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CHAPTER 1 
 
USE OF FECAL AND PLASMA GLUCOCORTICOID ASSAYS TO QUANTIFY 

THE EFFECTS OF SHORT-TERM STRESSORS 
 
 

ABSTRACT 

During stressful periods, glucocorticoid (cortisol and corticosterone) production 

and release, by the adrenal glands, is increased.  These hormones and their metabolites 

are found in blood, urine and feces.  Previous studies have found measurements of fecal 

glucocorticoid metabolites (FGM) accurately detect long-term stressors.  Our goal was to 

determine if FGM measurements are a reliable means of detecting short-term (<30 min) 

stressors in two animal models. We quantified FGM levels after short-term stressors and 

compared them to plasma glucocorticoid levels in captive raised New Zealand White 

rabbits (Oryctolagus cuniculus) and wild caught Mourning doves (Zenaida macroura) 

held in captivity.  We instrumented rabbits with venous catheters and subjected them to 

three separate stressors: air jet, oscillation, and sham (control) for 20 min each.  We drew 

ten blood samples at 5 min intervals before, during and after the stressor.  We collected 

fecal samples every hour post-treatment for 12 hr and one sample 24 hr post-treatment.  

We exposed Mourning doves to a brief (≤2 min) capture, handling, and release treatment 

and a capture stress protocol (i.e., capture, restrain for 30 min, and release).  We collected 

feces every hour for 24 hr pre-treatment and 36 hr post-treatment.  We quantified plasma 

and fecal corticosterone metabolites using a double-antibody radioimmunoassay (ICN).  

While both species showed increases in plasma corticosterone metabolite levels in 

response to short-term stressors, we did not detect corresponding changes in FGM levels.  

The inability to track changes in glucocorticoid production with fecal samples indicates 
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FGM monitoring is not reliable for detecting short-term stressors.  For short-term 

stressors, plasma corticosterone levels may be a more useful parameter.  Thus, FGM 

assays are best suited to studies investigating the effects of chronic stressors in animals.  

We discuss the advantages and disadvantages of FGM monitoring in wild animals. 

 

INTRODUCTION 

Animals respond to stressors through a variety of mechanisms.  Broadly defined, 

a stressor is anything that causes an animal to stray from homeostasis.  Autonomic 

responses mediate the “fight or flight” response and are beneficial for short activities and 

include changes in heart rate, blood pressure, and gastrointestinal motility (Hilton, 1982; 

Yousef, 1988).  Neuro-endocrine responses mediated through the Hypothalamic-

Pituitary-Adrenal (HPA) Axis have longer lasting effects on a number of functions 

including immunity, reproduction, and metabolism (Moberg, 2000; Vleck et al., 2000; 

Sapolsky et al., 2000).  During periods of stress, the HPA axis increases its production of 

stress hormones, cortisol and corticosterone (Harvey, 1984).  These hormones and their 

metabolites can be measured in blood, tissues, urine and feces of animals (Wingfield et 

al., 1994; Wasser et al., 2000).   

To avoid the stress inherent in blood sample collection, measurement of fecal 

glucocorticoid metabolites (FGM) has gained popularity (Graham and Brown, 1996; 

Harper and Austad, 2000; Le Maho et al., 1992; Cook et al., 2000; Wasser et al., 2000; 

Millspaugh et al., 2001; Millspaugh et al., 2002; Millspaugh and Washburn, 2004).  Such 

techniques make it is possible to collect fresh fecal samples in the field without disturbing 

the animal, allowing for a noninvasive assessment of stress.  Glucocorticoids are 
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metabolized in the liver before passage through the biliary system and gastrointestinal 

tract before accumulation and excretion in the feces (Bokkenheuser and Winter, 1980; 

Harper and Austad, 2000).  Thus, FGM measurements may show net effects accumulated 

over time, which may be missed by a single plasma sample.  In contrast, plasma hormone 

measurements taken over a period of time can be highly variable due to the pulsatile 

release of stored glucocorticoids into circulation and this effect is muted in fecal samples 

(Harper and Austad, 2000; Montfort et al., 1993; Goymann, 2005).   

When interpreting FGM results gathered from an animal or population, it is 

essential to determine not only the presence of stress, but also, the nature of that stress.  

Chronic (long-term) and acute (short-term) stressors are of different significance to the 

well-being of the animal (Moberg, 2000).  The response to an acute stressor can be 

beneficial (e.g. glucocorticoid release can mobilize glucose and provide energy to escape 

a predator).  Chronic stress, on the other hand, can prove maladaptive by decreasing 

reproductive and immune function over time (Harvey et al., 1984; Harper and Austad, 

2000; Sapolsky et al., 2000).  Both acute and chronic stressors can cause increases in 

plasma glucocorticoid levels (Harper and Austad, 2000; Washburn et al., 2003).   

Despite the increasing popularity of FGM analysis (Wasser et al., 1997; Wasser et 

al., 2000; Ludders et al., 2001) for investigating the impacts of long-term stressors, such 

as social structure, tourist activity and parasitism (Foley et al., 2001; Millspaugh et al., 

2001; Creel et al., 2002; Goldstein et al., 2005), it is unknown whether this technique is 

capable of detecting responses to individual short-term stressors (those lasting less than 

30 min) in wild animals.  If FGM levels increase due to an acute stressor, it is possible 

that occasional acute stressors can give a misleading appearance of chronic stress.  On the 
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other hand, an inability to detect short-term stressors in fecal samples might lead to a 

false conclusion that the animal is under no stress whatsoever.   

We were interested in evaluating whether or not FGM analyses could detect 

responses to short-term stressors, such as capture, handling, and restraint commonly 

associated with techniques to collect biological data (e.g., attach leg bands or radio 

transmitters).  Thus, we examined the effects of short-term (<30 min) stressors on blood 

corticosterone and FGM levels.  We chose two animal models, New Zealand White 

(NZW) rabbits (Oryctolagus cuniculus) and Mourning doves (Zenaida macroura) to 

provide a more comprehensive understanding of short-term stress assessment.  The rabbit 

model allowed us to examine the effects of stressors in a controlled laboratory 

environment with animals that are accustomed to the laboratory setting and to human 

contact, while the Mourning doves allowed us a more realistic model applicable to field 

wildlife studies.   

We hypothesized that an acute stressor would cause a rapid increase in plasma 

corticosterone levels and a smaller, delayed increase in the fecal corticosterone 

metabolites.  To our knowledge, this is the first experiment to correlate plasma 

corticosterone and fecal corticosterone metabolites levels with a single short-term 

stressor.   

 

METHODS 

NZW Rabbit Experiment 

Experimental animals 
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By using New Zealand White rabbits that were captive bred and acclimated to 

humans and the laboratory setting, we minimized environmental factors leading to a 

stress response.  We used 7 rabbits for this experiment; 3 male and 4 female.  We 

individually housed the rabbits in stainless steel cages with mesh flooring and a paper 

lined drop pan to collect feces.  We fed rabbits a standard diet of 135 g of rabbit feed and 

ad libitum water, except we removed food for 14 hr pre-surgery and 14 hr before each 

treatment. 

Under halothane anesthesia, we instrumented all 7 rabbits with arterial and venous 

catheters according to a previous protocol (Schadt and Hasser, 1998).  We placed 

catheters in the abdominal aorta to measure arterial blood pressure and heart rate (part of 

another experiment) and in the caudal vena cava for withdrawal of blood samples.  We 

tunneled catheters through subcutaneous tissue and exited the skin on the dorsal aspect of 

the neck.  These catheters could then be accessed during the experiment without handling 

the rabbit.  We gave each rabbit 22.7 mg of enrofloxacin subcutaneously, immediately 

before surgery and 24 hr post-surgery.  We gave each rabbit 0.06 mg of buprenorphine 

subcutaneously immediately post-surgery; the dose was repeated 12 hr later.  We allowed 

animals to recover for at least 14 days after surgery, prior to experimentation.   

