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NOMENCLATURE

Symbol Description Units
Py Pump pressure Pa

Pa Head-end pressure Pa

Ps Rod-end pressure Pa

P Control Pressure (within the pump) Pa

Pt Tank pressure Pa
Q1234 | Flow through each valve m°/sec
Va Volume in head-end of cylinder m°

Vg Volume in rod-end of cylinder m°

Vc Volume of displacement control cylinder m°

An Head-end area m?

Ag Rod-end area m*

Ac Control cylinder area m?

k Flow equation constant [m°/kg]"*
o Fluid density kg/m®

y Cylinder position m

Ymax Maximum cylinder position m

m Mass of the cylinder and bucket kg

F Bias Force N

C Damping coefficient N/m/s

b Pump damping coefficient N/m/s
Jeft Pump moment of inertia Nms®

0 Pump angular position Radians
D, Pump displacement M?

B Fluid bulk modulus GPa

(oF Discharge coefficient -

z Displacement control cylinder position m

X Pump spool valve displacement m

Tc Torque from displacement control valve Nm

T. Torque imparted from pressure in the pump Nm

®p Pump speed rad/s

K, Leakage in the pump m°/s/Pa




ABSTRACT

In this work modern robust control systems aregiesi and compared to
standard techniques for a hydraulic implement syst&he system includes an
independent metering valve (IMV) and a variablgldisement pump. The IMV is a
powerful and versatile valve assembly. The IM\fieerent complexity makes classic
control methods difficult to design. Parametelniatesns and unmodeled dynamics can
cause sluggish performance and instability in soases. By applying modern control,
robustness can be improved relative to classiahkargle-input/single-output (SISO)
control design techniques. Techniques such.asoHtrol have been proven effective in
many multiple-input/multiple-output (MIMO) applidahs. Linear analysis shows
improvement in robustness characteristics of th& Bylstem over a conventional PID
control scheme. Nonlinear simulations show favi@algstem response and similarly

positive robustness traits for the modern conteslighs.



Chapter 1

INTRODUCTION

Control systems need to operate under a varietpmditions. Therefore, the
design process for a controller includes considmratof less than ideal conditions of
operation. Traditionally, a controller is designeith some stability margin and then
tested or simulated under conditions which therotlet is expected to see. This
typically involves some trial and error betweentcolredesign and model simulations.
Modern control design techniques allow a desigoenore easily develop a control
system which will work in cases where the machirag tme worn or manufactured in an
unexpected way. Therefore, modern control degghrtiques can be used to improve
the reliability of machines since the control syst&ill continues to operate over a wide
range of adverse conditions.,, idontrol design techniques make it easier to ggtdr
performance than traditional techniques. DesigH.o€ontrollers involves shaping the
maximum singular value of specified transfer fuoies over specific frequencies..H
techniques also employ optimization and have mlesetility in terms of balance
between performance and stability.

Hydraulic systems are a good application for modebust control design
techniques. Robustness is a measure of systeihty tdoproduce uniform performance
and stability results under varying conditions. drgulic systems tend to be designed
with conservative performance since stability oacern. A more advanced controller

may improve performance and stability robustnesseasame time especially in the case



of multiple input, multiple output (MIMO) system#\ number of hydraulic systems
could be considered for robustness analysis ancbhtrol design which could improve
stability and performance. An independent metevialge (IMV) hardware setup is a
good application for robust control design usingriiethods since the system has
multiple inputs and outputs and model uncertairf@ince the system has coupled
dynamics, it is likely that a MIMO approach to caritdesign will improve performance
and robustness over single input single output@k&esign techniques, such as

proportional, integral and derivative control (PID)

1.1 PID Limitations

The difficulty that arises from SISO control liesthe way different inputs and
outputs pairs are coordinated. As see in Zhang gt] for a system witlm inputs anch
outputsm x n individual PID controllers have to be tuned focleanput-output couple.
Furthermore, Zhang continues by explaining thatith controller has to consider the
others, more knowledge about the system is neaut®d & harder to achieve robust
performance. Skogestad and Postlethwaite [2] durtis argument by explaining that
stacking PID controllers in an effort to emulateNM control often leads to erroneous
robustness analysis results. SISO systems testibte robust performance when
nominal performance and robust stability are satisf However, this is not true for
MIMO systems. So, stacking together SISO contr@isistness analysis can be duped
into showing robust performance where it would tnaly exist. For this system, PID
control would result in these stacked SISO corgrslthat would tend to show false

robustness results.



1.2 Modern Control in Hydraulic Systems

Unfortunately, there are few examples of moderrtrodiMIMO techniques that
have been applied to hydraulic systems. Activdiegion of H, control has been done
by Zhang et. al [1] on hydraulic powertrains fortemoving vehicles. The results of this
research showed that.hyrovided the ability to robustly control the hydlia powertrain.
In the application of active hydraulic suspensigplered by Chen et. al [3] it was shown
that H, control could be successfully implemented. ThHeg axamined robustness
characteristics of Hcontrol and found favorable results. Fales €#4 ab] showed that
modern control could be applied successfully toabie inverted pendulum that was
regulated by hydraulic actuators. However, thetrapplicable research comes from
Fales and Kelkar [6] who applied mixed-sensitiHy control to regulate the bucket of a
front wheel loader. This research successfully&tbthrough robustness analysis that

the controller was successful in withstanding pfaermturbations.

1.3 Research Objectives

The specific objectives of this research are taugtely model an IMV hydraulic
system through nonlinear and linear analysis, emarhi, control routines with increased
robustness characteristics, apply theddntrol routines and to analyze their responses in

both the time and frequency domain.



1.4 Thesis Outline

Chapter 2 discusses the modeling of the IMV hyliraystem from first
principle model through validation, linearizatiomdlinear analysis. Uncertainty
modeling is also examined. Chapter 3 discussethdwy and need for each modern
controller to be examined. The theoretical backgtbis important to know where robust
design comes from and why they are needed. Alsthads of application are discussed.
Chapter 4 deals with applying the specific conénallto the system. The performance
weighting is defined and each controller is examimethe time domain on the nominal
model. Comparisons are drawn between the linenanlinear responses for each
controller. In Chapter 5, time domain robustnessxiamined for the controllers. Each
controller is applied to two separate perturbab@s cases and the resulting responses
are examined to determine relative robustness.pt€hé deals with robustness analysis
in the frequency domain. The theory behind robestranalysis is discussed and applied
to each control routine. This analysis gives a teagompare the control routines
through numerical methods. Finally, Chapter 7 amst overall conclusions about the

research, discusses limitations tg ¢bntrol and proposes future work.



Chapter 2

IMV Hydraulic System Modeling

2.1 First Principle Modeling

The IMV system, as seen in the schematic in Fih12is a connection of four
variable valve assemblies, a variable displacememp and a single-rodded hydraulic
cylinder. Modeling techniques used throughout $ieistion can be found in Manring [7].

Please refer to the nomenclature section for veriahmes.

Va

Pa

Vi
P, Po
\Y p

Fig 2.1.1 — A schematic of the IMV system modeled

Modeling began with the pressure rise rates aswuocwith each side of the cylinder.

This modeling was done by using the summationayt ihto and out of each side, fluid
bulk modulus, volume of each side of the cylinded &olume change rates for each side.
The respective pressure rise rates for both theead side, and B, rod side, can be seen

as:



A =£(—Q2+Q1—VA), (2.1.1)

P, =£(—Q4 +Q3—VB). (2.1.2)

The flow for each side of the cylinder is directemim each valve, which can be
identified by their respective numbering. The vogiric flow rateQ, is modeled using

the classical orifice equation which is based @Bkrnoulli equation.

Q =kA{Ps-P,. (2.1.3)

This flow equation utilizes the pressure drop asach valve, the valve area and

includes the constakt which is defined as:

k = ch. (2.1.4)
0

The volumes and volume rise rates for each cylisder were modeling via geometry:

V, = Ay +V,, (2.1.5)
Ve = Ay (Ymax = ¥) +Vo, (2.1.6)
V=AY, (2.1.7)
Ve =-AgY. (2.1.8)

Cylinder load dynamics were modeled using stantliaear dynamics including viscous
drag in the cylinder but not including a springeetfbalancing with the forces resulting
from pressurizing each side. The equation of nmofiddows:

my+cy=P,A, - P A, +F (2.1.9)
The forceF, is a bias force nominally set to zero. It shdudnoted that this model does

not account for leakage between the two volumes.



The variable displacement pump used for this ptogea complex pump with
significant internal dynamics. The pump has irkémechanical feedback that requires

modeling whose schematic can be seen in Figurg.2.1.

0

Displacement
Sensor
VR

Fig. 2.1.2 — The internal mechanical feedback of ¢hvariable displacement pump [8]
P. is the pressure on one end of the displacemenitataylinder. The pressure rise rate

is as follows:

p=L Q-

Ty (Q -2A) (2.1.10)
The volumetric flow rate in the pump is modeledhgsihe classical orifice equation:

Q. =Cyk(x~— y)wfg(Pp - Pc) (2.1.11)

The equation of motion for the swash plate angle is



JO+bO=T.-T, (2.1.12)
whereT, is the torque imparted from the pressure in thegpuaylinders and¢ is the
torque from the actuator cylinder. The dischangsgure of the pump, which is the

supply pressure identified in other parts of thedelpis calculated as the pressure rise

rate in the discharge volumé,, as follows:
5 =B 0)-Q, -Q,- 2.1.13
B = (@Dp(6) -Q Q- K/Ry). (2.1.13)
P

where it should be noted that leakage is takenantmunt an@®p is a function ob.
Also of note, only flows 1 and 3 are modeled heredoise only these two valves are
being used for control. This system feature walldovered in greater detail later.

The model of the valve actuators were found lingttransfer functions and
look-up tables to experimental data. The tranhections modeled current drivers in the
system and the look-up tables related input cutieenttput valve area. Also, hysteresis
effects were taken into account so that the redatigps present in the matching test data

were present in the simulation of the model.

