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AN ASSESSMENT OF STREAM FISH VULNERABILITY AND AN EVALUATION OF 

CONSERVATION NETWORKS IN MISSOURI 

Nicholas A. Sievert 

Dr. Craig P. Paukert, Thesis Supervisor 

ABSTRACT 

The conservation of aquatic biodiversity is largely dependent on the ability of 

researchers and managers to identify vulnerable species and prioritize conservation 

actions.  Stream fish are facing tremendous threats due to habitat degradation, stream 

network fragmentation, and climate change.  For this project two vulnerability indices 

were developed to quantify the relative vulnerability of stream fish in Missouri.  These 

indices allowed us to identify the most vulnerable stream fish in Missouri, and also to 

compare how the use of traits differed from the use of measured species responses in 

quantifying vulnerability.  The most valuable areas for stream fish conservation within 

and complementary to Missouri’s conservation networks were identified through the 

use of a systematic conservation planning approach.  Species representation, weighting 

based on vulnerability and listing status, and species-specific responses to upstream 

habitat degradation were utilized to identify priority areas with the conservation 

planning tool Zonation.  This information can assist managers in identifying the species 

most in need of conservation and where the best opportunities exist for taking 

management actions.  The frameworks for assessing both vulnerability and conservation 

value can be used or adapted for addressing similar concerns in other regions. 
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DESCRIPTION OF CHAPTERS 

 The two chapters of this thesis were written as independent manuscripts which 

will be submitted to peer-reviewed journals.  For this thesis we included a general 

introduction and conclusion to tie the elements of the two chapters together into a 

more complete narrative.  Because each chapter was written as an independent 

manuscript there is some overlap in the information conveyed in the introductions, as 

well as in the study area and data sections of the materials and methods, and 

references, tables, and figures that were included separately for each chapter.  A single 

set of appendices were generated for the entire thesis.  Intended co-authors of the 

manuscripts were listed after each chapter title and the thesis was written using plural 

nouns to include co-authors.  
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GENERAL INTRODUCTION 

Lotic ecosystems are among the most imperiled on the planet (Allan and Flecker 

1993, Abell 2002, Dudgeon et al. 2006).  Freshwater biodiversity is declining at a faster 

rate than in any terrestrial biome (Ricciardi and Rasmussen 1999), and the threats posed 

by anthropogenic land-use, climate change, flow modification, and invasive species are 

likely to exacerbate the situation (Ricciardi and Rasmussen 1999, Dudgeon et al. 2006, 

Staudt et al. 2013).  A combined extinction rate for unionid mussels, crayfishes, fish, and 

amphibians is near 4% per decade, which is significantly higher than that of other taxa 

(Ricciardi and Rasmussen 1999).  Throughout most of the world, information on the 

status of biodiversity is limited, biased, or absent (Dudgeon et al. 2006).  However, in 

areas with robust data, researchers are finding alarming trends in the number of 

imperiled species.  In North America approximately 39% of aquatic species are 

considered imperiled (Jelks et al. 2008) and in regions with less data, such as Asia, the 

pressures of dense human populations, rapid growth, and high levels of biodiversity and 

endemics likely present an even bleaker scenario (Dudgeon et al. 2006).  This evidence 

suggests the conservation of aquatic biodiversity likely requires conservation and 

management actions, or substantial biodiversity losses are likely.  In Missouri, the status 

of aquatic biodiversity is following similar trends.  Of the 210 native fish species, 66 

(31%) have been designated as species of conservation concern (Sowa et al. 2007, 

Missouri Natural Heritage Program 2012).  The long-term conservation of aquatic 
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biodiversity depends on our ability to identify threats, determine species vulnerability, 

and develop effective conservation strategies. 

Lotic biodiversity is expected to be influenced by a number of threats including 

warming stream temperatures, alterations to flow regimes, and habitat degradation 

across the globe (Allan and Flecker 1993, Eaton and Scheller 1996, Poff et al. 2002, Allan 

2004).  Stream temperatures are expected to increase by approximately 3.6 degrees 

Celsius by 2095 based on an intermediate (A1B) estimate of average annual air 

temperature and air to stream temperature conversions (Eaton and Scheller 1996, 

Girvetz et al. 2009), which has been predicted to result in species extirpations and range 

contractions (Eaton and Scheller 1996, Mohseni et al. 2003, Lyons et al. 2010).  Even if 

temperature shifts do not result in range loss, they have the potential to affect the 

performance of populations by influencing energetics, growth, and feeding (Pease and 

Paukert 2013, Westhoff and Paukert 2014).  Alterations to stream flow regimes from 

changes in the timing, amount, and type (snow vs rain) of precipitation are expected to 

impact stream fish (Poff et al. 2002).  Some stream fish species depend upon predictable 

seasonal flow patterns for successful reproduction, and changes to these patterns could 

result in a decline of reproductive success (Poff et al. 2002).  Increases in the intensity of 

rainfall on fewer rain days are predicted, leading to an increased magnitude and 

frequency of flooding, which has been linked to shifts in species composition and local 

species extirpations (Poff et al. 1997, 2002).  Summer and fall stream flow may be 

reduced in many regions where increased frequency and magnitudes of droughts have 

been predicted (Poff et al. 2002).  Species which require consistent or high amounts of 
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discharge may be lost from stream segments impacted by drought conditions (Larimore 

et al. 1959, Stanley et al. 1997).  Habitat alteration and degradation resulting from 

anthropogenic land use impacts is another major threat to stream fish  (Malmqvist and 

Rundle 2002).  Continued agricultural and urban development and the modification of 

streams and rivers through channelization, dredging, and damming, are expected to 

continue to have negative impacts on sensitive stream fish species (Malmqvist and 

Rundle 2002, Allan 2004).   

 The state of Missouri is heavily impacted by both urban and agricultural 

development.  Approximately 37% of Missouri is cropland (which includes both 

harvested and pastured lands), and while urban land comprises only 3.7% of Missouri’s 

area, it is highly concentrated in the St. Louis and Kansas City areas (Blodgett and Lea 

2005).  Land use varies substantially by region, with agriculture and grassland 

dominating in the north, forests in the south and urban around St. Louis and Kansas City 

(Blodgett and Lea 2005).  Identifying areas for protection of aquatic biodiversity is 

important as urban and agricultural land use encompass about 40% of the state 

(Blodgett and Lea 2005).   

In order to assess the status of aquatic biodiversity conservation in Missouri, we 

addressed two primary questions: 

1:   How vulnerable are Missouri species and communities to current and future  

threats? 

2: How well is aquatic biodiversity represented within Missouri’s conservation  

networks and which areas are the most valuable for stream fish conservation? 
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We can prioritize conservation efforts to benefit the species and communities in 

greatest need by developing an understanding of which species are vulnerable to 

climate change and habitat degradation and identifying areas which are important to 

the conservation of those species.  We evaluated aquatic species representation within 

Missouri’s established conservation networks using species distribution models and 

identified priority areas for stream fish conservation using systematic conservation 

planning techniques.  These networks include the existing conservation network (ECN) 

composed of areas established for the primary purpose of wildlife conservation, 

Conservation Opportunity Areas (COAs) which are areas established in the Missouri 

Comprehensive Wildlife Strategy (Hoskins 2005) as target areas for conservation action, 

and Priority Watersheds (PWs) which were established as a part of the Missouri 

Department of Conservation Fisheries Program as target areas for conservation and 

management actions (Corson et al. 2010).  This allowed for the evaluation of how well 

aquatic biodiversity is represented within these networks, and a ranking of stream 

segments within and complementary to each established network based on their value 

for stream fish conservation.  
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CHAPTER 1 

VULNERABILITY ASSESSMENT FOR MISSOURI STREAM FISH TO CLIMATE CHANGE AND 

HABITAT DEGRADATION 

Nicholas Sievert and Dr. Craig P. Paukert 

ABSTRACT 

Understanding the future impacts and threats of climate and land use change 

are critical for long-term biodiversity conservation.  We developed and compared two 

indices to assess the vulnerability of stream fish in Missouri.  Both indices assessed 

vulnerability based on species environmental tolerances, rarity, range size, dispersal 

ability, and the average connectivity of the streams occupied by each species.  These 

indices differed in how the environmental tolerance components were classified, 

specifically vulnerability to habitat degradation, warming stream temperatures, and 

alterations to flow regimes.  In one index environmental tolerance components were 

classified based on measured species responses, while in the second index 

environmental tolerance was classified based on species traits.  We also determined 1) if 

vulnerability scores were consistent between indices, 2) the relationship between 

species conservation status (species listed as Missouri species of conservation concern) 

and vulnerability score, and 3) how species vulnerable to these three threats were 

spatially distributed.  Vulnerability scores were calculated for all 133 species with the 

trait association index, while only 99 species were able to be evaluated using the species 

response index, because a number of species lacked response data.  The range and 
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mean for scores from the trait association index were greater than those from the 

species response index, largely due to the species response index’s inability to evaluate 

many rare species, which generally have high vulnerability scores for the trait 

association index.  The indices were consistent in classifying vulnerability to habitat 

degradation, but showed substantial variation for vulnerability to increases in stream 

temperature and alterations to flow regimes.  This is likely because the current climate 

change impacts have had a minimal measurable influence on stream fish communities, 

limiting the opportunities to observe species-specific responses to these threats, while 

traits can be more generally linked to vulnerability.  Both indices showed higher mean 

vulnerability scores for listed species than unlisted species, which provided a coarse 

measure of validation.  The distribution of vulnerable species in Missouri showed 

consistent patterns between indices, with the Ozark subregion generally having higher 

numbers and proportions of vulnerable species per site than in other subregions, which 

suggests that if conservation actions target habitats rather than species, both indices 

will perform similarly.  This vulnerability assessment provides valuable information 

regarding the status of Missouri stream fish species and we believe this framework can 

be used, and updated, for the development of vulnerability assessments in other 

regions. 
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INTRODUCTION 

Stream ecosystems have some of the most imperiled communities on Earth and  

freshwater biodiversity is declining at a higher rate than most other taxa groups (Allan 

and Flecker 1993; Abell 2002; Dudgeon et al. 2006).  Continuing habitat degradation, 

warming stream temperatures, and alterations to flow regimes will likely cause 

continuing declines (Ricciardi and Rasmussen 1999; Dudgeon et al. 2006).  Conservation 

actions aimed at protecting aquatic biodiversity are critical for preventing future 

biodiversity losses (Master et al. 1998).  In order to plan for long-term biodiversity 

conservation we must gain a better understanding of how impacts and threats, such as 

climate change and habitat degradation, affect aquatic species.  Conservation and 

management of stream fish species will require researchers and managers to identify 

which species are vulnerable, or likely to experience harm, under future conditions 

(Turner et al. 2003; Glick et al. 2011; Poff et al. 2012).  This study developed a new 

vulnerability assessment framework that identifies species vulnerable to warming 

stream temperatures, alterations in flow regimes, and habitat degradation. These are 

among the primary threats identified as drivers of future stream fish declines 

(Malmqvist and Rundle 2002; Poff et al. 2002). 

Climate change, which is expected to increase stream temperatures and alter 

flow regimes, is one of the most significant threats facing stream fish (Eaton and 

Scheller 1996; Poff et al. 2002).  In Missouri, the average annual air temperature is 

expected to rise approximately 4 degrees Celsius by 2095 based on an intermediate 

(A1B) climate scenario (Girvetz et al. 2009).  This change in air temperature is predicted 
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to increase Missouri stream temperatures by approximately 3.6 degrees Celsius (Eaton 

and Scheller 1996), although this relationship is complicated locally by factors such as 

groundwater input, riparian shading, and stream size (Mohseni and Stefan 1999).  In 

Wisconsin, a 3 degrees Celsius air temperature increase is predicted to result in the loss 

of 343,034 km of stream habitat for cool- and cold-water fishes, which includes a 

species extirpation (Lyons et al. 2010).  Eaton and Scheller (1996) found that the amount 

of habitat available for cold- and cool-water fish species would be reduced nationwide 

by approximately 50% with a doubling of atmospheric CO2, resulting in species 

extirpations in many streams and dramatic range contractions for many species.  In 

another study of streams across the United States cold-water fish habitat was predicted 

to decrease by 36% and cool-water fish habitat by 15% with a doubling of atmospheric 

CO2 concentrations (Mohseni et al. 2003).  Warm-water streams in the Great Plains 

sometimes achieve maximum temperatures which are at or near the physiological limits 

of some fish species, and an increase in stream temperature of just a few degrees is 

predicted to result in local extirpation and even extinction of some species (Matthews 

and Zimmerman 1990).  Even in cases where stream fish are not extirpated from a 

stream segment, research has shown that some species are likely to be subject to 

decreases in fitness based on changes in energetics and growth (Pease and Paukert 

2013; Westhoff and Paukert 2014).  These studies provide strong evidence which 

suggests some species of stream fish will decline or face local extirpations as stream 

temperatures warm. 
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 Changes to flow regimes, related to the seasonal timing and amount of 

precipitation and snowmelt, are expected to have substantial impacts on stream fish 

(Poff et al. 2002).  Increases in the intensity of rainfall on fewer rain days are predicted, 

which may lead to an increased magnitude and frequency of flooding; this has been 

linked to shifts in species composition and local species extirpations (Poff et al. 1997, 

2002).  Summer and fall stream flow may be reduced in many regions because of 

increased evapotranspiration and decreased precipitation frequency, earlier snowmelt 

could reduce spring flows, and increased frequency and magnitudes of droughts and 

floods are expected to occur (Poff et al. 2002; Wuebbles and Hayhoe 2004).  Stream fish 

vary in their ability to cope with prolonged periods of low flow, and species which 

require high levels of discharge are likely to be eliminated from many sites (Larimore et 

al. 1959; Stanley et al. 1997).  The variability of precipitation patterns is likely to 

increase, which may cause declines in species which exhibit equilibrium or periodic life 

history strategies (Poff et al. 2002; Olden and Kennard 2010; Mims and Olden 2012, 

2013). 

Another major threat to lotic biodiversity is habitat alteration and degradation 

(Malmqvist and Rundle 2002).  Anthropogenic modifications including the conversion of 

land to agricultural or urban uses or the modification of streams and rivers from 

channelization, dredging, and damming often result in altered and degraded stream 

conditions (Malmqvist and Rundle 2002; Allan 2004).  Degraded streams have been 

associated with losses of aquatic biodiversity (Allan 2004).  Indices of biological integrity 

(IBIs) have identified many stream fish species as intolerant of habitat degradation 
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(Esselman et al. 2011).  Additionally, life history traits such as lithophilic spawning, and 

benthic invertivory have been used as criteria for IBIs measuring habitat degradation, 

because species with those traits are sensitive to degradation (Berkman and Rabeni 

1987; Barbour et al. 1999; Simon 1999).  

With this knowledge of threats facing stream fish species the vulnerability of 

species can be assessed.  For the purposes of this thesis, vulnerability is defined as the 

extent to which a species is likely to be negatively impacted by the cumulative effects of 

climate change and habitat degradation (Turner et al. 2003; Schnieder et al. 2007; Glick 

et al. 2011).  In order to conduct a vulnerability assessment for stream fish species, a 

framework which accounts for the impacts of multiple threats is needed.  Vulnerability 

is often determined using a framework that assesses a species sensitivity, exposure, and 

adaptive capacity to threats (Turner et al. 2003; IPCC 2007; Glick et al. 2011a; Poff et al. 

2012; Staudinger et al. 2013).    A number of organizations, government agencies, and 

researchers have developed vulnerability assessments using this framework (Bagne et 

al. 2011; Glick et al. 2011; Young et al. 2011).  Two prominent vulnerability assessment 

tools, the System for Assessing Vulnerability of Species (SAVS) developed by the United 

States Forest Service, and the NatureServe Climate Change Vulnerability Index (NSCCVI) 

developed for NatureServe, were applied to Missouri stream fish (Bagne et al. 2011; 

Young et al. 2011).  The applicability of these vulnerability assessments to stream fish 

species in Missouri to be limited.  In Missouri accurate models of current and future 

stream temperature and flow have not yet been developed.  The absence of these 

models limits our ability to assess the exposure component of these assessments.  Both 
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assessment techniques use air temperature models to predict changes in thermal 

habitat, however in stream systems the relationship between air and water 

temperatures is confounded by riparian shading, groundwater contribution, and stream 

size (Mohseni and Stefan 1999; Allan 2004; Caissie 2006; Whitledge et al. 2006; Webb et 

al. 2008; Westhoff and Paukert 2014).  Because this study is only able to express 

exposure in the most general terms (warming is expected to occur, flow regimes are 

expected to become less predictable and more extreme events are expected to occur) it 

could not be used to differentiate species and therefore cannot be included as a scoring 

component, at least not until adequate models have been developed.  Additionally, 

these tools were designed for use with a wide array of taxa over large spatial scales, 

which limits their ability to account for some of the nuances of stream fish vulnerability.  

Another issue with the application of these tools to stream fish is that they depend on 

information which is largely unknown for stream fish species; examples include 

knowledge of a species reliance on interspecific interactions, measures of genetic 

variation, occurrence of bottlenecks in recent evolutionary history, and phenological 

response to changing seasonal temperature and precipitation dynamics (Bagne et al. 

2011; Young et al. 2011).  Currently, there simply is not enough information available to 

broadly apply these assessment tools to stream fish in a meaningful way.  The inability 

to reasonably apply available vulnerability assessment tools to determine the 

vulnerability of Missouri’s stream fish necessitates the development of a new 

methodology.  
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Poff et al. (2012) developed a framework for assessing the threat posed by 

climate change to freshwater diversity.  This framework is a function of three 

components: exposure to the threats, sensitivity of species to impacts of threats, and 

freshwater resilience or ability to adapt to or cope with the threats (Table 1).   Although 

this framework deviates from the definitions and structure presented by Glick et al. 

(2011) which is widely used for developing vulnerability assessments, we believe that it 

provides a better mechanism for assessing stream fish vulnerability based on the 

information that is currently available, and therefore this thesis conformed to structure 

and definitions found in Poff et al. (2012).  Species environmental tolerances, which are 

often expressed as sensitivity in the vulnerability assessment literature, specifically to 

habitat degradation, stream temperature warming, and alterations to flow regimes, as 

well as factors such as a species range, rarity, dispersal ability, and the hydrological 

connectivity of a species habitat can be incorporated into this framework to create a 

method for assessing the vulnerability of stream fish species.  This analysis of species 

vulnerability will focus on the sensitivity and freshwater resilience components of the 

Poff et al. (2012) framework as adequate information is not yet available to assess 

exposure in Missouri.   

Species tolerances of habitat degradation, altered flow regimes, and increasing 

stream temperatures have been assessed using two different approaches; species trait 

associations (Angermeier 1995; Parent and Schriml 1995; Poff 1997; Olden et al. 2007, 

2008; Culp et al. 2011; Mims and Olden 2013) and measured species responses (Hering 

et al. 2006; Lyons et al. 2010, Tsang and Infante, Michigan State University, Unpublished 
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data).  For this thesis two separate indices were developed, one which scores 

environmental tolerance based on traits and the other which scores based on species 

responses.  The same scoring framework was used for both indices.  The trait 

association approach to classifying environmental tolerance is based on traits which 

have been linked to vulnerability to habitat degradation, altered flow regimes, and 

increases in stream temperature in peer-reviewed literature.  The species response 

approach is based on species-specific observations of sensitivity to each of the 

environmental tolerance components.  Species environmental tolerances provide the 

foundation for the sensitivity component of this vulnerability assessment framework.   

Another aspect of the sensitivity component of the vulnerability assessment 

framework is species dispersal ability (Poff et al. 2012).  The ability of a fish species to 

disperse throughout a stream network is critical to the persistence of species faced with 

threats (Albanese et al. 2009; Poff et al. 2012).  Dispersal, a one-way movement from a 

site (Lidicker Jr. and Stenseth 1992), may benefit species facing threats by allowing 1)  

for gene flow between subpopulations (Hanski 1998; Heggenes et al. 2006), 2)  

increased colonization of newly available habitats (Detenbeck et al. 1992; Albanese et 

al. 2009), and 3) species to shift their ranges as environmental changes occur at the 

landscape scale (Matthews and Zimmerman 1990; Tonn 1990).   

Both range size and population size can influence the vulnerability of a species 

(Poff et al. 2012).  Species with smaller ranges are limited in their ability to withstand 

stochastic environmental and demographic fluctuations and are therefore more 
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vulnerable (Angermeier 1995).  Species constrained to a small range are more likely to 

lack access to refugia or an adequate gradient of conditions necessary to cope with the 

impacts of threats.  Rare species, even those which are widely distributed across the 

landscape, may have increased vulnerability to both deterministic threats such as 

habitat loss, as well as stochastic events such as invasions and epidemics (Mace et al. 

2008).  Species with narrowly restricted distributions and rare species generally have 

high levels of vulnerability. 

Freshwater resilience, defined as the hydrological connectivity of the landscape, 

is another component of the vulnerability assessment framework developed by Poff et 

al. (2012).  A stream system with high levels of connectivity provides species the 

opportunity to emigrate to suitable habitats as conditions change (Poff et al. 2012).  Not 

only is dispersal difficult because of the restrictive, branching nature of stream 

networks, but humans have increased the level of fragmentation through the creation 

of barriers such as dams and road crossings (Jackson and Marmulla 2001; Fagan et al. 

2002).  Species with highly fragmented populations may have an elevated risk of 

extinction (Fagan et al. 2002).   

Scientists and decision makers benefit from the ability to identify vulnerable 

species to make effective decisions regarding the conservation of stream fish.  The 

objectives of this chapter are to 1) classify species’ vulnerability based on environmental 

tolerance to habitat degradation, stream temperature warming, and alterations to flow 

regimes, dispersal ability, restricted distribution, rarity, and freshwater resilience 2) 
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compare the use of traits and species responses to identify species environmental 

tolerance 3) develop indices to measure stream fish vulnerability using our species 

classifications, 4) determine whether our measures of vulnerability correlate with listing 

status, and 5) analyze distribution patterns of vulnerable species in Missouri.  Our aim is 

to develop a framework for assessing stream fish vulnerability and to make 

recommendations for assessing stream fish vulnerability based on an application of our 

methodology to Missouri’s stream fish species. 

MATERIALS AND METHODS 

Study area 

 The state of Missouri can be classified into three ecologically unique subregions: 

the Central Plains, Ozarks, and Mississippi Alluvial Basin (MAB) (Pflieger 1970; Pflieger 

and Missouri Department of Conservation 1989; Sowa et al. 2007) (Figure 1).  These 

subregions feature major differences in geology, landform, soils, land cover, and 

groundwater influence which create unique habitats and fish communities in the 

streams of each area (Table 2).  The Central Plains, in northern Missouri, is dominated 

by open grassland and agriculture (Figure 1) with streams associated with wide, gently 

sloping valleys which have a relatively low gradient, high turbidity, and fine silt and sand 

substrates (Sowa et al. 2007).  The Ozarks, in southern Missouri (except the 

southeastern corner), is a mix of forested areas and open pastureland and agriculture 

(Sowa et al. 2007) (Figure 1).  Most of the region has rugged terrain with high relief, 

which creates higher average stream gradients.  Many streams in the Ozarks have 
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substantial groundwater inputs.  The substrate of these streams is highly variable but 

often consists of gravel, cobble, or bedrock with sand and silt in slower moving areas 

and pools.  The MAB is in southeastern Missouri, and is a broad flat plain with low 

stream gradients, most of which have been channelized for agriculture, which is the 

predominant land cover in the region (Figure 1).  The substrate varies throughout the 

subregion but generally the larger and slower moving streams are characterized by fine 

silt while streams with faster flow are comprised of sand and small gravel substrates 

(Sowa et al. 2007). 

Fish data 

 Data detailing fish occurrence records were provided by the Missouri 

Department of Conservation (MDC) from the Resource Assessment and Monitoring 

Program (RAM) database.  This study used 1499 fish samples which were collected using 

a statewide stratified random sampling design (Fischer and Combes 2003) of unique 

stream segments collected between April and September, 2000 to 2011 from 

permanent wadeable streams (2nd-5th Strahler order) (Figure 2).  All samples within the 

RAM database were collected using standardized methods with block nets enclosing a 

sample area which was then thoroughly sampled via electrofishing and seining (Fischer 

and Combes 2003), with all individual specimens identified to species and enumerated.     

