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CHARACTERIZATION OF INTERLEUKIN-1 BETA 2, A NOVEL 

INTERLEUKIN-1 EXPRESSED BY THE EARLY PIG CONCEPTUS 

DURING ESTABLISHMENT OF PREGNANCY 

 

Daniel Joseph Mathew 

Drs. Matthew C. Lucy and Rodney D. Geisert, Dissertation Advisors 

 

Abstract 

 

Conceptus mortality is greatest in mammals during the peri-implantation period, a 

time when conceptuses appose and attach to the uterine surface epithelium while 

releasing pro-inflammatory molecules. Interleukin-1 beta (IL-1β), a pro-inflammatory 

cytokine, is released by the primate, rodent and pig blastocyst during the peri-

implantation period and is believed to be essential for establishment of pregnancy. The 

gene encoding IL-1β has duplicated in the pig, resulting in a novel gene. Preliminary 

observations indicate that the novel IL-1β is specifically expressed by pig conceptuses 

during the peri-implantation period and during rapid elongation, a morphological change 

made by the conceptus that increases the placenta surface area. Interleukin-1 signaling 

factors, IL-1 receptor type 1 (IL-1RI) and IL-1 receptor accessory protein (IL-1RAP), 

transiently increase in the conceptus and uterine luminal epithelium at that time 

suggesting that the novel IL-1β may influence elongation and implantation through 
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autocrine and paracrine activities, respectively. To verify that pig conceptuses express a 

novel IL-1, IL-1β was cloned from mRNA isolated from d 12 pig conceptuses and 

compared with IL-1β cloned from mRNA isolated from pig peripheral blood leukocytes 

(PBL). The pig conceptuses but not PBL expressed a novel IL-1β, referred to as 

interleukin-1 beta 2 (IL-1β2).  To test the paracrine activity IL-1β2, porcine endometrium 

was treated with recombinant porcine IL-1β1, the prototypical cytokine, and IL-1β2 

proteins. Immunohistochemistry (IHC) and real-time reverse transcriptase-polymerase 

chain reaction (RT-PCR) were used to measure activation of nuclear factor-kappa B (NF-

κB) and NF-κB-regulated transcripts within the endometrium, respectively. Both IL-1β1 

and IL-1β2 activated NF-κB in the uterine luminal epithelium within 4 h. The NF-κB 

activation and related gene expression, however, were reduced in endometrium treated 

with IL-1β2 suggesting that the conceptus-derived cytokine may have decreased activity 

within the uterus.  

To test the autocrine activity IL-1β2 and its involvement in conceptus elongation, 

we developed a lentiviral mediated RNAi (knockdown) system targeting IL-1β2 in early 

pig conceptuses. Multiple knockdown (KdV) and scrambled control knockdown (SV) 

viruses were developed and microinjected under the zona pellucida of in vitro produced 

pig zygotes. Conceptuses were then allowed to develop in culture (d 6 or 8) or were 

transferred to the oviduct of recipient gilts on d 4 of the estrous cycle. Transferred 

conceptuses were flushed from the uterus on d 13 of development. Microinjections of pig 

zygotes with V (KdV and SV combined) reduced the number conceptuses that became 

blastocyst by d 6 compared with conceptuses that were not microinjected. Expression of 

beta actin (ACTβ), a developmental control gene, in individual pig blastocyst treated with 
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SV tended to be less when compared with NV (no virus control) conceptuses. Expression 

of IL-1β2 was detected in individual d 6 pig blastocysts and although expression was 

numerically lower in KdV when compared with NV and SV treated conceptuses, the 

expression level was not significantly different. With respect to the embryo transfer 

experiments, NV conceptuses were elongated on d 13. Out of three gilts that received 

KdV conceptuses, one gilt produced two elongated conceptuses (GFP positive) and two 

gilts produced abnormally small spherical conceptuses on d 13. Gilts that received SV 

conceptuses produced fragments of conceptus tissue or no conceptus tissue. A lentiviral 

mediated RNAi system-targeting IL-1β2, therefore, could not be used to effectively test 

the function of this cytokine during elongation of the early pig conceptus. Expression of 

IL-1β2 in the d 6-pig blastocyst suggests that this cytokine may play an important role in 

development of the pig conceptus prior to elongation.  

 To investigate differences in protein structure between IL-1β1 and IL-1β2, we 

predicted and aligned the atomic structures of the cytokines using DNASTAR’s Novafold 

program. In order for IL-1β to bind the IL-1RI, caspase-1 (CASP1) must process pro-IL-

1β into a mature functional cytokine. Alignment of predicted pro and mature protein 

structures resulted in an RMSD of (3.47 Å) and (0.70 Å), respectively, indicating that IL-

1β1 and IL-1β2 are highly similar in the absence of the pro-domains. Viewing the solvent 

accessible surface area of the pro-proteins suggested that there is a possible steric 

hindrance of the first caspase-1 (CASP1) site in IL-1β2 compared with that of IL-1β1. 

For the mature proteins, Novafold predicted that IL-1β1 and IL-1β2 bind the IL-1RI with 

35 and 32 binding sites, respectively. Thirty-two binding sites were shared between the 

two proteins. Of these binding sites, IL-1β2 had three non-conserved amino acid 
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substitutions that resulted in a complete change of charge and solvent accessible surface 

areas compared with IL-1β1. Overall, differences in protein structure, the number of IL-

1RI binding sites and amino acid side chain charges could affect the availability and 

activity of IL-1β2 compared with IL-1β1. In conclusion, the peri-implantation pig 

conceptus expresses a novel IL-1β that can activate NF-κB within the uterine surface 

epithelium, likely creating a pro-inflammatory microenvironment during establishment of 

pregnancy in the pig. 
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CHAPTER ONE 

 

 

INTRODUCTION 

 

 

 

Swine are an important resource for economic growth in the United States (US). 

Pork is consumed more than any other meat protein in the world and the US is projected 

to produce a record 10.9 million metric tons of pork (carcass weigh equivalent) in 2015 

(www.usda.gov). The US is the third largest producer of pork worldwide (China and the 

European Union are first and second, respectively) and the world’s largest exporter 

(www.usda.gov). Pigs are also important for biomedical research. Transgenic rodents 

have greatly contributed to the study of human diseases, however, pigs are more 

genetically and anatomically similar to humans and recent advances in production of 

transgenic pigs has lead to the development of more suitable human disease models. 

Transgenic pigs are now being used to study human cardiovascular disease, diabetes, 

cancer, retinitis pigmentosa, cystic fibrosis and organ xenotransplantation (Prather et al., 

2008). Undoubtedly, pigs will continue to be an important resource for the production of 

food and scientific discovery. 

Pigs are also important for the study of early embryo implantation and embryonic 

mortality. Pigs and other mammals, including humans, lose 25 and 60% of their embryos 

or pregnancies, respectively, within the first month of gestation (Wilmut et al., 1986; 

http://www.usda.gov/
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Macklon et al., 2002). This phenomenon is commonly referred to as early embryonic 

mortality. Complications during development and implantation of the early conceptus 

(embryo and extra-embryonic membranes) are believed to be responsible. Early 

embryonic mortality may reflect inadequate “uterine receptivity”, a transient endometrial 

state that favors attachment of the conceptus to the uterine surface epithelium and in 

some species, invasion into the endometrium (implantation) (Dekel et al., 2010; Cakmak 

and Taylor, 2011; Cha et al., 2012;). Uterine receptivity is achieved for a limited time 

each reproductive cycle and is influenced by maternal hormones such as progesterone. 

Further, hormones released by the conceptus can initiate communication or “crosstalk” 

with the endometrium, enhancing uterine receptivity (Simón et al., 1995; 2008; Cha et al., 

2012). If development of the conceptus is delayed or if uterine receptivity is disrupted, 

this can result in communication breakdown and implantation failure. There are many 

ethical and technical limitations when studying conceptus-endometrial crosstalk and 

attachment in primates. However, research of early pregnancy in pigs can overcome these 

limitations as pig conceptuses are loosely associated with the uterine surface epithelium 

until d 14 of pregnancy and have a prolonged phase of attachment. In comparison, the 

mouse and primate conceptus initiates attachment and implantation on d 4 and 7 of 

development, respectively.  

Research dedicated to unraveling the molecular control of early pregnancy in 

mammals has revealed that pro-inflammatory cytokines, small signaling proteins 

commonly released by immune cells, are secreted by the conceptus and endometrium 

during early pregnancy and are essential for proper embryo development, uterine 

receptivity and implantation (Simón et al., 1995; 2008; van Mourik et al., 2009). This 
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may not be surprising as historic and recent observations suggest that decidualization and 

implantation can be enhanced by injury induced inflammatory reactions within the 

endometrium (Granot et al., 2012; Dekel et al., 2014). For instance, during recent clinical 

studies, it was shown that scraping or nicking the endometrium before embryo transfer 

more than doubled the rate of implantation, clinical pregnancy and live birth in women 

who repeatedly experienced pregnancy failure (Granot et al., 2012; Dekel et al., 2014). 

Pro-inflammatory cytokines, released by the damaged endometrium, are believed to 

enhance the implantation process.  

Recently it was found that IL-1β, a gene that encodes a master proinflammatory 

cytokine, has duplicated in the pig resulting in a novel IL-1 (Groenen et al., 2012). IL-1β 

is commonly released by leukocytes during innate and adaptive immune responses and 

can initiate the acute phase response, recruit leukocytes into infected tissues and act as an 

endogenous pyrogen. Released by the human and rodent conceptus during implantation, 

IL-1β is believed to be essential for establishment of pregnancy by acting on both the 

conceptus and endometrium (Simón et al., 1995; 2008). The newly discovered IL-1 in the 

pig is referred to as interleukin-1 beta 2 (IL-1β2) because of its cDNA and protein 

sequence similarity to the prototypical IL-1β (IL-1β1 in the pig).   

Similar to the primate and rodent conceptus, pig conceptuses abundantly release 

an IL-1, the novel IL-1β2, into the uterine lumen during early pregnancy. Pig conceptuses 

maximally up regulate and secrete IL-1β2 during elongation, a critical morphological 

transformation of the conceptus, and just prior to their attachment to the uterine surface 

(Ross et al., 2003a). IL-1β2 is hypothesized to promote elongation and prepare the 

endometrium for implantation as both the conceptus and uterine surface epithelium 



4 
 

increase expression IL-1 signaling factors, the functional IL-1 receptor type I (IL-1RI) 

and the IL-1 receptor accessory protein (IL-1RAP), during its secretion (Ross et al., 

2003a; Seo et al., 2012). In the endometrium, IL-1β2 is hypothesized to activate nuclear 

factor-kappa B (NF-κB), a transcription factor that controls expression of over a hundred 

genes, many of which modulate the inflammatory response and could promote 

implantation (Ross et al., 2010; Mathew et al., 2011). These events occur within the 

uterus at a time when embryonic mortality is believed to be at its greatest (Bazer and 

Johnson, 2014).  

In Chapter Two, we review the cellular and molecular events that are believed to 

occur within the uterus during elongation, maternal recognition of pregnancy and 

implantation in the pig with specific emphasis on the hypothesized actions of 

proinflammatory cytokines IL-1 and interferons (IFN) during these processes. 
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CHAPTER TWO 

 

 

LITERATURE REVIEW 

 

 

 

INTRODUCTION 

 

The first three weeks of pregnancy are the most critical for survival of the 

mammalian conceptus. Following early cleavage and passage from the oviduct into the 

uterus, formation of the morula will initiate pathways for cellular differentiation to 

establish the lineages of epiblast and trophoectoderm during blastocyst development.  

Hatching from the zona pellucida exposes the conceptus to a variety of maternal uterine 

secretory factors that include various proteins and micro molecules. Implantation (extent 

of uterine invasion varies among mammals) allows the trophectoderm to intimately 

associate with the endometrium and initiate communication through the uterine luminal 

(LE) and glandular (GE) epithelium, stromal fibroblasts and immune cells that patrol the 

maternal endometrium. There is a defined “window” of uterine receptivity, which allows 

the trophoblast to attach and in some species, invade beyond the LE until pregnancy is 

established. Throughout the entire process, 25-60% of conceptuses are lost, some of 

which may result of asynchrony between the developing conceptus and the receptive 



6 
 

uterus and inadequate communication or “cross-talk” between the trophectoderm and 

endometrium at the time of implantation (Wilmut et al., 1986; Macklon et al., 2002).  

During early pregnancy, a cytokine network exists within the uterus that serves as 

a communication link or “conduit” between the foreign conceptus and cells within the 

endometrium. This network, which includes pro-inflammatory cytokines, is necessary for 

proper development of the conceptus and creates a uterine environment that favors 

implantation and establishment of pregnancy.  

Evidence suggests that a moderate pro-inflammatory environment within the 

endometrium at the time of implantation enhances uterine receptivity and pregnancy 

success. For instance, it has been shown that scrapping or nicking the uterine surface 

prior to embryo transfer, slightly damaging the endometrium, can more than double the 

rate implantation, clinical pregnancy and live birth in women who repeatedly fail to 

maintain pregnancy (Raziel et al., 2007; Dekel et al., 2010; Granot et al., 2012). It’s 

believed that the damaged tissue releases pro-inflammatory cytokines, manifesting a pro-

inflammatory environment that enhances uterine receptivity and implantation (Granot et 

al., 2012).  

Pro-inflammatory cytokines are small signaling proteins (< 100 kDa) commonly 

released by leukocytes during innate and adaptive immune responses. These cytokines 

are believed to be essential mediators of communication between the conceptus and 

endometrium, enhancing uterine receptivity and implantation (Simón et al., 2007a; Dekel 

et al., 2010; Mor et al., 2011; Granot et al., 2012). Interleukins (IL) and interferons (IFN) 

are some of the most well studied factors proposed to influence mammalian reproduction. 

Studies indicate that primate and rodent blastocysts initiate communication with the 
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endometrium by releasing interleukin-1 beta (IL-1β), which enhances uterine surface 

receptivity and increases invasive characteristics of the cytotrophoblast (Librach et al., 

1994; Simón et al., 1995). Furthermore, IL-1β is also expressed within the reproductive 

tissues of placental reptiles, leading some to believe IL-1β may have contributed to the 

evolution of placental viviparity (Paulesu et al., 2005). The pig is unique in that the IL-1β 

gene has duplicated, resulting in a novel gene and conceptus form of IL-1β (Tuo et al., 

1996; Ross et al., 2003a; Mathew et al., 2011b; Groenen et al., 2012; Tuggle et al., 2012). 

Up-regulation of the novel IL-1β is directly followed by abundant production of 

interferon gamma (IFNγ) by pig conceptuses and in lesser concentrations, a pregnancy 

specific type I IFN, interferon delta (IFNδ) (Cross and Roberts, 1989; La Bonnardière et 

al., 1991; Cencič and La Bonnardière, 2002). In pigs, these cytokines are released in 

concert with conceptus estrogens, the maternal recognition of pregnancy signal (Bazer 

and Thatcher, 1977).  

Based on studies investigating implantation in pigs, the combined spacio-temporal 

activities of these molecules on specific cell types within the adjacent endometrium set in 

motion a series of coordinated events that promote implantation and establishment of 

pregnancy (Bazer et al., 2012; Bazer and Johnson, 2014).  

 

Porcine Estrous Cycle 

 A healthy female pig will become reproductively mature and initiate her first 

estrous cycle at approximately 6 months of age. After which she will express signs of 

estrus and ovulate from both ovaries every 21 days (d) until conception occurs.  
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During estrus, the female pig will remain receptive to the boar for 48 to 72 h 

during which peak concentrations of estradiol (E2) within the blood cause a surge release 

of luteinizing hormone (LH) from the anterior pituitary resulting in ovulation (rupture of 

Graffian follicles and release of oocytes), luteinization of follicular cells (granulasa and 

theca interna) and resumption oocyte meiosis.  As concentrations of E2 decline within the 

blood, luteinization of the follicular cells results in formation of corpora hemorragica. 

Between d 3 and 4 of the estrous cycle (beginning of the luteal phase), the corpora 

hemorragica mature into functional corpora lutea (CL), synthesizing and releasing 

increasing concentrations of progesterone (P4) into the blood. By d 5 of the estrous cycle 

and until d 16, the uterine environment is completely dominated by P4. In response, the 

uterine myometrium is quiescent and uterine luminal epithelial and surface glandular 

epithelial cells (LE/sGE) secrete histotroph, a large collection of micro molecules and 

proteins that can nourish conceptuses (Bazer et al., 2011).  

The length of the pig estrous cycle is controlled by P4 and is uterine-dependent. 

Stimulation of the uterus with P4 for 10 to 12 days leads to endometrial production of 

luteolytic prostaglandin F2α (PGF2α) and its secretion into the blood, causing luteolysis 

(McCracken et al., 1999). If multiple pig conceptuses are not present to release the 

maternal recognition of pregnancy signal and disrupt this process, the CL will regress, 

blood P4 will decrease and the sow will initiate another follicular phase, again, 

expressing signs of estrus (Spencer et al., 2004). The cyclic pattern of the estrous cycle, 

controlled by P4, allows the pig to recycle and return to estrus for another attempt at 

conception in the absence of fertilization.  
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Early Pregnancy in the Pig 

On average, the typical US production sow will ovulate between 20 and 30 

oocytes during estrus. The rate of fertilization by natural mating or using standard 

artificial insemination (AI) methods is suggested to be greater than 95% (Polge, 1978; 

Caárdenas and Pope, 2002; Geisert and Schmitt, 2002; Foxcroft et al., 2006). Because the 

rate of embryonic loss is very low during the first week of gestation, as many as thirty 

conceptuses can enter the uterine lumen (approximately three days after the onset of 

estrus and insemination). Pig blastocysts hatch from the zona pellucida on day 6 to 7 of 

gestation, which then exposes the conceptus to the uterine milieu; a collection of ions, 

nutrient transport proteins, proteases, growth factors as well as cytokines and other 

substances collectively referred to as histotroph. Histotroph is secreted by surface 

epithelial and glandular epithelial cells in response to ovarian progesterone. After 

hatching, the spherical pig blastocyst continues to grow and expand within the uterine 

lumen until near d 11 of gestation. Between d 11 and 12, the conceptus rapidly 

transforms morphologically and elongates in shape. Elongation is a critical stage of 

development for the pig conceptus, defining the surface area for its individual placental 

attachment (Bazer et al., 2012; Bazer and Johnson, 2014). The process is not unique to 

early ungulate development as cattle and sheep conceptuses also elongate, however, the 

rate at which this process is achieved in the pig is extraordinary. At this time, cellular 

mitosis decreases and cellular hypertrophy and migration of the surrounding trophoblast 

cells results in extensive remodeling (Geisert et al., 1982; Bazer et al., 2012; Bazer and 

Johnson, 2014). The pig conceptus becomes ovoid, tubular (15 mm by 50 mm) and then a 

1 mm by 200 mm filamentous like structure in 2-3 h, extending along the mesometrial 
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interface through a complex landscape of endometrial crypts and folds at a rate of 30 to 

45 mm/h (Geisert et al., 1982; Bazer and Johnson, 2014). This is referred to as rapid 

elongation (Fig. 2.1).  

After d 12, the conceptus will more slowly elongate and expand in the uterine 

lumen reaching over a meter in length while attaching to the LE between d 13 to 18 of 

gestation (Bazer at al., 2012; Bazer and Johnson, 2014) (Fig. 2.1). Attachment of the 

trophoblast begins nearest to the developing embryo body and extends outward. Within 

attachment sites, surface area is enhanced by the presence of endometrial tuffs, surface 

epithelial folds and microvilli between the trophoblast and domed shaped LE cells for 

which are coated by a thick glycocalyx (Dantzer, 1985; Keys and King, 1990). Although 

pig trophoblast cells are invasive and send long projections between adjacent uterine LE 

cells, they do not penetrate beyond LE tight junctions (Dantzer, 1985; Keys and King, 

1990). 

The window of receptivity for conceptus attachment is programmed through 

ovarian P4 secretion, which down-regulates P4 receptors (PGR) within the uterine LE 

and surface GE (LE/sGE) cells in mammals (Bazer and Johnson, 2014). In pigs, loss of 

PGR in the epithelium reduces expression of mucin-1 (MUC-1), a large glycoprotein 

regulated by P4, along the uterine surface epithelium (Bowen et al., 1996; Bazer et al., 

2012). Furthermore, the loss of PGR in the epithelium allows for expression of estrogen 

receptor alpha (ESR1) within the uterine LE/sGE, which is activated by conceptus 

estrogens (maternal recognition pregnancy signal) secretion between d 10 to 18 of 

pregnancy (Geisert et al., 1993; Bazer et al., 2014). In response, surface epithelial ESR1 

stimulate production of “estramedins” such as secreted phosphoprotein 1 (SPP1; also 
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known as osteopontin) and fibroblast growth factor 7 (FGF7), which aid in adhesion, 

proliferation and implantation of the pig conceptus (Fig. 2.2) (Bazer and Johnson, 2014). 

Although PGRs are down regulated in the LE/sGE, they are expressed within stromal 

fibroblast cells, deep glandular epithelium (dGE) and myometrium, stimulating the 

release of “progestamedins” that may act on the LE and conceptus (Bazer and Johnson, 

2014).  

 

Maternal Recognition of Pregnancy 

The term “maternal recognition of pregnancy” was coined by Short in 1969 and 

today refers to the requirement of the conceptus to produce factors that can act on the 

uterus and/or CL to ensure continued production of ovarian P4; a steroid hormone 

produced by CL that is required to maintain pregnancy in most mammals (Bazer, 2013).  

Interferon tau (IFNτ) is a type I IFN released by the ovine conceptus mononuclear 

trophoblast cells between d 12 and 15 of gestation and serves as the maternal recognition 

of pregnancy signal by disrupting a series of coordinated events within the uterine surface 

epithelium that would ultimately lead to luteolysis (structural and functional regression of 

the CL) (Bazer et al., 1997; Roberts et al., 1999; Roberts, 2007). Disruption of luteolysis 

extends the life span of the CL and maintains elevated levels of P4 that aid in retention 

and development of the conceptus (Roberts, 2007).  

The actions of IFNτ during maternal recognition of pregnancy in the ewe is 

summarized in a working model proposed by Spencer and others (2004) in accordance 

with the McCracken model of luteolysis (McCracken et al., 1999). During the ovine 

estrous cycle and formation of the CL following ovulation, the subsequent increase in P4 
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results in down regulation of PGR within the uterine LE/sGE as described above. If the 

ovine conceptus is not present to release the maternal recognition of pregnancy signal, 

ESR1 reestablishes and increases expression of oxytocin receptors (OXTR) within these 

cells. After which, oxytocin (OXT) released from the pituitary and ovary set in motion 

pulsatile synthesis of luteolytic prostaglandin F 2 alpha (PGF2α) within the uterine 

LE/sGE. The PGF2α can then enter the endometrial vasculature, where by countercurrent 

exchange between the uterine vein and ovarian artery, reach the ovary causing 

degradation of the CL. In the absence of disease and if the animal has reached puberty, 

this process will repeat each estrous cycle (approximately every 17 days in sheep) during 

the breeding season until conception occurs and the maternal recognition of pregnancy 

signal is released. According to the model proposed by Spencer and others (2004), the 

ovine conceptus releases INFτ, blocking luteolysis by signaling through LE/sGE-

interferon alpha-receptor complex (IFNαR). Described in greater detail below, down 

steam intra cytoplasmic signaling through the janus associated kinase-signal transducer 

and activator of transcription (Jak-STAT) signaling pathway results in repression of 

ESR1 and ultimately OXTR expression within the LE/sGE. This disrupts endometrial 

synthesis of PGF2α.  

Although elongating pig conceptuses trophoblast cells express both type 1 and II 

IFNs (IFNδ and IFNγ, respectively), estrogens (catecholestrogens, estrone and estradiol), 

synthesized by the conceptus between d 10 and 18 of gestation, are the maternal 

recognition of pregnancy signal in pigs (Bazer and Thatcher, 1977; Lefèvre et al., 1998; 

Bazer et al., 2013). Unlike sheep and cattle, IFN are not antiluteolytic in this species, as 

intrauterine infusion of IFNγ and IFNδ in pigs does not extend the interestrus interval or 
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the functional lifespan of CL (Lefèvre et al., 1998b). Also, unlike sheep, pig conceptuses 

do not block LE/sGE OXTR expression and synthesis of luteolytic PGF2α (Ludwig et al., 

1998; Hu et al., 2001). Rather, to maintain progesterone synthesis by the CL, pig 

conceptuses release estrogens, that, through an unknown mechanism, redirect 

endometrial PGF2α from the uterine venues system to the uterine lumen possibly by 

influencing LE/sGE cell polarity (Bazer et al., 1982; Spencer et al., 2004; Sukjumlong et 

al., 2005). Developed by Bazer and Thatcher (1977), the sequestration of PGF2α in the 

uterine lumen by conceptus estrogens, rather than release into the vasculature, is referred 

to the “exocrine-endocrine” model of maternal recognition of pregnancy in pigs. Aside 

from the effects that conceptus estrogens, early pig conceptuses release a novel IL-1, 

IFNγ and IFNδ that are hypothesized to stimulate luteo-protective factors within the 

endometrium, such as PGE2, that may contribute to CL maintenance during gestation 

(Harney and Bazer, 1989; Johnson et al., 2009; Waclawik, 2011). The actions of 

conceptus IL-1 and IFN are also believed to have functions related to development of the 

conceptus and implantation during establishment of pregnancy in the pig (Fig. 2.2 and 

2.3). The following provides the current knowledge of the IL-1 superfamily of cytokines 

and their role in establishment of pregnancy. 

 

Interleukin-1  

Interleukin-1 beta is a master pro-inflammatory cytokine, serving as a central 

mediator of inflammation and innate immunity in mammals (Dinarello, 2011; Garlanda et 

al., 2013). Commonly released by hematopoietic cells such as blood monocytes, 

macrophages, skin dendritic cells as well as brain microglia, IL-1β is an endogenous 
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pyrogen, likely promoting leukocyte proliferation and migration during infection by 

inducing fever (Sims and Smith, 2010; Garlanda et al., 2013). IL-1β and interleukin-1 

alpha (IL-1α), which bind the same receptor, stimulate the effector function of 

neutrophils and macrophages while orchestrating the differentiation and function of 

innate and adaptive lymphoid cells (Garlanda et al., 2013). Like other cytokines, IL-1 is 

pleiotropic and can influence the biology of virtually all cells and tissues including those 

involved in mammalian reproduction (Simón et al., 1997a; Garlanda et al., 2013).  

Unregulated, IL-1 production and signaling can lead to auto-inflammatory, 

autoimmune, infectious and degenerative diseases that include malignant cancers and 

type II diabetes (Dinarello, 2009; Sims and Smith, 2010; Dinarello, 2011; Garlanda et al., 

2013). Therefore, IL-1 transcription, translation, processing, secretion and signaling are 

highly regulated (Dinarello, 2009; Sims and Smith, 2010; Garlanda et al., 2013). 

Combined, the IL-1 and IL-1 receptor family consists of twenty-two molecules which 

include pro-inflammatory cytokines IL-1β and IL-1α, an IL-1 receptor antagonist (IL-

1RA), an IL-1 receptor accessory protein (IL-1RAP), a functional IL-1 receptor (IL-1RI) 

and a decoy receptor, the IL-1 receptor type II (IL-1RII) (Sims and Smith, 2010; 

Dinarello, 2011; Garlanda et al., 2013).  Release of active pro-inflammatory IL-1β occurs 

following formation of the inflammasome for which is associated with a cysteine 

protease, caspase 1 (CASP1). Active CASP1 cleaves Pro-IL-1β and Pro-IL-18, another 

member of the IL-1 family, resulting in formation of mature, functional, pro-

inflammatory cytokines that are then secreted into the extracellular space and can 

circulate within the blood (Sims and Smith, 2010; Garlanda et al., 2013).  
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Both IL-1β and IL-1RA competitively bind the extra cellular immunoglobulin 

domains of IL-1RI, however; only the IL-1β-IL-1RI complex recruits the IL-1RAP which 

is necessary to trigger a biological response (Dunne and O’Neill, 2003).  Juxtapositioning 

of the toll interleukin-1 receptor (TIR) domains within the cytoplasmic region of IL-1RI 

and IL-1RAP effectively recruit myeloid differentiation primary response protein 88 

(MyD88), IL-1R-associated kinase 4 (IRAK4), tumor necrosis factor receptor-associated 

factor 6 (TRAF6) and other downstream intermediates that activate nuclear factor-kappa 

B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways (Sims and 

Smith, 2010). Unlike IL-1β, IL-1α is commonly released as a precursor that acts locally 

rather than in circulation, however, this cytokine can also bind the IL-1RI resulting in a 

similar biological response. Interestingly, the IL-1α precursor can rapidly enter the cell 

nucleus and act as transcriptional trans activator, binding DNA and influencing 

transcription (Sims and Smith, 2010; Garlanda et al., 2013). Signaling between IL-1 and 

the IL-1RI is highly controlled by the IL-1RA and IL-1RII, the IL-1 decoy receptor. 

Compared to IL-1, the IL-1RA has a higher affinity for IL-1RI and less affinity for IL-

1RII. Further, IL-1RII may be soluble or insoluble and can bind the IL-1RAP, which may 

also be soluble or membrane bound, minimizing activation of IL-1RI (Dunne and 

O’Neill, 2003; Sims and Smith, 2010). Human IL-1RA and IL-1α, with amino acid 

sequences that are 26% and 25% homologous with mature IL-1β, respectively, bind the 

IL-1RI (Dinarello, 1991; Veerapandian, 1992). 
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Nuclear factor-kappa B 

 

IL-1 signaling activates NF-κB; a family of transcription factors composed of 

evolutionarily conserved subunits that are critical modulators of innate and adaptive 

immune responses (Caamaño and Hunter, 2002). Sen and Baltimore discovered NF-κB in 

1986 as a DNA binding factor in B-lymphocytes that recognized the immunoglobulin-

kappa light chain enhancer, hints the name, nuclear factor-kappa B (Sen and Baltimore, 

1986). Present in nearly every mammalian cell, NF-κB transcription factors can reside as 

homo or hetero dimers consisting of a combination of five subunits that belong to the Rel 

protein family [c-Rel, RelA (p65), RelB, NF-κB1-(p105/p50) and NF-κB2-(p100/p52)]. 

These subunits share a conserved N-terminal domain, referred to as the Rel homology 

domain (RHD). The RHD is responsible for nuclear translocation, DNA binding, subunit 

dimerization and interaction of NF-κB with IκB (inhibitor of NF-κB) proteins (Caamaño 

and Hunter, 2002). The RHD domain shares homology with the N-terminal domain of 

relish (Rel), a transcription factor that modulates the immune responses against bacteria 

in Drosophila (Dushay et al., 1996). In mammals, the c-Rel, RelA and RelB subunits 

contain C-terminal transactivation domains (TAD) that promote transcription (Hayden 

and Ghosh, 2012). Therefore, NF-κB dimers without a TAD (p50:p52) can repress 

transcription by reducing availably of NF-κB binding sites (κB-sites) within the promoter 

and enhancer regions of DNA (Hayden and Ghosh, 2012). Although NF-κB2, RelB and 

c-Rel are expressed specifically in mammalian lymphoid tissues, the NF-κB1 and p65 

subunits, the latter containing a TAD, are ubiquitously expressed in most tissues resulting 

in the more common NF-κB dimer, p65:p50 (Caamaño and Hunter, 2002). 
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Inactive and awaiting signal, most NF-κB dimers are sequestered in the cytoplasm 

by IκB proteins (Oeckinghaus et al., 2011). The IκB proteins, characterized as having 

multiple ankyrin repeat (ANK) domains, interfere with NF-κB’s RHD nuclear 

translocation and DNA binding sequences. In mammals, there are multiple IκB proteins 

[IκBα, IκBβ, IκBε, IκBζ, B-cell lymphoma 3 (BCL-3) and IκBns] (Hayden and Ghosh, 

2012). Like Drosophila’s Rel factor, NF-κB1 and NF-κB2 precursor subunits [NF-κB1-

(p105) and NF-κB2-(p100), respectively] contain a self-inhibiting IκB like domain (with 

ANK) that in mammals must be processed or degraded before nuclear translocation of 

NF-κB1-p50 and NF-κB2-p52 subunits can occur (Hayden and Ghosh, 2012; Dushay et 

al., 1996).  

Within the cytoplasm, the p65:p50 transcription factor is commonly held inactive 

by IκBα. When IL-1 binds its receptor, triggering of the second messenger cascade 

ultimately activates the IKK complex (Oeckinghaus et al., 2011; Hayden and Ghosh, 

2012). Comprised of IKK-beta (IKK-β), IKK-alpha (IKK-α) and the regulatory subunit 

IKK-gamma (IKK-γ; also known as NEMO), the activated IKK complex (specifically 

IKK-β) phosphorylates IκBα (Oeckinghaus et al., 2011; Hayden and Ghosh, 2012). This 

is referred to as the canconical pathway of NF-κB activation and phosphorylation of IκBα 

destines the inhibitor protein for degradation by the 26S proteasome (Oeckinghaus et al., 

2011; Hayden and Ghosh, 2012). Release p65:p50 exposes the transcription factor’s 

nuclear localization signal, allowing it to quickly enter the nucleus, bind the DNA, and 

promote transcription of over a hundred genes including those encoding cytokines, 

chemokines, growth factors, adhesion molecules, immunoreceptors, antigen presentation 

molecules, and other transcription factors (Hayden and Ghosh, 2012).  
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IL-1 signaling and activation of NF-κB can have a dramatic effect on a cell’s 

biology and for this reason their activities are highly regulated by various feedback 

mechanisms. NF-κB can increase expression of IκB proteins, including IκBα, NF-κB 

subunits, and members of the IL-1 family such as IL-1β, IL-1α, and IL-1RA (Hiscott et 

al., 1993; Smith et al., 1994; Mori and Prager, 1996; Hayden and Ghosh, 2012). 

Uncontrolled, IL-1 signaling and NF-κB activation leads to radical cell proliferation and 

malignant cancer growth, making the various components of the IL-1-NF-κB signaling 

pathway an attractive target for anti-cancer therapies. 

 

IL-1 and Reproduction 

IL-1 is believed to be an ancient modulator of vertebrate reproduction, detected 

within the reproductive tissues of animals using very different reproductive strategies 

including oviparous, ovuliparous and aplacental viviparous species (Bird et al., 2002; 

Jantra et al., 2007). Furthermore, IL-1β is expressed by the placenta of mammalian and 

non-mammalian vertebrates such as squamite reptiles and elasmobranch fishes, leading 

some investigators to suggest that IL-1β is a fundamental mediator of placental 

viviparity, influencing conceptus attachment, invasion and fetal-maternal immune 

tolerance (Simón et al., 1995; Paulesu et al., 2005). In respect to placental mammals, IL-1 

crosstalk occurs between the conceptus and endometrium during implantation in 

primates, rodents and pigs (Simón et al., 1994a; 1997a; 1998; Tuo et al., 1996; Ross et 

al., 2003a). 