2.2 Nonlinear Model Validation

The model used for design has some shortcomiegsgic system parameters
were not included and some subsystems were coerdididzal. These assumptions were
made for the sake of keeping an already complexehfooin becoming too complex to
use. Also, because robust design techniques veeng bhsed, some system model errors
can be accounted for by robustness analysis angndednmodeled parameters include
pump efficiencies and cross-cylinder leakage. Atemstant engine speed and torque

were assumed. Orifice flow and pressure comperssate both considered ideal.



Despite unmodeled dynamics and idealized compentr@ nonlinear system
model matched test data remarkably well. FiguPel2shows a comparison between

experimental data and simulation data for pumpldegment.

12':' T T T T

100 .

[wn]
[}
T
1

L
(]
T
1

Displacernent per revolution {cofrev)
a3}
=
1

_
-

WA W

— Simulatian
—— Experimental

D 1 1 1 1
a ] 10 15 20 25

Tirne (s)

Fig 2.2.1 — Data validation for pump displacementq]

From Figure 2.2.1, it can be seen that the sinaranatched very well with the
experimental data. Discrepancies exist at the stahe upward step responses but the
severity of error is not extreme. The simulatiamcgly returns to match the

experimental results. Also, the simulation closebtches the downward step responses
seen on the backside of the square wave signguré-R.2.2 shows a comparison

between experimental data and simulation datayflander position.



3 : : : :

Cylinder Position (m)

— Simulation
—— Experimental

. | | |
0 5 10 15 20 25

Fig. 2.2.2 — Data validation for cylinder position8]

From Figure 2.2.2, it can be seen that the simaratnatches the experimental data

somewhat accurately. The slope differences prese¢he comparison is due to

unmodeled cross-cylinder leakage. If leakage ehlmodeled, less pressure would be

on the high pressure side of the cylinder causiegcylinder to move more slowly. It

can be seen that the simulation cylinder does thdesve faster than the experimental.

Figure 2.2.3 shows a comparison between experiingata and simulation data for

head-end pressure.

10
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—— Esxperimental

—— Simulation
35 [ TR SRR = e

Head-end Pressure (Fa)

______________________________

—————————————————————————————

15
Tirne (s)

Fig. 2.2.3 — Data validation for cylinder head-engbressure [8]
From Figure 2.2.3 it can be seen that simulatiotches the experimental data very
closely. The model simulation closely follows thgamics found in the pressure
response, but once again the unmodeled leakageecseen, specifically in the time
spanning 0-5 seconds and 12-17 seconds. It caedrethat in the experimental data, the
pressure drops over periods where simulated pressgonstant. This is the effect of
leakage causing the pressure to drop over timekdge aside, the simulation closely
matches the experiments in all cases but the |l@ssorre settling (below 5 MPa).

Overall, these modeling errors are acceptablealtiee ability of the controllers
to account for levels of uncertainty and inaccuradiso, these inaccuracies can be

encompassed in uncertainty analysis that will lesgmnted later.

11



2.3 Linearization and Validation

Linearization of the systems is typically donedxamining the Taylor Series
expansion of a system about an operation points Miethod was inconvenient in this
case because of the way the valve dynamics werelethd The look-up table format did
not allow for proper differentiation. Instead aife-differencing method was used to
linearize the system. This process was carriedpumy colleague in [8]. The finite-
differencing method of linearization is a numericathod for building the system
matrices of a model. By perturbing each state meigdrom their nominal and then
observing the state-vector response, the systemcesmtvere constructed in turn. This

result is derived by using the approximation:

an Afn _ fn,nom_ fn,perturb_xm

~
~

aXm AXm Xmnom — Xm, perturbed (2.3.1)

wheren is the number of each function of the systemransl the number of each state of
the system. Nominal values used for this systesriter system values at the mid-stroke
of the cylinder. Through Eq (2.3.1) each individual element of Ah@ndB matrices

could be found. The system matrices were caladilayeusing:

Fof,  af,

0X, 0X,

A = of, of,
= 0X, 0X,

i | (2.3.2)

12
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du, du,
B= i ﬂ
— |0y du,
- - (2.3.3)
The final linearized model consists of 16 states:
— - . T
X:[e 6 R P, PA B Y ¥V X - Xs] (2.3.4)

with two inputs and two outputs. In Eq. (2.3X4)represents the states of each valve
assembly and current amplifier involved in the IMystem. The measurements of the

system are the load velocity and the margin pressur
y=[,-R) VI (2:35)
Margin pressure is defined as the pressure dragsacthe valve. In other words, margin

pressure is the difference between pump pressuréead-end pressure. The two inputs
to the system are the commanded pump displacemdrd aingle valve input.
i=[D, i (2.3.6)

Currentiy 4, is for both the first and fourth valve, which de@ the pump-to-cylinder
head-end valve and the cylinder-to-tank rod-englevadspectively. These two valves are
slaved together at a 1:1 ratio for the sake of easentrol design. Valves two and three
are not used for control and remain closed fotiralé.

In similar fashion to the nonlinear model, thesanized model was validated via
comparison, but this time to the nonlinear modeko individual states were analyzed:

load velocity and cylinder head-end pressure. Eaotiel was given a step input and the
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results were over-plotted. In Figure 2.3.1, theaparison of cylinder velocity can be

seen.

“elocity Comparison

300 f

280 |
260
240 |

220 ¢

“elocity (mmfs)

200 f

180 f

160 F
140 f : :
I i | ] i I i ]
065 07 075 08 08 09 035 1 1.05
Tirne (s)

Fig. 2.3.1 — Linear model validation for cylinder \elocity [8]

From Figure 2.3.1 it can be seen that the lineatte@haccurately replicates the non-
minimum phase response present in the nonlineaemddshould be noted that this
non-minimum phase response is due to the currérgrdrpresent in the valves. Figure
2.3.1 also shows that the linear system showsairdyinamic responses to the nonlinear
model though showing an increased steady-state efigure 2.3.2 shows the

comparison of head-end pressures for the lineanantinear model for a step input.
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Head-End Pressure Comparison
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Fig. 2.3.2 — Linear model validation for head-end gessure [8]

In Figure 2.3.2, it can be seen that the linearehathtches the nonlinear model fairly
accurately. The same non-minimum phase dynamjsesent in both data sets and
similar dynamic responses are also present. lerehbwever, the increased steady-state
error is also present. The discrepencies fourmbih comparisons will be accounted for
in the modeling of system uncertainty and the ajagitbn of robust control schemes and
should not cause a problem in practical applicatidowever, uncertainty and model
mismatching is to be expected. As a linearizetesystrays from its linearized point,
the system is less accurate. The mismatching mgrbetween the linearized model and
the nonlinear model could very well be due to thet that the linearized system varies
from its linearization point, which was mid strokkiring the dynamic response imparted

by the step input.
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To further analyze the linear system, two analy®iés were used to evaluate the
system: pole-zero maps and singular value ploke pole-zero map of the final 16-state
system can be seen in Figure 2.3.3. It is app&mmi this graph that the system is stable

because all poles of the system lie in the left-plane.
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Fig. 2.3.3 — Pole-zero map of the linearized syste]

However, the pole-zero map in Figure 2.3.3 doesvsingystem zero in the right-half
plane. For stability, a right-half zero does reginesent the inherent instability that a
right-half pole would. A right-half plane zero rneér represents a performance limitation
in the system. In this case, with a pure-real a¢nositive 40 rad/sec, it causes a
bandwidth limitation equal to approximately 3 Hz fbe closed-loop system [2]. This
bandwidth limitation applies to any effort to desig control system with a bandwidth
past that threshold. The presence of a rightyiatie zero does support the findings of

non-minimum phase behavior in the experimental.d&taough inspection of the
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system, it was found that the right-half zero was tb the amplifier gain found in the
valve assemblies. This performance limitation, &e&r, does not greatly affect the aim
of this research. As it will be seen later, thefggenance requirements of the system
need not exceed 2 Hz bandwidth. This requiremamses the limitation to become a
moot issue, but if this system was to be usedarfuture or performance requirements
were more demanding, the bandwidth limitation waulkgly a role.

The other technique used in this MIMO analysithessingular value plot. The
singular value plot of a MIMO system is analogausghie Bode plot of a SISO system;
both are an expression of the frequency resporfdgee system. The maximum singular
value is the largest gain for any input directiomile the minimum singular value of a
system is the smallest gain of the system for aputidirection. Furthermore, the
minimum singular value of the plant, evaluated &snation of frequency, is a useful tool
for evaluating the feasibility of achieving accdpeacontrol [2]. It is desirable to have
the minimum singular value as large as possiblee dingular value of a plafis

defined as:

_|eu,
o(G)= i, (2.3.7)

whereu is the input vector. The 2-norm of a vectHﬂﬁzo is defined as

¥, =2 %" - (2.3.8)

From a singular value plot, important informati@nde gathered. The distance between
the maximum and minimum singular value plots giaegpod indication of the

predictability of a system, as the distance betwbege plots is essentially the variance
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of the gain of the system at a particular frequeng&lso, much like a Bode plot, the
bandwidth of a MIMO system can be calculated frosingular value plot. A singular

value plot of the linear system studied can be seé&igure 2.3.4

200 r —

i
=

unscaled plant

; Singular Values (dB)

scaled plant

diagonalized plant
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Fig. 2.3.4 — Singular value plot for the linearizedystem [8]

The singular value plots shown in Figure 2.3.4farghree different systems. The graph
denoted as the unscaled plant is just as its narpkeis: the original model with no input
or output scaling. This system is undesirabletduge large difference between the
upper and lower singular values at any given fraque This translates to a highly
unpredictable system, for which it would be verffidilt to design a controller.