Scoring system and classification of species vulnerability to threats 

Species vulnerability scores were calculated using two different approaches: one 

based on species responses and the other linked to species traits (Figure 3).  Species 
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vulnerability was classified and scored for both indices according to species 

environmental tolerance, dispersal ability, restricted distribution, rarity, and freshwater 

resilience.  Species environmental tolerance scores were calculated by summing the 

scores for habitat, temperatures, and flow vulnerability separately for each of the two 

indices, while all other criteria were scored the same way for both indices (Figure 3).  

Species sensitivity scores were calculated by multiplying rarity scores by the sum of 

environmental tolerance, dispersal ability, and range size scores, while the final species 

score is the sum of the sensitivity and freshwater resilience scores (Figure 3).  Scores 

were assigned to each species based on the classification of species vulnerability to each 

threat category.  Rarity was incorporated as a multiplicative factor rather than an 

additive component because rarity is expected to compound the impacts of the other 

components.  Scores for each threat category were assigned as either discrete (0 or 1) 

for vulnerable or not classifications, continuous-additive (0 to 1) for vulnerability which 

was quantified along a gradient and incorporated into the vulnerability index as an 

additive component, or continuous-multiplicative (1 to 2) for vulnerability which was 

quantified along a gradient and incorporated into the vulnerability index as a 

multiplicative component.  Multiplicative components were scaled from 1 to 2, rather 

than 0 to 1, because these components are only intended to have no effect or increase a 

species score, not reduce it. 

Environmental tolerance was scored using the discrete value system by summing 

the vulnerable (1) or not (0) classifications for vulnerability to habitat degradation, 

warming stream temperatures, and alterations to flow regimes (Figure 3).  Two separate 
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environmental tolerance scores were calculated; one using a traits-based approach and 

another using a measured species response approach.  Classifications for the traits-

based approach were made after a thorough review of the literature identified traits 

linked to vulnerability to each of the threats.  Lithophilic spawning and benthic 

invertivory were used to classify species as vulnerable to habitat degradation as both 

have been linked to sensitivity to sedimentation, a frequent product of habitat 

degradation (Berkman and Rabeni 1987; Mims et al. 2010).  Species which exhibit either 

of these traits were classified as vulnerable to habitat degradation.  Species classified as 

cool- or cold-water adapted have been identified as vulnerable to warming stream 

temperatures and were therefore classified as vulnerable to warming stream 

temperatures in this assessment (Matthews and Zimmerman 1990; Eaton and Scheller 

1996; Mohseni et al. 2003; Lyons et al. 2010; Mims et al. 2010).  As stream flows 

become less predictable, and incidences of both extreme droughts and floods increase 

(Poff et al. 2002), species exhibiting the periodic life history strategy (prefer predictable 

flow patterns), and the equilibrium life history strategy (prefer low variability in flow 

patterns) are expected to be more vulnerable than species exhibiting the opportunistic 

life history strategy (thrive in streams with unpredictable and variable flow patterns) 

(Winemiller and Rose 1992; Olden and Kennard 2010; Mims and Olden 2012, 2013).   

The second index used species responses to identify the environmental 

tolerance of species to habitat degradation, stream temperature warming, and 

alterations to flow regimes (Figure 3).  A substantial amount of research has been 

conducted to identify species which are intolerant of habitat degradation, particularly 
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due to the proliferation of IBIs (Karr 1981; Karr et al. 1986; Lyons et al. 1996; Karr and 

Chu 1997; Whittier et al. 2007; Pont et al. 2009).  Esselman et al. (2011) conducted a 

literature review of fish based IBIs from across North America and compiled a list of 

intolerant species.  Species which have been classified as intolerant within the World 

Wildlife Fund ecoregions (Abell et al. 2008) which intersect Missouri (ecoregions 

numbered 143, 146, 147, 148, 149) were classified as vulnerable to habitat degradation 

for our species response index.  Tsang et al. (Michigan State University, Unpublished 

data) used stream gauge station temperature and flow data to identify species which 

decreased in abundance with temperature and flow metrics corresponding to future 

climate change predictions.  Species demonstrating decreased abundance in streams 

with flow metrics associated with climate change predictions were classified as 

vulnerable to predicted alterations to flow regimes.  Species showing decreased 

abundance in streams with temperature metrics associated with climate change 

predictions were classified as vulnerable to warming stream temperatures. 

Species ability to disperse throughout the stream network is critical to 

recolonization after disturbance, establishment in new habitat made available via 

changes to the environment, and maintenance of healthy metapopulation dynamics 

(Albanese et al. 2009; Campbell Grant 2011; Radinger and Wolter 2013).  Species with 

limited dispersal abilities are expected to be vulnerable (Poff et al. 2012).  Radinger et 

al. (2013) quantified the average dispersal distance for the mobile component 

(dispersers) for nine fish families.  Species from three families (Fundulidae, Cottidae, and 

Percidae), which had an average dispersal distance of less than 250 meters (Radinger 
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and Wolter 2013), were classified as vulnerable based on their limited dispersal abilities 

and received scores of 1 (Figure 3).  Species from all other families received scores of 0 

for the dispersal ability component of these vulnerability indices. 

Species range size and rarity have been linked to vulnerability due to 

environmental change (Poff et al. 2012).  Range size was scored using the continuous-

additive approach (Figure 3).  In order to quantify vulnerability based on range size the 

number of ecological drainage unites (EDUs) in which a species has a known occurrence 

were counted.  These values were then scaled from 0 for species which occur in all 17 

EDUs within Missouri to 1 for species which occur in a single EDU.  Intermediate values 

were calculated along this scale; for instance if a species was found in 25% of EDUs it 

would receive a score of 0.75, if a species was found in 88% of drainages it would 

receive a score of 0.12.  Similarly, species rarity was calculated by using scaled values 

from 1 to 2.  First, a cutoff for which species would be considered common was needed.   

This was achieved by examining a histogram of the percent of sites occupied by each 

species.  A threshold was identified at less than 10% of sites (87 species; Figure 4).  

Using the continuous-multiplicative approach, species which were found at <10% of 

sites received scores scaled from 1 (10% of sites) to 2 (A single site, 0.01% of sites).  

Through this scaling system a species found at seven percent of sites would receive a 

score of 1.3 while a species found at two percent of sites would receive a score of 1.8. 

Freshwater resilience scores were calculated as the ratio of the number of 

connected stream kilometers per occurrence scaled using the continuous additive 
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approach from 0 for the maximum value (1,787 km/occurrence) to 1 for the minimum 

value (123 km/occurrence) (Figure 3).  The amount of connected stream kilometers was 

calculated by partitioning out 2nd-6th order stream segments in the Missouri Resource 

Assessment Partnership’s stream network GIS layer (Blodgett and Lea 2005).  Stream 

segments classified as stream or stream/river (i.e., not reservoir or impoundment) were 

isolated via a definition query, which clipped each stream network at any location which 

flowed into an impoundment.  The number of connected stream kilometers for each 

intact stream segment was calculated with the Rivex tool (Hornby 2014).  This 

information allowed us to quantify the number of connected stream kilometers for each 

species occurrence.  This information was used to determine the average number of 

connected kilometers for the occurrences of each species.  Species with high average 

connected stream kilometers per occurrence inhabit areas with relatively high stream 

network connectivity, while species with relatively low values occur in fragmented 

habitats with low connectivity.   

Index comparisons 

 Several analyses were conducted to determine whether the species response 

and trait association approaches for classifying environmental tolerance achieved 

similar results, whether state-listed species received higher vulnerability scores than 

unlisted species, and whether there were patterns in the distribution of vulnerable 

species between aquatic subregions.  The percent agreement between the two 

approaches for classifications of vulnerability to habitat degradation, warming stream 

temperatures, and alterations to flow regimes was used to determine the consistency of 
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the approaches to classifying environmental tolerance.  A Fischer’s exact test was used 

to determine if the indices showed a positive odd’s ratio (α<0.01) for vulnerable 

classifications of the environmental tolerance components of the two approaches.   A 

two-way analysis of variance was used to determine if mean vulnerability score differed 

by listing status, Missouri species of conservation concern including all federally 

threatened and endangered species (Missouri Natural Heritage Program 2012), and 

environmental tolerance classification approach.  Pearson’s correlation analysis was 

used to determine if the two indices were related based on the number and proportion 

of vulnerable species at each of the study sites for each of the three components of 

environmental tolerance.  An analysis of variance was used to determine whether the 

mean number and mean proportion of vulnerable species to each of the three 

environmental tolerance components differed by Missouri’s three aquatic subregions.  

All statistical calculations were performed using R statistical software (R Development 

Core Team 2011). 

RESULTS 

Index development 

 Vulnerability scores for all 133 species were calculated using a trait association 

approach to classifying environmental tolerance (Appendix 1).  The mean vulnerability 

score using the trait association approach was 3.84 (+/- 0.35 95% CI).  Using the species 

response approach for classifying environmental tolerance 99 of the 133 species could 

be evaluated and the mean score for this approach was 2.38 (+/- 0.28 95% CI) (Appendix 
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1).  The remaining 34 species were not evaluated because they lacked the information 

necessary for classifying environmental tolerances. The trait association approach 

classified 71, 55, and 54 species vulnerable to habitat degradation, warming stream 

temperatures, and alterations to flow regimes respectively (Appendix 2).  The species 

response approach classified 43, 3, and 18 species vulnerable to habitat degradation, 

warming stream temperatures, and alterations to flow regimes respectively (Appendix 

3).  For each of the 133 species rarity, dispersal, range, and freshwater resilience scores 

were calculated (Appendix 4).  The mean rarity score was 1.48 with 65.4% of species 

classified as being rare based on occurrence rates of <10% of sites.  Thirty four species 

(25.6%) were classified as vulnerable based on limited dispersal ability.  The mean 

number of EDU’s in which a species was present was 8 (of 17 total), which equates to a 

score of 0.53.  The mean value for freshwater resilience was 0.53 which equates to an 

average of 743 connected kilometers per occurrence. 

Index comparisons 

 The species response and trait association approaches to classifying 

environmental tolerance showed similarities and differences in classification.  The most 

consistent classification between methods was for vulnerability to habitat degradation 

(65.7%), followed by warming temperatures (60.1%) and lastly flow regime alteration 

(46.5%) (Table 3).   There was a high degree of positive association between the trait 

and response based approaches to classifying vulnerability based on habitat 

degradation (Odd’s ratio of 3.68, p=0.002), while no significant association was found 

between the trait and response based approaches to classifying vulnerability based on 
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warming temperatures (Odd’s ratio of 0.80, p=0.99) or changes in flow regimes (Odd’s 

ratio of 0.49; p= 0.2) (Table 3).   

Mean vulnerability scores differed by both listing status (p<0.001), and index 

(p<0.001), with no interaction between listing status and index (p=0.794).  The mean 

species response score for listed species was 3.35, while unlisted species averaged 

scores of 2.29; for the trait association approach, listed species averaged scores of 4.84, 

while unlisted species averaged scores of 3.57 (Figure 5).  Scores for rare species 

(species occurring in less than 10% of sites) were compared to common species and it 

was found that rare species had significantly higher vulnerability scores for both 

approaches (Response: Rare=2.8, Not =1.9, P<0.001; Trait: Rare=4.6, Not=2.5, P<0.001).   

The number of vulnerable species at each site had the highest correlation 

between the trait and response-based approaches for habitat degradation (r=0.94), 

followed by temperature (r=0.37), and flow (r=0.23) (Figure 6).  The proportion of 

vulnerable species at each site had the highest correlation between both indices for 

habitat degradation (r=0.87), followed by temperature (r=0.15), and finally flow (r=-

0.25) (Figure 6).  The mean number of vulnerable species per site was greatest in the 

Ozark subregion for both habitat degradation and temperature using both approaches 

of classifying environmental tolerances (Table 4).  The greatest numbers of species 

vulnerable per site for flow occurred in the Mississippi Alluvial Basin according to the 

trait association approach, and the Plains according to the species response approach 

(Table 4).  The mean proportion of vulnerable species per site was highest in the Ozarks 
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for habitat and temperature for the trait association approach and habitat for the 

species response approach (Table 4).  The greatest proportion of flow vulnerable species 

per site was highest in the Mississippi Alluvial Basin for the trait association, and in the 

plains for the species response approach (Table 4).  

DISCUSSION 

The results of this assessment provide a framework for assessing stream fish 

vulnerability to climate change and habitat degradation impacts.  Stream communities 

in regions across the globe will be impacted by climate change and habitat degradation 

(Eaton and Scheller 1996; Poff et al. 2002; Heino et al. 2009), and evaluating species 

vulnerability will be critical for conservation planning efforts (Poff et al. 2012).  This 

assessment provides a new approach for stream fish vulnerability assessment which can 

be applied and modified in other regions and improved with further evaluation and 

refinement.  The trait association approach to classifying environmental tolerance was 

applied to all species while the species response approach could only able be applied to 

74 percent of species in this analysis.  The trait association approach produced higher 

vulnerability scores (3.84 versus 2.38), and exhibited a greater range of scores (0-8.75 

versus 0-7.82).  Both of these discrepancies between the indices largely stems from the 

inability of the species response index to classify the environmental tolerances of rare 

species.  Of the 34 species for which environmental tolerance could be classified based 

on measured species responses, 32 were classified as rare (occurring at less than 10% of 

the study sites).  Rare species had significantly higher vulnerability scores than common 

species using both approaches which likely resulted in higher average and maximum 
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scores for the trait association index compared to the species response index.  Although 

some regions, such as California, appear to have sufficient information regarding the 

vulnerability of species to specific metrics, many regions lack the data necessary to elicit 

the responses of species to environmental threats necessary for a broadly applied 

vulnerability assessment (Moyle et al. 2013).  To further assess and quantify the impact 

of changes in the environment, quantitative assessments of stream fish relationships 

with potential stressors is needed (Schlosser 1991).  Broad scale vulnerability 

assessments which rely on measured species responses to environmental threats will 

depend on additional research to determine the impacts of threats on all species.  Many 

of these rare species are likely the most vulnerable, so a failure to include them in a 

vulnerability assessment would likely leave an important data gap and present a biased 

assessment.   

A traits based approach allows for a more complete assessment of species 

vulnerability as traits have been described for the vast majority of North American 

stream fish (Frimpong and Angermeier 2009; Mims et al. 2010).  The use of traits has 

flourished for the assessment of stream fish communities, and has proven to be a useful 

tool in stream fish ecology and conservation research (Parent and Schriml 1995; Poff 

1997; Olden and Kennard 2010; Culp et al. 2011; McManamay et al. 2014).  The results 

presented here suggest a traits based approach allows for a more complete 

representation of species; while more research linking specific traits to environmental 

threats would help decrease the uncertainty of these assessments and validate 

measures of vulnerability. 
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Substantial discrepancies existed in the number of species classified as 

vulnerable to environmental tolerance components using the trait and response based 

approaches.  Considering only species evaluated using both the trait association and 

species response approaches, it was determined that both approaches classified a 

similar number of species as vulnerable to habitat degradation (47 versus 43 

respectively).  However, the number of species classified as vulnerable to both warming 

stream temperatures (38 versus 3) and alterations to flow regimes (47 versus 18) was 

considerably higher for the trait association approach.  This is likely because results 

derived using traits to classify vulnerability could be extrapolated based on expectations 

of how species will respond, however when using measured species responses 

classifications are restricted to observations of responses which have already occurred.  

Because habitats have already been widely degraded there have been many 

opportunities to measure species responses in both degraded and intact habitats, 

however currently observed changes in temperature and flow regimes have only 

accounted for a small proportion of long-term predictions (Heino et al. 2009), and thus 

responses to these changes may not yet have taken place.  This lack of observations of 

more extreme conditions predicted in the future has likely led to an inability to classify 

those species which may show negative responses under future climactic conditions. 

Differences were observed in which species classified as vulnerable by the two 

indices.  Vulnerability to habitat degradation was classified relatively consistently by 

both approaches (65.7% agreement), suggesting that both indices were likely successful 

in capturing and representing species vulnerability to land use changes.  In cases where 
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the trait association index classified species as vulnerable while the species response 

index did not, species are often those which have been identified as some of the most 

tolerant of degradation (e.g. Johnny Darter Etheostoma nigrum, Orangethroat Darter 

Etheostoma spectabile, and Golden Redhorse Moxostoma erythrurum (Karr 1981)), and 

other common, tolerant species (e.g. Orangespotted Sunfish Lepomis humilis (Meador 

and Carlisle 2007), Creek Chub Semotilus atromaculatus (Miller et al. 1988), and Black 

Bullhead Ameiurus melas  (Novomeská and Kováč 2009)).  Species classified as 

vulnerable to habitat degradation by the species response index, which were not by the 

trait association index, included a number of Centrarchids, (e.g. Warmouth Lepomis 

gulosus, Longear Sunfish Lepomis megalotis, Smallmouth Bass Micropterus dolomeiu, 

Shadow Bass Ambloplites ariommus, Ozark Bass Ambloplites constellatus, and Rock Bass 

Ambloplites rupestris), and some species of the genus Cyprinella (e.g. Whitetail Shiner 

Cyprinella galactura, Spotfin Shiner Cyprinella  spiloptera, and Steelcolor Shiner 

Cyprinella whipplei).  This suggests that although these indices are relatively consistent 

in classifying vulnerability to habitat degradation, there are still some vulnerable species 

which were excluded from one approach or the other.  The relative consistency 

between the approaches of classifying habitat vulnerable species suggests that the 

current understanding of vulnerability to habitat degradation is sufficient for the 

purposes of a broad-scale assessment using either approach.   

In contrast, vulnerability to stream warming and alterations to flow regimes 

showed major discrepancies between the two approaches.  Although only three 

Missouri stream fish species (White Sucker Catostomus commersonii, Smallmouth Bass, 
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and Central Stoneroller Campostoma anomalum) have shown measured negative 

responses to warming stream temperatures, under future conditions many additional 

species could be vulnerable.  There are examples of predicted range contraction for 

many species under future climate projections, even if that range contraction has yet to 

be observed (Mohseni et al. 2003; Heino et al. 2009; Lyons et al. 2010).  Based on the 

trait association approach, which allows negative responses to be extrapolated even 

though they may not yet have been observed, a large number of Cyprinids (14 of 33) 

and Percids (8 of 15) will likely be vulnerable to future warming.  

Discrepancies between the two indices were greatest for flow which suggests 

that there is a need to resolve the conflicting results between vulnerability predictions 

based on life history strategy (Mims et al. 2010) versus vulnerability predictions based 

on measured species responses (Tsang and Infante, Michigan State University, 

Unpublished data).  Discrepancies between these indices found a number of 

Catostomids (12 species), Centrarchids (12 species), and Ictalurids (6 species) had traits 

linked to vulnerability but showed no negative response, while no species within these 

families showed a negative response without traits linked to vulnerability.  The lack of a 

measured response for these equilibrium and periodic life history strategists suggests 

that other factors may complicate the predicted relationship between these traits and 

decreases in abundance and occupancy associated with changes in stream flow.  In 

contrast, several families had much higher numbers of species showing only negative 

species responses than only traits linked to vulnerability; including Cyprinids (8 versus 4) 

and Percids (4 versus 1).  Based on the trait research literature it was expected that 
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these opportunistic species would tolerate or even benefit from projected changes in 

stream flow regimes (Mims and Olden 2013; McManamay et al. 2014), however 

observations of fish responses to predicted flow metrics show decreases in species 

abundance (Tsang and Infante, Michigan State University, Unpublished data).  These 

discrepancies suggest that a thoughtful comparison between the response and trait 

association approaches should be used to select the most appropriate approach, and 

future research should be conducted to rectify these differences.  When selecting an 

approach for classifying environmental tolerances researchers and managers may need 

to consider if sufficient information is available for target species, and which approach 

to classifying environmental tolerance better fits the most current understanding of 

species vulnerability, particularly regarding the alteration of flow regimes. 

Our species vulnerability scores were positively correlated with listing status, 

which suggests that both of the indices achieve results that align with those of more 

traditional methods of identifying vulnerable species.  In Missouri, species of 

conservation concern are determined through expert knowledge while also considering 

rarity, population trends, and threats following the NatureServe Conservation Status 

Assessment Criteria (Missouri Natural Heritage Program 2012).  Using this information 

as a partial validation it appears that the quantitative assessment of stream fish 

vulnerability presented here is consistent with expert opinion.  All 23 species of 

conservation concern were able to be evaluated using the trait association index, while 

only 5 species of conservation concern were with the species response index.  Based on 

the correlations the indices have with species of conservation concern it appears that 
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species which are currently considered imperiled are likely to be vulnerable to future 

threats. 

Our analysis of the distribution of vulnerable species showed strong spatial 

trends.  Both approaches to classifying environmental tolerance identified the Ozarks as 

generally having both the highest numbers and proportions of vulnerable species per 

site than in the other subregions.  The exception to this was for flow vulnerability, for 

which the number and proportion of vulnerable species per site was highest in the MAB 

according to the trait association approach and the Plains according to the species 

response approach.  Streams in the Ozarks have steeper stream gradients, more diverse 

substrates, cooler stream temperatures, and less human development than Plains 

streams and are able to support more sensitive species (Sowa et al. 2007).  The spatial 

consistency of the counts and proportions of species classified as vulnerable to habitat 

degradation and stream warming suggests that management for those threats can be 

focused on the Ozarks regardless of which approach to classifying environmental 

tolerance is used.  The inconsistency regarding flow vulnerability corroborates the 

previous comparison of environmental tolerance classification by confirming that 

further research to determine species vulnerability to predicted alterations to flow 

regimes is needed.  Streams are predicted to experience greater variation in flows (IPCC 

2002; Poff et al. 2002), however the impact of increased variation in flow on stream fish 

is unclear.  Decision makers may need to consider which approach to classifying 

environmental tolerance best fits their understanding of flow vulnerable species when 
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making decisions regarding the identification and selection of areas for management of 

these species.  

Understanding the impact of uncertainty is crucial for any vulnerability 

assessment (Patt et al. 2005; Füssel and Klein 2006) and there are many sources of 

uncertainty that affect our understanding of stream fish vulnerability in Missouri.  One 

of the primary sources of uncertainty in any climate change work is how much the 

climate will change (Stainforth et al. 2007).  Many scenarios have been developed which 

predict a range of future temperature and precipitation conditions (IPCC 2013).  In 

stream systems this uncertainty is compounded by the fact that there is also uncertainty 

in how these changes in climate will impact stream conditions (Whitledge et al. 2006; 

Westhoff and Paukert 2014).  In Missouri models do not yet exist which allow us to 

predict stream temperature and flow conditions now or under predicted future climate 

scenarios.  Although the general trends are known for changes in stream temperature 

and flow regimes, currently suitable data is not available to differentiate levels of 

exposure across the Missouri landscape.  Because of this exposure, which is often used 

in vulnerability assessments (Glick et al. 2011; Staudinger et al. 2013), cannot be used as 

a factor of discrimination in species vulnerability analysis.  This assessment is also bound 

to the uncertainty inherent in predicting the negative effects of environmental threats 

on species based on both traits and measured responses.  Understanding the impact of 

uncertainty on this assessment is crucial for the interpretation of these results, the 

applicability of the framework for others, and for providing opportunities to refine the 

assessment in order to reduce uncertainty when new information becomes available. 
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There are clear tradeoffs between the two approaches of assessing 

environmental tolerance.  Benefits of a trait association approach include broad 

applicability to many species, consistency between studies/regions, and ability to link to 

a causal mechanism (Parent and Schriml 1995; Poff 1997; Frimpong and Angermeier 

2009; Culp et al. 2011).  Benefits of a measured species response approach include 

direct evidence of species intolerance of threats, and the ability to account for complex 

interactions between species characteristics and their responses (Williams et al. 2008; 

Lyons et al. 2010, Tsang and Infante, Michigan State University, Unpublished Data).  