 IL-1β and IL-1RI are expressed in the early primate blastocyst and elevated 

production of IL-1β by the conceptus is correlated with successful implantation. These 
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conclusions are based on embryo transfer (ET) studies where greater concentrations of 

IL-1β in conceptus-conditioned culture medium were positively correlated with improved 

rates of implantation (Barañao et al., 1997). Further, human conceptuses produced from 

blastomeres with increased IL1RA are more likely to arrest during early development 

(Krüssel et al., 1998). Within the uterus, IL-1 is believed to have a direct effect on the LE 

for implantation. The IL-1RI increases within the endometrium and is greatest within the 

uterine surface epithelium during the receptive phase of implantation (Simón et al., 

1993). Further, IL-1β has a direct effect on uterine receptivity through modulation of 

adhesion molecules alpha V (αV) and beta 3 (β3) integrin subunits in the uterine 

epithelium (Simón et al., 1993; Simón 1997b; Barañao et al., 1997; Krüssel et al., 1998).  

Aside from its effects on uterine receptivity, IL-1 may promote invasive 

implantation in primates. During invasion into the maternal decidua, IL-1β can be 

detected within conceptus villous cytotrophoblast, extravillous intermediate trophoblast, 

syncytotrophoblast as well as maternal stromal decidua cells (Simón et al., 1994a; 

Barañao et al., 1997). The IL-1RI can be detected within the first trimester 

cytotrophoblast, syncytotrophoblast and endometrial glands (Simón et al., 1994a; Librach 

et al., 1994; Barañao et al., 1997;). During in vitro experiments, IL-1β increased 

production of matrix metalloproteinase-9 (MMP-9) and invasive characteristics in human 

cytotrophoblast cells (Steele et al., 1992; Librach et al., 1994). In similar studies, IL-1β 

increased estrogen synthesis and human chorionic gonadotropin (hCG) expression in 

human cytotrophoblast cells (Steele et al., 1992; Nester et al., 1993). 

Mouse conceptuses express IL-1β, IL-1RI and IL-1RA until implantation and 

induction of decidualization in pseudopregnant mice increases IL-1β and IL-1α mRNA 
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within the endometrium that is temporally associated with implantation (Choudhuri and 

Wood, 1993; Takacs and Kauma, 1996; Krüssel et al., 1997).  Similar to primates, IL-1β 

directly influences uterine receptivity for implantation in mice, up-regulating αV and β3 

integrins and promoting alterations in surface epithelial cell morphology (Simón et al., 

1994b; Simón et al., 1998). However, the importance of IL-1β during early pregnancy in 

rodents is unclear. Intraperitonial infusion of IL-1RA between d 3 and 6 of pregnancy in 

mice results in complete implantation failure, yet, knockout mice lacking IL-1RI are 

fertile, having only slightly reduced litter sizes (Simón et al., 1994b; Abbondanzo et al., 

1996; Simón et al., 1998).  Similarly, conceptuses lacking IL-1β, IL-1α or IL-1β/IL-1α 

develop normally suggesting that other factors may compensate for the lack of IL-1 

signaling within the endometrium during implantation in mice (Horai et al., 1998).   

 Tuo and others (1996) were the first to report that pig conceptuses up-regulate 

expression of an IL-1β during early development and at the time of conceptus elongation. 

Expression of conceptus IL-1β rapidly increases during the short period of elongation and 

then dramatically decreases (2000 fold) as the conceptus attaches to the uterine surface, 

becoming nearly undetectable by d 14 (Ross et al., 2003a; Tuggle et al., 2003). During 

peak expression (d 12 of development), IL-1β is one of the most abundant transcripts 

expressed by pig conceptus, leading to intrauterine proteins concentrations approaching 

4000 ng per uterine horn (Ross et al., 2003a, 2003b). This exceeds the concentration 

commonly released during IL-1 signaling (Pinteaux et al., 2009). Although expression 

rapidly declines following elongation, IL-1β protein can be detected within the uterine 

lumen between days 12 to 15 of gestation (Ross et al., 2003a).  

 



21 
 

Novel Pig Interleukin-1 Beta 

Over 20 years ago, Vandenbroeck and others suggest that an alternate IL-1β 

genomic sequence existed within the pig (Vandenbroeck et al., 1993). Using southern 

blot hybridization to probe for IL-1β within the wild and domesticated pig genomic DNA, 

they detected the presence of multiple bands within the blot suggesting a gene 

duplication. In 1996, Tou and others detected expression of an IL-1β in the d 12 pig 

conceptus, however, it wasn’t until Ross and others (2003a) attempted to characterize the 

IL-1 system during early pregnancy when their data suggested that the pig conceptus 

expressed an alternate transcript. Using RT-PCR to measure IL-1β in reproductive 

tissues, they found that primers used to amplify IL-1β in pig endometrium could not be 

used to amplify IL-1β in the conceptus. Recent assembly and analysis of pig genomic 

sequences revealed the presence of a novel IL-1β within the long arm of pig chromosome 

three (Groenen et al., 2012; Dawson et al., 2013). Therefore, two IL-1β genes reside 

within the pig, interleukin-1 beta 1 (IL-1β1) and interleukin-1 beta 2 (IL-1β2). Despite 

advances in genome sequencing technology, the pig genomic region containing IL-1β1 

and IL-1β2 has not been completely sequenced, consisting of many homologous 

sequences and repetitive elements that make accurate assembly of the region challenging. 

Based on PCR data and expressed sequence tags published within GenBank, investigators 

have concluded that early pig conceptuses abundantly express IL-1β2 prior to 

implantation. However, the function of this novel IL-1 during early pregnancy in the pig 

has not been characterized.  

Before IL-1β2 was discovered, a number of experiments were conducted to 

elucidate the role of IL-1β during establishment of pregnancy in pigs. These studies often 
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involved treating cyclic pig endometrium with recombinant human IL-1β or IL-1β1, the 

pig prototypical cytokine, measuring changes in endometrial gene expression. Although 

these experiments did not involve IL-1β2, they have greatly contributed to our 

understanding of how IL-1 might influence reproduction in the pig and are described in 

detail below. 

 

IL-1 and the Pig Endometrium 

In pigs, IL-1β (rather IL-1β2), is suggested to promote early development, rapid 

conceptus elongation, enhance uterine receptivity for implantation and increase 

endometrial blood vessel permeability to promote fetal-maternal hemotrophic exchange 

(Keys and King, 1988; Ross et al., 2003a; Blomberg et al., 2008; Degrelle et al., 2009; 

Waclawik et al., 2009; Waclawik et al., 2011). Using RT-PCR, IL-1β1 can be detected 

within the endometrium during early pregnancy, however, transcript abundance is 

minimum compared with conceptus IL-1β2 and is not effected by day or pregnancy status 

(Ross et al., 2003a). Conceptus expression of IL-1β2 is temporally associated with up 

regulation of IL-1RI and IL-1RAP within the adjacent uterine LE, both of which are 

predominately expressed in endometrium adjacent to elongating rather than spherical 

conceptuses (Seo et al., 2012). The IL-1 receptor antagonist, IL-1RA, decreases within the 

endometrium at this time (Ross et al., 2003a). IL-1RI and IL-1RAP are likely modulated 

by IL-1β2 alone or in combination with conceptus estrogens, acting as a positive feed 

back loop for IL-1 signaling at the time of conceptus elongation. IL-1 has been shown to 

enhance signaling within target tissues by increasing transcription of IL1B, IL1RI and 

IL1RAP (Bellehumeur et al., 2009; Dinarello, 2011).  
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To examine the affect of IL-1 and IFNs on endometrial IL-1 signaling 

components in pigs, Seo and others (2012) treated d 12 cyclic endometrium with 

increasing concentrations of recombinant human IL-1β or IFNγ for 24 h in the presence 

of reproductive steroids, E2 and P4. After which, they measured total endometrial IL-1RI 

and IL-1RAP mRNA. They found that IFNγ had no effect on endometrial IL1RI or 

IL1RAP; however, treating endometrium with IL-1β caused a dose wise increase in 

expression of IL-1RI. Transcript levels for IL1RAP also increased but were greater in 

response to the lowest dose of IL-1β (1 ng/mL) and were influenced by E2 (Seo et al., 

2012). During a similar study, treatment of d 12 cyclic pig endometrial explants in vitro 

with human IL-1β in the presence of E2 increased expression of calbindin-D9K (S100G), 

a calcium transport protein (Choi et al., 2012).  

The combined effects of conceptus estrogens and IL-1β within the endometrium, 

particularly within the uterine surface epithelium, may be complex. Estrogens are known 

to have anti-inflammatory properties. Both in vitro and in vivo studies suggest that ESR 

and NF-κB signaling pathways partake in reciprocal inhibitory crosstalk; suggesting that 

conceptus estrogens could lessen IL-1β2 induced pro-inflammatory activities within the 

endometrium that could be detrimental to establishment of pregnancy (Evans et al., 2001; 

Quaedackers et al., 2007; King et al., 2010). However, positive interactions between ESR 

and IL-1β signaling pathways have been reported within reproductive tissues, 

particularly, in human endometrial epithelial cell lines suggesting that conceptus 

estrogens and IL-1β2 may collaborate to promote implantation in the pig (King et al., 

2010). 
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Alpha V and Beta 3 Integrins in Pigs 

Pig conceptus IL-1β2 may not promote uterine attachment through up regulation 

of integrin subunits, as does IL-1 in primates and rodents. Bowen and others (1996) did 

not detect a significant increase in integrin expression in response to the conceptus, 

including αV and β3 subunits. Alpha V and β3 were constitutively expressed and 

remained high during both the estrous cycle and early pregnancy. Integrin subunits α4, α5 

and β1 did increase between d 11 and 15 of the estrous cycle and pregnancy but appear to 

be controlled by P4 alone or in combination with E2 (Bowen et al., 1996). Pig conceptus 

IL-1β2 may promote endometrial blood vessel permeability, preparing the maternal 

environment for fetal maternal hemotrophic exchange  (Martin et al., 1988; Puhlmann et 

al., 2005; Waclawik et al., 2011). IL-1β has been shown to increase blood vessel 

permeability which is enhanced in uterine sub-epithelial capillaries by d 13 of pregnancy 

in pigs, temporally associated with elevated concentrations of IL-1β2 within the pig 

uterine lumen (Keys and King, 1988; Laforest and King, 1992; Ross et al., 2003a). 

 

Salivary Lipocalin 1 (SAL1) 

Lipocalins belongs to a group of small extracellular proteins that bind 

hydrophobic molecules, such as lipids, transporting them within aqueous environments 

(Seo et al., 2011). SAL1 is expressed within the boar submaxillary gland and has been 

shown to bind pheromones; contributing to the late theory that SAL1 expression is male 

and tissue specific (Loebel et al., 2000). However, SAL1 protein was recently identified 

within pig uterine flushings and believed to be a component of uterine histotroph (Ka et 

al., 2009). Seo and others (2011) characterized SAL1 within pig reproductive tissues 
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during the estrous cycle and early pregnancy. They found that endometrial SAL1 could be 

detected on d 12 and 15 of the estrous cycle with the greatest expression on d 12 of 

gestation. Conceptus factors released during elongation are believed to be responsible for 

up regulation of SAL1 as endometrium adjacent to elongating (d 12) rather than d 11 

spherical conceptuses had greater total SAL1 mRNA. In situ hybridization (ISH) and 

immunohistochemistry (IHC) experiments localized SAL1 mRNA and protein, 

respectively, to the deep GE. Within the conceptus, only SAL1 protein could be detected. 

These observations prompted Seo and others (2011) to investigate SAL1 regulation 

within d 12 cyclic endometrium in response to reproductive steroids P4 and E2 as well as 

cytokines IL-1β (human) and IFNγ. Elaborate explant culture experiments revealed that 

dose dependent increases in IL-1β, in the presence of P4 and E2, could increase total 

endometrial SAL1 mRNA within 24 h. The function of this protein during early 

pregnancy in the pig has not been determined. However, the authors suggest that like 

other lipocalins, SAL1 may bind lipids, transporting them to the developing conceptus. 

Alternatively, the authors suggest that SAL1 could acts as a scavenger of toxic lipid 

byproducts produced by the conceptus as it synthesizes large concentrations of estrogens 

for maternal recognition of pregnancy. 

 

Activation of NF-κB in the Endometrium 

The autocrine and paracrine effects of IL-1β2 during pregnancy, although not well 

characterized, involve activation of NF-κB and NF-κB regulated genes, which include 

prostaglandin-endoperoxide synthase 2 (PTGS2), leukemia inhibitory factor (LIF) and 

interleukin-6 (IL-6) (Ashworth et al., 2006; Ross et al., 2010; Franczak et al., 2010; 
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Mathew et al., 2011a; Blitek et al., 2012; Seo et al., 2012). In primates and rodents, 

conceptus IL-1 enhances uterine receptivity and promotes implantation by activating NF-

κB, particularly, within the uterine surface epithelium (Laird et al., 2000; King et al., 

2010). Protein for NF-κB subunits, NF-κB1 and p65, increase in the uterine epithelium 

during the “window” of uterine receptivity in humans (Laird et al., 2000; Page et al., 

2002; King et al., 2010). In mice, NF-κB1 and p65 increase within the uterine GE on d 

1.5 post-coitum and continues throughout implantation (Nakamura et al., 2004).  

Similar to implantation in primates and rodents, pig conceptus IL-1β2 likely 

modulates uterine surface epithelial gene expression for uterine receptivity and 

implantation by activating NF-κB (Ross et al., 2010; Mathew et al., 2011a). During early 

pregnancy and peak production of IL-1β2, p65 is activated (localized to nuclei) within 

uterine LE cells directly adjacent to elongating pig conceptuses (Mathew et al., 2011a). 

Within the rodent and primate uterine epithelium, NF-κB increases expression of 

prostaglandin synthases and inflammatory cytokines considered essential for 

establishment of pregnancy such as PTGS2, IL-6, colony stimulating factor 1 (CSF1) and 

LIF (Pollard et al., 1991; Stewert et al., 1992; Laird et al., 2000; Nakamura et al., 2004).  

 

Prostaglandins 

Prostaglandins (PG) are fatty acid derived lipid mediators that modulate 

reproductive processes in mammals that include ovulation, blastocyst transport, hatching, 

implantation, decidualization and parturition (Lim et al., 1997; Ni et al., 2002; Kennedy 

et al., 2007; St-Louis et al., 2010). Prostaglandin-endoperoxide synthase 1 (PTGS1) and 

prostaglandin-endoperoxide synthase 2 (PTGS2) are rate limiting enzymes during PG 
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synthesis by converting arachidonic acid, cleaved by phospholipase A2, to prostaglandin 

H2 (PGH2). The PGH2 may be further metabolized to PGE2, PGF2α, PGI2, PGD2 or 

thromboxane A (TXA) by other synthases (Ni et al., 2002; Simmons et al., 2004; St-

Louis et al., 2010). Although PTGS1 is constitutively expressed in most tissues, PTGS2 

transcription is triggered by inflammatory stimuli and commonly found within 

reproductive tissues. Partly in response to conceptus IL-1β, PTGS2 is expressed within 

the endometrium of primates and rodents and knockout studies in mice indicate that 

PTGS2 is essential for implantation and decidualization (Lim et al., 1997; Marions et al., 

1999; St-Louis et al., 2010). Regulation of endometrial PTGS2 is less clear in the pig, 

however, similar to primates and rodents, pig conceptuses may promote endometrial 

PTGS2 activity by releasing IL-1β2 and activating NF-κB. In respect to PG, these 

molecules are immune modulatory and have both anti-inflammatory and pro-

inflammatory properties. Their synthesis is essential for establishment of pregnancy in 

pigs (Kraeling et al., 1985; Waclawik, 2011). Prostaglandins, specifically PGE2, are 

hypothesized to enhance endometrial vascular remodeling in support hemotrophic 

exchange between the mother and the fetus but may also contribute to luteal maintenance 

during pregnancy in pigs (Kraeling et al., 1985; Waclawik et al., 2011).  

During both the estrous cycle and pregnancy, total endometrial mRNA and 

protein for PTGS1 and PTGS2 increases after d 10 and d 5, respectively, and remains 

elevated until d 18 (Ashworth et al., 2006).  In situ hybridization experiments indicate an 

increase in uterine surface epithelial PTGS2 by d 12 of pregnancy and d 15 of the estrous 

cycle (Ashworth et al., 2006). However, there is no detectable increase in total 

endometrial PTGS2 between d 10 and 14 of pregnancy or between d 12 cyclic or 
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pregnant pig endometrium; a time when conceptuses release peak concentrations of IL-

1β2 (Ashworth et al., 2006; Blitek et al., 2006; Franczak et al., 2010). Previously, it was 

reported that recombinant IL-1β [human or pig (IL-1β1)] increased transcripts for PTGS1 

and PTGS2 as well as PG transport molecules within the pig endometrium at the time of 

implantation (White et al., 2009; Franczak et al., 2010; Seo et al., 2012). Further research 

is needed to determine if IL-1β2 can increase PTGS2 within the pig uterine surface 

epithelium. NF-κB, a stimulator of PTGS2 transcription, is highly activated within this 

tissue during early pregnancy (Ross et al., 2010; Mathew et al., 2011). 

Aside from PTGS2, IL-1β can increase expression of phospholipase A2, an 

enzyme for which may enhance cell membrane fluidity by cleaving arachodonic acid 

from membrane associated lipid rafts (Kol et al., 2002; Ross et al., 2003a). It has been 

hypothesized that conceptus IL-1β2 may increase this enzyme within the LE and/or the 

conceptus, thereby stimulating architectural changes along the fetal-maternal interface 

that are necessary for implantation (Ross et al., 2003a; Waclawik et al., 2009). 

 

IL-6 and LIF 

Inhibition of NF-κB blocks IL-1β/IL-1α induced IL-6 and LIF expression within 

cultured human endometrial epithelial cells (Laird et al., 2000). A decrease in IL-6 and 

LIF mRNA during early pregnancy is correlated with infertility in humans and 

implantation does not occur in LIF knockout mice (Stewert et al., 1992; Laird et al., 

2000). Furthermore, suppression of NF-κB activity blocks implantation in mice but 

implantation can be partially rescued by uterine viral transfection of LIF cDNA 

(Nakamura et al., 2004). Activation of NF-κB by conceptus release of IL-1β2 may be 
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partly responsible for up-regulation of these cytokines within the endometrium of pigs 

(Sparacio et al., 1992; Bamberger et al., 1997; Laird et al., 2000; Nakamura et al., 2004). 

Blitek and others (2012) characterized endometrial IL-6 and LIF between d 10 

and 18 of the estrous cycle and pregnancy in pigs. Transcript expression for IL-6 and LIF 

increase within the pig endometrium between d 10 and 12 of gestation. More over, peak 

concentrations of LIF proteins were detected in uterine luminal flushings on d 12 of 

pregnancy; temporally associated with conceptus expression of IL-1β2 and activation of 

the p65 subunit of NF-κB with the uterine surface epithelium (Ross et al., 2003a; Ross et 

al., 2010; Mathew et al., 2011a; Seo et al., 2012; Blitek et al., 2012). Furthermore, d 12 

conceptus-conditioned culture medium, which would contain peak concentrations of IL-

1β2, increased IL-6 and LIF mRNAs in d 12 cyclic pig endometrium within 6 h of culture 

(Blitek et al., 2012). A similar mechanism may exist in the conceptus as expression of IL-

6 transiently increases during elongation (Blitek et al., 2012; Modrić et al., 2000). During 

implantation in pigs, endometrial LIF expression maybe intensified by the combined 

effects of conceptus estrogens and IL-1β2. In mice, ovarian estrogen increases 

endometrial LIF expression during implantation and LIF protein can replace nidatory 

estrogen by inducing implantation and decidualization in ovariectomized mice (Chen et 

al., 2000). This may not be true for endometrial IL-6 as ESR have been shown to have a 

negative effect on IL-6 expression by inhibiting NF-κB-DNA binding within the IL-6 

promoter (Galien and Garcia, 1997). Although the activities of IL-6 and LIF have been 

well studied in both humans and mice in regards to implantation and embryonic survival, 

little is known about the effects of these cytokines during establishment of pregnancy in 

pigs. However, receptors for IL6 and LIF are expressed by both the conceptus and 
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endometrium between d 10 and 14 of pregnancy, specifically within the uterine surface 

epithelium, indicating that these molecules have an important role during implantation in 

this species (Modrić et al., 2000; Østrup et al., 2010; Blitek et al., 2012). Over all, NF-κB 

may enhance uterine receptivity, implantation and/or conceptus development by 

modulating uterine surface epithelial gene expression at the time of elongation. Crosstalk 

between NF-κB and other signaling pathways including those that activate MAPK and 

inositol 1, 4,5-triphosphate 3-kinase (IP3K) are not uncommon and likely optimize the 

endometrial environment for establishment of pregnancy at the fetal-maternal interface 

(Oeckinghaus et al., 2011).  

 

IL-1β2 and Immune Modulation 

Conceptus release of IL-1β2 into the pig uterine lumen may modulate endometrial 

immune cell trafficking and function during implantation. During pig uterine infusion 

studies, an increase in the number of stromal leukocytes near the uterine epithelial layer 

in response recombinant pig IL-1β1 was observed, suggesting that in pigs, this cytokine 

and possibly IL-1β2, has to capacity to modulate endometrial leukocyte activity (Geisert, 

Ross, Roberts and White; data not published). The major leukocyte populations within 

the pig endometrium are lymphocytes, macrophages, neutrophils and dendritic-like cells 

with T cell and/or uNK lymphocytes the most abundant during pregnancy (Engelhardt et 

al., 2002). Although there is an increase in the number of intraepithelial lymphocytes 

between d 10 and 19 of the estrous cycle, these cells decrease during early pregnancy, 

apparently in response to unknown factors released by the conceptus (King, 1988). 

Interesting, Engelhardt and others, (2002), detected a 3 fold increase in the number of 
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stromal leukocytes with phenotypes similar to T, B and/or uNK cells adjacent to the d 15 

conceptus attachment vs. non-attachment sites. The number of intraepithelial leukocytes 

was independent of conceptus location on d 15 and remained low. Following release of 

IL-1β2, pig conceptuses express a type I and type II IFN, of which may also modulate 

endometrial immune cell activity (Joyce et al., 2008; Kim et al., 2012). 

 

IL-1 and the Conceptus 

It’s hypothesized that IL-1β2 promotes steroidogenesis in the early pig conceptus 

and developmental changes associated with elongation (Blomberg et al., 2008; Degrelle 

et al., 2009). These conclusions are based on the finding that pig conceptuses temporally 

and abundantly express IL-1RI and IL-1β2 during the height of these processes. Peak 

intrauterine protein concentrations of pig conceptus IL-1β2, between d 10 and 15 of 

pregnancy, are temporally associated with elevated expression of aromatase and acute 

release of estrogens by pig conceptus into the uterine lumen for maternal recognition of 

pregnancy (Yelich et al., 1997; Ross et al., 2003a; 2003b). IL-1β has been shown to 

increase aromatase expression and estrogens synthesis in human cytotrophoblast cells in 

culture (Nester, 1993). In addition, global proteomic analysis of pig conceptuses revealed 

that IL-1β (rather IL-1β2 as this study was conducted prior to its discovery) exists as 

focal protein between the three primary protein networks during elongation (Degrelle, 

2009). These networks included proteins involved in cellular assembly and organization, 

embryonic development as well as cell growth and proliferation which suggests that 

intracellular signaling triggered by the IL-1β2 might control a large number of genes 

involved in distinct biological processes during rapid elongation. The autocrine and 
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paracrine effects of pig conceptus IL-1 during pregnancy, although not well 

characterized, likely involve activation of NF-κB and NF-κB regulated genes (Ross et al., 

2010; Mathew et al., 2011a). 

 

Interferons 

Over the last 30 years, research dedicated to unraveling the molecular control of 

establishment of pregnancy in mammals has expanded the role of IFN cytokines well 

beyond their antiviral and immune-modulatory properties (Platanias, 2005; González-

Navajas et al., 2012; Bazer, 2013). IFNs are expressed by the peri-implantation primate, 

rodent and ungulate trophectoderm and are believed coordinate essential interactions at 

the fetal-maternal interface (Bazer, 2013). Aside from indirectly extending the life span 

of the CL in ruminants, which is essential in maintaining pregnancy beyond the length of 

the normal estrous cycle, conceptus INFs stimulate expression of classical (antiviral) and 

non-classical IFN stimulated genes (ISGs) that are under spacio-temporal regulation 

within the mammalian endometrium (Spencer et al., 2008). Although the functions of 

endometrial ISGs remain unclear, studies investigating IFN signaling within the uterus of 

livestock species suggest they modulate fetal-maternal immune tolerance, endometrial 

architecture changes for uterine receptivity and vascular remodeling for maternal-fetal 

hemotrophic support of pregnancy.    

Mammalian IFNs are classified under two main types: type I and type II. Thus far, 

type I IFNs include interferon-alpha (IFNα), beta (IFNβ), kappa (IFNκ), omega (IFNω), 

epsilon (IFNε), tau (IFNτ) and IFNδ, some of which consist of more than one subtype but 

all of which bind the same receptor complex, the interferon-alpha receptor (IFNαR), to 
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signal a biological response. The type II interferon consists of one member, IFNγ, which 

does not share structural homology with type I IFNs and has it’s own receptor complex, 

the interferon gamma receptor (IFNγR) (Platanias, 2005).  

Type I and type II IFNs trigger expression of classical ISGs through activation of 

the Jak-STAT signaling pathways and therefore stimulate similar genes. However, the 

IFNs can promote distinct expression profiles and can have dissimilar immunological 

properties (Platanias, 2005). Cells release type I IFNs during viral infection, up regulating 

and activating enzymes that interfere with viral replication, such 2’, 5’ oligoadenylate 

synthase (OAS) and RNase L (Abbas et al., 2007; Ivashkiv and Donlin, 2014). Type I 

IFNs also promote innate immune responses by enhancing recognition of infection 

through up-regulation of MHC class I molecules on the cell surface and augmenting NK 

cell responses (Ivashkiv and Donlin, 2014).  

The type II IFN, IFNγ, functions mostly to trigger innate immune responses and 

adaptive cell-mediated immunity against viruses and intracellular bacteria (Abbas et al., 

2007). During the innate immune response, antigen presenting cells (APCs), most notably 

macrophages, will recruit NK cells via IL-18 and promote NK cell production of IFNγ. In 

turn, IFNγ stimulates APC killing of the phagocytosed pathogens. Activated CD8+ 

cytotoxic and CD4+ helper T lymphocytes also produce IFNγ which can further promote 

cell mediated immunity by up-regulating MHC class I and II molecules in target cells 

(Schroder et al., 2004; Abbas et al., 2007).  

Interferon signaling is complex and at minimum includes binding of type I IFNs 

to IFNαR, resulting in phosphorylation and activation of STAT1 and STAT2 (Platanias, 

2005; González-Navajas et al., 2012). Similarly, binding of IFNγ to IFNγR results in 



34 
 

phosphorylation and activation of STAT1 (Platanias, 2005; González-Navajas et al., 

2012; Bazer, 2013). During type I IFN signaling, phosphorylated STAT1 and STAT2 can 

dimerize and associate with interferon regulatory factor 9 (IRF9), forming a complex 

referred to as interferon-stimulated gene factor 3 (ISGF3). The ISGF3 can bind IFN 

stimulated response elements (ISRE) within the promoter regions of DNA, up-regulating 

ISGs (Platanias, 2005; González-Navajas et al., 2012; Bazer, 2013). Both type I and type 

II IFN signaling provoke formation of STAT1 dimers, also known as gamma-activation 

factor (GAF), that bind IFNγ-activated sequences (GAS) within the promoter of some 

ISGs (Platanias, 2005; González-Navajas et al., 2012; Bazer, 2013). Importantly, a GAS 

sequence can be found in the promoter region of interferon regulatory factor 1 (IRF1), a 

protein that can also bind and activate ISREs. Although, type I IFNs can activate GAF, 

the ISGF3 complex dominates during IFNαR signaling, as STAT2 and IRF9 are ISGs 

and favor assembly of ISGF3 rather than GAF (Platanias, 2005; González-Navajas et al., 

2012; Bazer, 2013). In summary, both Type I and II IFNs activate classical Jak-STAT 

signaling pathways to up-regulate ISGs, however, activation of several other downstream 

cascades have been reported and are represented by the pleiotropic effects of type I and II 

IFNs, particularly within the endometrium during early pregnancy in mammals (Bazer, 

2013). 

 

IFNγ/IFNδ and Reproduction 

The discovery that a type I IFN, IFNτ, could serve as the maternal recognition of 

pregnancy signal in ruminants, prompted investigations of IFN signaling within the 

reproductive tissues of other mammals, including pigs. By 1990, it had been confirmed 
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that antiviral activity could be detected in pig uterine flushings and conceptus-

conditioned culture medium between d 12 and 17 of gestation, indicating that pig 

conceptuses express and release IFNs (Cross and Roberts, 1989; Mirando et al., 1990). 

Later, it was determined that pig conceptuses express a type II IFN, IFNγ, and a novel 

type I IFN, IFNδ (Lefèvre et al., 1990; La Bonnardière et al., 1991; Lefèvre and Boulay, 

1993).  

Interferon gamma is the most abundant pig conceptus IFN and transcripts are 

easily detectable in conceptus RNAs between d 13 to d 20 of development (Joyce et al., 

2007a). Peak concentrations of IFNγ protein (250 μg per uterine horn) are detected in 

uterine flushings between d 15 and 16 of pregnancy (Cencič and La Bonnardière, 2002). 

Although it is not known what initially stimulates pig conceptuses to express IFNγ, it’s 

hypothesized that the pro-inflammatory cytokine IL-18, released by the pig endometrium 

between d 15 and 18 of gestation, may be involved (Ashworth et al., 2010). Only 

transcripts for IFNδ have been detected within conceptus tissues. Expression of IFNδ can 

be detected between d 14 to d 20 with the greatest expression near d 15 (Lefèvre and 

Boulay, 1993; Joyce et al., 2007a). IFNγ protein has been localized within cytoplasmic 

vesicles at the apical surface of the extra embryonic trophectoderm but not the embryo 

proper or endoderm (Lefèvre et al., 1990; Joyce et al., 2007a). INFγ is the dominate pig 

conceptus IFN, accounting for 75% of antiviral activity in uterine flushings as compared 

to 25% by IFNδ.  

Transcripts for IFNγR have been detected by RT-PCR in d 10 spherical pig 

conceptuses and are present within the trophoblast and ICM from d 11 to 15. However, 

conceptus IFNγR protein was undetectable on d 12 and weakly detected on 15, leading 
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some to believe that the endometrium is the initial and primary target (D’Andréa and La 

Bonnardière, 1998). Furthermore, pig trophoblast vesicles, which express IFNG and 

IFND, have little antiviral qualities even after treatment with the recombinant IFNG and 

IFND (D’Andréa et al., 1994). Indeed, endometrial IFNγR expression is detected on d 15 

of pregnancy in pigs, temporally associated with peak production of IFNγ by conceptuses 

(D’Andréa and La Bonnardière, 1998). 

IFNγ has been shown to reduce zonula occluden 1 (ZO1), a tight junction protein, 

that when modified, can enhance tissue remodeling including blood vessels (Youakim 

and Ahdieh, 1999; Cencič et al., 2003; Bian et al., 2009). Cencič and others (2003) 

hypothesized that pig conceptus IFNγ changes the endometrial architecture for 

implantation by altering uterine surface epithelial ZO1 and therefore, localized these 

proteins along the fetal maternal interface (Youakim and Ahdieh, 1999). IFNγ protein 

was unevenly localized to individual LE cells or clusters of LE cells that were adjacent to 

the IFNγ positive trophoblast on d 15 of pregnancy. Within the LE cells, IFNγ protein 

was greatest at the apex, yet extended through the cell to the basil region. Interestingly, in 

some areas of close apposition between the trophoblast and LE, IFNγ was not detected 

within the endometrium. Furthermore, the authors found that ZO1 had been redistributed 

from the apical to the basal region of LE cells, suggesting that conceptus proteins, namely 

IFNγ, likely alter uterine LE cell polarity in preparation of attachment (Cencič et al., 

2003). The redistribution of ZO1 within the LE of pregnant animals was accompanied by 

an increase in MHC class II molecule protein that was localized specifically to 

endometrial endothelial cells, suggesting that conceptus IFNs penetrate through the LE 
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and into the stroma, providing a pathogen free environment during implantation and/or 

modulation of maternal blood vessels. 

 

Classical and Non-Classical Endometrial ISGs  

Alongside its role as the maternal recognition of pregnancy signal in sheep, 

conceptus IFNτ is hypothesized to stimulate classical and non-classical ISGs within the 

endometrial stroma/dGE and LE/sGE, respectively, regardless of conceptus location 

within the uterus. Within the stroma/dGE, IRF1 and ISGF3 respond to IFNτ by 

modulating expression of classical ISGs that are believed to be essential for establishment 

of pregnancy (Bazer et al., 2009). Within the LE/sGE, IFNτ stimulates IRF2, a potent 

inhibitor of IRF1 and ISGF3 activity, blocking expression of classical ISGs including 

ISGF3 assembly factors STAT1, STAT2 and IRF9 as well as interferon stimulated gene 15 

(ISG15), MHC class 1 polypeptide (MIC), beta 2 microglobulin (β2m), OAS and ESR1; 

down-regulation of the latter ultimately prevents luteolysis (Choi et al., 2001; Joyce et al., 

2007b; Spencer et al., 2007). The IRF2 blockade of classical ISGs within the uterine 

surface epithelium may be essential for maternal-fetal immune tolerance as MIC and β2m 

are well known to modulate immune rejection processes (Choi et al., 2003; Bazer et al., 

2010). Conceptus IFNτ and progesterone, via stroma and dGE derived progestamedins, 

are hypothesized to stimulate and induce, respectively, non-classical ISG expression 

within the LE/sGE. This may be achieved through a non-canonical second messenger 

pathway (independent of the STAT) that includes activation of PI3K and MAPK; the 

latter pathway can lead to nuclear localization (activation) of NF-κB (Bazer et al., 2010). 

Non-classical ISGs, up regulated in the LE/sGE, are suggested to influence conceptus 
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development, glucose and amino acid transport into the lumen, uterine receptivity and 

attachment of the trophoblast during implantation (Bazer et al., 2009). 

As in sheep, classical and non-classical ISGs, in a cell specific manor, may be 

differentially regulated within the pig uterus during early pregnancy, yet, the mechanism 

by which this is achieved, although similar to sheep, is novel to the pig and under the 

control of ovarian progesterone, and paracrine activities of conceptus estrogens and IFNγ 

and IFNδ, the latter two possibly acting synergistically within the endometrium.  