Bringing the maximum and minimum singular valueshaf system closer together
causes the system to behave in a more diagonalananeaning it emulates a system
which is fully diagonalized or one in which thesenio coupling between input and output
pairs. To clarify what is meant by coupling, tlystem is said to be coupled if inputs

affect outputs beyond those directly connectedhénimput output pair. In a two input
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two output system, coupling would exist if inputeoaffected output two. The next
system analyzed was the scaled plant. This syBtenibeen subjected to input and output
scaling, which treats every input and output asragntage of its maximum rather than
its true value. As it can be seen, the maximumrmmimum singular values of the
scaled plant lie much nearer one another, resultigmore predictable system. The
final system analyzed in Figure 2.3.4 is the diadi@ed plant. The diagonalization is
obtained though multiplying a constant matrix fodiraim the inverse of the DC-gain of
the plant transfer function matrix. This systema imodification of the scaled system,
with an emphasis placed on decoupling the inputaypairs. From its singular value
plot, it can be seen that this system is more ptallie than the scaled system, with the
exception of a spike at the break frequency of H20 However, the system is highly
coupled and an attempt to completely decoupleybtes resulted in an over-
simplification of the model. The diagonalized mibdas not used for any future study,
due to its inaccuracy when model uncertainty issaered. For the remainder of this

analysis, the scaled system was examined.

2.4 Categorizing and Modeling System Uncertainty

An important part of a robustness study is themination of the variance
within the system model. All close-loop controhemes exhibit some level of
robustness inherently; however, all control schebmeak down when a system varies
beyond a point the controller can account forthia uncertainty study, certain system
parameters were allowed to vary and some leveyoanhics not fully modeled in the

system were accounted for. After a careful study the uncertain characteristics of a
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hydraulic system, it was found that all of the utai@ties within this system could be

divided into three categories: valve uncertaindgd uncertainty and fluid (or line)

effects. The varying characteristics within eatthese categories can be seen in detail

with descriptions in Table 2.4.1.

Table 2.4.1 — Uncertain Characteristics in the IMyiraulic system

Valve Uncertainty

Parameter

Explanation

Valve assembly spring constant

Due to mass manufacturing and sag over tin
there may be inconsistencies in this value

Solenoid actuation

The force output by the solenoid in the valve
assembly may vary over time due to wear

Amplifier gains

As was exhibited in the test data for the IMV
the amplifier displayed non-minimum phase
behavior

ne

Spool-centering spring constants

Due to mass manufacturing and sag over tin
there may be inconsistencies in these values

ne

D

Spool damping

Wear within the spool will cause damping to
decrease over time

Spool leakage

Wear within the spool will cause leakage to
increase over time

Manufacturing limitations on springs

Due to finite coil thickness springs cannot
always be manufactured at a desired length

Orifice wear

Orifice coefficient can change withawe

Compensator effects

compensator model was assumed ideal whe
actuality there are pressure differences on
either side of a valve

nin

Load Uncertainty

Parameter

Explanation

Damping coefficient

Due to cylinder wear, damping coefficients ¢
change

Leakage

Due to cylinder wear, leakage can increase
over time

Fluid/Line Effects

Parameter

Explanation

Fluid Bulk Modulus

Different operating conditions can cause thig

parameter to vary
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Entrained air Causes a decrease in fluid bulk modul

Stretching of hoses over time or under highe
Line volume pressures can change this parameter. Also,
altering the original design would affect this.

-

Particles in operating fluid Will increase line $8s and wear

By analyzing the varying characteristics in Tabk. 2, it was concluded that there was a
set of numerical system parameters that, whend;anieuld encompass the uncertainty
of the system within reason. By adjusting thesgesy parameters between their
maximum and minimum expected values, the apprapleatel of uncertainty in the
hydraulic system could be approximated. The ungdst parameters and their expected

ranges for can be found in Table 2.4.2

Table 2.4.2 — Range of variance for the systenrarpaters.

Parameter Range
Fluid Bulk Modulus f) +33%
- 0.521t0 0.72
Flow Coefficient Cp) _
nominally 0.62
0 to 1000lbs
Load Force N
In addition to the bucket and rod mass
Amplifier gain +10%
Cylinder Friction +25%

After defining the uncertain characteristics of iystem, an uncertainty model was
developed. This analysis was expanded from infaondound in [8]. An uncertainty

model is a transfer function representing an arrdhe output of the system. The
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uncertainty model used in this research is muétgtive output uncertainty which can be

seen in Figure 2.4.1 a%,

Wo

L
¥

. Plant

 J

Fig. 2.4.1 — Output multiplicative uncertainty
The accompanying termh, is the set of all transfer functions whose maxinmaingular
value is less than one. THgterm is a scaling factor; essentially a gain vattine
system that will amplify its input to between +10@%4). This term is, in practical usage,
not considered in quantitative calculations angeiserally only addressed in
mathematical derivations of the robust control gsial The focus of this project will
remain on the output uncertainty.

To obtain an uncertainty description, the setligb@ssible plant perturbations
were examined. By changing each parameter in TABI@ individually and linearizing
the system again for each configuration, a sefigedurbed plants were created. The

plant perturbations were created using:
G, -Gon)ai (2.4.1)

nom nom

This set of perturbed plants,, was then used to construct the uncertainty detsan:

w, = maxa|(G, - G, )G (2.4.2)

nom
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over all perturbed plant mode®,. The output uncertainty of the system is a transf
function fit of the highest maximum singular valiet among all plant variations. This

result is shown graphically in Figure 2.4.2.
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Fig 2.4.2 — Output uncertainty transfer function

In Figure 2.4.2, many plant perturbations can s e dashed lines. The darkened line
is the transfer functiomw,, created to bound all possible perturbations ihe worst
possible variation the system could undergo. ritloa seen that the plant will vary by
approximately 20% at low frequency and around 5%igtt frequency. At 100Hz the
largest plant variation exists. The plant variggpproximately 75% at this frequency.

The transfer functiony,, will be used for nominal and robustness analysShapter 6.
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Chapter 3

H., CONTROL MECHANISMS

3.1 Necessity of HControl Routines

LQG or linear quadratic Gaussian control routiresed on optimal filtering
work of Wiener in the 1940s, were utilized in tH#60s as a way to accurately control
space vehicles and minimize fuel consumption. Thahese techniques are used
successfully by aerospace engineers, LQG is ditftouapply reliably to many industrial
problems due to the reliance on highly accuratéesysnodels and the assumption of
white noise disturbances [2]. These deficiencasse LQG control to often lack
robustness characteristics that are appropriate&my applications. This
characterization of low robustness was broughi¢cattention of the controls community
in 1978 by Doyle. In the 1980s, researchers sac@ames, Helton, Glover and Doyle
developed Hand H, methods to answer specific robustness concernQ&.LThis is
not to say that LQG cannot show robust charactesist that it is not applied
successfully in industry. The desire was to creat® control systems that showed

robustness characteristics that were superior t6.LQ

3.2The H, Control Problem
For the sake of discussion in this researchiméthods alone will be of interest.
This narrowed view is justified by the recognitibvat H and H, methodologies are

similar in that: both require the solutions to tRizcati equations, both give controllers
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of state-dimension equal to the generalized pRnéand both show separation structure in
their controllers that are already seen in LQG @ng]. It is important to note,

however, that H controllers provide a sub-optimal controller whdtiffers from H

control which provides optimal and unique contnalelt should be noted that (s) is often
dropped as a convention.

The general problem formulation of,roblems are described by

e
v u Pu(s) Pyp(s)J u
u=K(s)yv (3.2.2)

with a generalized plant P given by

A B, B,
C, D, D,|. (3.2.3)
CZ D21 D22

iy

The variables arai, the control variables, the measured variableg, the exogenous
signals such as disturbances anthe error signal to be minimized. The generdlize

plant model schematic can be seen in Figure 3.2.1.

A 4

A

Fig 3.2.1 — The Generalized plant model
By referring to Skogestad and Postlethwaite [2Zait be seen that the closed-loop

transfer function fromwv to z can be given via the linear fractional transforiorat
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z=F (P,K)w (3.2.4)
where

F (P,K)=P,+P,K(l -P,K)™"P,,. (3.2.5)
Using the linear fractional transformation, the ¢bntrol problem is to find a controller,
K, that minimizes

|F (P.K)],, = maxa (F, (P, K)(jw)). (3.2.6)
Thew-norm can be thought of as the ratio of input tgpativector 2-norms.

|z,

F(P.K) =
P =

wW(t)#0

(3.2.7)

where

20, = [, > |2 @ dt (3.2.8)

Because the controller does not require optimaltgnis, or that optimal solutions are
too difficult to calculate, the valug,in is defined. The problem then becomes to find a

controller,K, such that

[FP.KI, <y (3.2.9)
wherey > ymin. This process is then done iteratively so thatabntroller approaches an
optimal solution. Design of Hcontrollers involves shaping the maximum singukdue

of specified transfer functions over specific freqaies. These design trade-offs have

been identified earlier in this document.

26



3.3 Mixed Sensitivity H, Control
Mixed sensitivity (MS) control is a routine namasl such due to the transfer
function shaping methods used. The MS controlinewdims to find a controller that
gives the desired closed-loop sensitivity tranfifectionsS, TandKS Sis defined as
the sensitivity function which is derived matheroally from:
S=( +GK)™ (3.3.1)
T is defined as the closed-loop transfer functiomciviis derived mathematically from:
T =(I +GK)™'GK (3.3.2)
These quantities come from the classic one degréree@dom feedback configuration

shown in Figure 3.3.1.

L J

T
—»@—»vz—he L,

?4
1

Fig. 3.3.1 — One degree-of-freedom feedback configtion

From Figure 3.3.1, two important relationships barseen:
y(S) =T(9)r(s) + S(s)d(s) —T(s)n(s) (3.3.3)
u(s) = K(s)S(s)[r(s) —n(s) —d(s)] (3.3.4)
These relationships determine several closed-l&pgctves, in addition to the

requirement thak stabilizesG: 1) to reject disturbances to the system, the mari
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singular value o6 must be small, 2) to reject noise, the maximungudar value ofl

must be small, 3) for reference tracking, the mimmand maximum singular value Bf
should be approximately 1, 4) for control energyuation make the maximum singular
value ofKS small, 5) for robust stability when there are &éiddal perturbations, make
the maximum singular value &S small and 6) for robust stability when there is
multiplicative output perturbation, make the maxmmsingular value of small [2].