Disadvantages of a trait association approach include difficulty representing variability in 

environmental tolerances, limited inference to known and quantified traits, and 

difficulty accounting for complex species/environmental relationships.  Disadvantages of 

a measured species response approach include restriction to species which have data 

available (analysis of many rare species are limited by lack of data), limitation of 

inference to threat impacts which have already occurred in the environment or 

dependence on laboratory studies to simulate threat impacts, and difficulty isolating the 

impact of a threat from other factors which may affect a species response.  A trait 

association approach may currently be better suited to assessing stream fish 

vulnerability because this approach allows us to analyze more species of interest using 

extrapolations rather than direct observations.  Research which investigates species 

responses to threats could add to the feasibility of a response based assessment of 

vulnerability.  A more complete set of information regarding species thermal and flow 

tolerances, bioenergetics, and population viability coupled with landscape models of 
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stream temperatures and flow regimes could lend insight for the development of 

response based models which could predict species specific vulnerability. 

Many stream fish species are already threatened with local extirpation, and 

increases in habitat degradation, stream warming, and alterations to flow regimes of 

streams will likely result in increases in the number of species impacted as well as the 

magnitude of this imperilment (Poff et al. 2012).  To more effectively conserve stream 

fish, decision makers need a better understanding of which species are most vulnerable 

to each of the threats.  This study created a quantifiable index of stream fish 

vulnerability based on the outline by Poff et al. (2012) that fills this need for the state of 

Missouri.  As more information is gathered for stream fishes the application of more 

traditional vulnerability assessments following the criteria and framework established 

by Glick et al. (2011) may be possible, however based on currently available information 

we believe this approach provides a suitable alternative.  The assessment of 

vulnerability presented here allows for identification of species vulnerable to specific 

threats and also gives us a cumulative measure of a species vulnerability to a suite of 

threats.  This study developed a framework which can serve as a foundation for future 

vulnerability assessments and can be adapted to include new information regarding 

species environmental tolerances, additional threats, and the weighting or scale of 

threats.  Our hope is that others can apply and modify this framework for assessment of 

vulnerable stream fish species in other regions. 
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TABLES 

Table 1: Vulnerability assessment components used to assess Missouri stream fish 
vulnerability based on Poff et al. 2012. 

Component Definitions from Poff et al. 2012  

Exposure Deviation in physico-chemical conditions relative to regional 
baselines. 

Sensitivity Intrinsic factors related to a species environmental tolerance, 
dispersal ability, genetic adaptation, range, and population size. 

Freshwater 
Resilience 

Connectivity of aquatic habitats which provides opportunities for 
species dispersal. 
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Table 2: Land use type percentages for the three Missouri aquatic subregions and 
statewide (Blodgett and Lea 2005). 

           Missouri Land Use (%) 
 Statewide  Plains  Ozarks  Mississippi Alluvial Basin  
Urban 3.7 4.1 3.5 1.8 
Cropland 23.9 37.1 7.0 83.0 
Grassland 33.3 35.9 34.4 3.8 
Forest 34.5 17.3 51.4 5.0 
Wetland 2.1 3.5 1.0 2.5 
Water 2.2 2.0 2.1 3.9 
Other 0.3 0.1 0.6 0.1 
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Table 3: Comparison of trait association and species response approaches for classifying 
species environmental tolerances based on percent agreement of species classifications, 
odd’s ratio and p-value calculated using Fischer’s exact test.  

Threat 
Percent 
Agreement 

Odd’s Ratio P-Value 

Habitat Degradation 65.7 3.68  0.002 
Temperature 60.1  0.80 1.000 
Flow 46.5 0.49  0.200 
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Table 4: Mean number and proportion of vulnerable species at sites within each 
subregion by index and threat; highest value in bold.  P-values tested whether the mean 
number or proportion of species differed by subregion using a one-way ANOVA. 
“MAB”=Mississippi Alluvial Basin; “Num.”=Number of species; “Prop.”=Proportion of 
species 

Index Plains Ozarks MAB P-Value 
Threat Num. Prop. Num. Prop. Num. Prop. Num. Prop. 

Trait Association             
Habitat 4.6 0.30 10.6 0.55 3.3 0.18 <0.001 <0.001 

Flow 5.9 0.41 8.0 0.42 10.1 0.28 <0.001 <0.001 
Thermal 3.5 0.24 8.0 0.42 5.1 0.28 <0.001 <0.001 

Species Response             
Habitat 3.0 0.19 9.2 0.51 2.4 0.16 <0.001 <0.001 

Flow 3.5 0.25 2.3 0.13 2.1 0.14 <0.001 <0.001 
Thermal 1.1 0.01 1.5 0.01 0.0 0.0 0.003 0.027 
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FIGURES 

 

Figure 1: Map showing Missouri's aquatic subregions and land use. 
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Figure 2: Map of sample locations used in this study for fishes collected from 2000 to 
2011 in wadeable streams in Missouri. 
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Figure 3: Conceptual diagram of stepwise procedure for calculating species vulnerability 
scores using the Species Response Index and Trait Association Index.  Inputs for 
dispersal, range, rarity and freshwater resilience were the same for both indices; 
differences between index calculations occurred only for the environmental tolerance 
scoring criteria.  Numbers in parenthesis indicate potential scoring range.  For all “0 or 
1” scoring, species meeting listed criteria receive a score of 1, while all others receive a 
score of 0. 
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Figure 4: Histogram of species rarity for fish sampled from 1,499 wadeable stream 
segments in Missouri from 2000 to 2011.  The dashed line represents threshold used to 
classify rare species. 
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Figure 5: Mean score (+/- 95% Confidence Interval) for listed and unlisted species using 
the species response and traits association approaches for classifying environmental 
tolerance. 
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Figure 6: Correlation between the trait and response based approaches for classifying 
environmental tolerance based on the number and proportion of vulnerable species at 
each of the study sites,  r = Pearson’s correlation coefficient. 
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CHAPTER 2 

EVALUATION OF MISSOURI’S CONSERVATION NETWORKS FOR STREAM FISH 

CONSERVATION 

Nicholas Sievert, Dr. Craig P. Paukert, and Dr. Joanna Whittier 

ABSTRACT 

Successful conservation of stream fishes will become increasingly dependent on 

the use of conservation networks as the effects habitat degradation and climate change 

increase.  We developed a framework for identifying both the most valuable stream 

segments for fish conservation within established conservation networks, as well as 

areas outside of conservation networks which best complement what is already being 

protected.  This methodology was applied to three established conservation networks in 

Missouri, USA: Priority Watersheds, Conservation Opportunity Areas, and the existing 

conservation network.  We also examined patterns in conservation values based on the 

landscape and habitat characteristics of sites, the impact of constraining prioritization 

based on the established conservation network compared to using a blank slate 

approach, how species representation varied in sites selected based on measure of 

conservation value compared to sites selected based solely on habitat integrity, and 

how decisions to include other variables (e.g., weighting of species, metric of upstream 

watershed integrity, and the use of different conservation planning algorithms) may 

inform conservation planning decisions.  There were a number of sites with low scores 

based on landscape-level habitat integrity, but had conservation values in the top 10% 
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based on the conservation value approach.  Constraining prioritization to established 

conservation networks generally resulted in lower species representation, however the 

established networks did include representation of almost all species and provided a 

more feasible mechanism for implementing large-scale conservation than starting from 

a blank slate.  Species weighting had very little impact on the conservation value of 

stream segments, likely because highly weighted species generally had smaller 

distributions and were therefore retained to maintain representation regardless of 

weight.  The inclusion of upstream habitat integrity and the prioritization technique 

both resulted in differences in the conservation value assigned to sites suggesting that 

decision makers may need to consider the implications of choices regarding these 

options on results.  We believe this framework can be used in other regions to identify 

priority sites for the conservation of stream species within and complementary to 

established conservation networks. 
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INTRODUCTION 

Conservation networks are important for the protection of increasingly imperiled 

stream communities (Saunders et al. 2002; Abell et al. 2007; Nel et al. 2009a).   Habitat 

degradation, warming stream temperatures, and alterations to the flow regime are 

expected to contribute to future declines of stream fish (Dudgeon et al. 2006).  

Conservation plans are important for the protection of aquatic biodiversity from these 

threats, and have been developed for stakeholders around the globe (Abell et al. 2007).  

The primary goal of most aquatic biodiversity conservation plans is to protect the 

current suite of species or communities, often through reserves or protected areas 

(Saunders et al. 2002; Abell et al. 2007).  Resources for the establishment and 

management of reserves and protected areas are often limited; therefore it is important 

to make scientifically informed decisions to achieve the greatest conservation 

outcomes. 

Effective conservation planning depends on the consideration of both 

biodiversity and the amount of resources available for protection, management and 

research to meet goals (Linke et al. 2011).  Typically, conservation plans for freshwater 

ecosystems have been centered on the development of a spatial network which 

supports a targeted set of species or features of interest.  Because resources for 

conservation are often limited, these plans seek to accomplish this while minimizing 

cost or area by focusing on the complementarity of selected sites (Nel et al. 2009a).  

Recently, there has been a proliferation of research aimed at developing quantitative 
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methods for creating conservation plans with an emphasis on complementarity 

(Moilanen et al. 2008, 2009a; Hermoso et al. 2011; Linke et al. 2011).  Generally, these 

tools have been used to design conservation networks or set priorities while treating the 

project area as a blank slate, that is, areas are prioritized without consideration of any 

already established conservation networks (Sowa et al. 2007; Wenger et al. 2009; 

Strecker et al. 2011; Esselman et al. 2013; Pool et al. 2013).  However, in many areas the 

slate is not blank, as conservation networks have already been established (e.g., state 

and federal wildlife management areas, refuges, and parks).  For many managers and 

decision makers the flexibility to start from scratch and create new conservation 

networks or priority areas is not feasible given the costs associated with the creation of 

new networks, as well as the existing obligations of agencies to its stakeholders 

(Naughton-Treves et al. 2005).  In areas where the slate is not blank, evaluation and 

prioritization techniques which consider established conservation networks constitute a 

more realistic, practical approach. 

This study aims to provide a framework for freshwater conservation planning 

which incorporates established conservation networks into the planning process, with 

an application to the state of Missouri.  The objectives of this project were to rank 

wadeable stream segments (based on predicted stream fish representation, species 

vulnerability to land use and climate change, and the upstream integrity of sites) within 

and complementary to three established conservation networks in Missouri: the existing 

conservation network (ECN), Conservation Opportunity Areas (COAs), and Priority 

Watersheds (PWs).  This study also evaluated how decisions related to the inclusion of 
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species weighting, species specific connectivity requirements, and the method used for 

prioritizing stream segments affected the results. 

The ECN is comprised of public (Missouri Natural Areas, Missouri Department of 

Conservation (MDC) lands, US Fish and Wildlife Service Refuges, Department of Natural 

Resources lands, U.S. Forest Service lands, National Park Service lands, and Army Corps 

of Engineers lands) and private areas (Wetlands Reserve Program lands, The Nature 

Conservancy Preserves, Missouri Prairie Foundation lands, the Pioneer Forest, and Ozark 

Regional Land Trust lands), which are  managed with a primary purpose of wildlife 

conservation (Hoskins 2005).  In Missouri there are 3,943 ECN units encompassing 

13,183 km2 and 2,590 km of wadeable streams (Abbitt et al. 2004; Figg 2011).  COAs 

consist of 35 units located throughout Missouri that have been identified by MDC as the 

best locations to achieve all wildlife conservation.  These units are a mixture of public 

and private lands where MDC and 18 partner organizations representing national and 

state agencies, and national, regional, and local non-profit conservation organizations 

work together to utilize “technology, expertise and resources for all wildlife 

conservation” (Missouri Department of Conservation 2012).  These COAs encompass 

22,855 km2 and 4,801 km of wadeable streams (Abbitt et al. 2004; Figg 2011).  Each COA 

has a stakeholder team which develops goals and coordinates management and 

conservation actions for the area and attempts to facilitate conservation actions on both 

the public and private lands within the areas.  PWs were created by the MDC Fisheries 

Division in 2010 by identifying focal areas across the state for conserving aquatic 

biodiversity and providing quality areas and opportunities for outdoor recreation.  These 
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areas were selected based on a ranking system which included Aquatic COAs, the 

presence of streams and impoundments managed by MDC for recreation, local buy-in 

from landowners, feasibility, and multiple priority achievement in overlapping areas 

(Corson et al. 2010).  In total there are 58 Priority Watersheds encompassing 38,931 km2 

and 8,826 km of wadeable streams (Abbitt et al. 2004; Figg 2011). 

MATERIALS AND METHODS 

Study area 

 Missouri is comprised of three ecologically unique aquatic subregions: the 

Central Plains, Ozarks, and Mississippi Alluvial Basin (MAB) (Figure 1; Pflieger 1970; 

Pflieger and Missouri Deptartment of Conservation 1989; Sowa et al. 2007).  Differences 

in the geology, landform, soils, land cover, and the influence of groundwater between 

these regions have given rise to unique habitats and fish communities in the streams of 

each area.  The Central Plains encompasses all of northern Missouri and much of the 

western portion of the state, and characterized by open grassland and agricultural land 

use (Figure 1; Sowa et al. 2007).  The topography is predominately composed of wide, 

gently sloping valleys (Sowa et al. 2007).  Streams are generally characterized as having 

a relatively low gradient, high turbidity, and fine silt and sand substrates (Sowa et al. 

2007).  Most of the southern portion of Missouri is considered the Ozarks, which is  

predominately composed of a mix of forested areas and open pastureland (Figure 1; 

Sowa et al. 2007).  The topography has high relief and rugged terrain. Streams in the 

Ozarks tend to have higher average stream gradients with gravel, cobble, or bedrock as 

dominant channel substrates with sand and silt substrates in slower moving areas and 

59 
 



pools (Sowa et al. 2007).  The far southeastern portion of the state is the Mississippi 

Alluvial Basin (MAB), which has low relief and low gradient streams (Sowa et al. 2007).  

Most of this region has been channelized and ditched for agricultural production (Figure 

1).  The substrate varies throughout the subregion but generally the larger and slower 

moving streams are characterized by fine silt while streams with faster flow are 

comprised of sand and small gravel substrates (Sowa et al. 2007). 

Data  

 Fish community data was provided by MDC and included records from 1990 to 

2011 (Figure 2).  Data collected between 1990 and 1999 was contained in the MDC Fish 

Community Database, while data collected between 2000 and 2011 was contained in 

the Resource Assessment and Monitoring Program (RAM) database.  Data used for this 

study was limited to fish community collections from wadeable streams (2nd-5th order 

and classified as permanent), and had at least 0.5 hours of effort using seines and/or 

electrofishing.  This allowed for a scope of inference which included all wadeable, 

permanent streams in Missouri (Figure 2).  All 769 samples within the MDC Fish 

Community Database were representative of community sampling efforts; while all 

1,107 samples within the RAM database were sampled using a standard procedures 

which used block nets to enclose the sample area which was then thoroughly sampled 

via electrofishing and seining (Fischer and Combes 2003).  Sites were selected for RAM 

sampling based on a stratified random approach which selected wadeable stream 

segments throughout Missouri (Fischer and Combes 2003).  In this study both the RAM 

and Fish Community Databases were used to account for stream fish occurrence in a 
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presence/absence format.  In addition to the above databases that contained 

information on community samples, point data obtained from the Missouri Natural 

Heritage Program database, which was collected between 1990 and 2011, was used for 

species for which models could not be developed.   

 Environmental data was provided by the Missouri Resource Assessment 

Partnership (MoRAP).  This geospatial data was linked to each confluence to confluence 

stream segment and included 27 variables related to biogeography, stream features, 

local landscape, upstream landscape, and anthropogenic impacts (Appendix 5; Abbitt et 

al. 2004).  These variables were selected because they have been linked to fish species 

distributions in Missouri and elsewhere (Sowa et al. 2007; Strecker et al. 2011). 

Species distribution models 

Species distribution models were developed to determine representation of 

each species in each wadeable stream segment in Missouri.  Models were developed 

using an ensemble approach that averaged the results of four component models which 

met minimum evaluation standards.  The four component models included multivariate 

adaptive regression splines (MARs), generalized additive models (GAMs), boosted 

regression trees (BRTs), and random forest models.  Species models were developed 

separately for each of Missouri’s aquatic subregions because species exhibit different 

relationships with landscape features between subregions (Sowa et al. 2007).  Species 

presence or absence served as the response variable while predictor variables were 

drawn from both continuous and categorical environmental data (Appendix 5).  Models 
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were developed for species which had at least 40 occurrences within a subregion.  All 

models were developed using R statistical software using the ‘earth’ package (MARs; 

Milborrow 2014), ‘gam’ package (GAM; Hastie 2014), ‘gbm’ package (BRT; Ridgeway 

2013), and the ‘randomForest’ package (random forest; Liaw et al. 2014).  Each model 

was built from a random subset of 70% of the species occurrence data, with the 

remaining 30% being used for model evaluation.  

Model accuracy was evaluated using the area under the receiver operator 

characteristic curve (AUC), calculated using the ‘ROCR’ package in r (Sing et al. 2013), 

model bias (number of occurrences predicted compared to observed expressed as a 

percentage), and model fit as the mean absolute error (MAE) of a calibration curve with 

10% probability of occurrence bins.  Ensemble models, which predicted probability of 

occurrence for all species in each wadeable stream segment in Missouri, were created 

by averaging the predictions of all component models which met each of the minimum 

evaluation standards: AUC ≥0.6, bias of +/- 25%, and MAE of ≤0.125. 

Species representation  

 Species representation within Missouri’s established conservation networks was 

assessed by determining the number of stream segments a species was predicted to 

occupy within each conservation network.  Species occupancy was accounted for in two 

ways.  For species which met the modeling requirements predicted probabilities of 

occurrence were drawn from the species distribution models.  For species, for which 

acceptable models were not created, observed occurrence records were used to assign 
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stream segments a probability of occurrence of 1 where the species had been collected, 

and the species frequency of occurrence for each ecological drainage unit (EDU) was 

then used to assign probabilities of occurrence to all unsampled stream segments.  This 

was accomplished for each of the 17 ecological drainage units (EDUs) in Missouri by 

dividing the number of occurrences from the number of samples in each EDU.  Predicted 

number of occupied stream segments within each of the established conservation 

networks was calculated for each species by summing the probabilities of occurrence 

for all stream segments which intersected a conservation network.   

Conservation value 

 Stream segments were prioritized within and complementary to Missouri’s 

conservation networks based on a measure of conservation value.  Conservation value 

rankings were calculated based on weighted species representation while accounting 

for upstream watershed integrity using  Zonation conservation planning software 

version 3.1 (Moilanen et al. 2012).  Conservation values were calculated via two 

zonation algorithms which calculated the proportional loss of species representation 

based on the removal of each stream segment.  The stream segment with the lowest 

conservation value was removed, and conservation values for all remaining cells were 

recalculated.  This process is done iteratively until only a single stream segment remains 

producing a hierarchy of conservation values from the least to most valuable stream 

segment.  This analysis was completed for a number of scenarios which incorporated 

different methods of accounting for representation, weighting species, and upstream 
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integrity for each of the three conservation networks as well as the blank slate approach 

(i.e., assumes no established conservation networks).   

Species representation was accounted for using two distinct methods: core-area 

Zonation and with the additive benefit function. Core-area Zonation by removing the 

cell which minimizes biological loss by selecting the stream segment with the lowest 

value for the most valuable species occurrence in that cell; this approach emphasizes 

unique species occurrences and generally results in better representations of 

uncommon species (Moilanen et al. 2012).  The additive benefit function minimizes 

biological loss by selecting the stream segment that results in the lowest marginal loss 

of all species in a given cell for removal (Moilanen et al. 2012).  This method emphasizes 

species richness and generally results in higher average species representation but 

lower levels of representation for uncommon species (Moilanen et al. 2012).  

Species representation was weighted in three different ways to capture a 

number of options by which decision makers may value the representation of species.  

These weights were based on species vulnerability, species listing status, or all species 

weighted equally.  Species were weighted based on vulnerability and listing status to 

emphasize the selection of areas for species in greatest need of conservation, and was 

compared to the analysis where species had equal weights.  Vulnerability weight was 

based on a species vulnerability to habitat degradation, warming stream temperatures, 

and alterations to the flow regime while also considering a species dispersal ability, 

range size, rarity, and range-wide fragmentation (Chapter 1).  The trait association index 
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developed in Chapter 1 was used to calculate our vulnerability scores because it could 

assess all species of interest (Chapter 1).  Vulnerability weights were scaled from 1 

(lowest vulnerability score) to 2 (highest vulnerability score).  Conservation prioritization 

was also completed using state listing status as a weight, where species of conservation 

concern received weights of 2, and unlisted species received weights of 1, as well as 

with all species weighted equally.   

Species-specific penalty curves were developed, adapting the procedure 

developed by Moilanen et al. (2008), to account for the potential effect of habitat 

degradation of upstream sites on the value of a local stream segments fish community 

(Figure 3).  Species-specific penalty curves were developed using the RAM fish 

community data by dividing observed species occurrences into three classes based on 

upstream habitat degradation (Percent of upstream watershed area classified as urban 

or agricultural land use).  These classes were low (0-33%) which served as a baseline, 

medium (>33-66%), and high (>66-100%).  Frequency of occurrence within each class 

was calculated for each species which had a minimum of ten occurrences, were then 

divided by the baseline occurrence rate, and values were then rounded to the nearest 

value of 1, 0.66, or 0.33 to represent the multiplicative change in biological value of a 

stream segment based on the remaining proportion of its upstream watershed.  Values 

for each class were restricted to being no higher than the previous, more intact class, 

when this exception occurred the more intact class was assigned the value of the less 

intact class.  This was done to provide a more conservative estimate of the loss of 

biological value and to eliminate situations in which a loss of upstream sites would 
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result in an increase in biological value.  This exception occurred for 20 of the 118 

species which were evaluated.  Fifteen species did not have a sufficient number of 

occurrences (10) for analysis so were analyzed without accounting for upstream habitat 

integrity.  Integrity curves were then created with x-axis values of 0 (low class), 0.5 

(medium class), and 1 (high class) with the associated y-axis values representing 

multiplicative changes in value (1, 0.66, 0.33).   

 Stream segments were ranked both within and complementary to Missouri’s 

established conservation networks, which forced stream segments within each 

conservation network to be retained until all areas outside of the network were 

removed (Moilanen et al. 2012).  This process created a ranking of stream segments 

outside of the established conservation network from least to most valuable respective 

of what is represented within the established conservation networks.  Stream segments 

outside of the conservation network with predicted occurrences of species not well 

represented within the conservation network received high conservation values, 

particularly for species with high weights, whereas, sites with species which are already 

well represented within the conservation network received lower values.  Stream 

segments within the conservation network were then removed, creating a ranking 

within each established conservation network.  This analysis was conducted separately 

for Priority Watersheds, Conservation Opportunity Areas, and the existing conservation 

network in Missouri.  In addition, this analysis was completed without accounting for 

any established conservation networks to develop a blank slate solution for the purpose 

of comparison.  This analysis was conducted for each of the established conservation 
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networks, and the blank slate, using all possible combinations of accounting for species 

representation (core-area and additive benefit), species weighting (vulnerability, listing 

status, all equal), and upstream watershed integrity (with and without).   

This study analyzed whether areas of high conservation value differed by 

landscape-level habitat features including aquatic subregion, ecological drainage unit, 

Strahler stream order, segment gradient, and percent of watershed in forest, 

agriculture, grassland, and urban land cover for each of the three aquatic subregions, as 

land use was substantially different among subregions (Figure 1).  Continuous features 

were broken down into two classes; top 10 percent of sites and remaining 90 percent of 

sites, while categorical features consisted of classes based on their discrete features.  A 

one way analysis of variance (ANOVA) was performed for each feature to determine 

whether mean conservation values differed by segment characteristics. 

 The representation of species in areas selected through the use of the most basic 

prioritization analysis (core area, equal weights, no upstream integrity consideration) 

was compared to the selection of the least degraded stream segments to determine the 

potential benefits of applying a systematic, representation based approach.  The level of 

degradation of a stream segment was classified based on a habitat threat index (HTI) for 

Missouri and surrounding states (Annis et al. 2009).  Within each of the three 

established conservation networks the top ten percent of stream segments based on 

greatest conservation value and the top ten percent based on lowest HTI score (i.e., 

lowest landscape-level threats) were selected for each of the three subregions.  The 
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number of species predicted to be lacking representation in each solution, the percent 

of species predicted to occupy the greater number of stream segments in the solution 

derived using conservation value versus HTI scores, and the mean, maximum, and 

minimum percent difference between the conservation value and HTI derived solutions 

were all calculated.  The top 2.5% of complementary areas selected based on the two 

approaches were analyzed for each established network in each of the aquatic 

subregions by calculating the percent of species with more predicted occupied stream 

segments in the solution derived using conservation value, and the average, maximum, 

and minimum percent differences from the HTI derived solution to the conservation 

value derived solution. 

