilized in the ABE interpolation algorithm in order to prevent

a string of pearls that extends along edge boundaries in an image. This observation

is most noticeable at high interpolation factors. The ABE algorithm corrects this

via regularization of the original pixel values as described in Section 4.4. To clearly

illustrate this issue, the hat brim region of Lena is interpolated by a factor of two.

Next, nearest neighbor interpolation is employed to further increase visibility. Figure

5.47 depicts the decimated image and Figure 5.48 shows the original. Next, Figures

5.49 and 5.50 illustrate supersampling by factor two with and without regularization,

respectively. In addition, the interpolated images are then supersampled by an addi-

tional factor of four using nearest neighbor interpolation to allow ease in visualizing

the difference provided by regularization. The pearls are due to utilization of original

pixel values from the decimated image in the interpolated result. The regularization

step ensures that these original pixels are blended smoothly with their surrounding

values, providing a uniform appearance to the resulting image.
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Fig. 5.51: Interpolation by zoom fac-
tor two with regularization, nearest
neighbor interpolation by additional
factor two.

Fig. 5.52: Interpolation by zoom fac-
tor two, without regularization, near-
est neighbor interpolation by additional
factor two.

Fig. 5.53: Interpolation by factor four
with regularization, nearest neighbor
upsampling by additional factor four.

Fig. 5.54: Interpolation by factor four
without regularization, nearest neigh-
bor upsampling by additional factor
four.
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Chapter 6

Pan Sharpening for

Multi-Resolution Image Data Sets

Overview

The ABE interpolation algorithm is applied for pan-sharpening of multi-resolution remote sensing

data in this chapter. An introduction to remote sensing data is first presented. It is followed by

results of pan-sharpening remote sensing images compared with other image interpolation methods

utilized for this application.

6.1 Multi-Resolution Remote Sensing Imagery

S
ATELLITE imagery is increasingly available to businesses, governments, and

individuals. Several prominent satellites are actively capturing data including

IKONOS, Landsat, and GOES. Each satellite is equipped with different image cap-

ture capabilities. The Landsat 7 satellite employs the Enhanced Thematic Mapper

Plus (ETM+) allowing for signal capture in eight designated sensor bands. Each sen-

sor band captures a specific wavelength at a designated resolution. Two prominent
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types of remote sensing data are MS and Pan. MS data contain several individual

spectral bands, often RGB and IR. Pan images capture throughout the RGB and

IR wavelengths, but handle the data as a single channel. The Quickbird satellite

has maximum resolution capabilities, for commercial applications, of MS data at 2.4

meters per pixel and Pan data at 0.6 meters per pixel [6]. While the resolution of

the Pan data is preferable, it is only available in grayscale. Ideally, one would like

the MS color present in the 2.4m data combined with the resolution of the Pan data.

This process, known as pan-sharpening, aims to provide RGB color to the higher

resolution Pan data. Figures 6.1 - 6.4 show each of the four channels of the MS image

employed for pan-sharpening. The combined RGB image is shown in Figure 6.5 and

a scaled version of the Pan image is in Figure 6.6.

Fig. 6.1: Red channel of the remote sensing region.



6.1 Multi-Resolution Remote Sensing Imagery 65

Fig. 6.2: Green channel of the remote sensing region.

Fig. 6.3: Blue channel of the remote sensing region.
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Fig. 6.4: Near Infrared (IR) channel of the remote sensing region.

Fig. 6.5: Combined RGB channels of remote sensing region.
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Fig. 6.6: Scaled image of the panchromatic channel of the remote sensing region.
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Fig. 6.7: Pan-sharpening algorithm.

The pan-sharpening algorithm is implemented as depicted in Figure 6.7. The MS

image is first interpolated by a factor of four to match the resolution of the Pan image.

The MS image is next converted from RGB color space to the HSV (Hue, Saturation,

Value) color space. HSV provides for a representation of color that will enable fusion

of the multi-resolution images via channel replacement. The next step is to correct

the Pan image to account for the MS image only containing the red, green, and blue

channels after conversion to HSV color space. The IR corrected Pan image, denoted

by Pan′ is computed as

Pan′ = Pan− Ir
∑b

j=1 MSj

Pan (6.1)

The MS and Pan images may have differences in their histograms, possibly resulting in

an incorrect fusion of colors in the result. Histogram matching consists of transforming

the Pan histogram to match the value channel of the MS image. The result is a

Pan image whose value channel matches that of the MS image, ensuring that the
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resulting image colors are blended correctly. The next step is replacement of the MS

value channel with that of the Pan corrected channel. The data is then converted

back to the RGB color space. Remote sensing data are often stored as 16-bit images.