From these performance goals, it can be seenthbed exists a great deal of trade-off
between competing objectives. BalancBwandT weighting is tricky but it is easily seen
that makingKS small is advantageous.

The general design goal is to minimize:

S w,
T w, (3.3.5)
KSw, |

wherewp is the weight associated with the error due toregfee inputyvr is the weight
associated with the effect of noise amg is the weight associated with the control effort
of the system. In the event of nonminimum phadechvis the case in this system, the
stability requirement will limit the bandwidth aeviable by adjusting controller gains, so
it is useful to minimiz&SandKS. This system can be represented by the followlogk

diagram
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Fig 3.3.2 — S/KS form of MS for tracking

In Figure 3.3.2W; andW, arewp andwy, respectively.P is defined as

P= w, | (3.3.6)

w, —-Ww,G
0

I -G
It is important to note that all weights;, should be stable [2]. The optimization routine

hinfsyn.m[9] is used for this design.

3.4 MacFarlane-Glover H, Loop-shaping

Combining classical loop-shaping techniques andsbbtabilization, this
technique was created by MacFarlane and Glovédreri 989 [2]. This technique is a
two step process: 1) The open-loop plant is augedentith pre and post-compensators to

shape the singular values of the frequency respamde) the resulting plant is stabilized

29



with respect to coprime factor uncertainty usingdtimization. This technique also
does not requirg-iteration for its solution. The shaped plant éed of improved
robustness for this research was a compensatohwias simply a PID controller tuned
for performance with little regard to stability.n@ stabilizing controller created by
MacFarlane and Glover (MG) uses a normalized Igfirisme factorization of the plant
and standard robust stabilization transforms. détails of that process can be found in
Skogestad and Postlethwaite’s text [2]. MacFarkame Glover found that the lowest

value ofy and the corresponding maximum stability matgis described as:

1

1 1
Vo = e =[N ML} = @+ p0x2))? 340
whereN andM are from the coprime factorization of m is the Hankel norm anglis

the maximum eigenvalueX andZ are the solutions to the following algebraic Riccat

equations for the state-space realization (A,B,@D3:

(A-BS'D'C)Z+Z(A-BS'D'C)" -ZC'R'CZ+BS'B" =0 (3.4.2)
where
R=T+DD" (3.4.3)
S=1+D'D (3.4.4)
and
(A-BS'D'C)X + X(A-BS'D'C)" - XBS'B'X +C"R'C =0. (3.4.5)

The stabilizing controller is given by

& A+ BF+y#(L)*ZCT(C+DF) y*(L)*zCT

345
B X -D’ (3:4.5)

where
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F=-S}D'C+B"X) (3.4.6)
L =(1- )l + XZ. (3.4.7)

This control ensures that for a specified ynmin
K
YR

which is the stability criterion derived in Skogestand Postlethwaite. To solve this,

<y (3.4.8)

00

there is a Matlab command from Skogestad and Rlosiéte,coprimeunc.nj10] that
was utilized. Its inputs are the state-spacezatiin of the shaped-plant angiaterm
that is typically 1.1. The actuglused in [10] i/ e* ymin Which is done internally in the

program. The function outputs the state-spacézegain of the stabilizing controllek.

3.5 Two Degrees-of-freedom HControl

Many control design problems have two-degreesesddom available for design,
most reduce to using a single-degree error sigmaldsign. At times, this is not
sufficient for appropriate tracking. MacFarlanea@r H,, Loop-shaping allows for
sufficient tracking characteristics with the useaafonstant prefilter to ensure proper
steady-state tracking. However, work in the e&890s lead by Hoyle and Limebeer
was done to augment MacFarlane and Glover’s codésign to be a true two-degree of
freedom system [2]. This control routine allows tiee feedback part of the controller to
be designed to meet robust stability and rejedesyslisturbances similar to a single-
degree of freedom system while the reference ippttton of the controller matches

performance requirements established via referemee shaping. A prefilter gain is used
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to enforce accurate closed-loop response matchitigetreference input model. A model

of the control system can be seen in Figure 3.5.1

Shaped Plant

| uft)

Plant, G ;
Shaping Filter |
|

|
|
|
r(t, | W
|
|
|

A

Fig 3.5.1 — Two degrees-of-freedom design schematic

The design problem is to find a stabilizing corgoK = [K; K] for the shaped-planGs
, that minimizes the Hinorm of the transfer function between input antbausignals
via coprime factorization similar to the methodseaction 3.4. The general equation is

solved sub optimally vig-iteration. The control signal to the shaped plamtefined as:
u, =[K, KZ]V } (35.1)
y

whereK; is the prefilterK; is the feedback controllgs,is the scaled reference and y is
the measured output. The purpose of the prefdter adjust low frequency gains and

ensure that

H(I _Gus)_leKl Tt

<y (3.5.2)

00

whereT is the desired closed-loop transfer function desigto meet time-domain
based design requirements anid a scalar parameter that can be increased o
emphasis on model matching during the optimizati®m trade off to robustness. To
define a generalized plaRt the shaped-plant and closed-loop transfer funcie

defined as a state-space realization:
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G, i{é‘s [Eﬂ (3.5.3)
Tt i{? [ﬂ (3.5.4)

The shaped-plant is defined as the plant gainegtiddgompensator. The generalized

plant then follows as:

A 0 0 (B.DI+zCIRY B,]
0 A B, 0 0
0 0 0 0 |
P=| C, 0 0 RY? D, (3.5.5)
pC, -p’C. -p°D, PR D,
0 0 o 0 0
| C, 0 0 RY? D, |

whereR; =1 + DD andZsis defined via Eq. (3.4.2). The algorithm fongog this

controller can be seen in Skogestad and Postletdwhinf2dof.m[11]. One further
prefilter, W is needed to ensure steady-state error matchirghvwginot guaranteed after

undergoing optimization which solely aims to minmaitheco-norm.

w2, (1 -G, (0K, )G, 0K, 0)] T ©) (35.6)

whereW,, the output selection matrix, is typically equathe identity matrix. The
output selection matrix allows the designer to&edpecific outputs that are required for

control.
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Chapter 4

APPLICATION OF CONTROL ROUTINES

4.1 Performance Requirements

A goal of any control system is to satisfy requiesnts of performance. The most
common among these are a desired bandwigilan allowable steady-state erfgrand
an allowable high-frequency errbt. These three criteria can be assembled into the
performance weighting transfer functieg by using:

_SIM, +a,
Pi— ., . A
S+ Wy A (4.1.1)
for eachi-th output. The two outputs considered are the \@dolcity error and the
pressure drop error across the main pump-to-cylihdad-end valve. The specific

values associated with each of the performancehigan be seen in Table 4.1.1.

Table 4.1.1 Performance requirements for velocitgt margin pressure control.

Criteria Velocity Output Margin Pressure Output
Bandwidth 1.5Hz 1Hz
Steady-state Error 5% 15%
High Frequency Error 200% 200%

The design requirements listed are tested in #guiEncy domain robustness analysis to
verify that the controller will satisfy all critexifor all possible plant perturbations. These

requirements will be explored in detail in Chagger
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4.2 Baseline PID Design

The PID controller was first designed. This dasias done for two reasons: 1)
to create a baseline for comparison and 2) the lidafe-Glover and Two Degree-of-
freedom controller is designed to utilize an ergperformance controller already in
place. Because the modern controllers to be used greated to add stability and
robustness to the system, the baseline PID coetnaths designed with performance
requirements solely in mind. Due to PID being 8@ design technique and the system
being a MIMO system, two PID controllers were dasig, one for each controlled

output. The PID configuration used is defined as:

K(s) =K, + Ky Kos
s s/p+l

(4.2.1)

This form of the PID has an approximated derivateren. This form is used due to
numerical issues in Matlab that prevent a trad&idtD form from being used ands a
fast pole. The two PID controllers used are devd:

_ 08s+2513

PID,, === (4.2.2)

_ 0.1s®> +6883s+3142

PIDy s? +62€.3s

(4.2.3)

The design methodology was to tune the P compdneahe point of instability and then
tune the | and D component until steady-state mespand dynamic response were
appropriate. The controller was tested on thalized plant model; the results of those

simulations can be seen in Figures 4.2.1 and 4.2.2.
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Margin Pressure PID Control on Linear Model
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Fig. 4.2.1 — Margin pressure step response for liae PID

Velocity PID Control on Linear Model
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Fig. 4.2.2 — Velocity step response for linear PID
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In Figure 4.2.1, the margin pressure shows vergkguse time with an overshoot of
approximately 50%. The steady-state error of @sponse is approximately 10% which
is within the 15% acceptable from performance nemuents. The velocity response in
Figure 4.2.2 shows slower rise time but a less quaned overshoot and also exhibits
zero steady-state error. The controllers were tested on the nonlinear model. The
margin pressure has a commanded input of 1 MPaghra step input; the velocity input
follows a square-wave input that varies betweeb @rili 0.45 m/s commanded input.

The nonlinear control responses can be seen indsgu2.3 and 4.2.4.

Margin Pressure Tracking for PID
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Fig 4.2.3 — Margin pressure response for PID conttan the nonlinear model
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Velocity Tracking for PID
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Fig. 4.2.4 — Velocity response for PID control orhie nonlinear model

In Figure 4.2.3, it can be seen that there exisertain amount of coupling between the
margin pressure and velocity control. This is ewidfrom the periodic fluctuation in
pressure roughly every second. Both of these cbpérformances show a certain
amount of tendency toward instability as seen leyqihick oscillations in the
performance plots. Steady-state values are coibleai@the linear responses. It is hard
to comment on whether or not the margin pressiggorese is as fast as it was in the
linear model due to the pre-step margin pressuuation in the nonlinear model.
However, it can be commented that the velocityoasp is very similar to the linearized
response with respect to time. The velocity respaioes show an increase in high

frequency oscillations that were not present inlithear model.

