FUSE HOLDER DAMAGE INVESTIGATION

A Thesis
presented to the Faculty of the Graduate School at the University of Missouri-Columbia

In Partial Fulfillment of the Requirements for the Degree

Master of Science

by
TONGTAWEE WACHARASINDHU
Dr. Robert M O’Connell, Thesis Supervisor

DECEMBER 2006

The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled

FUSE HOLDER DAMAGE INVESTIGATION

presented by Wacharasindhu, Tongtawee
a candidate for the degree of Master of Science
and hereby certify that, in their opinion, it is worthy of acceptance.
\qquad

ACKNOWLEDGEMENTS

The support and acknowledgement of Mr. Gary T Brownfield from Ameren UE is appreciated. The assistant of Mr. James L Verhaar, Ameren Distribution System Planning, has been essential to the timely and successful completions of this effort.

The author would like to express his sincere to his adviser Professor Robert M O’Connell for his inspiring guidance, friendly counsel, continuing encouragement, and financial support throughout research project.

Finally, I would like to extend my gratitude to my parents and my brothers for their love, encouragement and support.

FUSE HOLDER DAMAGE INVESTIGATION

Tongtawee Wacharasindhu
Dr. Robert M O’Connell, Thesis Supervisor

Abstract

The explosion of fuse holders at a certain $161 \mathrm{kV}: 34.5 \mathrm{kV}$ Ameren UE substation in the Potosi area was investigated. The Alternative Transients Program -Electromagnetic Transients Program (ATP-EMTP) was used to model and simulate the electrical behavior of transient overcurrents and overvoltages created by switching events in an effort to identify the cause of damage to a certain fuse holder used to protect the 4.5 MVAR capacitor bank on the 34.5 kV side of the transformer. Simulation results indicated that switching can increase the peak of the transient overcurrent from the normal current operation by up to 9.33 p.u. Thus, the switching phenomenon may play a role in fuse holder damage.

LIST OF TABLES

Table Page
1.1 The rating of SM power fuse. 7
3.1 The transmission line parameters used in the simulations 22
3.2 The linear load parameter used in simulation. 24
3.3 The Capacitor bank parameter used in the simulations 25
3.4 The generator parameters used in the simulations 26
3.5 The switch parameters used in the simulations. 27
3.6 Transformer parameters used in the simulations 29
4.1 The rms voltage A-G from customer group C_{A}. 34
4.2 Switch operation 35
4.3 The peak currents (p.u.) in phases A, B, and C, when SW1 phase A, B, and C 41
4.4 Switch operations 43
4.5 Delta-grounded wye transformer between the sequences phase switches operation. 47
4.6 The peak currents (p.u.) and voltages (p.u.) in phases A, B, and C, when SW1 phase A, B, and C are closed at different times Ta, Tb, and Tc. 49
4.7 Switch operations 50
4.8 The peak currents (kA) in phases A, B, and C, when SW1 C is re-closed at different times $\left(T_{3}\right)$ 55

LIST OF ILLUSTRATIONS

Figures Page
1.1 The single line diagram of a portion of the Ameren distribution system 1
1.2 The system being considered 3
1.3 The surface mount (SM) power fuse [3] 5
1.4 The fuse holder [3] 6
1.5 The SM refill unit [3] 7
1.6 The current during the fault-clearing operation [1] 8
1.7 Typical time-current characteristics. 10
1.8 Minimum melt times-current characteristic curves 11
1.9 Total clearing times-current characteristic curves 12
2.1 The simple model 14
2.2 Waveforms of capacitor current during 0-0.5 17
3.1 The single line diagram of a portion of the Ameren distribution system 19
3.2 The single line diagram of a portion of the Ameren distribution system 20
4.1 ATP-EMTP model of a three-phase distribution system. 31
4.2 Waveforms of voltage from A-G in customer group C_{A} when SW1 is open.... 32
4.3 Waveforms of voltage in A-G from customer group C_{A} when SW 1 is closed 33
4.4 The switching time $\mathrm{T}_{\mathrm{A} 1}$ of capacitor current in phase A, B, and C 35
4.5 Behavior of phase A capacitor current when SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$, near the phase A current peak. 37
4.6 Waveforms of capacitor currents during $0.05-0.11 \mathrm{~s}$ when SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$ 38
4.7 Behavior of phase A capacitor voltage when SW 1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$ 39
4.8 Waveforms of capacitor currents during $0.05-0.9 \mathrm{~s}$ when SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$. 40
4.9 ATP-EMTP model of a three-phase distribution system 42
4.10 Waveforms of capacitor currents during $0.04-0.12 \mathrm{~s}$ when SW1 is closed at $\mathrm{T}_{\mathrm{a}}=0.05391 \mathrm{~s}$ 45
4.11 Waveforms of capacitor voltages during $0.04-0.1 \mathrm{~s}$ when SW1 is closed at $\mathrm{T}_{\mathrm{a}}=0.05391 \mathrm{~s}$ 46
4.12 The capacitor current waveforms for the bouncing simulation with T3 equal to infinity 51
4.13 Waveforms of capacitor currents during $0.04-0.12 \mathrm{~s}$. SW1 in phase C is re-closed at $\mathrm{T}_{3}=0.0593 \mathrm{~s}$ 52
4.14 Waveforms of capacitor voltages during $0.04-0.12 \mathrm{~s}$. SW1 in phase C is re-closed at $\mathrm{T}_{3}=0.0593 \mathrm{~s}$ 54

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRACT iii
LIST OF TABLES iv
LIST OF FIGURES v
CHAPTER 1 INTRODUCTION. 1
1.1 Problem description 2
1.2 Background information on power fuses. 4
1.2.1 The fault-clearing operation 8
1.2.2 Time-current characteristics 9
CHAPTER 2 ANALYSIS OF CAPACITOR BANK SWITCHING BEHAVIOR 13
CHAPTER 3 MODELING THE AMEREN UE DISTRIBUTION SYSTEM 18
3.1 Distribution system description 18
3.2 The ATP-EMTP model of the three-phase distribution system 20
3.2.1 The transmission line model 21
3.2.2 The linear load model 24
3.2.3 The capacitor bank model 25
3.2.4 The generator model 26
3.2.5 The switch model 27
3.2.6 The transformer model 28
CHAPTER 4 SIMULATION RESULTS 30
4.1 Transmission line voltage drops 31
4.2 All three individual phase switches are closed simultaneously 35
4.3 Three individual phase switches are closed in sequence. 42
4.4 The phase C contact of SW1 bounces 50
CHAPTER 5 CONCLUSION 56
REFERENCES 57
APPENDIX
1 Transformer data provided by Ameren. Distribution System Planning Division 58

1. Introduction

The purpose of a power system is to transmit and distribute the electrical energy produced by the generators to the consumers. Since electrical energy cannot be stored in large quantities, the operation of a power system has to be reliable. Power system transients are initiated when there is a sudden change in the network from one state to another. For instance, the opening and closing of switches is the most common cause of power system transients. The time interval when overvoltage transients or overcurrent transients take place is in the range of microseconds or milliseconds. During this time interval, the devices in the power system are subject to high stresses which can cause significant damage [1].

The purpose of this study was to investigate the cause of damage to a fuse holder on the 34.5 kV side of a $161 \mathrm{kV}: 34.5 \mathrm{kV}$ substation transformer in the Ameren Distribution System. The fuse holder, which is used to protect a capacitor bank, exploded when the adjacent circuit breaker was closed in order to connect the associated part of the power grid to the system. To investigate this hazardous problem, the Alternative Transients Program -Electromagnetic Transients Program (ATP-EMTP) was used to simulate the situation. ATP has comprehensive modeling capabilities, including a superior graphical interface called ATPDRAW that permits easy modeling of the system. Due to the capacitor bank switching behavior, the damage to the fuse holder could be caused by high frequency oscillations of the voltage and/or current. The following sections describe the investigation into the problem.

1.1 Problem description

Figure 1.1 shows the single line diagram of the relevant portion of the Ameren UE distribution system in the St Louis area. The diagram was provided by Jim Verhaar of the Ameren Distribution System Planning Division.

Figure 1.1 The single line diagram of a portion of the Ameren distribution system.

Figure 1.2 shows a single line model of the system shown in Figure 1.1. Breakers SW1 and SW2 connect the 4.5 MVAR capacitor bank and local loads $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3}$, and Z_{4} to the rest of the system, represented by $U 1, U 2$ and $U 3$. Loads Z_{1}, Z_{2}, and Z_{3} represent the appropriate combinations of line and load impedances. Load Z_{4} represents the appropriate Viburnum transformer parameters. The aforementioned critical situation can be described in the following sequential steps:

Figure 1.2 The system being considered.

Step 1 (normal condition)

System operation with switches SW1 and SW2 closed.
Step 2 (normal condition)
Switch SW1 is opened while utility U 2 is still operating in normal procedure with switch SW2 remaining closed.

Step 3 (critical condition)

Switch SW1 is re-closed,* and switch SW2 remains closed. The fuse holder, which is connected to the capacitor bank, is blown out.