The similarities in endometrial IRF1 and IRF2 expression between pigs and sheep 

supports the theory that in general pig conceptuses activate IRF1 within the stroma and 

glandular epithelium (GE) and IRF2 within the surface epithelium, stimulating and 

inhibiting expression of classical ISGs, respectively, within the endometrium during 

implantation (Johnson et al., 2009). This may be true with the exception of STAT1, a 

classical ISG expressed within the pig uterine surface epithelium during this time (Joyce 

et al., 2007a; Stewart et al., 2003). After d 12 of pregnancy, IRF1 is up regulated within 

the stroma/GE and IRF2 increases in the uterine surface epithelium, which is temporally 

associated with conceptus release of IFNs and estrogens (Joyce et al., 2007b). Conceptus 

estrogens and IFNs or conceptus IFNs alone may up-regulate IRF1 within the stroma/GE 

as administration of E2 to cyclic pigs does not increase stromal IRF1, however, 

administration of E2 in combination with osmotic pump release CSP (containing IFNδ 

and IFNγ) into the uterine lumen will increase IRF1 in this tissue. The increase in IRF1 

during early pregnancy is temporally associated with up regulation of classical ISGs that 

were localized within the stroma and/or GE such as STAT1, STAT2, myxovirus resistance 

1 (MX1), and β2m (Hicks et al., 2003; Joyce et al., 2007a; 2007b; 2008). Unlike sheep, 
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conceptus estrogens (rather than IFNs) likely stimulate IRF2 within the LE/sGE as 

treatment of cyclic gilts with estrogen at a time when conceptuses normally release 

estrogens for the maternal recognition of pregnancy, increased IRF2 within uterine 

surface epithelium (Joyce et al., 2007b).  

 Activation of endometrial STAT1 by pig conceptuses is hypothesized to influence 

conceptus development and endometrial remodeling for uterine receptivity and 

implantation (van Boxel-Dezaire et al., 2006; Spencer et al., 2007; Johnson et al., 2009). 

Regulation of endometrial STAT1 during pregnancy in pigs is different when compared 

to sheep in two ways; 1) STAT1, a classical ISG, increases within the LE during early 

pregnancy, apparently, in response to conceptus estrogens and 2) STAT1 increases only in 

endometrium directly adjacent to the elongated pig conceptuses (Stewart et al., 2003; 

Joyce et al., 2007a; Johnson et al., 2009). In the pig, endometrial transcripts for STAT1 

increase between d 9 and 12 in the LE followed by a second increase between d 12 and 

15 in the stroma/GE. STAT1 remains high in all three-cell types until d 20. Similarly, 

STAT1 protein is highest on d 12 in the LE and d 15 in the stroma/GE. Conceptuses 

estrogens and IFNs are likely responsible for up regulation of STAT1 within the LE and 

later, within the stroma/GE, respectively. Treating cyclic pigs with E2 alone increases 

STAT1 mRNA and protein within the LE but not stroma. Furthermore, STAT1 increases 

in the endometrial stroma with the addition of intrauterine infusion of CSPs containing 

IFNG and IFND (Joyce et al., 2007a).  

Pig conceptuses produce IFNγ at concentrations comparable to IFNτ produced by 

sheep conceptuses, however, STAT1 increases only within endometrial stromal/GE cells 

that are directly adjacent to the trophoblast, rather than universally throughout the uterus 
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as in sheep (Joyce et al., 2007a; Spencer et al., 2007; Johnson et al., 2009). Therefore, it’s 

suggested that IFNγ in combination with lesser-produced IFNδ, act synergistically within 

the local stroma/GE to stimulate endometrial expression of classical ISGs during early 

pregnancy (Joyce et al., 2007a; Johnson et al., 2009).  

 

INFγ/INFδ and Immune Modulation  

Cell major histocompatibility complex (MHC) displays self or non-self peptide 

antigens to surveying T lymphocytes or bind inhibitory and activating molecules on NK 

cells and other leukocytes to eliminate foreign or abnormal/infected host cells. The MHC 

class I consist of a classical or non-classical trans-membrane alpha chain, encoded within 

the MHC loci, non-covalently linked to an extracellular beta-chain, B2m, on the cell 

surface. In pigs, a B2m in combination with one of three classical MHC class I alpha 

chains, encoded by the swine leukocyte Ag (SLA) genes SLA1, SLA2 and SLA3, display 

peptide antigens to T cell receptors (TCR) on T lymphocytes (Joyce et al., 2008; Tanaka-

Matsuda et al., 2009). The most common non-classical molecules are encoded by SLA6, 

SLA7, SLA8 genes in the pig and they too, with a few exceptions, associate with B2m 

during antigen presentation (Chardon et al., 2001; Blumberg et al., 2001; Joyce et al., 

2008; Tanaka-Matsuda et al., 2009).  

Classical MHC class I molecules are highly polymorphic, are expressed on almost 

all somatic cells and can present peptides derived from self-proteins or from proteins 

derived from intracellular pathogens, such as viral proteins, to CD8+ cytotoxic T 

lymphocytes (CTL). The non-classical MHC class I molecules are less polymorphic, are 

expressed by specific cell types, and have different antigen presentation features as 
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compared to the classical molecules, which include presentation of lipids and bacterial 

cell wall components (Allen, 2001; Joyce et al., 2008). Both classical and non-classical 

MHC class I can interact with NK cells; however, these interactions appear to be more 

dynamic (Allen, 2001; Blumberg et al., 2001).  

The MHC class II molecules consist of heterodimers of alpha and beta-chains that 

are predominantly expressed within antigen presenting cells such as macrophages, 

dendritic cells and B cells. These molecules display peptides derived from phagocytosed 

extracellular pathogens to TCRs on CD4+ helper T lymphocytes. In the pig, the alpha and 

beta-chains are encoded by SLA-DRA, SLA-DRB1, SLA-DQA, SLA-DQB, SLA-DOA, 

SLA-DOB1, SLA-DMA and SLA-DMB. In addition, SLA-DR and SLA-DQ are also 

expressed in endothelial cells and T lymphocytes (Kim et al., 2012).   

The MHC is responsible for the majority of immune responses during tissue graft 

rejection and spacio-temporal modulation of these molecules within reproductive tissues 

is necessary to avoid rejection of the fetal semi-allograft. MHC class II molecules are not 

expressed in mammalian trophoblast and down-regulation of classical MHC class I 

molecules within the trophoblast appears to be a common feature within mammalian 

reproduction, “camouflaging” the conceptus from maternal immune responses that would 

be detrimental to survival (Huddleston and Schust, 2004; Joyce et al., 2008). Evidence 

suggests that expression of non-classical MHC class I molecules in placental tissues of 

some mammals, such as human trophoblast, may protect the conceptus from negative T 

and NK cell responses (Blumberg et al., 2001; Joyce et al., 2008; Chen et al., 2012). This 

is not true for the trophoblast of non-invasive placental mammals, such as the pig, which 
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does not express classical or non-classical MHC class I molecules during the first 

trimester of pregnancy (Joyce et al., 2008).  

Joyce and others (2008) characterized endometrial β2m and classical (SLA1, 

SLA2 and SLA3) and non-classical (SLA6, SLA7 and SLA8) MHC class I molecule 

expression during the estrous cycle and early pregnancy in pigs. Overall, they found that 

β2m and MHC class I molecules increase in the uterine LE during the early estrous cycle 

and pregnancy (before implantation), increase in the stroma around the time of 

implantation (d 10 to 25), and then decrease in the uterine LE immediately after initial 

attachment of the trophectoderm, becoming undetectable after d 20 of pregnancy. The 

spacio-temporal down regulation of MHC molecules that occurred within the uterine 

surface epithelium after attachment, tightly mimicked up regulation of ubiquitin-specific 

protease (USP), a protein that represses type I IFN signaling, within these cells. 

Observations made during experiments by Joyce and others (2008) suggests that pig 

conceptus IFNs likely up-regulate classical and non-classical MHC class I molecules 

within the stroma during implantation and yet, conceptus estrogens decrease their 

expression in the LE through up-regulation of IRF2 which may act in conjunction with 

the signaling repressor USP. Additionally, unlike sheep, MHC class I molecules are 

expressed within the uterine epithelium during the early estrous cycle in pigs and appear 

to increase in response to ovarian progesterone, possibly as a means of defense against 

intrauterine pathogens (Joyce et al., 2008).  

Previously, SLA-DQA, a pig MHC class II molecule, was detected as a 

differential expressed gene in d 12 cyclic and pregnant pig endometrium (Ka et al., 

2009). This prompted Kim and others (2012) to characterize endometrial SLA-DQ 
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molecules (SLA-DQA and SLA-DQB) during the estrous cycle and pregnancy. 

Expression of the MHC class II molecules was similar between cyclic and pregnant pigs 

on d 12, however, by d 15, expression had increased in pregnant endometrium. In situ 

hybridization and IHC assays localized SLA-DQA mRNA and SLA-DQ (A and B) 

proteins, respectively, to the endometrial sub-epithelial stromal cells and blood vessels. 

Treating cyclic endometrium with recombinant IFNγ, the authors detected a dose wise 

increase in endometrial SLA-DQ expression (Kim et al., 2012).  

Collectively, it’s hypothesized that pig conceptus IFNs increase classical ISGs 

β2m and MHC class I molecules within in the adjacent stroma, facilitating endometrial 

vascular changes in support of pregnancy (Joyce et al., 2008). These conclusions are 

based on studies of pregnancy in humans and rodents, where uterine NK cells release 

IFNγ promoting uterine vascular modification (Ashkar et al., 2000; Joyce et al., 2008). In 

addition, the non-classical MHC class I molecule, HLA-G, is suspected of regulating 

angiogenesis during trophoblast invasion in humans (Le Bouteiller et al., 2007; Joyce et 

al., 2008). The complete lack MHC molecules in the pig trophoblast undoubtedly 

contributes to immune tolerance, however, down-regulation of β2m and MHC class I 

molecules within the uterine surface epithelium could further minimize negative immune 

responses toward the fetal semi-allograft (Ramsoondar, 1999; Joyce et al., 2008). MHC 

class II molecules present exogenous derived peptides on antigen presenting cells, such 

as macrophages, to CD4+ helper T cells. Therefore, it’s logical to suggest that MHC class 

II molecules are expressed by cells within the endometrium as a means of protecting the 

mother and/or conceptus from uterine pathogens. However, Kim and others (2012) 

speculate that up-regulation of endometrial MHC class II molecules by pig conceptus 
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IFNγ, specifically, within the sub-epithelial stroma, could modulate CD4+ T lymphocyte 

function near the fetal-maternal interface promoting immune tolerance during 

establishment of pregnancy in pigs. 

 
Summary and Conclusion 

 The cellular and molecular interactions that control early pregnancy in mammals 

are multifaceted and complex, yet, trends exist across species and investigations of early 

pregnancy in primates, rodents and agricultural animals can help delineate elusive 

pathways. During early pregnancy in mammals, pro-inflammatory cytokines are 

commonly released by the conceptus and endometrium and when controlled, are believed 

to promote establishment of pregnancy and embryonic survival (Fig. 2.2 and Fig. 2.3). In 

pigs, these cytokines likely create a balanced pro-inflammatory microenvironment within 

the endometrium by spacio-temporally triggering activation of NF-κB, MAPK and IP3K 

signaling pathways within the uterine surface epithelium and at minimum, Jak-STAT 

pathways within the uterine stroma and glandular epithelium during the extended 

implantation phase. IL-1β2 may have the capacity to trigger similar pathways in the 

conceptus, influencing development and promoting rapid elongation. Collectively, these 

cytokines, which may be complimented by up-regulation of pro-inflammatory LIF, IL-6 

and IL-18 as well as synthesis of PG within the endometrium likely promote 

establishment of pregnancy in pigs by modulating endometrial gene expression for 

uterine receptivity, endometrial architectural changes, angiogenesis, blood vessel 

permeability, and leukocyte function during immune tolerance of the fetal semi-allograft.  
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Concluding Remarks  

Despite the discovery that pig conceptuses express a novel IL-1, very little data 

has been published in respect to IL-1β2 or the cytokine’s influence on early pregnancy in 

the pig. Interestingly, Katebi et al. (2010), who used a computer program to predict pro 

and mature (mat) IL-1β1 and IL-1β2 protein structures, concluded that CASP1 might 

have a lesser capacity to proteolytically cleave pro-IL-1β2. Further, they concluded that 

mat-IL-1β2 might have an altered or reduced activity compared to mat-IL-1β1. The 

experiments described in the following Chapters were designed verify that elongating pig 

conceptuses express IL-1β2 rather than IL-1β1. Further, we attempted to test hypotheses 

that IL-1β2 can activate NF-κB in the pig uterine LE, that IL-1β2 has a reduced activity 

compared with IL-1β1 and finally, that IL-1β2 is essential for elongation of the early pig 

conceptus. 
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FIGURE 2.1  Elongation and implantation of a pig conceptus between days (d) 11 and 15 
of gestation. (A) The spherical pig conceptus expands within the uterine lumen until it 
reaches approximately 10 mm in diameter (near d 11 of pregnancy). At this point, the 
conceptus becomes (B) ovoid and then (C) tubular before (D) rapidly elongating 150 mm 
in less than 3 h due to cellular hypertrophy and migration of the surrounding trophoblast 
cells. (D) Elongation occurs adjacent to the mesometrium which consists of stroma 
fibroblast cells, endothelial cells, leukocytes, glandular epithelium and luminal epithelial 
cells, the latter have a domed shape appearance as they proliferate and form epithelial 
“tuffs” that extend from the uterine surface. Implantation is initiated near d 13 of 
pregnancy as the trophoblast and luminal epithelial cell microvilli intimately associate 
within exaggerated folds of the endometrium. (E) By d 15, the conceptus may be over a 
meter in length but occupies less than a third of this distance (approximately 10-20 cm) 
within the uterus due to the elaborate architecture of the uterine surface. 
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FIGURE 2.2  A working model representing the uterine environment during conceptus 
elongation and hypothesized actions of interleukin-1 beta 2 (IL-1β2) (See box in Figure 
2.1-D).  By Day 12 of pregnancy, ovarian progesterone has auto down regulated 
progesterone receptors (PGRs) within the uterine luminal (LE) and surface glandular 
epithelium (sGE), decreasing expression of mucin-1, a large glycoprotein, and enhancing 
uterine receptivity.  However, similar to sheep, PGRs remain in pig stroma fibroblast (F) 
cells, deep glandular epithelium (dGE) and myometrium and may produce 
progestamedins that act on PGR negative surface epithelial cells to promote 
establishment of pregnancy. As the pig conceptus elongates over the LE, the trophoblast 
(T) cells release estradiol (E2) and other estrogens as the maternal recognition of 
pregnancy signal. In response to E2, estrogen receptors within the LE can increase 
production of estramedins such as fibroblast growth factor 7 or secreted phosphoprotein 
1, enhancing conceptus development, LE-T adhesion and implantation. Elongating pig 
conceptuses express IL-1β2, a novel IL-1 that are hypothesized to act on the conceptus 
and the adjacent LE through the interleukin-1 receptor type I, activating the transcription 
factor nuclear factor-kappa B (NF-κB) and possibly, the mitogen-activated protein kinase 
(MAPK) and inositol 1, 4,5-triphosphate 3-kinase (IP3K) signaling pathways. Activation 
of NF-κB may increase NF-κB responsive genes such prostaglandin-endoperoxide 
synthase 2 for production of prostaglandins as well as leukemia inhibitory factor (LIF) or 
interleukin-6 (IL-6) that likely bind receptors within the conceptus and LE, promoting 
implantation. Further, by stimulating the release of factors from LE or by passing through 
the LE barrier into the underling stroma, IL-1β2 may influence endometrial leukocytes 
(L) and endothelial (En) cells, altering immune cell function/motility and increasing 
blood vessel permeability, respectively. 
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FIGURE 2.3  An evolving model representing the uterine environment during pig 
conceptus implantation and expression of interferon gamma (IFNγ) and interferon delta 
(IFNδ) (See insert box in Figure 2.1-E). Near d 15 of gestation, pig conceptuses release 
peak concentrations of IFNγ and in lesser amounts, IFNδ, which are proposed to 
synergistically stimulate janus associated kinases and signal transducers and activators of 
transcription (Jak-STAT) signaling pathways and expression of interferon regulatory 
factor 1 (IRF1), a transcriptional activator of classical interferon stimulated genes (ISGs), 
within the adjacent stroma fibroblast cells (F) and deep glandular epithelium (dGE). 
Classical ISGs, up-regulated within the endometrium, are suggested to modulate 
endometrial leukocyte function and endothelial (En) cell activity, thereby, promoting 
immune tolerance to the conceptus and endometrial angiogenesis, respectively. Within 
the luminal epithelium (LE) and probably the surface glandular epithelium (sGE) 
adjacent to the trophoblast, conceptus estrogens up-regulate expression of interferon 
regulatory factor 2 (IRF2), an inhibitor of classical ISGs that can block classical ISGs 
beta 2 microglobulin and MHC class I molecules along the uterine surface, also 
contributing to immune tolerance. Expression of classical ISGs may further be inhibited 
by the presence of surface epithelial ubiquitin-specific protease (USP). Endometrial 
derived progestamedins and conceptus IFNs are proposed to induce and stimulate, 
respectively, non-classical ISGs within the LE/sGE through activation of NF-κB, MAPK 
and IP3K signaling pathways that likely modulate conceptus development, glucose and 
amino acid transport into the lumen, uterine receptivity and attachment of the trophoblast 
(T) during implantation. Between d 15 and 18 of gestation, endometrial interleukin-18 
(IL-18) is released into the uterine lumen and is hypothesized to further stimulate IFNγ 
production by the pig conceptus. 
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CHAPTER THREE 

 

 

ACTIVATION OF THE TRANSCRIPTION FACTOR NUCLEAR 

FACTOR-KAPPA B IN UTERINE LUMINAL EPITHELIAL CELLS BY 

INTERLEUKIN-1 BETA 2: A NOVEL INTERLEUKIN-1 EXPRESSED 

BY THE ELONGATING PIG CONCEPTUS 

 

 

 

Abstract 

 

Conceptus mortality is greatest in mammals during the peri-implantation period, a 

time when conceptuses appose and attach to the uterine surface epithelium while 

releasing proinflammatory molecules. Interleukin-1 beta (IL-1β), a master 

proinflammatory cytokine, is released by the primate, rodent and pig blastocyst during 

the peri-implantation period and is believed to be essential for establishment of 

pregnancy. The gene encoding IL-1β has duplicated in the pig, resulting in a novel gene. 

Preliminary observations indicate that the novel IL-1β is specifically expressed by pig 

conceptuses during the peri-implantation period. To verify this, IL-1β was cloned from 

mRNA isolated from d 12 pig conceptuses and compared with IL-1β cloned from mRNA 

isolated from pig peripheral blood leukocytes (PBL). The pig conceptuses but not PBL 

expressed a novel IL-1β, referred to in this manuscript as interleukin-1 beta 2 (IL-1β2).  
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Porcine endometrium was treated with recombinant porcine IL-1β1, the prototypical 

cytokine, and IL-1β2 proteins. Immunohistochemistry (IHC) and real-time reverse 

transcriptase-polymerase chain reaction (RT-PCR) were used to measure activation of 

nuclear factor-kappa B (NF-κB) and NF-κB-regulated transcripts within the 

endometrium, respectively. Both IL-1β1 and IL-1β2 activated NF-κB in the uterine 

luminal epithelium within 4 h. The NF-κB activation and related gene expression, 

however, were lesser in endometrium treated with IL-1β2 suggesting that the conceptus-

derived cytokine may have reduced activity within the uterus. In conclusion, the peri-

implantation pig conceptus expresses a novel IL-1β that can activate NF-κB within the 

uterine surface epithelium, likely creating a pro-inflammatory microenvironment during 

establishment of pregnancy in the pig.  

 

INTRODUCTION 

 

Implantation is the most-critical stage of pregnancy, during which 25 to 60% of 

conceptuses or pregnancies do not survive (Wilmut et al., 1986; Macklon et al., 2002). 

Inadequate or asynchronous molecular crosstalk between the conceptus and 

endometrium, that includes pro-inflammatory cytokines, is suspected to be a major 

contributor of implantation failure and conceptus mortality that occurs during early 

pregnancy (Simón et al., 1997; Mor et al., 2011; Dekel et al., 2010; Granot et al., 2012).  

Interleukin-1 beta (IL-1β) is a master proinflammatory cytokine. It is released by the 

primate, rodent and pig blastocyst and enhances establishment of pregnancy by 

promoting conceptus attachment to the endometrium and implantation (Choudhuri and 
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Wood, 1993; Tuo et al., 1996; Simón et al., 1998). The interleukin-1 (IL-1) signaling 

system is complex. Together, the IL-1 and IL-1 receptor families consist of twenty-two 

molecules including proinflammatory cytokines [IL-1β and interleukin-1 alpha (IL-1α) 

(collectively referred to as IL-1)], a functional receptor [the IL-1 receptor type I (IL-

1RI)], a decoy receptor [the IL-1 receptor type II (IL-1RII)], an antagonist [the IL-1 

receptor antagonist (IL-1RA)] and an IL-1 receptor accessory protein (IL-1RAP) 

involved in transmembrane signaling (Dinarello, 2011, 2012; Garlanda et al., 2013).  

Both IL-1β and IL-1RA can bind the IL-1RI but only the IL-1β-IL-1RI complex can 

recruit the IL-1RAP (Garlanda et al., 2013). Juxtapositioning of the IL-1RI and IL-1RAP 

toll/interleukin-1 receptor (TIR) domains within the cytoplasm is necessary to initiate a 

cascade of second messenger protein interactions. These interactions activate nuclear 

factor-kappa B (NF-κB), a transcription factor comprised of conserved subunits that 

control innate and adaptive immune responses (Caamaño and Hunter, 2002; Garlanda et 

al., 2013). Upon activation, NF-κB can enter the nucleus and regulate expression of over 

a hundred genes by binding kappa-B sites within the gene promoter (Hayden and Ghosh, 

2012). Endometrial activation of NF-κB at the time of implantation, especially the uterine 

epithelium, may be necessary for establishment of pregnancy in mammals (Laird et al., 

2000; Nakamura et al., 2004; King et al., 2010; Mathew et al., 2011; Geisert et al., 2012). 

The pig conceptus up-regulates expression of IL-1β during the peri-implantation 

period (Tuo et al., 1996; Smith et al., 2001; Ross et al., 2003a, 2003b; Tuggle et al., 

2003) but the function of this cytokine is unknown. At approximately d 11 of pregnancy, 

the pig blastocyst becomes ovoid and then tubular before rapidly elongating into a 

filamentous shape. The change in morphology is believed to maximize contact between 
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the embryo and the uterine surface for fetal-maternal nutrient exchange (Geisert et al., 

1982; Dziuk, 1985; Dantzer et al., 1985; Degrelle et al., 2009). The trophoblasts increase 

expression of IL-1β during elongation so that IL-1β becomes one of the most abundant 

transcripts in the pig conceptus (Smith et al., 2001; Ross et al., 2003b). Once trophoblast 

elongation is complete, expression of the IL-1β decreases 2000-fold (Ross et al., 2003a). 

Pig conceptus IL-1β likely plays a critical role in conceptus elongation and during 

establishment of pregnancy through its effects on the uterine surface epithelium. 

Production of IL-1β by pig conceptuses is temporally associated with increased 

expression of IL-1RI and IL-1RAP within the endometrium as well as activation of NF-

κB in the uterine epithelium adjacent to the conceptus (Ross et al., 2003a; Mathew et al., 

2011). Porcine genomes (wild and domesticated) contain two copies of the IL-1β gene on 

chromosome 3, referred to in this manuscript as pig interleukin-1 beta 1 (IL-1β1) and 

interleukin-1 beta 2 (IL-1β2) (Groenen et al., 2012). The second IL-1β is likely the result 

of a gene duplication and is believed to be unique to the pig (Groenen et al., 2012). Based 

on published cDNA sequences, the original IL-1β sequence (IL-1β1) transcribes the 

prototypical cytokine expressed in immune cells and the novel IL-1β (IL-1β2) is 

transcribed by the pig conceptus during the peri-implantation period.  

In this study, we investigated the IL-1β1/IL-1β2 genomic region, compared pig IL-

1β1 and IL-1β2 transcripts and expressed both proteins in vitro. We then tested their 

biological activity on pig alveolar immune cells and endometrium to assess activation of 

the transcription factor NF-κB. Activation of target genes in endometrium in response to 

each cytokine was also measured.  
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MATERIALS AND METHODS 

 

General Procedures 

Animals. All procedures used in the present study were approved by the University 

of Missouri-Columbia Institutional Animal Care and Use Committee and in accordance 

with specific SSR guidelines and standards. Pigs were either Large White-Landrace 

crossbred or Large White-Chester crossbred. Both gilts and sows were used. When 

artificial insemination (AI) was performed, the pigs were checked for estrus and 

inseminated on the first day of estrus (Day 0) and 1 day later with fresh semen collected 

from a single Large White-Landrace boar. Pigs were sacrificed with either Euthasol 

(Virbac Animal Health) or by electric stunning followed by exsanguination (University 

of Missouri abattoir). To collect elongated pig conceptuses, gilts were sacrificed 12 days 

after AI and the uteri were removed and placed on ice before being flushed with 20 mL 

of ice cold PBS (Gibco, Life Technologies). 

 

RNA isolation. Conceptus and adult tissues were collected, snap frozen in liquid 

nitrogen and stored at -80°C until RNA extraction. One mL of TRIzol reagent 

(Invitrogen; Life Technologies) was added to the tissue (< 100 mg) and total cellular 

RNA was isolated following the manufacture’s recommendations. Peripheral blood 

leukocyte (PBL) RNA was extracted using the QIAamp RNA Blood Mini extraction kit 

(Qiagen). The integrity of RNA was determined by calculating the ratio of absorbance at 

260 nm and 280 nm (NanoDrop ND-1000, NanoDrop Technologies), followed by gel 
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electrophoresis (0.8% agarose gel in 0.09 M Tris-borate and 0.002 M EDTA buffer with 

0.5 μg/mL ethidium bromide). The RNA was stored at -80°C. 

 

Real-time PCR. The real-time RT-PCR were prepared with 1 µM concentrations of 

both forward and reverse primers (Table 1), sample cDNA, (see individual experiments 

for cDNA synthesis) and Power SYBR® Green (Applied Biosystems). All samples were 

run in triplicate and within a single plate. High, medium and low control samples 

(sequential 1:4 dilutions) of pooled cDNA were run in triplicate and used as a standard. 

Each PCR 96-well plate contained a “no template control” (water substituted for cDNA 

in the reaction) to ensure that there was no amplification in samples without cDNA. The 

PCR were performed and fluorescence quantified by using the ABI Prism 7500 Sequence 

Detector (Applied Biosystems). Unless specified, standard thermocycler settings 

consisted of an initial temperature of 50°C of 2 min, a polymerase activation temperature 

of 95°C for 10 min followed by 40 PCR cycles consisting of 2 stages: 1) melting at 95°C 

for 15 sec and 2) annealing and extension at 60°C for 1 min. Analyses of amplification 

plots were performed by the Sequence Detection Software (Applied Biosystems). Data 

from the serial dilutions of the control sample were used to calculate the amplification 

efficiencies for the PCR targets (Table 1). The equation used for the efficiency 

calculation was efficiency = 10(-1/slope). The slope refers to the slope of a linear plot of CT 

values achieved by the high, medium and low-pooled cDNA standards versus the log of 

the dilution. Fold change differences for the respective samples were calculated using the 

equation: fold change = efficiency (mean medium control C
T

 - mean sample C
T

) where the medium 

control was the same sample in each plate (i.e., an internal control standard for between 
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plate normalization). DNA sequencing was done at the University of Missouri DNA Core 

facility. 

 

Experiments 

Cloning IL-1β1 and IL-1β2 cDNA  

RNA was isolated from Day 12 conceptuses (see general procedures). For PBL 

RNA, 10 mL of blood was collected from the jugular vein and into vacutainer blood 

collection tubes containing acid citrate dextrose (ACD) solution A (Becton, Dickinson 

and Company) (n=4 sows). Blood was placed on ice and within 30 min RNA was 

isolated from PBL (see general procedures). For cDNA, 1 to 3 μg of RNA was reverse 

transcribed using the High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems).  

Forward and reverse primers were designed to amplify full protein-coding length 

IL-1β1 and IL-1β2 transcript sequences from PBL and conceptus cDNA, respectively 

(Fig. 3.1). The primer sequences were derived from pig genomic sequences and 

expressed sequence tags (EST) within GenBank of NCBI (National Center for 

Biotechnology Information; Bethesda, MD). The forward primer sequences were 5′-

CAGCCAGTCTTCATTGTTCAGGTT-3′ for IL-1β1 and 5′-

AGGACGGCATTCTGAAGGAA-3′ for IL-1β2. A common reverse primer was used 5′-

ATCTAGGGAAGACAGCTGGGCAT-3′. The PCR reactions (20 μL) were performed 

using the Jumpstart REDtaq DNA polymerase (Sigma-Aldrich). The thermocycler 

settings for PCR consisted of 34 cycles of 30 sec melting and annealing at 94°C and 

60°C, respectively, followed by 1 min extension at 72°C (Eppendorf Mastercycler®). 
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The PCR products for IL-1β1 and IL-1β2 were ligated into the pCR 2.1-TOPO cloning 

vector using the TOPO TA cloning Kit (Invitrogen, Life Technologies). DH5α E. coli 

cells were transformed with the ligated vectors following the manufacture’s instructions. 

Three and four cDNA clones for IL-1β1 and IL-1β2, respectively, were DNA sequenced 

and aligned by using the BLAST program of NCBI against pig genomic sequences and 

EST. The IL-1β1 and IL-1β2 cDNA and corresponding amino acid sequences were 

aligned against one another using NCBI’s blastn and blastp programs to determine 

percent homology (Fig. 3.1 and 3.2). The percentage of identical amino acids within the 

pro-region was compared with the percentage of amino acids in the mature-region of IL-

1β1 and IL-1β2 using the Chi-square test. Significance was declared at P < 0.05.  

 

Ribonuclease Protection Assays (RPA) 

A ribonuclease protection assay (RPA) was used to differentially detect IL-1β1 

and IL-1β2 transcripts in PBL and conceptus RNA. Two RPA probes were designed to 

specifically anneal to either IL-1β1 or IL-1β2 within the 5’ region of the mRNA (Fig. 

3.1). Forward and reverse primers were designed to PCR amplify 196 and 205 bp of the 

5’ region of IL-1β1 and IL-1β2, respectively.  Forward primer sequences were 5′-

CAGCCAGTCTTCATTGTTCAGGTT-3′ for IL-1β1 and 5′-

AGGACGGCATTCTGAAGGAA-3′ for IL-1β2. A common reverse primer was used 5′-

AGATTTGCAGCTGGATGCTC-3′. The PCR reactions were identical to the reactions 

described previously. The PCR products were ligated into the pCR 4-TOPO vector by 

using the TOPO TA cloning kit (Invitrogen, Life Technologies). The ligated vectors were 

cloned into TOP10 E. coli cells following the manufactures instructions. The IL-1β1 and 
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IL-1β2 plasmids were amplified, isolated, and then DNA sequenced to verify the 

respective sequences. Plasmids were linearized and the 32P labeled-antisense RNA probes 

were synthesized from the cloned sequences using the in vitro Transcription MAXIscript 

kit (Ambion, Life Technologies) following the manufacture’s recommendations. The 

radiolabelled RNA probes were used for the RPA by using the RPA III kit (Ambion; Life 

Technologies) and following the manufacturer’s instructions.  Twenty μg of total Torula 

yeast (hybridization negative control) as well as RNA isolated from PBL and elongating 

conceptuses were tested. A 32P labeled RNA Century Marker (100-500 bp; Life 

Technologies), undigested probe and samples were electrophoresed for 1 h at 250V 

through a 6% polyacrylamide gel. The gel was dried and then exposed to autoradiography 

film (Eastern Kodak Company) for short or extended periods of time to visualize intense 

as well as faint signals. Composite images from a single experiment were created using 

the Microsoft Office computer program.   

To measure expression for IL-1β1 and IL-1β2 in pig conceptuses and across a 

variety of adult tissues, RNA was extracted and cDNA synthesized (see general 

procedures) from d 12 elongated pig conceptuses, esophageal smooth muscle, central 

nervous system [brain (frontal lobe) and spinal cord], whole ovary, endometrium, adipose 

tissue, skin, thyroid gland, hypothalamus, liver, lung, heart, spleen, kidney and small 

intestine. Transcripts for IL-1β1 and IL-1β2 were measured by real time RT-PCR using 

the same primer sequences used to clone peripheral blood leukocyte IL-1β1 and pig 

conceptus IL-1β2 cDNA (see above). 

 

Preparation of Protein Expression Plasmids  
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Forward and reverse primers were designed to amplify cDNA sequences 

corresponding to pro-IL-1β1 and pro-IL-1β2 proteins from sequences previously cloned 

in the pCR 2.1-TOPO plasmid (above) (Fig. 3.1). The forward primers were designed 

with a four-bp extension at the 5’ end to allow for ligation into the expression plasmid 

(Champion pET Directional TOPO Expression Kit; Invitrogen, Life Technologies). The 

forward primer sequences were 5′- CACCATGGCCATAGTACCTGAACCC-3′ and 5′- 

CACCATGGCCACGGTACCTGAACCT-3′ for pro-IL-1β1 and pro-IL-1β2, 

respectively. A common reverse primer was used (5′-

TTAGGGAGAGAGGACTTCCATGGT-3′). To amplify the pro-sequences, 1 ng of the 

pCR 2.1-TOPO plasmid DNA and Jumpstart REDtaq DNA polymerase (Sigma-Aldrich) 

was used in a 20 μL reaction. For both pro-IL-1β1 and pro-IL-1β2, the thermocycler 

settings consisted of 40 cycles of 30 sec melting and annealing at 98°C and 60°C, 

respectively, followed by a 1 min extension at 72°C. The PCR products were DNA 

sequenced to verify the correct sequences. Products were then ligated into the pET100/D-

TOPO expression plasmid supplied in the Champion Kit following the manufacturer’s 

recommendations.  

The previously isolated pro-IL-1β1 and pro-IL-1β2 pET100/D-TOPO expression 

plasmids were used as templates to create the mat-IL-1β1 and mat-IL-1β2 expression 

plasmids. The forward primer sequences were 5′-

GCCAACGTGCAGTCTATGGAGTGC-3′ and 5′-

GCCACCCCCGTGCAGTCCGTGGAC -3′ for the mat-IL-1β1 and mat-IL-1β2 

expression plasmid, respectively. A common reverse primer, corresponding to base pairs 

(bp) 381-404 of the pET100/D-TOPO expression plasmid, was used (5′-
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GGTGAAGGGATGATCCTTATCGTC-3′). The PCR products were purified using the 

QIAquick PCR Purification Kit (Qiagen) and the blunt ends were phosphorylated and 

ligated together. TOP10 E. coli cells were transformed with the four (pro-IL-1β1, pro-IL-

1β2, mat-IL-1β1 and mat-IL-1β2) expression vectors and plated on LB agar plates 

containing ampicillin (100 μg/mL). The cells were incubated overnight at 37°C before 

single colonies were picked and grown overnight in 4 mL of LB containing ampicillin 

(100 μg/mL), while shaking at 35°C. The plasmid DNA was then isolated, phenol-

chloroform extracted and DNA sequenced to verify correct plasmid sequence. 