38



4.3 Mixed Sensitivity Design - Application
For mixed sensitivity design, the methodology ioetll in Chapter 3.3 was used.
In that section, the tern®&andSKwere identified as important design aspects far thi

system. This reduces the quantities to minimizaéesign as:

H SV H (4.3.1)

SKw,

To apply this control to a MIMO system, a matrixveights was chosen for each input.
The performance weighty,, uses Eq. 4.1.1 as its basis. For margin pressure
performance weighting, A=0.455=0.001 Hz and M=10. For velocity performance
weighting, A=0.05w=0.8 Hz and M=2. The control effort weight,,wvas set to 1/100.
These design values are the final control values @ération during the design process.
The controllerK, was determined via optimization using the weigiptinatrices and P,

as defined in Eg. 3.3.2. One drawback of mixedis@ity control is that the controller,

K, is high order. To reduce the model, techniquabned in Skogestad and
Postlethwaite were used. The linear responsegpairgputs can be seen in Figures 4.3.1

and 4.3.2.
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Margin Pressure Mixed Sensitivity Control on Linear Model
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Fig. 4.3.1 — Margin pressure step response for liae mixed sensitivity

Velocity Mixed Sensitivity Control on Linear Model
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Fig. 4.3.2 — Velocity step response for linear migesensitivity
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From Figure 4.3.1, it can be seen that the respiomsefor margin pressure is extremely
fast and that the overshoot and settling time ig la&gge. The velocity response in
Figure 4.3.2 shows a much better response. |bésgha slow rise time but lacks
overshoot and settling time issues that are presghe margin pressure response. Also,
the steady-state error is within acceptable bourdie iterative process used to create
these weights was done via examination of nonlinesponse. It was found that the
inputs and output pairs were highly coupled, arad the only way to get proper response
in velocity was to quicken the response in margasgure. This is what leads to such an
atypical response in the margin pressure respofise.nonlinear responses can be seen

in Figures 4.3.3 and 4.3.4.

Margin Pressure Tracking for Mixed Sensivity H-inf
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Fig. 4.3.3 — Margin pressure response for mixed ssitivity control on the nonlinear
model
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Velocity Tracking for Mixed Sensivity H-inf
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Fig. 4.3.4 — Velocity response for mixed sensitiyittcontrol on the nonlinear model
Several interesting aspect of the system can befsa® the application of this
controller. In Figure 4.3.3, the strong coupliregeeen input and output pairs can be
seen. The margin pressure response follows tearlipehavior of slowly approaching
the correct steady-state behavior over time, lma shows response to the square wave
signal being commanded for the velocity. The vidyaesponse in Figure 4.3.4 shows

acceptable rise time and steady-state is withiratioeptable bounds.

4.4 MacFarlane-Glover H,, Loop-shaping — Application

MacFarlane-Glover (MGIH., loop shaping utilizes a PID design for performance
and creates a controller that improves robustn&bss controller bridges the gap
between SISO PID design and MIMQ), robust control design. To design the MG

controller, the initial PID controller was used ahd robustness controller was created
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using optimization techniques. To tune the systawdifications to the PID can be made
but with emphasis remaining on performance rathan stability. However, because one
research goal was to add robustness to a systdmuviiesigning a new controller,
modifying the PID was not appropriate. The onlgige variable that remained was
tuningy.e; Which severely limited the flexibility of this dgs. The system control model

is as follows:

K(s) = C(s) I— G(s) |

Fig 4.4.1 — Control schematic for MacFarlane-Glovecontrol

In Figure 4.4.1K(s) is the stabilizing controller arn@d(s)is the PID controller governing
performance. Implementation suffers from the spneblem as the MS control design:
high order system with fast poles. This problerallisviated with model order reduction.
The linear responses for margin pressure and \tgloan be seen in Figures 4.4.2 and

4.4.3 respectively.
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Margin Pressure MacFarlane-Glover Control on Linear Model
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Fig. 4.4.2 — Margin pressure step response for line MacFarlane-Glover
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The margin pressure response in Figure 4.4.2 sbhowes again very quick rise time
characteristics as well as quick settling timeke $teady-state error associated with the
response is large and exceeds the 15% designeetgnt. The velocity response in
Figure 4.4.3 shows a slower rise time than the IRIDdoes show increased damping as
evident by the reduction in overshoot. It showdnoted that both linear responses
exhibit increased stability in the form of incredsiamping that reduces oscillations in
the response seen in the PID controller. The resgmfor the nonlinear model can be

seen in Figures 4.4.4 and 4.4.5.
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Fig. 4.4.4 — Margin pressure response for MacFarlaGlover control on the
nonlinear model
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Velocity Tracking for McFarlane-Glover H-inf
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Fig. 4.4.5 — Velocity response for MacFarlane-Gloveontrol on the nonlinear
model

From Figure 4.4.4, the margin pressure responsibiexquick rise time and quick

settling time and also shows steady-state restsare within the acceptable 15% range.
Furthermore, the margin pressure result showsthieatontrol routine did achieve a
certain level of decoupling. The margin pressesponse is not heavily affected by the
square wave commanded velocity. In Figure 4.%%dver, the velocity response did
not reach satisfactory results. The velocity resgoshows very slow response to the
commanded inputs causing the system to never teaaminimum commanded velocity.

This results in very poor tracking and poor steatife response.
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4.5 Two Degrees-of-freedom HControl — Application

The two degrees-of-freedom controller has one pyrddference in its control
design: instead of controlling a single error sigithis controller routine utilizes both
measured state signals and reference input sigapirately. This allows the designer to
prescribe performance characteristics for the ddgnacking response. This controller
uses the PID controller designed for performanakiaput reference characteristics to
define the desired closed-loop response; an optoratoller algorithm is used to find a
controller for the input criteria and creates atoalter that adds robustness to the system.
The scheme used for the system can be seen ineR3gbd.

The desired closed-loop transfer functi®g;, is defined as:

o’
T.(s)= L 451
ref( ) Sg +2ZCL)nS+C()§ ( )

A matrix of desired closed-loop transfer functiamsnade with the diagonal terms being
the transfer function associated with each outphile the off diagonals are zero.

Having zeros in the off diagonal terms help enshia¢ coupling between input/output
pairs does not occur. For margin pressure, thieedesatural frequency is 2.1 Hz and the
desired damping ratio is 0.7. For velocity, theick natural frequency is 1.7 Hz and the
desired damping ratio is 0.7. The damping ratiwsbth represent a 5% overshoot. The
value of natural frequency was found iterativelyttigl and error in tuning the
performance of the controller. It should be ndteat natural frequency was solely
modified due to bandwidth limitations driving thentrol deficiencies. The response of

the desired closed-loop matrikes, can be seen in Figure 4.5.1.
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Step Response
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Fig. 4.5.1 — Step response of the desired closedgdransfer function matrix

In Figure 4.5.1, both responses exhibit no stedaltyg ®rror, minimal overshoot and fairly

quick rise and settling times. The linear simalasi of the control routine can be seen in

Figures 4.5.2 and 4.5.3.
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Margin Pressure 2 Degree-of-freedom Control on Linear Model
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Fig. 4.5.2 — Margin pressure step response for liae 2 degrees-of-freedom control

Velocity 2 Degree-of-freedom Control on Linear Model
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Fig. 4.5.3 — Velocity step response for linear 2 geees-of-freedom control
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In both Figures 4.5.2 and 4.5.3, it can be seenbibth linear responses closely match the
desired closed-loop responses. In both casesesiidis are far superior to the responses
from the PID controller. In fact, the responseserable the desired closed-loop
performance much more so than the PID design. Blotis do show an increase in
overshoot with respect to the desired but the as@eloes not cause the response to go
beyond the performance bounds. The velocity piterestingly, shows a bit of the non-
minimum phase behavior that is present in the syst€he nonlinear results can be seen

in Figures 4.5.4 and 4.5.5.
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Fig. 4.5.4 — Margin pressure response for 2 degree$-freedom control on the
nonlinear model
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Velocity Tracking for 2-Degree of Freedom H-inf

Signal
Trackin
0.55 ‘ Ing
|
|
0.5 e
|
|
|
0.45 ‘
K |
E |
oV R e e e R B el e AR I
Q |
o |
o |
> |

03F-b-—--fp- e

(I e H. A bL:

0.25——t—— 0t ey

0.2

Time, sec

Fig. 4.5.5 — Velocity response for 2 degrees-of-&édom control on the nonlinear
model
In Figure 4.5.4, it can be seen that margin presshows a high degree of decoupling
within the system as well as much improved steddtesesponse. The effects of the
velocity modulation can still be seen every sedouidthe effects are greatly reduced
compared to the other controllers. In Figure 4.8 velocity performance possesses a
fast response time and shows no high frequencylaigmms. The response time,
however, was not as fast as that of the PID cdetroihich indicates a slight
degradation in performance for an increased amofurdbustness. The same non-
minimum phase response is present in the nonlgigarlation. In both plots, but in the
velocity response most strongly, the desired closp-response is closely represented.
Once again, this controller is high-order and nexpumodel order reduction

similar to both the Mixed Sensitivity and MacFaga@lover responses. To show that the
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controller is indeed high order, the pz-map oftitlke degrees-of-freedom controller can

be seen in Figure 4.5.6.