* The time interval from when switch SW1 is open when it is re-closed is not instantaneous.

1.2 Background information on power fuses

The most commonly used protective device in distribution systems is the fuse. In general, a fuse is a device capable of preventing damage to a power system's equipment when various types of system faults occur. System faults cause damage to equipment or conductors because of overheating due to overcurrent, overvoltage or short circuits. An overcurrent or an overvoltage may melt a conductor, resulting in arcing and the possibility of fire. A short circuit may also cause an explosion. The power fuse is a specialized device for protecting high voltage equipment in the distribution system. Providing an interruption of a permanent fault is the main purpose of the power fuse. It is an economical alternative to the circuit breaker. Generally, power fuses are widely used in the 11 kV through 35 kV portion of the distribution system [2]. A typical power fuse is shown in Fig 1.3.

Figure 1.3 The surface mount (SM) power fuse [3].

Examining Fig 1.3, the fuse holder (D) is hinged at the bottom and has a spring loaded contact at the top of the upper end. When a fault-clearing operation occurs, the top contact releases and permits the fuse holder to swing and rotate down around its lower, hinged assembly both to give a visual sign of operation and to provide an isolation gap between the two contacts. As a result, the open fuse holder now provides a visible indication that it has been blown out. The fuse holder can be removed from the mount, the surface mount (SM) refill unit replaced, and the fuse holder reinserted in the fuse mount.

Figure 1.4 shows the construction inside the fuse holder. Mounted inside the fuse holder is the SM refill unit shown in Figure 1.5. Finally, the fuse link, or fusible element,
is unted inside the SM refill unit. The fusible elements are usually made of either a nickel-chrome composition for standard melting rates, or helically coiled silver for slower melting rates. The main advantage of a SM refill unit is that it is simple and is therefore a relatively inexpensive device [4, 5].

Figure 1.4 The fuse holder [3]

Figure 1.5 the SM refill unit [3].
Table 1.1 The rating of SM power fuse

Fuse Type	kV			Amperes, RMS, Symmetrical		
	Nominal	Maximum	BIL	Maximum	Interrupting	
					60 Hz	50 Hz
SM-20	13.8	17	95	200 E or 200 K	14000	11,200
	25	27	125	200E or 200 K	12, 00	10,000
	34.5	38	150	200E or 200 K	8,450	6,760
SM-40	4.8	5.5	60	400 E	25,000	20,000
	13.8	17	95	400 E	25,000	20,000
	25	29	150	400 E	20,000	16,000
SM-4Z	4.8	5.5	60	200E	17,200	13760
	13.8	17	95	200 E	12,500	10,000
	25	27	150	200 E	9,400	7,520
	34.5	38	200	200E	6,250	5,000
SM-5S	4.8	5.5	60	400E or 720E	27,000	27,000
	13.8	17	95	400 E or 720E	25,000	25,000
	25	27	150	300 E	20,000	20,000
	34.5	38	200	300 E	17,500	17,500
SM-5SS	13.8	15.5	95	400E	34,000	25,000

1.2.1 The fault-clearing operation

In the event of a fault , when an overcurrent flows through the fuse for a certain amount of time, high pressure gases are developed within the bore of the fusible element. These expel the end of the fusible element, and at the same time, assist in arc extinction. The voltage across each arc contributes to the total voltage across the fuse, and this total voltage results in the current falling to zero. Since the number of arcs is limited, the voltage across the fuse link is not high enough to damage the equipment being protected. The characteristic development of current during the operation of the fuse is shown in Figure 1.6.

Figure 1.6 The current during the fault-clearing operation [1]

The pre-arcing period is the time interval from the instant when the current exceeds the critical value, until the initial vaporization within the gap and melting of the element occurs. A small capacitance will be presented across the gap because of the small cross-sectional area of the fuse link element [1]. It will charge swiftly because the current continues to flow, which will be maintained by the circuit inductance. The resulting voltage will cause the gap to break down and establish the initial arc. Furthermore, the greater the current that passes through the fusible element, the shorter the time period before melting of the element occurs. This is because the power available to cause the temperature to rise is equal to the difference between the input power and the power dissipated by the fuse link, which is controlled by the temperature of the fusible element, which cannot exceed the melting point of the material. The arcing period is the time interval thereafter needed for the two contacts to become completely isolated and for the current to reach zero [6, 7].

1.2.2 Time-current characteristics

The time-current characteristic is a graph of the response time of the fuse element as a function of the current. It consists of the minimum melt curve and the total clearing curve, and is usually plotted on a log-log scale. A typical time-current characteristic is shown in Figure 1.7. These characteristics vary from one manufacturer to another. The minimum melt curve (MMC) shows the interval of time between initiation of an overcurrent sufficient enough to cause the fuse link to begin to melt, and the instant when arcing starts. The total clearing curve (TCC) shows the interval of time between the beginning of the overcurrent and the moment of final current interruption, when the fuse
link is completely cleared of the given current (TCC $=$ minimum melt + pre-arcing period + arcing period) [8].

Figure 1.7 Typical time-current characteristics.

Figure 1.8 Minimum melt times-current characteristic curves.[3]

Figure 1.9 Total clearing times-current characteristic curves.[3]

2 Analysis of Capacitor Bank Switching Behavior

The purpose of this chapter is to analyze the switching transient behavior of the capacitor bank. The energizing and de-energizing of the switch can produce significant switching transients, which result in transient overvoltages and transient overcurrents on the electrical system. Those transient overvoltages and overcurrents occur due to the electrical system adjusting itself to a different configuration of components.

In general, transmission lines or conductors are used to carry power from the power plant to the customers. Transient overvoltage can occur when a switch is closed at the peak of a voltage waveform. Generally, the overvoltage can be twice the peak value of the system voltage, due to the reflection characteristics of the transmission line.

To understand the switching transient, the system shown in Figure 1.2 is modeled simply as an AC source, an inductive element and a capacitive element, as shown in Figure 2.1. For simplicity, the transmission line has been represented by inductance only, assuming the resistance of the line to be negligible. Admittedly, in some practical circuits, there would be some resistance in the circuit. It would gradually dampen the oscillation so that the current and the voltage recede to smaller steady state amplitudes. The AC source is represented by $v(t)=E \cos (\omega t)$ and it is assumed to have negligible impedance. Switch SW 1 is assumed to be ideal. When the switch is closed, it is represented by an ideal conductor. The capacitor bank is represented by an ideal capacitor [9, 10].

Figure 2.1 The simple model.

If switch SW 1 is closed at $t=t_{0}$, Kirchoff's laws can be used to write the following equations:

$$
\begin{align*}
& v(t)=v_{L}(t)+v_{C}(t) \tag{2.1}\\
& v_{L}(t)+v_{C}(t)=E \cos (\omega t) \tag{2.2}\\
& L \frac{d}{d t}\left(i_{L}(t)\right)+v_{C}(t)=E \cos (\omega t) \tag{2.3}\\
& i_{L}(t)=i_{C}(t)=C \frac{d}{d t}\left(v_{C}(t)\right) \tag{2.4}
\end{align*}
$$

This circuit has two elements for stored energy. Magnetic energy is stored in the inductor, and electrical energy is stored in the capacitor. The current cannot change instantaneously due to the circuit inductance, and the capacitor voltage cannot change instantaneously due to the circuit capacitance. When the switch is closed, energy will oscillate back and forth between the inductor and the capacitor at the resonant frequency. Substituting Equation 2.4 into 2.3 and divided by LC gives

$$
\begin{equation*}
\frac{d^{2}}{d t}\left(v_{C}(t)\right)+\frac{1}{L C} v_{C}(t)=\frac{E}{L C} \cos (\omega t) \tag{2.5}
\end{equation*}
$$

Taking the Laplace Transform on both sides of equation (2.5) gives

$$
\begin{equation*}
\left[S^{2} V_{C}(s)-S V_{C}(0)-\dot{V}_{C}(0)\right]+\frac{V_{C}(s)}{L C}=\frac{E}{L C}\left[\frac{S}{S^{2}+\omega^{2}}\right] \tag{2.6}
\end{equation*}
$$