Experimental procedures 

We subjected each rabbit to two 20 min stressor treatments and a sham (control) 

treatment.  No more than one experiment per rabbit was performed per week.  For all 

treatments, we placed the animal in a box measuring 33x15x18cm.  Twenty-four hours 

before each treatment, we placed the animal in the containment box for one hour for 

acclimation to the laboratory.  We fasted the rabbits overnight before each treatment and 
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placed a fresh liner in the litter pan under the cage.  All experiments began at the same 

time of day to minimize the effects of daily cyclic variations in corticosterone production 

(Harper and Austad, 2000).  Immediately before each treatment, we collected an 

overnight fecal sample from the drop pan.  Before each treatment, the rabbit was left 

undisturbed for 10 min to acclimate to the laboratory.   

 The two stressor treatments used to test the rabbits, an air jet and an oscillator, 

have been shown to induce a stress response in rabbits (Schadt and Hasser, 1998; 2001).  

The air jet treatment consisted of a constant stream of air from a polyvinyl chloride tube 

directed at the rabbit’s nose through a 6-cm diameter hole in the front of the containment 

box.  The air tube was positioned 4-6 cm from the front of the box.  For the oscillator 

treatment, the rabbit was placed in the containment box on an oscillating shaker that 

moved counterclockwise in 2 cm circles at a rate of 48 cycles/min.  The sham treatment 

consisted of letting the rabbit sit undisturbed in the same containment box used for the 

other treatments for the same period of time.  We subjected each rabbit to each of the 

three treatments in a random order.   

Plasma sample collection 

For each experiment, we collected venous whole blood samples from the catheter 

in the caudal vena cava, before, during and after the stressor treatment.  For each blood 

draw, 3 mL of blood were drawn into a syringe, to clear any blood or saline in the 

catheter tube.  Once 3 mL was withdrawn, a 1 mL blood sample was drawn into a 

separate syringe and placed on ice.  The 3 mL of blood and saline were returned to the 

animal followed by 1 mL of heparinized saline flush. 
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The first sample (t = -15 min) was drawn immediately after placing the animal in 

the containment box.  Three more samples were drawn 5 min apart.  Immediately 

following the fourth sample (t = -0.5 min), we started the treatment (air, oscillation or 

sham).  The next sample (t = 0.5 min) was drawn 30 sec after beginning the treatment.  

Samples were drawn after 5, 10, 15, and 20 min of treatment.  A final sample was drawn 

5 min after the treatment was stopped.  We stored all blood samples on ice until the end 

of the experiment and then centrifuged all samples for 5 min.  We removed the plasma 

from each sample and transferred it to a separate tube; we stored all plasma samples at -

20°C, until they could be assayed. 

Fecal sample collection 

After the final blood sample was collected, we returned the rabbit to its cage in 

the housing facility and fed it.  A fecal sample, consisting of all feces in the dropping pan 

under the cage, was collected 1 hr after the termination of the stressor.  No soft 

cecotropes pellets were collected.  Subsequent samples were collected every hour for 12 

hr.  We collected one overnight sample consisting of feces deposited 12-24 hr post-stress.  

We immediately froze all fecal samples at -20°C, until they could be processed. 

Mourning Dove Experiment 

Experimental animals 

We captured wild Mourning doves using modified Kniffin traps (Reeves et al., 

1968).  Upon capture, we banded each bird with an individually numbered metal leg band 

and assigned age and gender based on plumage characteristics (Mirarchi, 1993; Schulz et 

al., 1995).  The doves were kept individually in outdoor 1.8x1.8x1.8 m wooden framed 

pens raised 0.6 m above ground.   
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We randomly assigned individual birds to one of three treatments, a sham 

(control), a capture, handle and release treatment (CHR) and a capture stress protocol 

(CSP) treatment (Wingfield et al., 1992).  Using a total of 10 birds, we attempted to 

assign 1 male and 1 female to each treatment, but lack of available individuals precluded 

equal numbers of males and females in each treatment. 

Experimental procedures 

The sham treatment was administered in winter and summer, the CHR treatment 

was conducted in summer, and the CSP treatment was conducted during two experiments 

in winter (Table 1).  For all treatments, Time 0 represents the beginning of stress 

treatment; control birds were left undisturbed in their pens at Time 0, when other birds 

were subjected to treatments.  We captured birds assigned to the CHR treatment using a 

mesh net, removed the birds from the net, and held them in our hands for 50 sec.  We 

then released them into their respective pen (total disturbance time of 72 +/-3 SE sec).  

We repeated this same procedure with each bird 30 min later.  We used two separate 

disturbances in the CHR treatments to extend the length of adrenocortical stimulation 

(Washburn et al., 2002; Washburn et al., 2003).  Similar to the CHR group, those 

assigned to the CSP group were captured using a net; however, these birds were removed 

from the net and immediately placed into a breathable cotton sack.  We placed the birds 

in sternal recumbence in the sack for 30 min, at which time we released them back into 

their respective pens. 

Fecal sample collection 

We collected droppings, consisting of mixed feces and urates from each 

individual bird every hour, when available, beginning 24 hr pre-treatment and continuing 
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for 30-36 hr post-treatment.  We froze fecal samples at –20°C within 10 min of 

collection.   

Laboratory Methods 

Fecal hormone metabolite extraction-NZW rabbits and Mourning doves 

For both experiments, we dried frozen fecal samples in a lyophilizer for 24 hr.  

Once freeze-dried, we sifted samples through a stainless steel mesh to remove large 

particles and then thoroughly mixed each sample.  We extracted fecal glucocorticoid 

metabolites from feces using a modification of Schwarzenberger et al. (1991).  We 

placed dried feces (0.200-0.220 g for rabbits and 0.016 to 0.120 g for Mourning doves) in 

a glass test tube with 2.0 mL of 90% methanol and vortexed the sample at high speed in a 

multi-tube vortexer for 30 min.  We centrifuged samples at 2,200 rpm for 20 min, 

removed the supernatant, and stored it at –84o C until assayed. 

RIA validation for NZW plasma corticosterone and FGM measurements 

We used an I125 corticosterone radioimmunoassay (RIA) kit (ICN #07-120103, 

ICN Biomedicals, Costa Mesa, CA, USA), which was previously validated for use in 

Mourning doves to quantify plasma corticosterone (Washburn et al., 2002) and fecal 

glucocorticoid metabolite concentrations (Washburn et al., 2003).  We followed the ICN 

protocol, except that we halved the volume of all reagents.  For fecal measurements, the 

methanol-hormone mixture was used instead of plasma.  While this kit is designed to 

quantify the amount of native corticosterone in plasma, it has been validated for FGM 

monitoring in a wide range of species (Wasser, 2000).  In our laboratory, we have been 

able to use it successfully in multiple mammals and birds (Millspaugh et al., 2001; 

Millspaugh et al., 2002; Washburn et al., 2002; Washburn et al., 2003). 
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We conducted a standard laboratory validation for NZW plasma and fecal 

samples (Jeffcoate, 1981; O’Fegan, 2000).  We tested samples for parallelism by 

comparing serial dilutions (1:2 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128) to a corticosterone 

standard curve.  On a log-transformed scale, we plotted percent binding vs. concentration 

of standard and percent binding vs. concentration of sample.  Parallelism of the sample 

dilution curve with the standard curve was determined using SAS software.  We used the 

sample dilution that resulted in a percent binding closest to 50% for all future assays (1:8 

for NZW plasma and 1:8 for NZW feces).  Accuracy was measured by recovery of a 

known amount of standard from spiked samples.  We mixed the diluted sample 1:1 with 

each of the 3 standards supplied with the RIA kits (50, 100 and 250 ng/mL).  We 

calculated a mean and standard deviation for recovery of exogenous hormone for both 

plasma and fecal samples; acceptable recovery was determined to be between 90-110% 

(unpublished data). 