The level of species representation achieved by the established conservation 

networks was compared to an optimal network generated using the blank slate 

approach.  The number of species expected to be represented within each established 

conservation network and the corresponding optimal networks were calculated.  This 

study also determined the proportion of each species predicted occurrences within each 

conservation network as well as within an optimal conservation network of the same 

size, which was used to identify the species with the lowest proportion of its 

occurrences protected within each of the established conservation networks, as well as 

the optimal networks of the same size.  The mean proportion of species occurrences 

protected within a conservation network was also calculated for each of the established 

networks and the corresponding optimal networks.  These results were grouped by 

network and conservation prioritization technique (Cell removal algorithm: core area or 
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additive benefit) and were analyzed using a three way ANOVA to determine if there was 

a difference in both the minimum and mean proportions of species occurrences 

between established networks and the optimal network while including connectivity 

and species weighting scheme as factors.   

A sensitivity analysis was conducted to determine the effects of the prioritization 

technique, inclusion of upstream connectivity, and species weighting, on conservation 

value scores.  Percent congruence for sites ranked in the top 1%, 5%, as well as each 

10% increment between 0 and 100% of the prioritization results were calculated within 

and complementary to each of the conservation networks .  These comparisons were 

made at a pairwise level in which all settings and inputs were the same except the input 

or setting analyzed, which allowed us to determine how sensitive the prioritization 

analysis is to the use of different prioritization algorithms, inclusion of connectivity, and 

the weighting of species. 

RESULTS 

Species distribution models were developed for 40 species in the Plains 

subregion, and 68 in the Ozarks subregion.  All species for which attempts were made to 

create models, except Black Bullhead Ameiurus melas and Green Sunfish Lepomis 

cyanellus (both Plains models), had at least one of the four ensemble models which met 

minimum evaluation standards and were therefore represented via a distribution model 

(Appendix 6).  All remaining species representations (44, 64, and 50 species for the 

Plains, Ozarks, and Mississippi Alluvial Basin respectively) had less than 40 occurrences 
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within a subregion and were therefore classified based on occurrence locations and 

frequency of occurrence data.  Based on the three model evaluation criteria (AUC, BIAS, 

and MAE) Random Forest models generated the most acceptable component models 

(95), followed by BRTs (89), GAMs (81), and finally MARS (76) (Table 1).  The ensemble 

approach allowed 108 species distribution models to be created, which was a 42 

percent increase over MARS alone, 33 percent increase over GAMs alone, 21 percent 

increase over BRTs alone, and 14 percent increase over Random Forest models alone.  

More detailed information regarding the species distribution models can be found in the 

appendices including: regional species model list (Appendix 6), ensemble components 

(Appendix 7), component model evaluation statistics (Appendix 8), and maps and 

shapefiles of results (Appendix 9). 

All species were predicted to occur in at least 1 stream segment within each of 

Missouri’s established conservation networks (Appendix 10).  In stream segments within 

the established conservation networks 6, 8, and 7 species were predicted to be found in 

less than 10 stream segments for PWs, the ECN, and COAs respectively.  There were 97, 

90, and 90 species which were predicted to occupy greater than 100 stream segments in 

PWs, the ECN, and COAs respectively. 

 Conservation value was variable but showed patterns based on subregion and 

EDU (Ps<0.01; Appendix 11).  All three subregions contain stream segments with both 

high and low conservation values (Figure 4; Appendix 11).  The MAB had the highest 

mean conservation value (0.79) followed by the Ozarks (0.64) and Plains (0.30) 
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(P<0.001).  In the Plains average conservation value scores ranged from 0.42 in the 

Nishnabotna/Platte EDU to 0.16 in the Osage/South Grand EDU (P<0.001).  In the Ozarks 

average conservation values ranged from 0.89 EDU in the Neosho EDU to 0.41 in the 

Moreau/Loutre EDU (P<0.001).  Finally, in the Mississippi Alluvial Basin average 

conservation values ranged from 0.96 in the Black/Cache EDU to 0.78 in the St. 

Francis/Little EDU (P<0.001).  Average conservation value tended to increase with 

increasing Strahler order for the Plains (0.23 for 2nd order to 0.44 for 5th order; P<0.001) 

and the Ozarks (0.56 2nd order to 0.76 for 5th order; P<0.001), and the MAB (0.78 for 5th 

order to 0.80 for 2nd order; P<0.001), but the differences in the MAB were likely not 

ecologically significant.  The top 10 percent of highest conservation value sites in the 

Plains had higher forest cover in the watershed (15.6% to 12.9%; P<0.001), lower 

agriculture (39.2% to 43.7%; P<0.001), and lower grassland (39.2% to 43.7%; P<0.001) 

than sites in the lower 90% of conservation values.  In the more forested and less 

agriculturally-dominated Ozarks the top 10 percent of highest conservation value sites 

had lower levels of agriculture in the watershed (2.1% to 4.9%; P<0.001), and lower 

stream segment gradients (2.3 m/km to 3.1m/km; P<0.001), but forest cover was similar 

(48.3%  to 49.7%; P<0.001).  In the Mississippi Alluvial Basin high value stream segments 

had more forest in their watersheds (13.3% to 6.8%) and less agriculture (72.7% to 

80.4%) in this agriculturally-dominated subregion.  These results suggest that land use 

and land cover was related to conservation value, but was region-specific. 

 Stream segments selected based on conservation value resulted in greater 

species representation, particularly for uncommon species when compared to sites 
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selected based on habitat integrity alone (HTI scores) (Table 2).  The number of species 

lacking representation in the top ten percent of sites within established conservation 

networks based on conservation value were one species in Priority Watersheds, two in 

the existing conservation network, and five in Conservation Opportunity Areas, while 

the number of species lacking representation in a corresponding number of sites 

selected based on HTI were 10 in Priority Watersheds, 13 in the existing conservation 

network, and 17 in Conservation Opportunity Areas.  Between 70 and 77 percent of 

species were predicted to have higher levels of representation in the top ten percent of 

segments within conservation networks selected using the conservation value 

framework than those selected based on habitat integrity alone (Table 2).  Additionally, 

the average the use of conservation value retained 166% more occurrences per species 

than using HTI for Priority Watersheds, 311% more for Conservation Opportunity Areas, 

and 190% more for the existing conservation network.  Uncommon species had the 

largest increases in number of occurrences based on the selection of sites using 

conservation value as opposed to using habitat integrity with increases of 6,145% (0.2 

predicted occurrences for sites selected based on HTI vs 15 predicted occurrences for 

sites selected based on conservation value) for the Redspot Chub Nocomis asper in the 

existing conservation network, and 7,099% (0.4 vs 28.9 occurrences) and 16,122% (0.1 

vs 21.8 occurrences) for the Niangua Darter Etheostoma nianguae in Priority 

Watersheds and Conservation Opportunity Areas respectively.  Several common species 

were less well represented in sites selected based on conservation value rather than HTI 

score including the Mottled Sculpin Cottus bairdii in Priority Watersheds (65% less 
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predicted occurrences; 120 vs 47 sites), the Creek Chubsucker Erimyzon oblongus in 

Conservation Opportunity Areas (61%; 55 vs 21)  and the existing conservation network 

(65%; 55 vs 19).  The amount of species which were had more occurrences when 

selections were made using conservation value ranged from 70% in Conservation 

Opportunity Areas to 73% in both Priority Watersheds and the existing conservation 

network.  The average percent difference ranged from 11% in Priority Watersheds to 

14% in Conservation Opportunity Areas, with maximum differences ranging from 127% 

in Conservation Opportunity Areas to 321% in the existing conservation network and 

minimum differences ranging from -8% for the existing conservation network to -16% 

for Conservation Opportunity Areas. 

Established networks retained 4.2 to 10.0% higher proportion of representation 

than the blank slate alternative depending on network for the species which lost the 

greatest proportion of their original representation in each solution developed using the 

additive benefit function (Table 3).  When core-area Zonation was used to create blank 

slate alternatives there was no significant difference for Priority Watersheds (-1.0%; 

P=0.195), but both Conservation Opportunity Areas (-1.2%), and the established 

conservation network (-3.3%) had decreased representation when compared to the 

blank slate alternatives (Table 3; Ps<0.001).  The average proportion of representation 

lost across all species was less in the optimal network alternatives than in the 

established networks using both additive benefit (Table 3; -27.4%, -11.7%, and -23.5% 

change for Priority Watersheds, Conservation Opportunity Areas, and the existing 

conservation network respectively), and core-area Zonation (Table 3; -15.9%, -5.7%, and 
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-12.6% change for Priority Watersheds, Conservation Opportunity Areas, and the 

existing conservation network respectively).  Therefore, developing a network using a 

blank slate approach typically resulted in a lower reduction of species distribution 

compared to established conservation networks. 

Our assessment of the influence of connectivity, prioritization technique, and 

species weighting on the conservation ranking of stream segments revealed that species 

weighting and connectivity had less influence on the results than prioritization 

technique.  Conservation scores of stream segments determined with and without 

connectivity revealed high levels of congruence even among the most valuable sites 

(Figure 5A).  Congruence analysis of the conservation scores of stream segments using 

core-area Zonation compared to the additive benefit function revealed lower levels of 

congruence suggesting the choice of prioritization technique can have substantial 

effects on the outcome (Figure 5B).  Finally, congruence of conservation rankings was 

relatively high between all pairwise combinations of species weighting (none, 

vulnerability, listing status) suggesting that the weighting of species had only a 

moderate effect on the conservation solutions (Figure 5C, D, E).  

DISCUSSION 

 This study provides a framework that may be a more realistic and effective 

approach for prioritizing stream fish conservation efforts over a broad spatial scale 

when conservation networks have already been established.  This framework, may serve 

as a more feasible option for conservation planning than previous work in the area 
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which has largely used a blank slate approach (Sowa et al. 2007; Wenger et al. 2009; 

Strecker et al. 2011; Esselman et al. 2013; Pool et al. 2013).  Budgets for agencies tasked 

with managing and creating conservation areas and protecting stream fish are often 

limited, necessitating the use of efficient prioritization schemes for achieving the 

greatest conservation outcomes (Naughton-Treves et al. 2005).  Therefore, the ability to 

prioritize stream fish conservation within established networks may be critical, as 

agencies typically do not have the resources necessary to implement stream fish 

conservation actions for all stream segments within conservation networks.  By 

incorporating established conservation networks in the planning process, stream 

segments which complement what is already being protected can also be identified.  

This method emphasizes the selection of areas which have occurrences of species which 

may not already be well represented within an established network resulting in an 

expanded network with a more comprehensive and diverse assemblage of species.  This 

framework allows managers and decision makers to make more informed decisions 

regarding the spatial prioritization of stream fish conservation. 

 Analysis revealed that Missouri’s established conservation networks typically do 

contain the vast majority of fish species in the state.  All 133 species which were 

evaluated were predicted to be represented within each of Missouri’s established 

conservation networks except Black Buffalo, Ictiobus niger, a species which is more 

commonly found in rivers than the wadeable streams that were sampled for this study 

(Pflieger 1997).  Protecting multiple areas to allow for redundancy in case of 

catastrophic declines and changes in habitat due to climate change, invasive species, or 
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anthropogenic disturbances may be needed to ensure species persistency (Stein et al. 

2000), and our study revealed that the majority (68-72%, depending on conservation 

network) of species were predicted to occur in over 100 stream segments in each of the 

established conservation networks suggesting they are relatively secure.  However 5 to 

7 species (depending on conservation network) were predicted to occur within less than 

10 stream segments, suggesting their long-term protection is less secure.  These less 

secure species often had restricted distributions such as the Channel Darter Percina 

copelandi, Arkansas Saddled Darter Etheostoma euzonum, Flier Centrarchus 

macropterus and Bluntface Shiner Cyprinella Camura, were rare or difficult to detect 

such as the Southern Brook Lamprey Icthyomyzon gagei, and Northern Brook Lamprey 

Icthyomyzon fossor, or were primarily found in riverine habitats rather than wadeable 

streams such as the Black Buffalo Ictiobus niger, Western Silvery Minnow Hybognathus 

argyritis, Plains Minnow Hybognathus placitus, and Highfin Carpsucker Carpiodes velifer 

(Pflieger 1997; Galat et al. 2005).  When possibilities for network expansion arise 

targeting areas with known or predicted occurrences of underrepresented species may 

improve the long-term outlook for those species, and bolster the comprehensiveness of 

the established network. 

 The use of surrogates, such as landscape and habitat characteristics, is widely 

used in conservation planning, particularly when access to biological data is limited (Nel 

et al. 2009b).  The findings of this study suggest that results from habitat-based 

assessment may not produce the same results as assessments based on species 

representation.  High value areas which are excluded when sites are selected based on 
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landscape and habitat surrogates are likely to include species which are restricted to 

non-surrogate habitat classes and rare species.  This study found that stream segments 

of both high and low conservation value were distributed throughout the state and in a 

variety of stream sizes, ecological subregions, drainage basins, and land use classes.  

Selecting sites based only on high value habitat surrogates would have meant that some 

stream segments in the top 10 percent of conservation values, belonging to groups 

associated with the lowest average conservation values (Plains aquatic subregion, the 

Osage/South Grand, Grand Chariton, and Blackwater/Lamine drainages, 2nd order 

streams, and agricultural watersheds) would have been excluded.  Species restricted to 

these areas, and rare species would have much lower representations if a prioritization 

system using only landscape and habitat surrogates was used.  Although the use of 

landscape and habitat surrogates are a useful alternative when sufficient data on 

species representation is not available (Trakhtenbrot and Kadmon 2005), a systematic 

conservation planning approach which includes species representation may be 

important for comprehensive species conservation (Margules and Pressey 2000; Linke et 

al. 2011).  In cases where species representation data is not available the results of this 

study suggest that landscape and habitat based surrogates do a reasonable job of 

identifying sites with high conservation values.  However, when sufficient biological data 

is available, representation based, systematic conservation planning is likely to result in 

solutions which better represent rare species and species which occupy habitats not 

associated with high value surrogates. 
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 One commonly used method for creating protected areas is the selection of 

areas which are pristine or have minimal anthropogenic impacts, often because these 

areas are rugged, isolated, or have limited economic value (Margules and Pressey 2000).  

A number of studies have developed tools for assessing the ecological integrity of 

catchments (Mattson and Angermeier 2007; Annis et al. 2009; Paukert et al. 2011), and 

although we believe this information is a valuable component of conservation planning, 

our results suggest that relying on threat data alone, without consideration of species 

representation, may result in limited or no protection for many species.  Using this 

studies measure of conservation value for prioritizing sites yielded much higher 

predicted levels of species representation (9 to 12 more species were represented in the 

top 10% of sites within each conservation network) than if stream segments would have 

been selected based solely on a measure of habitat integrity (Annis et al. 2009).  This 

suggests that systematic, representation based conservation planning is likely to 

maintain higher levels of representation for the majority of species (species averaged 

between 166-311% greater representation in the top 10% of sites within each of 

conservation network) and particularly so for uncommon species both within and 

complementary to established conservation networks.  In order to maintain 

comprehensive species representation prioritization of sites based on threat data alone 

is likely insufficient.  

 Systematic conservation planning often considers a variety of variables, in 

addition to species representation, to account for factors which influence conservation 

success (Moilanen et al. 2008; Leathwick et al. 2010; Strecker et al. 2011; Pool et al. 
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2013).  The weighting of species is commonly used in conservation planning which 

allows emphasis to be placed on sites which are important for priority species (Moilanen 

et al. 2005; Early and Thomas 2007; Gordon et al. 2009; Carroll et al. 2010; Summers et 

al. 2012).  However, the results showed that weighting species had a relatively minor 

effect on the conservation values of stream segments.  Species which were weighted 

highly also tended to be the least common, and because this study’s methodology 

placed emphasis on maintaining representations of all species, stream segments with 

occurrences of uncommon species were given high conservation priority, regardless of 

weighting.  The lack of sensitivity to species weighting suggests that uncertainty or 

differences in weighting schemes are unlikely to have substantial impacts on 

conservation priorities for others employing this framework.   

Upstream habitat integrity appeared to have an intermediate impact on the 

prioritization of sites both within and complementary to established conservation 

networks.  Stream fish communities are heavily influenced by conditions in the 

upstream watershed (Weaver and Garman 1994; Wang et al. 1997, 2001; Wenger et al. 

2008).  Many conservation plans incorporate upstream habitat integrity requirements 

(Moilanen et al. 2008; Hermoso et al. 2011; Strecker et al. 2011; Esselman et al. 2013), 

but there has been little evaluation of how the inclusion of connectivity influences 

results.  The inclusion of connectivity in these analyses tended to increase the value of 

upstream segments and showed some additional clustering when compared to results 

where connectivity was not included.   
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The results of this study suggest that the choice of prioritization technique had a 

substantial impact on the results of the analysis.  A variety of prioritization techniques 

have been developed which assign conservation values in a number of unique ways 

(Moilanen 2007; Moilanen et al. 2009b; Watts et al. 2009).  The use of two prioritization 

techniques, which 1) emphasizes unique species representation (core area), and 2) 

emphasizes species richness (additive benefit; Moilanen et al. 2012) showed substantial 

differences (<60% congruence for top 10 percent of sites), and the proportion of 

representation lost by the average species and the species which lost the greatest 

proportion of its predicted occurrences.  Prioritizations performed using the core-area 

implementation had higher levels of representation for the worst off species, while 

those performed using the additive benefit function maintained higher levels of 

representation for the average species, as was expected based on the literature 

(Moilanen et al. 2012).  The sensitivity of conservation value rankings to the choice of 

prioritization technique suggests that researchers and decision makers should carefully 

consider their objectives when determining which approach to use.  If the primary 

objective of the prioritization is to maintain representation of all species the core-area 

implementation is likely the most appropriate approach, while if the primary objective is 

to select stream segments with higher species richness and retain higher average levels 

of species representation implementation the additive benefit function may be a better 

approach.  

 Our study developed tools which can be used by managers and decision makers 

to prioritize management, land acquisitions, and guide the formation of partnerships for 
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stream fish conservation in Missouri, and an approach for conservation prioritization 

which can be applied to other regions.  Stream fish face a number of threats including 

habitat degradation, climate change, invasive species, and habitat fragmentation 

(Strayer and Dudgeon 2010).  In order to conserve aquatic biodiversity in the face of 

these threats managers undertake a variety of management actions such as riparian 

restoration, watershed management, and barrier removal (Roni et al. 2002).  

Conservation planning techniques can help identify where these actions can be taken in 

order to achieve the greatest returns.  The conservation value of complementary sites 

to established conservation networks may be used to identify opportunities for land 

acquisition or partnerships which offer the greatest value. 

 We believe this framework for incorporating established conservation networks 

into the conservation prioritization process can be used for aquatic biodiversity 

conservation for regional or national prioritization projects around the globe.  In the 

United States data on protected areas is widely available through the National Gap 

Analysis Program Protected Area Database (DellaSala et al. 2001), which contains 

635,500 geospatial records from 49 agency types including state and federal agencies, 

municipal governments, and non-profit organizations for all 50 states (Duarte 2012).  

Protected and priority areas, such as South Africa’s National Freshwater Ecosystem 

Priority Areas (Nel et al. 2011), Europe’s Natura 2000 sites (Commission of the European 

Communities 2002), and State Wildlife Action Plans in the United States (Pugh and Hall 

2006) among many others represent a vast set of established networks upon which this 

framework for prioritizing stream fish conservation could be applied. The ability to 
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consider established conservation networks during the prioritization process adds 

realism to the systematic conservation planning process.  In regions where sufficient 

data exists to estimate the distributions of aquatic biodiversity, this framework can be 

utilized to inform management decisions within established networks, and can guide 

land acquisition and partnerships in selecting areas which best complement what is 

already being protected. 
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TABLES 

Table 5: Summary statistics for the evaluation metrics for each of the four component 
model types.  Accept= Percent of models which met minimum evaluation criteria; AUC= 
Area under the receiver operating characteristic curve; MAE= Mean absolute error; 
MARS= Multivariate adaptive regression splines; GAM= Generalized additive model; 
BRT= Boosted regression tree; RndmFrst= Random forest 

 AUC Bias MAE 

Model Mean 
(Range) Accept Mean 

(Range) Accept Mean 
(Range) Accept 

MARS 0.78 
(0.44-1.00) 

92.6 % 1.00 
(0.52-1.73) 

83.3 % 0.08  
(0.03-0.20) 

88.0% 

GAM 0.80 
(0.52-0.97) 

94.4 % 0.97 
(0.57-1.85) 

84.3 % 0.08  
(0.02-0.21) 

91.7 % 

BRT 0.83 
(0.48-1.00) 

99.1 % 1.05 
(0.74-2.49) 

87.9 % 0.07  
(0.03-0.17) 

95.3 % 

RndmFrst 0.83 
(0.53-1.00) 

97.2 % 0.99 
(0.61-1.59) 

89.8 % 0.08  
(0.04-0.24) 

94.4 % 
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Table 6: Comparison of sites selected based on habitat threat index (HTI; Annis et al. 
2009) versus conservation value scores. Percent difference was calculated based on the 
number of stream segments predicted to be occupied for a species for segments 
selected based on conservation value versus segments selected based on HTI, where 
positive % differences represent increased representation when using conservation 
value and negative % differences represent decreased representation when using 
conservation value. The number of species unrepresented is the number of species 
which are not predicted to be represented using either HTI or conservation value for 
stream segment selection. PW=Priority Watersheds; COA=Conservation Opportunity 
Areas; ECN=existing conservation network   

 PW COA ECN 
Top 10% of Conservation Network    

% Species Better Represented by Conservation Value 77 73 70 
Mean % Difference 166 311 190 

Max % Difference 7,099 16,122 6,145 
Min % Difference -61 -61 -65 

# Species Unrepresented (HTI) 10 17 13 
# Species Unrepresented (Conservation Value) 1 5 2 

Entire Conservation Network and Top 2.5% Complementary Areas 
% Species Better Represented by Conservation Value 73 70 73 

Mean % Difference 11 14 11 
Max % Difference 199 127 321 
Min % Difference -14 -16 -8 
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90 

Table 7: Comparison of the mean proportion of distribution lost for 1) the species which has lost the highest proportion of 
distribution and 2) the average proportion of distribution lost when restricted to each of the conservation networks compared to 
proportional distribution lost when restricted to an optimal network of equivalent size.  P values calculated using a three way anova 
based on weighting method, connectivity, and current/optimal network.  PW=Priority Watershed, COA=Conservation Opportunity 
Area, ECN=Existing Conservation Network.  Method acronyms: CAZ=Core Area Zonation, AdBen=Additive Benefit Function. 

