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NOMENCLATURE  

Symbol Description Units 
Pp Pump pressure Pa 
PA Head-end pressure Pa 
PB Rod-end pressure Pa 
Pc Control Pressure (within the pump) Pa 
PT Tank pressure Pa 
Q1,2,3,4 Flow through each valve m3/sec 
VA Volume in head-end of cylinder m3 
VB Volume in rod-end of cylinder m3 
VC Volume of displacement control cylinder m3 

AA Head-end area m2 

AB Rod-end area m2 
AC Control cylinder area m2 

k Flow equation constant  [m3/kg]1/2 

ρ Fluid density kg/m3 
y Cylinder position m 
ymax Maximum cylinder position m 
m Mass of the cylinder and bucket kg 
F Bias Force N 
c Damping coefficient N/m/s 
b Pump damping coefficient N/m/s 
Jeff Pump moment of inertia Nms2 

θ Pump angular position Radians 
Dp Pump displacement M3 

β Fluid bulk modulus GPa 
Cd Discharge coefficient - 
z Displacement control cylinder position m 
x Pump spool valve displacement m 
TC Torque from displacement control valve Nm 
TL Torque imparted from pressure in the pump Nm 
ωp Pump speed rad/s 
Kl Leakage in the pump m3/s/Pa 
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ABSTRACT 

In this work modern robust control systems are designed and compared to 

standard techniques for a hydraulic implement system.  The system includes an 

independent metering valve (IMV) and a variable displacement pump.  The IMV is a 

powerful and versatile valve assembly.  The IMV’s inherent complexity makes classic 

control methods difficult to design.  Parameter variations and unmodeled dynamics can 

cause sluggish performance and instability in some cases.  By applying modern control, 

robustness can be improved relative to classical and single-input/single-output (SISO) 

control design techniques.  Techniques such as H∞ control have been proven effective in 

many multiple-input/multiple-output (MIMO) applications.  Linear analysis shows 

improvement in robustness characteristics of the IMV system over a conventional PID 

control scheme.  Nonlinear simulations show favorable system response and similarly 

positive robustness traits for the modern control designs. 
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Chapter 1 

INTRODUCTION 

 

Control systems need to operate under a variety of conditions.  Therefore, the 

design process for a controller includes considerations of less than ideal conditions of 

operation.  Traditionally, a controller is designed with some stability margin and then 

tested or simulated under conditions which the controller is expected to see.  This 

typically involves some trial and error between control redesign and model simulations.  

Modern control design techniques allow a designer to more easily develop a control 

system which will work in cases where the machine may be worn or manufactured in an 

unexpected way.  Therefore, modern control design techniques can be used to improve 

the reliability of machines since the control system will continues to operate over a wide 

range of adverse conditions.  H∞ control design techniques make it easier to get higher 

performance than traditional techniques.  Design of H∞ controllers involves shaping the 

maximum singular value of specified transfer functions over specific frequencies.  H∞ 

techniques also employ optimization and have more flexibility in terms of balance 

between performance and stability. 

Hydraulic systems are a good application for modern robust control design 

techniques.  Robustness is a measure of system’s ability to produce uniform performance 

and stability results under varying conditions.  Hydraulic systems tend to be designed 

with conservative performance since stability is a concern.  A more advanced controller 

may improve performance and stability robustness at the same time especially in the case 
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of multiple input, multiple output (MIMO) systems.  A number of hydraulic systems 

could be considered for robustness analysis and H∞ control design which could improve 

stability and performance.  An independent metering valve (IMV) hardware setup is a 

good application for robust control design using H∞ methods since the system has 

multiple inputs and outputs and model uncertainty.  Since the system has coupled 

dynamics, it is likely that a MIMO approach to control design will improve performance 

and robustness over single input single output (SISO) design techniques, such as 

proportional, integral and derivative control (PID). 

 

1.1 PID Limitations 

 The difficulty that arises from SISO control lies in the way different inputs and 

outputs pairs are coordinated.  As see in Zhang et. al [1] for a system with m inputs and n 

outputs, m x n individual PID controllers have to be tuned for each input-output couple.  

Furthermore, Zhang continues by explaining that if each controller has to consider the 

others, more knowledge about the system is needed and it is harder to achieve robust 

performance.  Skogestad and Postlethwaite [2] further this argument by explaining that 

stacking PID controllers in an effort to emulate MIMO control often leads to erroneous 

robustness analysis results.  SISO systems tend to show robust performance when 

nominal performance and robust stability are satisfied.  However, this is not true for 

MIMO systems.  So, stacking together SISO controls robustness analysis can be duped 

into showing robust performance where it would not truly exist.  For this system, PID 

control would result in these stacked SISO controllers that would tend to show false 

robustness results. 
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1.2 Modern Control in Hydraulic Systems 

 Unfortunately, there are few examples of modern control MIMO techniques that 

have been applied to hydraulic systems.  Active application of H∞ control has been done 

by Zhang et. al [1] on hydraulic powertrains for earthmoving vehicles.  The results of this 

research showed that H∞ provided the ability to robustly control the hydraulic powertrain.  

In the application of active hydraulic suspension explored by Chen et. al [3] it was shown 

that H∞ control could be successfully implemented.  They also examined robustness 

characteristics of H∞ control and found favorable results.  Fales et. al [4, 5] showed that 

modern control could be applied successfully to a double inverted pendulum that was 

regulated by hydraulic actuators.  However, the most applicable research comes from 

Fales and Kelkar [6] who applied mixed-sensitivity H∞ control to regulate the bucket of a 

front wheel loader.  This research successfully showed through robustness analysis that 

the controller was successful in withstanding plant perturbations. 

 

1.3 Research Objectives 

 The specific objectives of this research are to accurately model an IMV hydraulic 

system through nonlinear and linear analysis, examine H∞ control routines with increased 

robustness characteristics, apply the H∞ control routines and to analyze their responses in 

both the time and frequency domain. 
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1.4 Thesis Outline 

 Chapter 2 discusses the modeling of the IMV hydraulic system from first 

principle model through validation, linearization and linear analysis.  Uncertainty 

modeling is also examined.  Chapter 3 discusses the theory and need for each modern 

controller to be examined.  The theoretical background is important to know where robust 

design comes from and why they are needed.  Also, methods of application are discussed.  

Chapter 4 deals with applying the specific controllers to the system.  The performance 

weighting is defined and each controller is examined in the time domain on the nominal 

model.  Comparisons are drawn between the linear and nonlinear responses for each 

controller.  In Chapter 5, time domain robustness is examined for the controllers.  Each 

controller is applied to two separate perturbation bias cases and the resulting responses 

are examined to determine relative robustness.  Chapter 6 deals with robustness analysis 

in the frequency domain.  The theory behind robustness analysis is discussed and applied 

to each control routine.  This analysis gives a way to compare the control routines 

through numerical methods.  Finally, Chapter 7 contains overall conclusions about the 

research, discusses limitations to H∞ control and proposes future work. 
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Chapter 2 

IMV Hydraulic System Modeling 

 

2.1 First Principle Modeling 

 The IMV system, as seen in the schematic in Fig. 2.1.1, is a connection of four 

variable valve assemblies, a variable displacement pump and a single-rodded hydraulic 

cylinder.  Modeling techniques used throughout this section can be found in Manring [7].  

Please refer to the nomenclature section for variable names. 

 

Fig 2.1.1 – A schematic of the IMV system modeled 

Modeling began with the pressure rise rates associated with each side of the cylinder.  

This modeling was done by using the summation of flow into and out of each side, fluid 

bulk modulus, volume of each side of the cylinder and volume change rates for each side.  

The respective pressure rise rates for both the A, head side, and B, rod side, can be seen 

as: 

Q1 Q2 

Q3 
Q4 

PT 

Pp   

Vp 

Va  
Pa 

Vb    
Pb 

PS 
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  ( )A
A

A VQQ
V

P && −+−= 12

β
, (2.1.1) 

  ( )B
B

B VQQ
V

P && −+−= 34

β
. (2.1.2) 

The flow for each side of the cylinder is directed from each valve, which can be 

identified by their respective numbering.  The volumetric flow rate, Q, is modeled using 

the classical orifice equation which is based on the Bernoulli equation. 

  ASii PPkAQ −= . (2.1.3) 

This flow equation utilizes the pressure drop across each valve, the valve area and 

includes the constant k, which is defined as: 

  
ρ
2

dCk = . (2.1.4) 

The volumes and volume rise rates for each cylinder side were modeling via geometry: 

  OAA VyAV += , (2.1.5) 

  OBB VyyAV +−= )( max , (2.1.6) 

  yAV AA && = , (2.1.7) 

  yAV BB && −= . (2.1.8)  

Cylinder load dynamics were modeled using standard linear dynamics including viscous 

drag in the cylinder but not including a spring effect balancing with the forces resulting 

from pressurizing each side.  The equation of motion follows: 

  FAPAPycym BBAA +−=+ &&&  (2.1.9) 

The force, F, is a bias force nominally set to zero.  It should be noted that this model does 

not account for leakage between the two volumes. 
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 The variable displacement pump used for this project is a complex pump with 

significant internal dynamics.  The pump has internal mechanical feedback that requires 

modeling whose schematic can be seen in Figure 2.1.2. 