PZ Map for 2DOF Pre-Controller Reduction
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Fig. 4.5.6 — PZ-map for 2 Degrees-of-freedom contier prior to reduction

From Figure 4.5.6, it can be seen that the coetretkhibits 21 poles with two very fast
poles. These commands are very demanding on #tensyand difficult to achieve.
Also, these poles are very far from the remaindé¢h®poles. These two poles were
removed with model order reduction. The pz-mathefreduced controller can be seen

in Figure 4.5.7.
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PZ Map for 2DOF Post-Controller Reduction
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Fig. 4.5.7 — PZ-map for 2 Degrees-of-freedom contier post reduction

From Figure 4.5.7, it can be seen that the coetreis reduced to T®rder and
removed the two extremely fast poles. This reduckeaves a controller that, while still
having a relatively fast pole at roughly 100 HZasless demanding than the original.
The model was reduced to"™6rder due to it being the smallest order achie it

retained the performance of the controller.
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Chapter 5

TIME DOMAIN ANALYSIS OF ROBUSTNESS

5.1 Uncertainty Cases

Robustness characteristics can be seen in thedtimain. A robust system
maintains performance and stability independenthefperturbations or changes in the
system dynamics. Perturbations were introducezhbh system by applying positive or
negative bias. The Positive bias included: +250fdsias force, an increase to fluid bulk
modulus of +33%, an increase to viscous frictiontB$% and an increase of the
discharge coefficient by +0.1. The negative castided: -250Ibs of bias force, a
decrease to fluid bulk modulus of -33%, a decréasgscous friction by -25% and a
decrease of the discharge coefficient by -0.1. s&éhmas values fall within the range of
predicted uncertainty outlined in Table 2.4.2. &ltttat this is just one possible
perturbation of the system and is strictly illustre; other values could have been

chosen. The results of this analysis follow.

5.2 Time Domain Responses

The time domain response for each control systmbe seen in Figures 5.2.1-
5.2.8. It is expected that the PID controller é&xisithe worst robustness characteristics
while the modern controllers exhibit improved roimess. The PID response will be
examined first. In Figure 5.2.1, the margin pressesponse for PID can be seen.

Also, in Figure 5.2.2, the velocity response fdDhan be seen.
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Margin Pressure Tracking for PID
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Fig. 5.2.1 — Margin pressure robustness for PID cdrol
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Fig. 5.2.2 — Velocity robustness for PID control
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From both Fig. 5.2.1 and Fig. 5.2.2, it can be gbanhthere exists a large degree of

variation between the two test cases and the nasediresponse. In both outputs, the

positive bias force causes the response to shoerlogcillation while the negative bias

force shows greater tendency towards oscillatiahshower response times.

The mixed sensitivity controller response willddeamined next. In Figure 5.2.3,

the margin pressure response can be seen andureSd.4, the velocity response can

be seen.
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Fig. 5.2.3 — Margin pressure robustness for the M8ontroller
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Velocity Tracking for Mixed Sensivity H-inf
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Fig. 5.2.4 — Velocity robustness for MS controller
From Figure 5.2.3, it can be seen that the mangiagure shows robustness similar to
that of the PID. Though the responses lack theuswtnaf oscillations seen in PID, there
is a definite difference between the bias casdw positive cases make the oscillatory
response much worse while the negative bias smeailhie However, in the velocity
response from Figure 5.2.4, there is an improvenmerttbustness. Here too the positive
case shows increased oscillation and the negatiwe shows smoothing but the deviation
from the non-biased case is less pronounced.

The MacFarlane-Glover controller is examined néite margin pressure
response can be seen in Figure 5.2.5 while thewglesponse can be seen in Figure

5.2.6.
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Margin Pressure Tracking for McFarlane-Glover H-inf
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Fig. 5.2.6 — Velocity robustness for MG controller



The margin pressure response in Figure 5.2.5 shosedly improved robustness
characteristics compared to the previous two ctiatedo Here it can be see that neither
the positive nor negative case varies much overgsgonse. The negative bias force
shows an increase in oscillations while the posibias smoothes out the response
though neither is severe in deviation from the b@sed response. In Figure 5.2.6, a
drastic improvement in robustness can be seenth@&tdias case deviates from the non-
biased response a significant amount. With redpeitte prior two controller schemes,
this control shows drastically improved robustngsasracteristics.

Finally, the two-degree of freedom controller xamined. In Figure 5.2.7, the
margin pressure response can be seen, while imé=tgR.8, the velocity response can be

seen.
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Fig. 5.2.7 — Margin pressure robustness for 2DOF odroller
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Velocity Tracking for 2-Degree of Freedom H-inf
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Fig. 5.2.8 — Velocity robustness for the 2DOF contiler

From Figure 5.2.7, it can be seen that the mangiagure shows very good robustness
characteristics. The negative bias case does saunse high frequency oscillations to
appear in the result but they are small. This stiess is comparable to the robustness
shown in Figure 5.2.5 for the MacFarlane-Glovertoater. However, when examining
Figure 5.2.8 for velocity response, it can be dbahthe robustness characteristics are
the best out of all controllers. The time respoofsthe two bias cases for velocity do not
show increased oscillation that the other contrslexhibited. Both bias cases show
responses that remain very close to the nominakinelile also keeping dynamic

responses similar.
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5.3 Time Domain Analysis Conclusions

The time domain analysis shows that the robustegssctations for the
controller systems were accurate. Each moderrmatertshowed progressively
improved robustness characteristics over the lagewhe PID showed the poorest
robustness characteristic. Though examining the iomain gives a good indication of
relative robustness, it does not show a completiei@. Robustness analysis in the
frequency domain provides a much more complete welow each system will respond

under uncertain perturbations.
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Chapter 6

FREQUENCY DOMAIN ANALYSIS OF ROBUSTNESS

6.1 Frequency Domain Robustness Principles

To evaluate the improved robustness of these alters more extensively than
the time domain analysis,Hhorm analysis techniques are used. These rolasstne
characteristics are defined in four ways: nomgtability, nominal performance, robust
stability and robust performance. Nominal stapilésts determine whether or not the
nominal system is stable without any variationhea system model from nominal.
Nominal performance tests determine whether othmtontrol system with the nominal
model meets the desired performance requiremétabust stability tests determine
whether or not the control system is stable fopatturbations of the model in the
uncertainty set. Robust performance determinesheher not the performance
objective is satisfied for all perturbations of thedel in the uncertainty set. All
robustness characteristics require that nominallgtaholds true. These characteristics
are evaluated over a frequency range using thetstad singular value of the transfer
function matrix. The maximum structured singulaluesis the H, norm of the system
just as the maximum magnitude of the frequencyaresp of a SISO system is an H
norm. These criteria are defined using the geizedbplant modelP, and the controller,
K, to create the system matrlX, The transformation d® andK to N can be done using
a lower linear fractional transformation. This gees can be seen visually in Figure

6.1.1.
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Fig. 6.1.1 — Transforming P and K into the NA structure [6]
MathematicallyN is defined as:
A
N =F (P,K)=R, + PB,K(l _P22K)_1P21 (6.1.1)

To define the robustness characteristics, thetstred singular value must be presented.

The structured singular value, of a plantG is defined as:

1
= 6.1.2
 (©) mintk,|defl —k,GA) = 0 for structureda, o°(4) < 3f (61.2)

whereky, is a scaling factor that makes the malkg.G4 singular. The robustness
definitions to be applied to each control systemderived in Skogestad and
Postlethwaite. The following equations are theustbess characteristics used for

analysis in this research:

NS: N is stable internally (6.1.3)
NP:T(Ny,) =y, <1 Dw (6.1.4)
RS: x4, (N,;) <1 Ow (6.1.5)
RP: 1, (N(jw)) <1 Ow (6.1.6)
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To satisfy all robustness parameters, each valist beubelow 1 (absolute) or O dB over
all frequencies. Nominal stability was determimleding the control design phase by
examining the closed-loop pole locations. Thelstadgsponses in the time domain
analysis confirm nominal stability. As discussedCihapter 2, the uncertainty for the

system is modeled as output multiplicative uncatyai

6.2 Applying Robust Analysis to PID
To apply robust analysis, the system must be nesblify adding an uncertainty
model, as seen in Figure 2.4.1. The generalizaatBlis defined for each system. For

the control structure outlined in Chapter 4.2,dbaeralized plant is:

0 0 w, G,
P=lw, -w, -w,G, (6.2.1)
I =1 -G

whereGs is the shaped plant, is the output uncertainty amg is the performance
weight. This process can be seen in AppenditrCFigure 6.2.1, the robustness norms

are plotted for PID control.
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Robustness Analysis for PID

Magnitude, abs

Frequency, Hz

Fig. 6.2.1 — Robustness analysis for PID controller

It can be seen from Figure 6.2.1 that PID conto@sinot satisfy the robustness criterion.
Nominal performance peaks at 1.9, robust stalpktgks at 17.0 and robust performance
peaks at 19.0. This information means that thecsedl PID controller will not perform

to the desired specifications under all plant mgaeturbations and that some plant

perturbation exists that will cause the systemetcome unstable.

6.3 Applying Robust Analysis to Mixed Sensitivity ©ntrol

The generalized plant for the mixed sensitivitptecoller is identical to that of the
PID controller because they both have the sameaasttucture; Eq. (6.2.1) is the
generalized plant for this analysis. The robustrbsracteristics of mixed sensitivity

controller can be seen in Figure 6.3.1.
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Robustness Analysis for Mixed Sensivity H |

Magnitude, abs

Frequency, Hz

Fig. 6.3.1 — Robustness analysis for the mixed séngty controller

From Figure 6.3.1, it can be seen that mixed sgingishowed improved robustness in
some aspects, but also shows a higher peak irotihéal performance. Nominal
performance peaks at 16.3, robust stability pealt 8 and robust performance peaks at
16.9. The nominal performance peak is consistéthttive poor decoupling and poor
tracking in the margin pressure. However, deghigesetback in nominal performance,
both of the remaining robustness characteristiosveld improvement over the PID

controller.
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6.4 Applying Robust Analysis for MacFarlane-GloverH,, Loop-shaping Control
The generalized plant for robustness analysidtacFarlane-Glover HLoop-

Shaping control can be seen as:

0 0 w,G,
P=l-w, w, wG, (6.4.1)
=1 I G

S

This process can be seen in Appendix D. Ploteefdbustness characteristics can be

seen in Figure 6.4.1.