 

Expression of IL-1β1 and IL-1β2 Recombinant Proteins 

Recombinant proteins were expressed and purified according to instructions 

provided by the Champion pET Directional TOPO (Invitrogen, Life Technologies) and 

Qiagen Ni-NTA Fast Start (Qiagen) kits. A 50 μL aliquot of BL21 Star E. coli cells was 

transformed with 5 to 10 ng of expression plasmid DNA. An expression control supplied 

by the Champion kit was used to express beta galactosidase (BGal). After transformation, 

250 μL SOC medium was added to each E. coli aliquot and cells were incubated, while 

shaking, for 30 min at 37°C. The entire culture was then added to 10 mL of LB (100 

μg/mL of ampicillin) and cells were incubated overnight, while shaking, at 37°C. The 

next day, 250 mL of LB (ampicillin; 100μg/mL) was inoculated with the 10 mL culture 

and incubated, while shaking, for 60 min at 37°C. To induce expression, IPTG was added 

to each culture at a final concentration of 1 mM and cells were allowed to incubate, while 

shaking, for 5 h at 37°C. After induction, cells were harvested by centrifugation at 4000 x 

g for 10 min and pellets were frozen at -20°C. Cell pellets were thawed and lysed and the 
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soluble proteins captured using the Ni-NTA column (Qiagen). To verify protein 

expression, the eluted proteins were electrophoresed through a NuPAGE 4-12% Bis-Tris-

Gel (Invitrogen; Life Technologies) at 200V and 125mA for 60 min and stained with 

coomassie blue. Western blots, using the advanced western blotting detection Kit (GE 

Healthcare Life Sciences) and antibodies against porcine IL-1β (PP425; Thermo 

Scientific) and His Tag (A00174; GenScript), were performed to verify expression of IL-

1β proteins. Dialysis of the eluted protein solution was used to remove small 

contaminants (Pierce; Thermo Scientific) and proteins were electrophoresed and stained 

with coomassie blue for visualization. A BCA assay (Pierce; Thermo Scientific) was 

conducted to measure the concentration of BGal (control protein) and IL-1β proteins. 

Glycerol (Sigma-Aldrich) was then added to the protein at a 1:2 ratio before freezing at -

20°C.  

 

Treating Alveolar Cells with Recombinant IL-1β1 and IL-1β2  

Alveolar cells were collected by lung lavage with ice cold PBS (Gibco, Life 

Technologies) from a crossbred gilt immediately after euthanasia. The trachea was 

exposed after a ventral incision through the neck. Approximately 5 cm of rubber tubing 

with an outside diameter of 20 mm and an inner diameter of 10 mm was fed caudally 

between two tracheal rings into the trachea. The trachea was fastened to the tubing before 

approximately 1.5 L of PBS was forced into the lungs using a syringe attached to a 

stopcock. The PBS backflow containing alveolar cells was collected into a sterile 

container and placed on ice. Cells were filtered through a Falcon 100 μm cell strainer 

(DB Falcon) and centrifuged at 2000 x g for 10 min. The cells were re-suspended in PBS 
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and seeded onto sterile covers slips within six well plates. The alveolar cells where 

allowed to adhere to the coverslips for 2 h at 37°C in an atmosphere of 5 % CO2 in air. 

Afterwards, cells were washed with PBS and incubated for an additional 6 h in DMEM 

(Gibco, Life Technologies) with 1% FBS before new medium was added containing 

recombinant proteins. Cells were either left untreated (DMEM/FBS alone; Non-treated; 

negative control), or treated with LPS (1 μg/mL; positive control), recombinant beta 

galactosidase (BGal; expression/protein negative control), human mature IL-1β (human 

mat-IL-1β; rhil-1b 10319-mm; InvivoGen), pig pro-IL-1β1 (pro-IL-1β1), pig pro-IL-1β2 

(pro-IL-1β2), pig mature IL-1β1 (mat-IL-1β1) or pig mature IL-1β2 (mat-IL-1β2) 

cytokines (50 ng/mL) in 3 mL of DMEM/FBS for 4 h at 37°C and 5% carbon dioxide in 

air. Experiments were done in duplicate.  

Alveolar cells were washed with PBS and fixed in 10% buffered formalin 

phosphate for 10 min following treatment. The cells were then permeated with 0.1% 

Triton X-100 (Sigma) in PBS for 10 min and blocked with 5% goat serum in PBS for 1 h 

at 37°C. After blocking, a rabbit anti-human primary antibody, directed against the 

RelA/p65 subunit of NF-κB (sc-372, Santa Cruz Biotechnology), was added to the cells 

at a 1:500 dilution (0.4 μg/mL) in PBS containing 1.5% goat serum. The cells were 

incubated overnight in the antibody solution at 4°C. The next day, cells were washed 

with PBS before a fluorescently labeled (Alexa Flour 488), goat anti-rabbit secondary 

antibody (Life Technologies) was added to the cells at a 1:400 dilution (5 µg/mL) in PBS 

(1.5% goat serum) for 45 min at room temperature. Negative control slides were prepared 

using pre-immune rabbit serum in place of the primary antibody or in the absence of the 

secondary antibody. To localize alveolar cell nuclei, DNA was stained with DAPI (300 
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nM; Molecular Probes) in PBS for 5 min. The coverslips, containing alveolar cells, were 

then washed with PBS before they were mounted onto frosted white microscope slides 

with Mowiol. Treatments applied to specific cover slips were blinded and pictures of the 

cells were taken in nine random locations on the slide at 200 and 400 X magnification by 

using a microscope equipped with fluorescence illumination.  

 

Treating Porcine Endometrium with Recombinant IL-1β Cytokines 

Endometrium was collected from three gilts on day 12 after estrus. The 

endometrium was dissected away from the myometrium and washed with ice cold PBS 

containing 2% Antibiotic-Antimycotic (ABAM; Gibco, Life Technologies). 

Approximately 250 mg of endometrial tissue was then incubated in six well plates at 

37°C for 4 h in a modified MEM [1% MEM Vitamin Solution (Gibco, Life 

Technologies), 1% ABAM, 1% Non-Essential Amino Acids (NEAA; Gibco, Life 

Technologies) and 16.6 mM of D-(+)-Glucose (Sigma) in MEM-L-Glutamine (Gibco; 

Life Technologies)] while on a rocking device in an atmosphere consisting of 47.5% 

nitrogen, 5% carbon dioxide, 21% oxygen and balanced air (Basha et al., 1980; Green et 

al., 1998). After incubation, spent medium was removed and the tissue was left untreated 

in three wells (modified MEM, Non-treated; negative control; well one, two and three) or 

treated with a low, medium or high dose of LPS (1, 10 or 100 μg/mL; positive control), 

BGal (expression negative control), human mat-IL-1β, pro-IL-1β1, pro-IL-1β2, mat-IL-

1β1, or mat-IL-1β2 at either 10, 100 or 1000 ng/mL in 3 mL of modified MEM at 37°C 

for 4 h. The experiment was done in duplicate for each gilt. The tissue remained on a 

rocking device while under positive gas pressure during treatment (see above). After 
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treatment, tissues from each well were fixed in 10% buffered formalin phosphate for IHC 

or snap frozen in liquid nitrogen before storage -80°C for RNA extraction. 

 

Immunohistochemistry (IHC) for Uterine Epithelial NF-κB 

The following protocol was previously described by our laboratory (Mathew et 

al., 2011). Formalin-fixed endometrium was sectioned (5 µm) and mounted onto frosted 

white microscope slides before the tissue was deparaffinized and rehydrated. Epitope 

retrieval was achieved by boiling slides for 6 min in 0.01 M sodium citrate buffer. Slides 

were allowed to cool for 45 min before they were incubated overnight at room 

temperature in 500 µL of a rabbit anti-human polyclonal antibody, directed against the 

p65 subunit of NF-κB (sc-372, Santa Cruz Biotechnology), diluted 1:100 in PAT 

[0.001% Tween-20 and 0.001% sodium azide in 1.0% PBS] solution (2 µg/mL). The next 

day, slides were placed in PBS for 30 min before adding 500 μL of a fluorescent labeled 

(Alexa Flour 488), goat anti-rabbit secondary antibody (A11034, Life Technologies) at a 

1:400 dilution in PAT solution (5 µg/mL). Slides were incubated at room temperature 

with the secondary antibody for 70 min before re-submerging them in PBS. The 

secondary antibody/PAT solution was incubated with a washed bovine liver powder for 1 

h at 37°C to reduce background fluorescence. Cover slips were then mounted over the 

uterine tissue with Mowiol and the slides were then refrigerated at 4°C overnight in the 

dark. Two negative control slides were made using pre-immune rabbit serum in place of 

the primary antibody or PBS in place of the second antibody. Cell DNA was stained with 

DAPI (D-1306, Life Technologies; Molecular Probes) in PBS for 15 min to localize 
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uterine LE cell nuclei. Treatments on the slide were blinded and images were taken at a 

200 and 400 X magnification.  

 

Evaluation of NF-κB Activation  

Immunofluorescence was used to localize NF-κB in porcine alveolar and uterine 

LE cells treated with LPS or recombinant cytokines. NF-κB was considered activated 

when the cell nuclear fluorescence was equal to or greater than that of the cytoplasm. For 

slides containing alveolar cells, nine, 200 X images were taken at random locations in the 

slide and the NIH Image J computer program was used to count the number of activated 

cells within the total number of cells in the image (percent of activated cells). For 400 X 

images of alveolar and uterine LE cells, the intensity of fluorescence within the nucleus 

and cytoplasm for individual cells was measured using Image J. Therefore; a nuclear vs. 

cytoplasmic fluorescent ratio (intensity of activation, IOA) was calculated.  

 

Endometrial RNA Isolation, Reverse Transcription and Real Time RT-PCR 

A 100 mg sample of endometrium was used for total cellular RNA isolation (see 

general procedures). The RNA was stored at -80°C before reverse transcription of 5 μg of 

total cellular RNA to cDNA using the High Capacity cDNA Reverse Transcription kit 

(Applied Biosystems). Primer sets for prostaglandin-endoperoxidase synthase 2 (PTGS2), 

salivary lipocalin 1 (SAL1), integrin beta 3 (β3), integrin alpha v (AV), IL-1β1, IL-1RI, 

inhibitor of nuclear factor-kappa B alpha (IκBα), ribosomal protein L7 (RPL7) and beta 

actin (ACTβ) were designed based on porcine nucleotide sequences (Table 3.1). The 

cDNA was diluted 1:10 and a PCR gradient was developed for each primer set. The real-
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time RT-PCR were prepared with 1 µL (10 ng RNA equivalent) of the diluted cDNA 

sample. Thermocycler settings were the same as described in the general procedures for 

all amplifications with the exception of IκBα and PTGS2.  For IκBα, annealing was 

modified to 67°C and for PTGS2, annealing and extension was modified to 67°C for 40 

sec, respectively. The products were DNA sequenced to verify amplification of the target 

sequence. The analysis of gene expression by RT-PCR was performed as described in the 

general methods section. Fold changes in gene expression were normalized to the 

geometric mean of control genes RPL7 and ACTβ.  

 

Statistical Analysis of NF-κB Activation and Endometrial Gene Expression 

 A general linear model (GLM) procedure within the Statistical Analysis System 

(SAS; SAS Institute, Inc.) was used to analyze the alveolar cell NF-κB activation data. 

For the “intensity of activation (IOA)” and “percent of activated cells” the model 

statement included an effect of treatment. The “percent of activated cells” data were rank-

transformed to control for inherent variation. Significance was declared at P < 0.05. A 

Duncan’s multiple range test was used (P = 0.05) to test for differences between 

treatment means for both non-transformed and transformed data. A mixed models 

procedure (PROC MIXED) within SAS was used to analyze the IOA in uterine LE cells 

and normalized fold changes in total endometrial gene expression. For the IOA and gene 

expression data, the model statement included an effect of treatment, concentration and 

the treatment by concentration interaction. A Bartlett’s test was used within SAS to test 

for homogeneity of the variance for the expression data. When heterogeneous variance 

was encountered, the data were log 10 transformed. Data are presented as the non-
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transformed least squares means (LSM) ± standard error of the least square means 

(SEM). A significant difference was declared at P < 0.05.    

 

RESULTS 

 

Porcine Peripheral Blood Leukocyte IL-1β1 and Conceptus IL-1β2 Homology 

Porcine PBL IL-1β1 and conceptus IL-1β2 cDNAs were 984 and 977 bp in length, 

respectively. The sequences were 93% identical at the nucleic acid level (Fig. 3.1). The 

predicted amino acid sequences for IL-1β1 and IL-1β2 were similar in length (267 amino 

acids; Fig. 3.2) and 85% identical. Within the pro-region, the amino acid sequences were 

78% identical and less homologous (P < 0.01) when compared with the mature region of 

the peptide (92% identical). Homology was 100% from amino acid 204 to the end of the 

sequences (amino acid 267; Fig. 3.2). 

 

Expression of IL-1β1 and IL-1β2 

Ribonuclease protection assays detected IL-1β1 in PBL but not in elongated pig 

conceptus RNA (Fig. 3.3A). The opposite was true for IL-1β2, where transcripts for IL-

1β2 could be detected in pig conceptus but not in PBL RNA (Fig. 3.3B). RT-PCR 

analysis for IL-1β1 and IL-1β2 in the central nervous system, ovary, endometrium, 

adipose tissue, thyroid, hypothalamus, liver, small intestine, spleen, kidney, lung, smooth 

muscle and heart confirmed that IL-1β1 was expressed in all adult tissues but IL-1β2 was 

only expressed in the conceptus (data not shown).  
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Activation of NF-κB in alveolar cells 

Treating alveolar cells with LPS and recombinant IL-1 cytokines increased the 

percentage of activated cells (transformed data; Treatment; P < 0.05) and their intensity 

of NF-κB activation (IOA; Treatment; P < 0.001; Fig. 3.4 and Fig. 3.5A and B).  

Alveolar cells treated with mat-IL-1β2 and LPS had the greatest percentage of activated 

cells and greatest IOA when compared with all other treatments (P < 0.05). In terms of 

percent of cells activated, all other treatments were similar.  

 

Activation of NF-κB in uterine luminal epithelial cells 

Treating porcine endometrium with increasing doses of LPS and recombinant IL-

1 cytokines for 4 h increased the uterine LE cell intensity of NF-κB activation (IOA) and 

the effect depended on treatment and dose concentration (Treatment x Concentration 

interaction, P < 0.01; Fig. 3.6A and B). Across all doses, endometrium treated with pig 

mat-IL-1β1, LPS, human mat-IL-1β, and mat-IL-1β2 had a greater IOA in LE cells 

compared with Non-treated and BGal-treated endometrium (P < 0.05, Fig. 3.6A and B). 

Tissue treated with pig mat-IL-1β1 had the greatest uterine LE-IOA (P < 0.05, Fig. 3.6A 

and B).  

 

Endometrial transcripts in response to recombinant IL-1 cytokines  

IL-1β1 and IL-1RI.  The endometrial IL-1β1 expression data were highly variable; 

therefore the data were log 10 transformed to eliminate heterogeneous variance. There 

was an effect of treatment (P < 0.001) and concentration (P < 0.001) on endometrial IL-

1β1 expression (Table 3.2). Expression of IL-1β1 increased with concentration (data not 
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shown). Treating endometrium with LPS for 4 h had the greatest affect on IL-1β1, 

resulting in 3-fold greater expression over all other treatments (P < 0.001; Table 3.2). 

Treating endometrium with increasing concentrations of LPS or mat-IL-1β2 affected total 

endometrial expression of IL-1β1. Expression of IL-1βI was greater in endometrium 

treated with a high concentration when compared to endometrium treated with a medium 

concentration of mat-IL-1β2 (P < 0.05; data not shown). A similar but a less significant 

effect was observed for LPS (P = 0.0901; data not shown). Treating endometrium with 

LPS or recombinant IL-1 cytokines for 4 h had no affect on endometrial IL-1RI.  

  

PTGS2 and IκBα. Treating endometrium with LPS and recombinant IL-1 cytokines 

affected total endometrial PTGS2 and IκBα expression within 4 h. The PTGS2 expression 

data were highly variable and therefore, the data was log 10 transformed. For endometrial 

PTGS2, there was an effect of treatment (P < 0.001; Table 3.2). Endometrium treated 

with LPS and pig mat-IL-1β1 had a greater abundance of PTGS2 transcripts when 

compared with all other treatments (P < 0.05; all comparisons; Table 3.2). There was no 

difference in BGal control and mat-IL-1β2 treated endometrium for PTGS2 expression. 

However, treating endometrium with increasing concentrations of mat-IL-1β2 affected 

total endometrial expression of PTGS2. Expression of PTGS2 was greater in 

endometrium treated with a high concentration when compared with endometrium treated 

with a low or medium concentration of mat-IL-1β2 (P < 0.05; Figure 3.7D).   

There was an effect of treatment (P < 0.001) and concentration (P < 0.001) on 

endometrial IκBα (Table 3.2). The IκBα increased with concentration (data not shown). 

Endometrium treated with LPS had greater IκBα expression when compared with all 
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other treatments (P < 0.001). Endometrium treated with pig mat-IL-1β1 had greater IκBα 

expression compared with control (BGal) treated endometrium (P < 0.001; Table 3.2). 

Similar to PTGS2, there was not a significant difference in IκBα expression between 

BGal and mat-IL-1β2 treated endometrium. However, treating endometrium with 

increasing concentrations of LPS or mat-IL-1β2 affected total endometrial expression of 

IκBα. In endometrium treated with LPS, expression of IκBα increased with concentration 

(1 μg/mL compared to 100 μg/mL, P < 0.05; Fig. 3.7E). Similar to PTGS2, transcripts for 

IκBα were greater in endometrium treated with a high concentration when compared with 

endometrium treated with a low or medium concentration of mat-IL-1β2 (P = 0.0591 and 

P < 0.05, respectively; Fig. 3.7H). 

 

β3, αV and SAL1.  Treating endometrium with LPS and recombinant IL-1 cytokines 

affected total endometrial β3 but not αV integrin expression within 4 h of treatment. 

There was an effect of treatment (P < 0.001) and concentration (P < 0.01) on endometrial 

β3 (Table 3.2). The β3 increased with concentration (data not shown). Compared with all 

other treatments, endometrium treated with pig mat-IL-1β1 had the greatest β3 expression 

(P < 0.01; Table 3.2). Neither pro nor mature IL-1β2 had an effect on endometrial β3. 

Treating endometrium with increasing concentrations of mat-IL-1β1 affected total 

endometrial expression of β3. Expression of β3 was greater in endometrium treated with 

a medium concentration when compared to endometrium treated with a low or a high 

concentration of mat-IL-1β1 (P < 0.01 and P = 0.0598, respectively; Fig. 3.7K). There 

was no effect of treatment or concentration on endometrial SAL1.  
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DISCUSSION 

 

We tested the capacity of IL-1β2, a novel pig conceptus IL-1, to activate NF-κB 

within the uterine LE. Major findings were that 1) IL-1β2, rather than IL-1β1, is 

expressed by the elongating pig conceptus on d 12 of development; 2) IL-1β2 is not 

expressed by pig blood leukocytes or other adult tissues 3) recombinant IL-1β2 can 

activate NF-κB in pig alveolar macrophages and uterine surface epithelium, in what 

would be adjacent to the elongating pig conceptus, and 4) within pig endometrium, IL-

1β2 may have reduced activity compared with blood leukocyte IL-1β1. Similar to the 

primate and rodent conceptus, we report that elongating pig conceptuses express an IL-1β 

that can directly affect the endometrium by activating NF-κB within the uterine surface 

epithelium (Simón et al., 1998; King et al., 2010). Activation of NF-κB within the uterine 

epithelium may enhance uterine receptivity and development of the early pig conceptus 

during establishment of pregnancy.  

Interleukin-1 beta is a master proinflammatory cytokine released by blood 

monocytes, macrophages, skin dendritic cells, and brain microglia that can modulate 

innate and adaptive immune processes (Sims and Smith, 2010; Garlanda et al., 2013). 

During infection, IL-1β acts as an endogenous pyrogen, inducing fever that likely 

stimulates leukocyte proliferation and migration (Boron and Boulpaep, 2009; Sims and 

Smith, 2010; Garlanda et al., 2013). When released by macrophages onto blood vessels, 
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IL-1β increases endothelial cell adhesion molecule expression and permeability, thus 

allowing peripheral blood leukocytes to bind, extravasate and migrate into infected 

tissues (Dinarello, 1996; 2005; Dunne, 2003). IL-1β, however, is pleotropic when bound 

to the IL-1RI and can influence the biology of many different cell types including those 

involved in mammalian reproduction. For instance, IL-1β is secreted by the primate, 

rodent and pig blastocyst, and is believed to initiate communication between the 

conceptus and endometrium for implantation. Interleukin-1 beta is thought to promote 

conceptus development through an up-regulation of uterine epithelial adhesion 

molecules, trophoblast invasion, vascular permeability and endometrial leukocyte activity 

(Librach et al., 1994; Barañao et al., 1997; Simón et al., 1998; Marions and Danielsson, 

1999; Ross et al., 2003a;).  

 Vandenbroeck et al. (1993) were the first to suggest that an alternate IL-1β 

sequence existed within the pig genome. Later, Tuo et al. (1996) detected expression of 

an IL-1β in elongating pig conceptus, a study that was followed up by Ross et al. (2003a) 

who suggested that the pig conceptus expressed an alternate IL-1β transcript. Sequencing 

and assembly of the porcine genome has confirmed the presence of a second IL-1β gene, 

unique to pig (Groenen et al., 2012). The RPA (Fig. 3) and RT-PCR data support the 

conclusion that pig conceptuses express this unique form of IL-1β, a gene that we call 

embryonic IL-1β or IL-1β2. During these experiments, we could not detect expression of 

IL-1β2 in blood leukocytes or adult tissues suggesting that expression of IL-1β2 may be 

exclusive to the pig conceptus.  

The IL-1β1/IL-1β2 genomic region in pigs has not been completely sequenced 

perhaps because the two highly homologous sequences make sequencing assembly 
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difficult. The gene encoding IL-1β2 appears to be a duplication of IL-1β1. Both genes 

consist of seven exons and transcribe nucleic acid sequences that are 93% similar (Fig. 

3.1). Compared with IL-1β1, a gene that spans nearly 7kb, IL-1β2 has an insertion and 

two deletions of genomic sequence within in its original proximal promoter region (Fig. 

3.8).  As a result, the IL-1β2 gene spans approximately 16.5 kb; transcribing an alternate 

exon one that is further up-stream of exon two when compared with IL-1β1. 

Reconfiguration of the IL-1β2 promoter region may have changed its transcriptional 

regulation. This could partially explain why IL-1β2 is expressed by pig conceptuses but 

not by leukocytes or other adult tissues that commonly express IL-1β1. Comparison of 

full length IL-1β1 and IL-1β2 cDNA revealed that the 5’ region is the least homologous, 

particularly within exon one (Fig. 3.1), making it relatively easy to discriminate between 

the two genes during RNA or DNA analysis (Fig. 3.3).  

Interleukin-1 beta mRNA are first translated into pro-proteins that are later 

cleaved by caspase-1 (CASP1), a protease, into mature functional cytokines. Like pro-IL-

1β1 cloned from pig blood leukocytes, the pig conceptus IL-1β2 cDNA sequence encodes 

a 267 amino acid protein with a predicted molecular weight (MW) of ~30 kDa. When we 

compared the pro-IL-1β1 and pro-IL-1β2 protein sequences, they were 85% identical 

(Fig. 3.2). Based on human IL-1β protein sequences and published pig sequences within 

GenBank, CASP1 cleaves the pro-region of pig IL-1β1 in two sequential locations (Asp27 

and Gly28 followed by Asp114 and Ala115), forming a mature, functional, cytokine with a 

MW of ~17.5 kDa (Hailey et al., 2009; Fig. 3.2). These amino acids are conserved within 

pro-IL-1β2 and translation of the “mature” IL-1β2 sequence corresponds to a similar MW 

(17.5 kDa). However, a number of amino acids differed between pig pro-IL-1β1 and pro-
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IL-1β2 immediately upstream of the second protease cleavage site. A proline has also 

been inserted two amino acids downstream of this location in IL-1β2. Based on these 

differences, classical CASP1 activity may not be the same for these two cytokines and/or 

other proteases may be involved in the processing of pro-IL-1β2 (Katebi et al., 2010). 

Indeed, human pro-IL-1β can be cleaved by proteases other than CASP1 (Dinarello, 

1996; Coeshott et al., 1999; Netea et al., 2010; Dinarello, 2011). When we compared the 

pro and mature regions of IL-1β1 and IL-1β2 based on classic CASP1 activity, the 

cytokines were less homologous within the pro (78%) and more homologous within 

mature (92%) region of the proteins (Fig. 3.2). This was not surprising as all amino acids 

involved in binding and activation of the IL-1RI are located within the mature region of 

IL-1β. Interestingly, compared with mature IL-1β1, there were two non-conserved amino 

acid substitutions in IL-1β2 (amino acids 129 and 139) that are believed to be involved in 

IL-1RI binding based on human IL-1β sequences. These substitutions include exchanges 

of a histidine and methionine residues (positively charged and hydrophobic side chains, 

respectively) with negatively charged glutamate residues (Fig. 3.2). When Katebi et al. 

(2010) compared the computationally predicted protein structure of IL-1β2 with IL-1β1 

they concluded that amino acid substitutions within this region could affect the activity of 

IL-1β2.  

 Maximal expression of IL-1RI and IL-1RAP in pig endometrium is temporally 

associated with conceptus elongation and expression of IL-1β2 (Tuo et al., 1996; Ross et 

al., 2003a, 2003b). Similar to IL-1β in humans and mice, binding of IL-1β2 to 

endometrial IL-1R1 may prepare the uterus for implantation by activating NF-κB and 

modulating endometrial gene expression. Within the endometrium, Ross et al. (2010) 
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detected an increase in mRNA for NF-κB1 and p65 subunits of NF-κB between d 5 and 

15 of the estrous cycle and pregnancy that was temporally associated with implantation. 

Using IHC, they detected greater nuclear localization (activation) of the p65 subunit of 

NF-κB within the LE on d 12 and 13 of pregnancy compared with the estrous cycle. The 

activation of NF-κB was temporally associated with conceptus expression of IL-1β2 

(Ross et al., 2010). In the present study, treating pig endometrium with increasing 

concentrations of mat-IL-1β1 or mat-IL-1β2 activated the p65 subunit of NF-κB in the 

uterine epithelium within 4 h (Fig. 3.6A and B). Activation of NF-κB within the uterine 

LE was greatest in response to mat-IL-1β1, indicating that this cytokine has greater 

proinflammatory activity within the endometrium. Although we did not specifically 

measure activation within the glandular epithelium, the number of cells with nuclear NF-

κB appeared to decrease from the surface epithelium to the deeper glandular epithelium 

in response to the mature cytokines (data not shown). A similar response was observed 

by Mathew et al. (2011) who detected activation of NF-κB in d 12 pregnant pig uterine 

epithelium specifically adjacent to elongating pig conceptuses. 

We measured transcripts that are regulated by IL-1β or NF-κB in the mammalian 

endometrium. Of these, PTGS2 (also known as COX2; a rate-limiting enzyme involved 

the synthesis of prostaglandins) is known to increase within the mammalian endometrium 

during implantation and is believed to be essential for successful pregnancy (Kraeling et 

al., 1985; Lim et al., 1997; St-Louis et al., 2010). As part of a negative feed back loop, 

NF-κB also regulates expression of IκBα, an inhibitor protein that sequesters NF-κB in 

the cell cytoplasm until activation is signaled (Hiscott et al., 1993; Hayden and Ghosh, 

2012). Interestingly, on d 12 of pregnancy in the pig, a time when elongating pig 
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conceptuses release peak concentrations of IL-1β2 and locally activate NF-κB within the 

uterine surface epithelium, there is no detectable increase in total endometrial PTGS2 or 

IκBα expression (Ashworth et al., 2006; Blitek et al., 2006; Franczak et al., 2010; Ross et 

al., 2010; Mathew et al., 2011).  

When we treated non-pregnant pig endometrium collected during the luteal phase 

for 4 h with LPS or recombinant mat-IL-1β1, we detected an increase in total endometrial 

transcripts for PTGS2 and IκBα (Table 3.2). For endometrium treated with mat-IL-1β2, 

the expression of PTGS2 and IκBα increased in response to the highest dose (1000 

ng/mL) of this protein (Fig. 3.7D and Fig. 3.7H). We suggest that IL-1β2 has a lesser 

capacity to activate NF-κB within the endometrium as compared with IL-1β1 (Fig. 3.6) 

and, therefore, lower doses of IL-1β2 are unable to increase total endometrial expression 

of NF-κB responsive genes (PTGS2 and IκBα) within 4 h of treatment (Table 3.2). This 

may explain why up-regulation of some NF-κB responsive transcripts has not been 

detected at the time of elongation in total endometrium of pregnant pigs. Endometrium 

proximal to the elongating pig blastocyst may have NF-κB responsive genes up-regulated 

in response to a local paracrine mechanism involving IL-1β2. Nuclear factor-kappa B 

was strongly activated within the luminal and surface glandular epithelial cells directly 

adjacent to conceptus tissues during elongation (Mathew et al., 2011). Other factors 

released by the pig conceptus are hypothesized to have local rather than global effects 

within the endometrium. For example, conceptus estrogens and cytokines interferon 

gamma (IFNγ) and interferon delta (IFNδ) fall into this category (White et al., 2005; 

Joyce et al., 2007; Joyce et al., 2008; Johnson et al., 2009)     



 79 

 Similar to pigs, the primate and rodent conceptus releases IL-1β during 

implantation. The IL-1β up-regulates αV and β3 integrin subunits within the uterine 

epithelium and enhances endometrial affinity for the blastocyst (Simón et al., 1998). In 

pig endometrium, αV and β3 integrins are highly expressed during implantation and their 

expression is believed to be important for placental attachment and development (Bowen 

et al., 1996; Lin et al., 2007; Bazer et al., 2012). Although total endometrial transcripts 

for αV did not change in this study, we detected up-regulation of β3 in response to LPS 

and mat-IL-1β1. The up-regulation of β3 may be a conserved mechanism that persists 

within the endometrium of primates, rodents and the domesticated pig in response to IL-

1β (Table 3.2). We did not detect an increase in total endometrial β3 in response to mat-

IL-1β2, again, indicating that this cytokine has less activity within the pig endometrium 

compared with IL-1β1.  

We tested the capacity of mat-IL-1β1 and mat-IL-1β2 to activate NF-κB using pig 

alveolar leukocytes before we performed our studies of the pig endometrium. 

Surprisingly, we did not detect activation of NF-κB in alveolar cells treated with mat-IL-

1β1; however, at the same concentration, mat-IL-1β2 increased nuclear translocation of 

NF-κB in these cells (Fig. 3.4; Fig. 3.5A and Fig. 3.5B). We have not investigated the 

mode of IL-1β2 signal transduction within the endometrium or in alveolar macrophages 

(Zeidler and Kim, 1985). The unique interaction of IL-1β2 with various components of 

the IL-1 system, such as IL-1RI, IL-1RII (an IL-1 mock receptor) or IL-1R accessory 

proteins or the interaction of IL-1β2 with factors outside the IL-1 system could provide 

an explanation for the tissue dependent responses we observed during our investigation.  
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SUMMARY AND CONCLUSION 

 

The mammalian conceptus creates a proinflammatory uterine environment within the 

endometrium during the peri-implantation period. This environment is believed to 

enhance uterine receptivity and implantation, thereby, promoting survival of the 

conceptus in utero. The pig genome contains a novel IL-1β gene (IL-1β2) that does not 

exist in other mammals. Based on our findings and evidence provided by other 

laboratories, IL-1β2 (rather than IL-1β1) is expressed by the pig conceptus before 

implantation. We found that IL-1β1 has greater activity within the endometrium 

compared with IL-1β2 but, nonetheless, IL-1β2 has the capacity to activate NF-κB within 

the uterine LE. We propose that as the pig conceptus expands its trophoblast and 

elongates over the uterine surface, it releases IL-1β2 onto the adjacent uterine LE. The 

release of IL-1β2 likely initiates a controlled proinflammatory microenvironment within 

the maternal tissues to promote establishment of pregnancy. Expression of IL-1 receptors 

within the elongating conceptus, and the synchronous pattern for which IL-1β2 is 

expressed during elongation, suggests that IL-1β2 may have a role in elongation and 

development of the early pig embryo. Future in vivo studies investigating the autocrine 

and paracrine effects of IL-1β2 on the pig conceptus and the maternal tissues, 

respectively, could reveal how endogenous proinflammatory molecules function in a pro-

survival manner during the peri-implantation period. 
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TABLE 3.1  GenBank accession number, gene name, primer sequence, size of the amplicon and amplification efficiency for the 
individual genes whose expression was measured using real-time reverse transcription polymerase chain reaction (RT-PCR). 