 

 

 

Fig. 2.1.2 – The internal mechanical feedback of the variable displacement pump [8] 
 
Pc is the pressure on one end of the displacement control cylinder.  The pressure rise rate 

is as follows:   

  )( cc
c

c AzQ
V

P && −= β
 (2.1.10) 

The volumetric flow rate in the pump is modeled using the classical orifice equation:   

  ( )cpdc PPyxkCQ −−=
2

)(
ρ

 (2.1.11) 

The equation of motion for the swash plate angle is: 

Q 

y 

z 

Ap          Ac 

θ 

Pc 

Vc 

x 
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  LCeff TTbJ −=+ θθ &&&  (2.1.12) 

where TL is the torque imparted from the pressure in the pump cylinders and TC is the 

torque from the actuator cylinder.  The discharge pressure of the pump, which is the 

supply pressure identified in other parts of the model, is calculated as the pressure rise 

rate in the discharge volume, Vp, as follows:   

  ( )PlPP
P

P PKQQD
V

P −−−= 31)(θωβ& . (2.1.13) 

where it should be noted that leakage is taken into account and DP is a function of θ.  

Also of note, only flows 1 and 3 are modeled here because only these two valves are 

being used for control.  This system feature will be covered in greater detail later.   

 The model of the valve actuators were found by fitting transfer functions and 

look-up tables to experimental data.  The transfer functions modeled current drivers in the 

system and the look-up tables related input current to output valve area. Also, hysteresis 

effects were taken into account so that the relationships present in the matching test data 

were present in the simulation of the model. 

 

2.2 Nonlinear Model Validation 

 The model used for design has some shortcomings; certain system parameters 

were not included and some subsystems were considered ideal.  These assumptions were 

made for the sake of keeping an already complex model from becoming too complex to 

use.  Also, because robust design techniques were being used, some system model errors 

can be accounted for by robustness analysis and design.  Unmodeled parameters include 

pump efficiencies and cross-cylinder leakage.  Also, constant engine speed and torque 

were assumed.  Orifice flow and pressure compensators are both considered ideal. 
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 Despite unmodeled dynamics and idealized components, the nonlinear system 

model matched test data remarkably well.  Figure 2.2.1 shows a comparison between 

experimental data and simulation data for pump displacement. 

 

Fig 2.2.1 – Data validation for pump displacement [8] 

From Figure 2.2.1, it can be seen that the simulation matched very well with the 

experimental data.  Discrepancies exist at the start of the upward step responses but the 

severity of error is not extreme.  The simulation quickly returns to match the 

experimental results.  Also, the simulation closely matches the downward step responses 

seen on the backside of the square wave signal.  Figure 2.2.2 shows a comparison 

between experimental data and simulation data for cylinder position. 
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Fig. 2.2.2 – Data validation for cylinder position [8] 

From Figure 2.2.2, it can be seen that the simulation matches the experimental data 

somewhat accurately.  The slope differences present in the comparison is due to 

unmodeled cross-cylinder leakage.  If leakage had been modeled, less pressure would be 

on the high pressure side of the cylinder causing the cylinder to move more slowly.  It 

can be seen that the simulation cylinder does indeed move faster than the experimental.  

Figure 2.2.3 shows a comparison between experimental data and simulation data for 

head-end pressure. 
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Fig. 2.2.3 – Data validation for cylinder head-end pressure [8] 

From Figure 2.2.3 it can be seen that simulation matches the experimental data very 

closely.  The model simulation closely follows the dynamics found in the pressure 

response, but once again the unmodeled leakage can be seen, specifically in the time 

spanning 0-5 seconds and 12-17 seconds.  It can be seen that in the experimental data, the 

pressure drops over periods where simulated pressure is constant.  This is the effect of 

leakage causing the pressure to drop over time.  Leakage aside, the simulation closely 

matches the experiments in all cases but the low pressure settling (below 5 MPa). 

 Overall, these modeling errors are acceptable due to the ability of the controllers 

to account for levels of uncertainty and inaccuracy.  Also, these inaccuracies can be 

encompassed in uncertainty analysis that will be presented later. 
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2.3 Linearization and Validation 

 Linearization of the systems is typically done by examining the Taylor Series 

expansion of a system about an operation point.  This method was inconvenient in this 

case because of the way the valve dynamics were modeled.  The look-up table format did 

not allow for proper differentiation.  Instead a finite-differencing method was used to 

linearize the system.  This process was carried out by my colleague in [8].  The finite-

differencing method of linearization is a numerical method for building the system 

matrices of a model.  By perturbing each state minutely from their nominal and then 

observing the state-vector response, the system matrices were constructed in turn.  This 

result is derived by using the approximation: 

 perturbedmnomm

xperturbnnomn

m

n

m

n

xx

ff

x

f

x

f
m

,,

_,,

−
−

=
∆
∆

≈
∂
∂

 (2.3.1) 

where n is the number of each function of the system and m is the number of each state of 

the system.  Nominal values used for this system are the system values at the mid-stroke 

of the cylinder.  Through Eq (2.3.1) each individual element of the A and B matrices 

could be found.  The system matrices were calculated by using: 

             (2.3.2) 























∂
∂

∂
∂

∂
∂

∂
∂

=

OM

L

2

2

1

2

2

1

1

1

x

f

x

f
x

f

x

f

A
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                                      (2.3.3)     

The final linearized model consists of 16 states: 

 [ ]TBApc xxyyPPPPx 81 L&&r θθ=  (2.3.4) 

with two inputs and two outputs.  In Eq. (2.3.4), xn represents the states of each valve 

assembly and current amplifier involved in the IMV system.  The measurements of the 

system are the load velocity and the margin pressure.   

  ( )[ ]TAp yPPy &
r −=  (2.3.5)  

Margin pressure is defined as the pressure drop across the valve.  In other words, margin 

pressure is the difference between pump pressure and head-end pressure.  The two inputs 

to the system are the commanded pump displacement and a single valve input. 

  [ ]Tp iDu 4,1=r  (2.3.6) 

Current i1,4 , is for both the first and fourth valve, which lead to the pump-to-cylinder 

head-end valve and the cylinder-to-tank rod-end valve respectively.  These two valves are 

slaved together at a 1:1 ratio for the sake of ease in control design.  Valves two and three 

are not used for control and remain closed for all time. 

 In similar fashion to the nonlinear model, the linearized model was validated via 

comparison, but this time to the nonlinear model.  Two individual states were analyzed:   

load velocity and cylinder head-end pressure.  Each model was given a step input and the 

























∂
∂

∂
∂

∂
∂

∂
∂

=

OM

L

2

2

1

2

2

1

1

1

u

f

u

f
u

f

u

f

B
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results were over-plotted.  In Figure 2.3.1, the comparison of cylinder velocity can be 

seen. 

 

Fig. 2.3.1 – Linear model validation for cylinder velocity [8] 

From Figure 2.3.1 it can be seen that the linear model accurately replicates the non-

minimum phase response present in the nonlinear model.  It should be noted that this 

non-minimum phase response is due to the current drivers present in the valves.  Figure 

2.3.1 also shows that the linear system shows similar dynamic responses to the nonlinear 

model though showing an increased steady-state error.  Figure 2.3.2 shows the 

comparison of head-end pressures for the linear and nonlinear model for a step input. 
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Fig. 2.3.2 – Linear model validation for head-end pressure [8]  

In Figure 2.3.2, it can be seen that the linear model matches the nonlinear model fairly 

accurately.  The same non-minimum phase dynamics is present in both data sets and 

similar dynamic responses are also present.  Here too, however, the increased steady-state 

error is also present.  The discrepencies found in both comparisons will be accounted for 

in the modeling of system uncertainty and the application of robust control schemes and 

should not cause a problem in practical application.  However, uncertainty and model 

mismatching is to be expected.  As a linearized system strays from its linearized point, 

the system is less accurate.  The mismatching occuring between the linearized model and 

the nonlinear model could very well be due to the fact that the linearized system varies 

from its linearization point, which was mid stroke, during the dynamic response imparted 

by the step input. 
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 To further analyze the linear system, two analysis tools were used to evaluate the 

system:  pole-zero maps and singular value plots.  The pole-zero map of the final 16-state 

system can be seen in Figure 2.3.3.  It is apparent from this graph that the system is stable 

because all poles of the system lie in the left-half plane.   