RIA quantification of plasma corticosterone and FGM 

 Once validated, we ran all NZW plasma samples according to the standard ICN 

protocol, with halved volume of reagents (Wasser et al., 2000), using a 1:8 dilution of 

plasma to steroid diluent (supplied with RIA kit).  For fecal assays, we used the methanol 

extract instead of plasma and samples were diluted 1:8 for NZW and 1:4 for Mourning 

doves (Washburn et al., 2003).  We ran all samples in duplicate and reran any samples 

with a coefficient of variation (CV) greater than 15%.   

Statistical Analyses 

For the NZW experiment, we compared plasma sample data from pre-stressor 

(samples from time -15, -10, -5, -0.5 min) and during/post-stressor sets (samples from 
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time 0.5, 5, 10, 15, 20, 25 min).  For each treatment, we performed a repeated measures 

one-way ANOVA to compare pre-treatment and during/post-treatment plasma sample 

sets (Zar, 1996).   

We combined rabbit fecal sample data into five time periods for each treatment.  

Period 1 included data from feces deposited the night before the procedure (14 hr pre-

treatment).  Period 2 included samples collected between 1-4 hr post-treatment, Period 3 

included 5-8 hr, Period 4 included 9-12 hr and Period 5 included the overnight samples 

from 12-24 hr post-treatment.  We performed a repeated measures one-way ANOVA to 

determine whether FGM levels differed by time periods and an LSD post-hoc comparison 

to determine difference between individual time periods (Zar, 1996).  We used a repeated 

measures one-way ANOVA to determine if Mourning dove FGM levels differed pre- and 

post-treatment.  All analyses were considered significant at P < 0.05. 

 

RESULTS 

NZW Rabbit Experiment 

We collected 10 plasma samples per rabbit during each experiment, for a total of 

30 samples per rabbit.  We collected an average of 9.5 fecal samples per rabbit per 

experiment (SE = 2.560, Range = 2–13, n = 7).  One rabbit died of unknown causes after 

only undergoing the sham treatment. 

NZW rabbit plasma corticosterone data 

For the sham stress treatment (Figure 1A), there was no significant difference in 

plasma corticosterone levels between the pre and post-treatment sample sets (F = 0.183, 

df = 1, P = 0.670).  For the air jet and oscillator stressors (Figures 1B, 1C) post-stressor 
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plasma corticosterone metabolites levels were significantly elevated compared to pre-

stressor levels (F = 12.447, df = 1, P<0.001 for air jet and F = 5.149, df = 1, P = 0.029 

for oscillator).   

NZW rabbit fecal corticosterone metabolite data 

We found no significant difference in fecal corticosterone metabolite levels 

between the three treatments during any time period.  For the sham treatment, the pre-

stressor FGM levels (Period 1) were significantly higher (F = 3.806, df = 4, P<0.015) 

than the daytime post-stressor (Period 2, 3, 4) samples (Figure 2A).  There was no 

significant difference (P = 0.063) between overnight samples collected the night before 

and the night after treatment (Periods 1 and 5).  There were no significant differences in 

FGM between Periods 2, 3 and 4 (P = 0.181 between Periods 2 and 3; P = 0.801 between 

Periods 3 and 4; P = 0.128 between Periods 2 and 4).   

For the air jet treatment, the Period 1 FGM level was significantly higher (F = 

5.256, df = 4, P<0.023) than the Period 2, 3 and 4 levels (Figure 2B).  Again, there was 

no significant difference (P = 0.622) between overnight samples collected the night 

before and the night after each treatment (Periods 1 and 5).  There were no significant 

differences between Periods 2, 3 and 4 (P = 0.282 between Periods 2 and 3; P = 0.546 

between Periods 3 and 4; P = 0.617 between Periods 2 and 4).   

We found no significant differences in FGM levels between any of the treatment 

periods in the oscillator treatment (F = 0.836, df = 4, P = 0.516 for difference between 

groups) (Figure 2C). 

Mourning Dove Experiment  

We collected and assayed an average of 53.5 samples/bird (SE = 2.33, Range = 
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47–60, n = 10) during this study (total of 535 fecal samples).  Mourning doves defecated 

at a rate of 0.9 samples/bird/hour during our experiments (SE = 0.04, Range =0.8–1, n = 

10).  In total, we had two control groups, one CHR group and two CSP groups (Table 1). 

Both control groups showed significant elevations in FGM levels after Time 0 

(for summer 2001 control, F = 43.34, df = 122, P = <0.001; for winter 2002 control, 

F=9.61, df=99, P = 0.01) (Figures 3 and 4).  Although FGM concentrations varied greatly 

for the two females receiving the CHR treatment (Figure 5), there was no significant 

elevation in FGM levels post-treatment (F = 0.31, df = 121, P = 0.693).  FGM 

concentrations in CHR birds were similar to the levels of the control group birds 

collected at the same time (Figure 3).  The maximum FGM level observed post-treatment 

in the first CHR female (55 ng/g at 25 hr) and second CHR female (46 ng/g at 16 hr) did 

not occur within the expected 4 hr range observed by Washburn et al. (2003).  

Consequently, we did not attribute these pulses to the CHR treatment.   

 The winter 2001 CSP group showed significant elevations in FGM levels 

following treatment (F=18.23, df=95, P < 0.001), while the winter 2002 CSP group did 

not (F=1.96, df=100, P = 0.148) (Figures 6 and 7).  The maximum FGM level observed 

post-treatment in CSP birds did not occur within the expected 4 hr range observed by 

Washburn et al. (2003).  Fecal glucocorticoid concentrations in capture stress protocol 

birds in winter 2002 were similar to the levels of the winter control group birds (Figure 

4). 

 We observed the greatest variation and highest fecal glucocorticoid levels for the 

two females in the winter 2001 CSP group; these birds were held for six weeks in 

captivity prior to the start of experiments (Table 1).  In contrast, we observed the least 
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amount of variability and the lowest overall fecal glucocorticoid concentrations in control 

birds during winter 2002.  These birds were held in captivity for 20 weeks prior to the 

experiment, the longest of any birds (Table 1). 

 

DISCUSSION 

Our study evaluated changes in fecal glucocorticoid metabolite levels in New 

Zealand White rabbits and Mourning doves after short-term stressors and compared these 

changes to those found in plasma corticosterone levels.  We found that while plasma 

corticosterone levels may be a useful indicator of short-term stress, FGM measurement 

was not. 