  Species with Highest Proportion Lost Average Proportion Lost 

Network Method 
Network 
Mean 

Optimal 
Mean 

Percent 
Change P 

Network 
Mean 

Optimal 
Mean 

Percent 
Change P 

PW CAZ 0.899 0.890 -1.0% 0.195 0.730 0.614 -15.9% <0.001 
 AdBen 0.899 0.991 10.2% <0.001 0.730 0.530 -27.4% <0.001 
COA CAZ 0.955 0.944 -1.2% 0.013 0.804 0.758 -5.7% <0.001 
 AdBen 0.955 0.995 4.2% <0.001 0.804 0.710 -11.7% <0.001 
ECN CAZ 0.932 0.901 -3.3% 0.006 0.744 0.650 -12.6% <0.001 
 AdBen 0.932 0.992 6.4% <0.001 0.744 0.569 -23.5% <0.001 

 
 



FIGURES 

 

Figure 7: Map showing Missouri’s aquatic subregions and land use classifications. 
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Figure 8: Map of fish community sample locations, collected in Missouri from 1990 to 
2010, which were used in this study.  
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Figure 9: Framework used for developing upstream habitat integrity penalty curves. 
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Figure 10: Violin plots of conservation value scores by subregion, separated by conservation network and within/complementary.  
The white point represents the median value, black bar represents the interquartile range, black line represents the overall range, 
and gray shaded area is a kernel density plot. 
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Figure 11: Plot of average percent congruence for the top proportion of conservation values with and without upstream connectivity 
requirements (A), each prioritization technique (B), and pairwise comparisons of each of the vulnerability approaches (C, D, E).  
Shaded areas represent the 95% confidence interval. 
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CONCLUSION 

Our results may be used to support the management and conservation of stream 

fish in Missouri and can provide a framework for assessments in other regions.  Our 

research suggested that the degree to which stream fish are vulnerable to climate 

change is likely to vary among species, and that different approaches to classifying 

vulnerability are likely to achieve different results (Chapter 1).  We also found that high 

priority areas for stream fish conservation could be identified both within and 

complementary to established conservation networks (Chapter 2).  We believe the 

ability to identify vulnerable fish species and areas which are important for their 

conservation is critical to the protection of stream fish species. 

 Our analysis of stream fish vulnerability revealed that although we have a 

relatively strong understanding of the role habitat degradation plays in species 

vulnerability, there is a great need for additional research to examine the effects of 

stream warming and alterations of flow regimes on stream fish.  Our comparison of trait 

versus measured response-based approaches to assigning environmental tolerances 

yielded substantial discrepancies.  Currently, the lack of data available for measuring 

species responses to climate related stressors limits the broad applicability and 

increases the uncertainty of a response based approach.  The ability to extrapolate trait 

based sensitivities to all species, for which traits are known, makes the applicability of a 

trait association approach much more feasible.  In addition, the mechanistic nature of a 

trait association approach provides logical support for assigning environmental 

96 
 



tolerances.  However, additional factors not accounted for by traits may affect the 

environmental tolerances of some species.  Based on currently available information for 

stream fish, we believe that the trait association index provides the most complete and 

reliable assessment of stream fish vulnerability.  However, future research linking traits 

with environmental tolerances or measuring species responses to stressors is critical to 

improving the accuracy and decreasing the uncertainty of vulnerability assessments for 

stream fish. 

 The ability to assess the representation of stream fish within conservation 

networks is critical to developing effective conservation strategies.  We found that by 

targeting areas within and complementary to established conservation networks, 

locations which provided comprehensive and redundant species representation could 

be identified.  The comparison of results from our approach to selecting priority areas 

versus the use of surrogates, such as habitat factors or threat scores, revealed 

substantial increases in the predicted representation of species, particularly species 

which are rare or have restricted distributions, when our approach was used.  The use of 

different prioritization techniques, species weighting, and inclusion of connectivity 

requirements had variable influences on the results of prioritization, suggesting careful 

consideration of inputs and settings is strongly advisable.  Our comparison of species 

representation within the each of the conservation networks compared to an optimal 

network of the same size, generated using a blank slate approach, revealed that the 

proportion of representation lost for the species which lost the greatest proportion of 

its original distribution was the same or slightly higher when using core-area Zonation, 
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but lower when using the additive benefit function.  The same comparison for the 

average proportion of distribution lost for all species revealed that for both core-area 

and additive benefit implementations species lost more representation when restricted 

to established networks than optimal networks of the same size.  This suggests that 

predicted representations of species could be improved if conservation networks were 

developed from scratch although the relatively small differences suggest that these 

gains would be marginal and the benefits of working within established infrastructure 

likely outweigh the gains of starting from a blank slate.  We believe that conservation 

value rankings of stream segments within conservation networks can be used to help 

prioritize the selection of sites for management actions.  The conservation value 

rankings of stream segments complementary to established conservation networks can 

be used to aid in decisions related to land acquisition and the establishment of 

partnerships.  Our framework for assessing stream segment scale conservation value 

while incorporating conservation networks which have already been established could 

be applied around the globe to assist in meeting the prioritization needs of managers 

and decision makers. 

 Our work also revealed a number of areas which would benefit greatly from 

additional research.  One of the greatest needs is the development of stream 

temperature and flow models which represent both current and future conditions.  

Without this information the options for assessing the exposure of stream fish to 

climate change are extremely limited and riddled with uncertainty.  Stream fish 

vulnerability assessments would also benefit greatly from research which quantifies the 
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relationships between species or traits with stream temperature and flow regimes.  

Data on these topics for stream fish is currently very limited, making it difficult to draw 

conclusions as to the impact stressors will have on stream fish communities in the 

future.  In order to more effectively plan for the conservation of stream fish species it 

would be beneficial to gain a greater understanding of how the landscape affects stream 

fish.  It would be particularly useful to gain a better understanding of species-specific 

habitat requirements, specifically developing better measures of how upstream habitat 

degradation impacts a species, the area of suitable habitat which needs to be 

maintained for the persistence of a population (i.e. How big do protected areas need to 

be?) and how do factors such as connectivity dispersal ability, and metapopulation 

dynamics impact the viability of populations (i.e. Can a patchwork of sites protect a 

population and if so how close together do these sites need to be?). 
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APPENDICES 

Appendix 1: Species vulnerability scores for the response and trait based approaches to 
classifying environmental tolerance 

Species Score (Response) Score (Traits) 
AMBLOPLITES ARIOMMUS 3.12 4.65 
AMBLOPLITES CONSTELLATUS 3.96 5.56 
AMBLOPLITES RUPESTRIS 3.2 2.2 
AMEIURUS MELAS 1.69 2.69 
AMEIURUS NATALIS 0.6 1.6 
AMEIURUS NEBULOSUS 2.87 4.86 
APHREDODERUS SAYANUS 1.92 1.92 
APLODINOTUS GRUNNIENS 0.94 2.48 
CAMPOSTOMA ANOMALUM PULLUM 1.71 0.71 
CAMPOSTOMA OLIGOLEPIS 1.01 2.01 
CARPIODES CARPIO 1.05 2.49 
CARPIODES CYPRINUS 1.18 2.83 
CARPIODES VELIFER 4.61 4.61 
CATOSTOMUS COMMERSONII 3.79 3.79 
CENTRARCHUS MACROPTERUS 4.86 
COTTUS BAIRDII 3 5 
COTTUS CAROLINAE 3.04 4.04 
COTTUS HYPSELURUS 6.22 
CYPRINELLA CAMURA 2.47 2.47 
CYPRINELLA GALACTURA 3.98 2.17 
CYPRINELLA LUTRENSIS 0.86 0.86 
CYPRINELLA SPILOPTERA 5.82 1.98 
CYPRINELLA VENUSTA 1.67 3.42 
CYPRINELLA WHIPPLEI 3.51 1.89 
DOROSOMA CEPEDIANUM 0.67 2.67 
ERIMYSTAX HARRYI 5.63 
ERIMYSTAX X-PUNCTATUS 5.63 
ERIMYZON OBLONGUS 2.85 5.63 
ESOX AMERICANUS VERMICULATUS 4.06 
ESOX NIGER 3.94 3.94 
ETHEOSTOMA BLENNIOIDES 3.87 2.87 
ETHEOSTOMA BURRI 7.87 
ETHEOSTOMA CAERULEUM 2.99 3.99 
ETHEOSTOMA CRAGINI 7.82 
ETHEOSTOMA EUZONUM 8.11 
ETHEOSTOMA FLABELLARE 2.97 3.97 
ETHEOSTOMA GRACILE 7.15 
ETHEOSTOMA JULIAE 8.48 

100 
 



Species Score (Response) Score (Traits) 
ETHEOSTOMA MICROPERCA 7.71 
ETHEOSTOMA NIANGUAE 8.75 
ETHEOSTOMA NIGRUM 2.94 2.94 
ETHEOSTOMA PROELIARE 7.34 
ETHEOSTOMA PUNCTULATUM 3.34 4.34 
ETHEOSTOMA SPECTABILE 1.88 3.88 
ETHEOSTOMA STIGMAEUM 7.82 5.84 
ETHEOSTOMA TETRAZONUM 6.87 
ETHEOSTOMA UNIPORUM 7.72 
ETHEOSTOMA ZONALE 3.74 3.74 
FUNDULUS CATENATUS 2.88 1.88 
FUNDULUS DISPAR 6.71 
FUNDULUS NOTATUS 1.88 2.88 
FUNDULUS OLIVACEUS 1.93 3.93 
FUNDULUS SCIADICUS 3.17 
GAMBUSIA AFFINIS 0.62 
HYBOGNATHUS ARGYRITIS 1.89 
HYBOGNATHUS HANKINSONI 3.47 3.47 
HYBOGNATHUS PLACITUS 1.91 
HYBOPSIS AMBLOPS 2.56 2.56 
HYPENTELIUM NIGRICANS 2.02 4.02 
ICHTHYOMYZON FOSSOR 6.44 
ICHTHYOMYZON GAGEI 4.66 
ICTALURUS PUNCTATUS 0.63 1.63 
ICTIOBUS BUBALUS 1.15 2.94 
ICTIOBUS CYPRINELLUS 1.51 3.32 
LAMPETRA AEPYPTERA 2.07 5.91 
LEPISOSTEUS OCULATUS 3.66 
LEPISOSTEUS OSSEUS 0.82 2.22 
LEPISOSTEUS PLATOSTOMUS 0.96 2.46 
LEPOMIS CYANELLUS 0.61 1.61 
LEPOMIS GULOSUS 1.93 1.93 
LEPOMIS HUMILIS 0.7 1.7 
LEPOMIS MACROCHIRUS 0.62 1.62 
LEPOMIS MEGALOTIS 1.68 2.68 
LEPOMIS MICROLOPHUS 0.91 2.21 
LEPOMIS MINIATUS 3.29 
LUXILUS CARDINALIS 3.45 4.9 
LUXILUS CHRYSOCEPHALUS 1.89 1.89 
LUXILUS CORNUTUS 2.83 2.83 
LUXILUS PILSBRYI 3.54 4.92 
LUXILUS ZONATUS 2.05 
LYTHRURUS UMBRATILIS 0.66 0.66 
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Species Score (Response) Score (Traits) 
MACRHYBOPSIS STORERIANA 1.71 5.69 
MICROPTERUS DOLOMIEU 2.99 1.99 
MICROPTERUS PUNCTULATUS 0.86 2.16 
MICROPTERUS SALMOIDES 0.62 1.62 
MINYTREMA MELANOPS 2.56 4.15 
MORONE CHRYSOPS 1.77 3.69 
MOXOSTOMA ANISURUM 3.83 7.55 
MOXOSTOMA CARINATUM 4.19 6.12 
MOXOSTOMA DUQUESNEI 2.04 3.04 
MOXOSTOMA ERYTHRURUM 0.96 2.96 
MOXOSTOMA MACROLEPIDOTUM 0.82 5.26 
NOCOMIS ASPER 3.8 6.94 
NOCOMIS BIGUTTATUS 2 4 
NOTEMIGONUS CRYSOLEUCAS 0.7 1.7 
NOTROPIS ATHERINOIDES 2.79 2.79 
NOTROPIS BOOPS 2.03 3.03 
NOTROPIS BUCCATUS 2.34 4.1 
NOTROPIS BUCHANANI 3.9 
NOTROPIS DORSALIS 2.05 2.05 
NOTROPIS GREENEI 3.2 
NOTROPIS HETEROLEPIS 2.33 
NOTROPIS NUBILUS 2 3 
NOTROPIS OZARCANUS 5.83 
NOTROPIS STRAMINEUS 1.99 0.99 
NOTROPIS TELESCOPUS 2.5 3.61 
NOTROPIS TEXANUS 1.87 
NOTROPIS VOLUCELLUS 3.1 1.46 
NOTURUS ALBATER 4.68 
NOTURUS EXILIS 1.93 3.93 
NOTURUS FLAVATER 6.16 
NOTURUS FLAVUS 4.61 6.33 
NOTURUS GYRINUS 1.57 3.3 
NOTURUS MIURUS 2.2 4.11 
NOTURUS NOCTURNUS 1.4 7.34 
OPSOPOEODUS EMILIAE 1.34 
PERCINA CAPRODES 2.79 2.79 
PERCINA COPELANDI 4.43 6.4 
PERCINA CYMATOTAENIA 7.88 
PERCINA EVIDES 5.98 7.92 
PERCINA MACULATA 6.17 6.17 
PERCINA PHOXOCEPHALA 4.76 6.39 
PERCINA SCIERA 3.9 5.89 
PHENACOBIUS MIRABILIS 1.84 1.84 
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Species Score (Response) Score (Traits) 
PHOXINUS ERYTHROGASTER 1.95 1.95 
PIMEPHALES NOTATUS 1.61 0.61 
PIMEPHALES PROMELAS 1.64 0.64 
PIMEPHALES VIGILAX 1.66 1.66 
POMOXIS ANNULARIS 0.62 1.97 
POMOXIS NIGROMACULATUS 1.17 3.04 
PYLODICTIS OLIVARIS 0.96 2.6 
SANDER VITREUS 4.21 8.19 
SEMOTILUS ATROMACULATUS 0.65 2.65 
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Appendix 2: Environmental tolerance classifications for the trait association index (1 = 
vulnerable, 0 = not vulnerable) 

Species Habitat Thermal Flow 
AMBLOPLITES ARIOMMUS 0 1 1 
AMBLOPLITES CONSTELLATUS 0 1 1 
AMBLOPLITES RUPESTRIS 0 0 1 
AMEIURUS MELAS 1 0 1 
AMEIURUS NATALIS 0 0 1 
AMEIURUS NEBULOSUS 0 0 1 
APHREDODERUS SAYANUS 0 0 0 
APLODINOTUS GRUNNIENS 0 0 1 
CAMPOSTOMA ANOMALUM PULLUM 0 0 0 
CAMPOSTOMA OLIGOLEPIS 1 0 0 
CARPIODES CARPIO 0 0 1 
CARPIODES CYPRINUS 0 0 1 
CARPIODES VELIFER 0 0 1 
CATOSTOMUS COMMERSONII 1 1 1 
CENTRARCHUS MACROPTERUS 0 0 1 
COTTUS BAIRDII 1 1 1 
COTTUS CAROLINAE 1 0 1 
COTTUS HYPSELURUS 1 1 1 
CYPRINELLA CAMURA 0 0 0 
CYPRINELLA GALACTURA 0 0 0 
CYPRINELLA LUTRENSIS 0 0 0 
CYPRINELLA SPILOPTERA 0 0 0 
CYPRINELLA VENUSTA 0 1 0 
CYPRINELLA WHIPPLEI 0 0 0 
DOROSOMA CEPEDIANUM 0 1 1 
ERIMYSTAX HARRYI 1 1 0 
ERIMYSTAX X-PUNCTATUS 1 1 0 
ERIMYZON OBLONGUS 1 1 1 
ESOX AMERICANUS VERMICULATUS 0 0 1 
ESOX NIGER 0 0 1 
ETHEOSTOMA BLENNIOIDES 1 0 0 
ETHEOSTOMA BURRI 1 1 0 
ETHEOSTOMA CAERULEUM 1 1 0 
ETHEOSTOMA CRAGINI 1 1 0 
ETHEOSTOMA EUZONUM 1 1 0 
ETHEOSTOMA FLABELLARE 1 1 0 
ETHEOSTOMA GRACILE 1 1 0 
ETHEOSTOMA JULIAE 1 1 0 
ETHEOSTOMA MICROPERCA 1 1 0 
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Species Habitat Thermal Flow 
ETHEOSTOMA NIANGUAE 1 1 0 
ETHEOSTOMA NIGRUM 1 0 0 
ETHEOSTOMA PROELIARE 1 1 0 
ETHEOSTOMA PUNCTULATUM 1 1 0 
ETHEOSTOMA SPECTABILE 1 1 0 
ETHEOSTOMA STIGMAEUM 1 0 0 
ETHEOSTOMA TETRAZONUM 1 1 0 
ETHEOSTOMA UNIPORUM 1 1 0 
ETHEOSTOMA ZONALE 1 0 0 
FUNDULUS CATENATUS 0 0 0 
FUNDULUS DISPAR 0 1 0 
FUNDULUS NOTATUS 0 1 0 
FUNDULUS OLIVACEUS 1 1 0 
FUNDULUS SCIADICUS 0 0 0 
GAMBUSIA AFFINIS 0 0 0 
HYBOGNATHUS ARGYRITIS 0 0 0 
HYBOGNATHUS HANKINSONI 0 1 0 
HYBOGNATHUS PLACITUS 0 0 0 
HYBOPSIS AMBLOPS 1 0 0 
HYPENTELIUM NIGRICANS 1 1 1 
ICHTHYOMYZON FOSSOR 1 1 0 
ICHTHYOMYZON GAGEI 1 0 0 
ICTALURUS PUNCTATUS 0 0 1 
ICTIOBUS BUBALUS 0 0 1 
ICTIOBUS CYPRINELLUS 0 0 1 
LAMPETRA AEPYPTERA 1 1 0 
LEPISOSTEUS OCULATUS 0 0 1 
LEPISOSTEUS OSSEUS 0 0 1 
LEPISOSTEUS PLATOSTOMUS 0 0 1 
LEPOMIS CYANELLUS 0 0 1 
LEPOMIS GULOSUS 0 0 1 
LEPOMIS HUMILIS 1 0 0 
LEPOMIS MACROCHIRUS 0 0 1 
LEPOMIS MEGALOTIS 0 1 1 
LEPOMIS MICROLOPHUS 0 0 1 
LEPOMIS MINIATUS 0 0 1 
LUXILUS CARDINALIS 1 1 0 
LUXILUS CHRYSOCEPHALUS 1 0 0 
LUXILUS CORNUTUS 1 0 0 
LUXILUS PILSBRYI 1 1 0 
LUXILUS ZONATUS 1 0 0 
LYTHRURUS UMBRATILIS 0 0 0 
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Species Habitat Thermal Flow 
MACRHYBOPSIS STORERIANA 1 1 0 
MICROPTERUS DOLOMIEU 0 0 1 
MICROPTERUS PUNCTULATUS 0 0 1 
MICROPTERUS SALMOIDES 0 0 1 
MINYTREMA MELANOPS 1 0 1 
MORONE CHRYSOPS 0 0 1 
MOXOSTOMA ANISURUM 1 1 1 
MOXOSTOMA CARINATUM 1 0 1 
MOXOSTOMA DUQUESNEI 1 0 1 
MOXOSTOMA ERYTHRURUM 1 0 1 
MOXOSTOMA MACROLEPIDOTUM 1 1 1 
NOCOMIS ASPER 1 1 1 
NOCOMIS BIGUTTATUS 1 1 1 
NOTEMIGONUS CRYSOLEUCAS 0 0 1 
NOTROPIS ATHERINOIDES 0 1 0 
NOTROPIS BOOPS 1 1 0 
NOTROPIS BUCCATUS 1 0 0 
NOTROPIS BUCHANANI 1 0 0 
NOTROPIS DORSALIS 0 1 0 
NOTROPIS GREENEI 1 0 0 
NOTROPIS HETEROLEPIS 0 0 0 
NOTROPIS NUBILUS 1 1 0 
NOTROPIS OZARCANUS 1 1 0 
NOTROPIS STRAMINEUS 0 0 0 
NOTROPIS TELESCOPUS 1 1 0 
NOTROPIS TEXANUS 0 0 0 
NOTROPIS VOLUCELLUS 0 0 0 
NOTURUS ALBATER 1 0 1 
NOTURUS EXILIS 1 1 1 
NOTURUS FLAVATER 1 0 1 
NOTURUS FLAVUS 1 1 1 
NOTURUS GYRINUS 1 0 0 
NOTURUS MIURUS 1 0 0 
NOTURUS NOCTURNUS 1 1 1 
OPSOPOEODUS EMILIAE 0 0 0 
PERCINA CAPRODES 1 0 0 
PERCINA COPELANDI 1 0 0 
PERCINA CYMATOTAENIA 1 1 0 
PERCINA EVIDES 1 1 0 
PERCINA MACULATA 1 1 0 
PERCINA PHOXOCEPHALA 1 1 0 
PERCINA SCIERA 1 0 0 
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Species Habitat Thermal Flow 
PHENACOBIUS MIRABILIS 1 0 0 
PHOXINUS ERYTHROGASTER 0 1 0 
PIMEPHALES NOTATUS 0 0 0 
PIMEPHALES PROMELAS 0 0 0 
PIMEPHALES VIGILAX 0 0 0 
POMOXIS ANNULARIS 0 0 1 
POMOXIS NIGROMACULATUS 0 0 1 
PYLODICTIS OLIVARIS 0 0 1 
SANDER VITREUS 0 1 1 
SEMOTILUS ATROMACULATUS 1 1 0 
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Appendix 3: Environmental tolerance classifications for species response index (1 = 
vulnerable, 0 = not vulnerable) 