 

Fig. 2.3.3 – Pole-zero map of the linearized system [8] 

However, the pole-zero map in Figure 2.3.3 does show a system zero in the right-half 

plane.  For stability, a right-half zero does not represent the inherent instability that a 

right-half pole would.  A right-half plane zero merely represents a performance limitation 

in the system.  In this case, with a pure-real zero at positive 40 rad/sec, it causes a 

bandwidth limitation equal to approximately 3 Hz for the closed-loop system [2].  This 

bandwidth limitation applies to any effort to design a control system with a bandwidth 

past that threshold.  The presence of a right-half plane zero does support the findings of 

non-minimum phase behavior in the experimental data.  Through inspection of the 
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system, it was found that the right-half zero was due to the amplifier gain found in the 

valve assemblies.  This performance limitation, however, does not greatly affect the aim 

of this research.  As it will be seen later, the performance requirements of the system 

need not exceed 2 Hz bandwidth.  This requirement causes the limitation to become a 

moot issue, but if this system was to be used in the future or performance requirements 

were more demanding, the bandwidth limitation would play a role.  

 The other technique used in this MIMO analysis is the singular value plot.  The 

singular value plot of a MIMO system is analogous to the Bode plot of a SISO system; 

both are an expression of the frequency responses of the system.  The maximum singular 

value is the largest gain for any input direction while the minimum singular value of a 

system is the smallest gain of the system for any input direction.  Furthermore, the 

minimum singular value of the plant, evaluated as a function of frequency, is a useful tool 

for evaluating the feasibility of achieving acceptable control [2].  It is desirable to have 

the minimum singular value as large as possible.  The singular value of a plant G is 

defined as: 

  ( )
2

2

u

Gu
G =σ  (2.3.7) 

where u is the input vector.  The 2-norm of a vector (
2

⋅ ) is defined as 

  ∑= 2
2 ixx

r
. (2.3.8) 

 

From a singular value plot, important information can be gathered.  The distance between 

the maximum and minimum singular value plots gives a good indication of the 

predictability of a system, as the distance between these plots is essentially the variance 
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of the gain of the system at a particular frequency.  Also, much like a Bode plot, the 

bandwidth of a MIMO system can be calculated from a singular value plot.  A singular 

value plot of the linear system studied can be seen in Figure 2.3.4 

 

Fig. 2.3.4 – Singular value plot for the linearized system [8] 

The singular value plots shown in Figure 2.3.4 are for three different systems.  The graph 

denoted as the unscaled plant is just as its name implies: the original model with no input 

or output scaling.  This system is undesirable due to the large difference between the 

upper and lower singular values at any given frequency.  This translates to a highly 

unpredictable system, for which it would be very difficult to design a controller.  

Bringing the maximum and minimum singular values of the system closer together 

causes the system to behave in a more diagonal manner, meaning it emulates a system 

which is fully diagonalized or one in which there is no coupling between input and output 

pairs.  To clarify what is meant by coupling, the system is said to be coupled if inputs 

affect outputs beyond those directly connected in the input output pair.  In a two input 
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two output system, coupling would exist if input one affected output two.  The next 

system analyzed was the scaled plant.  This system has been subjected to input and output 

scaling, which treats every input and output as a percentage of its maximum rather than 

its true value.  As it can be seen, the maximum and minimum singular values of the 

scaled plant lie much nearer one another, resulting in a more predictable system.  The 

final system analyzed in Figure 2.3.4 is the diagonalized plant.  The diagonalization is 

obtained though multiplying a constant matrix found from the inverse of the DC-gain of 

the plant transfer function matrix.  This system is a modification of the scaled system, 

with an emphasis placed on decoupling the input-output pairs.  From its singular value 

plot, it can be seen that this system is more predictable than the scaled system, with the 

exception of a spike at the break frequency of 100 Hz.  However, the system is highly 

coupled and an attempt to completely decouple the system resulted in an over-

simplification of the model.  The diagonalized model was not used for any future study, 

due to its inaccuracy when model uncertainty is considered.  For the remainder of this 

analysis, the scaled system was examined.  

 

2.4 Categorizing and Modeling System Uncertainty 

 An important part of a robustness study is the determination of the variance 

within the system model.  All close-loop control schemes exhibit some level of 

robustness inherently; however, all control schemes break down when a system varies 

beyond a point the controller can account for.  In this uncertainty study, certain system 

parameters were allowed to vary and some level of dynamics not fully modeled in the 

system were accounted for.  After a careful study into the uncertain characteristics of a 
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hydraulic system, it was found that all of the uncertainties within this system could be 

divided into three categories: valve uncertainty, load uncertainty and fluid (or line) 

effects.  The varying characteristics within each of these categories can be seen in detail 

with descriptions in Table 2.4.1. 

 

Table 2.4.1 – Uncertain Characteristics in the IMV hydraulic system 

Valve Uncertainty 

Parameter Explanation 

Valve assembly spring constant 
Due to mass manufacturing and sag over time 
there may be inconsistencies in this value 

Solenoid actuation 
The force output by the solenoid in the valve 
assembly may vary over time due to wear 

Amplifier gains 
As was exhibited in the test data for the IMV, 
the amplifier displayed non-minimum phase 
behavior 

Spool-centering spring constants 
Due to mass manufacturing and sag over time 
there may be inconsistencies in these values 

Spool damping 
Wear within the spool will cause damping to 
decrease over time 

Spool leakage 
Wear within the spool will cause leakage to 
increase over time 

Manufacturing limitations on springs 
Due to finite coil thickness springs cannot 
always be manufactured at a desired length 

Orifice wear Orifice coefficient can change with wear 

Compensator effects 
compensator model was assumed ideal when in 
actuality there are pressure differences on 
either side of a valve 

Load Uncertainty 

Parameter Explanation 

Damping coefficient 
Due to cylinder wear, damping coefficients can 
change 

Leakage 
Due to cylinder wear, leakage can increase 
over time 

Fluid/Line Effects 

Parameter Explanation 

Fluid Bulk Modulus 
Different operating conditions can cause this 
parameter to vary 
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Entrained air Causes a decrease in fluid bulk modulus 

Line volume 
Stretching of hoses over time or under higher 
pressures can change this parameter.  Also, 
altering the original design would affect this. 

Particles in operating fluid Will increase line losses and wear 

 

By analyzing the varying characteristics in Table 2.4.1, it was concluded that there was a 

set of numerical system parameters that, when varied, would encompass the uncertainty 

of the system within reason.  By adjusting these system parameters between their 

maximum and minimum expected values, the appropriate level of uncertainty in the 

hydraulic system could be approximated.  The uncertainty parameters and their expected 

ranges for can be found in Table 2.4.2 

 

Table 2.4.2 – Range of variance for the system’s parameters. 

± 25%Cylinder Friction

± 10%Amplifier gain

0 to 1000lbs

In addition to the bucket and rod mass
Load Force

0.52 to 0.72

nominally 0.62
Flow Coefficient (CD)

± 33%Fluid Bulk Modulus (β)

RangeParameter

± 25%Cylinder Friction

± 10%Amplifier gain

0 to 1000lbs

In addition to the bucket and rod mass
Load Force

0.52 to 0.72

nominally 0.62
Flow Coefficient (CD)

± 33%Fluid Bulk Modulus (β)

RangeParameter

 

 

After defining the uncertain characteristics of the system, an uncertainty model was 

developed.  This analysis was expanded from information found in [8].  An uncertainty 

model is a transfer function representing an error in the output of the system.  The 
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uncertainty model used in this research is multiplicative output uncertainty which can be 

seen in Figure 2.4.1 as wo.   

 

Fig. 2.4.1 – Output multiplicative uncertainty 

The accompanying term ∆o is the set of all transfer functions whose maximum singular 

value is less than one.  The ∆o term is a scaling factor; essentially a gain within the 

system that will amplify its input to between ±100% (±1). This term is, in practical usage, 

not considered in quantitative calculations and is generally only addressed in 

mathematical derivations of the robust control analysis.  The focus of this project will 

remain on the output uncertainty wo. 

 To obtain an uncertainty description, the set of all possible plant perturbations 

were examined.  By changing each parameter in Table 2.4.2 individually and linearizing 

the system again for each configuration, a series of perturbed plants were created.  The 

plant perturbations were created using: 

  ( )[ ]1−− nomnomp GGG  (2.4.1)  

This set of perturbed plants, Gp, was then used to construct the uncertainty description: 

 ( )[ ]1max −−= nomnompo GGGw σ                   (2.4.2) 

 



 23 

over all perturbed plant models Gp.  The output uncertainty of the system is a transfer 

function fit of the highest maximum singular value plot among all plant variations.  This 

result is shown graphically in Figure 2.4.2.   