Our rabbit model suggests that a brief (<30min) stressor can appreciably change 

plasma corticosterone levels over a 20 min sampling period.  Circulating glucocorticoids 

have been used to quantify the effects of short-term stressors in multiple species 

including: captive Mourning doves (Roy and Woolf, 2001; Washburn et al., 2002), other 

avian species (Romero and Romero, 2002; LeMaho et al., 1992), roan antelope 

(Hippotragus equines) and impala (Aepyceros melampus) (Hattingh, 1998), oldfield mice 

(Peromyscus polionotus) (Good et al., 2003) and domestic cattle (Earley and Crowe, 

2002).  Our experimental stressors caused a rapid increase in circulating corticosterone 

levels within the 25 min post-stressor sampling period.  Given the rapid increase in 

corticosterone levels after the onset stress in our rabbits and in the other species listed 

above, we believe this measure would be most useful in controlled situations, in which 

the stressor has a well defined starting and ending point.  This would allow for accurate 

pre and post-stressor sampling.  While plasma corticosterone measurements are useful for 
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measuring the effects of short-term stressors, the method is still limited by its 

invasiveness and is highly influenced by the stress of sample collection. 

Non-invasive assessment of stress using FGM can avoid sampling induced stress, 

but both of our models showed that short-term stressors do not change FGM levels 

reliably enough to make meaningful conclusions about the animal’s stress level.  We did 

not detect significant differences in the pre and post-stressor FGM levels in the NZW 

rabbit model.  The difference detected in the control and 2002 CSP groups of Mourning 

doves was likely a type 1 statistical error due to low number of birds.  We did not detect a 

reliable difference between the control and treatment groups in either model.  Thus, FGM 

monitoring may not be a useful tool in short-term stress assessment.   

Fecal glucocorticoid metabolite monitoring will likely miss isolated peaks in 

glucocorticoid production, which may be detectable in serial plasma samples (Goymann, 

2005; Touma and Palme, 2005; Mateo and Cavigelli, 2005).  Fecal glucocorticoid 

metabolite levels represent the cumulative amount of metabolized and excreted hormones 

of a period of hours in mammals or shorter in birds depending on intestinal transit time.  

(Harper and Austad, 2000; Palme et al., 2005).  As FGM analysis reflects adrenocortical 

activity over an extended time period (Harper and Austad, 2000), a short period of 

increased corticosterone production may be undetectable in the long-term integrated 

measure of fecal glucocorticoid metabolite levels.  While this limits the use of FGMs for 

short-term stress assessment, it suggests that short-term stressors do not cause a change in 

FGM levels, which could be mistaken for the effects of a chronic stressor.  This is of 

special importance in wildlife studies, in which animals may be subject to chronic stress, 

such as climate or decreased food availability, but also, to acute stressors such as contact 
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with humans or predators.  Short interaction with humans, including capture and banding 

or sample collection for research, should not elevate FGM levels enough to give a false 

impression of chronic stress.   

Possible confounding factors in this project include the influence of circadian 

rhythms and individual variation on FGM levels.  For the sham and air stressor 

treatments, the rabbits showed significantly elevated FGM levels during the overnight 

sampling periods.  Rabbits are crepuscular animals that are most active during the early 

evening.  The circadian rhythm results in peak glucocorticoid production when the 

animal is most active and the individual variation is greatest at the nadir of production 

(Whitten et al., 1998), which would be during the day time sampling periods (Period 2-

4).  Circadian variation could result in an increase in overnight glucocorticoid production 

documented here.  It was not possible for us to determine if there was an isolated peak in 

FGM levels during the night, as the samples were pooled samples of all the feces 

deposited overnight.  Fecal glucocorticoid metabolite analysis is sensitive enough to 

detect circadian rhythms in adrenal activity in laboratory rats (Cavigelli et al., 2005).  In 

our model, it is likely that changes in glucocorticoid production related to normal 

circadian rhythms are large enough to mask the relatively minor increases in FGM due to 

our short-term stressors. 

One possible flaw of our experimental design was a short sampling period for 

both blood and fecal samples.  It is possible that the increased level of circulating 

corticosterone in these rabbits could have continued longer than the sampling period of 

20 min post-treatment.  Given our short sampling period, we were unable to determine 

when the circulating corticosterone levels returned to baseline after the termination of the 
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stressor.  Our plasma samples may also have been heavily influenced by the pulsatile 

release of corticosterone into circulation, as evidenced by high variability in 

corticosterone levels between samples within individual rabbits.  We limited the effect of 

this problem by collecting multiple pre and post-treatment samples and comparing pre 

and post-treatment sets, instead of individual sample times, allowing for an average 

assessment of pre and post-treatment stress level.  Another possible limitation of this 

study stems from the unique gastro-intestinal physiology of rabbits.  Lagomorphs ingest 

soft, partially digested excreta, termed cecotropes, after the first pass through the 

digestive tract (Cheeke, 1994).  Ceoctropes are then redigested and nutrients are 

reabsorbed and feces are produced.  This unique type of coprophagy may delay the time 

of detection of FGM, or may result in erroneous FGM levels due to dual metabolism 

(Bokkenheuser, 1980; Teskey–Gerstl et al., 2000).  For this study, only the final fecal 

pellets were collected.  The results of this experiment should be corroborated using other 

mammalian laboratory species. 

While our findings suggest limiting the use of the FGM measurements in short-

term stress studies, we do not discourage the use of FGM for wildlife stress assessment 

and we make the following suggestions, for future studies:  

1) Fecal glucocorticoid measurements are best used for the study of chronic 

stress.  For wildlife management, chronic stressors are often the most important.  

Response to acute stressors usually serves to maintain homeostasis and is essential to 

survival.  Management may not be able to control each individual stressor, but policy can 

be enacted, or management practices changed, when it is evident that there is a chronic 

stress on the population.   
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2) Investigators should be able to conduct capture and release type experiments, 

while still accurately monitoring chronic stressors.  Short research associated stressors, 

such as capture and radio-tagging do not appear to cause a significant change in the FGM 

levels.  Chronic stress studies involving captive and free-ranging wildlife can be 

conducted with minimal concern that brief encounters with predators or humans will 

affect FGM levels, thus clouding interpretation.  

In conclusion, our results are significant for two reasons.  First, those wishing to 

study acute stressors may be best served monitoring plasma glucocorticoid levels or 

parameters such as heart rate and blood pressure (Schadt and Hasser, 1998; Schadt and 

Hasser, 2001).  Second, those monitoring chronic stressors with FGM levels can do so 

without concern that acute stressors, such as a capture and restraint, would mask the 

presence or absence of chronic stressors. 
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Figure 1.  Plasma corticosterone levels (ng/mL) before, during and after stressor treatment.  Stressors were 

initiated between t = -0.50 and t = 0.50 and discontinued at t = 20.  The three treatments were sham (1A), 

air jet (1B) and oscillator (1C).  Statistical comparisons were made between pre-stressor sample sets (-15, -

10, -5, -0.5) and post-stressor sample sets (0.5, 5, 10, 15, 20, 25) 

 
 

19  



 
 

(2A) (2B) 
 

 
(2

 
 

Figure 2.  Fecal glucocorticoid metabolite concentrations (ng/g of dry feces) for New Zealand White 

rabbits.  We administered three treatments: sham (2A), air jet (2B) and oscillator (2C).  We combined fecal 

sample data into five time periods for each treatment.  Period 1 included data from feces deposited the night 

before the procedure (14 hr pre-treatment).  Period 2 included samples collected between 1-4 hr post-

treatment, Period 3 included 5-8 hr, Period 4 included 9-12 hr and Period 5 included the overnight samples 

from 12-24 hr post-treatment.   