 
 

  
GenBank Gene name Primer Primer sequence (5′-3′) Product size (bp) Efficiency 

U07786.1 ACTβ Forward ACATCAAGGAGAAGCTCTGCTACG 366 2.07 Reverse GAGGGGCGATGATCTTGATCTTCA 

NM_001113217.1 RPL7 Forward AAGCCAAGCACTATCACAAGGAATACA 172 1.99 Reverse TGCAACACCTTTCTGACCTTTGG 

NM_214321.1 PTGS2 Forward TCGACCAGAGCAGAGAGATGAGAT 133 2.05 Reverse ACCATAGAGCGCTTCTAACTCTGC 

NM_001005150.1 IκBα Forward TGTGATCCTGAGCTCCGAGACTTT 143 1.81 Reverse TTGTAGTTGGTGGCCTGCAGAATG 

NM_2140055.1 IL-1β1 Forward CAGCCAGTCTTCATTGTTCAGGTT 226 1.78 Reverse AGATTTGCAGCTGGATGCTC 

XM_003354714.2 IL-1R1 Forward AATGCACTTCCTAGGCTTTCTG 65 1.89 Reverse GGAACAGGATGTGGTGACAA 

FJ914572.1 β3 Forward AAGAAGGGGTGTGTGGAGTG 235 2.13 Reverse TGGGACACTCTGGCTCTTCT 

EF474019.1 αV Forward GATTGTTGTTACTGGCTGTTTTGG 94 1.82 Reverse TGTTCCCTTTCCTGTTCTTCTTG 

NM_213814.1 SAL1 Forward GCTGACTCTAGCCTCTTCCCACAA 110 1.94 Reverse CGTCTGAGGCCAAAAGAATGGAATA 



 

 

82 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 

IL-1β1 
IL-1β2 



 

 

83 

FIGURE 3.1  Alignment of full length pro-IL-1β1 and pro-IL-1β2 cDNA within CLUSTALW multiple sequence alignment program 
and location of forward and reverse primers used to amplify IL-1β1 and IL-1β2 sequences for gene cloning, ribonuclease protection 
assays (RPA) and protein expression studies. The IL-1β1 and IL-1β2 consist of seven exons and are 93% similar. Conjoined exons are 
designated by “^” and homologous base pairs (bp) between IL-1β1 and IL-1β2 have a star (*) beneath the sequences. Translation start 
and stop codons within the sequences are designated by “start” and “stop”, respectively.   
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FIGURE 3.2  Alignment of full-length pig IL-1β1 and IL-1β2 amino acid sequences. 
Amino acids that are identical in IL-1β1 and IL-1β2 are displayed between the two 
sequences. The positive symbols (+) indicate conservative substitutions. The solid arrows 
above the sequences indicate locations of sequential caspase-1 (CASP1) protease 
cleavage sites during formation of the mature IL-1β1. The right arrow above the sequence 
signifies start of the mature region. Compared with IL-1β1, the IL-1β2 sequence has an 
inserted (ins) and deleted (del) amino acid upstream and downstream (mature region) of 
the second CASP1 cleavage site, respectively. IL-1β2 also has a glutamate residue 
substituted for a histidine and methionine at IL-1RI binding locations 129 and 139, 
respectively, compared to IL-1β1. 
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FIGURE 3.3  Autoradiograph of an RPA demonstrating hybridization of the IL-1β1 (A) 
and IL-1β2 (B) probes to pig peripheral blood leukocyte (PBL) and d 12 conceptus RNA, 
respectively. The IL-1β1 and IL-1β2 protected fragments are 196 and 205 base pairs (bp) 
in length, respectively. The star (*) indicates protected fragments and specific expression 
of unique IL-1β genes in adult pig PBL (IL-1β1; A) and d 12 pig conceptuses (IL-1β2; 
B). Negative controls consisted of Torulla yeast RNA. Ladder = 100 - 500 bp RNA 
century marker. Different exposure times (Ex) for the same RPA are shown side-by-side 
in the figure.  
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FIGURE 3.4  Images of NF-κB activation in alveolar cell (AC) nuclei (N) vs. cell cytoplasm (Cy) after cells were collected by lung 
lavage and left non-treated or treated with LPS or recombinant IL-1 cytokines for 4 h. Greater than 90% of AC in adult pigs are 
macrophages. Imunohistochemistry (IHC) control slides were made using pre-immune rabbit IgG in place of the primary antibody [(-) 
1°] or in the absence of a secondary antibody [(-) 2°]. Images were taken with a Leica light microscope using a green fluorescent 
protein (GFP) filter. H/E, hemotoxylin and eosin cell stain; DAPI, 4’,6-diamidino-2-phenylindole nuclear stain. Bar = 10 μm. 
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FIGURE 3.5  Percent of alveolar cells (AC) with activated NF-κB (A) and intensity of 
NF-κB activation (IOA) in AC (B) after cells were collected by lung lavage and left non-
treated or treated with LPS or recombinant IL-1 cytokines for 4 h.  Data are presented as 
non-rank transformed LSM ± SEM (bar; SEM = 5.31 and 0.12 for percent of alveolar 
cells and IOA, respectively). Letters indicate a significance difference between treatments 
for transformed (A) and non-transformed (B) data. Significance was declared at P < 0.05.  
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FIGURE 3.6  Images of NF-κB activation (A) and intensity of NF-κB activation (IOA) 
(B) in pig uterine luminal epithelium (LE) after endometrium was left non-treated or 
treated with low, medium or high concentrations of LPS (1, 10, or 100 μg/mL, 
respectively) or recombinant IL-1 cytokines (10, 100, or 1000 ng/mL, respectively) for 4 
h. In A, immunohistochemistry (IHC) control slides were made using pre-immune rabbit 
IgG in place of the primary antibody [(-) 1°] or in the absence of a secondary antibody [(-
) 2°]. Images were taken with a Leica light microscope using a green fluorescent protein 
(GFP) filter. In B, data are presented as LSM ± SEM (bar; SEM = 0.03). Different letters 
over bars indicated a significant difference between treatments (P ≤ 0.01). H/E, 
hemotoxylin and eosin cell stain; DAPI, 4’,6-diamidino-2-phenylindole nuclear stain; ST, 
stroma; N, nucleus; Cy, cytoplasm; Bar in A = 20 μm. 
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TABLE 3.2  Fold changes in gene expression (relative to internal medium control) of selected genes from total endometrium left non-
treated or treated with LPS (1, 10 or 100 μg/mL) or recombinant IL-1 cytokines (10, 100 or 1000 ng/mL). Data were normalized to the 
geometric mean of total endometrial RPL7 and ACTβ fold change in gene expression. Data are presented as LSM ± SEM. 
 

 Treatment (T)  P<f 

Gene Non-Trt BGal LPS Hum IL-1β pro-IL-1β1 pro-IL-1β2 mat-IL-1β1 mat-IL-1β2  T C TXC 
SAL1 1.4 ± 0.2a,b 1.3 ± 0.3b 1.3 ± 0.3a,b 1.9 ± 0.2a 1.2 ± 0.2b 1.3 ± 0.2b 1.6 ± 0.2a,b 1.8 ± 0.2a,b  NS NS NS 
IL-1RI 1.2 ± 0.2a 1.3 ± 0.2a 1.5 ± 0.2a 1.5 ± 0.2a 1.2 ± 0.2a 1.1 ± 0.2a 1.4 ± 0.2a 1.3 ± 0.2a  NS NS NS 
IL-1β1g 0.2 ± 0.3b 0.3 ± 0.3b 4.3 ± 0.3a 0.3 ± 0.3b 0.4 ± 0.3b 0.3 ± 0.3b 0.7 ± 0.3b 0.4 ± 0.3b  0.001 0.001 NS 
PTGS2g 0.9 ± 0.3b 1.0 ± 0.3b 2.2 ± 0.3a 1.0 ± 0.3b 1.0 ± 0.3b 0.8 ± 0.2b 1.9 ± 0.2a 1.2 ± 0.3b  0.001 NS NS 
IκBα 0.4 ± 0.1d,e 0.5 ± 0.1d,e 2.0 ± 0.1a 0.9 ± 0.1b,c 0.9 ± 0.1b,c 0.4 ± 0.1e 1.1 ± 0.1b 0.7 ± 0.1c,d  0.001 0.001 NS 
αV 0.8 ± 0.1a 0.7 ± 0.1a 0.8 ± 0.1a 0.8 ± 0.1a 0.6 ± 0.1b 0.6 ± 0.1b 0.7 ± 0.1a 0.8 ± 0.1a  NS NS NS 
β3 1.4 ± 0.3c 1.8 ± 0.3b,c 2.5 ± 0.4b 2.5 ± 0.3b 1.8 ± 0.3b,c 1.5 ± 0.3c 3.6 ± 0.3a 1.6 ± 0.3c  0.001 0.009 NS 

 

f P value for treatment (T), concentration (C) and T by C (TXC). Not significant (NS) was declared as P > 0.10. 
g The presented IL-1β1 and PTGS2 data are the untransformed means but the reported statistical tests are for log 10 transformed data; 
the log 10 transformation eliminated heterogeneous variance. 
Letters to the right of data indicated significant differences between treatment LSM. Significance was declared as P < 0.05.  
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FIGURE 3.7  Fold changes in gene expression (relative to internal medium control) of PTGS2 (A-D), IκBα (E-H) and β3 (I-L) from 
total endometrium treated with LPS (1, 10 or 100 μg/mL) or 10, 100 or 1000 ng/mL of recombinant BGal (protein expression control), 
mat-IL-1β1 and mat-IL-1β2. Data were normalized to the geometric mean of total endometrial RPL7 and ACTβ fold change in gene 
expression. Data are presented as LSM ± SEM. Black stars (*) over bars indicate significant differences in gene expression between 
concentrations (* P ≤ 0.05, ** P ≤ 0.01 *** P ≤ 0.001).  
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FIGURE 3.8  Diagram of pig genomic region of chromosome 3 containing IL-1β2. The genomic region covers >300 kb and contains 
genes ZNF169, IL-1β2, IL-1β1, and IL-1α (top of figure). The IL-1β2 gene (bottom of figure) covers approximately 16.5 kb. Exon 1 
(E1) of the IL-1β2 gene is upstream from the location of exon 1 in IL-1β1 (*, dashed box). The remaining IL-1β2 exons (E2-E7) are 
arranged in a manner similar to IL-1β1. Sequence alignment of IL-1β2 and IL-1β1 suggests there are two deletions and an insertion of 
genomic sequence in the intron between E1 and E2 for IL-1β2 compared with IL-1β1. Based on Sus scrofa genome build 10.2. NCBI 
reference sequence: NC_010445.3. Black arrows above gene name indicate direction of transcription. 
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CHAPTER FOUR 

 

 

DEVELOPMENT OF A LENTIVIRAL MEDIATED RNAi SYSTEM FOR 

KNOCKDOWN OF INTERLEUKIN-1 BETA 2, A NOVEL 

INTERLEUKIN-1 EXPRESSED BY THE ELONGATING PIG 

CONCEPTUS 

 

 

 

Abstract 

 

Embryonic loss in the pig is greatest during rapid elongation, a process by which 

the trophoblast and endoderm undergo extensive remodeling resulting in formation of a 

filamentous conceptus. Rapid elongation of the pig conceptus occurs between days (d) 11 

and 12 of development and is necessary to increase the size of the fetal placental unit. 

During this process, pig conceptuses increase gene expression of interleukin-1 beta 2 (IL-

1β2), a novel IL-1 not found in other mammals. Conceptus expression of IL-1β2 is 

transient. Expression of IL-1β2 increases during the onset of rapid elongation, peaks at 

the height of this process and decreases 2000 fold thereafter. Interleukin-1 signaling 

factors, IL-1 receptor type 1 (IL-1RI) and IL-1 receptor accessory protein (IL-1RAP), also 

transiently increase in the conceptus. Therefore, it’s hypothesized that IL-1β2 is 
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necessary for conceptus elongation. To test this hypothesis, we developed a lentiviral 

mediated RNAi (knockdown) system targeting IL-1β2 in early pig conceptuses. Multiple 

knockdown (KdV) and scrambled control knockdown (SV) viruses were developed and 

microinjected under the zona pellucida of in vitro produced pig zygotes. Conceptuses 

were then allowed to develop in culture (d 6 or 8) or were transferred to the oviduct of 

recipient gilts on d 4 of the estrous cycle. Transferred conceptuses were flushed from the 

uterus on d 13 of development. In all, 1725 pig zygotes were produced, of which 1196 

were microinjected with lentivirus. Ten embryo transfers were performed. 

Microinjections of pig zygotes with V (KdV and SV combined) reduced the number 

conceptuses that became blastocyst by d 6 compared with conceptus that were not 

microinjected (no virus controls; NV; P < 0.001). Expression of beta actin (ACTB), a 

developmental control gene, in individual pig blastocyst treated with SV tended to be less 

when compared with NV conceptuses (P = 0.071). Expression of IL-1β2 was detected in 

individual d 6 pig blastocysts and although expression was numerically lower in KdV 

when compared with NV and SV treated conceptuses, the expression level was not 

significantly different. With respect to the embryo transfer experiments, NV conceptuses 

were elongated on d 13. Out of the three gilts that received KdV conceptuses, one gilt 

produced two elongated conceptuses (GFP positive) and two gilts produced abnormally 

small spherical conceptuses on d 13. Gilts (n=6) that received SV conceptuses produced 

fragments of conceptus tissue or no tissue. A lentiviral mediated RNAi system-targeting 

IL-1β2, therefore, could not be used to effectively test the function of this cytokine during 

elongation of the early pig conceptus. As an alternative, the CRISPR/Cas9 system could 

be used to produce IL-1β2 knockout conceptuses, which could then be transferred to 
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recipient gilts. Expression of IL-1β2 in the d 6-pig blastocyst suggests that this cytokine 

may play an important role in development of the pig conceptus prior to elongation. 

 

INTRODUCTION 

 

Conceptus elongation is the process by which the spherical blastocyst undergoes a 

morphological change that results in the formation of a filamentous or more elongated 

conceptus. In cattle and pigs, mammals with a less invasive placentation, elongation is 

thought to increase the placental surface area, maximizing contact between the fetal 

chorion and uterus for efficient nutrient and gas exchange with the mother (Vallet et al., 

2009; Bazer and Johnson, 2014). Elongation may also maximize conceptus uptake of 

uterine gland secretions (Bazer and Johnson, 2014).  

Throughout the 114-day pregnancy in pigs, embryonic mortality is greatest at the 

time of elongation (Bazer and Johnson, 2014). This is referred to as early embryonic loss 

and can account for 30% of the potential litter (Bazer and Johnson, 2014). Because some 

conceptuses may elongate later than others as a result of differences in the timing of 

ovulation and or fertilization of the ova, it’s hypothesized that smaller conceptuses are 

out competed by more advanced conceptuses for uterine space resulting in embryonic 

mortality (Vallet et al., 2002; Bazer and Johnson, 2014). A better understanding of 

factors controlling elongation, therefore, could lead to development of applications that 

reduce early embryonic loss.  
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Compared with elongation of the bovine and ovine conceptus, elongation of the 

pig conceptus is considered to be more rapid and extensive. Before elongation, pig 

conceptuses are first spherical and expand at a rate of 0.25 mm/h until approximately 9 

mm in diameter (Geisert et al., 1982; Bazer and Johnson, 2014). Between d 11 and 12 of 

gestation the pig conceptus quickly becomes ovoid, tubular and then filamentous in 

morphology, elongating through the uterine lumen at a rate of 30 to 45 mm/h (Geisert et 

al., 1982). During rapid elongation and within 2 h, the pig conceptus transforms from a 

10 X 10 mm sphere into a 1 X 200 mm thread like structure (Geisert et al., 1982; Bazer 

and Johnson, 2014). The pig conceptus will continue to elongate but more slowly 

between d 12 and 18 of gestation, simultaneously expanding within the uterine lumen and 

attaching to the uterine surface. By d 16, the pig conceptus can be over a meter in length 

but will occupy only 20 cm of uterine space due to extensive folding of the lumen 

(Engelhardt et al., 2002; Bazer and Johnson, 2014).  

 It’s hypothesized that IL-1β2, a newly discovered IL-1 expressed by the pig 

conceptus, is essential for rapid elongation. Expression of IL-1β2 transiently increases 

during rapid elongation and is synchronous with the formation of the filamentous 

conceptus (Tuo et al., 1996; Smith et al., 2001; Ross et al., 2003a; Tuggle et al., 2003). 

Expression of IL-1β2 peaks at the height of the elongation and mRNA for IL-1β2 is one 

the most abundant transcripts in the conceptus at that time (Smith et al., 2001; Ross et al., 

2003b). Once rapid elongation is complete (d 12 of development), expression of IL-1β2 

decreases 2000 fold and is nearly undetectable thereafter (Ross et al., 2003a; 2003b; 

Tuggle et al., 2003). Intra uterine concentrations of IL-1β2 protein are greatest during 

elongation, decrease after d 15 and reach a nadir by d 18 (Ross et al., 2003a). IL-1 
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signaling factors, IL-1RI and IL-1RAP, are also up regulated in the conceptus during 

elongation (Ross et al., 2003a). Interleukin-1 beta 2 may increase trophoblast and 

endodermal cell motility during this process. IL-1 is well known to increase cell motility 

through modification of actin filaments (Ma et al., 2014; Ferreira et al., 2012). 

 The discovery of interfering RNA (RNAi) and recent advances in the areas 

lentiviral mediated transgenics has lead to the development lentiviral mediated RNAi 

systems. Using these systems, both non-dividing and actively dividing mammalian cells 

can be targeted for infection, stable integration of viral DNA and constitutive expression 

of viral short hairpin RNAs (shRNA) that reduce (knockdown) endogenous mRNA 

translation through the mammalian microRNA (miRNA) pathway (Manjunath et al., 

2009). A lentiviral mediated RNAi system was successfully used to target mRNA of the 

elongation factor Proline-Rich 15 (PRR15) in sheep conceptuses (Purcell et al., 2009). In 

pigs, lentiviruses were used to infect zygotes, integrating a GFP gene into the conceptus 

genome. Subsequent embryo transfer experiments with these conceptuses resulted in 

birth of 46 piglets, 30 of which expressed GFP based on western blot analysis (Hofmann 

et al., 2003).  

 In this study and similar to experiments conducted by Hofmann et al. (2003) and 

Purcell et al. (2009), we attempt to elucidate the role of a possible elongation factor in 

pigs by developing a lentiviral mediated RNAi system targeting IL-1β2, a novel IL-1 

expressed by the elongating pig conceptus. To achieve this, we in vitro produced pig 

zygotes, microinjected the zygotes with control and IL-1β2 knockdown lentiviruses and 

transferred these conceptuses to the oviducts of recipient pigs. We then removed the 
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reproductive tract on d 13 (after rapid elongation) to observe development of the 

conceptus.  

 

MATERIALS AND METHODS 

 

General Culture Conditions for the Baby Hamster Kidney-21 Cell Line 

Baby hamster kindney-21 (BHK-21) cells were cultured in T-75 flasks with 20 

mL of growth medium [modified MEM containing 10% fetal bovine serum (FBS; Gibco, 

Life Technologes) and 1% of 1 X antibiotic-antimycotic (Gibco, Life Technologies)] and 

incubated with 5% CO2 and balanced air at 37°C. On the day of cell passage, growth 

medium was removed and cells (approximately 90% confluent) were washed with 10 mL 

of 1 X DPBS (Gibco, Life Technologies) before the addition of 3 mL of trypsin 

containing 0.25% EDTA (Gibco, Life Technologies) for 5 min. The trypsin was 

neutralized with the addition of 12 mL of growth medium. To pass the cells, 1 mL of 

neutralized cell solution was added to 14 mL of growth medium in new T-75 flasks. 

 

General Culture Conditions for the Human Embryonic Kidney 293FT Cell Line   

During general culture and unless specified by the BLOCK-iT Lentiviral Pol II 

miR RNAi Expression System kit, 293FT cells (Invitrogen) were maintained in a 

complete growth medium consisting of high glucose (25 mM) DMEM (Gibco; Life 

Technologies) containing 10% FBS and 1% Penicillin-Streptomycin (Gibco, Life 

Technologies) supplemented with 0.1 mM MEM Non-Essential Amino Acids (NEAA; 

Gibco, Life Technologies), 2 mM L-glutamine (Gibco, Life Technologies) and 1 mM 
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sodium pyruvate (Gibco, Life Technologies) with the addition of 500 μg/mL of Geneticin 

(Life Technologies). During cells passage, growth medium was removed and cells 

(approximately 90% confluent) were washed twice with 10 mL of 1 X DPBS before 2 

mL of trypsin containing 0.25% EDTA was added to the cells for 5 min. To pass the 

cells, trypsin was neutralized with 8 mL of complete growth medium and 3 mL of 

neutralized cells were added to a new T-75 flask containing 15 mL of new complete 

growth medium. Cells were maintained at 37°C in 5% CO2 and balanced air. 

 

Constructs for Small Interfering RNA (siRNA) Luciferase Reporter Assays 

In development of an interleukin-1 beta 1 (IL-1β1) and IL-1β2 siRNA reporter 

assay, full-length cDNAs for IL-1β1 and IL-1β2 (see Chapter Three) were inserted into 

the psi-CHECK1 expression vector containing a luciferase reporter (C8011; Promega; 

Madison, WI). To insert IL-1β2 into the psi-CHECK1 vector, 4 μg of the pCR 2.1-TOPO 

plasmid containing the IL-1β2 sequence was partially digested with EcoR1 for 50 min at 

37°C. For IL-1β1, 300 μg of the pCR-2.1 plasmid containing the IL-1β1 sequence was 

partially digested with EcoR1 for 25 min at 37°C. The enzymatic reactions were 

inactivated by incubating the solutions at 65°C for 20 min. Within the pCR-2.1 plasmid, 

EcoR1 sites flank the IL-1β2 and IL-1β1 sequences. The psi-CHECK1 vector also has an 

EcoR1 site within its multiple cloning region [basepair (bp); 1636-1680]. To linearize the 

psi-CHECK1 vector, 1 μg of plasmid was digested with EcoR1 for 3 h at 37°C following 

the manufacturers recommendations. The IL-1β2 and psi-CHECK1 digested sequences 

were then electrophoresed for 1 h through a 0.8% low melt agarose gel in 0.04 M Tris-

Acetate and 0.001 M EDTA buffer with 0.5 μg/mL ethidium bromide at 80V. The IL-1β2 
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and psi-CHECK1 sequences were gel purified and IL-1β2, ethanol precipitated, and the 

psi-CHECK1 vector, dephosphorylated and phenol-chloroform extracted using standard 

procedures. For IL-1β1, the digestion was first electrophoresed through a 1.0% low melt 

agarose gel at 80V before IL-1β1 was electrophoresed into DE81 grade Whatman 

chromatography paper for 4 min at 120V. The DNA was then displaced from the 

Whatman and phenol-chloroform extracted using standard procedures. The concentration 

of IL-1β2, IL-1β1 and the psi-CHECK1 vector DNA was later determined by gel 

electrophoresis (concentration gel) also using standard procedures. To ligate IL-1β2 into 

the psi-CHECK1 plasmid, 40 ng of linear psi-CHECK1 and 34 ng of IL-1β2 were 

incubated together with T4 ligase at 4°C. For the IL-1β1 ligation, 200 ng linear psi-

CHECK1 and 175 ng of IL-1β1 were used. The ligations were verified by gel 

electrophoresis before TOP-10 E. coli cells were transformed with the psi-CHECK1 

vectors containing IL-1β1 and IL-1β2 and plated onto LB agar plates containing 

ampicillin (100 μg/mL). The cells were incubated overnight at 37°C before single 

colonies were picked and grown overnight in 3 mL of LB containing ampicillin (100 

μg/mL), while shaking at 35°C. The plasmid DNA was then phenol-chloroform extracted 

and DNA sequenced at the University of Missouri DNA Core to verify sequence and 

orientation.  

 

Interleukin-1 Beta 2 siRNA Luciferase Reporter Assays 

Using the siRNA Target Designer program (Promega) eight 19 basepair (bp) 

oligonucleotides complimentary to the IL-1β2 sequence were identified (Fig. 4.1). Longer 

oligonucleotides, containing these sequences, were designed to form a shRNA and 
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annealed to their complimentary oligonucleotides before inserted into the pGeneClip U1 

(C8750; Promega) expression vector following the manufactures recommendations. 

Sequences complimentary to IL-1β2 should reduce (knockdown) IL-1β2/luciferase 

mRNA and, therefore, decrease luciferase activity. BHK-21 cells, in 24 well plates and 

approximately 95% confluent, were simultaneously transfected with 2.5 μg of psi-

CHECK1 vector containing either IL-1β1 or IL-1β2 and one of eight shRNA vectors (2.5 

μg) in MEM (non-modified; see above for BHK-21 culture conditions) with the addition 

of the Transfast transfection reagent (E2431; Promega) following the manufacture’s 

recommendations for adherent cells. The cells were allowed to incubate for 48 h in 5% 

CO2 at 37°C. After the incubation, cells were lysed and assayed for luciferase activity 

using the Renilla Luciferase Assay System (E2820; Promega) and the Synergy HT 

multidetection microplate reader (BioTek). As a positive luciferase control, cells were 

simultaneously transfected with the psi-CHECK1 vector containing either IL-1β2 or IL-

1β1 and a control plasmid incapable of producing a shRNA (pCR 2.1-TOPO containing 

the IL-1β1 sequence). As a negative control, cells were not transfected with plasmid 

DNA. As a negative knockdown control, cells were also transfected with the psi-

CHECK1 vector containing either IL-1β2 or IL-1β1 and the pGeneClip U1 vector 

containing scrambled oligonucleotides of the original IL-1β2 knockdown sequences. 

Each knockdown and scrambled siRNA oligonucleotide was tested for its effects on IL-

1β1 and IL-1β2. Treatments within a plate were replicated in quadruplicate and each plate 

contained a positive control. The knockdown was replicated at least twice (i.e., each 

knockdown oligonucleotide was tested in at least two different plates). The knockdown 

luciferase activity was expressed as a ratio to the positive control within the plate (Table 
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4.1). The ratio was then tested by using the PROC GLM of SAS (SAS Inst.) with a model 

that included treatment. Least squares means (LSM) were separated by using the PDIFF 

procedure of SAS. Significance was declared at P < 0.05 (Table 4.1). To verify cell 

viability, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assays 

were also performed in duplicate as described in Beagin and Merkel, (2002). The optical 

densities and absorbance readings were calculated using Synergy HT multidetection 

microplate reader.  

 

Lentiviruses 

Lentiviruses were used to infect and stably integrate viral DNA, with the capacity 

to express a shRNA, into the porcine zygote genome. Based on the siRNA luciferase 

reporter assays, the viral shRNA containing the knockdown sequences have the capacity 

to target IL-1β2 but not IL-1β1 mRNA through the miRNA pathway. Two different 

lentiviruses (based on the manufacturer and method of production) were used during the 

lentiviral experiments: 1) Invitrogen lentiviruses, developed using the BLOCK-iT 

Lentiviral Pol II miR RNAi Expression System following the manufactures 

recommendations (K4938-00; Invitrogen, Life Technologies) and 2) Applied StemCell 

lentiviruses, developed by Applied StemCell Inc. using the Clontech pLVX-shRNA2 

expression vector (632179, Clontech). 

 

Invitrogen Lentiviruses  

Briefly, to develop the Invitrogen lentiviruses, 64 bp oligos containing a 21 bp 

knockdown (Kd7 or Kd9) or scrambled knockdown (S6 or S9) sequence, an internal 19 
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bp loop sequence and a 19 bp sequence complimentarily to the knockdown or scrambled 

sequence (two nucleotides were omitted to create an internal RNA loop sequence to 

enhance miRNA knockdown efficiency) were annealed to their complimentary oligos 

(Table 4.2). The Invitrogen lentiviral kit required the addition of two extra bp in the 

original knockdown sequences (see Fig. 4.1). The double stranded DNA was then ligated 

into the pcDNA 6.2-GW/± EmGFP-miR plasmid downstream of the emerald green 

fluorescent protein (EmGFP) sequence (bp 713-1432). Plasmids that contain the 

knockdown sequences have the capacity to produce a miRNA targeting IL-1β2. As an 

infection positive control, the Invitrogen kit supplied a double stranded DNA, that when 

ligated into the pcDNA 6.2-GW/± EmGFP-miR plasmid, has capacity to produce a 

miRNA against lacZ. Subsequent recombination reactions between the pcDNA 6.2-

GW/± EmGFP-miR (containing knockdown or scrambled knockdown sequences), 

pDONR 221 (donor vector) and the pLenti6/V5-DEST plasmids, following the 

manufactures recommendations, resulted in the development of pLenti6/V5-

GW/EmGFP-miR knockdown or scrambled knockdown expression plasmids. These final 

plasmids were used to produce the lentiviral RNA.     

293FT cells were cotransfected with a ViraPower Packaging Mix and one of five 

Lenti6/V5-GW/±EmGFP-miR expression vectors following the manufacture’s 

recommendations. The pLenti6/V5-GW/±EmGFP-miR plasmid has the capacity to 

express a single viral RNA containing a Pol II-cytomegalovirus (CMV) promoter (bp 

1809-2392), the EmGFP sequence, a sequence capable of producing a shRNA containing 

the knockdown or scrambled knockdown sequence and a blastocide S deaminase 

sequence (bsd; blasticidin resistance gene; bp 4724-5122). In the 293FT cells, vectors 
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supplied by the ViraPower Packaging Mix have the capacity to express viral proteins 

[gag, pol, rev and vsv-g (env)] needed to package and release a non-replicating infectious 

lentivirus containing the viral RNA. During infection, viral DNA can be stably integrated 

into the host’s genome where EmGFP and a miRNA targeting IL-1β2 can be 

constitutively expressed. As a positive virus control, lentivirus was generated by 

transfecting 293FT cells with the ViraPower Packaging Mix and the pLenti6/V5-

GW/±EmGFP-miR-lacZ plasmid capable of expressing EmGFP and miRNA targeting 

the lacZ. As a negative virus control, 293FT cells were not transfected with DNA.  

The 293FT cell medium, containing viruses or no viruses (medium alone; no 

transfection; negative virus control), was collected 72 h after cotransfection with DNA 

and centrifuged at 3000 rpm for 5 min at 4°C. The supernatant was filtered through a 

0.45 μM low protein binding filter and viruses were concentrated using the Lenti-X 

concentrator (631231; Clontech) following the manufactures recommendations.  

Five Invitrogen lentiviruses were developed: 1) a lentivirus capable of transducing 

a 21 bp miRNA sequence targeting region seven of IL-1β2 (Invitrogen knockdown 

lentivirus 7; KdV7; Fig. 4.1), 2) a lentivirus capable of targeting region nine of IL-1β2 

(Invitrogen knockdown lentivirus 9; KdV9), 3) a knockdown control lentivirus capable of 

transducing a scrambled region six miRNA (Invitrogen scrambled lentivirus 6; SV6), 4) a 

control lentivirus capable of transducing a scrambled region nine miRNA (Invitrogen 

scrambled lentivirus 9; SV9) and 5) a transduction positive control lentivirus capable of 

transducing a miRNA sequence (5′-AAATCGCTGATTTGTGTAGTC-3′) targeting lacZ 

(Invitrogen positive control lentivirus; PosV). Complications occurred while producing 
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the scrambled region seven lentiviruses, therefore, SV6 was used as a scrambled control 

lentivirus. 

To detect lentiviral infection, 293FT cells were incubated with the lentiviruses 

and observed under a Leica light microscope for expression of GFP. To do this, a single 

T-75 flask of 293FT cells was washed twice with 1 X DPBS and trypsinized. Complete 

medium (without geneticin), containing approximately 5.4 X 105 cells, was added to 24 

well plates with round 12 mm glass cover slips (Fisher) on the bottom. In duplicate, 

viruses were added to the wells (1:100 dilution) and allowed to incubate overnight under 

standard culture conditions. For the negative controls, two wells received cells only and 

two wells received medium collected from 293FT cells not transfected with DNA (no 

virus control; see above). Lentivirus stock and negative control solutions were stored in 

cryovials at -80°C in 10 μL aliquots. The next day, medium (containing lentiviruses) was 

removed from the wells and replaced with 1 mL of complete medium without geneticin. 

The next morning, cover slips (containing adhered cells) were placed facedown onto 

frosted white microscope slides and multiple pictures were taken of the cells with a leica 

microscope capable of detecting fluorescence (Fig. 4.2). 

 

Invitrogen Lentiviral Titer   

Viral infectious units (IFU) were measured using a blasticidin selection method 

following recommendations provided by the Invitrogen kit. The day before transduction, 

a single T-75 flask of 293FT cells were trypsinized, diluted in complete medium, plated 

into multiple 6 well plates and incubated overnight at 37°C in 5% CO2 and balanced air 

(standard culture conditions). The next day, five 10-fold serial dilutions of each lentivirus 



 108 

(10-3 to 10-7) were prepared in complete medium, old medium was removed from the 

wells containing the 293FT cells (approximately 30 to 50% confluent) and medium 

containing diluted virus (i.e. one virus at five dilutions/plate) was added. The sixth well 

in the plate received medium alone. The 293FT cells incubated in the viral solutions 

overnight under standard culture conditions (see above). The next day, the medium was 

removed from the wells and replaced with 2 mL of fresh complete medium. Again, cells 

were cultured overnight in standard culture conditions. The next morning, old complete 

medium was removed and cells received new complete medium containing 10 μg/mL of 

Blasticidin (K4938-00; Invitrogen). The cells continued to grow under standard culture 

conditions for the next twelve days. New complete medium, containing 10 μg/mL 

blasticidin, was added to the cells every four days. After twelve days of selection, cells 

were washed twice with 1 X DPBS before 1 mL of crystal violet solution (F907-3; Baker 

Chem. Co.) was added for 10 min at room temperature. After removing the staining 

solution, the wells were washed repeatedly with 1 X DPBS and the cell colonies counted. 

The IFU was calculated based on the number of growing colonies within the wells as 

described by the Invitrogen Kit. The KdV7 and KdV9 titers were 31.5 x 104 IFU/mL and 

28.5 x 104 IFU/mL, respectively. The SV6 and SV9 titers were 49.5 x 104 IFU/mL and 

23.5 x 104 IFU/mL, respectively. The PosV titer was 2.5 x 105 IFU/mL. 

 

Applied StemCell Lentiviruses 

For the Applied StemCell lentiviruses, all viral constructs were developed, viruses 

packaged and viral infections units (IFU) calculated by Applied StemCell Inc. The 

Applied StemCell lentiviruses were packaged within 293FT cells and concentrated in 1 X 
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PBS supplement with FBS (10%) using a 2nd generation packaging system. In this 

system, cells were transfected with the pLVX-shRNA2 (632179; Clontech) expression 

and psPAX2 and pMD2.G packaging vectors, respectively (12260 and 12259, 

respectively; Addgene). In development of the expression plasmid, 65 bp oligos 

containing a 19 bp knockdown or scrambled sequence, a 10 bp loop sequence and 19 bp 

sequence complementary to the siRNA sequence (Table 4.3) were annealed together and 

inserted into the pLVX-shRNA2 plasmid multiple cloning site (bp 2440-2457). The 

pLVX-shRNA2 expression vector has the capacity to express a single viral RNA 

containing a Pol III-human U6 promoter (PU6; bp 2187-2444), a sequence that can form a 

shRNA containing a 19 bp knockdown or scrambled knockdown sequence, a human 

CMV immediate early promoter sequence (bp 2462-3050) and an enhanced green 

fluorescent protein (GFP) sequence (ZsGreen1; bp 3074-3769) in the 293FT cells.  

Plasmids psPAX2 and pMD2.G have the capacity to express viral proteins [Gag, Pol, Rev 

and VSV-G (Env)] needed to package and release non-replicating infectious Applied 

StemCell lentiviruses from the 293FT cells. The lentiviral titer (IFU) was determined by 

Applied StemCell Inc. using the Lenti-X qRT-PCR titration kit (631235; Clontech). Four 

lentiviruses were provided by Applied StemCell: 1) a lentivirus capable of transducing a 

19 bp miRNA sequence targeting region seven of IL-1β2 (Applied StemCell knockdown 

lentivirus 7; KdV7), 2) a lentivirus capable of transducing a 19 bp sequence targeting 

region nine of IL-1β2 (Applied StemCell knockdown lentivirus 9; KdV9), 3) a 

knockdown control lentivirus capable of transducing a scrambled IL-1β2 region seven 

sequence (Applied StemCell scrambled lentivirus 7; SV7) and 4) a knockdown control 

lentivirus capable of transducing a scrambled IL-1β2 region nine sequence (Applied 
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StemCell scrambled lentivirus 9; SV9). The KdV7 and KdV9 titers were 2.16 ± 0.29 x 

109 IFU/mL and 3.52 ± 1.17 x 109 IFU/mL, respectively. The SV7 and SV9 titers were 

1.39 ± 0.26 x 109 IFU/mL and 2.50 ± 0.52 x 109 IFU/mL, respectively. Over night and on 

dry ice, viruses were shipped from Applied StemCell Inc. to the lab in five 20 μL 

aliquots/virus. Once in the lab, viruses were removed from the dry ice and immediately 

placed in a -80°C freezer. 