 

Fig 2.4.2 – Output uncertainty transfer function 

In Figure 2.4.2, many plant perturbations can be seen as dashed lines.  The darkened line 

is the transfer function, wo, created to bound all possible perturbations; it is the worst 

possible variation the system could undergo.  It can be seen that the plant will vary by 

approximately 20% at low frequency and around 5% at high frequency.  At 100Hz the 

largest plant variation exists.  The plant varies by approximately 75% at this frequency.  

The transfer function, wo, will be used for nominal and robustness analysis in Chapter 6.
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Chapter 3 

H∞ CONTROL MECHANISMS 

 

3.1 Necessity of H∞ Control Routines 

 LQG or linear quadratic Gaussian control routines, based on optimal filtering 

work of Wiener in the 1940s, were utilized in the 1960s as a way to accurately control 

space vehicles and minimize fuel consumption.  Though these techniques are used 

successfully by aerospace engineers, LQG is difficult to apply reliably to many industrial 

problems due to the reliance on highly accurate system models and the assumption of 

white noise disturbances [2].  These deficiencies cause LQG control to often lack 

robustness characteristics that are appropriate for many applications.  This 

characterization of low robustness was brought to the attention of the controls community 

in 1978 by Doyle.  In the 1980s, researchers such as Zames, Helton, Glover and Doyle 

developed H2 and H∞ methods to answer specific robustness concerns of LQG.  This is 

not to say that LQG cannot show robust characteristics or that it is not applied 

successfully in industry.  The desire was to create new control systems that showed 

robustness characteristics that were superior to LQG. 

 

3.2 The H∞ Control Problem 

 For the sake of discussion in this research, H∞ methods alone will be of interest. 

This narrowed view is justified by the recognition that H2 and H∞ methodologies are 

similar in that:  both require the solutions to two Riccati equations, both give controllers 
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of state-dimension equal to the generalized plant, P, and both show separation structure in 

their controllers that are already seen in LQG control [2].  It is important to note, 

however, that H∞ controllers provide a sub-optimal controller which differs from H2 

control which provides optimal and unique controllers.  It should be noted that (s) is often 

dropped as a convention. 

 The general problem formulation of H∞ problems are described by 
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with a generalized plant P given by 
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The variables are: u, the control variables, v, the measured variables, w, the exogenous 

signals such as disturbances and z, the error signal to be minimized.  The generalized 

plant model schematic can be seen in Figure 3.2.1. 

 

Fig 3.2.1 – The Generalized plant model 

By referring to Skogestad and Postlethwaite [2], it can be seen that the closed-loop 

transfer function from w to z can be given via the linear fractional transformation 

P 

K 

u v 

z w 
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  wKPFz l ),(=  (3.2.4) 

where 

  21
1

221211 )(),( PKPIKPPKPFl
−−+= . (3.2.5) 

Using the linear fractional transformation, the H∞ control problem is to find a controller, 

K, that minimizes 

  )))(,((max),( ωσ
ω

jKPFKPF ll =
∞

. (3.2.6) 

The ∞-norm can be thought of as the ratio of input to output vector 2-norms.   
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where 
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Because the controller does not require optimal solutions, or that optimal solutions are 

too difficult to calculate, the value γmin is defined.  The problem then becomes to find a 

controller, K, such that  

  γ<
∞

),( KPFl  (3.2.9) 

where γ > γmin.  This process is then done iteratively so that the controller approaches an 

optimal solution.  Design of H∞ controllers involves shaping the maximum singular value 

of specified transfer functions over specific frequencies.  These design trade-offs have 

been identified earlier in this document. 

 

 

 



 27 

3.3 Mixed Sensitivity H∞ Control  

 Mixed sensitivity (MS) control is a routine named as such due to the transfer 

function shaping methods used.  The MS control routine aims to find a controller that 

gives the desired closed-loop sensitivity transfer functions S, T and KS.  S is defined as 

the sensitivity function which is derived mathematically from: 

  1)( −+= GKIS  (3.3.1) 

T is defined as the closed-loop transfer function which is derived mathematically from: 

  GKGKIT 1)( −+=  (3.3.2) 

These quantities come from the classic one degree-of-freedom feedback configuration 

shown in Figure 3.3.1. 

 

Fig. 3.3.1 – One degree-of-freedom feedback configuration 

From Figure 3.3.1, two important relationships can be seen: 

  )()()()()()()( snsTsdsSsrsTsy −+=  (3.3.3) 

  )]()()()[()()( sdsnsrsSsKsu −−=  (3.3.4) 

These relationships determine several closed-loop objectives, in addition to the 

requirement that K stabilizes G: 1) to reject disturbances to the system, the maximum 
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singular value of S must be small, 2) to reject noise, the maximum singular value of T 

must be small, 3) for reference tracking, the minimum and maximum singular value of T 

should be approximately 1, 4) for control energy reduction make the maximum singular 

value of KS small, 5) for robust stability when there are additional perturbations, make 

the maximum singular value of KS small and 6) for robust stability when there is 

multiplicative output perturbation, make the maximum singular value of T small [2].  

From these performance goals, it can be seen that there exists a great deal of trade-off 

between competing objectives.  Balancing S and T weighting is tricky but it is easily seen 

that making KS small is advantageous.   

 The general design goal is to minimize: 
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KS
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 (3.3.5) 

where wP is the weight associated with the error due to reference input, wT is the weight 

associated with the effect of noise and wU  is the weight associated with the control effort 

of the system.  In the event of nonminimum phase, which is the case in this system, the 

stability requirement will limit the bandwidth achievable by adjusting controller gains, so 

it is useful to minimize S and KS.  This system can be represented by the following block 

diagram 
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Fig 3.3.2 – S/KS form of MS for tracking 

In Figure 3.3.2, W1 and W2 are wP and wU respectively.  P is defined as 
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It is important to note that all weights, wi, should be stable [2].  The optimization routine 

hinfsyn.m [9] is used for this design.   

 

3.4 MacFarlane-Glover H∞ Loop-shaping 

 Combining classical loop-shaping techniques and robust stabilization, this 

technique was created by MacFarlane and Glover in the 1989 [2].  This technique is a 

two step process: 1) The open-loop plant is augmented with pre and post-compensators to 

shape the singular values of the frequency response and 2) the resulting plant is stabilized 
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with respect to coprime factor uncertainty using H∞ optimization.  This technique also 

does not require γ-iteration for its solution.  The shaped plant in need of improved 

robustness for this research was a compensator which was simply a PID controller tuned 

for performance with little regard to stability.  The stabilizing controller created by 

MacFarlane and Glover (MG) uses a normalized left coprime factorization of the plant 

and standard robust stabilization transforms.  The details of that process can be found in 

Skogestad and Postlethwaite’s text [2].  MacFarlane and Glover found that the lowest 

value of γ and the corresponding maximum stability margin ε is described as: 
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where N and M are from the coprime factorization of G, 
H

⋅  is the Hankel norm and ρ is 

the maximum eigenvalue.  X and Z are the solutions to the following algebraic Riccati 

equations for the state-space realization (A,B,C,D) of G: 

 0)()( 1111 =+−−+− −−−− TTTTT BBSCZRZCCDBSAZZCDBSA  (3.4.2) 

where 

  TDDTR +=  (3.4.3) 

  DDIS T+=  (3.4.4) 

and 

 0)()( 1111 =+−−+− −−−− CRCXBXBSCDBSAXXCDBSA TTTTT . (3.4.5) 

The stabilizing controller is given by 
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where 
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  )(1 XBCDSF TT +−= −  (3.4.6) 
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This control ensures that for a specified γ > γmin  
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which is the stability criterion derived in Skogestad and Postlethwaite.  To solve this, 

there is a Matlab command from Skogestad and Postlethwaite, coprimeunc.m [10] that 

was utilized.  Its inputs are the state-space realization of the shaped-plant and a γrel term 

that is typically 1.1.  The actual γ used in [10] is γrel*γmin which is done internally in the 

program.  The function outputs the state-space realization of the stabilizing controller, K.   