In equation 2.6, $V_{C}(0)$ represents the initial voltage of the capacitor due to the charges that are trapped in the capacitor bank. Assuming that $\dot{V}_{C}(0)=0$, Equation 2.6 becomes

$$
\begin{aligned}
& S^{2} V_{C}(s)+\frac{V_{C}(s)}{L C}=\frac{E}{L C}\left[\frac{S}{S^{2}+\omega^{2}}\right]+S V_{C}(0) \\
& V_{C}(s)\left[S^{2}+\frac{1}{L C}\right]=+\frac{E}{L C}\left[\frac{S}{S^{2}+\omega^{2}}\right]+S V_{C}(0) \\
& V_{C}(s)=\frac{E}{L C}\left(\frac{S}{\left(S^{2}+\omega^{2}\right)\left(S^{2}+\frac{1}{L C}\right)}\right]+V_{C}(0)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right] \\
& \quad=\frac{E}{L C}\left(\frac{1}{\frac{1}{L C}-\omega^{2}}\right)\left[\frac{S}{S^{2}+\omega^{2}}-\frac{S}{S^{2}+\frac{1}{L C}}\right]+V_{C}(0)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right] \\
& \quad=\frac{E}{L C}\left(\frac{1}{\frac{1}{L C}-\omega^{2}}\right)\left[\frac{S}{S^{2}+\omega^{2}}\right]-\frac{E}{L C}\left[\frac{1}{\frac{1}{L C}-\omega^{2}}\right)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right]+V_{C}(0)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{E}{L C}\left(\frac{1}{\frac{1}{L C}-\omega^{2}}\right)\left[\frac{S}{S^{2}+\omega^{2}}\right]-\left(\left(\frac{E}{L C}\right) \frac{1}{\frac{1}{L C}-\omega^{2}}-V_{C}(0)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right]\right. \\
V_{C}(s) & =\left(\frac{E}{1-\omega^{2} L C}\right)\left[\frac{S}{S^{2}+\omega^{2}}\right]-\left(\frac{E}{1-\omega^{2} L C}-V_{C}(0)\right)\left[\frac{S}{S^{2}+\frac{1}{L C}}\right] \tag{2.7}
\end{align*}
$$

Taking the Inverse Laplace Transform both sides of equation (2.7) gives

$$
\begin{align*}
v_{C}(t) & =\left(\frac{E}{1-\omega^{2} L C}\right) \cos (\omega t)-\left(\frac{E}{1-\omega^{2} L C}-V_{C}(0)\right) \cos \left(\frac{t}{\sqrt{L C}}\right) \\
& =\left(\frac{E}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}\right) \cos (\omega t)-\left(\frac{E}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}-V_{C}(0)\right) \cos \left(\omega_{0} t\right) ; \omega_{0}=\frac{1}{\sqrt{L C}} \tag{2.8}
\end{align*}
$$

From equation 2.8, the complete solution for $i_{C}(t)$ can be written

$$
\begin{align*}
i_{C}(t) & =C \frac{d}{d t}\left(V_{C}(t)\right) \\
& =\left(\frac{-E \omega C}{1-\omega^{2} L C}\right) \sin (\omega t)+\left(\frac{E}{1-\omega^{2} L C}-V_{C}(0)\right) \frac{C}{\sqrt{L C}} \sin \left(\frac{t}{\sqrt{L C}}\right) \\
& =\left(\frac{-E \omega C}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}\right) \sin (\omega t)+\left(\frac{E}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}}-V_{C}(0)\left(\omega_{0} C\right) \sin \left(\omega_{0} t\right) ; \omega_{0}=\frac{1}{\sqrt{L C}}\right. \tag{2.9}
\end{align*}
$$

Equation 2.9 shows that the capacitor current waveform consists of by two sinusoidal terms, proportional to $\sin (\omega t)$ and $\sin \left(\omega_{0} t\right)$, respectively, added together.

MATLAB was used to evaluate the transient switching behavior as represented in equation 2.9 with $\mathrm{E}=10 \mathrm{~V}, \mathrm{~L}=6 \mathrm{mH}, \mathrm{C}=1 \mathrm{mF}, \mathrm{f}=60 \mathrm{~Hz}$, and $\mathrm{f}_{\mathrm{o}}=65 \mathrm{~Hz}$. Figure 2.3 shows the resulting capacitor current. As can be seen, it has two dominant frequencies. The higher frequency (65 Hz) is the resonant frequency $\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{L C}}$, and the lower frequency (5 Hz) is the difference between the 60 Hz line frequency and f_{0}. Another important observation is that the resulting capacitor current is a modulated sinusoid. In reality, the resistance of the line can not be negligible, so the resulting capacitor current will be damped and eventually continue as a normal sinusoid. From equation 2.9, the magnitudes of the transient overcurrents are defined by the coefficient of the $\sin (\omega t)$ term and the $\sin \left(\omega_{O} t\right)$ term.

The results of this section show that after the switching operation takes place, the transient overcurrent will contain with two main frequencies, which are the resonant frequency f_{0} and the difference frequency between f_{0} and the line frequency.

Figure 2.3 Waveforms of capacitor current during 0-0.5

3 Modeling the Ameren UE Distribution System

This chapter presents the ATP-EMTP modeling and simulation study to investigate the damage to the fuse holder on the 34.5 kV side of the $161 \mathrm{kV}: 34.5 \mathrm{kV}$ substation transformer.

3.1 Distribution system description

The single line diagram of the appropriate portion of the Ameren UE distribution system is shown in Figure 3.1. The diagram consists of two main power grids: the high voltage power grid $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$ and the intermediate voltage power grid $\left(\mathrm{L}_{3}\right)$. The 161 kV high voltage power grid is powered by generators $\mathrm{G}_{1}, \mathrm{G}_{2}$, and G_{3}. The 161 kV high voltage power grid is connected to the 34.5 kV intermediate voltage grid by the transformers at Viburnum, Brushy Creek and Fletcher. Customers groups C_{A}, and C_{B} are connected to the 34.5 kV side and to generating station G_{4}. The 4.5 MVAR capacitor bank is connected at the 34.5 kV side of the Viburnum transformer to achieve power factor improvement.

3.2 The ATP-EMTP model of the three-phase distribution system

A diagram of the three-phase ATP-EMTP model of the Ameren distribution system is shown in Figure 3.2. As in the actual line diagram, the ATP-EMTP model consists of two main lines, line L_{1} and L_{2}, the 161 kV high voltage transmission lines, and line L_{3}, the 34.5 kV intermediate transmission line. Customer groups C_{A} and C_{B} are supplied by the 34.5 kV busses and generating station G_{4}, while the rest of the system is supplied by the 161 kV busses. Details of the ATP-EMTP modeling are presented in the remainder of this chapter.

Figure 3.2 ATP-EMTP model of a three-phase distribution system
3.2.1 The transmission line model

The model of the transmission line is shown in Table 3.1. For simplicity, it is based on the following assumptions:
a. Since the transmission lines are less than 30 miles long, they are assumed to be short, so that the total capacitive susceptance is small enough to be omitted.
b. The leakage in the insulation of the overhead line, and the effect of corona discharge (the phenomena of partial ionization) are negligible. Thus, the conductance between conductors and between conductors and ground are omitted [2, 3].

With these assumptions, each transmission line can be modeled with a series resistance and inductance. Table 2.1 shows the ATP-EMTP transmission line model of two portions (TL1, and TL2) of power grid L_{3} and a sample calculation illustrating the method used to convert the data for use in the ATP-EMTP model.

Table 3.1 The transmission line parameters used in the simulations.

Transmission line impedance per phase.	ATP-EMTP model RLC series ($\mathrm{C}=0$)		
	Phase A	Phase B	Phase C
Supply system at secondary side 34.5 kV (TL1 in figures 3.1 and 3.2) $\begin{aligned} & \mathrm{V}_{\text {base }}=34.5 \mathrm{kV} \\ & \mathrm{~S}_{\text {base } 3 \varphi}=100 \mathrm{MVA} \\ & \mathrm{Z}_{\text {base }}=11.9 \Omega \\ & \mathrm{Z}_{0}=0.3625+\mathrm{j} 0.7779 \\ & \mathrm{Z}_{\mathrm{p}}=0.1840+\mathrm{j} 0.2761 \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.1896 \Omega \\ & \mathrm{~L}=10.458 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.1896 \Omega \\ & \mathrm{~L}=10.458 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.1896 \Omega \\ & \mathrm{~L}=10.458 \mathrm{mH} \end{aligned}$
Supply system at primary side 161 kV (TL2 in figures 3.1 and 3.2) $\begin{aligned} & \mathrm{V}_{\text {base }}=161 \mathrm{kV} \\ & \mathrm{~S}_{\text {base } 3 \varphi}=100 \mathrm{MVA} \\ & \mathrm{Z}_{\text {base }}=259.21 \Omega \\ & \mathrm{Z}_{0}=0.0444+\mathrm{j} 0.1316 \\ & \mathrm{Z}_{\mathrm{p}}=0.0095+\mathrm{j} 0.0450 \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.4625 \Omega \\ & \mathrm{~L}=37.129 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.4625 \Omega \\ & \mathrm{~L}=37.129 \mathrm{mH} \end{aligned}$	$\begin{aligned} & \mathrm{R}=2.4625 \Omega \\ & \mathrm{~L}=37.129 \mathrm{mH} \end{aligned}$