Species Habitat Thermal Flow 
AMBLOPLITES ARIOMMUS 1 0 0 
AMBLOPLITES CONSTELLATUS 1 0 0 
AMBLOPLITES RUPESTRIS 1 0 1 
AMEIURUS MELAS 0 0 1 
AMEIURUS NATALIS 0 0 0 
AMEIURUS NEBULOSUS 0 0 0 
APHREDODERUS SAYANUS 0 0 0 
APLODINOTUS GRUNNIENS 0 0 0 
CAMPOSTOMA ANOMALUM PULLUM 0 1 0 
CAMPOSTOMA OLIGOLEPIS 0 0 0 
CARPIODES CARPIO 0 0 0 
CARPIODES CYPRINUS 0 0 0 
CARPIODES VELIFER 1 0 0 
CATOSTOMUS COMMERSONII 1 1 1 
CENTRARCHUS MACROPTERUS  
COTTUS BAIRDII 0 0 1 
COTTUS CAROLINAE 1 0 0 
COTTUS HYPSELURUS  
CYPRINELLA CAMURA 0 0 0 
CYPRINELLA GALACTURA 1 0 0 
CYPRINELLA LUTRENSIS 0 0 0 
CYPRINELLA SPILOPTERA 1 0 1 
CYPRINELLA VENUSTA 0 0 0 
CYPRINELLA WHIPPLEI 1 0 0 
DOROSOMA CEPEDIANUM 0 0 0 
ERIMYSTAX HARRYI   
ERIMYSTAX X-PUNCTATUS  
ERIMYZON OBLONGUS 1 0 0 
ESOX AMERICANUS VERMICULATUS 
ESOX NIGER 1 0 0 
ETHEOSTOMA BLENNIOIDES 1 0 1 
ETHEOSTOMA BURRI  
ETHEOSTOMA CAERULEUM 1 0 0 
ETHEOSTOMA CRAGINI  
ETHEOSTOMA EUZONUM  
ETHEOSTOMA FLABELLARE 1 0 0 
ETHEOSTOMA GRACILE  
ETHEOSTOMA JULIAE  
ETHEOSTOMA MICROPERCA  
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Species Habitat Thermal Flow 
ETHEOSTOMA NIANGUAE  
ETHEOSTOMA NIGRUM 0 0 1 
ETHEOSTOMA PROELIARE  
ETHEOSTOMA PUNCTULATUM 1 0 0 
ETHEOSTOMA SPECTABILE 0 0 0 
ETHEOSTOMA STIGMAEUM 1 0 1 
ETHEOSTOMA TETRAZONUM  
ETHEOSTOMA UNIPORUM  
ETHEOSTOMA ZONALE 1 0 0 
FUNDULUS CATENATUS 1 0 0 
FUNDULUS DISPAR   
FUNDULUS NOTATUS 0 0 0 
FUNDULUS OLIVACEUS 0 0 0 
FUNDULUS SCIADICUS  
GAMBUSIA AFFINIS   
HYBOGNATHUS ARGYRITIS  
HYBOGNATHUS HANKINSONI 0 0 1 
HYBOGNATHUS PLACITUS  
HYBOPSIS AMBLOPS 1 0 0 
HYPENTELIUM NIGRICANS 1 0 0 
ICHTHYOMYZON FOSSOR  
ICHTHYOMYZON GAGEI  
ICTALURUS PUNCTATUS 0 0 0 
ICTIOBUS BUBALUS 0 0 0 
ICTIOBUS CYPRINELLUS 0 0 0 
LAMPETRA AEPYPTERA 0 0 0 
LEPISOSTEUS OCULATUS  
LEPISOSTEUS OSSEUS 0 0 0 
LEPISOSTEUS PLATOSTOMUS 0 0 0 
LEPOMIS CYANELLUS 0 0 0 
LEPOMIS GULOSUS 1 0 0 
LEPOMIS HUMILIS 0 0 0 
LEPOMIS MACROCHIRUS 0 0 0 
LEPOMIS MEGALOTIS 1 0 0 
LEPOMIS MICROLOPHUS 0 0 0 
LEPOMIS MINIATUS   
LUXILUS CARDINALIS 1 0 0 
LUXILUS CHRYSOCEPHALUS 1 0 0 
LUXILUS CORNUTUS 0 0 1 
LUXILUS PILSBRYI 1 0 0 
LUXILUS ZONATUS   
LYTHRURUS UMBRATILIS 0 0 0 
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Species Habitat Thermal Flow 
MACRHYBOPSIS STORERIANA 0 0 0 
MICROPTERUS DOLOMIEU 1 1 0 
MICROPTERUS PUNCTULATUS 0 0 0 
MICROPTERUS SALMOIDES 0 0 0 
MINYTREMA MELANOPS 1 0 0 
MORONE CHRYSOPS 0 0 0 
MOXOSTOMA ANISURUM 0 0 1 
MOXOSTOMA CARINATUM 1 0 0 
MOXOSTOMA DUQUESNEI 1 0 0 
MOXOSTOMA ERYTHRURUM 0 0 0 
MOXOSTOMA MACROLEPIDOTUM 0 0 0 
NOCOMIS ASPER 1 0 0 
NOCOMIS BIGUTTATUS 1 0 0 
NOTEMIGONUS CRYSOLEUCAS 0 0 0 
NOTROPIS ATHERINOIDES 0 0 1 
NOTROPIS BOOPS 1 0 0 
NOTROPIS BUCCATUS 0 0 0 
NOTROPIS BUCHANANI  
NOTROPIS DORSALIS 0 0 1 
NOTROPIS GREENEI   
NOTROPIS HETEROLEPIS  
NOTROPIS NUBILUS 1 0 0 
NOTROPIS OZARCANUS  
NOTROPIS STRAMINEUS 1 0 0 
NOTROPIS TELESCOPUS 1 0 0 
NOTROPIS TEXANUS  
NOTROPIS VOLUCELLUS 0 0 1 
NOTURUS ALBATER   
NOTURUS EXILIS 1 0 0 
NOTURUS FLAVATER  
NOTURUS FLAVUS 1 0 1 
NOTURUS GYRINUS 0 0 0 
NOTURUS MIURUS 0 0 0 
NOTURUS NOCTURNUS 0 0 0 
OPSOPOEODUS EMILIAE  
PERCINA CAPRODES 1 0 0 
PERCINA COPELANDI 0 0 0 
PERCINA CYMATOTAENIA  
PERCINA EVIDES 1 0 0 
PERCINA MACULATA 1 0 1 
PERCINA PHOXOCEPHALA 1 0 0 
PERCINA SCIERA 0 0 0 
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Species Habitat Thermal Flow 
PHENACOBIUS MIRABILIS 1 0 0 
PHOXINUS ERYTHROGASTER 1 0 0 
PIMEPHALES NOTATUS 0 0 1 
PIMEPHALES PROMELAS 0 0 1 
PIMEPHALES VIGILAX 0 0 0 
POMOXIS ANNULARIS 0 0 0 
POMOXIS NIGROMACULATUS 0 0 0 
PYLODICTIS OLIVARIS 0 0 0 
SANDER VITREUS 0 0 0 
SEMOTILUS ATROMACULATUS 0 0 0 
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Appendix 4: Species scores for rarity, dispersal, range and freshwater resilience 

Species Rarity Dispersal Range Resilience 
AMBLOPLITES ARIOMMUS 1.53 0 0.765 0.42 
AMBLOPLITES CONSTELLATUS 1.6 0 0.942 0.85 
AMBLOPLITES RUPESTRIS 1 0 0.589 0.61 
AMEIURUS MELAS 1 0 0.177 0.51 
AMEIURUS NATALIS 1 0 0 0.6 
AMEIURUS NEBULOSUS 1.99 0 0.942 1 
APHREDODERUS SAYANUS 1.82 0 0.765 0.53 
APLODINOTUS GRUNNIENS 1.54 0 0.236 0.58 
CAMPOSTOMA ANOMALUM PULLUM 1 0 0.118 0.59 
CAMPOSTOMA OLIGOLEPIS 1 0 0.412 0.6 
CARPIODES CARPIO 1.44 0 0.471 0.37 
CARPIODES CYPRINUS 1.65 0 0.412 0.5 
CARPIODES VELIFER 1.98 0 0.883 0.88 
CATOSTOMUS COMMERSONII 1 0 0.177 0.61 
CENTRARCHUS MACROPTERUS 1.99 0 0.942 1 
COTTUS BAIRDII 1 1 0.471 0.53 
COTTUS CAROLINAE 1 1 0.412 0.63 
COTTUS HYPSELURUS 1.22 1 0.648 0.55 
CYPRINELLA CAMURA 1.99 0 0.942 0.6 
CYPRINELLA GALACTURA 1.81 0 0.824 0.68 
CYPRINELLA LUTRENSIS 1 0 0.295 0.56 
CYPRINELLA SPILOPTERA 1.92 0 0.706 0.62 
CYPRINELLA VENUSTA 1.75 0 0.648 0.54 
CYPRINELLA WHIPPLEI 1.62 0 0.765 0.65 
DOROSOMA CEPEDIANUM 1 0 0.059 0.61 
ERIMYSTAX HARRYI 1.87 0 0.824 0.35 
ERIMYSTAX X-PUNCTATUS 1.9 0 0.589 0.71 
ERIMYZON OBLONGUS 1.39 0 0.648 0.56 
ESOX AMERICANUS VERMICULATUS 1.85 0 0.765 0.79 
ESOX NIGER 1.86 0 0.765 0.66 
ETHEOSTOMA BLENNIOIDES 1 1 0.236 0.63 
ETHEOSTOMA BURRI 1.76 1 0.942 0.93 
ETHEOSTOMA CAERULEUM 1 1 0.353 0.64 
ETHEOSTOMA CRAGINI 1.82 1 0.942 0.65 
ETHEOSTOMA EUZONUM 1.99 1 0.942 0.27 
ETHEOSTOMA FLABELLARE 1 1 0.295 0.67 
ETHEOSTOMA GRACILE 1.94 1 0.589 0.19 
ETHEOSTOMA JULIAE 1.93 1 0.942 0.87 
ETHEOSTOMA MICROPERCA 1.97 1 0.824 0.18 
ETHEOSTOMA NIANGUAE 1.99 1 0.942 0.91 
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Species Rarity Dispersal Range Resilience 
ETHEOSTOMA NIGRUM 1 1 0.353 0.59 
ETHEOSTOMA PROELIARE 1.95 1 0.765 0 
ETHEOSTOMA PUNCTULATUM 1 1 0.648 0.69 
ETHEOSTOMA SPECTABILE 1 1 0.236 0.64 
ETHEOSTOMA STIGMAEUM 1.98 1 0.706 0.48 
ETHEOSTOMA TETRAZONUM 1.68 1 0.706 0.64 
ETHEOSTOMA UNIPORUM 1.95 1 0.942 0.03 
ETHEOSTOMA ZONALE 1.26 1 0.471 0.63 
FUNDULUS CATENATUS 1 1 0.236 0.64 
FUNDULUS DISPAR 1.98 1 0.883 1 
FUNDULUS NOTATUS 1 1 0.177 0.7 
FUNDULUS OLIVACEUS 1 1 0.236 0.69 
FUNDULUS SCIADICUS 1.72 1 0.648 0.34 
GAMBUSIA AFFINIS 1 0 0 0.62 
HYBOGNATHUS ARGYRITIS 1.97 0 0.883 0.15 
HYBOGNATHUS HANKINSONI 1.78 0 0.883 0.12 
HYBOGNATHUS PLACITUS 1.98 0 0.824 0.28 
HYBOPSIS AMBLOPS 1.09 0 0.648 0.76 
HYPENTELIUM NIGRICANS 1 0 0.353 0.67 
ICHTHYOMYZON FOSSOR 1.99 0 0.883 0.7 
ICHTHYOMYZON GAGEI 1.97 0 0.942 0.83 
ICTALURUS PUNCTATUS 1 0 0.118 0.51 
ICTIOBUS BUBALUS 1.79 0 0.353 0.52 
ICTIOBUS CYPRINELLUS 1.81 0 0.412 0.76 
LAMPETRA AEPYPTERA 1.92 0 0.883 0.37 
LEPISOSTEUS OCULATUS 1.79 0 0.765 0.5 
LEPISOSTEUS OSSEUS 1.4 0 0.177 0.57 
LEPISOSTEUS PLATOSTOMUS 1.5 0 0.295 0.52 
LEPOMIS CYANELLUS 1 0 0 0.61 
LEPOMIS GULOSUS 1.19 0 0.177 0.53 
LEPOMIS HUMILIS 1 0 0.118 0.58 
LEPOMIS MACROCHIRUS 1 0 0 0.62 
LEPOMIS MEGALOTIS 1 0 0 0.68 
LEPOMIS MICROLOPHUS 1.3 0 0.177 0.68 
LEPOMIS MINIATUS 1.63 0 0.706 0.51 
LUXILUS CARDINALIS 1.45 0 0.883 0.72 
LUXILUS CHRYSOCEPHALUS 1 0 0.295 0.59 
LUXILUS CORNUTUS 1.27 0 0.706 0.66 
LUXILUS PILSBRYI 1.38 0 0.942 0.86 
LUXILUS ZONATUS 1 0 0.471 0.58 
LYTHRURUS UMBRATILIS 1 0 0.177 0.48 
MACRHYBOPSIS STORERIANA 1.99 0 0.706 0.31 

113 
 



Species Rarity Dispersal Range Resilience 
MICROPTERUS DOLOMIEU 1 0 0.353 0.64 
MICROPTERUS PUNCTULATUS 1.3 0 0.118 0.71 
MICROPTERUS SALMOIDES 1 0 0 0.62 
MINYTREMA MELANOPS 1.59 0 0.295 0.5 
MORONE CHRYSOPS 1.92 0 0.53 0.75 
MOXOSTOMA ANISURUM 1.86 0 0.706 0.66 
MOXOSTOMA CARINATUM 1.93 0 0.824 0.67 
MOXOSTOMA DUQUESNEI 1 0 0.353 0.69 
MOXOSTOMA ERYTHRURUM 1 0 0.236 0.72 
MOXOSTOMA MACROLEPIDOTUM 1.48 0 0.118 0.65 
NOCOMIS ASPER 1.57 0 0.942 0.75 
NOCOMIS BIGUTTATUS 1 0 0.412 0.59 
NOTEMIGONUS CRYSOLEUCAS 1 0 0.059 0.64 
NOTROPIS ATHERINOIDES 1.65 0 0.295 0.65 
NOTROPIS BOOPS 1 0 0.412 0.62 
NOTROPIS BUCCATUS 1.76 0 0.824 0.89 
NOTROPIS BUCHANANI 1.96 0 0.706 0.56 
NOTROPIS DORSALIS 1 0 0.589 0.46 
NOTROPIS GREENEI 1.59 0 0.648 0.58 
NOTROPIS HETEROLEPIS 1.95 0 0.765 0.84 
NOTROPIS NUBILUS 1 0 0.353 0.65 
NOTROPIS OZARCANUS 1.93 0 0.824 0.38 
NOTROPIS STRAMINEUS 1 0 0.412 0.58 
NOTROPIS TELESCOPUS 1.11 0 0.765 0.54 
NOTROPIS TEXANUS 1.86 0 0.824 0.34 
NOTROPIS VOLUCELLUS 1.64 0 0.471 0.69 
NOTURUS ALBATER 1.43 0 0.824 0.64 
NOTURUS EXILIS 1 0 0.236 0.69 
NOTURUS FLAVATER 1.98 0 0.883 0.45 
NOTURUS FLAVUS 1.72 0 0.353 0.56 
NOTURUS GYRINUS 1.73 0 0.589 0.55 
NOTURUS MIURUS 1.91 0 0.824 0.63 
NOTURUS NOCTURNUS 1.98 0 0.589 0.23 
OPSOPOEODUS EMILIAE 1.89 0 0.706 0.01 
PERCINA CAPRODES 1 1 0.118 0.67 
PERCINA COPELANDI 1.97 1 0.942 0.6 
PERCINA CYMATOTAENIA 1.98 1 0.883 0.19 
PERCINA EVIDES 1.94 1 0.706 0.73 
PERCINA MACULATA 1.59 1 0.53 0.56 
PERCINA PHOXOCEPHALA 1.63 1 0.53 0.64 
PERCINA SCIERA 1.99 1 0.765 0.39 
PHENACOBIUS MIRABILIS 1 0 0.353 0.49 
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Species Rarity Dispersal Range Resilience 
PHOXINUS ERYTHROGASTER 1 0 0.353 0.6 
PIMEPHALES NOTATUS 1 0 0 0.61 
PIMEPHALES PROMELAS 1 0 0.177 0.46 
PIMEPHALES VIGILAX 1.72 0 0.589 0.65 
POMOXIS ANNULARIS 1.35 0 0.059 0.54 
POMOXIS NIGROMACULATUS 1.87 0 0.236 0.73 
PYLODICTIS OLIVARIS 1.64 0 0.295 0.48 
SANDER VITREUS 1.99 1 0.765 0.7 
SEMOTILUS ATROMACULATUS 1 0 0.059 0.59 
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Appendix 5: Environmental variables and associated units which were used for the 
creation of species distribution models 

Variable Units 
Ecological Drainage Unit Categorical 
Aquatic Ecological System Type Categorical 
Strahler Stream Order Continuous Categorical 
Downstream Size Continuous Categorical 
Reach Gradient m/km 
Segment Gradient m/km 
Local Geological Classification Categorical 
Urban Landcover- Local % of Local Watershed Area 
Agricultural Landcover- Local % of Local Watershed Area 
Grassland Landcover- Local % of Local Watershed Area 
Forest Landcover- Local % of Local Watershed Area 
Wetland Landcover- Local % of Local Watershed Area 
Urban Landcover- Upstream Watershed % of Upstream Watershed Area 
Agricultural Landcover- Upstream Watershed % of Upstream Watershed Area 
Grassland Landcover- Upstream Watershed % of Upstream Watershed Area 
Forest Landcover- Upstream Watershed % of Upstream Watershed Area 
Wetland Landcover- Upstream Watershed % of Upstream Watershed Area 
Number of Springs- Local Count 
Number of Springs- Watershed Count 
Number of Dams- Local Count 
Number of Dams- Upstream Watershed Count 
Number of Headwater Impoundments- Local Count 
Number of Headwater Impoundments- Upstream 
Watershed 

Count 

Number of Road/Stream Crossings per KM2- Local Ratio 
Number of Road/Stream Crossings per KM2- 
Upstream Watershed 

Ratio 

Local Habitat Threat Index Score Value 
Upstream Habitat Threat Index Score Value 
Percent of the Local Riparian Intact % of Local Riparian Not Classified 

as Agriculture or Urban 
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Appendix 6: A list of species codes, scientific names, and common names for all study 
species, as well as whether a model was constructed for each species for both the Plains 
and Ozarks subregions.  Blank indicates no model constructed, “Yes” indicates a 
satisfactory model was created, “Yes (Failed)” indicates a model was created but did not 
meet the model evaluation criteria. 

Species Code Scientific Name Plains Model Ozark Model 
A_ARIOMMUS AMBLOPLITES ARIOMMUS  Yes 
A_CONSTELLATUS AMBLOPLITES CONSTELLATUS  Yes 
A_GRUNNIENS APLODINOTUS GRUNNIENS Yes  
A_MELAS AMEIURUS MELAS Yes (Failed) Yes 
A_NATALIS AMEIURUS NATALIS Yes Yes 
A_NEBULOSUS AMEIURUS NEBULOSUS   
A_RUPESTRIS AMBLOPLITES RUPESTRIS  Yes 
A_SAYANUS APHREDODERUS SAYANUS   
C_BAIRDII COTTUS BAIRDII  Yes 
C_CAMURA CYPRINELLA CAMURA   
C_CAROLINAE COTTUS CAROLINAE  Yes 
C_CARPIO CARPIODES CARPIO Yes  
C_COMMERSONII CATOSTOMUS COMMERSONII Yes Yes 
C_CYPRINUS CARPIODES CYPRINUS Yes  
C_GALACTURA CYPRINELLA GALACTURA  Yes 
C_HYPSELURUS COTTUS HYPSELURUS  Yes 
C_LUTRENSIS CYPRINELLA LUTRENSIS Yes Yes 
C_MACROPTERUS CENTRARCHUS MACROPTERUS   
C_OLIGOLEPIS CAMPOSTOMA OLIGOLEPIS  Yes 

C_PULLUM 
CAMPOSTOMA ANOMALUM 
PULLUM Yes Yes 

C_SPILOPTERA CYPRINELLA SPILOPTERA   
C_VELIFER CARPIODES VELIFER   
C_VENUSTA CYPRINELLA VENUSTA   
C_WHIPPLEI CYPRINELLA WHIPPLEI  Yes 
D_CEPEDIANUM DOROSOMA CEPEDIANUM Yes Yes 
E_BLENNIOIDES ETHEOSTOMA BLENNIOIDES  Yes 
E_BURRI ETHEOSTOMA BURRI   
E_CAERULEUM ETHEOSTOMA CAERULEUM  Yes 
E_CRAGINI ETHEOSTOMA CRAGINI   
E_EUZONUM ETHEOSTOMA EUZONUM   
E_FLABELLARE ETHEOSTOMA FLABELLARE Yes Yes 
E_GRACILE ETHEOSTOMA GRACILE   
E_HARRYI ERIMYSTAX HARRYI   
E_JULIAE ETHEOSTOMA JULIAE   
E_MICROPERCA ETHEOSTOMA MICROPERCA   
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Species Code Scientific Name Plains Model Ozark Model 
E_NIANGUAE ETHEOSTOMA NIANGUAE   
E_NIGER ESOX NIGER   
E_NIGRUM ETHEOSTOMA NIGRUM Yes Yes 
E_OBLONGUS ERIMYZON OBLONGUS  Yes 
E_PROELIARE ETHEOSTOMA PROELIARE   
E_PUNCTULATUM ETHEOSTOMA PUNCTULATUM  Yes 
E_SPECTABILE ETHEOSTOMA SPECTABILE Yes Yes 
E_STIGMAEUM ETHEOSTOMA STIGMAEUM   
E_TETRAZONUM ETHEOSTOMA TETRAZONUM  Yes 
E_UNIPORUM ETHEOSTOMA UNIPORUM   

E_VERMICULATUS 
ESOX AMERICANUS 
VERMICULATUS   

E_X-PUNCTATUS ERIMYSTAX X-PUNCTATUS   
E_ZONALE ETHEOSTOMA ZONALE  Yes 
F_CATENATUS FUNDULUS CATENATUS  Yes 
F_DISPAR FUNDULUS DISPAR   
F_NOTATUS FUNDULUS NOTATUS Yes Yes 
F_OLIVACEUS FUNDULUS OLIVACEUS  Yes 
F_SCIADICUS FUNDULUS SCIADICUS  Yes 
G_AFFINIS GAMBUSIA AFFINIS Yes Yes 
H_AMBLOPS HYBOPSIS AMBLOPS  Yes 
H_ARGYRITIS HYBOGNATHUS ARGYRITIS   
H_HANKINSONI HYBOGNATHUS HANKINSONI   
H_NIGRICANS HYPENTELIUM NIGRICANS  Yes 
H_PLACITUS HYBOGNATHUS PLACITUS   
I_BUBALUS ICTIOBUS BUBALUS   
I_CYPRINELLUS ICTIOBUS CYPRINELLUS   
I_FOSSOR ICHTHYOMYZON FOSSOR   
I_GAGEI ICHTHYOMYZON GAGEI   
I_NIGER ICTIOBUS NIGER   
I_PUNCTATUS ICTALURUS PUNCTATUS Yes Yes 
L_AEPYPTERA LAMPETRA AEPYPTERA   
L_CARDINALIS LUXILUS CARDINALIS  Yes 
L_CHRYSOCEPHALU
S LUXILUS CHRYSOCEPHALUS Yes Yes 
L_CORNUTUS LUXILUS CORNUTUS Yes Yes 
L_CYANELLUS LEPOMIS CYANELLUS Yes (Failed) Yes 
L_GULOSUS LEPOMIS GULOSUS  Yes 
L_HUMILIS LEPOMIS HUMILIS Yes Yes 
L_MACROCHIRUS LEPOMIS MACROCHIRUS Yes Yes 
L_MEGALOTIS LEPOMIS MEGALOTIS Yes Yes 
L_MICROLOPHUS LEPOMIS MICROLOPHUS  Yes 
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Species Code Scientific Name Plains Model Ozark Model 
L_MINIATUS LEPOMIS MINIATUS   
L_OCULATUS LEPISOSTEUS OCULATUS   
L_OSSEUS LEPISOSTEUS OSSEUS  Yes 
L_PILSBRYI LUXILUS PILSBRYI  Yes 
L_PLATOSTOMUS LEPISOSTEUS PLATOSTOMUS Yes  
L_UMBRATILIS LYTHRURUS UMBRATILIS Yes Yes 
L_ZONATUS LUXILUS ZONATUS  Yes 
M_ANISURUM MOXOSTOMA ANISURUM   
M_CARINATUM MOXOSTOMA CARINATUM   
M_CHRYSOPS MORONE CHRYSOPS   
M_DOLOMIEU MICROPTERUS DOLOMIEU  Yes 
M_DUQUESNEI MOXOSTOMA DUQUESNEI  Yes 
M_ERYTHRURUM MOXOSTOMA ERYTHRURUM Yes Yes 
M_MACROLEPIDOT
UM 

MOXOSTOMA 
MACROLEPIDOTUM  Yes 

M_MELANOPS MINYTREMA MELANOPS  Yes 
M_PUNCTULATUS MICROPTERUS PUNCTULATUS  Yes 
M_SALMOIDES MICROPTERUS SALMOIDES Yes Yes 
M_STORERIANA MACRHYBOPSIS STORERIANA   
N_ALBATER NOTURUS ALBATER  Yes 
N_ASPER NOCOMIS ASPER  Yes 
N_ATHERINOIDES NOTROPIS ATHERINOIDES   
N_BIGUTTATUS NOCOMIS BIGUTTATUS  Yes 
N_BOOPS NOTROPIS BOOPS Yes Yes 
N_BUCCATUS NOTROPIS BUCCATUS   
N_BUCHANANI NOTROPIS BUCHANANI   
N_CRYSOLEUCAS NOTEMIGONUS CRYSOLEUCAS Yes Yes 
N_DORSALIS NOTROPIS DORSALIS Yes  
N_EXILIS NOTURUS EXILIS Yes Yes 
N_FLAVATER NOTURUS FLAVATER   
N_FLAVUS NOTURUS FLAVUS Yes  
N_GREENEI NOTROPIS GREENEI  Yes 
N_GYRINUS NOTURUS GYRINUS   
N_HETEROLEPIS NOTROPIS HETEROLEPIS   
N_MIURUS NOTURUS MIURUS   
N_NOCTURNUS NOTURUS NOCTURNUS   
N_NUBILUS NOTROPIS NUBILUS  Yes 
N_OZARCANUS NOTROPIS OZARCANUS   
N_STRAMINEUS NOTROPIS STRAMINEUS Yes Yes 
N_TELESCOPUS NOTROPIS TELESCOPUS  Yes 
N_TEXANUS NOTROPIS TEXANUS   
N_VOLUCELLUS NOTROPIS VOLUCELLUS   
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Species Code Scientific Name Plains Model Ozark Model 
O_EMILIAE OPSOPOEODUS EMILIAE   
P_ANNULARIS POMOXIS ANNULARIS Yes  
P_CAPRODES PERCINA CAPRODES Yes Yes 
P_COPELANDI PERCINA COPELANDI   
P_CYMATOTAENIA PERCINA CYMATOTAENIA   
P_ERYTHROGASTER PHOXINUS ERYTHROGASTER  Yes 
P_EVIDES PERCINA EVIDES   
P_FLAVESCENS PERCA FLAVESCENS   
P_MACULATA PERCINA MACULATA Yes  
P_MIRABILIS PHENACOBIUS MIRABILIS Yes Yes 
P_NIGROMACULAT
US POMOXIS NIGROMACULATUS   
P_NOTATUS PIMEPHALES NOTATUS Yes Yes 
P_OLIVARIS PYLODICTIS OLIVARIS Yes  
P_PHOXOCEPHALA PERCINA PHOXOCEPHALA Yes  
P_PROMELAS PIMEPHALES PROMELAS Yes Yes 
P_SCIERA PERCINA SCIERA   
P_VIGILAX PIMEPHALES VIGILAX   
S_ATROMACULATU
S SEMOTILUS ATROMACULATUS Yes Yes 
S_VITREUS SANDER VITREUS   
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Appendix 7: A list of component models which went into the ensemble for each species.  
Component models assigned a score of 0 did not meet minimum requirements for at 
least one evaluation statistic and therefore were not included in the ensemble, while 
component models assigned a score of 1 met minimum requirements for all three 
model evaluation statistics and were included in the final ensemble. 