 

3.5 Two Degrees-of-freedom H∞ Control  

 Many control design problems have two-degrees of freedom available for design, 

most reduce to using a single-degree error signal for design.  At times, this is not 

sufficient for appropriate tracking.  MacFarlane-Glover H∞ Loop-shaping allows for 

sufficient tracking characteristics with the use of a constant prefilter to ensure proper 

steady-state tracking.  However, work in the early 1990s lead by Hoyle and Limebeer 

was done to augment MacFarlane and Glover’s control design to be a true two-degree of 

freedom system [2].  This control routine allows for the feedback part of the controller to 

be designed to meet robust stability and reject system disturbances similar to a single-

degree of freedom system while the reference input portion of the controller matches 

performance requirements established via reference input shaping. A prefilter gain is used 
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to enforce accurate closed-loop response matching to the reference input model.  A model 

of the control system can be seen in Figure 3.5.1 

 

Fig 3.5.1 – Two degrees-of-freedom design schematic 

The design problem is to find a stabilizing controller K = [K1  K2] for the shaped-plant, Gs 

, that minimizes the H∞ norm of the transfer function between input and output signals 

via coprime factorization similar to the method in section 3.4.  The general equation is 

solved sub optimally via γ-iteration.  The control signal to the shaped plant is defined as: 
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where K1 is the prefilter, K2 is the feedback controller, β is the scaled reference and y is 

the measured output.  The purpose of the prefilter is to adjust low frequency gains and 

ensure that 

  ( ) 2
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− ≤−− γρrefss TKGKGI  (3.5.2) 

where Tref is the desired closed-loop transfer function designed to meet time-domain 

based design requirements and ρ is a scalar parameter that can be increased to put more 

emphasis on model matching during the optimization as a trade off to robustness.  To 

define a generalized plant P, the shaped-plant and closed-loop transfer function are 

defined as a state-space realization: 
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The shaped-plant is defined as the plant gained by the compensator.  The generalized 

plant then follows as: 
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where T
ssS DDIR +=  and Zs is defined via Eq. (3.4.2).  The algorithm for solving this 

controller can be seen in Skogestad and Postlethwaite’s hinf2dof.m [11].  One further 

prefilter, Wi is needed to ensure steady-state error matching which is not guaranteed after 

undergoing optimization which solely aims to minimize the ∞-norm. 
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where Wo, the output selection matrix, is typically equal to the identity matrix.  The 

output selection matrix allows the designer to select specific outputs that are required for 

control. 
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Chapter 4 

APPLICATION OF CONTROL ROUTINES 

 

4.1 Performance Requirements 

 A goal of any control system is to satisfy requirements of performance.  The most 

common among these are a desired bandwidth ωB, an allowable steady-state error A, and 

an allowable high-frequency error M.  These three criteria can be assembled into the 

performance weighting transfer function wp by using: 
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ω
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 (4.1.1) 

for each i-th output.  The two outputs considered are the load velocity error and the 

pressure drop error across the main pump-to-cylinder head-end valve.  The specific 

values associated with each of the performance weights can be seen in Table 4.1.1. 

Table 4.1.1 Performance requirements for velocity and margin pressure control. 

Criteria Velocity Output Margin Pressure Output 

Bandwidth 1.5 Hz 1 Hz 

Steady-state Error 5% 15% 

High Frequency Error 200% 200% 

 

The design requirements listed are tested in the frequency domain robustness analysis to 

verify that the controller will satisfy all criteria for all possible plant perturbations.  These 

requirements will be explored in detail in Chapter 6. 
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4.2 Baseline PID Design 

 The PID controller was first designed.  This design was done for two reasons:  1) 

to create a baseline for comparison and 2) the MacFarlane-Glover and Two Degree-of-

freedom controller is designed to utilize an existing performance controller already in 

place.  Because the modern controllers to be used were created to add stability and 

robustness to the system, the baseline PID controller was designed with performance 

requirements solely in mind.  Due to PID being a SISO design technique and the system 

being a MIMO system, two PID controllers were designed, one for each controlled 

output.  The PID configuration used is defined as: 
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This form of the PID has an approximated derivative term.  This form is used due to 

numerical issues in Matlab that prevent a traditional PID form from being used and p is a 

fast pole.  The two PID controllers used are as follows: 
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The design methodology was to tune the P component to the point of instability and then 

tune the I and D component until steady-state response and dynamic response were 

appropriate.  The controller was tested on the linearized plant model; the results of those 

simulations can be seen in Figures 4.2.1 and 4.2.2. 
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Fig. 4.2.1 – Margin pressure step response for linear PID 
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Fig. 4.2.2 – Velocity step response for linear PID 
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In Figure 4.2.1, the margin pressure shows very quick rise time with an overshoot of 

approximately 50%.  The steady-state error of the response is approximately 10% which 

is within the 15% acceptable from performance requirements.  The velocity response in 

Figure 4.2.2 shows slower rise time but a less pronounced overshoot and also exhibits 

zero steady-state error.  The controllers were then tested on the nonlinear model.  The 

margin pressure has a commanded input of 1 MPa through a step input; the velocity input 

follows a square-wave input that varies between 0.25 and 0.45 m/s commanded input.  

The nonlinear control responses can be seen in Figures 4.2.3 and 4.2.4. 
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Fig 4.2.3 – Margin pressure response for PID control on the nonlinear model 
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Fig. 4.2.4 – Velocity response for PID control on the nonlinear model 

In Figure 4.2.3, it can be seen that there exists a certain amount of coupling between the 

margin pressure and velocity control.  This is evident from the periodic fluctuation in 

pressure roughly every second.  Both of these control performances show a certain 

amount of tendency toward instability as seen by the quick oscillations in the 

performance plots.  Steady-state values are comparable to the linear responses.  It is hard 

to comment on whether or not the margin pressure response is as fast as it was in the 

linear model due to the pre-step margin pressure fluctuation in the nonlinear model.   

However, it can be commented that the velocity response is very similar to the linearized 

response with respect to time.  The velocity response does show an increase in high 

frequency oscillations that were not present in the linear model.   
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4.3 Mixed Sensitivity Design - Application 

 For mixed sensitivity design, the methodology outlined in Chapter 3.3 was used.  

In that section, the terms S and SK were identified as important design aspects for this 

system.  This reduces the quantities to minimize in design as: 

  
∞U

P

SKw

Sw
 (4.3.1) 

To apply this control to a MIMO system, a matrix of weights was chosen for each input.  

The performance weight, wp, uses Eq. 4.1.1 as its basis.  For margin pressure 

performance weighting, A=0.1, ωB=0.001 Hz and M=10.  For velocity performance 

weighting, A=0.05, ωB=0.8 Hz and M=2.  The control effort weight, wu, was set to 1/100.  

These design values are the final control values after iteration during the design process.  

The controller, K, was determined via optimization using the weighting matrices and P, 

as defined in Eq. 3.3.2.  One drawback of mixed sensitivity control is that the controller, 

K, is high order.  To reduce the model, techniques outlined in Skogestad and 

Postlethwaite were used.  The linear responses to step inputs can be seen in Figures 4.3.1 

and 4.3.2. 
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Fig. 4.3.1 – Margin pressure step response for linear mixed sensitivity 
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Fig. 4.3.2 – Velocity step response for linear mixed sensitivity 



 41 

From Figure 4.3.1, it can be seen that the response time for margin pressure is extremely 

fast and that the overshoot and settling time is very large.  The velocity response in 

Figure 4.3.2 shows a much better response.  It exhibits a slow rise time but lacks 

overshoot and settling time issues that are present in the margin pressure response.  Also, 

the steady-state error is within acceptable bounds.  The iterative process used to create 

these weights was done via examination of nonlinear response.  It was found that the 

inputs and output pairs were highly coupled, and that the only way to get proper response 

in velocity was to quicken the response in margin pressure.  This is what leads to such an 

atypical response in the margin pressure response.  The nonlinear responses can be seen 

in Figures 4.3.3 and 4.3.4. 
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Fig. 4.3.3 – Margin pressure response for mixed sensitivity control on the nonlinear 
model 
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Fig. 4.3.4 – Velocity response for mixed sensitivity control on the nonlinear model 
 
Several interesting aspect of the system can be seen from the application of this 

controller.  In Figure 4.3.3, the strong coupling between input and output pairs can be 

seen.  The margin pressure response follows the linear behavior of slowly approaching 

the correct steady-state behavior over time, but also shows response to the square wave 

signal being commanded for the velocity.  The velocity response in Figure 4.3.4 shows 

acceptable rise time and steady-state is within the acceptable bounds.   

 

4.4 MacFarlane-Glover H∞ Loop-shaping – Application 

 MacFarlane-Glover (MG) H∞ loop shaping utilizes a PID design for performance 

and creates a controller that improves robustness.  This controller bridges the gap 

between SISO PID design and MIMO H∞ robust control design.  To design the MG 

controller, the initial PID controller was used and the robustness controller was created 
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using optimization techniques. To tune the system, modifications to the PID can be made 

but with emphasis remaining on performance rather than stability.  However, because one 

research goal was to add robustness to a system without designing a new controller, 

modifying the PID was not appropriate.  The only design variable that remained was 

tuning γrel which severely limited the flexibility of this design.  The system control model 

is as follows: 

 

 

 

 

 

Fig 4.4.1 – Control schematic for MacFarlane-Glover control 

In Figure 4.4.1, K(s) is the stabilizing controller and C(s) is the PID controller governing 

performance.  Implementation suffers from the same problem as the MS control design:  

high order system with fast poles.  This problem is alleviated with model order reduction.  