Sample calculation:

$$
\begin{aligned}
& \mathrm{V}_{\text {base }}=34.5 \mathrm{kV} \\
& \mathrm{~S}_{\text {base }, 3 \varphi}=100 \mathrm{MVA} \\
& \mathrm{Z}_{\text {base }}=\frac{\left[\left(V_{\text {base }, l-l}\right)\right]^{2}}{S_{\text {base, } 3 \varphi}} \\
& \\
& \quad=\frac{\left[\left(34.5 \times 10^{3}\right)\right]^{2}}{100 \times 10^{6}}=11.9 \Omega \\
& \mathrm{Z}_{0}=0.3625+\mathrm{j} 0.7779, \mathrm{Z}_{\mathrm{P}}=\mathrm{Z}_{\mathrm{N}}=0.184+\mathrm{j} 0.2761 \text { (given) }
\end{aligned}
$$

According to symmetrical component transformation [4], sequence impedance $\left(Z_{L}\right)$ can be defined as
$Z_{P} \cong Z_{L} \quad$ Positive - sequence inpedance
$Z_{N} \cong Z_{L} \quad$ Negative - sequence impedance
$Z_{o} \cong Z_{L}+3 Z_{n} \quad$ Zero - sequence impedance

$$
\begin{aligned}
{\left[Z_{L}\right] } & =[0.184+j * 02761] \quad \mathrm{pu} \\
& =[2.1896+j * 3.2855] \Omega \\
\mathrm{Z}_{\mathrm{L}}= & \mathrm{R}+\mathrm{j}^{*} \mathrm{X}_{\mathrm{L}}=\mathrm{R}+\mathrm{j} \omega \mathrm{~L}
\end{aligned}
$$

Thus,

$$
\begin{array}{ll}
{[R]=[2.1896]} & \Omega . \\
{[L]=[10.458]} & \mathrm{mH}
\end{array}
$$

3.2.2 The linear load model

The model of the linear load is shown in Table 3.2. along with a sample calculation of the associated resistance and inductance. All of the linear loads were modeled as parallel R-L combinations and connected from phase to ground, which can be considered as wye-connected impedances for the three-phase system.

Table 3.2 The linear load parameter used in simulation

Linear Load	ATP-EMTP model RL parallel (C=0)
Supply System at Secondary side	$\mathrm{R}=15.87 \Omega$
34.5 kV (A6 in Figures 3.1 and 3.2)	$\mathrm{L}=21.04 \mathrm{mH}$
$\mathrm{V}_{1-1}=34.5 \mathrm{kV}$	
$\mathrm{S}_{\text {load }}=60+\mathrm{j} 30$ MVA	

Sample Calulation:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{P}} & =\frac{\left(V_{l-l}\right)^{2}}{S_{\text {Load }}^{*}} \\
& =\frac{\left(34.5 \times 10^{3}\right)^{2}}{(60-j 30) \times 10^{6}} \\
& =15.87+\mathrm{j} 7.935
\end{aligned}
$$

$$
\mathrm{R}=15.87 \Omega, \mathrm{~L}=21.04 \mathrm{mH}
$$

3.2.3 The capacitor bank model

The model of the 4.5 MVAR capacitor bank is shown in Table 3.3. The capacitor bank is connected to the supply system at the secondary side (34.5 kV), next to the Viburnum transformer. It is a grounded-Wye configuration shunt-connected to the system and modeled as the C combination group in EMTP. It is connected phase-to-phase, which can be considered as a Wye-connection impedance for a three-phase system.

Table 3.3 The Capacitor bank parameter used in the simulations
$\left.\begin{array}{|l|l|}\hline \text { 4.5 MVAR Capacitor bank } & \begin{array}{c}\text { ATP-EMTP model } \\ \text { Capacitor }\end{array} \\ & \\ \begin{array}{l}\text { Supply System at Secondary side } \\ (34.5 \mathrm{kV} .)\end{array} & \mathrm{C}=10.028 \mu \mathrm{~F} \\ \mathrm{~V} \text { 1-1 }=34.5 \mathrm{kV} \\ \mathrm{Q}=4.5 \mathrm{MVAR}\end{array}\right]$

Sample Calulation:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{C}} & =\frac{\left(V_{l-l}\right)^{2}}{Q} \\
& =\frac{\left(34.5 \times 10^{3}\right)^{2}}{4.5 \times 10^{6}}=264.5 \\
\mathrm{C} & =\frac{1}{X_{C} \omega}=10.028 \mu \mathrm{~F}
\end{aligned}
$$

3.2.4 The generator model

The model of the generators is shown in Table 3.4. All of the generators $\left(G_{1}, G_{2}\right.$, G_{3} and G_{4} in Figures 3.1 and 3.2) are assumed to be ideal.

Table 3.4 The generator parameters used in the simulations

Generator type	ATP-EMTP model AC 3 phase type 14
161 kV Generators* $\left(G_{1}, G_{2}, G_{3}\right.$ in Figures 3.1 and 3.2)	$\begin{aligned} & \mathrm{U} / \mathrm{I}=0 \\ & \text { Amp }=227.688 \mathrm{kV} \\ & \text { frequency }=60 \mathrm{~Hz} \\ & \text { Pha }=0 \\ & \mathrm{~A} 1=0 \end{aligned}$
34.5 kV Generator* (G_{4} in Figures 3.1 and 3.2)	$\begin{aligned} & \mathrm{U} / \mathrm{I}=0 \\ & \mathrm{Amp}=48.79 \mathrm{kV} \\ & \text { frequency }=60 \mathrm{~Hz} \\ & \text { Pha }=0 \\ & \mathrm{~A} 1=0 \end{aligned}$

* according to the EMTP-RULES book IV.E, and XIX-G

U/I= 0 (Voltage source)
Amp (The peak value in [V] of the function)
Pha (Phase shift in degrees or seconds depending on A1)
A1 (Phase in degrees)
3.2.5 The switch model

The model of the switches is shown in Table 3.5. All of the switches (SW1, SW2 and SW3 in Figures 3.1 and 3.2) are assumed ideal and time-controlled, and are assumed to have negligible impedance. Each of the three-phase switches consists of an individual switch per phase. All of the three individual switches can be closed and opened independently of each other at any time. $\mathrm{T}_{\text {open }}$ represents the opening time of a switch, $\mathrm{T}_{\text {close }}$ represents the closing time of a switch, and $\mathrm{I}_{\text {mar }}$ represents the current margin. The switch is successfully opened at $\mathrm{T}>\mathrm{T}_{\text {open }}$ if $\mathrm{I}<\mathrm{I}_{\text {mar }}$.

Table 3.5 The switch parameters used in the simulations

Switch Parameter	ATP-EMTP model
3 phase switch *	Switch times control 3 phase
1 phase switch *	Multi switch 1 phase

[^0]
3.2.6 The transformer model

The model for the transformers is shown in Table 3.6. The Brushy Creek and Fletcher transformers are modeled as ideal 3-phase load tap changing (LTC) Deltagrounded wye transformers. For simplicity, the model of the Viburnum transformer is based on the following assumptions:
a. The transformer is operated in the linear region of the transformer magnetizing current. Therefore, under nominal voltage, the transformer is assumed to have no saturation.
b. The flux-current peak value of the linear curve ($\mathrm{I}_{\text {peak }}, \varphi_{\text {peak }}$) and the core exciting losses (Rmag) are evaluated by using excitation test results provided by Ameren.

Table 3.6 Transformer parameters used in the simulations

Transformer Impedance model	ATP-EMTP model for 3 phase transformer
Brushy Creek and Fletcher Substation 3ϕ LTC transformer Delta grounded wye $\text { (161/34.5 kV), } 60 \text { Hz }$	Ideal transformer
Viburnum Substation 3ϕ LTC transformer* Delta/ Wye ground $(161 / 34.5 \mathrm{kV})$ $60 \mathrm{~Hz}$	$\begin{gathered} \text { Pri; } \mathrm{V}_{\mathrm{RP}}=161 \mathrm{kV} \\ \mathrm{R}=19.9839 \Omega, \\ \mathrm{~L}=1.036 \mathrm{mH} \\ \text { Sec; } \mathrm{V}_{\mathrm{RS}}=34.5 \mathrm{kV} \\ \mathrm{R}=0.26423 \Omega, \\ \mathrm{~L}=0.048 \mathrm{mH} \\ \text { Rmag }=33.436 \mathrm{k} \Omega \\ \mathrm{I}_{\text {peak }}=0.31268 \mathrm{~A} \\ \varphi_{\text {peak }}=129 \mathrm{Vsec} \\ \mathrm{R}_{\text {short }}=39.966 \Omega \\ \text { Dlead } / \mathrm{Y} 180 \end{gathered}$

* according to the EMTP-RULES book IV.E, and XIX-G

Vrp (Rated voltage in [kV] primary winding.)
Vrs (Rated voltage in $[\mathrm{kV}]$ secodary winding.)
Rmag (The resistance of core exciting losses.)
$\mathrm{I}_{\text {peak }}$ (The peak current value through magnetizing branch (MB) at steady state.)
$\varphi_{\text {peak }}$ (Flux [Wb-turn] in MB at steady state.)
$\mathrm{R}_{\text {short }}$ (The resistance of short circuit losses.)