 

Production of Pig Zygotes for Lentiviral Infection 

Oocytes were aspirated from follicles of pre-pubertal gilts and in vitro fertilized as 

described by Lee et al. (2013) and Hamm et al. (2014). Porcine ovaries were collected 

from an abattoir (Farmland Foods Inc., Milan, MO) and transported in plastic containers 

at room temperature to the University of Missouri Animal Sciences Research Center 

(ASRC). Medium-sized follicles (3-6 mm) were aspirated with an 18 g short bevel 

needles attached to a syringe. The follicular fluid was aliquoted into 50 mL conical tubes. 

After a pellet (containing oocytes) accumulated at the bottom of the tube the overlaying 

solution was drained and the pellet was washed three times with a polyvinyl alcohol-

Tyrodes lactate (PVA-TL)-HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] 

solution consisting of 114.01 mM NaCl, 2mM NaHCO3, 340.06 μM NaH2PO4, 3.2 mM 

KCl, 1.868 mL sodium DL-lactate solution (60%), 2 mM CaCl2, 426.77 μM HEPES, 

1.07 μM PVA, 12 mM sorbitol, and 249.83 μM pyruvate. After the third wash, the pellet 

was re-suspended in 40 mL of PVA-TL-HEPES and the entire solution was transferred to 

multiple 100 X 15 mm petri dishes. Oocytes were then selected for maturation if they had 

an evenly distributed dark cytoplasm and were surrounded by multiple layers of cumulus 
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cells (cumulus oocyte complex; COC). The COCs were placed in 500 μL of maturation 

medium consisting of TCM 199 (Invitrogen) with 3.05 mM glucose, 0.91 mM sodium 

pyruvate, 0.57 mM cysteine, 10 ng/mL epidermal growth factor (EGF), 0.5 μg/mL 

luteinizing hormone (LH), 0.5 μg/mL follicle stimulating hormone (FSH), 10 ng/mL 

gentamicin and 0.1% polyvinyl alcohol for 42-44 hr at 38.5°C in 5% CO2 and humidified 

air.  

After maturation, the cumulus cells were removed from the oocytes by vortexing 

the COCs for 4 min at a medium speed in a 0.1% hyaluronidase solution. The oocytes 

were then placed in manipulation medium (TCM199 with 0.6 mM NaHCO3, 2.9 mM 

HEPES, 30 mM NaCl, 10 ng/mL gentamicin, and 3 mg/mL of bovine serum albumen 

(BSA) and selected for fertilization. Oocytes with a polar body between the plasma 

membrane and perivitelline space (metaphase II; MII), an evenly distributed cytoplasm 

and round zona pellucida were selected. The 20-30 selected oocytes were placed in 50 μL 

of in vitro fertilization (IVF) medium [a modified tris buffer medium (MTBM) consisting 

of 113.1 mM NaCl, 3.0 mM KCl, 7.5 mM CaCl2, 11 mM glucose, 20 mM tris, 5 mM 

sodium pyruvate, 0.05 mg/mL gentamicin, 0.664 mM caffeine and 2 mg/mL of BSA] and 

each group was covered in mineral oil. Frozen semen from a single boar was thawed, 

washed and finally, diluted in IVF medium (0.5 X 106 cell/mL) before 50 μL was added 

to each group of oocytes. Sperm and oocytes were incubated together for 4-5 h at 38.5°C 

in an atmosphere of 5% CO2 in air. After fertilization, the IVF-derived pig embryos were 

cultured overnight in 4 well plates (50/well) containing University of Missouri-1 (MU-1; 

Bauer et al., 2011) medium at 38.5°C in 5% CO2 in humidified air.  
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Conceptus Microinjection with Lentiviruses (Invitrogen and Applied StemCell) 

The next morning, the lentiviral solutions in cryovials were removed from the -

80°C freezer and placed on ice. In preparation for microinjections, viruses and pig 

zygotes (in four well plates) were transported (5 min walk) in separate Styrofoam 

containers (the viral container contained ice) to a BSL-2 laboratory at the University of 

Missouri, College of Veterinary Medicine. There, the zygotes were place in an incubator 

at 38.5°C in 5% CO2 and balanced air until microinjection. The IL-1β2 knockdown viral 

solutions were mixed [KdV7 and KdV9 for microinjections with Invitrogen or Applied 

StemCell lentiviruses (treatment Invitrogen KdV or Applied StemCell KdV)] and the 

combined solution centrifuged at 14,000 rpm for 1 min. All zygotes from one well 

(approximately 50) were placed in micromanipulation medium, covered in mineral oil 

and microinjected between the perivitelline space and plasma membrane using an 

immobilizing holding pipette and microinjection pipette (2-5 μm inner diameter) loaded 

with the mixed viral solution using an NK 2 micromanipulator (Eppendorf) and Eclipse 

TE-200 microscope (Nikon). Each zygote received approximately 100-200 pL of viral 

solution. The microinjected zygotes were transferred back to their wells (containing MU-

1 medium) and placed back in the incubator. As a control, another group of zygotes 

(approximately 50) were microinjected with a mixed solution of scrambled knockdown 

sequence viruses [SV6 and SV9 for Invitrogen lentiviruses (treatment Invitrogen SV) and 

SV7 and SV9 for Applied StemCell lentiviruses (treatment Applied StemCell SV)]. As a 

non-injected control, another group of zygotes were never removed from the four well 

plate and were not microinjected (treatment no virus; NV). Groups of zygotes were 

microinjected one at a time and immediately transferred back to their original well in the 
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four well plate after each treatment. The process took on average 30 min/treatment. The 

remaining mixed viral solutions were aliquoted (5 μL) into 0.2 mL tubes and re-frozen at 

-80°C. 

 

Conceptuses and Invitrogen lentiviruses 

 Invitrogen lentiviruses were used to infect pig zygotes. Five microinjection 

sessions (MS; 1-5; Table 4.4) and two embryo transfers (ET; 1-2) were performed using 

the Invitrogen lentiviruses. After microinjection, conceptuses remained in culture at the 

University of Missouri, College of Veterinary Medicine in an incubator at 38.5°C in 5% 

CO2 and balanced air until d 4 of development (ET) or d 6 of development (in vitro 

culture). On the morning of transfer, conceptues were brought back to ASRC and 

visualized for GFP expression using the DIAPHOT 300 microscope (Nikon) capable of 

detecting fluorescence. If conceptuses were not transferred they were checked for GFP on 

d 4 of development at the College of Veterinary Medicine using the Eclipse TE-200 

microscope (Nikon) capable of detecting fluorescence and on day 6 conceptuses were 

transferred back to ASRC. There, pictures of fluorescent conceptuses were taken at a 100 

X magnification using the Eclipse Ti microscope (Nikon). The number of conceptuses 

that developed to blastocyst on d 6 in each treatment was recorded. When possible, 

blastocysts were collected and snap frozen for RNA extraction and detection of EmGFP, 

IL-1β2, and ACTβ using RT-PCR followed by gel electrophoresis (see below). After MS 

1, ten blastocyst from the NV and ten blastocysts from the Invitrogen KdV treatments 

were pooled, snap frozen in 1.5 mL eppendorf tubes containing 100 μL of lysis buffer 

[supplied by the Dynabeads DIRECT kit (Invitrogen); see below] and stored at -80°C 
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until RNA extraction. After MS 2, five blastocyst from the NV and five blastocysts from 

the Invitrogen SV treatments were pooled and snap frozen in lysis buffer.  

 

Conceptuses and Applied StemCell Lentiviruses  

Applied StemCell Lentiviruses were also used to transduce pig zygotes. In total, 

eight MS (6-13; Tables 4.5 and 4.6) and eight ET (3-10) were performed. After 

microinjections, conceptuses were brought back to ASRC and incubated at 38.5°C in 5% 

O2, 5% CO2 and nitrogen balance in humidified air until d 4 of development (embryo 

transfer) or d 6 or d 8 of development (in vitro culture). On the morning of transfer, 

conceptuses were visualized for GFP using the DIAPHOT 300 microscope (Nikon) 

capable of detecting fluorescence. As a preliminary study, conceptuses were 

microinjected with lentiviruses and cultured in vitro until d 6 of development, after which 

the number of blastocysts in each treatment was recorded, the blastocysts were checked 

for GFP and pictures were taken (40 X and 100 X) of the conceptuses using the Eclipse 

Ti microscope (Nikon) (MS 6; Table 4.6). Individual GFP positive blastocysts were 

collected (three from each treatment; NV, Applied StemCell SV and Applied StemCell 

KdV), snap frozen in 1.5 mL eppindorf tubes containing 100 μL of lysis buffer 

(Invitrogen), and stored at -80°C until RNA extraction (see below). Using RT-PCR, 

conceptuses were measured for expression of ZsGreen1GFP, ACTβ, and IL-1β2 (see 

below). For conceptuses cultured until d 8 of development (extended culture; MS 11-13; 

Table 4.6) on d 6 GFP was visually detected and the number of blastocysts in each 

treatment was recorded. FBS was then added to the culture medium (10%). The number 
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of hatched blastocysts were recorded on d 8 and when possible, individual conceptuses 

were collected, snap frozen and stored at -80°C.  

 

Embryo Transfer 

Embryo transfers were performed at the University of Missouri swine complex as 

previously described (Ross et al., 2012). At the complex, gilts were monitored for estrus 

daily. Gilts between d 3 and 5 of the estrous cycle were chosen for ET. Briefly, on the 

morning of transfer, a single oviduct was exposed by mid ventral laparotomy.  

Approximately 20 to 50 pig conceptuses (d 4 of development) were transferred through 

the infundibulum and released into the ampullary-isthmus junction using a transfer 

pipette. Gilts received conceptuses from a single treatment [i.e. one treatment per gilt; 

NV, KdV or SV (Invitrogen or Applied StemCell)]. 

 

Uterine Tissues  

Embryos were flushed from the uterine horns as previously described by Mathew 

et al. (2011). Nine days after the embryo transfer (d 13 of development), the gilts were 

euthanized at the University of Missouri Veterinary Medicine Diagnostic Laboratory 

(VMDL) and the reproductive tract was removed and placed on ice. Within minutes of 

euthanasia, the reproductive tract was brought to the laboratory (5 min walk), the ovaries 

were removed and CL counted. The broad ligament was dissected away and the uterus 

was washed with ice-cold saline. Hemostats were used to clamp the uterine horns near 

the uterine body and both horns were removed. The oviducts were partially removed and 

each uterine horn, still clamped at the base, was infused with of 40 mL of ice cold 1 X 
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DPBS through the utero-tubule junction using a needle and syringe. To collect 

conceptuses, the DPBS was massaged through the uterine horn and released back out the 

utero-tubule junction into a 100 mL petri dish.  

 

Uterine Flushings  

Pictures were taken of flushings containing conceptuses or conceptus fragments 

that were then counted and measured (diameter) using a calibrated eyepiece micrometer. 

Conceptus tissues were mounted onto microscope slides using 1 X DPBS and pictures 

were taken at various magnifications using a Leica microscope capable of detecting 

expression of GFP. When possible, conceptus tissues were collected and snap frozen in 

liquid nitrogen and stored at -80°C. Some tissues were stained with DAPI and pictures of 

fluorescent nuclei were taken using the Leica microscope. Uterine flushings from both 

horns were centrifuged at 1,500 rpm for 10 min and the supernatant was collected and 

snap frozen before stored at -80°C.   

  

Conceptus RNA Extraction, cDNA Production and real-time RT-PCR 

RNA was extracted from elongated conceptuses (MS 5) and cDNA was reversed 

transcribed and RT-PCR were performed as described in Chapter Three.  RNA was 

extracted from pooled blastocysts (MS 1-2) or individual blastocysts (MS 6) as described 

by Huffman et al. (2012). During extraction of blastocyst RNA, embryos in lysis buffer 

were removed from the -80°C freezer and thawed. To control for variation in RNA 

extraction between samples for single blastocyst, each sample was spiked with 1 μL of 

diluted (1 ng/mL) maize aquaporin mRNA (zea mays NIP3-1; ZmNIP3-1) mRNA. RNA 
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was then isolated from the blastocysts using the Invitrogen Dynabeads DIRECT kit 

following the manufacturer’s recommendations. A negative control sample (Blank; lysis 

buffer only) was included with each extraction. Reverse transcription of mRNA to cDNA 

was achieved using the High-Capacity cDNA Reverse Transcription Kit following the 

manufacturer’s recommendations (4368814; Applied Biosystems). For each mRNA 

sample (10 μL), a 20 μL reverse transcription (RT) reaction was prepared with the High 

Capacity cDNA RT kit master mix with the addition of an RNase inhibitor (RNaseOut; 

10777-019; Invitrogen). The real-time RT-PCR were performed as in Chapter Three for 

elongated conceptuses and blastocysts (see standard procedures). Primer sets for IL-1β2 

and ACTβ were designed based on published porcine nucleotide sequences within 

GenBank (see Chapter Three, materials and methods section ribonuclease protection 

assays and Table 3.1, respectively). The average amplification efficiencies were 2.52 and 

1.88 for IL-1β2 and ACTβ, respectively. Primer sets for EmGFP, ZsGreen1GFP and 

ZmNIP3-1 were designed based on sequences provided by Invitrogen, Clontech and 

published maize nucleotide sequences within GenBank, respectively. The forward and 

reverse primer sequences were 5′-ACGTAAACGGCCACAAGTTC-3′ and 5′-

AAGTCGTGCTGCTTCATGTG-3′, respectively, for EmGFP and 5′-

CCCCGTGATGAAGAAGATGA-3′ and 5′-GTCAGCTTGTGCTGGATGAA-3′, 

respectively, for ZsGreen1GFP. The forward and reverse primer sequences were 5′-

TTCAACCTCCTCTTCGTCGT-3′ and 5′-CCAGCAGGTAGATCCAGAGC-3′, 

respectively, for ZmNIP3-1. The RT-PCR were prepared with 1 µL of cDNA sample and 

the products were DNA sequenced to verify amplification of the target sequence. For 

single blastocysts, fold changes in gene expression for all genes were normalized to fold 
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changes in control gene ZmNIP3-1. Amplification of desired sequences were verified by 

gel electrophoresis (4 μL of RT-PCR reaction; all samples) and sequencing of the 

amplicons at the University of Missouri DNA core (see Chapter Three, standard 

procedures). 

 

Statistics 

A Chi-square test was used to assess differences between treatments NV and V 

(KdV and SV combined) and KdV and SV for the percentage of blastocysts that 

developed on d 6 using the Proc Freq procedure of the Statistical Analysis System SAS 

(SAS institute Inc. Cary, NC, USA). This was done for both the Invitrogen (Table 4.4) 

and Applied StemCell lentivirus infected conceptuses (Tables 4.5 and 4.6 combined). The 

level of significance was set at α = 0.05.  Fold change over medium control for individual 

blastocyst (MS 6) gene expression was analyzed using the general linear models (GLM) 

procedure of SAS.  The model statement included an effect treatment.  Least squares 

means (LSM) and standard errors were generated using the LSMeans statement of SAS.  

All reported means are the adjusted LSM ± standard error of the least squares means 

(SEM) and the significance was declared when P < 0.05.   

 

RESULTS 

Invitrogen lentiviruses (MS 1-5 and ET 1-2) 

Microinjection of early pig conceptuses with the Invitrogen lentiviruses (KdV and 

SV) resulted in a reduction in the number of blastocysts that developed in vitro when 

compared with NV control conceptuses (Chi-square test, P < 0.001; Table 4.4). There 
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was no difference in the number of blastocyst that developed in the KdV-treated 

conceptuses compared with the SV treated conceptuses. There was a reduction in the 

capacity to detect GFP by using fluorescent microscopy in the microinjected conceptuses 

over time (Table 4.4). Although the lentiviral solutions were filtered (see development of 

Invitrogen lentiviruses), formation of particulates in the viral solutions that clogged the 

microinjection pipette resulted in complications during the MS. Unsuccessfully, we 

attempted to centrifuge the viral solutions before microinjection (MS 2-5) and 

microinject early cleavage (2-4 cell) pig conceptuses (MS 4) to reduce clogging of the 

pipette and increase conceptus transduction, respectively. Invitrogen lentiviruses were not 

used for further experiments after MS 5.  

 

Microinjection Session 1.  Twelve and ten conceptuses developed into blastocysts out of 

fifty that did not receive virus (NV) and fifty that were microinjected with KdV, 

respectively (Table 4.4). None of the NV blastocysts and most (~ 90%) of the blastocysts 

in KdV treatment expressed GFP (Fig. 4.3A). Ten blastocysts from the NV treatment and 

all of the blastocyst from the KdV treatment were collected and measured for expression 

of IL-1β2 and ACTβ. RT-PCR results indicated that KdV blastocysts had less IL-1β2 and 

ACTβ compared with NV blastocysts (Fig. 4.3B and 4.3C). 

 

Microinjection Session 2.  Eight and five conceptuses developed into blastocyst out of 20 

conceptuses that did not receive virus (NV) and 40 that were microinjected with the SV, 

respectively (Table 4.4). None of the conceptuses that received the KdV (n=20) 

developed into blastocysts. The SV blastocysts expressed GFP (Fig. 4.4A). Five 
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blastocysts from the NV treatment and all of the blastocyst from the SV treatment were 

collected and measured for expression IL-1β2 and ACTβ. Expression of IL-1β2 and ACTB 

was greater and less, respectively, in SV blastocysts when compared to NV blastocysts 

(Fig. 4.4B and 4.4C). 

 

Microinjection Session 5 and Embryo Transfers 1-2.  One hundred pig zygotes were 

microinjected with the SV and KdV in preparation for ET. Forty-two pig conceptuses (d 

4 of development) from the SV and KdV treatments were transferred to the oviduct of 

two gilts. Nine days later (d 13 of development), the uterine horns were flushed. Only 

tissue fragments (≤ 2 mm in diameter) were flushed from the gilt that received the SV 

conceptuses, however, 2 elongated conceptuses were flushed from the KdV gilt (Table 

4.4 and Fig. 4.5A). Expression of GFP could not be verified in the elongated conceptus 

tissues using fluorescent microscopy but was later verified for GFP by PCR and gel 

electrophoresis (Fig 4.5G). Compared with in vivo derived d 12 elongated pig 

conceptuses (see Chapter Three), expression of IL-1β2 and ACTβ in the elongated KdV 

conceptuses was less (Fig. 4.5E and 4.5F). 

 

 Applied StemCell lentiviruses (MS 6-13 and ET 2-10) 

Overall, similar to the Invitrogen lentiviruses, microinjections of early pig 

conceptuses with the Applied StemCell lentiviruses (KdV and SV) resulted in a reduction 

in the number of conceptuses that developed into blastocysts compared with NV controls 

conceptuses (Chi square test, P < 0.001; data from Table 4.5 and Table 4.6 combined). 

Again, there was no difference in the number of blastocyst that developed in the KdV 
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treated conceptuses compared with the SV treated conceptuses (data from Table 4.5 and 

Table 4.6 combined). Unlike the Invitrogen lentiviruses, there was not a reduction in GFP 

(Tables 4.5 and 4.6 combined). 

 

Microinjection Session 6.  Before the ET experiments, a preliminary study was conducted 

to determine the level of IL-1β2 knockdown achieved in pig conceptuses microinjected 

with the Applied StemCell lentiviruses. During the study, zygotes were not treated (NV), 

treated with SV or treated with KdV (100, 47 and 49 zygotes, respectively). Twelve 

conceptuses in the NV treatment developed to blastocyst and three conceptuses in both 

the SV and KdV treatments developed to blastocyst. By microscope, GFP could be 

detected in all six blastocysts produced from the SV and KdV treated conceptus (Fig. 

4.6). Three blastocysts from each treatment were individually measured for expression of 

IL-1β2 and ACTβ using RT-PCR followed by gel electrophoresis. Interleukin-1 beta 2 

was undetectable (Ct > 39) in all three KdV blastocysts and could be detected in two of 

three SV and NV blastocysts (Fig. 4.7A), however, there was not an effect of treatment 

on fold change in gene expression of IL-1β2. There was a tendency for an effect of 

treatment on expression of ACTβ (P = 0.0712). Expression of ACTB was less in SV 

blastocyst when compared to NV controls (Fig. 4.7B; P < 0.05). 

 

Microinjection Sessions 7-10 and Embryo Transfers 3-10.  During embryo transfer 

experiments with the Applied StemCell lentiviral treated conceptuses, three of eight gilts 

produced conceptuses on d 13 of pregnancy. One gilt received NV embryos and produced 

normal elongated conceptuses on d 13 (MS 9; Fig. 4.8). Two gilts received the KdV 
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embryos, both of which produced abnormal (spherical; ≤ 6 mm) conceptuses on d 13 

(MS 7-8; Fig. 4.9). All gilts (n=5) that received SV embryos produced nothing at all or 

produced what appeared to be fragments of conceptus tissues by d 13, some of which 

appeared to express GFP and had a poly lobular appearance (MS 7-10; Fig. 4.10 and Fig. 

4.11).  

Because the concentration of infections units (109) within the Applied StemCell 

lentiviral solution could have a negative impact on conceptus development, during MS 

10, conceptuses were microinjected with SV at two different dilutions in 1 X DPBS (108 

and 107 infectious units, respectively; 50 conceptuses per dilution). On the day of transfer 

(d 4 of development), GFP could not be detected by microscope in the microinjected 

conceptuses, however, 30 conceptuses, microinjected with diluted SV (108), were 

transferred to a recipient gilt. Nine days later, fragments resembling conceptus tissues, 

some of which appeared to express GFP, were flushed from the uterine horns (Fig. 

4.11D-F).  

 

Microinjection Sessions 11-13 

Failure of SV conceptuses to survive embryo transfers resulted in termination of 

in vivo experiments. Further experiments, using the Applied StemCell lentiviruses (MS 

11-13), were conducted to monitor blastocyst development and hatch rate of NV and 

lentivirus treated (KdV and SV) conceptuses in vitro. Statistically, there was not a 

difference in the number of conceptuses that became blastocysts or hatched blastocyst 

between the KdV and SV treatments, however, SV conceptuses numerically produced 

fewer blastocysts and fewer hatch blastocysts on d 6 and d 8 of development, 
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respectively, when compared to KdV conceptuses (Table 4.6) and the study was 

concluded. 

 

DISCUSSION 

 

This study was designed to examine the role of IL-1β2, a novel IL-1, in elongation 

of the early pig conceptus. Elongation occurs near d 11 of development in the pig and is 

considered necessary for establishment of pregnancy (Geisert et al., 1982; Bazer and 

Johnson, 2014). It allows for efficient uptake of uterine gland secretions that aid in 

development of the conceptus and expands the surface area of the placental unit for 

nutrient and gas exchange along the fetal-maternal interface (Vallet et al., 2002; 2009; 

Bazer and Johnson, 2014). Complications during this process and elongation asynchrony 

between conceptuses are hypothesized to reduce litter sizes in pigs (Vallet et al., 2002). 

Factors controlling elongation, a process that does not occur ex utero, have not been 

identified (Vallet et al., 2009).  

Rapid elongation of the pig conceptus is achieved through modifications of the 

endoderm and trophoblast. The cellular processes associated with elongation were 

characterized by Geisert et al. (1982) and reviewed by Bazer and Johnson (2014). During 

elongation, the blastocyst decreases proliferation by 40% and the trophoblast and the 

extra embryonic endodermal cells migrate, through the use of filapodia, toward the inner 

cell mass (ICM; embryo proper). There, the trophoblast and underlying endodermal cells 

on both sides of the ICM change shape and extend in opposite directions forming what is 

referred to as the “elongation zone”. Along the zone, the trophoblast cells condense and 
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become columnar in shape as a result of modifications made to cellular microfilaments 

and junctional complexes. The endodermal cells also condense along the elongation zone 

and have extensive surface microvilli. Continued extension of the zone drives elongation 

of the conceptus. 

Conceptuses up regulate IL-1β2 and IL-1 signaling components, IL-1RI and IL-

1RAP, at the time of elongation, suggesting that IL-1β2 plays a critical autocrine role in 

the process of elongation (Ross et al., 2003a). Interleukin-1 beta 2 signaling may promote 

actin filament modifications in the trophoblast, thereby enhancing trophoblast cell 

motility during formation of the elongation zone. Interleukin-1 has been shown to 

increase motility of brain cortical neurons, airway epithelial cells, neutrophils, tumor cells 

and microglia cells through modifications made to cell integrins and actin filaments 

(Ferreira et al., 2012; Ma et al., 2014)  

Previously, lentiviruses were used to knockdown expression of an elongation 

factor in sheep conceptuses and in one study, to produce transgenic pigs (Hofmann et al., 

2003; Purcell et al., 2009). Similar to the study by Purcell et al. (2009), we developed a 

lentiviral mediated RNAi system targeting IL-1β2, a possible elongation factor, in early 

pig conceptuses. We then microinjected pig zygotes with the viruses and transferred the 

conceptuses to the oviduct of recipient pigs. On d 13 of development, approximately two 

days after initiation of elongation, we removed the reproductive tract and flushed the 

uterine horns to observe development of the conceptuses.  

After performing five embryo transfer experiments, which involved the transfer of 

198-control virus (SV) infected conceptuses into the oviducts of recipient gilts; we were 

unable to collect normal elongated conceptuses on d 13 of development in this treatment. 
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Besides two Invitrogen KdV treated conceptuses (Table 4.4 and Fig. 4.5A) only in vitro 

produced conceptuses, not microinjected with the lentiviruses (no virus; NV), elongated 

while in utero. Abnormal spherical conceptuses were flushed from two gilts that received 

conceptuses microinjected with the Applied StemCell IL-1β2 knockdown lentiviruses.   

To the best of our knowledge, only one study has reported using sub zonal 

microinjections of lentivirus to infect pig conceptuses with subsequent transfer of 

conceptuses to the oviduct of recipient pigs. In this study, Hofmann et al. (2003) 

microinjected early pig conceptuses with the lentiviruses in an attempt to produce 

transgenic animals. After six embryo transfers, Hofmann et al. (2003) reported the birth 

of 46 piglets, 30 of which expressed the GFP transgene based on western blot analysis. 

They reported no significant differences between the number of pregnancies derived from 

transfers of virus-injected and control (buffer-injected) conceptuses (Hofmann et al., 

2003). 

Our study was carried out similarly to Hofmann et al. (2003) with a few 

exceptions. In the study by Hofmann et al. (2003), superovulated and inseminated gilts (6 

months of age) were used to collect in vivo produced pig conceptuses for the 

microinjections rather than in vitro produced pig conceptuses. The gilts were slaughtered 

36 hours after first insemination and conceptuses were flushed from the oviduct with pre-

warmed (38°C) PBS supplemented with lamb serum (20%) and 50 mg gentamicin 

sulphate before they were used directly for sub-zonal injections with concentrated 

lentiviruses (1010-109) (Hofmann et al., 2003). Further, in the study by Hofmann et al. 

(2003), they used pre pubertal, synchronized gilts, as recipients rather than naturally 



 126 

cycling gilts and transferred conceptuses (30-40) to the oviduct by laparoscopy rather 

than laparotomy. 

The differences between our experiments and those described by Hofmann et al. 

(2003) with respect to the production of conceptuses and embryo transfer procedures do 

not explain our inability to produce normal pregnancies from gilts receiving conceptuses 

treated with control viruses. In the one gilt that received non-injected or no virus (NV) in 

vitro produced conceptuses, she maintained a normal pregnancy and produced elongated 

conceptuses on d 13. However, Hofmann et al. (2003) used lentiviruses to promote 

transgenics alone and not RNAi. The observation that our lentivirus-infected conceptuses 

were less likely to become blastocysts (KdV and SV) and had a significant reduction in 

ACTβ expression (SV conceptuses) suggests that the type of lentiviruses used during our 

experiments had an overwhelming negative effect on development that could not be 

overcome by d 13 (MS 6; Fig. 4.7B). For instance, it’s possible that our KdV and SV 

sequences may have targeted mRNAs of developmentally important proteins, other than 

IL-1β2, resulting in compromised embryonic development (Manjunath et al., 2009). 

Other groups have experienced similar complications when using lentiviral directed 

RNAi in sheep conceptuses (verbal communicated with Dr. Thomas Spencer; 

Washington State University).  

Some conceptuses in the KdV and SV treatments may not have been successfully 

infected with the lentiviruses during the MS and should theoretically develop normally in 

utero along side developmentally abnormal conceptuses. It’s possible that the lentivirus 

treatments had an overall negative effect on the uterus and therefor resulted in complete 

pregnancy failure. Out of nine embryo transfers that included transfer of 280 KdV or SV 
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conceptuses, only two conceptus of normal morphology (elongated) were recovered (MS 

5; Table 4.4 and Fig. 4.5B). Pig uteri are extremely sensitive to inflammatory stimuli and 

its possible that viral factors, such as proteins or nucleic acids, transferred along with 

conceptuses or released from healthy or dying conceptuses while in utero resulted in an 

exacerbated inflammatory response within the endometrium and complete pregnancy 

failure. While flushing uteri of gilts that received KdV or SV conceptuses, we noted that 

some reproductive tracts had an abnormal coloration and texture that may have been 

associated with a strong inflammatory response. 

 As an alternative to lentiviral mediated RNAi, the CRISPR/Cas9 system in 

combination of somatic cell nuclear or in vitro produced pig zygotes could be used to 

efficiently produce pig conceptuses with bi allelic ablation (knockout) of IL-1β2 

(Whitworth et al., 2014; Sander and Joung; 2014). Implementation of embryo transfer 

and uterine flushing experiments with the IL-1β2 knockout conceptuses could potentially 

reveal the function of IL-1β2 during elongation without the risk of negative effects 

triggered by the RNAi pathway or lentiviruses.     

Although we were unable to test the hypothesis that IL-1β2 is involved in 

elongation of the early pig conceptus, RT-PCR analysis revealed that IL-1β2 is expressed 

in d 6, in vitro produced, pig blastocyst, suggesting that this cytokine may control 

important developmental processes prior to elongation. Further, because IL-1β2 is highly 

up regulated during trophoblast expansion and elongation of the conceptus and because 

porcine fibroblast cells with an induced trophoblast (iTR) phenotype express an IL-1β, 

expression of IL-1β2 is thought to be trophoblast lineage specific (Ross et al., 2003a; 

Ezashi et al., 2011). Observation made during our experiments may further support this 
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theory as some, but not all, NV or SV blastocysts expressed IL-1β2 on d 6 (Fig. 4.7C), a 

time closely associated with differentiation and formation of the trophoblast lineage. 

 

SUMMARY AND CONCLUSION 

 

Near d 11 of gestation, pig trophoblast cells rapidly migrate and change shape, 

resulting in extensive remodeling and elongation of the early pig conceptus. Elongation 

increases the uterine surface area occupied by the conceptus, enhancing fetal-maternal 

exchange. Interleukin-1 beta 2, a novel IL-1, is highly up regulated in the conceptus 

during elongation and is hypothesized to play a critical role in this process. To test this 

hypothesis, we developed a lentiviral mediated RNAi system to specifically target IL-1β2 

in early pig conceptuses. Microinjections of pig zygotes with knockdown (KdV) and 

control (SV) viruses resulted in a reduction of the number of conceptuses that developed 

into blastocysts in vitro and significantly reduced expression of ACTβ in the SV 

blastocyst compared to conceptuses that did not receive virus (NV). Transfer of control 

SV conceptuses into the oviduct of recipient gilts on d 4 resulted in complete 

reproductive failure in all gilts by d 13 of pregnancy. Therefore, using lentiviral mediated 

RNAi technology; we were unable to effectively test the hypothesis that IL-1β2 is 

necessary for elongation of the pig conceptus. However, NV and SV conceptuses did 

express IL-1β2 on d 6 of development suggesting that this cytokine may have an 

important function prior to elongation. As an alternative approach, utilization of the 

newly developed CRISPR/Cas9 system, in combination with somatic cell nuclear transfer 

or in vitro produced pig zygotes, could be used to efficiently produce pig conceptuses 
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with bi allelic ablation of IL-1β2. Subsequent transfer of these conceptuses to recipient 

gilts could reveal the true function of IL-1β2 during elongation and establishment of 

pregnancy in the pig.   
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TABLE 4.1  Percentage of luciferase expression in BHK-21 cells relative to control for knockdown (Kd) and scrambled (S) sequence 
oligonucleotides (oligos). The oligos were designed to knockdown the IL-1β2. Specificity was achieved for Kd7 and Kd9. Relative to 
control: * P < 0.05; ** P < 0.01; *** P < 0.001. Kd2 was omitted because of complications during Kd2 oligo and pGeneClip U1 
ligations. 
 

 Oligos IL-1β2 IL-1β1 
Control 100 ± 4.6 100.0 ± 5.4 

Kd1 25.6 ± 4.5*** 29.2 ± 1.5* 

Kd3 74.6 ± 7.5 120.7 ± 12.1 

Kd4 36.4 ± 3.7 159.8 ± 16.5 

Kd5 19.1 ± 2.9*** 75.5 ± 12.4 

Kd6 13.1 ± 1.9** 26.5 ± 4.0** 

Kd7 10.5 ± 0.6*** 231.6 ± 19.6*** 

Kd8 22.4 ± 2.0*** 18.3 ± 1.5*** 

Kd9 8.6 ± 1.0*** 85.9 ± 8.0 

S7 109.5 ± 19.5* 196.9 ± 20.3*** 

S8 120.7 ± 20.1*** 219.5 ± 14.6*** 

S9 91.4 ± 14.0 212.9 ± 27.4** 

0 
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TABLE 4.2  Oligos (top and bottom strands) containing Kd7 and Kd9 sequences (see Figure 4.1). The oligos were annealed and 
ligated into the pcDNA 6.2-GW/± EmGFP-miR plasmids. As controls, oligos containing scrambled sequences (S6 and S9) were also 
annealed and ligated into the plasmid. The IL-1β2 antisense (mature miRNA) and sense sequences are underlined. The internal 
italicized sequences represent loop regions in production of short hairpin RNA (shRNA). Two bp were omitted in the sense sequence 
to produce a short internal RNA loop within the mature miRNA sequence to enhance knockdown efficiency.  