The linear responses for margin pressure and velocity can be seen in Figures 4.4.2 and 

4.4.3 respectively. 

 

K(s) C(s) G(s)+

-
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Fig. 4.4.2 – Margin pressure step response for linear MacFarlane-Glover 
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Fig. 4.4.3 – Velocity step response for linear MacFarlane-Glover 
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The margin pressure response in Figure 4.4.2 shows once again very quick rise time 

characteristics as well as quick settling times.  The steady-state error associated with the 

response is large and exceeds the 15% design requirement.  The velocity response in 

Figure 4.4.3 shows a slower rise time than the PID but does show increased damping as 

evident by the reduction in overshoot.  It should be noted that both linear responses 

exhibit increased stability in the form of increased damping that reduces oscillations in 

the response seen in the PID controller.  The responses for the nonlinear model can be 

seen in Figures 4.4.4 and 4.4.5. 
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Fig. 4.4.4 – Margin pressure response for MacFarlane-Glover control on the 
nonlinear model 
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Fig. 4.4.5 – Velocity response for MacFarlane-Glover control on the nonlinear 
model 

 
From Figure 4.4.4, the margin pressure response exhibits quick rise time and quick 

settling time and also shows steady-state results that are within the acceptable 15% range.  

Furthermore, the margin pressure result shows that the control routine did achieve a 

certain level of decoupling.  The margin pressure response is not heavily affected by the 

square wave commanded velocity.  In Figure 4.4.5, however, the velocity response did 

not reach satisfactory results.  The velocity response shows very slow response to the 

commanded inputs causing the system to never reach the minimum commanded velocity.  

This results in very poor tracking and poor steady-state response. 
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4.5 Two Degrees-of-freedom H∞ Control – Application 

 The two degrees-of-freedom controller has one primary difference in its control 

design:  instead of controlling a single error signal, this controller routine utilizes both 

measured state signals and reference input signals separately.  This allows the designer to 

prescribe performance characteristics for the desired tracking response.  This controller 

uses the PID controller designed for performance and input reference characteristics to 

define the desired closed-loop response; an optimal controller algorithm is used to find a 

controller for the input criteria and creates a controller that adds robustness to the system.  

The scheme used for the system can be seen in Figure 3.5.1.   

 The desired closed-loop transfer function, Tref, is defined as: 

  
22

2

2
)(

nn

n
ref

ss
sT

ωζω
ω

++
=  (4.5.1) 

A matrix of desired closed-loop transfer functions is made with the diagonal terms being 

the transfer function associated with each output, while the off diagonals are zero.  

Having zeros in the off diagonal terms help ensure that coupling between input/output 

pairs does not occur.  For margin pressure, the desired natural frequency is 2.1 Hz and the 

desired damping ratio is 0.7.  For velocity, the desired natural frequency is 1.7 Hz and the 

desired damping ratio is 0.7.  The damping ratios for both represent a 5% overshoot.  The 

value of natural frequency was found iteratively by trial and error in tuning the 

performance of the controller.  It should be noted that natural frequency was solely 

modified due to bandwidth limitations driving the control deficiencies.  The response of 

the desired closed-loop matrix, Tref, can be seen in Figure 4.5.1. 
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Fig. 4.5.1 – Step response of the desired closed-loop transfer function matrix 

In Figure 4.5.1, both responses exhibit no steady-state error, minimal overshoot and fairly 

quick rise and settling times.  The linear simulations of the control routine can be seen in 

Figures 4.5.2 and 4.5.3. 
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Fig. 4.5.2 – Margin pressure step response for linear 2 degrees-of-freedom control 
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Fig. 4.5.3 – Velocity step response for linear 2 degrees-of-freedom control 
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In both Figures 4.5.2 and 4.5.3, it can be seen that both linear responses closely match the 

desired closed-loop responses.  In both cases, the results are far superior to the responses 

from the PID controller.  In fact, the responses resemble the desired closed-loop 

performance much more so than the PID design.  Both plots do show an increase in 

overshoot with respect to the desired but the increase does not cause the response to go 

beyond the performance bounds.  The velocity plot, interestingly, shows a bit of the non-

minimum phase behavior that is present in the system.  The nonlinear results can be seen 

in Figures 4.5.4 and 4.5.5. 
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Fig. 4.5.4 – Margin pressure response for 2 degrees-of-freedom control on the 
nonlinear model 
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Fig. 4.5.5 – Velocity response for 2 degrees-of-freedom control on the nonlinear 
model 

 

In Figure 4.5.4, it can be seen that margin pressure shows a high degree of decoupling 

within the system as well as much improved steady-state response.  The effects of the 

velocity modulation can still be seen every second but the effects are greatly reduced 

compared to the other controllers.  In Figure 4.5.5, the velocity performance possesses a 

fast response time and shows no high frequency oscillations.  The response time, 

however, was not as fast as that of the PID controller, which indicates a slight 

degradation in performance for an increased amount of robustness.  The same non-

minimum phase response is present in the nonlinear simulation.  In both plots, but in the 

velocity response most strongly, the desired close-loop response is closely represented. 

 Once again, this controller is high-order and requires model order reduction 

similar to both the Mixed Sensitivity and MacFarlane-Glover responses. To show that the 
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controller is indeed high order, the pz-map of the two degrees-of-freedom controller can 

be seen in Figure 4.5.6. 
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Fig. 4.5.6 – PZ-map for 2 Degrees-of-freedom controller prior to reduction 
 

From Figure 4.5.6, it can be seen that the controller exhibits 21 poles with two very fast 

poles.  These commands are very demanding on the system and difficult to achieve.  

Also, these poles are very far from the remainder of the poles.  These two poles were 

removed with model order reduction.  The pz-map of the reduced controller can be seen 

in Figure 4.5.7. 
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Fig. 4.5.7 – PZ-map for 2 Degrees-of-freedom controller post reduction 
 
From Figure 4.5.7, it can be seen that the controller was reduced to 19th order and 

removed the two extremely fast poles.  This reduction leaves a controller that, while still 

having a relatively fast pole at roughly 100 Hz, is far less demanding than the original.  

The model was reduced to 19th order due to it being the smallest order achievable that 

retained the performance of the controller. 
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Chapter 5 

TIME DOMAIN ANALYSIS OF ROBUSTNESS 

 

5.1 Uncertainty Cases 

 Robustness characteristics can be seen in the time domain.  A robust system 

maintains performance and stability independent of the perturbations or changes in the 

system dynamics.  Perturbations were introduced to each system by applying positive or 

negative bias.  The Positive bias included: +250lbs of bias force, an increase to fluid bulk 

modulus of +33%, an increase to viscous friction by +25% and an increase of the 

discharge coefficient by +0.1.  The negative case included:  -250lbs of bias force, a 

decrease to fluid bulk modulus of -33%, a decrease to viscous friction by -25% and a 

decrease of the discharge coefficient by -0.1.  These bias values fall within the range of 

predicted uncertainty outlined in Table 2.4.2.  Note that this is just one possible 

perturbation of the system and is strictly illustrative; other values could have been 

chosen.  The results of this analysis follow. 

 

5.2 Time Domain Responses 

 The time domain response for each control system can be seen in Figures 5.2.1-

5.2.8.  It is expected that the PID controller exhibits the worst robustness characteristics 

while the modern controllers exhibit improved robustness.  The PID response will be 

examined first.  In Figure 5.2.1, the margin pressure response for PID can be seen. 

Also, in Figure 5.2.2, the velocity response for PID can be seen. 
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Fig. 5.2.1 – Margin pressure robustness for PID control 

 

Fig. 5.2.2 – Velocity robustness for PID control 
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From both Fig. 5.2.1 and Fig. 5.2.2, it can be seen that there exists a large degree of 

variation between the two test cases and the non-biased response.  In both outputs, the 

positive bias force causes the response to show lower oscillation while the negative bias 

force shows greater tendency towards oscillation and slower response times.   

 The mixed sensitivity controller response will be examined next.  In Figure 5.2.3, 

the margin pressure response can be seen and in Figure 5.2.4, the velocity response can 

be seen. 

 

Fig. 5.2.3 – Margin pressure robustness for the MS controller 
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Fig. 5.2.4 – Velocity robustness for MS controller 

From Figure 5.2.3, it can be seen that the margin pressure shows robustness similar to 

that of the PID.  Though the responses lack the amount of oscillations seen in PID, there 

is a definite difference between the bias cases.  The positive cases make the oscillatory 

response much worse while the negative bias smoothes out.  However, in the velocity 

response from Figure 5.2.4, there is an improvement in robustness.  Here too the positive 

case shows increased oscillation and the negative term shows smoothing but the deviation 

from the non-biased case is less pronounced. 