Chapter 4 Simulation results

This chapter analyzes the effects of the switching times of switches SW1, SW2 and SW3 when the power grid upstream from the Viburnum transformer is reconnected to the system. This analysis mainly focuses on the characteristics of the three-phase current waveforms of the 4.6 MVAR capacitor bank shown in Figures 3.1 and 3.2 .The customer groups C_{A} and C_{B} in Figures 3.1 and 3.2 are supplied by the 34.6 kV bus while the rest of the system is supplied by the 161 kV bus. SW2 and SW3 are normally-closed (NC) and normally-open (NO) three phase switches, respectively. Each switch consists of three individual phase switches. Based on the states of switch operation and system balance conditions, four case studies were considered.

1. Transmission line voltage drops.
2. All three individual phase switches are closed simultaneously.
3. The three individual phase switches are closed in sequence.
4. The phase C contact of switch SW1 bounces.

All simulations start at time $\mathrm{T}=0 \mathrm{~s}$ and finish at time $\mathrm{T}=0.3 \mathrm{~s}$. This represents 18 cycles of a 60 Hz signal.

4.1 Transmission line voltage drops.

This section shows that with SW1 and SW3 open and SW2 closed, there are voltage drops along the transmission line between Brushy Creek and Viburnum resulting in a voltage of only 21.17 kV at Viburnum. When SW1 is closed, the voltage at Viburnum is close to 34.5 kV . Figure 4.1 shows the points along the line in customer group C_{A} that are simulated.

Figure 4.1 ATP-EMTP model of a three-phase distribution system.

4.1.1 Case A SW1 is open.

Figure 4.2 (a) shows only the phase A voltage drop at nodes in the customer group C_{A}, labeled A-G starting from the Brushy Creak transformer to the Viburnum transformer. Figure 4.2 (b) is a magnified view of the peaks of the voltage waveforms. The result of the simulation shows a drop in voltage with the highest voltage being at the Brushy Creek transformer and a steady drop to the Viburnum transformer. This is because the power is supplied from one side only.

Figure 4.2 Waveforms of voltage from A-G in customer group C_{A} when SW1 is open. The waveform is shown during (a) $0-2 \mathrm{~s}$ (b) $0.048-0.056 \mathrm{~s}$

4.1.2 Case B SW1 is closed

Similar to case A, Figure 4.3(a) and (b) show the voltages at nodes A-G in customer group C_{A}, but now SW1 is closed. In this case power is also provided to the customer line though the Viburnum transformer. The voltage drop along the line in this case is much lower than in case A . Hence, the lowest voltage is located at the center of the customer line (at node G), as expected.

Figure 2.3 Waveforms of voltage in A-G from customer group C_{A} when $S W 1$ is closed. The waveform is shown during (a) $0-2 \mathrm{~s}$ (b) $0.033-0.035 \mathrm{~s}$

The simulation results for cases A and B are summarized in Table 4.1. In case B, with power from both sides of the consumer group C_{A}, the voltage is much closer to that desired for normal operation. For case B, the value desired is 34.5 kV . In case A there is a noticeable voltage drop from Brushy Creek to Viburnum.

Table 4.1 The rms voltage A-G from customer group C_{A}.
Point rms voltage (kV) in case $A \quad$ rms voltage $(k V)$ in case B

VA	34.158	34.130
VB	30.431	33.112
VC	26.570	32.298
VD	23.437	32.051
VE	22.249	32.284
VF	21.719	32.786
VG	21.704	32.935

4.2 All three individual phase switches are closed simultaneously.

Table 4.2 shows the operation state of switches SW1, SW2 and SW3 during T = 0 - 0.2 s. During $0-T_{1}$ s, SW1 and SW3 are open, and SW2 is closed. Power is supplied to customer groups C_{A} and C_{B} from the Brushy Creek and Fletcher transformers. At T_{1}, SW1 is switched from open to closed, and all three substations provide power to customer groups C_{A} and C_{B}. ATP-EMTP simulations of the system shown in Figure 4.1 were made to determine the 4.6 MVAR capacitor bank currents as a function of the time T_{1}, at which all three phase switches in switch SW1 are closed simultaneously. To study the behavior of capacitor current in phases A, B and $\mathrm{C}, \mathrm{T}_{1}$ was chosen to close SW1 at different times throughout a 60 Hz period of the voltage across the 4.6 MVAR capacitor bank. Figure 4.4 shows one of the T_{1} closing times. It is the time at which the transient behavior of the voltage and current was most extreme. It was chosen at the negative peak of phase A capacitor current, i.e., at 0.05225 s.

Table 4.2 Switch operation.

Time (\mathbf{s})	SW1	SW2	SW3
$0-\mathrm{T}_{1}$	Open	Closed	Open
$\mathrm{T}_{1}-0.3$	Closed	Closed	Open

Figure 4.4 The switching time $T_{A 1}$ of capacitor current in phase A, B, and C

Figure 4.5 (a) shows the behavior of phase A capacitor current before and after SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$, which corresponds to a maximum in phase A current. Figures 4.5 (b) and 4.5 (c) show the same data during $0-0.06 \mathrm{~s}$, and $0.05-0.11 \mathrm{~s}$ respectively. From $0-T_{1}$, the capacitor current is a sinusoid with a small magnitude. This is because power is supplied only from the Brushy Creek and Fletcher substations. At T_{1} all three phase switches in SW1 are closed simultaneously at a point near the peak of the phase A capacitor current. Figure 4.5 shows that when SW1 is closed at $T_{1}=0.05622 \mathrm{~s}$ the phase A capacitor current peak jumps from 116.1 A to -1.612 kA and creates a transient high frequency oscillation that lasts for approximately 2.5 cycles of the 60 Hz line signal. The frequency of the transient is approximately 2747.7 Hz .

Figure 4.6 compares the waveforms of the capacitor currents in phases A, B, and C when SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$. Similar to phase A, the transient overcurrents in phases B and C exist for approximately two and a half cycles. The maximum overcurrents are 2.568 kA in phase B and 1.154 kA in phase C .

Figure 4.7 shows the behavior of phase A capacitor voltage before, during, and after SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$. The curve shows that the phase A capacitor voltage peak jumps from 30.71 kV A to -52.08 kV and undergoes a transient high frequency oscillation that lasts for approximate 1.5 cycles of the 60 Hz line signal. The frequency of the transient is approximately 2747.7 Hz .

Figure 4.8 compares the waveforms of the capacitor voltages in phases A, B, and C when SW1 is closed at $\mathrm{T}_{1}=0.05622 \mathrm{~s}$. The maximum peak overvoltages are -52.08 kV in phase $\mathrm{A}, 58.195 \mathrm{kV}$ in phase B and 49.59 kV in phase C.

Figure 4.5 Behavior of phase A capacitor current when $S W 1$ is closed at $T_{1}=0.05622 \mathrm{~s}$, near the phase A current peak. The waveform is shown during (a) $0-0.2 \mathrm{~s}$ (b) $0-0.06 \mathrm{~s}$ (c) $0.05-0.11 \mathrm{~s}$.

Figure 3.6 Waveforms of capacitor currents during 0.05-0.11 s when SW1 is closed at $\mathrm{T}_{1}=0.05622$ s. (a) phase A, (b) phase B, (c) phase C.

Figure 4.7 Behavior of phase A capacitor voltage when SW1 is closed at $\mathrm{T}_{1}=\mathbf{0 . 0 5 6 2 2} \mathrm{s}$. The waveform is shown during (a) $0-0.2 \mathrm{~s}$ (b) $0-0.06 \mathrm{~s}$ (c) $0.04-0.10 \mathrm{~s}$.

Figure 4.8 Waveforms of capacitor currents during $0.05-0.9$ swhen $S W 1$ is closed at $T_{1}=0.05622 \mathrm{~s}$. (a) phase A, (b) phase B, (c) phase C.

Simulations like those shown in Figures 4.5 through 4.8 were performed for different values of T_{1} throughout the 60 Hz period, having the time step of $6.94 * 10^{-4} \mathrm{~s}$. Table 4.2 shows the resulting peak overcurrent and overvoltage values. The data show that when the three phase switches are closed simultaneously near a current peak in any of the three phases, transient overcurrent oscillations, lasting approximately 2.5 cycles of the 60 Hz line frequency, occur in all three phases. The peak overcurrents vary over from
1.027 to 2.578 kA and the peak overvoltages vary from 49 kV to 58 kV .