 
 
 

miRNA Strand Oligo sequence (5′-3′) 

Kd7 
Top TGCTGCTTTCCTTCAGAATGCCGTCCGTTTTGGCCACTGACTGACGGACGGCACTGAAGGAAAG 

Bottom CCTGCTTTCCTTCAGTGCCGTCCGTCAGTCAGTGGCCAAAACGGACGGCATTCTGAAGGAAAGC 

S6 
Top TGCTGCACTATTATGCGCTCTTCTCCGTTTTGGCCACTGACTGACGGAGAAGAGCATAATAGTG 

Bottom CCTGCACTATTATGCTCTTCTCCGTCAGTCAGTGGCCAAAACGGAGAAGAGCGCATAATAGTGC 

Kd9 
Top TGCTGCTTGTCATCGCTGTCATCTCCGTTTTGGCCACTGACTGACGGAGATGAGCGATGACAAG 

Bottom CCTGCTTGTCATCGCTCATCTCCGTCAGTCAGTGGCCAAAACGGAGATGACAGCGATGACAAGC 

S9 
Top TGCTGCTCATCGCTCGTTTTCGATCCGTTTTGGCCACTGACTGACGGATCGAACGAGCGATGAG 

Bottom CCTGCTCATCGCTCGTTCGATCCGTCAGTCAGTGGCCAAAACGGATCGAAAACGAGCGATGAGC 

1 
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TABLE 4.3  Oligos (top and bottom strands) containing Kd7 and Kd9 sequences (see Figure 4.1). The oligos were annealed and 
ligated into pLVX-shRNA2 plasmids at Applied StemCell Inc. As controls, oligos containing scrambled knockdown sequences (S7 
and S9) were also annealed and ligated into the plasmids. The IL-1β2 antisense (mature miRNA) and sense sequences are underlined. 
The internal italicized sequences represent loop regions in production of the short hairpin RNA (shRNA). 
 

  

miRNA Strand Oligo sequence (5′-3′) 

Kd7 

Top GATCCCGACGGCATTCTGAAGGAAATTGATATCCGTTTCCTTCAGAATGCCGTCTTTTTTCCAAG 

Bottom AATTCTTGGAAAAAAGACGGCATTCTGAAGGAAACGGATATCAATTTCCTTCAGAATGCCGTCGG 

S7 

Top GATCCCGAAAGATTCGAGGCTCGAATTGATATCCGTTCGAGCCTCGAATCTTTCTTTTTTCCAAG 

Bottom AATTCTTGGAAAAAAGAAAGATTCGAGGCTCGAACGGATATCAATTCGAGCCTCGAATCTTTCGG 

Kd9 

Top GATCCCGAGATGACAGCGATGACAATTGATATCCGTTGTCATCGCTGTCATCTCTTTTTTCCAAG 

Bottom AATTCTTGGAAAAAAGAGATGACAGCGATGACAACGGATATCAATTGTCATCGCTGTCATCTCGG 

S9 

Top GATCCCGATCGAAAACGAGCGATGATTGATATCCGTCATCGCTCGTTTTCGATCTTTTTTCCAAG 

Bottom AATTCTTGGAAAAAAGATCGAAAACGAGCGATGACGGATATCAATCATCGCTCGTTTTCGATCGG 

2 
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TABLE 4.4  Microinjection sessions 1-5 (MS 1-5), treatments (Trt), number of conceptuses treated, number and percent of 
conceptuses that became blastocyst during in vitro culture, detection of GFP in conceptuses, number of conceptuses transferred and 
morphology of conceptuses collected on d 13 after transfer for conceptuses either not treated (no virus; NV) or treated with Invitrogen 
IL-1β2 knockdown (KdV; mixed Kd7 and Kd9) or scrambled knockdown (SV; mixed S6 and S9) lentiviruses. NA, Not Applicable. D, 
divided or early cleavage embryos. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MS Trt Conceptuses Blast (%) GFP Transfer Morphology 

1 
NV 50 12 (24.0%) - NA NA 

KdV 50 10 (20.0%) -/+ NA NA 

2 

NV 20 8 (40.0%) - NA NA 

SV 40 5 (12.5%) -/+ NA NA 

KdV 20 0 (0.0%) NA NA NA 

3 
NV 45 10 (22.2%) - NA NA 

SV 40 1 (2.5%) - NA NA 
KdV 47 3 (6.4%) -/+ NA NA 

4 

NV 37 (D) 10 (27.0%) - NA NA 
SV 25 (D) 3 (12.0%) - NA NA 

NV 61 22 (36.1%) - NA NA 
SV 60 13 (21.7%) - NA NA 

5 
SV 100 NA -/+ 42 Fragments 
KdV 100 NA -/+ 42 2 Elongated 

3 
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TABLE 4.5  Microinjection sessions 6-10 (MS 6-10), treatments (Trt), number of conceptuses treated, number and percent of 
conceptuses that became blastocyst during in vitro culture, detection of GFP in conceptuses, number of conceptuses transferred and 
morphology of conceptuses collected on d 13 after transfer for conceptuses either not treated (no virus; NV) or treated with Applied 
StemCell IL-1β2 knockdown (KdV; mixed Kd7 and Kd9) or scrambled knockdown (SV; mixed S7 and S9) lentiviruses. NA, Not 
Applicable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*viral solution diluted 108; ** viral solutions diluted 107.

MS Trt Conceptuses Blast (%) GFP Transfer Morphology 

6 
NV 100 12 (12.0%) - NA NA 
SV 47 3 (6.4%) + NA NA 
KdV 49 3 (6.1%) + NA NA 

7 

NV 18 6 (33.3%) - NA NA 

SV 50 NA -/+ 20 None 

KdV 50 NA -/+ 20 Spherical 
(6, 2 and 1 mm) 

8 

NV 50 12 (24.0%) - NA NA 
SV 50 NA -/+ 40 Fragments 

KdV 50 NA -/+ 40 Spherical 
(< 1mm) 

9 

NV 23 NA - 23 Elongated 

SV 23 NA -/+ 23 Fragments 

SV 23 NA -/+ 23 Fragments 

10 
SV* 50 NA - 30 Fragments 

SV** 50 NR - NA NA 

4 
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TABLE 4.6  Microinjection sessions 11-13 (MS 11-13), treatments (Trt), number of conceptuses treated, number and percent of 
conceptuses that became blastocyst during in vitro culture, detection of GFP in conceptuses and number of conceptuses that hatched 
for conceptuses either not treated (no virus; NV) or treated with Applied StemCell IL-1β2 knockdown (KdV; mixed Kd7 and Kd9) or 
scrambled knockdown (SV; mixed S7 and S9) lentiviruses. NA, Not Applicable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MS Trt Conceptuses Blast (%) GFP Hatched 

11 
NV 37 9(24.3%) - 3 

SV 55 0 (0.0%) NA NA 
KdV 53 7(13.2%) -/+ 0 

12 
NV 38 17 (46.0%) - 10 

SV 45 10 (22.2%) -/+ 0 

KdV 37 6 (16.2%) -/+ 4 

13 

NV 50 14 (28.0%) - 1 

SV 42 2 (4.8%) -/+ 1 

KdV 40 4 (10.0%) -/+ 0 

5 
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FIGURE 4.1  Alignment of IL-1β1 and IL-1β2 cDNA sequences using CLUSTALW multiple sequence alignment program and 
locations where eight different knockdown (Kd) oligonucleotides (boxes) were designed to target IL-1β2. Stars (*) indicate the 
location of bp homology between IL-1β1 and IL-1β2. Dashes (-) indicate insertions or deletions. “Start” and “Stop” indicates of start 
and stop codons.  

7 
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FIGURE 4.2  Infection of the 293FT cells with an Invitrogen IL-1β2 knockdown lentivirus capable of transducing GFP. Interleukin-1 
beta 2 knockdown lentiviruses were harvested from the 293FT mammal cell line using the BLOCK-iT Lentiviral Pol II miR RNAi 
Expression System (Invitrogen). (A) Dark field image and (B) GFP negative control image of 293FT cells treated with negative (no 
virus) control medium. (C) GFP image of 293FT cells treated with a positive control lentivirus (PosV). (D) GFP image of 293FT cells 
treated with Invitrogen IL-1β2 knockdown lentivirus 9 (KdV9). Cells were visualized for GFP using a Leica Light microscope 
equipped with a GFP filter (B, C and D). Images were taken at a 400 X magnification. Bar = 50μm.
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FIGURE 4.3  Expression of GFP (A), IL-1β2 and ACTβ (B-D; relative expression) in pig conceptuses not treated (No Virus; NV) and 
treated with Invitrogen knockdown lentivirus (KdV; mixed Kd7V and Kd9V) during microinjection session 1 (MS 1). Pictures of 
fluorescent blastocysts on d 6 of development (A) were taken at 100 X magnifications using the Eclipse Ti microscope (Nikon). RNA 
was extracted from 10-pooled NV and KdV blastocysts for RT-PCR gene expression analysis of IL-1β2 and ACTβ (B-D). Data are 
presented as least squares means (LSM). During gel electrophoresis experiments, 4 μL of the RT-PCR reactions were electrophoresed 
through a 0.8% gel (D).
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FIGURE 4.4  Expression of GFP (A), IL-1β2 and ACTβ (B-D; relative expression) in pig conceptuses not treated (No Virus; NV) and 
treated with Invitrogen scrambled knockdown lentivirus (SV; mixed S6V and S9V) during microinjection session 2 (MS 2). Pictures 
of fluorescent blastocysts on d 6 of development (A) were taken at 100 X magnification using the Eclipse Ti microscope (Nikon). 
RNA was extracted from 5-pooled NV and KdV blastocysts for RT-PCR gene expression analysis of IL-1β2 and ACTβ (B-D). Data 
are presented as least squares means (LSM) During gel electrophoresis experiments, 4 μL of the RT-PCR reactions were 
electrophoresed through a 0.8% gel (D).

A B 

C 

D 

0 



 

14 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4.5  Elongated conceptuses and conceptus fragments flushed from a gilt that received Invitrogen KdV (A and B) and SV (C 
and D) treated conceptuses, respectively after microinjection 5 (MS 5). Expression of IL-1β2 and ACTβ (E-G) and expression of GFP 
(G) in the elongated KdV conceptuses and elongated conceptuses produced from artificial insemination (AI; see Chapter II). IL-1β2 
and ACTβ fold change in gene expression are presented as least squares means (LSM). 4 μL of the PCR and RT-PCR reactions were 
electrophoresed through a 0.8% gel (D). GFP could not be detected by microscope in the KdV conceptus but expression was later 
verified by PCR (G).
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FIGURE 4.6  Expression of GFP in pig conceptuses treated with Applied StemCell knockdown (KdV; mixed KdV7 and KdV9) and 
scrambled knockdown (SV; mixed SV7 and SV9) lentiviruses after microinjection session 6 (MS 6). Expression of GFP was not 
detected in conceptuses that did not receive virus (No Virus controls) Pictures of fluorescent blastocysts (d 6 of development) were 
taken at 40 X and 100 X magnifications using the Eclipse Ti microscope (Nikon). 
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FIGURE 4.7  Relative RT-PCR fold change in gene expression for IL-1β2 and ACTβ in individual NV, KdV and SV blastocyst from 
Fig. 4.6 (n=3 per treatment; A-C). Data are presented as least squares means (LSM) ± standard error of the least squares means 
(SEM). Different letters over bars represent significant differences between treatment means. During gel electrophoresis experiments, 
4 μL of the RT-PCR reactions were electrophoresed through a 0.8% gel (C).
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FIGURE 4.8  Bright field images (A and B) and a negative GFP image (C) of an elongated, no virus control (NV), pig conceptus 
flushed from the uterus after microinjection session 5 (MS 5) and nine days after embryo transfer (d 13 of development). A picture of 
the inner cell mass (ICM) was taken from the location of the black box in image B and presented as an inset image. Bar = 1 mm.  
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FIGURE 4.9  Bright field and GFP images of two Applied StemCell KdV conceptuses flushed from a single gilt on d 13 of pregnancy. 
Conceptuses were abnormal in morphology (not elongated) and 1 mm (A-C) and 2 mm (D-F) in diameter based on measurement with 
a calibrated eyepiece micrometer. Bar = 100 μm. Images A and D were taken at a 25 X magnification. Images B and C were taken at 
400 X and images E and F were taken at 100 X plus zoom.      
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FIGURE 4.10  Bright field and GFP images of conceptus fragments flushed from two gilts (A-C and D-F) on d 13 of pregnancy. 
Fragments flushed from one gilt had an elongated appearance (D-F). Bar = 1 mm in images A and D. Bar = 100 μm in images B and 
C. Bar = 200 μm in images E and F.  
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FIGURE 4.11  Bright field, DAPI and GFP images of a conceptus fragment flushed from a gilt (A-C) on d 13 of pregnancy. High 
magnification bright field, DAPI and GFP images of cells within the fragment (D-F). Bar = 200 μm in images A-C and 20 μm in 
images D-F. Images A-C and D-F were taken a 100 X and 1000 X magnifications, respectively.   
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CHAPTER FIVE 

 

 

PREDICTED PROTEIN STRUCTURE, FUNCTION AND ALIGNMENT 

OF PIG INTERLEUKIN-1 BETA 1 (IL-1β1) AND INTERLEUKIN-1 

BETA 2 (IL-1β2), THE LATTER A NOVEL IL-1 EXPRESSED BY THE 

EARLY PIG CONCEPTUS 

 

 

 

Abstract 

 

Interleukin-1 beta (IL-1β) is a master pro-inflammatory cytokine commonly 

released by leukocytes with functions in immunity and when mis-regulated, 

manifestation of disease. IL-1β also promotes implantation when released by the primate 

and rodent conceptus. In the pig, the gene encoding IL-1β has duplicated resulting in 

genes interleukin-1 beta 1 (IL-1β1) and interleukin-1 beta 2 (IL-1β2). Interleukin-1 beta 1 

is expressed by blood leukocytes and IL-1β2 is expressed by the early pig conceptus. An 

increase in IL-1 receptor type I (IL-1RI) expression in the pig uterine surface epithelium 

during early pregnancy suggests that IL-1β2 functions to promote implantation by 

binding this receptor. Compared with IL-1β1, recombinant IL-1β2 had a lesser capacity 

to activate nuclear factor-kappa B (NF-κB), a transcription factor commonly activated 
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during IL-1β-IL-1RI signaling, in the uterine surface epithelium indicating the IL-1β2 

may have reduced activity. In order for IL-1β to bind the IL-1RI, the cysteine protease, 

caspase-1 (CASP1), must process pro-IL-1β into a mature functional cytokine. To 

investigate differences in protein structure between IL-1β1 and IL-1β2, we predicted and 

aligned the atomic structures of pro and mature IL-1β1 and IL-1β2 using DNASTAR’s 

Novafold program. Alignment of predicted pro and mature proteins resulted in an RMSD 

of (3.47 Å) and (0.70 Å), respectively, indicating that IL-1β1 and IL-1β2 are highly 

similar in structure in absence of the pro-domains. Viewing the solvent accessible surface 

area of the pro-proteins suggested that there is a possible steric hindrance of the first 

CASP1 site in IL-1β2 compared with that of IL-1β1. For the mature proteins, Novafold 

predicted that IL-1β1 and IL-1β2 bind the IL-1RI with 35 and 32 binding sites, 

respectively. Thirty-two binding sites were shared between the two proteins. Of these 

binding sites, IL-1β2 had three non-conserved amino acid substitutions that resulted in a 

complete change of charge and solvent accessible surface areas compared with IL-1β1. 

Overall, differences in protein structure, the number of IL-1RI binding sites and amino 

acid side chain charges could affect the availability and activity of IL-1β2 compared with 

IL-1β1. 

 
 

INTRODUCTION 
 

 

Interleukin-1 beta is an important pro-inflammatory signaling factor released by 

leukocytes that can coordinate innate and adaptive immune responses (Dinarello, 2011; 

Garlanda et al., 2013). Human IL-1β is first translated into an inactive pro-protein with a 
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molecular weight of approximately 31 kilodalton (kDa) (Hailey et al., 2009). During cell 

stress, tissue injury or infection, activation of the inflammasome in the cell cytoplasm 

triggers processing of pro-IL-1β by caspase-1 (CASP1) proteases. Caspase-1 

proteolytically cleaves pro-IL-1β in two sequential locations (CASP1 site-1 and site-2) 

(Hailey et al., 2009). Removal of the pro-domain allows folding of the C-terminus and 

formation of mature, functional IL-1β (mat-IL-1β) (Hailey et al., 2009). The tertiary 

structure of human mat-IL-1β resembles a β trefoil, consisting of twelve β strands that 

fold into a four sided tetrahedral like shape containing a hydrophobic barrel core motif 

common to other active members within the IL-1 superfamily including IL-1 alpha (IL-

1α), IL-33 and the interleukin-1 receptor antagonist (IL-1RA) (Krumm et al., 2014).  

Interleukin-1 beta signals by binding the IL-1RI located within the target cell 

membrane. The crystal structure of human IL-1β-IL-1RI complex has been solved 

(Vigers et al., 1997). The tertiary structure of IL-1RI resembles a question mark that 

grasps IL-1β like a hand (Krumm et al., 2014). Clinching the cytokine in a C-like shape, 

the IL-1RI immunoglobulin domains interact with residues located on mat-IL-1β’s 

exterior, many of which are important for signal activation (Krumm et al., 2014). 

Formation of this complex attracts the IL-1 receptor accessory protein (IL-1RAP), also 

located within the membrane (Dunne and O’Neill, 2003; Sims and Smith, 2010; Krumm 

et al., 2014). Signaling is finally triggered after juxtapositioning of IL-1RI and IL-1RAP-

toll IL-1R (TIR) domains within the cell cytoplasm ultimately activating the transcription 

factor nuclear factor-kappa B (NF-κB) (Dunne and O’Neill, 2003; Sims and Smith, 2010; 

Krumm et al., 2014). 
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Interleukin-1 beta can influence uterine receptivity for implantation in primates 

and rodents by increasing adhesion molecules along the uterine surface and matrix 

metalloproteinase (MMP) expression in the cytotrophoblast (Simón et al., 1998; Librach 

et al., 1994). The gene encoding IL-1β has duplicated in pigs resulting in two distinct 

genes, interleukin-1 beta 1 (IL-1β1) and interleukin-1 beta 2 (IL-1β2), that are tandem 

within pig chromosome three (Groenen et al., 2012). The IL-1β1 is the prototypical 

cytokine expressed by leukocytes and IL-1β2 is expressed by the early pig conceptus. The 

function of IL-1β2 during early pregnancy in the pig is not yet known. Conceptus 

expression of IL-1β2 increases significantly during elongation, a morphological 

transformation of the conceptus that expands the placental unit, and prior to attachment 

(Tuo et al., 1996; Ross et al., 2003a; 2003b). Expression of IL-1RI and IL-1RAP increase 

in the conceptus and uterine surface epithelium at that time suggesting that IL-1β2 

interacts with these signaling factors and has important roles in development and 

implantation (Ross et al., 2003a). However, interactions between mat-IL-1β2 and IL-1RI 

have not been verified. Data presented in Chapter Three suggests that mat-IL-1β2 can 

cause the translocation of NF-κB, transcription factor commonly activated during IL-1β-

IL-1RI signaling, to the uterine epithelial and alveolar cell nucleus. Compared with 

recombinant IL-1β1, IL-1β2 had a lesser capacity to translocate NF-κB in the epithelium. 

Overall, these findings suggest the IL-1β2 interacts with the IL-1RI and that functional 

differences may exist between IL-1β1 and IL-1β2. 

Katebi et al. (2010) used the I-TASSER platform to predict the tertiary structures 

of pro and mature IL-1β1 and IL-1β2 proteins. Based on their predictions, Katebi et al. 

(2010) suggested that amino acid residues up stream of CASP1 site-2 in pro-IL-1β2 could 
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reduce CASP1 activity and therefore, could result in less available mat-IL-1β2 for 

signaling. Further, Katebi et al. (2010) concluded that mat-IL-1β2 likely binds the IL-1RI 

but may have a different binding efficiency compared with mat-IL-1β1 based on residue 

substitutions in IL-1β2’s binding motif. They also suggested that these substitutions 

could lead to interactions with other proteins. 

To verify this and to specifically compare receptor-binding sites between the two 

pig IL-1β proteins, we predicted the atomic structure of both pro and mature IL-1β1 and 

IL-1β2 and aligned the structures against one another using DNASTARs, recently 

developed, Novafold program. Further, we aligned mat-IL-1β1 and mat-IL-1β2 structures 

to the predicted structure of human and mouse mat-IL-1β and to mat-IL-1β from a more 

closely related mammal, the minke whale (Yim et al., 2014). 

 

MATERIALS AND METHODS 

 

Based on full-length amino acid sequences and CASP1 proteolytic cleavage sites 

(Hailey et al., 2009; Fig. 5.1 and Fig. 5.2) tertiary structures for pro and mature IL-1β1 

and IL-1β2 were predicted using DNASTAR’s Novafold program (DNASTAR Inc.). 

Pro-IL-1β1 and pro-IL-1β2 protein sequences were 267 amino acids in length. Mat-IL-

1β1 and mat-IL-1β2 protein sequences were 153 and 154 amino acids in length, 

respectively. Interleukin-1 beta-CASP1 sites are conserved across mammals (Hailey et 

al., 2009). Based on these sites, minke whale, human and mouse mat-IL-1β protein 

structures, consisting of 153, 153 and 152 amino acids, respectively, were also predicted 

(Fig. 5.1). Novafold utilizes I-TASSER (iterative threading assembly refinement) 
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algorithms that make protein tertiary structure predictions based on a combination of 

multiple-threading alignments [20 most similar sequences with solved tertiary structures 

in the protein data bank (PDB)] and iterative template fragment assembly simulations 

(Zhang and Skolnick, 2013).  

For each sequence, the Novafold program provided the best five prediction 

models and a prediction confidence (C)-score for each. The I-TASSER C-score, typically 

ranging from -5 to 2, is an estimate of accuracy for a predicted protein model based on 

the quality of threading and structural assembly. A higher C-score is indicative of a better 

prediction (Zhang, 2008; Roy et al., 2010; 2012). For each structure, Novafold also 

predicted the protein’s function and potential interactions with other proteins, such as 

during ligand-receptor binding. Amino acids involved in these activities were also 

predicted. We then performed a rigid body alignment of the predicted IL-1β1 and IL-1β2 

protein structures within Novafold. For each alignment Novafold provides a root mean 

square deviation (RMSD) value. The RMSD is the average distance measured in 

angstroms (Å) between α carbon atoms of superimposed protein structures. The RMSD 

value can range can from 0 to approximately 30 with a lower value indicating greater 

structural similarity. As a positive prediction control, the human mat-IL-1β structure, 

predicted by Novafold, was aligned with the human mat-IL-1β structure predicted by X-

ray diffraction in combination with solution nuclear magnetic resonance (NMR) imaging 

(PDB ID; 1IOB). This resulted in an RMSD value of 0.90 Å. As a negative control, the 

Novafold predicted human mat-IL-1β was aligned with the human IL-1 receptor 

antagonist (IL-1RA) protein structure predicted by solution NMR (PDB; 1IRP) resulting 

in an RMSD of 3.20 Å. Human mat-IL-1β and IL-1RA are 153 residues each and share 
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approximately 30% sequence identity. The Novafold human mat-IL-1β prediction was 

further aligned with the structure of human myoglobin determined by X-ray diffraction. 

Human myoglobin also consists of 153 residues and does not share sequence identity 

with human IL-1β (PDB; 3RGK). This alignment resulted in an RMSD of 4.66 Å.   

  

RESULTS 
 

Pro-IL-1β1 and IL-1β2 

 The best Novafold predictions of the atomic structure of pro-IL-1β1 and pro-IL-

1β2, both of which consisted of 267 amino acids, received C-scores of -2.7 and -3.0, 

respectively, and took approximately 40 h to compute (Fig. 5.3). These C-scores are 

similar to those reported by Katebi et al. (2010) and as they suggested, indicate greater ab 

initio structure prediction within I-TASSER. Alignment of the best-predicted pro-

structures resulted in an RMSD of 3.47 Å. Compared with pro-IL-1β2, the predicted 

tertiary structure of pro-IL-1β1 had a greater number of alpha helixes (2 and 7, 

respectively), five of which were located within the pro-region (Fig. 5.3). Pro-IL-1β2 

alpha helixes were also located in the pro-region. Both predicted structures had 12 β 

strands located within the mature region. View of the solvent accessible surface area of 

pro-IL-1β1 and pro-IL-1β2 indicated that all CASP1 sites (site-1 and site-2) were near the 

protein surface (Fig. 5.4). However, a large molecular structure, resembling a Y, partially 

covered CASP1 site-1 in pro-IL-1β2 (Fig. 5.4). The opposite was true for CASP1 site-2 

as this region was partially covered in pro-IL-1β1 but completely exposed in pro-IL-1β2. 

 

Mature IL-1β1 and IL-1β2 
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Within pro-IL-1β1 and pro-IL-1β2, both CASP1 sites are conserved (CASP1 site-

1, Asp27 and Gly28; IL-1β1-CASP1 site-2, Asp114 and Ala115; IL-1β2-CASP1 site-2 Asp113 

and Ala114). The best Novafold predictions of the atomic structure of mat-IL-1β1 and 

mat-IL-1β2 received C-scores of 1.9 and 1.8, respectively, and took approximately 13 h 

to compute (Fig. 5.5). Alignment of mature structures resulted in an RMSD of 0.70 Å, 

indicating that the predicted mat-IL-1β1 and mat-IL-1β2 structures were highly similar in 

the absence of the pro-domain (Fig. 5.5). The best Novafold predictions of the atomic 

structure of minke whale, human and mouse mat-IL-1β received C-scores of 1.9 (Fig. 

5.6). Alignment of predicted mat-IL-1β1 with predicted minke whale, human and mouse 

mature-IL-1β protein structures resulted in RMSD’s of 0.64, 0.67, and 0.63 Å, 

respectively, indicating slightly greater structural alignment compared to the mat-IL-1β1-

mat-IL-1β2 structural alignment. Similarly, alignment of predicted mat-IL-1β2 with 

predicted minke whale, human and mouse mat-IL-1β protein structures resulted RMSDs 

of 0.62, 0.62 and 0.64 Å, respectively.  

All the predicted tertiary structures retained the characteristic IL-1 superfamily β 

trefoil confirmation and, with the exception of minke whale mat-IL-1β, consisted of 12-β 

strands spanning at least four amino acids (Fig. 5.6). The minke whale mat-IL-1β was 

predicted to have ten β strands of at least four amino acids and four smaller strands. Mat-

IL-1β1 and mat-IL-1β2 had three and two alpha helixes, respectively. Minke and human 

mat-IL-1β had two alpha helixes and mouse mat-IL-1β, one alpha helix. All helixes 

appeared to be near the protein surface.  

Based on Novafold predictions, both mat-IL-1β1 and mat-IL-1β2 have immune 

modulatory activity and interact with IL-1RI (Gene Ontology (GO) score ≥ 0.98). Based 
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on interactions with the human IL-1RI, Novafold predicted 35 binding sites in mat-IL-

1β1 (residues 1, 2, 4, 6, 11, 14, 15, 16, 25, 27, 30, 31, 32, 33, 34, 35, 38, 44, 45, 46, 48, 

51, 53, 70, 92, 93, 94, 105, 108, 127, 128, 147, 149, 150 and 152) and 32 in mat-IL1β2 

(residues 2, 3, 5, 7, 12, 15, 16, 26, 28, 31, 32, 33, 34, 35, 36, 39, 47, 49, 52, 54, 71, 92, 

94, 95, 106, 109, 128, 129, 148, 150, 151 and 153) (Fig. 5.7). Sequence alignment of the 

mat-IL-1β1 with mat-IL-1β2 (blastp; NCBI) revealed the presence of an inserted proline 

and five non-conserved amino acid substitutions in the mat-IL-1β2 sequence. Five of 

these residues (including the proline) were suggested to be involved in receptor binding 

(mat-IL-1β2; residues 2, 3, 16, 26, 34) (Fig. 5.8-5.13). Of these five residues, three were 

substitutions that resulted in a different amino acid side chain charge (Fig. 5.8-5.13). 

There were three residues in the IL-1β1 sequence that were predicted to binding the IL-

1R1 that were not predicted for IL-1β2. These residues, which were located on the inside 

of the solvent accessible surface area of IL-1β1, were located in amino acid positions 16, 

44 and 45. Overall, there were noticeable differences in charge and solvent accessible 

surface area between mat-IL-1β1 and mat-IL-1β2 at predicted receptor-binding sites that 

could potentially affect the overall activity of mat-IL1β2 compared with mat-IL-1β1. 

(Fig. 5.13) 

 
DISCUSSION 

 

In this study, we used DNASTAR’s Novafold program to predict the atomic 

structures of pig pro and mature IL-1β1 and IL-1β2. We then aligned the structures, and 

compared them based on CASP1 proteolytic sites-1 and 2 and surface amino acids 

predicted to interact with the IL-1RI. Major findings from this study are that 1) compared 
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with pro-IL-1β1, pro-IL-1β2 may have a less accessible CASP1 site-1 for processing into 

the mat-IL-1β2, 2) compared with mat-IL-1β1, mat-IL-1β2 has three non-conserved 

amino acid substitutions resulting in differently charged side chains in locations 

suggested to be involved in IL-1RI binding. Overall, these residue modifications could 

affect the availability and activity of mat-IL-1β2.  

In the human, IL-1β is translated into a 269 amino acid pro-protein with a 

molecular weight of approximately 31 kDa. The pro-IL-1β can be proteolytically cleaved 

by CASP1 in two sequential locations (CASP1 site-1 and site-2) resulting in formation of 

mat-IL-1β of approximately 17 kDa (Hailey et al., 2009). Cleavage of CASP1 site-1 

alone can result in formation of 28 kDa proteins with a partially remaining pro-domain 

(Hailey et al., 2009). Although pro-IL-1β is not active, mat-IL-1β may be bound by the 

IL-1RI and can initiate signaling (Krumm et al., 2014).  

In the pig, pro-IL-1β1 and pro-IL-1β2 proteins are 267 amino acids in length and 

are approximately 30 kDa in molecular weight (see Chapter Three). Although there is an 

amino acid deletion (lysine; between amino acids Met76 and Asn77 in pro-IL-1β2) and an 

insertion (proline; amino acid Pro116 in pro-IL-1β2) within the full-length pro-IL-1β2 

sequence compared with pro-IL-1β1, both CASP1 sites are conserved (Fig 5.2). 

Alignment of pro and mature IL-1β1 and IL-1β2 protein structures within Novafold 

suggested that the pro-molecules are less similar in tertiary structure (RMSD; 3.47 Å; 

Fig. 5.3) when compared to the mature molecules (RMSD; 0.70 Å; Fig. 5.5). These 

findings are similar to predictions reported by Ketabi et al. (2010) who recorded an 

RMSD of 3.06 Å for alignment of the pro-proteins. However, their predictions suggested 

that mat-IL-1β1 and mat-IL-1β2 may have been slightly more similar in structure 
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(RMSD; 0.48 Å). Advanced I-TASSER algorithms used by the Novafold program may 

account for these differences, however, amino acid sequences used to make these 

predictions in Ketabi et al., (2010) were not reported and differences in protein sequences 

used for that analysis could also be a factor. For instance, Ketabi et al. (2010) reported an 

86% sequence identity between pro-IL-1β1 and pro-IL-1β2; however, we reported an 

85% sequence identity. 

The observation that the pro-proteins have a higher RMSD and are less similar in 

structure compared with the mature proteins is not surprising. The mat-IL-1β1 and mat-

IL-1β2 protein sequences have greater sequence identity (92%) compared with the pro-

proteins (85%) (see Chapter Three). Further, the N-terminal region of pro-IL-1β is 

cleaved away during processing into the mature form and is more prone to mutation. This 

region was the least similar in sequence (78%). 

Compared with pro-IL-1β1, amino acids directly up-stream (N-terminus) and 

down stream of CASP1 site-1 are highly conserved in pro-IL-1β2. This was not true for 

CASP1 site-2 as there are a number of non-conserved amino acid substitutions in pro-IL-

1β2 up and down stream of this location (Fig. 5.2). Further, in mat-IL-1β2, there is a non-

conserved amino acid substitution next to an inserted proline down stream and directly 

adjacent to CASP1 site-2 (Fig. 5.2)  

The pro-region of IL-1β does not allow folding of the C-terminus and blocks the 

formation of the mature molecule (Hailey et al., 2009). Interestingly, compared with pro-

IL-1β1, the solvent accessible surface area of pro-IL-1β2 indicates that there is a large 

molecular structure, resembling a Y, covering CASP1 site-1 (Fig. 5.4). Amino acids 

methionine, lysine and cysteine (residue positions 32, 33 and 34, respectively) up-stream 
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of the CASP1 site are responsible for the structure. Also, there is an amino acid 

substitution near CASP1 site-2 that may to alter CASP1 activity (Fig. 5.2). CASP1 

requires four amino acids up stream of a proteolytic site to function properly (Thornberry 

and Molineaux, 1994). The N-terminal sequence requires an asparagine directly adjacent 

to the CASP1 site and a valine is typically preferred as the third amino acid up-stream 

(Thornberry and Molineaux, 1994). Although the pro-IL-1β1 CASP1 site-2 retains a 

valine in this location, the pro-IL-1β2 sequence has substituted this residue for leucine, 

both of which have hydrophobic side chains (Fig. 5.2). When Katebi et al. (2010) 

conducted a similar protein structure analysis of IL-1β1 and IL-1β2 proteins, they 

concluded that this substitution could reduce CASP1 activity. However, minke whale and 

bovine pro-IL-1β protein sequences also have a leucine in this position (Fig. 5.1). 

Because this substitution is common among mammals that are phylogenetically similar, it 

may not have a significant effect on CASP1 processing of pro-IL-1β2. However, the 

solvent accessible surface area of this CASP1 site is considerably more exposed in pro-

IL-1β2 compared with pro-IL-1β1 (Fig 5.4). Overall, the CASP1 site modifications in 

pro-IL-1β2, specifically, the molecular charge covering site-1 could potentially alter 

CASP1 processing of pro-IL-1β2 and therefore, availability of the mature, 17 kDa, form. 

Interleukin-1 beta may be more susceptible to proteolysis by enzymes other than 

CASP1, such as proteinase K, when in its pro-form (Hailey et al., 2009). If the pro-form 

of IL-1β2 is more available it could provide a substrate for other proteases (Hailey et al., 

2009). Interestingly, when Degrelle et al. (2009), conducted a proteomic analysis of 

elongating pig conceptuses, they detected the presence of multiple IL-1β proteins by 2D 

gel electrophoresis in combination with mass spectrometry. These proteins had molecular 
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weights ranging from ~36 to 14 kDa. Inspection of the mass spectrometry 

chromatograms revealed that three IL-1β proteins had molecular weights of 

approximately 36, 33 and 32 kDa. Four others may have had incomplete pro-domains, 

ranging in size from 28 to 22 kDa. One IL-1β protein was approximately 18 kDa and 

corresponded to the mature form. Two other smaller proteins, of approximately 14 kDa, 

were also detected. These proteins were referred to as IL-1β in this manuscript because 

IL-1β2 had not been discovered. Because we were unable to detect transcripts for IL-1β1 

in pig conceptuses, these proteins are likely IL-1β2 (see Chapter Three). The detection of 

multiple IL-1β2 proteins with varying molecular weights could be the result of un-known 

protein modifications made by other enzymes and or altered CASP1 activity (Dinarello et 

al., 1996; Coeshott et al., 1999; Netea et al., 2010; Dinarello, 2011).  