 The MacFarlane-Glover controller is examined next.  The margin pressure 

response can be seen in Figure 5.2.5 while the velocity response can be seen in Figure 

5.2.6. 

 

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

0.25

0.3

0.35

0.4

0.45

Time, sec

V
el

oc
ity

, 
m

/s

Velocity Tracking for Mixed Sensivity H-inf

Signal

No Bias
Positive Bias

Negative Bias



 58 

 

Fig. 5.2.5 – Margin pressure robustness for MG controller 

 

Fig. 5.2.6 – Velocity robustness for MG controller 
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The margin pressure response in Figure 5.2.5 shows greatly improved robustness 

characteristics compared to the previous two controllers.  Here it can be see that neither 

the positive nor negative case varies much over the response.  The negative bias force 

shows an increase in oscillations while the positive bias smoothes out the response 

though neither is severe in deviation from the non-biased response.  In Figure 5.2.6, a 

drastic improvement in robustness can be seen.  Neither bias case deviates from the non-

biased response a significant amount.  With respect to the prior two controller schemes, 

this control shows drastically improved robustness characteristics. 

 Finally, the two-degree of freedom controller is examined.  In Figure 5.2.7, the 

margin pressure response can be seen, while in Figure 5.2.8, the velocity response can be 

seen. 

 

Fig. 5.2.7 – Margin pressure robustness for 2DOF controller 
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Fig. 5.2.8 – Velocity robustness for the 2DOF controller 

From Figure 5.2.7, it can be seen that the margin pressure shows very good robustness 
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Figure 5.2.8 for velocity response, it can be seen that the robustness characteristics are 

the best out of all controllers.  The time response of the two bias cases for velocity do not 

show increased oscillation that the other controllers exhibited.  Both bias cases show 
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5.3 Time Domain Analysis Conclusions 

The time domain analysis shows that the robustness expectations for the 

controller systems were accurate.  Each modern controller showed progressively 

improved robustness characteristics over the last while the PID showed the poorest 

robustness characteristic.  Though examining the time domain gives a good indication of 

relative robustness, it does not show a complete picture.  Robustness analysis in the 

frequency domain provides a much more complete view of how each system will respond 

under uncertain perturbations.  
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Chapter 6 

FREQUENCY DOMAIN ANALYSIS OF ROBUSTNESS 

 

6.1 Frequency Domain Robustness Principles 

 To evaluate the improved robustness of these controllers more extensively than 

the time domain analysis, H∞ norm analysis techniques are used.  These robustness 

characteristics are defined in four ways:  nominal stability, nominal performance, robust 

stability and robust performance.  Nominal stability tests determine whether or not the 

nominal system is stable without any variation in the system model from nominal.  

Nominal performance tests determine whether or not the control system with the nominal 

model meets the desired performance requirements.  Robust stability tests determine 

whether or not the control system is stable for all perturbations of the model in the 

uncertainty set.  Robust performance determines whether or not the performance 

objective is satisfied for all perturbations of the model in the uncertainty set.  All 

robustness characteristics require that nominal stability holds true.  These characteristics 

are evaluated over a frequency range using the structured singular value of the transfer 

function matrix. The maximum structured singular value is the H∞ norm of the system 

just as the maximum magnitude of the frequency response of a SISO system is an H∞ 

norm.  These criteria are defined using the generalized plant model, P, and the controller, 

K, to create the system matrix, N.  The transformation of P and K to N can be done using 

a lower linear fractional transformation.  This process can be seen visually in Figure 

6.1.1. 
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Fig. 6.1.1 – Transforming P and K into the N-∆ structure [6] 

Mathematically, N is defined as: 

  21
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To define the robustness characteristics, the structured singular value must be presented.  

The structured singular value, µ, of a plant G is defined as: 
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 (6.1.2) 

where km is a scaling factor that makes the matrix I-kmG∆ singular.  The robustness 

definitions to be applied to each control system are derived in Skogestad and 

Postlethwaite.  The following equations are the robustness characteristics used for 

analysis in this research: 

  NS: N is stable internally (6.1.3) 

 ωµσ ∀<= ∆ 1)(: 22 pNNP  (6.1.4) 

 ωµ ∀<∆ 1)(: 11NRS  (6.1.5) 

  ωωµ ∀<∆ 1))((: ˆ jNRP   (6.1.6) 
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To satisfy all robustness parameters, each value must be below 1 (absolute) or 0 dB over 

all frequencies.  Nominal stability was determined during the control design phase by 

examining the closed-loop pole locations.  The stable responses in the time domain 

analysis confirm nominal stability.  As discussed in Chapter 2, the uncertainty for the 

system is modeled as output multiplicative uncertainty.   

 

6.2 Applying Robust Analysis to PID 

 To apply robust analysis, the system must be modified by adding an uncertainty 

model, as seen in Figure 2.4.1.  The generalized plant P is defined for each system.  For 

the control structure outlined in Chapter 4.2, the generalized plant is: 
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 (6.2.1) 

where Gs is the shaped plant, wo is the output uncertainty and wp is the performance 

weight.   This process can be seen in Appendix D.  In Figure 6.2.1, the robustness norms 

are plotted for PID control. 
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Fig. 6.2.1 – Robustness analysis for PID controller 

It can be seen from Figure 6.2.1 that PID control does not satisfy the robustness criterion.  

Nominal performance peaks at 1.9, robust stability peaks at 17.0 and robust performance 

peaks at 19.0.  This information means that the selected PID controller will not perform 

to the desired specifications under all plant model perturbations and that some plant 

perturbation exists that will cause the system to become unstable. 

 

6.3 Applying Robust Analysis to Mixed Sensitivity Control 

 The generalized plant for the mixed sensitivity controller is identical to that of the 

PID controller because they both have the same control structure; Eq. (6.2.1) is the 

generalized plant for this analysis.  The robustness characteristics of mixed sensitivity 

controller can be seen in Figure 6.3.1. 
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Fig. 6.3.1 – Robustness analysis for the mixed sensitivity controller 

From Figure 6.3.1, it can be seen that mixed sensitivity showed improved robustness in 

some aspects, but also shows a higher peak in the nominal performance.  Nominal 

performance peaks at 16.3, robust stability peaks at 10.3 and robust performance peaks at 

16.9.  The nominal performance peak is consistent with the poor decoupling and poor 

tracking in the margin pressure.  However, despite the setback in nominal performance, 

both of the remaining robustness characteristics showed improvement over the PID 

controller.   
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6.4 Applying Robust Analysis for MacFarlane-Glover H∞ Loop-shaping Control 

 The generalized plant for robustness analysis for MacFarlane-Glover H∞ Loop-

Shaping control can be seen as: 
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 (6.4.1) 

This process can be seen in Appendix D.  Plots of the robustness characteristics can be 

seen in Figure 6.4.1. 
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Fig. 6.4.1 – Robustness analysis for MacFarlane-Glover H∞ loop-shaping control 

From Figure 6.4.1, it can be seen that MacFarlane-Glover showed improved robustness in 

all aspects despite poor performance in velocity control in the time domain simulations.  

Nominal performance peaks at 1.7, robust stability peaks at 4.7 and robust performance 

peaks at 5.3.  These results are significantly better than the original PID control while 

also being superior to mixed sensitivity. 
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6.5 Applying Robust Analysis for Two Degree-of-Freedom H∞ Loop-shaping 

Control 

 The generalized plant for two degree-of-freedom H∞ loop-shaping control is 

defined as: 
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 (6.5.1) 

This process can be seen in Appendix D.  Figure 6.5.1 shows the set of plots for the 

robustness parameters for the two degree-of-freedom controller scheme. 
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Fig. 6.5.1 - Robustness Analysis for two degrees-of-freedom H∞ Loop-shaping 
control 

 
From Figure 6.5.1, it can be seen that the two degree-of-freedom system shows great 

improvements over all the previous controllers.  Nominal performance peaks at 1.5, 
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robust stability peaks at 0.4 and robust performance peaks at 1.9.  It should be noted that 

this is the only system to successfully satisfy robust stability which is significant.  This 

implies that for any possible plant perturbation that was modeled, the system will be 

stable.   

 

6.6 Robustness Conclusions 

 From the previous analysis, it was shown that robustness characteristics 

associated with the modern controllers were superior to PID.  The results of this analysis 

can be summarized in Table 6.6.1. 