After channel replacement is completed, the 16-bit image is scaled to 8-bit for display.

Scaling proceeds by computing the histogram of the image. Next, the upper and lower

bounds of the scale are set to 1 percent from the top and bottom of the histogram,

respectively. The scaling factor is then computed as

I8bit =
(I16bit − Imin)

(H99% −H1%)
× 255 (6.2)

where H99% and H1% are the one percent upper and lower bounds of the histogram

for a channel. Each channel of data is scaled independently to account for differences

based on the level of exposure and variation within the image.

6.2 Pan-Sharpening Results

Results of pan-sharpening using the algorithm detailed in the previous section.

The MS image is first interpolated by a factor of four using the current best-performing

interpolation algorithms. Shown in Figures 6.11 - 6.14, and original orchard region

as labeled in Figure 6.8, the bicubic and IE algorithms result in aliasing along edge

boundaries. The edge-directed image produces new artifacts not present in the orig-

inal image, and the ABE produces a visually accurate result without aliasing or

artifacts. To provide a numerical comparison of results, Tables 6.1 and 6.2 list the

SNR and SSIM numerical results of the Pan and MS images. Before comparison, the

original 16-bit image is decimated by a factor of two. The decimated image is then

interpolated by a factor of two and scaled to 8-bit. The original 8-bit scaled image is

then compared to the interpolated images.
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Fig. 6.8: Region of remote sensing image at 2.4m resolution with regions of interest
as labeled. The image is scaled for display, smaller than the original size image.

Fig. 6.9: Region of 0.6m Pan image with regions further utilized as labeled, scaled
for display corresponding to the 2.4m data.

Fig. 6.10: Original region of the orchard in the MS image
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Fig. 6.11: Bicubic interpolation of the orchard region at zoom factor four.

Fig. 6.12: IE interpolation of the orchard region at zoom factor four.
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Fig. 6.13: Edge-directed interpolation of the orchard region at zoom factor four.

Fig. 6.14: ABE interpolation of the orchard region at zoom factor four.
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Fig. 6.15: Original region of the buildings in the MS image

Fig. 6.16: Bicubic interpolation of the buildings region at zoom factor four.
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Fig. 6.17: IE interpolation of the buildings region at zoom factor four.

Fig. 6.18: Edge-directed interpolation of the buildings region at zoom factor four.
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Fig. 6.19: ABE interpolation of the buildings region at zoom factor four.
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Table 6.1: Comparison of SNR for selected interpolation algorithms using the remote
sensing images. The image is decimated by a factor of two, then upsampled by a factor
of two and compared to the original image.

Image ABE Edge Directed IE Bicubic

13.5420 13.4183 13.3088 14.6476

17.3041 10.4578 17.2921 08.6071

Table 6.2: Comparison of SSIM for selected interpolation algorithms using the re-
mote sensing images. The image is decimated by a factor of two, then upsampled by
a factor of two and compared to the original image.

Image ABE Edge Directed IE Bicubic

64.38% 62.72% 62.80% 80.22%

73.82% 69.08% 73.97% 67.17%

The Pan image is next fused with the interpolated MS data. The source MS and

Pan regions are shown in figures 6.10 and 6.20. Results are first shown of the orchard

region in figures 6.21-6.24 and original region in figure 6.10. The resulting images

appear visually equivalent, contrasting the results shown in figures 6.11 - 6.19 where

differences between the interpolation methods are clearly visible. Results obtained
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from the second region of interest are depicted in Figures 6.26 - 6.29 with original

regions shown in figures 6.15 and 6.25.

Fig. 6.20: Original region of the orchard in the Pan image
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Fig. 6.21: Pan-sharpening of orchard region using bicubic interpolation for upsam-
pling the MS image.

Fig. 6.22: Pan-sharpening of orchard region using IE algorithm for upsampling the
MS image.
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Fig. 6.23: Pan-sharpening of orchard region using edge-directed interpolation for
upsampling the MS image.

Fig. 6.24: Pan-sharpening of orchard region using the ABE algorithm for upsampling
the MS image.
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Fig. 6.25: Original region of the orchard in the Pan image

Fig. 6.26: Pan-sharpening of buildings region using bicubic interpolation for upsam-
pling the MS image.
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Fig. 6.27: Pan-sharpening of buildings region using IE algorithm for upsampling the
MS image.