C) 

543 2 1

Time Period 

150150

120

90

60

30

0 

G
lu

co
co

rt
ic

oi
d 

m
et

ab
ol

ite
s (

ng
/g

 o
f d

ry
 fe

ce
s)

120

54

90

60

30

G
lu

co
co

rt
ic

oi
d 

m
et

ab
ol

ite
s (

ng
/g

 o
f d

ry
 fe

ce
s)

0

2 3 

3 2 1

Time Period 

150

0 

120

90

60

30

G
lu

co
co

rt
ic

oi
d 

m
et

ab
ol

ite
s

g/
g 

of
 d

ry
 

)
 (n

fe
ce

s

5

Time Period 
1 4

20  



0

10

20

30

40

50

60

70

80

90

100

110

120

-2 4 -18 -12 -6 0 6 12 18 2 4 3 0 36

Ho ur

Male Female

Figure 3.  Fecal glucocorticoid concentrations (ng/g) of two control Mourning doves in summer 2001 (n = 

1 male, n = 1 female) over 60 h.  Time 0 represents the time when treatments were administered to 

treatment group birds.  Study began at 08:00 h.  Post-treatment FGM were significantly higher (F = 43.34, 

df = 122, P = <0.001) 
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Figure 4.  Fecal glucocorticoid concentrations (ng/g) of two control Mourning doves in winter 2002 (n = 1 

male, n = 1 female) over 54 h.  Time 0 represents the time when treatments were administered to treatment 

group birds.  Study began at 16:00 h.  Post-treatment FGM levels were higher (F=9.61, df=99, P = 0.01) 
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Figure 5.  Fecal glucocorticoid concentrations (ng/g) of two Mourning doves assigned to the capture, 

handling, and release (CHR) treatment group in summer 2001 (n = 2 females) over 60 h.  Time 0 represents 

the time when treatments were administered.  Study began at 08:00 h.  We found no significant difference 

pre- and post-treatment (F = 0.31, df = 121, P = 0.693) 
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Figure 6.  Fecal glucocorticoid concentrations (ng/g) of two Mourning doves assigned to the stress protocol 

(CSP) treatment group in winter 2001 (n = 2 females) over 60 h.  Time 0 represents the time when 

treatments were administered.  Study began at 12:00 h.  Post-treatment FGM levels were higher (F=18.23, 

df=95, P < 0.001) 
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Figure 7. Fecal glucocorticoid concentrations (ng/g) of two Mourning Doves assigned to the stress protocol 

(CSP) treatment group in winter 2002 (n = 1 male, n = 1 female) over 60 h.  Time 0 represents the time 

when treatments were administered.  Study began at 16:00 h.  We found no significant difference pre- and 

post-treatment (F=1.96, df=100, P = 0.148)  
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Table 1.  Summary of experimental treatments used to evaluate short-term stress events 

in wild Mourning doves held in captivity.  

Treatment  Season Year Gender 
M1,F2

Start Time  Captivity3

Control Summer 2001 1, 1 N / A 12 weeks 

Control Winter 2002 1, 1 N / A 20 weeks 

CHR 4 Summer 2001 0, 2 0800 12 weeks 

CSP 5 Winter 2001 0, 2 1200 6 weeks 

CSP  Winter 2002 1, 1 1600 20 weeks 

1Number of male Mourning doves in experiment. 

2Number of female Mourning doves in experiment. 

3 Length of time wild Mourning doves were held in captivity prior to the beginning of the 

experiments. 

4Capture, handling, and restraint treatment.  Birds assigned to this treatment were 

captured using a mesh net, removed from the net, held in our hands for 50 sec, and 

released into their respective pen.  Total disturbance time was 72 +/-3 SE sec.  This same 

procedure was repeated with each bird 30 min later.  

5 Capture stress protocol (Wingfield et al., 1992).  Birds assigned to the stress protocol 

group were captured using a net, removed, and immediately placed into a breathable 

cotton sack.  We placed the birds in a sternal position in the sack for 30 min, at which 

time we released them back into their respective pens.  Total disturbance time of 30 min 

47 sec +/- 16 SE sec. 
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CHAPTER 2 

 
VALIDATION OF FECAL GLUCOCORTICOID ASSAYS FOR 

MULTIPLE SOUTH AFRICAN HERBIVORES 
 

 

ABSTRACT 

Fecal glucocorticoid metabolites (FGM) have gained popularity as a means of 

monitoring chronic stress in a wide range of wildlife species.  Species-specific 

differences in the metabolism and excretion of glucocorticoids require thorough, 

systematic validation of assay methodology before use in a new species.  Standard 

validation includes both laboratory (biochemical) and biological validation.  Laboratory 

validation involves parallelism and exogenous hormone recovery tests, to evaluate 

whether the assay antibody can reliably detect the appropriate glucocorticoid metabolites 

in a fecal sample.  A biological validation involves comparison of two groups that are 

producing different levels of glucocorticoids, either due to natural stimulation (a 

significant stressor) or pharmacological stimulation (ACTH administration).  Our goal 

was to validate a commercially available radioimmunoassay (MP I125 corticosterone RIA) 

for measuring FGM from multiple herbivore species found in Tembe Elephant Park and 

Thanda Game Reserve, both located in KwaZulu-Natal, South Africa.  We collected 

samples from giraffe (Giraffa camelopardalis), impala (Aepyceros melampus), nyala 

(Tragelaphus buxtoni), kudu (Tragelaphus strepsiceros), wildebeest (Connochaetes 

taurinus) and zebra (Equus burchelli).  These species represent the wide taxonomic 

diversity found in both parks, including browsers and grazers, and may serve as 

indicators of stress levels among other prey species.  Our laboratory validation produced 
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sample dilution curves that were parallel to the standard curve and 90-110% exogenous 

recovery for all species.  Our biological validation compared samples collected during the 

wet and dry seasons and showed that the technique was sensitive enough to detect 

biologically significant changes in FGM production associated with seasonal change.  

Samples collected during the dry season (June-August) were significantly higher in FGM 

than those collected in the wet season (December-February) in all species except 

wildebeest and zebra.  For each species, we established optimal sample dilutions and 

baseline fecal corticosterone metabolite levels for the wet and dry season.  Others can use 

this information for future studies monitoring the effects of manipulation of the 

ecosystem for management and tourism purposes.  
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INTRODUCTION 

In South African parks, officials have to make decisions about the management of 

their wildlife based on the well-being of the animals, the interests of park visitors, and the 

needs of local communities.  Managers must attend to the interests of tourists, by 

providing roads, lodging and vehicles in natural habitat and assuring that animals are 

visible.  Increased vehicle and human activity can stress wildlife, causing them to deviate 

from normal habitats, diets and behaviors (Creel et al., 2002).  Chronic stress can lead to 

decreased immune function, loss of reproductive capacity and diminished survival 

(Sapolsky et al., 2000).  If tourist activity and wildlife health are incompatible, then 

wildlife conservation will suffer.  The key to successful management of stress is accurate 

detection and monitoring of the effects of stressors. 

Animals respond to stressful conditions through multiple mechanisms.  