Processing of pro-IL-1β by CASP1 results in folding and activation of mature IL-

1β. The structure of mat-IL-1β is described as a β trefoil or a tetrahedral barrel like 

structure with sides comprised of antiparallel beta strands, twelve in all (Priestle et al., 

1988; Krumm et al., 2014). The trefoil structure and within, a hydrophobic core, is 

conserved among active members of the IL-1 superfamily of cytokines including IL-1A, 

IL-18, IL-33, and IL-1RA (Krumm et al., 2014). Mat-IL-1β1 and mat-IL-1β2 were 

predicted to have this conserved beta-trefoil structure (Fig. 5.6). Based on Novafold 

predictions, the mat-IL-1β1 structure has twelve β strands and three α helixes. The 

predicted mat-IL-1β2 structure also has twelve β strands but two α helixes. Alignment of 

the two structures resulted in a low RMSD (0.70 Å) indicating a high structural similarity 

between mat-IL-1β1 and mat-IL-1β2 (Fig. 5.5). However, structural alignments of mat-

IL-1β1 or mat-IL-1β2 with other mammalian mat-IL-1β proteins, of which have less 
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sequence identity, have slightly lower RMSDs. For instance, alignment of mat-IL-1β2 

with minke whale and mouse mat-IL-1β, which share a 78% and 67% sequence identity 

with mat-IL-1β2, resulted in RMSDs of 0.62 Å and 0.64 Å, respectively. This might 

suggest that despite a high degree of sequence similarity between mat-IL-1β1 and mat-

IL-1β2 (92%), that a few amino acid substitutions have had a significant effect on the 

tertiary structure of these two proteins.  

Based on interactions with the human IL-1RI, Novafold predicted 35 receptor-

binding sites in mat-IL-1β1 and 32 in mat-IL-1β2 (Fig. 5.7). Interestingly, the three 

residues expected to interact with the IL-1RI in mat-IL1β1 but not the mat-IL1β2 are 

buried within the solvent accessible surface area of mat-IL1β1. However, binding studies 

between human mat-IL-1β and the human IL-1RI revealed that some residues in mat-IL-

1β become available for binding after initial interactions with the receptor (Vigers et al., 

1997). Sequence alignment of mat-IL-1β1 with mat-IL-1β2 revealed an inserted proline 

and five non-conserved amino acid substitutions in the mat-IL-1β2 sequence, 5 of these 

residues, including the proline, were suspected to be involved in receptor binding (Fig. 

5.2; Fig. 5.8). Of these five residues, three substitutions resulted in a complete change of 

side change charge and structure in the mat-IL1β2 sequence (Fig. 5.10-5.12). 

The first receptor binding substitution in mat-IL-1β2 includes a threonine (Thr2) 

in place of an asparagine (Asn2; mat-IL-1β1), both of which have polar uncharged side 

chains (Fig 5.9). This substitution comes directly adjacent to the inserted proline (Pro3) 

within mat-IL-1β2, which is also predicted to be involved in receptor binding. Threonine 

commonly replaces other polar amino acids and is commonly found within functional 

areas (Betts and Russell, 2003). Proline is commonly found within tight turns and kinks 
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within alpha helixes and is the only amino acid where the side chain is connected to the 

protein backbone twice, forming a five-member ring (Betts and Russell, 2003). Because 

of this, proline is considered to be an imino rather than amino acid. Proline is rarely 

involved in receptor binding (Betts and Russell, 2003).  

The second receptor binding substitution in mat-IL-1β2 includes the addition 

glutamic acid (glutamate; Glu16) in place of a histidine (His15; mat-IL1B1) with negative 

and positive charged side chains, respectively (Fig 5.10). Both histidine and glutamate 

have catalytic properties and are commonly involved in receptor binding, however, it is 

considered rare for a histidine to be replaced by any amino acid, practically one with an 

opposite charge (Betts and Russell, 2003). Residues in this location are considered to be 

important for receptor binding. Interestingly, human IL-1β has an uncharged glutamine in 

this location and its mutation to a glycine results in complete loss of receptor binding 

activity (Vigers et al., 1997).  

The third and fourth receptor binding substitutions involve the exchange of a 

hydrophobic methionine (Met25) and uncharged threonine (Thr33) in mat-IL-1β1 for a 

negative charged glutamic acid (Glu26) and positive charged lysine (Lys34) in mat-IL-1β2, 

respectively (Fig. 5.11 and 5.12; respectively). Like glutamic acid, lysine is commonly 

found in protein binding sites (Betts and Russell, 2003).  

Based on mutagenesis studies of human IL-1β, conserved amino acid mutations in 

many different receptor binding sites can result in a 30 to 50% reduction in binding 

activity (Vigers et al., 1997). Therefore, it can be hypothesized that alterations in the 

amino acid composition between mat-IL-1β1 and mat-IL-1β2, resulting in the loss of 
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receptor binding sites and the exchange of side chains with different charges, could have 

a significant effect on the activity of mat-IL-1β2 (Fig. 5.13).  

 

SUMMARY AND CONCLUSION 

 

 In pigs, a duplication of the gene that encodes IL-1β has resulted in two distinct 

genes, IL-1β1 and IL-1β2. Expressed in blood leukocytes, IL-1β1 is the prototypical 

cytokine that controls innate and adaptive immune responses and IL-1β2 is a pregnancy 

specific cytokine expressed by the early pig conceptus. Both recombinant IL-1β1 and IL-

1β2 activate NF-κB, a transcription factor commonly activated during IL-1β-IL-1RI 

signaling, in uterine surface epithelial cells. However, in regard to the epithelium, IL-1β2 

appears to have less activity compared to IL-1β1. To investigate protein structural 

differences that may account for this, pro and mature IL-1β1 and IL-1β2 protein tertiary 

structures were predicted and aligned using DNASTAR’s Novafold program. Compared 

with pro-IL-1β1, pro-IL-1β2 may have a less accessible CASP1 site-1 for processing into 

mature IL-1β2. Further, although both were predicted to bind the IL-1RI, compared with 

mat-IL1β1, mat-IL-1β2 is predicted to have less receptor binding sites and three non-

conserved amino acid substitutions in receptor binding sites that affect the charge and 

structure of IL-1β2 in these locations. Overall, these modifications could potentially 

reduce the availably and activity of IL-1β2 compared with IL-1β1. To better understand 

role of IL-1β2 during early pregnancy in the pig investigations of IL-1β2’s interactions 

with CASP1 and IL-1 signaling factors, IL-1R1 and IL-1RAP, are needed. 
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FIGURE 5.1  A multiple sequence alignment of full-length of pig (IL-1β1 and IL-1β2), 
minke whale, bovine, human and mouse IL-1β protein sequences using the Clustal 
Omega program. Dashes (-) in the sequences indicate amino acid deletions. Asterisks (*) 
below the sequences indicate fully conserved amino acids between the sequences. Colons 
(:) below the sequences indicate conservation of amino acids with strongly similar 
properties. Periods (.) below the sequences indicate conservation of amino acids with 
weakly similar properties. Solid arrows above the sequences indicate locations of 
sequential caspase-1 (CASP1) proteolytic sites (site-1 and site-2) during formation of the 
mature proteins. The right arrows above the sequences signify the start of the pro or 
mature protein regions. Using DNASTAR’s Novafold program, tertiary structures were 
predicted for pig pro and mature IL-1β1 and IL-1β2 as well as minke whale, human and 
mouse mature IL-1β proteins. NCBI reference: IL-1β1, NP_999220.1; IL-1β2, 
NP_0010051949.1; Bovine, ABX72065.1; minke whale, XP_007197456.1; human, 
NP_000567.1; mouse, NP_032387.1.  

1 

2 
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FIGURE 5.2  Alignment of full-length IL-1β1 and IL-1β2 protein sequences in NCBI’s 
blastp. Amino acids that are identical in IL-1β1 and IL-1β2 are displayed between the 
two sequences. Positive symbols (+) indicate conservative substitutions. The solid arrows 
above the sequences indicate locations of sequential caspase-1 (CASP1) protease 
cleavage sites (site-1 and site-2) during formation of the mature IL-1β1. The right arrows 
above the sequences signify the start of the pro or mature region. Periods (.) above and 
below the sequences indicted amino acids predicted to bind the IL-1RI in the mat-IL-1β1 
and mat-IL-1β2 proteins, respectively. The numbers above and below the sequences 
indicate residues in the mat-IL-1β1 and mat-IL-1β2, respectively, that are not conserved 
between the two sequences and are predicted to bind the IL-1RI.  
 
 
 
 
 
 
 
 

1 
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FIGURE 5.3  Ribbon model and ribbon model alignment of Novafold predicted tertiary 
structures of pro-IL-1β1 and pro-IL-1β2 proteins. The Novafold structure predictions of 
pro-IL-1β1 and pro-IL-1β2 received C-scores of -2.7 and -3.0, respectively. Alignment of 
the pro-structures resulted in an RMSD of 3.47 Å. Both predicted structures had 12 β 
strands that were located within the mature region. Compared with pro-IL-1β2, pro-IL-
1β1 had a greater number of alpha helixes (2 and 7, respectively), five of which were 
located within the pro-region. Pro-IL-1β2 alpha helixes were also located in the pro-
region.  
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FIGURE 5.4  Solvent accessible surface areas of Novafold predicted pro-IL-1β1 (left) 
and pro-IL-1β2 (right) protein structures with caspase-1 (CASP1) site-1 (top structures) 
and site-2 (bottom structures) color filled (blue and green). Amino acids N-terminal and 
C-terminal to the CASP1 sites are color filled green and blue, respectively. Compared 
with pro-IL-1β1, pro-IL-1β2 has a large molecular structure, resembling a Y, covering 
CASP1 site-1. The opposite was true for CASP1 site-2. There, a large molecular structure 
covers CASP1 site-2 in pro-IL-1β1 but not pro-IL-1β2. The bottom structures are the top 
structures rotated 180° around a vertical axis and tilted to the right 90°. 
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FIGURE 5.5  Ribbon model structures and ribbon model alignment of Novafold 
predicted pig mat-IL-1β1 and mat-IL-1β2. Novafold predictions of mat-IL-1β1 and mat-
IL-1β2 received C-scores of 1.9 and 1.8, respectively. Alignment of mature structures 
resulted in an RMSD of 0.70 Å, indicating that the predicted structures were very similar 
in the absence of the pro-domain. Mat-IL-1β1 and mat-IL-1β2 consisted of 12-β strands 
and three and two alpha helixes, respectively.  
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FIGURE 5.6  Ribbon model structures and ribbon model alignment of Novafold 
predicted pig mat-IL-1β1 and mat-IL-1β2 as well as minke whale, human and mouse 
mat-IL-1β proteins rotated to observe the characteristic IL-1 superfamily of cytokines β 
trefoil. Novafold structure predictions of all mature IL-1β proteins received C-scores of ≥ 
1.8. 
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FIGURE 5.7  Solvent accessible surface area of mat-IL-1β1 (left) and mat-IL-1β2 (right) 
with residues predicted to be involved in receptor binding color filled (pink). The IL-1RI 
ecto-domain resembles a question mark in shape that wraps around IL-1β during binding, 
clenching the cytokine like a hand forming a C.  
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FIGURE 5.8  Wire frame models of Novafold predicted and aligned mat-IL-1β1 and mat-
IL-1β2 proteins. The arrows indicate locations of non-conserved amino acid substitutions 
(white) between mat-IL-1β1 and mat-IL-1β2 predicted to be involved in receptor binding 
and depicted in Figures 5.9-5.12. 
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FIGURE 5.9  Receptor binding location of aligned mat-IL-1β1 and mat-IL-1β2 wire 
frame models where the first non-conserved amino acid substitution has occurred with 
the addition of an inserted proline (pro3) in the mat-IL-1β2 sequence. At the second 
residue, the mat-IL-1β2 sequence has substituted a threonine (Thr2) in place of an 
asparagine (mat-IL-1β1; Asn2), both of which have polar uncharged side chains.  
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FIGURE 5.10  Receptor binding location of aligned mat-IL-1β1 and mat-IL-1β2 wire 
frame models where the second non-conserved amino acid substitution has occurred 
between mat-IL-1β1 and mat-IL-1β2. In this location, the mat-IL-1β2 sequence has a 
glutamic acid (glutamate; Glu16) substituted for a histidine (mat-IL-1β1; His15) with 
negative and positive charged side chains, respectively. Both histidine and glutamate 
have catalytic properties and are commonly involved in receptor binding. However, it is 
considered uncommon for a histidine to be substituted for another amino acid, 
specifically one with an opposite charged side chain (Betts and Russell, 2003). Mutations 
of this receptor-binding site in human IL-1β result in a complete loss of activity (Vigers 
et al., 1997). 
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FIGURE 5.11  Receptor binding location of aligned mat-IL-1β1 and mat-IL-1β2 wire 
frame models where the third non-conserved amino acid substitution has occurred 
between the two sequences. In this location, the mat-IL-1β2 sequence has a glutamic acid 
(Glutamate; Glu26) substituted for methionine (mat-IL-1β1; Met25) with negative charged 
and hydrophobic side chains, respectively.  
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FIGURE 5.12  Receptor binding location of aligned mat-IL-1β1 and mat-IL-1β2 wire 
frame models where a fourth non-conserved amino acid substitution has occurred 
between the two sequences. In this location, the mat-IL-1β2 sequence has a lysine (lys34) 
substituted for a threonine (Thr33) with a positive charged and polar uncharged side 
chains, respectively. 
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FIGURE 5.13  Solvent accessible surface areas of Novafold predicted mat-IL-1β1 (left) 
and mat-IL-1β2 (right) proteins with receptor binding sites (pink and blue) and non-
conserved amino acid substitutions (with addition of inserted proline; mat-IL-1β2), 
depicted in Figures 5.9-5.12, in locations of receptor binding color filled blue. 
Considerable morphological differences in the solvent accessible surface areas were 
detected in these receptor-binding locations between mat-IL-1β1 and mat-IL-1β2, 
specifically between residues 33 and 34, respectively.  
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CHAPTER SIX 

 

 

CONCLUSIONS AND FUTURE DIRECTIONS FOR RESEARCH 

 

 

 

Embryo implantation in mammals requires apposition and attachment of the early 

embryo to the uterine surface for nutrient support during development in the mother. It is 

a phasic, non-reversible, process that includes intricate chemical communication and 

physical interactions between the foreign conceptus trophoblast cells and cells that make 

up the maternal endometrium. Although the mode of placentation can vary considerably 

between species the events that modulate early embryonic development, uterine 

receptivity and conceptus attachment appear to be more conserved. These events are no 

less complex, however, and are absolutely necessary for embryonic survival. 

Investigations of early pregnancy in primates, rodents and agricultural animals, including 

pigs, can help delineate essential, and yet, elusive factors that control these processes. 

The study of early pregnancy in mammals has expanded drastically since Leo 

Loeb first reported, over 100 years ago, that endometrial trauma could promote 

decidualization in the guinea pig (Loeb, 1907; Dekel et al., 2010; Granot et al., 2012). 

We now know that pro-inflammatory cytokines are released by the mammalian conceptus 

and/or the endometrium and have essential functions during establishment of pregnancy. 
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As reviewed in Chapter One, observations made during recent human clinical studies, 

ironically similar to those described by Loeb during his studies with the guinea pig, 

support these conclusions (Dekel et al., 2010; Granot et al., 2012).   

Interleukin-1 beta (IL-1β) is a pro-inflammatory cytokine that promotes early 

conceptus development, endometrial receptivity for attachment and trophoblast invasion 

during primate and rodent implantation (Simón et al., 1995; 2008). The IL-1β transcript 

is first translated into pro-IL-1β protein, which is then processed by the cysteine protease, 

caspase-1 (CASP1) into a mature functional cytokine (mat-IL-1β) (Hailey et al., 2009). 

The mat-IL-1β functions by binding the IL-1RI in the target cell membrane and 

activating NF-κB, a group of transcription factors that commonly modulate gene 

expression and cell biology during infection, injury and cell stress (Sims and Smith, 

2010; Dinarello, 2011; Garlanda 2013). An IL-1β is also expressed by the pig conceptus 

prior to implantation (Tuo et al., 1996; Ross et al., 2003a). Expression of the IL-1β is 

temporally associated with elongation, a morphological change of the conceptus near d 

12 of pregnancy that greatly expands the placental surface area before attachment (Tuo et 

al., 1996; Ross et al., 2003a). The IL-1RI and IL-1RAP are temporally expressed within 

the conceptus and uterine surface epithelium at that time, suggesting that the IL-1β 

promotes conceptus elongation and uterine receptivity for implantation (Ross et al., 

2003a). Further, NF-κB is strongly activated within uterine surface epithelial cells 

directly adjacent to elongating pig conceptuses (Mathew et al., 2011). Interleukin-1 beta 

and NF-κB likely create a pro-inflammatory environment in the endometrium that 

enhances adhesion molecule expression, blood vessel permeability and cell motility for 

trophoblast migration and endometrial remodeling. 
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In pigs, the gene encoding IL-1β has duplicated resulting in two genes, IL-1β1 

and IL-1β2, which are tandem within the pig genome (Groenen et al., 2012). Based on 

experiments conducted in Chapter Three, IL-1β1 is the prototypical cytokine and is 

expressed by blood leukocytes and other adult tissues. The IL-1β2, a novel IL-1, is 

abundantly and probably exclusively expressed by the elongating pig conceptus. Aside 

from its pattern of expression during elongation, little is known about IL-1β2 or its 

product as IL-1β2 was recently discovered and functional studies have not been 

conducted. A protein modeling study did suggest that IL-1β2 might have a different 

binding efficiency for the IL-1RI compared with IL-1β1 (Katebi et al., 2010). 

In Chapter Three, we verified expression of IL-1β2 in the elongating pig 

conceptus and expressed pro and mature IL-1β1 and IL-1β2 proteins in vitro; testing their 

activity with respect to activation of NF-κB and NF-κB-regulated gene expression within 

the endometrium. In Chapter Four, we developed a lentiviral mediated RNAi system to 

knockdown translation of IL-1β2 in early pig conceptuses so that we could test IL-1β2’s 

influence on elongation in vivo. In Chapter Five, we used DNASTAR’s Novafold 

program to predict and align the atomic structures of pro and mature IL-1β1 and IL-1β2. 

We then used this program to predict mat-IL-1β2’s ligand-receptor interactions and 

compared these predicted binding sites to that of mat-IL-1β1.  

Observations made during experiments in Chapter Three suggest that IL-1β2 is 

exclusively expressed by the elongating pig conceptus and that recombinant mat-IL-1β2 

has the capacity to activate the p65 subunit of NF-κB within the uterine surface 

epithelium. However, within the endometrium, mat-IL-1β2 had a lesser capacity to 

activate NF-κB and up regulate NF-κB-responsive genes compared with mat-IL-1β1. 
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Interestingly, this was not true for alveolar macrophages in which there was greater NF-

κB nuclear trans-location in response to mat-IL-1β2 compared with mat-IL-1β1. Based 

on Novafold predicted protein structures (Chapter Five), mature IL-1β2 has three less IL-

1RI binding sites and three non-conserved amino acid substitutions in locations of shared 

binding sites that result in a different side chain charge and solvent accessible surface 

area compared with mat-IL-1β1. These modifications could have a significant effect on 

mat-IL-1β2’s interaction with the IL-1RI compared to mat-IL-1β1 and may account for 

differences in activity observed within the endometrium. Further, the tertiary structure of 

pro-IL-1β2 is predicted to be different than that of pro-IL-1β1 (RMSD; 3.47 Å) which 

could affect processing of the pro-protein and folding of mat-IL-1β2 compared with IL-

1β1. Interestingly, pro-IL-1β2 did have a large molecular configuration covering the 

CASP1 site-1 compared with pro-IL-1β1. These differences in protein structure could 

affect the activity as well as the availability of mat-IL-1β2.   

If IL-1β2 does have reduced activity, this cytokine could provide a less intense 

inflammatory-like response within the endometrium that, if too strong, could be 

detrimental to pregnancy. Further, because pig conceptuses compete within the 

endometrium for uterine space, release of an IL-1β with a reduced activity could enhance 

each individual conceptus’s development and inflammatory-like microenvironment 

without promoting development and implantation of near by conceptuses. 

Interleukin-1 beta 2’s interaction with other trans-membrane receptors could 

explain the differences in NF-κB activation observed within the alveolar macrophages 

compared with the uterine surface epithelium. No other receptors, however, were 

predicted by Novafold to interact with IL-1β2 besides the IL-1RI. If IL-1β2 does interact 
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with signaling factors other than IL-1RI, this could greatly expand the influence this 

cytokine has on establishment of pregnancy in the pig. Further, because this response was 

observed in macrophages and because the pig endometrium contains various types of 

leukocytes, including macrophages, this could mean that conceptuses release IL-1β2 to 

specifically modulate immune cell activity within the endometrium. Further experiments 

are needed to validate these findings. 

In Chapter Four, we were unable to test the function of IL-1β2 on elongation of 

the conceptus using lentiviral mediated RNAi. This technique had an overwhelming 

negative effect on development of the conceptus and pregnancy by Day 13. Expression of 

IL-1β2 was detected in the Day 6 pig blastocyst suggesting that IL-1β2 may have 

functions in embryonic development much earlier than suspected and prior to elongation 

(Fig 6.1). Further research is needed to determine if the Day 6 pig blastocyst has IL-1RI 

protein.   

 As a final conclusion, we hypothesize that pig conceptuses release IL-1β2 at the 

fetal-maternal interface to act in a paracrine fashion, creating a balanced pro-

inflammatory environment within the local endometrium by activating NF-κB in the 

adjacent uterine surface epithelium and glandular epithelium. There, we hypothesized 

that NF-κB up regulates genes that are essential for conceptus development and uterine 

receptivity for implantation (Fig. 6.2). These genes might include PTGS2, β3 integrin, 

LIF, and IL-6. Crosstalk between NF-κB, IP3K and MAPK signaling pathways are 

common and activation of the latter two pathways could further enhance implantation 

(Fig. 6.2). The uterine surface epithelium expresses the estrogen receptor (ESR1) 

meaning that conceptus estrogens, released during maternal recognition of pregnancy, 
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could further influence these events. Lastly, because the d 6 pig conceptus expresses IL-

1β2 of which increases greatly during elongation (near d 12 of pregnancy), this cytokine 

could have an autocrine effect on the conceptus that persists for over a week as it 

continues to develop, un-attached, in the uterine lumen (Fig. 6.1). These effects may 

culminate near d 12 of gestation as the conceptus transitions from its spherical to 

filamentous form (Fig. 6.1). 

Further research is needed to fully extrapolate the effects of IL-1β2 on 

establishment of pregnancy in the pig. These experiments should be geared toward 

elucidating the hypothesized autocrine effect of IL-1β2 on development and elongation of 

the conceptus. We were unsuccessful in using Lentiviral mediated RNAi, however, the 

new CRISPR/Cas9 system may prove to be an effective method for developing 

conceptuses with complete ablation of IL-1β2. Other experiments might include the study 

of CASP1-pro-IL-1β2 protease activity and uterine infusion of IL-1β2 followed by 

endometrial RNAseq analysis. The latter experiment could include the addition of 

estrogens and NF-κB inhibitors to better understand the combined effects of these factors 

during implantation in the pig.   

 Considering IL-1 has important functions during implantation in primates, rodents 

and pigs, a time when most embryonic mortality occurs in these species, further research 

of the IL-1 signaling system and activation of downstream factors, including NF-κB, 

could greatly benefit our understanding of establishment of pregnancy. 
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FIGURE 6.1  A working model representing the hypothesized pattern of expression of 
interleukin-1 beta 2 (IL-1β2) in the early pig conceptus. (A) Still within the zona 
pellucida, the day (d) 6 pig blastocyst (B; LEAST) expresses IL-1β2 of which increases 
over time (B-D) becoming maximum during conceptus elongation on d 12 of 
development (E; GREATEST). After elongation (d 12), expression of IL-1β2 decreases 
2000 fold and is undetectable in the d 15 implanting conceptus (F; LEAST). IL-1β2 
protein can be detected within the uterine lumen on d 15 but concentrations are nadir by d 
18 of gestation.  
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FIGURE 6.2  A working model of hypothesized autocrine and paracrine functions of 
interleukin-1 beta 2 (IL-1β2) and estradiol (E2) during elongation of the pig conceptus on 
d 12 of development (see Fig. 6.2E inset box). As described in Chapter Two Figure 2.2, 
auto-down regulation of progesterone receptors (PGRs) by progesterone in the uterine 
luminal (LE) and surface glandular epithelium (sGE) decreases expression of mucin-1 
(MUC-1), a large glycoprotein, along the uterine surface. This enhances uterine 
receptivity and allows for conceptus attachment after d 13. During elongation, conceptus 
trophoblast (T) cells release E2 and other estrogens as the maternal recognition of 
pregnancy signal. Within the LE, estrogen receptors are hypothesized to increase 
expression of estramedins such as fibroblast growth factor 7 or secreted phosphoprotein 
1. These factors are believed to enhance conceptus development, LE-T adhesion and 
implantation. Elongating pig conceptuses abundantly release IL-1β2, a novel IL-1, which 
likely acts on the conceptus and the adjacent LE and sGE through the interleukin-1 
receptor type I. Compared with the prototypical IL-1β (IL-1β1 in the pig) IL-1β2 may 
have less activity within the endometrium but can activate the transcription factor nuclear 
factor-kappa B (NF-κB; p65 subunit). Crosstalk between NF-κB, mitogen-activated 
protein kinase (MAPK) and inositol 1, 4,5-triphosphate 3-kinase (IP3K) signaling 
pathways may enhance uterine receptivity for implantation. Activated NF-κB likely 
increases transcription of NF-κB-responsive genes such prostaglandin-endoperoxide 
synthase 2 for production of prostaglandins as well as leukemia inhibitory factor (LIF) or 
interleukin-6 (IL-6) within the adjacent endometrium. These factors likely bind receptors 
within the conceptus and LE, further promoting implantation. By stimulating the release 
of factors from LE or by passing through the LE barrier into the underling stroma, it’s 
hypothesized that IL-1β2 influences endometrial leukocytes (L) and endothelial (En) 
cells, altering immune cell function/motility and increasing blood vessel permeability, 
respectively. Overall, IL-1β2 is hypothesized to create a balanced pro-inflammatory 
microenvironment at the fetal maternal interface that enhances conceptus development, 
uterine receptivity and implantation. dGE, deep glandular epithelium; F, stroma 
fibroblast. 
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APPENDIX A 

 

 

RECRUITMENT OF ENDOMETRIAL LEUKOCYTES TO THE 

UTERINE SURFACE BY PIG INTERLEUKIN-1 BETA 1 AND 

INTERLEUKIN-1 BETA 2 

 

 

 

Endometrial leukocytes are important for host defense against intra uterine 

pathogens, initiation of menstruation and parturition, endometrial blood vessel 

remodeling, regulation of trophoblast invasion and immune tolerance of the fetal semi-

allograft (Gomez-Lopez et al., 2010). Pro-inflammatory cytokines, such as IL-1β, 

modulate endometrial leukocyte activity (Gomez-Lopez et al., 2010). Interleukin-1 beta 

(IL-1β) can increasing endothelial cell adhesion molecule expression and blood vessel 

permeability resulting in recruitment of blood leukocytes into infected tissues, a process 

referred to as leukocyte extravasation (Dinarello, 1996; 2005; Dunne, 2003). Further, IL-

1β can increase cell migration by modifying membrane integrins and cytoskeletal actin 

filaments in target cells including neurons, tumor cells and neutrophils (Ferreira et al., 

2012; Ma et al., 2014).  

In pigs, the early conceptus abundantly releases interleukin-1 beta 2 (IL-1β2), a 

newly discovered IL-1, at the fetal-maternal interface. The IL-1β2 may modulate 



 206 

leukocyte activity during early pregnancy. Initial histological evaluation of LPS and 

recombinant IL-1 treated pig endometrium (see Chapter Three) suggested an increase in 

the number of intraepithelial leukocytes. To investigate this, we further stained the 

endometrial sections and recorded the phenotype and number of intraepithelial and sub-

epithelial leukocytes.  

 

MATERIALS AND METHODS 

Endometrial Leukocytes 

Frosted white microscope slides with tissue sections of endometrium (see Chapter 

Three) treated with 10 μg/mL of LPS or 100 ng/mL of BGal (protein expression control), 

pig mat-IL-1β1 or mat-IL-1β2 were rehydrated and stained with hematoxylin (Fisher HC) 

and eosin-Y (Richard-Allan Scientific) (H/E) before dehydrated through a graded series 

of alcohol solutions and xylene. Cover slips were then mounted to the slides using 

Permount (Fisher Scientific) and the identities of the sections were blinded from the 

investigator before pictures were taken of the tissue at 200 X and 400 X magnification 

using a Leica light microscope. Some tissue sections were stained with DAPI prior to 

H/E to observed LE and intraepithelial cell nuclei. Two non-epithelial cell phenotypes, 

resembling leukocytes, were observed within the uterine LE layer 1): large cytoplasmic 

cells with nuclei that stained lightly with hematoxylin and 2) small round cells with 

darkly stained nuclei. A third leukocyte phenotype, which stained well with eosin, was 

easily observed within the stroma nearest to the uterine surface. Later, the images were 

used to count the number cells for each phenotype within a computer generated rectangle, 
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corresponding to 300 X 150 μm of endometrium, using the NIH Image J computer 

program. 

 

STATISTICS 

A Mixed procedure within SAS was used to analyze the endometrial leukocyte 

data. For leukocyte data, the model statement included an effect of treatment on the 

number of cells. All data are presented as least squares means (LSM) ± standard error of 

the least square means (SEM). A significant difference was declared at P < 0.05. 

 

 

RESULTS 

Recruitment of endometrial leukocytes in response recombinant IL-1 cytokines 

Treating cyclic endometrium with LPS and recombinant IL-1 cytokines recruited 

endometrial cells, resembling leukocytes, to the uterine surface (Table A.1 and Fig. A.1).  

For large intraepithelial cells, there tended to be an effect of treatment (P = 0.060; Table 

A.1 and Fig. A.1). Treating endometrium with pig mat-IL-1β1 increased the number of 

these cells within the uterine LE when compared with endometrium treated with the 

control protein, BGal (P < 0.01). In regards to the small intraepithelial cells, there was an 

effect of treatment (P < 0.05; Table A.1 and Fig. A.1). Endometrium treated with LPS 

and mat-IL-1β2 had a greater number of small cells within the uterine LE when compared 

with endometrium treated with pig mat-IL-1β1 (P < 0.01 and P = 0.010; respectively). 

There was also an effect of treatment on eosin stained cells within the stroma (P < 0.001; 

Table A.1 and Fig. A.1). Treating endometrium with LPS increased the number of these 
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cells within the stroma nearest to the uterine surface when compared to endometrium 

treated with BGal, pig mat-IL1β1 and mat-IL1β2 (P < 0.01).   

 

DISCUSSION 

Histological examination of endometrial explant tissue treated with LPS, mat-IL-

1β1 or mat-IL-1β2 revealed an increase in the number of intraepithelial and sub-epithelial 

cells, resembling leukocytes, within 4 h of treatment (Fig. A.1 and A.2). The major 

leukocyte populations within the pig endometrium are lymphocytes, macrophages, 

neutrophils and dendritic-like cells with T cell and/or uterine natural killer (uNK) 

lymphocytes the most abundant during pregnancy (Engelhardt et al., 2002). There is an 

increase in the number of intraepithelial lymphocytes between d 10 and 19 of the estrous 

cycle; however, these cells decrease during early pregnancy possibly in response to 

unknown factors released by the conceptus (King et al., 1988). Interesting, Engelhardt et 

al. (2002) detected a 3-fold increase in the number of stromal leukocytes directly adjacent 

to the d 15-conceptus attachment vs. non-attachment sites. These cells had phenotypes 

similar to T, B and/or uNK cells. The number of intraepithelial leukocytes was 

independent of conceptus location on d 15 and remained low (Engelhardt et al., 2002).  

During this study, two intraepithelial cell phenotypes were commonly found; 1) a 

population of what appeared to be large cells, possibly macrophages or NK cells, with 

lightly stained nuclei and extensive cytoplasm that increased in response to mat-IL-1β1 

and 2) small cells, having darkly stained round nuclei, possibly B, T or small NK cells, 

that increased in endometrium treated with LPS and mat-IL-1β2 compared to tissue 

treated with mat-IL-1β1. A third cell phenotype, resembling eosinophils, accumulated 
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within the sub-epithelial stroma in response to LPS. Because the in vitro study utilized 

explant tissue, the LPS and recombinant IL-1 cytokines must have recruited these cells 

from the uterine stroma.  

During pig uterine infusion studies, an increase in the number of stromal 

leukocytes near the uterine epithelial layer in response recombinant pig IL-1β1 was 

observed, suggesting that in pigs, this cytokine has to capacity to modulate endometrial 

leukocyte activity (Geisert, Roberts and White; data not published). During our study, we 

did not detect significant changes in leukocyte activity between control and mat-IL-1β2 

treated endometrium and were unable to verity an immune modulatory role for this 

cytokine during establishment of pregnancy. However, based on observations made 

during our alveolar cell experiments (Chapter Three), it’s possible that IL-1β2 has the 

capacity to modulate activity of some leukocyte populations within the endometrium 

during implantation of the pig conceptus. 
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TABLE A.1 Number of large intraepithelial (IE) cells, small IE cells and eosin stained stromal (S) cells counted within endometrium 
treated with 10 μg/mL of LPS or 100ng/mL of BGal (negative control) mat-IL-1β1 or mat-IL-1β2 after 4 h of treatment.  Data are 
presented as LSM ± SEM. 
 
 
 
 
 

 

 

 

 

 

c P value for treatment (T); Significance was declared at P < 0.05.  
Letters indicated significant differences between treatment LSM. 
 
 
 

 Treatment (T)  P<c 
Endometrial Cell BGal LPS mat-IL-1β1 mat-IL-1β2  T 
Large IE 1.6 ± 0.5b 2.3 ± 0.5a,b 2.9 ± 0.5a,b 2.3 ± 0.4a  0.060 
Small IE 2.1 ± 0.4a,b 2.7 ± 0.4a 1.4 ± 0.5b 2.6 ± 0.4a  0.029 
Eosin S 1.0 ± 0.3b 2.0 ± 0.3a 0.6 ± 0.3b 0.7 ± 0.3b  0.001 
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FIGURE A.1 Images of cyclic pig endometrium, first stained with DAPI and then H/E, containing large intraepithelial (IE) cells, 
small IE cells and eosin stained stromal (S) cells, resembling leukocytes, after treatment with LPS or recombinant IL-1 cytokines for 4 
h. Pictures were taken with a Leica light microscope at a 400 X magnification. Black and white boxes represent locations of inset 
zoomed image. Black and white arrows represent locations of stained cells. Bar = 20 μM.   
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