Table 4.2 The peak currents (p.u.) in phases A, B, and C, when SW1 phase-A, B, and C

	Time (Ta)	$\mathbf{V a}(\mathbf{k V})$	$\mathbf{V b} \mathbf{(k V)}$	Vc (kV)	Ia $\mathbf{(k A)}$	Ib (kA)	Ic (kA)
$\mathbf{1}$	0.05205	54.227	47.639	-56.245	-2.046	0.379	-2.412
$\mathbf{2}$	0.05274	-50.608	49.758	-57.799	-1.661	1.023	-2.578
$\mathbf{3}$	0.05344	-49.597	52.071	$\mathbf{5 8 . 1 9 7}$	-1.156	1.61	-2.568
$\mathbf{4}$	0.05413	-48.232	54.291	57.534	-0.582	2.081	-2.385
$\mathbf{5}$	0.05483	-47.647	56.253	54.21	-0.381	2.413	-2.035
$\mathbf{6}$	0.05552	-49.766	57.605	50.607	-1.025	$\mathbf{2 . 5 7 8}$	1.659
$\mathbf{7}$	0.05622	-52.08	$\mathbf{5 8 . 1 9 5}$	49.59	-1.612	2.568	1.154
$\mathbf{8}$	0.05691	-54.299	57.53	48.226	-2.081	2.384	0.581
$\mathbf{9}$	0.05761	-56.26	54.193	47.655	-2.414	-2.044	0.384
$\mathbf{1 0}$	0.05830	-57.611	-50.607	49.775	-2.578	-1.658	1.027
$\mathbf{1 1}$	0.05899	-58.202	-49.611	52.048	-2.569	-1.16	1.606
$\mathbf{1 2}$	0.05969	-57.525	-48.22	54.307	-2.383	-0.579	2.082
$\mathbf{1 3}$	0.06038	-54.252	-47.627	56.234	-2.039	-0.376	2.411
$\mathbf{1 4}$	0.06108	50.607	-49.785	57.616	1.657	-1.029	2.578
$\mathbf{1 5}$	0.06177	49.606	-52.058	58.2	1.158	-1.608	2.569
$\mathbf{1 6}$	0.06247	48.214	-54.316	57.521	0.577	-2.084	2.383
$\mathbf{1 7}$	0.06316	47.635	-56.242	54.235	0.378	-2.412	2.037
$\mathbf{1 8}$	0.06386	49.793	-57.622	-50.606	1.031	-2.579	-1.655
$\mathbf{1 9}$	0.06455	52.037	-58.198	-49.599	1.609	-2.569	-1.156
$\mathbf{2 0}$	0.06524	54.286	-57.536	-48.236	2.079	-2.386	-0.583
$\mathbf{2 1}$	0.06594	56.249	-54.218	-47.624	2.413	2.046	-0.38
$\mathbf{2 2}$	0.06663	57.602	50.607	-49.762	$\mathbf{2 . 5 7 8}$	1.66	-1.024
$\mathbf{2 3}$	0.06733	58.196	49.593	-52.075	2.568	1.155	-1.611
$\mathbf{2 4}$	0.06802	57.532	48.229	-54.294	2.385	0.582	-2.08
$\mathbf{2 5}$	0.06872	54.202	47.648	-56.256	-2.045	0.0382	-2.413

4.3 Three individual phase switches are closed in sequence.

The aim of this case is to observe the effects of closing the three phase switches at different times. ATP-EMTP studies were performed to evaluate the transient switching behaviors of the circuit shown in Figure 4.9, which is the same as Figure 4.1 except that SW1 is now replaced with phase switches SW1 A, SW1 B, and SW1 C.

Figure 4.9 ATP-EMTP model of a three-phase distribution system.

Table 4.3 shows the operation of switching SW1, SW2 and SW3 during 0-0.2 s. During $0 \mathrm{~s}-\mathrm{T}_{2}$, phase switches A, B, and C in SW1 are all open, SW2 is closed, and SW3 is open. Customer groups C_{A} and C_{B} are supplied only from the Brushy Creek and Fletcher transformers. At T_{2}, SW1 is switched from open to closed. Now three substations provide power to customers groups C_{A} and C_{B}. The three phase switches A, B, and C in SW1 are closed at different times. Phase A of SW1 is set to be the master switch. It is closed at time T_{a}. Phase B of SW1 is set to be a slave switch with closure time T_{b}, which is delayed 3 ms from the master switch. Phase C of SW1 is set to be another slave switch with closure time T_{c}, which is delayed 6 ms from the master switch. Simulations were performed to study the behavior of capacitor current, using different values of T_{2} throughout a 60 Hz period of the voltage across the 4.5 MVAR capacitor bank.

Table 4.3 Switch operations.

Time (s)	SW1			SW2	SW3
	Phase A	Phase B	Phase C		
$\mathrm{T}_{2}-0.2$	Close at $\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{2}$	Close at $\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{2}+$ 3 ms	Close at $\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{2}+$ 6 ms	Closed	Open

Figure 4.10 shows the waveforms of the capacitor currents in phases A, B, and C when the three phase switches in SW1 are closed at $T_{a}=0.05391 \mathrm{~s}, \mathrm{~T}_{\mathrm{b}}=0.05691 \mathrm{~s}$, and $\mathrm{T}_{\mathrm{c}}=0.05991 \mathrm{~s}$, which was the worst case observed. The large transient overcurrents occur after phase C of SW1 (the last switch) is switched. The peak overcurrents are 2.472 kA in phase A, 2.384 kA in phase B, and 2.304 kA in phase C. Here the transient overcurrents last for approximately two and a half cycles.

Figure 4.11 illustrates the waveforms of the capacitor voltage on phases A, B, and C corresponding to the currents shown in Figure 4.10. The peak overvoltages are -58.595 kV in phase $\mathrm{A}, 57.53 \mathrm{kV}$ in phase B , and 55.102 kV in phase C .

The relative sizes of the currents between $\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{c}}$ and after T_{c} in Figures 4.10 and 4.11 can be explained in terms of delta-grounded wye transformer operation, as given in Table 4.4.

Figure 4.10 Waveforms of capacitor currents during $0.04-0.12 \mathrm{~s}$ when SW 1 is closed at $\mathrm{T}_{\mathrm{a}}=\mathbf{0 . 0 5 3 9 1}$. (a) phase-A, (b) phase-B, (c) phase-C.

Figure 4.11 Waveforms of capacitor voltages during $0.04-0.1 \mathrm{~s}$ when SW 1 is closed at $\mathrm{T}_{\mathrm{a}}=\mathbf{0 . 0 5 3 9 1} \mathrm{s}$, (a) phase-A, (b) phase-B, (c) phase-C.

Table 4.4 Delta-grounded wye transformer between the sequences phase switches operation.
Aescription

To evaluate the behavior of the capacitor current, simulations like those shown in Figures 4.10 and 4.11 were performed for different values of T_{a} throughout the 60 Hz period, having the time step of $6.94 * 10^{-4} \mathrm{~s}$. Table 4.5 shows the resulting peak overcurrent and overvoltage values. As can be seen in the table, the worst cases occur when SW1 phase-A $\left(\mathrm{T}_{\mathrm{a}}\right)$ is closed from 0.05183 s to 0.05391 s (Figure 4.10 and 3.11), and from 0.06016 s to 0.06224 s .

The results show that when the phase switches are closed at different times, large transient overcurrents sometimes occur on all three phases after phase C switch is closed. This is not observed when all three phase switches are closed simultaneously. The worst case overcurrent magnitudes are approximately the same as in case 2 . We conclude from this that the relative delays in closing the three phase switches may play a role in fuse holder damage.

Table 4.5 The peak currents (p.u.) and voltages (p.u.) in phases A, B, and C, when SW1 phase-A, B, and C are closed at different times T_{a}, T_{b}, and T_{c}.