Robustness Analysis for McFarlane Glover H

>
o

Magnitude, abs
P N w
(6] N (6] w (6] BN

[y

o
o

Frequency, Hz

Fig. 6.4.1 — Robustness analysis for MacFarlane-Gler H,, loop-shaping control
From Figure 6.4.1, it can be seen that MacFarlaloees showed improved robustness in
all aspects despite poor performance in velocityrod in the time domain simulations.
Nominal performance peaks at 1.7, robust stalpkstks at 4.7 and robust performance
peaks at 5.3. These results are significantlyebétian the original PID control while

also being superior to mixed sensitivity.
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6.5 Applying Robust Analysis for Two Degree-of-Fregom H,, Loop-shaping

Control

The generalized plant for two degree-of-freedomldbp-shaping control is

defined as:
0 0 w, G,
w, -w -wG
p= P P pes (6.5.1)
| 0 0
0 I G,

This process can be seen in Appendix D. Figurd &Bows the set of plots for the
robustness parameters for the two degree-of-freemtmtroller scheme.

Robustness Analysis for 2 Degree of Freedom H_
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0.6f -
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=
o
I

Frequency, Hz

Fig. 6.5.1 - Robustness Analysis for two degrees-oéedom H,, Loop-shaping
control

From Figure 6.5.1, it can be seen that the twoakegf-freedom system shows great

improvements over all the previous controllers.miwal performance peaks at 1.5,
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robust stability peaks at 0.4 and robust perforragreaks at 1.9. It should be noted that
this is the only system to successfully satisfyusitstability which is significant. This
implies that for any possible plant perturbatioattwas modeled, the system will be

stable.

6.6 Robustness Conclusions
From the previous analysis, it was shown that stiess characteristics
associated with the modern controllers were sup&i®ID. The results of this analysis

can be summarized in Table 6.6.1.

Table 6.6.1 Summary for frequency domain robustaeaby/sis

Peak Value (absolute)

Nominal Performance  Robust Stability Robust Performance

PID 19 17.0 19.0

Mixed Sensitivity H, 16.3 10.3 16.9

MacFarlane-Glover H

Loop-Shaping L7 a1 53

Two Degree-of-Freedom

H,, Loop-Shaping 15 0.4 1.9

From Table 6.6.1, it can be seen that these manterinol candidates show improved
robust stability and improved robust performancerdtiat of the PID controller. Also,

with the exception of MS control, even nominal periance is improved.
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These controllers are able to satisfy neither nahperformance nor robust performance,
but it can be seen that these modern control cateidhow a trending that moves
towards satisfying robustness characteristicsmRfeese results, it shows that the more
advanced controllers are able to handle more adgesrturbation. The results of the
frequency domain analysis support what was seémeitime domain analysis. In the
time domain all the test case perturbations weriglst though the frequency domain
analysis shows that only one controller is robustible. This is not contradictory, but
instead means the two perturbation cases usetiddimhe analysis existed inside the set

of possible models that would remain stable forabetrollers.
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Chapter 7

CONLUSIONS

7.1 Overview

As seen from the work on this project, the abititymodern controllers to provide
improved performance and robustness for an unodngairaulic system was very good.
The controllers, for the most part, improved parfance and also improved robustness.
In the time domain, it was observed that the modentrollers provided improved
robustness to plant perturbations compared to theaP seen in Figures 5.2.1-5.2.8.
Performance was sacrificed on the mixed-sensitaatytroller and also on the
MacFarlane-Glover controller for the sake of robess, which was expected to some
degree. With respect to decoupling the systemmibeern controllers did a better job
than the PID for all cases except the mixed-setitsitcontroller.

Overall the two degrees-of-freedom controller sédwhe best improvement in
robustness without sacrificing performance as sedmable 6.6.1. There are several
advantages that are garnered by the two degrefgeeafoem controller. It possesses the
best robustness characteristics and performancef ailltthe controllers tested. The
closed-loop characteristics can be designed dyratth the controller via the reference
input modeling, which allows the designer bettartoal over the dynamics of the
system. The two degrees-of-freedom controller ptswed to be the easiest of all the

controllers to design.
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7.2 Limitation of H,, Control

However, there are drawbacks to these controlleerses. For every controller
algorithm, higher-order controllers were producésciv could have high demands for the
processor both during design and simulation an@fdoard processors running the
controller. Model reduction can alleviate somehaf demand on the processors but that
is another step in design that takes an iteratigegss to determine, which equates to
longer design times. The controllers also reqtieeknowledge of a system plant model
to design the controller. This would prove diffiicto achieve if a system is not well
known or not well modeled. Tuning the controlleitihe-field would require knowledge

of the controller algorithm and additional procegspower.

7.3 Scope of Future Work

Future work for this research includes testingdbetrollers on hardware and
evaluating the appropriateness on real industradhimes. Furthermore, the controller
can be expanded to handle all four valves indep@hdgso that operating conditions such

as regenerative flow could be evaluated.

72



Appendix A
MATLAB CODE FOR MIXED SENSITIVITY
For mixed sensitivity design, the methodology ot in Chapter 3.3 was used. In that
section, the termSandSKwere identified as important design aspects fa slgstem.

This reduces the quantities to minimize in desigin a

Sw

To apply this control to a MIMO system, a matrixveights was chosen for each input.

The 2x2w, andw, matrices are assembled.

%%H-infinity mixed sensitivity%%%%%%%%%%%%%%%% %% %% %
%1 - Margin Pressure

%2 - Velocity Control

Al=.1;

A 2 =.05;

bandwidth_1 = .001*2*pi;

bandwidth_2 = .8*pi*2;

M_1 = 10;

M 2=2;

w_pl =tf([1/M_1 bandwidth_1], [1 bandwidth_1*A 1])
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2])

muv=1/100;
numu=[muvy;

denu=[0 1];
sysWu=tf(humu,denu);

numu=[muvy;

denu=[0 1];
sysWu2=tf(numu,denu);
w_u=[sysWu 0;0 sysWu2]j;

w_p=[w_pl 0;0 w_p2]
The genearalized plant for controller design is

73



P= W,

w, -w,G
0
I -G
P is found via block diagram reduction outlined @tton 3.3. The generalized plant is
packed and the values for design are sehirtisyn.mfrom the mu analysis and synthesis
Matlab tool box [9]. gmin = minimum gamma valuey@x = maximum gamma value,
tol = tolerance. The returned controller is ungakransformed into a state-space
representation
dim=2;
P_hinf=[w_p -w_p*Gs;
O*eye(dim) w_u;
eye(dim) -Gs];
ssP=minreal(ss(P_hinf));
[aP,bP,cP,dP]=ssdata(ssP);
pckP=pck(aP,bP,cP,dP);
gt=1;gmin=0.1;gmax=15;tol=1e-3;epr=1e-12;epp=1e82;
nc_hinf=dim;nm=dim;
[Khinf,cl,gf,ax,ay,hx,hy]=hinfsyn(pckP,nm,nc_hinfygn,gmax,tol,rm,epr,epp,qt);

[aK,bK,cK,dK]=unpck(Khinf);
ssK=ss(aK,bK,cK,dK);

Due to the high order of the controll&t, there were many fast poles that affected
performance and simulation. To reduce these pnahl@ model reduction method found
on page 466 of Skogestad [2] was used. It reqamagerative process dropping the
order so that the dimensions are as small as pegzibstill stable. In this case, the
system was reduced to"18rder.

%Model Reduction Page 466 Skogestad

sysred=pck(ssK.a,ssK.b,ssK.c,ssK.d);

sysd=strans(sysred);

syst=strunc(sysd,13);
sysr=sresid(sysd,13);
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[asysr,bsysr,csysr,dsysr]=unpck(sysr);
tfK=ss(asysr,bsysr,csysr,dsysr);

To test for nominal performance and robust perfarceaperformance requirements must

be laid out

%1 - Margin Pressure
%2 - Velocity Control
M_1=2; % *100%
bandwidth_1 = 2*pi*2;
A _1=.15; % *100%

M 2=2;
bandwidth_2 = 1.5*pi*2;
A_2=.05;

w_pl = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1])
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A 2])

w_p(1,1) =w_p1;

w_p(2,2) =w_p2;

w_p(1,2)=0;

w_p(2,1)=0;

To determine robust characteristics, the plantimatis formed. P, the generalized

plant model, is defined for output uncertainty.al matrix is:

0 0 wG,

=lw, —w, -w,G

I =1 -G,
In this form,w;, is the matrix of performance requirementsjs the uncertainty bound
andGq is the plant. The matrix is turned iritbvia the linear fractional transformation
which can be compiled using the Matlab functionpifusing the matrix P and the

controllers. The code ends with the code usediatiotipe robustness specifications.

Dimensions are 2x2 hence dim=2. WaSS jsnihe code.
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P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; w_p -w-yp_p*Gs; eye(dim,dim) -
eye(dim,dim) -Gs];

N=Ift(P,tfK);
N=pck(N.a,N.b,N.c,N.d); %competes the packed form
Nf = frsp(N,w); %examines the fuegcy response over the frequency

% mu for RP

blk = [2 2; 2 2]; %creates the block for the mumeoand
[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c¥ocalculates the structured singular
value

MuRP = sel(mubnds,"",1); % seleatsabrrect structured value
pkvnorm(muRP) %computes norm of the condition
% mu for RS

Nrs=sel(Nf,1:2,1:2); [mubnds,rowd,sens,rowp,rowgi€hirs,[2 2],'c");
MURS = sel(mubnds,"’,1); pkvnorm(muRS)

% mu for NP (= max. singular value of Nnp)

Nnp=sel(Nf,3:4,3:4); [mubnds,rowd,sens,rowp,rowgi£hinp,[2 2],'c);
MuNP = sel(mubnds,"',1); pkvnorm(muNP)

figure(45)
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),"-k";
hold on
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),"--b")
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),-.r")
hold off

grid, xlabel('Frequency, Hz"), ylabel('Magnitudbsa
legend('RP','RS','NP")

axis tight

title('Robustness Analysis for Mixed Sensitivity finfty}")

76



Appendix B

MATLAB CODE FOR MACFARLANE-GLOVER LOOP-SHAPING

K(s) > C(s) — G(s) |

MacFarlane-Glover (MGH., loop shaping utilizes a PID design for performaacd
creates a controller that improves robustnesss @tmtroller bridges the gap between
SISO PID design and MIM®I,, robust control design. The pldnis the shaped-plant.

coprimeunc.ms an m-file from Skogestad and Postlethwaite foand10].