Plains Subregion 

Species MARS GAM BRT RndmFrst Sum 
AMEIURUS MELAS 0 0 0 0 0 
AMEIURUS NATALIS 0 0 1 1 2 
APLODINOTUS GRUNNIENS 0 0 0 1 1 
CAMPOSTOMA ANOMALUM PULLUM 0 1 1 1 3 
CARPIODES CARPIO 1 1 1 1 4 
CARPIODES CYPRINUS 1 1 0 1 3 
CATOSTOMUS COMMERSONII 0 1 0 1 2 
CYPRINELLA LUTRENSIS 1 1 1 1 4 
DOROSOMA CEPEDIANUM 0 1 0 1 2 
ETHEOSTOMA FLABELLARE 1 1 1 1 4 
ETHEOSTOMA NIGRUM 1 1 1 1 4 
ETHEOSTOMA SPECTABILE 1 1 1 1 4 
FUNDULUS NOTATUS 1 1 1 1 4 
GAMBUSIA AFFINIS 1 1 1 1 4 
ICTALURUS PUNCTATUS 0 0 1 1 2 
LEPISOSTEUS PLATOSTOMUS 0 0 1 0 1 
LEPOMIS CYANELLUS 0 0 0 0 0 
LEPOMIS HUMILIS 0 1 1 1 3 
LEPOMIS MACROCHIRUS 0 0 1 0 1 
LEPOMIS MEGALOTIS 1 0 0 1 2 
LUXILUS CHRYSOCEPHALUS 1 1 1 1 4 
LUXILUS CORNUTUS 1 1 1 1 4 
LYTHRURUS UMBRATILIS 1 1 0 1 3 
MICROPTERUS SALMOIDES 0 0 1 1 2 
MOXOSTOMA ERYTHRURUM 1 1 1 1 4 
NOTEMIGONUS CRYSOLEUCAS 1 1 0 0 2 
NOTROPIS BOOPS 1 1 1 0 3 
NOTROPIS DORSALIS 1 1 1 1 4 
NOTROPIS STRAMINEUS 1 1 1 1 4 
NOTURUS EXILIS 1 1 1 1 4 
NOTURUS FLAVUS 1 1 1 1 4 
PERCINA CAPRODES 0 0 1 1 2 
PERCINA MACULATA 1 0 0 0 1 
PERCINA PHOXOCEPHALA 1 1 1 1 4 
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Species MARS GAM BRT RndmFrst Sum 
PHENACOBIUS MIRABILIS 1 0 1 0 2 
PIMEPHALES NOTATUS 1 1 1 1 4 
PIMEPHALES PROMELAS 1 1 1 1 4 
POMOXIS ANNULARIS 0 1 1 1 3 
PYLODICTIS OLIVARIS 1 0 1 0 2 
SEMOTILUS ATROMACULATUS 1 1 1 1 4 

 
Ozarks Subregion 

Species MARS BRT GAM RndmFrst Sum 
AMBLOPLITES ARIOMMUS 0 1 0 1 2 
AMBLOPLITES CONSTELLATUS 0 1 0 1 2 
AMBLOPLITES RUPESTRIS 1 1 1 1 4 
AMEIURUS MELAS 0 1 1 1 3 
AMEIURUS NATALIS 0 0 0 1 1 
CAMPOSTOMA ANOMALUM PULLUM 1 1 1 1 4 
CAMPOSTOMA OLIGOLEPIS 1 1 1 1 4 
CATOSTOMUS COMMERSONII 1 1 0 1 3 
COTTUS BAIRDII 1 1 1 1 4 
COTTUS CAROLINAE 1 1 1 1 4 
COTTUS HYPSELURUS 1 1 1 1 4 
CYPRINELLA GALACTURA 0 0 1 1 2 
CYPRINELLA LUTRENSIS 1 1 1 1 4 
CYPRINELLA WHIPPLEI 1 0 1 1 3 
DOROSOMA CEPEDIANUM 0 1 0 0 1 
ERIMYZON OBLONGUS 1 1 1 1 4 
ETHEOSTOMA BLENNIOIDES 1 1 1 1 4 
ETHEOSTOMA CAERULEUM 1 1 1 1 4 
ETHEOSTOMA FLABELLARE 1 1 0 1 3 
ETHEOSTOMA NIGRUM 1 1 1 1 4 
ETHEOSTOMA PUNCTULATUM 1 1 1 1 4 
ETHEOSTOMA SPECTABILE 1 1 1 1 4 
ETHEOSTOMA TETRAZONUM 1 0 0 1 2 
ETHEOSTOMA ZONALE 1 1 1 1 4 
FUNDULUS CATENATUS 1 1 1 1 4 
FUNDULUS NOTATUS 1 1 1 1 4 
FUNDULUS OLIVACEUS 1 1 1 1 4 
FUNDULUS SCIADICUS 1 0 1 1 3 
GAMBUSIA AFFINIS 1 1 1 1 4 
HYBOPSIS AMBLOPS 1 1 1 1 4 
HYPENTELIUM NIGRICANS 0 1 1 1 3 
ICTALURUS PUNCTATUS 0 1 0 1 2 
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Species MARS BRT GAM RndmFrst Sum 
LEPISOSTEUS OSSEUS 1 0 0 1 2 
LEPOMIS CYANELLUS 0 1 1 1 3 
LEPOMIS GULOSUS 1 1 1 0 3 
LEPOMIS HUMILIS 1 1 1 1 4 
LEPOMIS MACROCHIRUS 0 1 1 1 3 
LEPOMIS MEGALOTIS 1 1 0 1 3 
LEPOMIS MICROLOPHUS 0 0 1 1 2 
LUXILUS CARDINALIS 1 1 1 1 4 
LUXILUS CHRYSOCEPHALUS 1 1 1 1 4 
LUXILUS CORNUTUS 1 1 1 1 4 
LUXILUS PILSBRYI 1 1 1 1 4 
LUXILUS ZONATUS 1 1 1 1 4 
LYTHRURUS UMBRATILIS 0 1 1 1 3 
MICROPTERUS DOLOMIEU 1 1 0 1 3 
MICROPTERUS PUNCTULATUS 1 1 1 1 4 
MICROPTERUS SALMOIDES 0 1 1 0 2 
MINYTREMA MELANOPS 1 1 0 1 3 
MOXOSTOMA DUQUESNEI 1 1 1 1 4 
MOXOSTOMA ERYTHRURUM 1 1 1 1 4 
MOXOSTOMA MACROLEPIDOTUM 1 0 1 1 3 
NOCOMIS ASPER 0 1 1 1 3 
NOCOMIS BIGUTTATUS 1 1 1 1 4 
NOTEMIGONUS CRYSOLEUCAS 1 1 0 1 3 
NOTROPIS BOOPS 1 1 1 1 4 
NOTROPIS GREENEI 1 1 1 1 4 
NOTROPIS NUBILUS 0 1 1 1 3 
NOTROPIS STRAMINEUS 1 1 1 1 4 
NOTROPIS TELESCOPUS 1 1 1 1 4 
NOTURUS ALBATER 0 0 1 1 2 
NOTURUS EXILIS 0 1 1 1 3 
PERCINA CAPRODES 1 1 1 1 4 
PHENACOBIUS MIRABILIS 1 1 1 1 4 
PHOXINUS ERYTHROGASTER 1 1 1 1 4 
PIMEPHALES NOTATUS 1 1 1 1 4 
PIMEPHALES PROMELAS 0 1 0 0 1 
SEMOTILUS ATROMACULATUS 1 1 1 1 4 
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Appendix 8: Component model evaluation statistics 

Generalized Additive Models: Plains Subregion 
Species AUC Bias MAE 
AMEIURUS MELAS 0.570 0.860 0.208 
AMEIURUS NATALIS 0.597 1.055 0.139 
APLODINOTUS GRUNNIENS 0.645 0.571 0.130 
CAMPOSTOMA ANOMALUM 
PULLUM 0.766 0.972 0.087 
CARPIODES CARPIO 0.884 0.785 0.077 
CARPIODES CYPRINUS 0.726 1.231 0.042 
CATOSTOMUS COMMERSONII 0.667 1.120 0.084 
CYPRINELLA LUTRENSIS 0.736 0.925 0.087 
DOROSOMA CEPEDIANUM 0.846 1.092 0.051 
ETHEOSTOMA FLABELLARE 0.908 0.906 0.064 
ETHEOSTOMA NIGRUM 0.813 0.936 0.109 
ETHEOSTOMA SPECTABILE 0.858 0.934 0.093 
FUNDULUS NOTATUS 0.900 1.142 0.040 
GAMBUSIA AFFINIS 0.759 1.024 0.083 
ICTALURUS PUNCTATUS 0.816 0.795 0.128 
LEPISOSTEUS PLATOSTOMUS 0.887 0.743 0.063 
LEPOMIS CYANELLUS 0.517 0.951 0.146 
LEPOMIS HUMILIS 0.699 0.810 0.113 
LEPOMIS MACROCHIRUS 0.584 1.062 0.093 
LEPOMIS MEGALOTIS 0.816 0.565 0.115 
LUXILUS CHRYSOCEPHALUS 0.898 0.944 0.045 
LUXILUS CORNUTUS 0.899 0.841 0.063 
LYTHRURUS UMBRATILIS 0.711 0.941 0.099 
MICROPTERUS SALMOIDES 0.575 0.967 0.116 
MOXOSTOMA ERYTHRURUM 0.795 1.105 0.059 
NOTEMIGONUS CRYSOLEUCAS 0.637 1.000 0.103 
NOTROPIS BOOPS 0.671 1.004 0.082 
NOTROPIS DORSALIS 0.877 0.963 0.061 
NOTROPIS STRAMINEUS 0.722 0.947 0.091 
NOTURUS EXILIS 0.930 0.795 0.076 
NOTURUS FLAVUS 0.696 1.074 0.041 
PERCINA CAPRODES 0.831 0.675 0.088 
PERCINA MACULATA 0.918 0.700 0.091 
PERCINA PHOXOCEPHALA 0.953 1.065 0.076 
PHENACOBIUS MIRABILIS 0.672 0.950 0.143 
PIMEPHALES NOTATUS 0.788 1.014 0.087 
PIMEPHALES PROMELAS 0.755 0.961 0.112 
POMOXIS ANNULARIS 0.791 0.833 0.099 
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Species AUC Bias MAE 
PYLODICTIS OLIVARIS 0.740 0.747 0.076 
SEMOTILUS ATROMACULATUS 0.701 0.960 0.091 

 

Generalized Additive Models: Ozark Subregion 
Species AUC Bias MAE 
AMBLOPLITES ARIOMMUS 0.918 0.631 0.092 
AMBLOPLITES CONSTELLATUS 0.682 1.778 0.021 
AMBLOPLITES RUPESTRIS 0.892 1.012 0.056 
AMEIURUS MELAS 0.714 0.990 0.046 
AMEIURUS NATALIS 0.651 0.977 0.126 
CAMPOSTOMA ANOMALUM 
PULLUM 0.751 1.010 0.078 
CAMPOSTOMA OLIGOLEPIS 0.836 0.949 0.077 
CATOSTOMUS COMMERSONII 0.841 0.745 0.081 
COTTUS BAIRDII 0.910 0.925 0.072 
COTTUS CAROLINAE 0.829 0.986 0.073 
COTTUS HYPSELURUS 0.884 0.816 0.074 
CYPRINELLA GALACTURA 0.875 1.011 0.047 
CYPRINELLA LUTRENSIS 0.940 0.914 0.073 
CYPRINELLA WHIPPLEI 0.955 0.770 0.065 
DOROSOMA CEPEDIANUM 0.628 1.536 0.063 
ERIMYZON OBLONGUS 0.915 0.813 0.057 
ETHEOSTOMA BLENNIOIDES 0.825 0.888 0.071 
ETHEOSTOMA CAERULEUM 0.927 0.963 0.062 
ETHEOSTOMA FLABELLARE 0.737 0.746 0.115 
ETHEOSTOMA NIGRUM 0.872 0.840 0.063 
ETHEOSTOMA PUNCTULATUM 0.874 0.962 0.057 
ETHEOSTOMA SPECTABILE 0.813 0.933 0.060 
ETHEOSTOMA TETRAZONUM 0.911 0.666 0.064 
ETHEOSTOMA ZONALE 0.818 0.955 0.054 
FUNDULUS CATENATUS 0.843 1.061 0.095 
FUNDULUS NOTATUS 0.826 1.122 0.079 
FUNDULUS OLIVACEUS 0.857 0.967 0.058 
FUNDULUS SCIADICUS 0.955 0.935 0.057 
GAMBUSIA AFFINIS 0.738 1.026 0.114 
HYBOPSIS AMBLOPS 0.860 0.905 0.095 
HYPENTELIUM NIGRICANS 0.721 1.043 0.105 
ICTALURUS PUNCTATUS 0.750 1.324 0.048 
LEPISOSTEUS OSSEUS 0.658 0.711 0.054 
LEPOMIS CYANELLUS 0.646 0.974 0.095 
LEPOMIS GULOSUS 0.761 0.895 0.057 
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Species AUC Bias MAE 
LEPOMIS HUMILIS 0.823 1.214 0.033 
LEPOMIS MACROCHIRUS 0.673 1.036 0.088 
LEPOMIS MEGALOTIS 0.645 0.985 0.126 
LEPOMIS MICROLOPHUS 0.818 1.008 0.046 
LUXILUS CARDINALIS 0.901 1.157 0.021 
LUXILUS CHRYSOCEPHALUS 0.828 1.122 0.061 
LUXILUS CORNUTUS 0.967 1.179 0.046 
LUXILUS PILSBRYI 0.963 1.032 0.039 
LUXILUS ZONATUS 0.921 0.984 0.037 
LYTHRURUS UMBRATILIS 0.788 0.905 0.077 
MICROPTERUS DOLOMIEU 0.766 1.001 0.128 
MICROPTERUS PUNCTULATUS 0.818 0.993 0.060 
MICROPTERUS SALMOIDES 0.696 1.003 0.101 
MINYTREMA MELANOPS 0.875 1.849 0.031 
MOXOSTOMA DUQUESNEI 0.752 1.002 0.089 
MOXOSTOMA ERYTHRURUM 0.720 1.078 0.114 
MOXOSTOMA MACROLEPIDOTUM 0.689 0.950 0.044 
NOCOMIS ASPER 0.911 0.833 0.056 
NOCOMIS BIGUTTATUS 0.851 0.947 0.109 
NOTEMIGONUS CRYSOLEUCAS 0.671 0.750 0.070 
NOTROPIS BOOPS 0.835 1.197 0.096 
NOTROPIS GREENEI 0.920 0.997 0.078 
NOTROPIS NUBILUS 0.762 0.977 0.076 
NOTROPIS STRAMINEUS 0.874 1.175 0.058 
NOTROPIS TELESCOPUS 0.944 0.938 0.081 
NOTURUS ALBATER 0.939 0.964 0.102 
NOTURUS EXILIS 0.673 0.922 0.113 
PERCINA CAPRODES 0.788 0.953 0.052 
PHENACOBIUS MIRABILIS 0.808 1.043 0.044 
PHOXINUS ERYTHROGASTER 0.810 1.010 0.075 
PIMEPHALES NOTATUS 0.878 0.964 0.067 
PIMEPHALES PROMELAS 0.595 0.602 0.067 
SEMOTILUS ATROMACULATUS 0.767 1.011 0.088 

 

Multivariate Adaptive Regression Splines: Plains Subregion 
Species AUC Bias MAE 
AMEIURUS MELAS 0.527 0.865 0.143 
AMEIURUS NATALIS 0.598 1.002 0.164 
APLODINOTUS GRUNNIENS 0.688 1.733 0.080 
CAMPOSTOMA ANOMALUM 
PULLUM 0.680 1.020 0.161 
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Species AUC Bias MAE 
CARPIODES CARPIO 0.725 0.834 0.093 
CARPIODES CYPRINUS 0.815 0.817 0.065 
CATOSTOMUS COMMERSONII 0.601 1.111 0.159 
CYPRINELLA LUTRENSIS 0.874 1.052 0.076 
DOROSOMA CEPEDIANUM 0.763 0.737 0.067 
ETHEOSTOMA FLABELLARE 0.866 1.006 0.056 
ETHEOSTOMA NIGRUM 0.785 1.041 0.107 
ETHEOSTOMA SPECTABILE 0.904 0.943 0.080 
FUNDULUS NOTATUS 0.914 0.960 0.064 
GAMBUSIA AFFINIS 0.786 1.130 0.090 
ICTALURUS PUNCTATUS 0.716 0.995 0.130 
LEPISOSTEUS PLATOSTOMUS 0.713 1.267 0.040 
LEPOMIS CYANELLUS 0.582 1.001 0.044 
LEPOMIS HUMILIS 0.683 0.710 0.107 
LEPOMIS MACROCHIRUS 0.565 0.980 0.120 
LEPOMIS MEGALOTIS 0.829 0.946 0.063 
LUXILUS CHRYSOCEPHALUS 0.844 0.847 0.054 
LUXILUS CORNUTUS 0.865 1.221 0.054 
LYTHRURUS UMBRATILIS 0.735 1.080 0.091 
MICROPTERUS SALMOIDES 0.520 0.974 0.186 
MOXOSTOMA ERYTHRURUM 0.879 0.751 0.064 
NOTEMIGONUS CRYSOLEUCAS 0.653 1.194 0.123 
NOTROPIS BOOPS 0.942 0.858 0.059 
NOTROPIS DORSALIS 0.862 1.091 0.098 
NOTROPIS STRAMINEUS 0.737 1.046 0.125 
NOTURUS EXILIS 0.923 0.841 0.067 
NOTURUS FLAVUS 0.650 0.896 0.047 
PERCINA CAPRODES 0.859 1.439 0.046 
PERCINA MACULATA 0.847 0.778 0.066 
PERCINA PHOXOCEPHALA 0.931 0.823 0.077 
PHENACOBIUS MIRABILIS 0.742 1.043 0.091 
PIMEPHALES NOTATUS 0.756 0.942 0.097 
PIMEPHALES PROMELAS 0.767 0.992 0.109 
POMOXIS ANNULARIS 0.655 1.256 0.076 
PYLODICTIS OLIVARIS 0.865 0.847 0.057 
SEMOTILUS ATROMACULATUS 0.756 0.997 0.065 

 

Multivariate Adaptive Regression Splines: Ozark Subregion 
Species AUC Bias MAE 
AMBLOPLITES ARIOMMUS 0.895 1.254 0.040 
AMBLOPLITES CONSTELLATUS 0.968 0.712 0.082 
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Species AUC Bias MAE 
AMBLOPLITES RUPESTRIS 0.870 0.886 0.109 
AMEIURUS MELAS 0.442 0.555 0.064 
AMEIURUS NATALIS 0.560 1.039 0.199 
CAMPOSTOMA ANOMALUM 
PULLUM 0.739 1.050 0.055 
CAMPOSTOMA OLIGOLEPIS 0.847 1.067 0.088 
CATOSTOMUS COMMERSONII 0.829 0.892 0.072 
COTTUS BAIRDII 0.908 0.966 0.065 
COTTUS CAROLINAE 0.827 0.989 0.087 
COTTUS HYPSELURUS 0.748 0.969 0.050 
CYPRINELLA GALACTURA 0.898 0.515 0.072 
CYPRINELLA LUTRENSIS 0.967 0.902 0.055 
CYPRINELLA WHIPPLEI 0.961 0.960 0.064 
DOROSOMA CEPEDIANUM 0.651 1.429 0.046 
ERIMYZON OBLONGUS 0.820 1.175 0.037 
ETHEOSTOMA BLENNIOIDES 0.756 0.931 0.111 
ETHEOSTOMA CAERULEUM 0.882 0.996 0.079 
ETHEOSTOMA FLABELLARE 0.710 0.912 0.077 
ETHEOSTOMA NIGRUM 0.847 1.088 0.082 
ETHEOSTOMA PUNCTULATUM 0.817 1.145 0.088 
ETHEOSTOMA SPECTABILE 0.747 1.111 0.105 
ETHEOSTOMA TETRAZONUM 0.800 0.815 0.053 
ETHEOSTOMA ZONALE 0.795 1.184 0.076 
FUNDULUS CATENATUS 0.860 1.061 0.101 
FUNDULUS NOTATUS 0.809 1.114 0.063 
FUNDULUS OLIVACEUS 0.773 1.040 0.102 
FUNDULUS SCIADICUS 0.804 0.771 0.056 
GAMBUSIA AFFINIS 0.734 0.997 0.084 
HYBOPSIS AMBLOPS 0.855 0.961 0.055 
HYPENTELIUM NIGRICANS 0.660 0.961 0.139 
ICTALURUS PUNCTATUS 0.872 1.412 0.033 
LEPISOSTEUS OSSEUS 0.678 0.852 0.050 
LEPOMIS CYANELLUS 0.630 1.160 0.161 
LEPOMIS GULOSUS 0.657 1.070 0.026 
LEPOMIS HUMILIS 0.801 1.044 0.036 
LEPOMIS MACROCHIRUS 0.628 0.935 0.138 
LEPOMIS MEGALOTIS 0.639 0.978 0.087 
LEPOMIS MICROLOPHUS 0.600 0.588 0.077 
LUXILUS CARDINALIS 0.993 0.873 0.053 
LUXILUS CHRYSOCEPHALUS 0.852 1.066 0.067 
LUXILUS CORNUTUS 0.926 1.007 0.053 
LUXILUS PILSBRYI 0.996 0.961 0.046 
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Species AUC Bias MAE 
LUXILUS ZONATUS 0.913 1.015 0.049 
LYTHRURUS UMBRATILIS 0.728 1.310 0.043 
MICROPTERUS DOLOMIEU 0.749 1.051 0.108 
MICROPTERUS PUNCTULATUS 0.826 0.930 0.049 
MICROPTERUS SALMOIDES 0.572 1.084 0.179 
MINYTREMA MELANOPS 0.769 1.083 0.038 
MOXOSTOMA DUQUESNEI 0.717 0.931 0.109 
MOXOSTOMA ERYTHRURUM 0.691 1.068 0.115 
MOXOSTOMA MACROLEPIDOTUM 0.815 0.790 0.054 
NOCOMIS ASPER 0.971 0.666 0.087 
NOCOMIS BIGUTTATUS 0.900 1.033 0.066 
NOTEMIGONUS CRYSOLEUCAS 0.654 0.965 0.033 
NOTROPIS BOOPS 0.836 0.875 0.107 
NOTROPIS GREENEI 0.905 1.248 0.042 
NOTROPIS NUBILUS 0.758 1.084 0.126 
NOTROPIS STRAMINEUS 0.912 1.069 0.056 
NOTROPIS TELESCOPUS 0.950 0.919 0.094 
NOTURUS ALBATER 0.894 1.328 0.061 
NOTURUS EXILIS 0.665 1.264 0.143 
PERCINA CAPRODES 0.661 1.209 0.084 
PHENACOBIUS MIRABILIS 0.691 1.066 0.039 
PHOXINUS ERYTHROGASTER 0.812 1.090 0.065 
PIMEPHALES NOTATUS 0.845 0.935 0.088 
PIMEPHALES PROMELAS 0.625 0.611 0.054 
SEMOTILUS ATROMACULATUS 0.779 1.052 0.097 