Autonomic responses such as the “fight or flight” response are beneficial for short 

activities and include changes in heart rate, blood pressure, and gastrointestinal motility 

(Hilton, 1982).  Neuro-endocrine responses mediated through the Hypothalamic-

Pituitary-Adrenal (HPA) Axis can have longer lasting effects on a number of functions 

including immunity, reproduction, and metabolism (Jurke, 1997; Moberg, 2000; 

Sapolsky et al., 2000).  Stress hormones, such as cortisol and corticosterone, are 

indicative of HPA activity and can be detected in blood, tissues, urine and feces (Harvey 

et al., 1984; Wingfield et al., 1994; Wasser et al., 2000).  In humans and animals 

accustomed to human contact, blood samples can be collected with minimal stress on the 

subject, making plasma glucocorticoid levels a potentially meaningful measure of stress 

(Sapolsky et al., 2000).   
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With free-ranging animals, the stress of capture, handling and blood collection 

may endanger the animal and complicate data interpretation by causing stress itself (Le 

Maho et al., 1992; Cook et al., 2000).  Procedures have been developed to collect stress 

hormone data non-invasively, by measuring fecal glucocorticoid metabolite (FGM) levels 

(Graham and Brown, 1996; Harper and Austad, 2000; Wasser et al., 2000; Millspaugh et 

al., 2002).  Fecal studies have the added benefit of showing cumulative effects of 

stressors as they contain metabolites accumulated over a period of time, while plasma 

samples only detect the hormone levels at one point in time (Harper and Austad, 2000; 

Wasser et al., 2000; Millspaugh et al., 2001).  Detailed discussion of the benefits of FGM 

monitoring can be found in Millspaugh and Washburn (2004) and Touma and Palme 

(2005). 

In plasma studies, most of the hormones detected will be the parent hormone, 

corticosterone or cortisol.  In fecal samples, after extensive hepatic and gastrointestinal 

metabolism (Schwarzenberger et al., 1996; Bokkenheuser and Winter, 1980), there is 

little parent hormone left and what is detected is a variety of glucocorticoid metabolites 

(Palme et al., 2005).  The wide distribution of FGMs found in individual samples, has 

been demonstrated through high performance liquid chromatography (HPLC) (Palme et 

al., 2005; Goymann, 2005).  The assortment of individual metabolites can be different for 

each species (Touma and Palme, 2005; Goymann, 2005; Mateo and Cavigelli, 2005).  As 

we are not measuring native hormone, it is essential to validate the assay methodology to 

assure that the species-specific suite of hormone metabolites is detectable and that the 

level detected is indicative of the level of adrenal activity in the species studied.  This is 

often accomplished first, through a standardized laboratory validation, involving 
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parallelism and exogenous recovery tests (Harper and Austad, 2000).  Secondly, we must 

determine if the assay is sensitive enough to detect biologically significant changes in 

hormone production, using a biological validation (Washburn et al., 2002; Touma and 

Palme, 2005).   

The goal of biological validation is to compare FGM levels in two groups of 

animals that are producing different levels of adrenal hormones.  This can be 

accomplished pharmacologically by administering ACTH to stimulate adrenal hormone 

production, or administering dexamethasone to suppress adrenal function (Palme et al., 

2005; Millspaugh and Washburn, 2004).  In wild animals, pharmacologic manipulation is 

often not feasible, and biological validation can be accomplished by comparing groups 

with different levels of adrenocortical activity.  In these validations, samples are collected 

from groups of animals after exposure to a stressor, such as capture, human contact, or 

immobilization.  Many bird and mammal species show seasonal variation in 

glucocorticoid production, which can be used in biological validation (Harper and 

Austad, 2001; Kenagay et al., 1999; Kenagay and Place, 2000; Strier et al., 1999; 

Millspaugh et al., 2001; Huber et al., 2003; Temple and Gutíerrez, 2004).  Seasonal 

variation in glucocorticoid levels may be due to varying food availability, temperature, 

rainfall, and tourist activity (Romero and Healy, 2004; Temple and Gutierrez, 2004; 

Creel et al., 2002).  One intrinsic drawback to this type of biological validation compared 

to an ACTH challenge is that we do not know a priori what type of response an animal 

should have to seasonal change.  With an ACTH challenge, adrenal function is expected 

to increase resulting in increased glucocorticoid production that can be detected by FGM 

assays.   
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The purpose of this study was to assess the feasibility of using a commercially 

available radioimmunoassay to quantify fecal glucocorticoid metabolites as an indicator 

of stress in multiple herbivore species in two South African wildlife parks, through 

laboratory and biological validations.  By performing validations, determining optimal 

sample dilutions and establishing baseline data for herbivore species in these parks, we 

have established groundwork for future projects in this area monitoring the effects of 

introduced stressors, especially introduction of large carnivores, on a wide range of prey 

species.   

 

METHODS 

We studied six species: giraffe (Giraffa camelopardalis), impala (Aepyceros 

melampus), nyala (Tragelaphus buxtoni), kudu (Tragelaphus strepsiceros), wildebeest 

(Connochaetes taurinus) and zebra (Equus burchelli).  These species represent a wide 

taxonomic range, including both browsers and grazers, and account for several important 

large herbivores in the study areas.  Some of these species share habitat and resources 

with more rare herbivores, such as the suni (Neotragus moschatus kirchenpaueri). 

Study sites 

We collected samples in Tembe Elephant Park during July and August 2003 and 

Thanda Game Reserve between May 2004 and July 2005.  Both parks lie in northeastern 

KwaZulu-Natal, South Africa in a geographic area known as Maputaland.  The main 

tourist draws to both of these parks are the “Big Five” game species: elephant (Loxodonta 

africana), leopard (Panthera pardus), lion (Panthera leo), rhino (Ceratotheruim simum) 

and buffalo (Syncerus caffer).  Though these animals may be the main attraction, both 
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parks sustain populations of many herbivore species, which are integral parts of the 

ecosystem.   

Sample collection and processing 

We collected dry season samples from June through August and collected wet 

season samples between December and February.  We collected fecal samples at 

gathering places, such as watering holes or clearings, where park employees frequently 

observed large groups of animals.  We attempted to observe the animals without 

disruption by remaining in a vehicle on the road, away from the group.  For all species, 

we observed animals gathering and defecating and collected samples from those areas 

when the animals left.  If there was possibility of multiple similar species (e.g., nyala and 

impala) in the same area, we did not collect samples to avoid misidentification of 

samples.  Whenever possible, we collected samples from individuals which we witnessed 

defecating; when this was not possible we collected only fresh (moist) fecal pellets and 

avoided any large clusters of pellets, which appeared to come from multiple individuals.  

We collected representative sub-samples from different parts of each fecal pile, to 

minimize variability of FGM levels within a pile or fecal bolus (Millspaugh and 

Washburn, 2003).  We did not collect dried pellets or those with urine contamination.  

We stored samples in plastic scintillation vials at -20ºC until processing.   

Before shipment to the United States, we thawed each sample and thoroughly 

mixed it to account for uneven distribution of hormones in the fecal samples (Millspaugh 

and Washburn, 2003).  To comply with USDA regulations for importation of ungulate 

fecal material, we submerged each sample in 2% acetic acid to minimize viable viral 

particles (Millspaugh et al., 2003).  After 30 minutes, we drained the acetic acid from 
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each sample vial and refroze the sample at -20ºC.  We shipped frozen samples to the 

Wildlife Physiology Laboratory at the University of Missouri – Columbia for further 

processing. 

Laboratory methods 

We dried fecal samples in a lyophilizer for 24 hr.  Once freeze-dried, we sifted 

samples through a stainless steel mesh to remove large particles and each sample was 

then thoroughly mixed.  We extracted glucocorticoid metabolites from the feces using a 

modification of Schwarzenberger et al., (1991).  We placed 0.200-0.220g of dried feces 

in a glass test tube with 2.0 mL of 90% methanol and vortexed the sample at high speed 

in a multi-tube vortexer for 30 min.  We centrifuged samples at 2,200 rpm for 20 min, 

removed the supernatant, and stored it at -84oC until assayed. 