	Time (Ta)	Time (Tb)	Time (Tc)	$\mathbf{V}_{\mathbf{A}}(\mathbf{k V})$	$\mathbf{V}_{\mathbf{B}} \mathbf{(k V)}$	$\mathbf{V}_{\mathbf{C}} \mathbf{(k V)}$	$\mathbf{I}_{\mathbf{A}}(\mathbf{k A})$	$\mathbf{I}_{\mathbf{B}} \mathbf{(k A)}$	$\mathbf{I}_{\mathbf{C}}(\mathbf{k} \mathbf{A})$
$\mathbf{1}$	0.04905	0.05205	0.05505	-49.441	47.637	48.497	-0.869	0.379	0.833
$\mathbf{2}$	0.04974	0.05274	0.05574	-48.104	49.757	47.818	-0.489	1.023	-0.534
$\mathbf{3}$	0.05044	0.05344	0.05644	-49.599	52.071	48.255	0.811	1.610	-0.801
$\mathbf{4}$	0.05113	0.05413	0.05713	-52.009	54.290	49.596	-1.362	2.080	1.162
$\mathbf{5}$	0.05183	0.05483	0.05783	-54.545	56.253	51.189	-1.849	2.413	1.618
$\mathbf{6}$	0.05252	0.05552	0.05852	-56.760	57.605	52.747	-2.204	$\mathbf{2 . 5 7 8}$	1.970
$\mathbf{7}$	0.05322	0.05622	0.05922	-58.319	58.201	54.139	-2.419	2.568	2.213
$\mathbf{8}$	0.05391	0.05691	0.05991	-58.595	57.530	55.102	-2.472	2.384	2.304
$\mathbf{9}$	0.05461	0.05761	0.06061	-55.378	54.193	55.541	2.382	2.044	2.236
$\mathbf{1 0}$	0.05530	0.05830	0.0613	52.072	-50.607	55.222	2.185	1.658	2.035
$\mathbf{1 1}$	0.05599	0.05899	0.06199	51.697	-49.611	53.922	1.861	-1.160	1.699
$\mathbf{1 2}$	0.05669	0.05969	0.06269	50.800	-48.220	51.669	1.405	-0.579	1.241
$\mathbf{1 3}$	0.05738	0.06038	0.06338	49.445	-47.625	-48.499	0.872	-0.376	-0.834
$\mathbf{1 4}$	0.05808	0.06108	0.06408	48.105	-49.785	-47.815	0.492	-1.029	0.537
$\mathbf{1 5}$	0.05877	0.06177	0.06477	49.588	-52.058	-48.247	0.808	-1.605	0.800
$\mathbf{1 6}$	0.05947	0.06247	0.06547	52.032	-54.316	-49.618	1.367	-2.084	1.167
$\mathbf{1 7}$	0.06016	0.06316	0.06616	54.534	-56.242	-51.177	1.847	-2.412	1.616
$\mathbf{1 8}$	0.06086	0.06386	0.06686	56.778	-57.622	-52.770	2.206	-2.579	-1.974
$\mathbf{1 9}$	0.06155	0.06455	0.06755	58.314	-58.198	-54.137	2.418	-2.504	-2.213
$\mathbf{2 0}$	0.06224	0.06524	0.06824	58.600	-57.536	-55.113	$\mathbf{2 . 4 7 3}$	-2.386	-2.304
$\mathbf{2 1}$	0.06294	0.06594	0.06894	55.403	-54.218	-55.543	2.358	2.046	-2.237
$\mathbf{2 2}$	0.06363	0.06663	0.06963	-52.075	50.607	-55.227	-2.193	1.660	-2.036
$\mathbf{2 3}$	0.06433	0.06733	0.07033	-51.689	49.593	-53.908	-1.858	1.155	-1.695
$\mathbf{2 4}$	0.06502	0.06802	0.07102	-50.805	48.230	-51.684	-1.407	0.582	-1.243
$\mathbf{2 5}$	0.06572	0.06872	0.07172	-49.435	47.651	48.492	-0.866	0.382	0.831

4.4 The phase C contact of SW1 bounces.

Table 4.6 shows the operation of switching SW1, SW2 and SW3 during 0-0.2 s. During $0 \mathrm{~s}-\mathrm{T}_{1}$, phase switches A, B, and C in SW1 are all open, SW2 is closed, and SW3 is open. At T_{1}, all three phase switches in SW1 are switched from open to closed. At $\mathrm{T}_{2}, 6 \mathrm{~ms}$ later, phase switch C in SW1 bounces off forcing SW1 phase C to open. Thus during $T_{2}-T_{3}$ phase C in SW1 opens and the others remain the same. At T_{3}, phase C in SW1 is reclosed. Now three substations provide power to customer groups C_{A} and C_{B}. Simulations were performed to study the behavior of capacitor current and voltage, using different values of T_{3} throughout a 60 Hz period of the voltage across the 4.5 MVAR capacitor bank.

Table 4.6 Switch operations

Time (s)	SW1			SW2	SW3
	Phase A	Phase B	Phase C		Closed

The simulation was performed with variable T_{1} chosen to correspond to a bad case from section 3.3 and T_{2} chosen to be 6 ms later. Thus T_{1} is equal to 0.05205 s and T_{2} is equal to T_{1} plus 6 ms , or 0.05805 s . Due to convergence restraints, 6 ms was the closest
time of T_{2} to T_{1} that could be simulated. The value of $T 3$ was then varied to observe the transients associated with the bounce of phase switch C. Figure 4.12 shows the capacitor current waveforms for the bouncing simulation with T 3 equal to infinity, meaning that SW1 phase C never recloses. This simulation represents the waveform of the capacitor current after time T_{2}.

Figure 4.12 the capacitor current waveforms for the bouncing simulation with T 3 equal to infinity.

Figure 4.13 shows the waveforms of the capacitor currents in phases A, B, and C with SW1 in phase C re-closed at $\mathrm{T}_{3}=0.0593 \mathrm{~s}$, which was the worst case observed. The large transient overcurrents occur only in phases A and C after SW1 in phase C (the bouncing switch) is re-closed. The peak overcurrents are 2.053 kA ($\mathrm{T}=0.05805 \mathrm{~s}$), and $2.735 \mathrm{kA}(\mathrm{T}=0.0593 \mathrm{~s})$ in phase A as shown in Figure 4.13 (a), and $-2.422 \mathrm{kA}(\mathrm{T}=$ 0.05805 s), and $2.859 \mathrm{kA}(\mathrm{T}=0.0593 \mathrm{~s})$ in phase C, as shown in Figure 4.13 (c). Note that the transient overcurrents in phases A and C due to the bouncing of phase switch C are larger than the normal switching transient overcurrents by approximately 35% in phase A and 21 \% in phase C, and they last for approximately three 60 Hz cycles. As
shown in Figure 4.13 (b), the capacitor current in phase B is not affected by the bouncing of phase switch C because of the delta-grounded wye transformer operation, as explained Table 4.4.

Figure 4.14 illustrates the waveforms of the capacitor voltage on phases A, B, and C corresponding to the current shown in Figure 4.13. The peak overvoltages are -60.583 kV in phase $\mathrm{A}, 46.612 \mathrm{kV}$ in phase B , and 56.039 kV in phase C

Simulations like those shown in Figures 4.13 and 4.14 were performed for different values of T_{3} from 0.05850 s through 0.06150 s , having the time step of 0.2 ms . Table 4.7 shows the resulting peak overcurrent and voltage values. These peaks can be seen in cycles as the interval between T_{2} and T_{3} increases. As can be seen in Table 4.7, the largest peak overcurrent occurs when phase switch C in SW 1 is re-closed at 0.05930 s , which is 1.25 ms after T_{2} (Figures 4.13 and 4.14). Comparing these results to Figure 4.12 it can be seen that when T_{3} is close to a peak of phase-C capacitor current it will produce a large overcurrent and overvoltage. This simulation is based on one bounce of one phase switch. It can be seen that the effects of a bounce can increase the value of overcurrents from the normal switching transients by $20-30 \%$. In reality, the phase switch could bounce more than once causing even longer switching transients. Also, the other two phase switches cause bounce.

Figure 4.13 Waveforms of capacitor currents during 0.04-0.12 s. SW1 in phase C is reclosed at $T_{3}=$ 0.0593 s. (a) phase-A, (b) phase-B, (c) phase-C

Figure 4.14 Waveforms of capacitor voltages during 0.04-0.12 s. SW1 in phase C is re-closed at $\mathrm{T}_{3}=$ 0.0593 s. (a) phase-A, (b) phase-B, (c) phase-C

Table 4.7 The peak currents ($k A$) in phases A, B, and C, when SW1 C is re-closed at different times (T_{3})

Time ($\left.\mathbf{T}_{\mathbf{3}}\right)$	$\mathbf{V}_{\mathbf{A}}(\mathbf{k V})$	$\mathbf{V}_{\mathbf{B}}(\mathbf{k V})$	$\mathbf{V}_{\mathbf{C}}(\mathbf{k V})$	$\mathbf{I}_{\mathbf{A}} \mathbf{(k A)}$	$\mathbf{I}_{\mathbf{B}} \mathbf{(k A)}$	$\mathbf{I}_{\mathbf{C}}(\mathbf{k A})$
0.05850	-53.380	46.612	54.727	-2.461	$\mathbf{0 . 3 7 6}$	2.592
0.05870	-57.197	46.612	53.787	-2.211	0.376	2.271
0.05890	-51.651	46.612	50.097	-1.094	0.376	1.202
0.05910	-56.576	46.612	53.794	-2.010	0.376	2.181
0.05930	-60.583	46.612	56.309	-2.735	$\mathbf{0 . 3 7 6}$	2.859
0.05950	-55.229	46.612	53.222	-1.775	0.376	1.975
0.05970	-54.955	46.612	52.454	-1.692	0.376	1.762
0.05990	-59.620	46.612	56.776	-2.537	$\mathbf{0 . 3 7 6}$	2.769
0.06010	-58.355	46.612	55.754	-2.402	0.376	2.488
0.06030	-53.243	46.612	53.189	-1.618	0.376	1.846
0.06050	-55.379	46.612	55.314	-2.131	0.376	2.264
0.06070	-56.000	46.612	57.096	-2.463	$\mathbf{0 . 3 7 6}$	2.660
0.06090	-51.232	46.612	54.447	-1.866	0.376	2.034
0.06110	-48.400	46.612	53.646	-1.686	0.376	1.841
0.06130	-49.257	46.612	56.325	-2.129	0.376	2.344
0.06150	-46.364	46.612	55.185	-1.978	0.376	2.108

5 Conclusion

A study of a damaged fuse holder on the 34.5 kV side of a $161 \mathrm{kV}: 34.5 \mathrm{kV}$ substation transformer in the Ameren Distribution System was presented. ATP-EMTP modeling was used to simulate the electrical behavior of the system during switching events. The simulation results can be summarized as followed:

1) In the case of all three individual phase switches closing simultaneously, the size of transient overcurrents depends on the time when the switch is closed. When the switch is closed near a phase current peak, a large transient overcurrent can occur in that phase, while the transients in the other two phases are relatively small.
2) In the case of the three individual phase switches closing in sequence, each phase can have a larger transient overcurrent because all the switches may close near a phase current peak. This is in contrast to the previous case in which only one phase usually had a large transient overcurrent.
3) In the case of a phase switch bouncing, the effects of a bounce can increase the peak values of transient overcurrents from the normal switching transients by 20-30\%.