 

Boosted Regression Trees: Plains Subregion 
Species AUC Bias MAE 
AMEIURUS MELAS 0.478 0.899 0.174 
AMEIURUS NATALIS 0.684 0.858 0.116 
APLODINOTUS GRUNNIENS 0.910 1.363 0.055 
CAMPOSTOMA ANOMALUM 
PULLUM 0.796 1.085 0.090 
CARPIODES CARPIO 0.824 0.887 0.064 
CARPIODES CYPRINUS 0.814 1.916 0.049 
CATOSTOMUS COMMERSONII 0.724 1.036 0.126 
CYPRINELLA LUTRENSIS 0.840 0.977 0.059 
DOROSOMA CEPEDIANUM 0.803 1.450 0.072 
ETHEOSTOMA FLABELLARE 0.943 1.125 0.055 
ETHEOSTOMA NIGRUM 0.796 0.926 0.125 
ETHEOSTOMA SPECTABILE 0.882 0.843 0.110 
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Species AUC Bias MAE 
FUNDULUS NOTATUS 0.969 1.166 0.082 
GAMBUSIA AFFINIS 0.817 0.928 0.082 
ICTALURUS PUNCTATUS 0.849 0.884 0.078 
LEPISOSTEUS PLATOSTOMUS 0.845 0.835 0.053 
LEPOMIS HUMILIS 0.711 1.042 0.064 
LEPOMIS MACROCHIRUS 0.643 0.947 0.091 
LEPOMIS MEGALOTIS 0.966 0.742 0.077 
LUXILUS CHRYSOCEPHALUS 0.988 0.980 0.068 
LUXILUS CORNUTUS 0.888 1.036 0.048 
LYTHRURUS UMBRATILIS 0.715 0.892 0.136 
MICROPTERUS SALMOIDES 0.647 1.017 0.095 
MOXOSTOMA ERYTHRURUM 0.870 1.217 0.041 
NOTEMIGONUS CRYSOLEUCAS 0.643 0.817 0.135 
NOTROPIS BOOPS 0.964 0.760 0.086 
NOTROPIS DORSALIS 0.897 1.038 0.072 
NOTROPIS STRAMINEUS 0.792 0.870 0.119 
NOTURUS EXILIS 0.952 1.031 0.073 
NOTURUS FLAVUS 0.702 1.054 0.045 
PERCINA CAPRODES 0.865 1.034 0.075 
PERCINA MACULATA 0.864 2.491 0.046 
PERCINA PHOXOCEPHALA 0.947 1.150 0.061 
PHENACOBIUS MIRABILIS 0.666 1.104 0.112 
PIMEPHALES NOTATUS 0.823 1.021 0.033 
PIMEPHALES PROMELAS 0.847 0.880 0.082 
POMOXIS ANNULARIS 0.676 1.071 0.092 
PYLODICTIS OLIVARIS 0.917 0.880 0.063 
SEMOTILUS ATROMACULATUS 0.811 0.999 0.057 

 

Boosted Regression Trees: Ozark Subregion 
Species AUC Bias MAE 
AMBLOPLITES ARIOMMUS 0.916 0.924 0.080 
AMBLOPLITES CONSTELLATUS 0.979 0.779 0.068 
AMBLOPLITES RUPESTRIS 0.909 0.911 0.057 
AMEIURUS MELAS 0.759 0.818 0.041 
AMEIURUS NATALIS 0.693 1.203 0.128 
CAMPOSTOMA ANOMALUM 
PULLUM 0.827 1.011 0.030 
CAMPOSTOMA OLIGOLEPIS 0.891 1.010 0.094 
CATOSTOMUS COMMERSONII 0.826 0.925 0.053 
COTTUS BAIRDII 0.924 1.146 0.047 
COTTUS CAROLINAE 0.824 0.929 0.088 
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Species AUC Bias MAE 
COTTUS HYPSELURUS 0.852 0.877 0.072 
CYPRINELLA GALACTURA 0.912 2.094 0.030 
CYPRINELLA LUTRENSIS 0.942 0.902 0.070 
CYPRINELLA WHIPPLEI 0.977 1.412 0.066 
DOROSOMA CEPEDIANUM 0.739 0.908 0.033 
ERIMYZON OBLONGUS 0.784 0.889 0.073 
ETHEOSTOMA BLENNIOIDES 0.819 0.991 0.066 
ETHEOSTOMA CAERULEUM 0.920 0.985 0.063 
ETHEOSTOMA FLABELLARE 0.743 0.907 0.095 
ETHEOSTOMA NIGRUM 0.854 0.981 0.052 
ETHEOSTOMA PUNCTULATUM 0.871 0.928 0.067 
ETHEOSTOMA SPECTABILE 0.827 1.040 0.059 
ETHEOSTOMA TETRAZONUM 0.927 1.528 0.056 
ETHEOSTOMA ZONALE 0.859 1.095 0.061 
FUNDULUS CATENATUS 0.887 1.034 0.061 
FUNDULUS NOTATUS 0.835 0.957 0.074 
FUNDULUS OLIVACEUS 0.831 1.030 0.067 
FUNDULUS SCIADICUS 0.922 1.396 0.044 
GAMBUSIA AFFINIS 0.786 0.927 0.059 
HYBOPSIS AMBLOPS 0.907 0.806 0.060 
HYPENTELIUM NIGRICANS 0.733 0.926 0.087 
ICTALURUS PUNCTATUS 0.872 1.129 0.046 
LEPISOSTEUS OSSEUS 0.624 1.406 0.027 
LEPOMIS CYANELLUS 0.687 0.969 0.080 
LEPOMIS GULOSUS 0.697 1.020 0.031 
LEPOMIS HUMILIS 0.907 1.144 0.026 
LEPOMIS MACROCHIRUS 0.698 1.032 0.092 
LEPOMIS MEGALOTIS 0.691 0.987 0.115 
LEPOMIS MICROLOPHUS 0.838 1.367 0.072 
LUXILUS CARDINALIS 0.999 1.117 0.046 
LUXILUS CHRYSOCEPHALUS 0.872 1.013 0.038 
LUXILUS CORNUTUS 0.979 1.038 0.057 
LUXILUS PILSBRYI 1.000 1.033 0.051 
LUXILUS ZONATUS 0.961 0.981 0.059 
LYTHRURUS UMBRATILIS 0.830 1.061 0.038 
MICROPTERUS DOLOMIEU 0.833 0.946 0.080 
MICROPTERUS PUNCTULATUS 0.767 1.225 0.059 
MICROPTERUS SALMOIDES 0.732 0.975 0.079 
MINYTREMA MELANOPS 0.797 0.841 0.046 
MOXOSTOMA DUQUESNEI 0.784 1.049 0.046 
MOXOSTOMA ERYTHRURUM 0.793 1.052 0.046 
MOXOSTOMA MACROLEPIDOTUM 0.733 1.480 0.037 
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Species AUC Bias MAE 
NOCOMIS ASPER 0.988 0.933 0.070 
NOCOMIS BIGUTTATUS 0.878 0.944 0.085 
NOTEMIGONUS CRYSOLEUCAS 0.637 1.076 0.072 
NOTROPIS BOOPS 0.846 0.982 0.052 
NOTROPIS GREENEI 0.934 1.132 0.064 
NOTROPIS NUBILUS 0.827 1.000 0.085 
NOTROPIS STRAMINEUS 0.882 0.974 0.091 
NOTROPIS TELESCOPUS 0.944 0.820 0.082 
NOTURUS ALBATER 0.963 1.489 0.067 
NOTURUS EXILIS 0.703 0.870 0.105 
PERCINA CAPRODES 0.804 0.924 0.038 
PHENACOBIUS MIRABILIS 0.858 1.018 0.060 
PHOXINUS ERYTHROGASTER 0.838 0.933 0.065 
PIMEPHALES NOTATUS 0.882 0.984 0.058 
PIMEPHALES PROMELAS 0.607 0.920 0.083 
SEMOTILUS ATROMACULATUS 0.807 0.944 0.082 

 
Random Forest: Plains Subregion 

Species AUC Bias MAE 
AMEIURUS MELAS 0.697 0.746 0.240 
AMEIURUS NATALIS 0.606 0.950 0.117 
APLODINOTUS GRUNNIENS 0.949 1.137 0.073 
CAMPOSTOMA ANOMALUM 
PULLUM 0.842 0.925 0.078 
CARPIODES CARPIO 0.779 1.088 0.054 
CARPIODES CYPRINUS 0.897 0.829 0.112 
CATOSTOMUS COMMERSONII 0.692 1.059 0.097 
CYPRINELLA LUTRENSIS 0.860 1.015 0.072 
DOROSOMA CEPEDIANUM 0.796 1.397 0.042 
ETHEOSTOMA FLABELLARE 0.905 0.817 0.069 
ETHEOSTOMA NIGRUM 0.855 1.027 0.077 
ETHEOSTOMA SPECTABILE 0.928 0.818 0.124 
FUNDULUS NOTATUS 0.940 1.029 0.059 
GAMBUSIA AFFINIS 0.761 0.868 0.106 
ICTALURUS PUNCTATUS 0.891 1.042 0.078 
LEPISOSTEUS PLATOSTOMUS 0.784 0.738 0.115 
LEPOMIS CYANELLUS 0.542 0.959 0.134 
LEPOMIS HUMILIS 0.770 1.313 0.091 
LEPOMIS MACROCHIRUS 0.527 1.110 0.189 
LEPOMIS MEGALOTIS 0.943 1.052 0.048 
LUXILUS CHRYSOCEPHALUS 0.953 1.182 0.090 
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Species AUC Bias MAE 
LUXILUS CORNUTUS 0.964 1.048 0.077 
LYTHRURUS UMBRATILIS 0.766 0.942 0.088 
MICROPTERUS SALMOIDES 0.666 0.916 0.115 
MOXOSTOMA ERYTHRURUM 0.910 1.167 0.049 
NOTEMIGONUS CRYSOLEUCAS 0.545 0.971 0.181 
NOTROPIS BOOPS 0.970 0.665 0.083 
NOTROPIS DORSALIS 0.933 1.038 0.067 
NOTROPIS STRAMINEUS 0.847 0.964 0.052 
NOTURUS EXILIS 0.921 0.912 0.060 
NOTURUS FLAVUS 0.728 0.763 0.079 
PERCINA CAPRODES 0.774 1.588 0.078 
PERCINA MACULATA 0.915 0.605 0.092 
PERCINA PHOXOCEPHALA 0.909 1.138 0.043 
PHENACOBIUS MIRABILIS 0.623 0.986 0.184 
PIMEPHALES NOTATUS 0.822 1.121 0.111 
PIMEPHALES PROMELAS 0.791 1.082 0.074 
POMOXIS ANNULARIS 0.702 0.777 0.103 
PYLODICTIS OLIVARIS 0.937 0.685 0.107 
SEMOTILUS ATROMACULATUS 0.770 1.021 0.082 

 

Random Forest: Ozark Subregion 
Species AUC Bias MAE 
AMBLOPLITES ARIOMMUS 0.931 1.070 0.065 
AMBLOPLITES CONSTELLATUS 0.982 1.075 0.064 
AMBLOPLITES RUPESTRIS 0.931 0.931 0.057 
AMEIURUS MELAS 0.673 1.237 0.070 
AMEIURUS NATALIS 0.719 0.928 0.090 
CAMPOSTOMA ANOMALUM 
PULLUM 0.783 0.982 0.073 
CAMPOSTOMA OLIGOLEPIS 0.882 1.083 0.061 
CATOSTOMUS COMMERSONII 0.847 0.986 0.051 
COTTUS BAIRDII 0.917 1.068 0.039 
COTTUS CAROLINAE 0.853 0.984 0.074 
COTTUS HYPSELURUS 0.850 0.764 0.112 
CYPRINELLA GALACTURA 0.909 0.789 0.062 
CYPRINELLA LUTRENSIS 0.962 1.056 0.061 
CYPRINELLA WHIPPLEI 0.973 0.788 0.063 
DOROSOMA CEPEDIANUM 0.818 0.695 0.067 
ERIMYZON OBLONGUS 0.824 0.791 0.098 
ETHEOSTOMA BLENNIOIDES 0.874 0.980 0.076 
ETHEOSTOMA CAERULEUM 0.924 1.011 0.051 

133 
 



Species AUC Bias MAE 
ETHEOSTOMA FLABELLARE 0.813 1.042 0.065 
ETHEOSTOMA NIGRUM 0.877 1.111 0.065 
ETHEOSTOMA PUNCTULATUM 0.907 1.030 0.054 
ETHEOSTOMA SPECTABILE 0.807 1.000 0.056 
ETHEOSTOMA TETRAZONUM 0.964 0.999 0.067 
ETHEOSTOMA ZONALE 0.864 0.874 0.063 
FUNDULUS CATENATUS 0.860 0.996 0.060 
FUNDULUS NOTATUS 0.868 1.136 0.036 
FUNDULUS OLIVACEUS 0.880 1.033 0.071 
FUNDULUS SCIADICUS 0.952 0.988 0.064 
GAMBUSIA AFFINIS 0.755 0.932 0.080 
HYBOPSIS AMBLOPS 0.890 1.240 0.054 
HYPENTELIUM NIGRICANS 0.711 1.043 0.085 
ICTALURUS PUNCTATUS 0.884 0.765 0.059 
LEPISOSTEUS OSSEUS 0.753 0.905 0.063 
LEPOMIS CYANELLUS 0.654 1.002 0.096 
LEPOMIS GULOSUS 0.721 1.305 0.059 
LEPOMIS HUMILIS 0.839 1.202 0.042 
LEPOMIS MACROCHIRUS 0.720 1.046 0.123 
LEPOMIS MEGALOTIS 0.720 0.983 0.108 
LEPOMIS MICROLOPHUS 0.772 0.900 0.061 
LUXILUS CARDINALIS 0.997 0.929 0.054 
LUXILUS CHRYSOCEPHALUS 0.883 0.991 0.061 
LUXILUS CORNUTUS 0.971 0.823 0.065 
LUXILUS PILSBRYI 1.000 1.033 0.056 
LUXILUS ZONATUS 0.950 0.929 0.071 
LYTHRURUS UMBRATILIS 0.896 1.052 0.052 
MICROPTERUS DOLOMIEU 0.848 1.005 0.078 
MICROPTERUS PUNCTULATUS 0.786 1.209 0.035 
MICROPTERUS SALMOIDES 0.638 0.945 0.138 
MINYTREMA MELANOPS 0.845 0.814 0.061 
MOXOSTOMA DUQUESNEI 0.762 0.984 0.076 
MOXOSTOMA ERYTHRURUM 0.811 1.084 0.051 
MOXOSTOMA MACROLEPIDOTUM 0.837 1.094 0.099 
NOCOMIS ASPER 0.996 0.988 0.059 
NOCOMIS BIGUTTATUS 0.916 0.881 0.083 
NOTEMIGONUS CRYSOLEUCAS 0.654 0.817 0.102 
NOTROPIS BOOPS 0.896 0.836 0.074 
NOTROPIS GREENEI 0.914 0.917 0.057 
NOTROPIS NUBILUS 0.827 1.041 0.065 
NOTROPIS STRAMINEUS 0.937 0.990 0.068 
NOTROPIS TELESCOPUS 0.965 0.858 0.065 
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Species AUC Bias MAE 
NOTURUS ALBATER 0.918 1.146 0.053 
NOTURUS EXILIS 0.700 0.916 0.106 
PERCINA CAPRODES 0.775 0.980 0.043 
PHENACOBIUS MIRABILIS 0.773 1.213 0.044 
PHOXINUS ERYTHROGASTER 0.853 0.979 0.096 
PIMEPHALES NOTATUS 0.873 1.055 0.065 
PIMEPHALES PROMELAS 0.675 1.356 0.040 
SEMOTILUS ATROMACULATUS 0.794 1.134 0.088 
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Appendix 9: Electronic data with PDF of species distribution models and a shapefile of 
species distribution model results. 
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Appendix 10: Number of stream segments within each established conservation 
network each species is predicted to occupy 

Species_Code COA Segments ECN Segments PW Segments 
A_ARIOMMUS 333.224 312.602 190.134 
A_CONSTELLATUS 191.073 202.543 370.077 
A_GRUNNIENS 312.024 346.505 276.972 
A_MELAS 356.84 425.111 680.19 
A_NATALIS 1266.47 1371.009 1945.802 
A_NEBULOSUS 12.516 10.38 17.072 
A_RUPESTRIS 324.638 407.552 608.175 
A_SAYANUS 77.158 74.228 125.509 
C_BAIRDII 439.734 492.169 625.104 
C_CAMURA 27.348 6.978 13.322 
C_CAROLINAE 832.542 930.886 1009.521 
C_CARPIO 242.071 384.908 360.436 
C_COMMERSONII 548.134 742.002 1282.065 
C_CYPRINUS 198.531 254.096 329.692 
C_GALACTURA 222.156 190.053 229.144 
C_HYPSELURUS 412.178 464.614 300.444 
C_LUTRENSIS 912.407 1326.801 1810.257 
C_MACROPTERUS 33.6 15.8 6.2 
C_OLIGOLEPIS 1456.787 1507.307 1630.861 
C_PULLUM 2125.527 2330.205 3049.566 
C_SPILOPTERA 84.163 80.43 186.09 
C_VELIFER 6.104 8.204 11.708 
C_VENUSTA 170.177 146.401 208.932 
C_WHIPPLEI 158.337 187.606 491.829 
D_CEPEDIANUM 567.991 560.338 535.041 
E_BLENNIOIDES 1138.156 1146.546 1648.462 
E_BURRI 92.391 88.268 27.531 
E_CAERULEUM 1721.378 1720.852 2072.02 
E_CRAGINI 50.004 19.332 30.192 
E_EUZONUM 22.25 20.93 8.06 
E_FLABELLARE 918.181 926.81 1358.272 
E_GRACILE 58.168 54.488 55.796 
E_HARRYI 139.302 130.406 81.804 
E_JULIAE 95.721 107.23 173.854 
E_MICROPERCA 57.04 75.769 37.193 
E_NIANGUAE 33.792 37.879 54.502 
E_NIGER 106.802 83.763 57.2 
E_NIGRUM 564.169 790.43 1528.231 
E_OBLONGUS 299.748 264.634 398.976 
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E_PROELIARE 55.124 58.456 58.104 
E_PUNCTULATUM 427.052 493.718 725.927 
E_SPECTABILE 1176.104 1206.013 1931.835 
E_STIGMAEUM 86.117 73.076 58.28 
E_TETRAZONUM 183.452 236.027 260.582 
E_UNIPORUM 180.541 168.859 54.685 
E_VERMICULATUS 125.286 115.482 110.629 
E_XPUNCTATUS 57.672 63.74 132.266 
E_ZONALE 476.071 481.235 570.76 
F_CATENATUS 1557.236 1549.964 1737.935 
F_DISPAR 31.354 12.418 10.51 
F_NOTATUS 600.436 576.15 1139.801 
F_OLIVACEUS 1449.142 1433.267 2005.976 
F_SCIADICUS 105.019 146.294 111.938 
G_AFFINIS 988.319 1123.657 1391.275 
H_AMBLOPS 489.888 398.22 607.802 
H_ARGYRITIS 3.842 7.751 11.333 
H_HANKINSONI 34.222 54.862 106.378 
H_NIGRICANS 1317.83 1316.261 1632.585 
H_PLACITUS 7.312 13.952 21.573 
I_BUBALUS 166.85 125.569 156.312 
I_CYPRINELLUS 143.521 115.563 129.897 
I_FOSSOR 5.642 5.385 16.537 
I_GAGEI 5.48 5.152 5.376 
I_NIGER 2.96 5.288 7.272 
I_PUNCTATUS 577.307 785.867 845.382 
L_AEPYPTERA 102.171 99.879 59.139 
L_CARDINALIS 96.268 87.251 147.858 
L_CHRYSOCEPHALUS 1167.124 1173.394 1922.021 
L_CORNUTUS 179.518 225.801 337.47 
L_CYANELLUS 2397.419 2709.253 3684.798 
L_GULOSUS 345.131 289.807 271.16 
L_HUMILIS 469.552 482.951 739.338 
L_MACROCHIRUS 2418.909 2615.015 3471.637 
L_MEGALOTIS 2064.565 1970.876 2438.593 
L_MICROLOPHUS 185.973 175.574 282.198 
L_MINIATUS 196.628 194.65 163.016 
L_OCULATUS 114.438 74.358 149.09 
L_OSSEUS 219.758 185.294 236.645 
L_PILSBRYI 354.921 383.906 607.76 
L_PLATOSTOMUS 337.486 345.116 234.484 
L_UMBRATILIS 489.611 538.704 1079.536 
L_ZONATUS 1566.112 1579.114 1625.662 
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M_ANISURUM 48.501 59.233 122.735 
M_CARINATUM 14.184 20.616 41.304 
M_CHRYSOPS 53.952 59.586 51.379 
M_DOLOMIEU 1197.13 1232.507 1469.864 
M_DUQUESNEI 567.748 614.134 857.632 
M_ERYTHRURUM 658.646 649.264 1059.4 
M_MACROLEPIDOTUM 190.842 193.195 237.92 
M_MELANOPS 225.481 145.166 177.67 
M_PUNCTULATUS 400.249 383.568 472.881 
M_SALMOIDES 1664.5 1857.451 2758.534 
M_STORERIANA 15.78 19.042 24.607 
N_ALBATER 413.477 358.548 260.499 
N_ASPER 42.447 50.022 94.257 
N_ATHERINOIDES 219.081 185.473 259.305 
N_BIGUTTATUS 1388.826 1380.565 1458.036 
N_BOOPS 751.893 681.436 1267.109 
N_BUCCATUS 57.893 57.814 119.696 
N_BUCHANANI 22.862 40.274 51.512 
N_CRYSOLEUCAS 477.946 574.028 778.319 
N_DORSALIS 313.691 638.961 1139.174 
N_EXILIS 1230.81 1282.544 1899.379 
N_FLAVATER 68.018 59.236 41.846 
N_FLAVUS 119.489 182.883 238.85 
N_GREENEI 494.088 476.583 463.179 
N_GYRINUS 80.633 109.355 206.751 
N_HETEROLEPIS 33.93 42.708 26.84 
N_MIURUS 79.458 69.785 29.361 
N_NOCTURNUS 49.718 47.006 36.682 
N_NUBILUS 1536.215 1514.813 1737.241 
N_OZARCANUS 119.198 110.086 83.054 
N_STRAMINEUS 670.381 1117.532 1693.882 
N_TELESCOPUS 683.748 609.556 516.686 
N_TEXANUS 57.732 59.286 104.15 
N_VOLUCELLUS 221.653 152.981 286.023 
O_EMILIAE 87.132 76.933 84.607 
P_ANNULARIS 351.843 452.291 441.372 
P_CAPRODES 491.314 453.792 744.809 
P_COPELANDI 20.935 4.969 8.262 
P_CYMATOTAENIA 49.108 76.411 30.437 
P_ERYTHROGASTER 798.875 849.866 908.488 
P_EVIDES 87.196 76.751 132.765 
P_FLAVESCENS 3.222 3.573 5.724 
P_MACULATA 85.65 160.374 284.123 
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P_MIRABILIS 422.573 685.439 989.015 
P_NIGROMACULATUS 117.195 123.195 167.549 
P_NOTATUS 1653.102 1948.989 2984.05 
P_OLIVARIS 209.695 264.393 209.786 
P_PHOXOCEPHALA 164.651 228.351 198.93 
P_PROMELAS 417.229 694.736 1116.33 
P_SCIERA 48.423 47.53 37.859 
P_VIGILAX 106.931 131.265 197.611 
S_ATROMACULATUS 1648.951 2005.182 2772.665 
S_VITREUS 14.106 16.863 26.287 
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Appendix 11: Electronic data with PDF of maps and a shapefile which contain the results 
for all conservation planning results 
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