We used I125 corticosterone radioimmunoassay (RIA) kits (MP Biomedicals, 

Solon, OH, USA).  We followed the MP protocol for the I125 corticosterone RIA, except 

that we halved the volume of all reagents (Wasser et al., 2000) and used the methanol 

fecal hormone extract instead of plasma.  We assayed all samples in duplicate and if the 

coefficient of variation (CV) was greater than 15%, we reran the samples in the next 

assay. 

Laboratory validation 

We pooled aliquots from 6 individual samples per species collected during the dry 

season for standard laboratory validation (Jeffcoate, 1981; O’Fegan, 2000).  For each 

species, we performed parallelism and exogenous recovery tests on the pooled samples.  

We used a parallelism test (Harper and Austad 2000) to determine if the assay is capable 

of producing linear results with serial dilutions of the sample.  We compared serial 
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dilutions (1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128) of a pooled sample from each species 

with a curve produced by dilutions of the corticosterone standard stock solutions.  On a 

log-transformed scale, we plotted percent binding vs. concentration of standard and 

percent binding vs. concentration of sample (Figures 1A-1F).  

We measured accuracy by recovery of a known amount of standard from spiked 

samples.  The optimum sample dilution from the parallelism test was determined and the 

diluted sample was mixed 1:1 with each of the 3 standards supplied with the RIA kits 

(0.25, 0.50, and 1.25 ng/mL).  Sample recovery was calculated for each spiked sample 

and a mean and standard deviation was calculated for recovery of exogenous hormone.  

This allowed us to determine if the assay could accurately detect FGM levels throughout 

the working range of the assay. 

Biological validation 

To determine if our assay was capable of detecting physiologically significant 

changes in corticosteroid production and excretion, we compared samples collected 

during two separate seasons.  We chose sampling periods based on commonly accepted 

wet and dry seasons.  The wet season is the time of greatest rainfall and thus supports 

greater plant growth, which in turn can support larger populations of herbivores.  During 

the dry season decreased rainfall and humidity results in less available forage, forcing 

animals to migrate greater distances in search of food.  We selected 8-10 samples per 

species from both the wet season (December - February) and the dry season (July-

August).  Samples were extracted and run at the appropriate sample dilution determined 

from the laboratory validation (Table 1). 
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Statistical analyses  

Tests for equal slopes (parallelism) were performed, using SAS, to determine if 

log-transformed curves of serially diluted low and high pool extracts were parallel to log-

transformed MP corticosterone I125 RIA corticosterone standard curves (Neter et al. 

1990).  We considered exogenous corticosterone recovery of 90-110% acceptable 

(Jeffcoate, 1981; O’Fegan, 2000; Harper and Austad 2000) for the biological validation; 

we compared wet and dry season sample sets for each species using a one-way ANOVA 

using SPSS.  We considered test results significant for P < 0.05.  

 

RESULTS 

Laboratory Biochemical Validation – Parallelism and Exogenous Recovery 

For each species, 10 fecal samples from each season were used for validation; 

while we were unable to determine the number of individuals represented by these 

samples, we avoided using samples collected from the same site at the sample time to 

minimize the likelihood of sampling the same individuals.  

For each of the six species, serial dilutions of low and high pool fecal extracts 

yielded displacement curves that were parallel to the standard corticosterone curve (All P 

> 0.55) (Figure 8A-F).  The dilution that provided a percent binding closest to 50% was 

determined to be the ideal dilution for future assays (Table 2).  Exogenous corticosterone 

sample recovery was within the acceptable range (90-110%) for five of the six species 

(Table 3).  Mean exogenous recovery for pooled kudu samples was 110.860% +/- 3.810 

SE. 
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Biological Validation – Seasonal Differences in FGM Levels 

In all species, average dry season sample FGM levels were higher than wet season 

levels, though only four out of six species showed significant differences.  For samples 

collected in the Thanda Game Reserve, four of the six species studied showed 

significantly higher FGM levels in May through July than in December through 

February.  The seasonal differences were significant for giraffe (df = 17, F = 5.516, P = 

0.030); for kudu (df = 16, F = 5.085. P = 0.040); for nyala (df = 12, F = 6.710, P<0.025); 

for zebra (df = 18, F = 5.080, P = 0.040).  Mean dry season values were higher than wet 

season for both impala (df = 12, F = 0.545. P = 0.476) and wildebeest (df = 18, F = 

0.161, P = 0.693), though the difference was not significant. 

DISCUSSION 

Our validations suggest the MP Biomedicals I125 corticosterone radio- 

immunoassay is a useful means of detecting the stress response in a wide range of South 

African herbivores.  This study supports the findings of multiple other studies that have 

used this assay and shown FGM analysis to be an accurate means of quantifying 

physiological stress in ungulate species (Wasser et al., 2000; Millspaugh et al., 2001; 

Millspaugh et al., 2002).  FGM measurements have been used to monitor stressors in 

other free-ranging and captive African wildlife, including elephants (Loxodonta africana) 

(Foley et al., 2001; Ganswindt et al., 2003), cheetah (Acinonyx jubatus) (Jurke et al. 

1997; Terio et al., 1998), white rhinoceros (Ceratotheruim simum) and black rhinoceros 

(Diceros bicornis) (Turner et al., 2002).   

Though FGM analysis has been reliably used in a wide range of species, clear 

differences occur in fecal composition, diet and glucocorticoid metabolism between taxa, 
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which can influence the types of metabolites found in the feces (Palme, 2005).  As we are 

not measuring native corticosterone in the feces, it is essential to validate the assay 

methodology to assure that the suite of metabolites being detected is truly indicative of 

the level of adrenal activity in the species being studied (Wasser et al., 2000; Touma and 

Palme, 2005).  The MP (then ICN) Biomedicals antibody has been extensively validated; 

it showed the highest level of cross-reactivity with major fecal metabolites of 

corticosterone in 11 of 12 species studied, compared to three other antibodies (Wasser et 

al., 2000).  The RIA does not provide information about relative abundance of individual 

metabolites, but instead provides the concentration of all metabolites in the fecal extract.  

Identification of individual metabolites would be possible with high-performance liquid 

chromatography (Palme, 2005; Goymann, 2005); but at this time, we have not 

determined a biological significance associated with any individual metabolites.  Thus, 

we continue to use net metabolite concentration, to detect the effects of a stressor and 

identify species differences in stress levels. 

In each of the species studied, we found differences in the average FGM levels 

and in the optimal dilution for sample analysis.  While numerous factors, including diet, 

sex, body size and taxonomy could contribute to the differences in FGM levels, we 

hypothesized that the changes in FGM levels due to seasonal changes in food abundance 

would be most evident when comparing browsers and grazers.  It is possible that the 

seasonal changes in plant abundance would affect species differently depending on their 

primary food source.  In general, the browser species had higher overall FGM levels than 

the grazer and browser/grazer species.  Comparison of FGM levels to those found in 

other studies may not be valid due to slight changes in extraction or analysis protocols.  
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We cannot determine if this interspecies difference is indicative of different stress levels, 

because differences in diet, fecal composition, adrenal activity and habitat can affect 

FGM levels (Wasser, 2000; Palme et al., 2005).  Certain dietary nutrients can affect FGM 

levels by binding hormone, changing gastrointestinal transit time or gut flora (Wasser et 

al., 1993; Goymann, 2005).  Longer GI transit time allows for greater bacterial 

breakdown of FGMs, and allows metabolites to be reabsorbed and reprocessed by the 

liver through enterohepatic circulation (Bokkenheuser and Winter, 1980; Palme, 2005).  