The switching phenomenon affects the fuse holder and capacitor bank. According to the simulation, the worst switching phenomenon (bouncing case) can increase the peak of the transient overcurrent from the normal current operation by 9.33 p.u. It can be concluded that the switching phenomenon may play a role in fuse holder damage.

Another possible cause of damage to the fuse holder might be ferroreasonance due to a non-linear inductance (ferromagnetic and saturable) in the transformer, which can produce the abnormal rates of harmonics and transient overvoltage and overcurrent to the system when system is energized.

References

[1] D. F. Warne, "Electrical engineer’s handbook," Newners, 2000, pp. 181-188.
[2] L. L. Grighy, "the electrical power engineering handbook," CRC handbook Published in cooperation with IEEE press, 2000, pp. 5-25-26.
[3] S\&C Electrical company.2005. "SM power fuse overview", Retrieved may 5, 2005 (http://www.sandc.com/products/sm_od/default.asp)
[4] H.M. Ryan, "High voltage engineering and testing," $2^{\text {nd }}$ edn, the institution of electrical engineers, 2001, pp. 376-378.
[5] C. Bayliss, "Transmission and distribution electrical engineering," $2^{\text {nd }}$ edn, Newners, 1999, pp. 339-341.
[6] C. Christopolous and A. Wright, "Electrical power system protection," $2^{\text {nd }}$ edn, Kluwer academic publishers, 1999, pp. 9-13.
[7] A. Wright and P. G. Newbery, "Electric fuses" $3^{\text {nd }}$, IEE power\& energy series 49, 2004, pp.17-22.
[8] T. R. Bosela, "Introduction to electrical power system technology," Prince hall, 1997, pp. 405-415.
[9] A. N. Greenwood, "Electrical Transients in power systems," John Wiley \& Sons, Inc, $2^{\text {nd }}$ edn, 1991, pp. 37-57.
[10] R. Rudenberg, "Transient performance of electric power systems," McGraw-Hill Book Company, INC, 1969, pp. 58-70.
[11] J. J. Grainger, W. D. Stevenson, "Power system analysis," McGraw-Hill, Inc, 1994, pp. 141-192.
[12] H. Saadat, "Power system analysis," McGraw-Hill Book Company, INC, 199,pp. 102-135.

$S \exists 9 \forall d .7 \pm 0$ ع ヨ9Vd
 Ju17 10, 137.3 $\mathrm{MH}-35800$
PURCHASER \qquad

APPARATUS \qquad SL- LTC

WESTINGHOUSE

SHOP ORDER NO. RDP15911

RATING 20,000/26667/33333 KVA - 161000 H.V. - 34,500 L.V.

RATIO VALUES
$\frac{\text { Apply Volts }}{500}$
Calc.
$\begin{array}{lllll}15+ & 71.63 & 71.43 & 71.43 & 71.43\end{array}$

$\frac{\text { Volts }}{}$	$\underline{\emptyset A}$
53.02	53.11
54.32	54.42
55.67	55.76
$=57.10$	57.20
58.60	58.69

59.00
59.50 59.80
60.23
61.05
61.86
62.67
64.30
65.12
65.93
66.74
67.56
68.37
69.18
70.00
70.81
71.63
70.81
60.27
60.60
61.04
61.40
61.85
62.20
62.65
62.99
63.44
63.78
64.24
64.60
65.04
65.38
65.82
66.15
66.64
66.95
67.45
67.75
68.25
68.56
69.00
69.35
69.82
70.15
70.60
70.95
71.43
70.60
$\begin{array}{lllll}15+ & 71.63 & 71.43 & 71.43 & 71.43\end{array}$
70.60
70.60
the above is a true and correct pecord of daja ELECTFIC CORFORATION.
\qquad of \qquad PAGES SIGNED
\qquad ;
 E:

\square
\square
Irc. Whoritroe 345 ES 1500 \qquad 1500 mu buses 3 mFG. ORDER OR So No- 37 Y 5999 voltage 34500 max. design v 38000 no. tanks \qquad gal. each 170 TYPE TRIPPING \qquad cycle \qquad 5 int. Time min. Trip \qquad total wt. 5000

TIME PHASE 1 \qquad
\qquad
\qquad
\qquad
\qquad ".m. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
OPERATING MECH.
 \qquad $37 Y 5999$
control diag. no. - \qquad $266<266$
\qquad
TRIP $v \frac{140-140-D C}{\square} \frac{1 R}{}$ closing AMP \qquad 2 losing v 90-130 DC inst. воок $33-125-C^{2}$
\qquad
BUSHING DATA ASA "L" 31.5

Bit 200 kv Volt kV amps 1200 E/R TRIP AMP \qquad 11

PRESSURE SW. SETTINGS GOVERNOR OPENS \qquad 150 LOW PRESSURE ALARM CLOSE \qquad 120 LOW PRESSURE CUTOUT OPENS \qquad 110 mfg. date 1975

BUSH. CT. YES NO RATIO TYPE

CAPACITANCE XFMR. YES NO WT. P. O. NO \qquad price \qquad
 BLYTHEVILLE, ARK.
mank TMin Tibrimant
NUMEEM ON EVERY
-ILL OF LADING.
MEMORANDUA.
4559
Jemary 14, 1975

INSTRUCTIONS

Heatinghowse Elestric Corportelion 1520 First lettonal Esnk Duilding Memphis, Temessce 30103

SHIP TO
ARKANSAS-iviSSOURI POWER COMPANY
stareroon
Ircmicen, Rinsouri 63650

- SEND APPROVALS OR INQUIRIES TO:

X FOR CONSTRUCTION ${ }^{2}$ OR INSTALLATION THE EQUIPMENT SHOWN: ON THESE DBAWINGS (S) M AS BEEN. REL EASED FOR MANUFACTURE; AMY. MODIEICATION MAY RESULT IN PRICE CHANGE OR SHIPMENT DELAY. PRICE CHANGE AND/OR SHIPME:IT DELAY.

WHITE POLARITY MARK ABOVE TERMINAL XI INDIGATES LIKE POLARITY FOR THE MARKED PRIMARY (THE END OF THE BREAKER TERMINAL OPPOSITE THE BREAKER COHTACTS) AND THE MARKED SECONDARY (TERMINAL XI). WHEN INTERMEDIATE TAPS ARE USED THE TAP NUMERICALLY NEAREST $X I$ HAS THE SAME POLARITY AS XI.

$$
\text { FIG } 1
$$

TRANSFORMER LEAD MARKING

5 LEAD
FIG. 2

RELAY COILS OR TRIP GOILS

TRANSFORMERS CONNECTED INDEPENDENTLY

FIG. 6

TRANSFORMERS CONNECTED
IN SERIES
FIG. 7

WESTINGHOUSE ELECTRIC CORPORATION

TITLE TYPICAL BUSHING TYPE CURRENT TKANSFORMER-
POLARITY-LEAD MARKING - CONNECTION-
FOR POWER CIRCUIT BREAKER

 TITLE CONNECTION CHAET FQE 1200 n 5 AMAERF MULTI-RATIO

BUSHING TYAC CWEGENT TRANSFORANE

DEVELOMAENT OF WINDING GIVING

GOWNETITON CNAEP

SECONDORY CONDUCTOR-CONSISTS OF NECESSARY WINDING SLCTIONS, EACH SECTION FULLY DISTRIEUTED RCOUND THE CORE TO PERMIT EACH TAPSKCTIOK TO BE FULLY DISTRIEUTED.

NOTE: POLARITY MARK ADIACANT TO TERMINAL I INDICATES "LINE POQARIT' FOP THE APENFD PEIAIAEY. AI'ITAE END OF THE BER TERMINAL OPPOSITE THE FIKQ CONTACTS AND TNF APNENED SECOND ARE "XI." WHEN INTERHFDIATE TAPS AIEE USEO. THE TAN NUATERICALC) WEAVESI KI ARS THE SAME MOLARITY AS XI.
POKRETIT MAREW ARUACITY AIANE $\times 5 \times 4 \times 3 \times 2 \times 1$

[^0]: * according to the EMTP-RULES book VI.A.1.
 $\mathrm{I}_{\text {mar }}$ (Current margin in [A]. Switch opens for $\mathrm{t}>\mathrm{T}$-op if $|\mathrm{I}|<\mathrm{I}_{\text {mar }}$)