L=Gs*comp;

gamrel=1.00000001,

[Ac,Bc,Cc,Dc,gammin]=coprimeunc(L.a,L.b,L.c,L.d,gaad);

Due to the high order of the controll&t, there were many fast poles that affected
performance and simulation. To reduce these pmal@ model reduction method found
on page 466 of Skogestad [2] was used. It reqamagerative process dropping the
order so that the dimensions are as small as pegzibstill stable. In this case, the
system was reduced to"16rder.

%Model Reduction Page 466 Skogestad

sysred=pck(Ac,Bc,Cc,Dc);

sysd=strans(sysred);

syst=strunc(sysd,16);

sysr=sresid(sysd,16);
[Ac,Bc,Cc,Dc]=unpck(sysr);
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To test for nominal performance and robust perfarceaperformance requirements must

be laid out

%1 - Margin Pressure
%2 - Velocity Control
M_1=2; % *100%
bandwidth_1 = 2*pi*2;
A_1=.15; % *100%

M 2=2;
bandwidth_2 = 1.5*pi*2;
A 2 =.05;

w_pl =tf([1/M_1 bandwidth_1], [1 bandwidth_1*A 1])
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2])

w_p(1,1) =w_p1;

w_p(2,2) = w_p2;

w_p(1,2)=0;

w_p(2,1)=0;

To determine robust characteristics, the plantimatis formed. P, the generalized

plant model, is defined for output uncertainty.at matrix is:

0 0 w,G,
P=l-w, w, wG
ll I G

s
In this form,w, is the matrix of performance requirementsjs the uncertainty bound
andGs is the plant. The matrix is turned iftovia the linear fractional transformation
which can be compiled using the Matlab functionpifusing the matrix P and the
controllers. The code ends with the code usediatictipe robustness specifications.
Dimensions are 2x2 hence dim=2. WaSSJsnhe code.

dim=2;

P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; -w_p wwp p*Gs; -eye(dim,dim)
eye(dim,dim) Gs]; %creates the generalized plant
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N=Ift(P,W1*sys_mac);

N=pck(N.a,N.b,N.c,N.d); %competes the packed form

Nf = frsp(N,w); %examines the fuegcy response over the frequency
% mu for RP

blk = [2 2; 2 2]; %creates the block for the mumeoand
[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c¥ocalculates the structured singular
value

MuRP = sel(mubnds,"',1); % seledtescorrect structured value
pkvnorm(muRP) %computes norm of the condition

% mu for RS

Nrs=sel(Nf,1:2,1:2); [mubnds,rowd,sens,rowp,rowgi£hirs,[2 2],'c);

MURS = sel(mubnds,"’,1); pkvnorm(muRS)

% mu for NP (= max. singular value of Nnp)

Nnp=sel(Nf,3:4,3:4); [mubnds,rowd,sens,rowp,rowgi£hinp,[2 2],'c);

MuNP = sel(mubnds,"',1); pkvnorm(muNP)

figure(43)
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),"-k")

hold on
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),"--b")
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),-.r")

hold off

grid, xlabel('Frequency, Hz"), ylabel('Magnitudbsa
legend('RP','RS','NP")

axis tight

title('Robustness Analysis for McFarlane Glover kinffy}")
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Appendix C

MATLAB CODE FOR TWO DEGREES-OF-FREEDOM LOOP-SHAPING

Shaped Plant

| |
| |
|
(3 [ t y(t
Oy w > K, > Vi X% g Y
| Shaping Filter :
L _______ .
K <

Designing the 2 degrees-of-freedom Ebop-shaping controller uses the Matlab code
laid out. Each step of code and how to use it malexplained in detailW; is the PID
controller designed for performance for the clokegh system. Creating this controller
is done by following standard PID design metho8slect the desired closed-loop
transfer functiorT,¢; between the commands and controlled inputs. ddde section
uses standard second order dynamic transfer fursctiat specify dynamic performance

for each reference input, margin pressure and itgloc

wn_p=2.1*2*pi; m % Natural frequency for margirepsure

zeta_p =0.7, % Damping ratio for mangiassure
wn_v=1.7*2*pi; % Natural frequency for velocity
zeta_v=0.7; % Damping ratio for velgcit

Trefll = tf(fwn_p~2],[1 2*zeta_p*wn_p wn_p"2]); %dargin pressure reference model
Tref22 = tf(flwn_v~2],[1 2*zeta_v*wn_v wn_v~2]); %elocity reference model
Tref=ss([Trefll 0;0 Tref22]);

The algorithm that will derive the optimized coriiieo requires that the shaped plant,
G*W;, and the desired closed-loop transfer funcfios, be in the packed matrix form.
G_shaped = Gs*W1; % shaped plant

Gs_pck = pck(G_shaped.a, G_shaped.b, G_shapedbafged.d); %convert into
packed form
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Tref_pck = pck(Tref.a, Tref.b, Tref.c, Tref.d); ®overt into packed form

p is set to a value between 1 and 3. This paransetescalar value that lets the designer
determine emphasis on model matching in the opétiur at the expense of robustness.

Increasing will place more emphasis on model matching.

rho=1.1;

With the shaped plant, the desired closed-loopimatrdp, the optimization is run to
determine the controller. The Matlab file ‘*hinfZtdoan be found on [11].
This file is simply the optimization routine usexfind the controller. To use the

controller, it should be unpacked and, in this casmed into state-space.

K_2dof_pck=hinf2dof(Gs_pck, Tref_pck,rho);
[Ak2dof,Bk2dof,Ck2dof,Dk2dof]=unpck(K_2dof_pck);
K_2dof=ss(Ak2dof,Bk2dof,Ck2dof,Dk2dof);

Due to the high order of the controll&t, there were many fast poles that affected
performance and simulation. To reduce these pmal@ model reduction method found
on page 466 of Skogestad [2] was used. It reqamagerative process dropping the

order so that the dimensions are as small as pegzibstill stable. In this case, the

system was reduced to"18rder.

sysred=pck(K_2dof.a,K_2dof.b,K_2dof.c,K_2dof.d);
sysd=strans(sysred);

sysr=sresid(sysd,19);
[asysr,bsysr,csysr,dsysr]=unpck(sysr);
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K_2dof=ss(asysr,bsysr,csysr,dsysr);

The controller given by the optimization is a meghofK; andK,. The model calls for
two controller gains, one for the feedback and fon¢he reference transfer functions.
Because there are 2 inputs and 2 outpUtsad dimensions of 2x4. The upper quadrant
is K; while the lower iK,. Therefore, the controller was split into two 2dhtrollers.

W is created by looking at the DC gain of the clokegh system and the reference

transfer function. This code is directly a tratisia of the equation:

W = [(I ~GsoK o )_le,o K 1,0]_1-'—ref 0

The code follows:

K1=K_2dof(;,1:2); K2=K_2dof(;,3:4); %extract K1 driK2
Hinf2dof_cl=series(K1,feedback(G_shaped,-K2)); Bbfalosed-loop system for Wi
Wi_2dof=inv(dcgain(Hinf2dof_cl))*dcgain(Tref); %atculate Wi

To test for nominal performance and robust perfarceaperformance requirements must

be laid out

%1 - Margin Pressure
%2 - Velocity Control
M_1=2; % *100%
bandwidth_1 = 2*pi*2;
A _1=.15; % *100%

M 2=2;
bandwidth_2 = 1.5*pi*2;
A 2 =.05;

w_pl = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1])%form performance weight
TFs

w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2]Y6form performance weight
TFs

w_p(1,1) =w_p1;

w_p(2,2) = w_p2;
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w_p(1,2)=0;
w_p(2,1)=0;
To determine robust characteristics, the plantimatis formed. P, the generalized

plant model, is defined for output uncertainty.al matrix is:

0 0 wG

P w, —w, -w,Gg
I 0 0
0 I Gg

In this form,w, is the matrix of performance requirementsjs the uncertainty bound
andGgs is the plant. The matrix is turned iftovia the linear fractional transformation
which can be compiled using the Matlab functionmifusing the matrix P and the
controllers. The code ends with the code useditotipe robustness specifications.

Dimensions are 2x2 hence dim=2. WaSSj$nihe code.

dim=2;

P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; w_p -w-yp_p*Gs; eye(dim,dim)
eye(dim,dim)*0 eye(dim,dim)*0; eye(dim,dim)*0 eya&fddim) Gs]; %creates the
generalized plant

N=Ift(P,[W1*K1*Wi_2dof W1*K2]); %completes the tiear fractional transformation
N=pck(N.a,N.b,N.c,N.d); %competes the packed form

Nf = frsp(N,w); %examines the fuegcy response over the frequency range
w

% mu for RP

blk =12 2; 2 2]; %creates the bldokthe mu command

[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c"); célculates the structured singular
value

MuRP = sel(mubnds,"’",1); % seledtescorrect structured value
pkvnorm(muRP) %computes norm of the condition

% mu for RS

Nrs=sel(Nf,1:2,1:2);

[mubnds,rowd,sens,rowp,rowg]=mu(Nrs,[2 2],'c);

MuRS = sel(mubnds,"",1);

pkvnorm(muRS)

% mu for NP (= max. singular value of Nnp)
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Nnp=sel(Nf,3:4,3:4);
[mubnds,rowd,sens,rowp,rowg]=mu(Nnp,[2 2],'c");
MuNP = sel(mubnds,"',1);

pkvnorm(muNP)

figure(1)
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),"-k")

hold on
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),"--b")
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),"-.r")

hold off

grid, xlabel('Frequency, Hz"), ylabel('Magnitudbsa
legend('RP','RS','NP")

title('Robustness Analysis for 2 Degree of Freedbrflinfty}')
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Appendix D

CREATING THE GENERALIZED PLANT P FOR ROBUSTNESS ANA LYSIS

PID/MIXED SENSITIVITY

Wo
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