In herbivore species, the level of indigestible fiber in the diet will directly affect fecal 

bulk and possibly dilute the amount of FGM in a sample (Goymann, 2005).  Our study 

examined a broad range of herbivore species, with different diets and which represent the 

assortment of herbivore types found in South African parks.  Through laboratory 

validation, using parallelism and exogenous recovery tests, we demonstrated that FGM 

levels can be accurately measured in each of these species. 

Once we performed laboratory validations, it is essential to determine if the assay 

is capable of detecting biologically significant changes. While proper and thorough 

validation is ideal, the reality of wildlife health studies often makes it impractical.  Ideal 

validations involve physiologic validations with pharmacological manipulation, in the 

form of an ACTH challenge (Goymann, 2005; Touma and Palme, 2005; Washburn et al., 

2000).  These manipulations are not possible in free-ranging wildlife, without 

considerable risk to the animals and investigators.  One of our goals with this study was 

to limit contact with wildlife to minimize experiment-induced stress, thus we employed 

naturally occurring biological variation for our validation.   
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Our study demonstrated significantly higher FGM levels in the dry season for four 

of the six species studied.  Dry season FGM levels were higher than wet season levels in 

the wildebeest and impala samples, though the difference was not significant; individual 

variation and low sample numbers likely contributed to the lack of significant difference.  

Further investigation with higher sample numbers is warranted to see if the observed 

pattern is repeatable in future years.  Significant seasonal differences in ungulate FGM 

levels have been demonstrated in white-tailed deer (Odocoileus virginianus) (Millspaugh 

et al., 2002) and elk (Cervus elaphus) (Millspaugh et al., 2001).  Distinct seasonal 

variation in FGM levels has also been documented in birds (Romero and Wingfield, 

1999) and rodents (Harper and Austad, 2001).  While the mechanism for seasonal 

variation has yet to be determined, there have been multiple suggested causes; it has been 

hypothesized that this seasonal variation could be due to changes in reproductive 

behavior, diet, day length and temperature (Harper and Austad, 2001).  In South Africa, 

seasonal rainfall has a profound impact on plant and animal communities, by determining 

the amount of plant growth and thus, the available forage for herbivores.   

In these parks, it is likely that the variation in seasonal FGM levels could be due 

to changing food abundance and subsequent increased stress.  The browser species (kudu, 

nyala and giraffe) showed a greater difference in FGM levels between seasons, than did 

the grazer and browser/grazer species.  This may indicate a greater effect of season on 

leaves and browse than on grasses.  Future studies could include year-round sampling and 

comparison to studies of plant abundance and herbivore resource selection in the area.  

While we demonstrated that FGM analysis is able to detect seasonal variation in most 

species, we cannot determine the source of this variation, given the number of 
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possibilities present.  Of critical importance, is acknowledging that this significant 

variation exists. 

These two parks are typical of many similar parks throughout Africa, in which 

management decisions have to be made based on multiple and often competing interests.  

Changing natural habitats, including development or species introduction can cause stress 

in native populations.  A single stressor can affect similar species differently (Palme et 

al., 2005); ecosystem changes that benefit some species may be detrimental to others.  

For example, introduction of large predators, such as lions, has been an issue in Tembe 

Elephant Park.  While the introduction of lions may detrimentally stress target prey 

species, it may provide a relative advantage to other herbivores through decreased 

competition for food and territory.  Making management decisions based on data from 

one or two species may cloud a comprehensive picture of park ecology; even if those 

species are high profile animals.  Our project included a diverse range of browser and 

grazer species, including: equidae (zebra), giraffidae (giraffe), and multiple bovidae 

(wildebeest, nyala, impala and kudu).  Baseline data from multiple seasons is essential as 

seasonal variations may be a confounding factor in studies of chronic stress.  To 

determine the effects that seasonal variation will have on stress studies, attempts should 

be made to sample animals year round, before and after a suspected stressor, or only 

make comparisons between samples from affected and unaffected parts of a park during 

the same sampling season.    

In each of the species examined, the MP Biomedicals (formerly ICN 

Biomedicals) radioimmunoassay kit performed well in tests of parallelism and recovery 

of exogenous corticosterone.  The assay was sensitive enough to detect potentially 
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significant biological changes in seasonal glucocorticoid production.  By establishing 

baseline FGM levels for these six species of herbivores, we can begin other studies 

directed at assessing the effects of specific stressors.  While previous studies of this 

nature have focused on the effects of a stressor on one species, we hope that future 

studies in these parks can take a multi-species approach to stress assessment.  With a non-

invasive technique for quantifying stress, it will be possible to make more educated 

management decisions for species within African parks and reserves.  This validation and 

baseline data can provide a starting point for research in other parks and as a comparison 

for captive individuals in zoological institutions.  The success of this and previous 

validation studies support FGM analysis as a robust method of stress assessment, which 

is applicable to a wide range of species.   
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Figure 8.  Parallelism of fecal glucocorticoid metabolites levels detected in feces using I125 

corticosterone radioimmunoassay (RIA) kits (MP Biomedicals, Solon, OH, USA).  For each 

species, we plotted the RIA corticosterone standard curve (closed diamonds with thin solid 

trendline), and serial dilutions of herbivore fecal samples from the dry season (Sample 1, open 

diamonds with dashed trendline) and wet season (Sample 2, open triangles with thick solid 

trendline).   

8A. Impala: Standards: y = -42.107x + 47.256, r2 = 0.9968; Sample 1:y =  -44.509x + 46.481 

r2 = 0.9987; Sample 2:-44.898x + 46.129, r2 = 0.9973 

8B. Kudu: Standards: y = -42.107x + 47.256, r2 = 0.9968; Sample 1:y = -45.51x + 46.13, 

r2 = 0.9974; Sample 2:y = -44.381x + 46.871, r2 = 0.9981 

8C. Nyala: Standards: y = -43.656x + 49.347, r2 = 0.9969; Sample 1:y = -44.267x + 

48.874, r2 = 0.9975; Sample 2:y = -44.933x + 49.334, r2 = 0.9993 

8D. Giraffe: Standards: y = -41.018x + 48.314, r2 = 0.9956; Sample 1:y = -42.922x + 

47.87, r2 = 0.9972; Sample 2:y = -42.456x + 47.728, r2 = 0.9974 

8E. Wildebeest: Standards: y = -41.018x + 48.314, r2 = 0.9956; Sample 1:y = -42.997x + 

48.006, r2 = 0.9971; Sample 2:y = -42.548x + 47.838, r2 = 0.9971 

8F. Zebra: Standards: y = -41.018x + 48.314, r2 = 0.9956; Sample 1:y = -43.763x + 46.178, 

r2; Sample 2:y = -43.312x + 46.466, r2 = 0.996 
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Table 2: Optimal sample dilution factors for methanol extracts of fecal glucocorticoid 

metabolites.  The optimal dilution provided the percent binding closest to 50% and thus is most 

likely to be appropriate for the full range of the assay. 

Species  Optimal Sample Dilution 

Impala 1:08 

Kudu 1:08 

Nyala 1:32 

Giraffe 1:16 

Wildebeest 1:08 

Zebra 1:04 

 

 

 

Table 3:  Average percent recovery of exogenous corticosterone with standard deviations.   (n = 6 

per species; range of added corticosterone = 0.25-1.25ng/mL) 

Species  Average Percent Recovery Standard Deviation 

Impala 109.71 4.57 

Kudu 110.86 3.81 

Nyala 108.99 1.68 

Giraffe 109.76 3.42 

Wildebeest 104.24 3.34 

Zebra 109.60 3.32 
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