Fig. 6.28: Pan-sharpening of buildings region using edge-directed interpolation for
upsampling the MS image.
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Fig. 6.29: Pan-sharpening of buildings region using the ABE algorithm for upsam-
pling the MS image.
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Chapter 7

Conclusion

Overview

A brief overview of algorithms and contributions authored in this thesis are first provided. The

results are then summarized, including discussion of current techniques. Application of the ABE to

pan-sharpening is also reviewed. Directions of future work and extensions of the current algorithms

are discussed with a focus on the future of image interpolation.

7.1 Contributions

D
EVELOPMENT of a novel algorithm to solve the image interpolation prob-

lem has been presented in this work. It employs the IE method, creating a

non-linear mapping from spatial distance to pixel intensity to solve for an unknown

pixel value. To refine the extensor window, an adaptive robust structure tensor is

utilized to find edge and orientation information and thereby focus the extensor win-

dow on nearby pixels, oriented along the edge boundary. These are combined with an

edge-preserving bilateral filter to prevent interpolation across edge boundaries, which

decreases aliasing and blurring effects, to create a novel method known as Adaptive
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Bilateral Extensor for image interpolation.

The ABE interpolation algorithm provides results superior to that of current state-

of-the-art methods including bicubic and edge-directed techniques based on qualita-

tive and numerical evaluations metrics. The ABE is specifically advantageous because

it does not introduce new information or artifacts to the resulting image, while pre-

venting aliasing along edge boundaries. The result is then applied to pan-sharpening

of remote sensing data. Pan-sharpening consists of combining supersmapled MS with

the original Pan image in the HSV color space by replacing the MS value channel

with the normalized, histogram matched Pan image. Results are unexpected in that

all of the pan-sharpened images produces excellent quality sharpened images, regard-

less of the aliasing or artifacts present in the supersampled image. This observation

evidences the robustness of pan-sharpening of remote sensing data.

7.2 Future Work

The ABE algorithm described in this thesis makes significant progress in the con-

tinuing effort to better interpolate digital imagery. A closely related problem is that

of image down-sampling by which an input image has its size reduced by a specified

factor, while maintaining detail and preventing aliasing. The ABE method in this

work could be adapted with vast potential to improve over current state-of-the-art

subsampling methods. One of the most significant challenges remaining in interpola-

tion is the suppression of blurriness as the interpolation factors get very large. Future

interpolation algorithms will address this issue and countless additional applications.

As the technology and prominence of digital imagery continues to increase, new prob-

lems will continue to drive more accurate and efficient algorithms with applications

beyond image processing into a plethora of other academic disciplines.
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Appendix A

Adaptive Bilateral Extensor (ABE)
Implementation

1: //First pass using isotropic extensor

2: for each pixel to interpolate in the enlarged image Iz do

3: i ← Position of next pixel

4: Iz[i]← Tϕ[i] = G̃X−1ϕ[i] + ~µ

5: end for

6: //First pass through image to compute adaptive structure tensor

7: for each original pixel in the image do

8: Compute adaptive structure tensor [see Chapter 3] to identify local image

structure parameters [λ1, λ2]

9: //Estimate local edge strength

10: τedge ←
√

λ1 − λ2
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11: end for

12: //Second pass through image to selectively apply ABE interpolation

13: for each interpolated pixel do

14: i ← Position of next pixel in Ω

15: if τedge ≥ 0.001 then

16: //Use ABE interpolation near strong image gradients

17: extensorWidth ← 1√
λ2[i]

18: extensorHeight ← 1√
λ1[i]

19: //Compute ~m within the extensor window

20: for each original pixel i in the extensor window do

21: σi = 1
2b

∑b
i=1

(

max I
(i)
~p −min I

(i)
~p

)

22: ~m[i] ← B(~x) = 1
k(~x)

∑

~p∈Ω W(~x− ~p, τedge)g(I~p − I~x, σi)I~p

23: end for

24: Iz[i]← Tϕ[i] =
(

I~mG̃
)

↓

(

~m~mT X
)−1

↓→ (I~m · ϕ[i])→ + ~µ

25: else

26: //Use isotropic window size

27: extensorWidth ← 5

28: extensorHeight ← 5
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29: Iz[i]← Tϕ[i] = G̃X−1ϕ[i] + ~µ

30: end if

31: end for

32: //Perform regularization on original pixels

33: extensorWidth ← 3

34: extensorHeight ← 3

35: while all original pixels not regularized do

36: if Ii is original then

37: Iz[i]← Tϕ[i] = G̃X−1ϕ[i] + ~µ

38: end if

39: end while
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