 

Table 6.6.1 Summary for frequency domain robustness analysis 

1.90.41.5
Two Degree-of-Freedom 

H∞ Loop-Shaping 

5.34.71.7
MacFarlane-Glover H∞

Loop-Shaping 

16.910.316.3Mixed Sensitivity H∞

19.017.01.9PID

Robust PerformanceRobust StabilityNominal Performance

Peak Value (absolute)

1.90.41.5
Two Degree-of-Freedom 

H∞ Loop-Shaping 

5.34.71.7
MacFarlane-Glover H∞

Loop-Shaping 

16.910.316.3Mixed Sensitivity H∞

19.017.01.9PID

Robust PerformanceRobust StabilityNominal Performance

Peak Value (absolute)

 

  

From Table 6.6.1, it can be seen that these modern control candidates show improved 

robust stability and improved robust performance over that of the PID controller.  Also, 

with the exception of MS control, even nominal performance is improved.  
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These controllers are able to satisfy neither nominal performance nor robust performance, 

but it can be seen that these modern control candidates show a trending that moves 

towards satisfying robustness characteristics.  From these results, it shows that the more 

advanced controllers are able to handle more cases of perturbation.  The results of the 

frequency domain analysis support what was seen in the time domain analysis.  In the 

time domain all the test case perturbations were stable, though the frequency domain 

analysis shows that only one controller is robustly stable.  This is not contradictory, but 

instead means the two perturbation cases used for the time analysis existed inside the set 

of possible models that would remain stable for the controllers. 
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Chapter 7 

CONLUSIONS 

 

7.1 Overview 

 As seen from the work on this project, the ability of modern controllers to provide 

improved performance and robustness for an uncertain hydraulic system was very good.  

The controllers, for the most part, improved performance and also improved robustness.  

In the time domain, it was observed that the modern controllers provided improved 

robustness to plant perturbations compared to the PID as seen in Figures 5.2.1-5.2.8.  

Performance was sacrificed on the mixed-sensitivity controller and also on the 

MacFarlane-Glover controller for the sake of robustness, which was expected to some 

degree.  With respect to decoupling the system, the modern controllers did a better job 

than the PID for all cases except the mixed-sensitivity controller.   

 Overall the two degrees-of-freedom controller showed the best improvement in 

robustness without sacrificing performance as seen in Table 6.6.1.  There are several 

advantages that are garnered by the two degrees-of-freedom controller.  It possesses the 

best robustness characteristics and performance out of all the controllers tested.  The 

closed-loop characteristics can be designed directly into the controller via the reference 

input modeling, which allows the designer better control over the dynamics of the 

system.  The two degrees-of-freedom controller also proved to be the easiest of all the 

controllers to design.   
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7.2 Limitation of H∞ Control 

 However, there are drawbacks to these controller schemes.  For every controller 

algorithm, higher-order controllers were produces which could have high demands for the 

processor both during design and simulation and for onboard processors running the 

controller.  Model reduction can alleviate some of the demand on the processors but that 

is another step in design that takes an iterative process to determine, which equates to 

longer design times.  The controllers also require the knowledge of a system plant model 

to design the controller.  This would prove difficult to achieve if a system is not well 

known or not well modeled.  Tuning the controller in-the-field would require knowledge 

of the controller algorithm and additional processing power. 

 

7.3 Scope of Future Work 

 Future work for this research includes testing the controllers on hardware and 

evaluating the appropriateness on real industrial machines.  Furthermore, the controller 

can be expanded to handle all four valves independently so that operating conditions such 

as regenerative flow could be evaluated. 
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Appendix A 

MATLAB CODE FOR MIXED SENSITIVITY 

For mixed sensitivity design, the methodology outlined in Chapter 3.3 was used.  In that 

section, the terms S and SK were identified as important design aspects for this system.  

This reduces the quantities to minimize in design as: 

 
∞U

P

SKw

Sw
 

To apply this control to a MIMO system, a matrix of weights was chosen for each input.  

The 2x2 wp and wu matrices are assembled. 

 

%%H-infinity mixed sensitivity%%%%%%%%%%%%%%%%%%%%% 
%1 - Margin Pressure 
%2 - Velocity Control 
A_1 = .1; 
A_2 = .05; 
bandwidth_1 = .001*2*pi; 
bandwidth_2 = .8*pi*2; 
M_1 = 10; 
M_2 = 2; 
 
w_p1 = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1]); 
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2]) 
 
muv=1/100; 
numu=[muv]; 
denu=[0 1]; 
sysWu=tf(numu,denu); 
 
numu=[muv]; 
denu=[0 1]; 
sysWu2=tf(numu,denu); 
w_u=[sysWu 0;0 sysWu2]; 
 
w_p=[w_p1 0;0 w_p2] 
 
 
The genearalized plant for controller design is 



 74 

















−

−
=

GI

w

Gww

P U

PP

0  

P is found via block diagram reduction outlined in section 3.3.  The generalized plant is 

packed and the values for design are sent to hinfsyn.m from the mu analysis and synthesis 

Matlab tool box [9].  gmin = minimum gamma value, gmax = maximum gamma value, 

tol = tolerance.  The returned controller is unpacked, transformed into a state-space 

representation 

dim=2; 
P_hinf=[w_p -w_p*Gs; 
0*eye(dim) w_u; 
eye(dim) -Gs]; 
 
ssP=minreal(ss(P_hinf)); 
[aP,bP,cP,dP]=ssdata(ssP); 
pckP=pck(aP,bP,cP,dP); 
qt=1;gmin=0.1;gmax=15;tol=1e-3;epr=1e-12;epp=1e-8;rm=2; 
nc_hinf=dim;nm=dim; 
[Khinf,cl,gf,ax,ay,hx,hy]=hinfsyn(pckP,nm,nc_hinf,gmin,gmax,tol,rm,epr,epp,qt); 
 
[aK,bK,cK,dK]=unpck(Khinf); 
ssK=ss(aK,bK,cK,dK); 
 
Due to the high order of the controller, K, there were many fast poles that affected 

performance and simulation.  To reduce these problems, a model reduction method found 

on page 466 of Skogestad [2] was used.  It requires an iterative process dropping the 

order so that the dimensions are as small as possible but still stable.  In this case, the 

system was reduced to 13th order. 

 
%Model Reduction Page 466 Skogestad 
sysred=pck(ssK.a,ssK.b,ssK.c,ssK.d); 
sysd=strans(sysred); 
syst=strunc(sysd,13); 
sysr=sresid(sysd,13); 
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[asysr,bsysr,csysr,dsysr]=unpck(sysr); 
tfK=ss(asysr,bsysr,csysr,dsysr); 
 
To test for nominal performance and robust performance, performance requirements must 

be laid out 

 
%1 - Margin Pressure 
%2 - Velocity Control 
M_1 = 2; % *100% 
bandwidth_1 = 2*pi*2; 
A_1 = .15; % *100% 
 
M_2 = 2; 
bandwidth_2 = 1.5*pi*2; 
A_2 = .05; 
  
w_p1 = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1]); 
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2]); 
 
w_p(1,1) = w_p1; 
w_p(2,2) = w_p2; 
w_p(1,2)=0; 
w_p(2,1)=0; 
 
To determine robust characteristics, the plant matrix N is formed.  P, the generalized 

plant model, is defined for output uncertainty.  That matrix is: 
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In this form, wp is the matrix of performance requirements, wo is the uncertainty bound 

and Gs is the plant.  The matrix is turned into N via the linear fractional transformation 

which can be compiled using the Matlab function, lft.m using the matrix P and the 

controllers.  The code ends with the code used to plot the robustness specifications. 

Dimensions are 2x2 hence dim=2.  WaSS is wo in the code. 
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P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; w_p -w_p -w_p*Gs; eye(dim,dim) -
eye(dim,dim) -Gs]; 
N=lft(P,tfK); 
N=pck(N.a,N.b,N.c,N.d);   %competes the packed form 
Nf = frsp(N,w);                  %examines the frequency response over the frequency 
% mu for RP 
blk = [2 2; 2 2];  %creates the block for the mu command 
 [mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c');    %calculates the structured singular 
value 
muRP = sel(mubnds,':',1);              % selects the correct structured value 
pkvnorm(muRP)                             %computes the norm of the condition 
% mu for RS 
Nrs=sel(Nf,1:2,1:2); [mubnds,rowd,sens,rowp,rowg]=mu(Nrs,[2 2],'c'); 
muRS = sel(mubnds,':',1); pkvnorm(muRS)            
% mu for NP (= max. singular value of Nnp) 
Nnp=sel(Nf,3:4,3:4); [mubnds,rowd,sens,rowp,rowg]=mu(Nnp,[2 2],'c'); 
muNP = sel(mubnds,':',1); pkvnorm(muNP)            
 
figure(45) 
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),'-k'); 
hold on 
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),'--b') 
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),'-.r') 
hold off 
grid, xlabel('Frequency, Hz'), ylabel('Magnitude, abs') 
legend('RP','RS','NP') 
axis tight 
title('Robustness Analysis for Mixed Sensitivity H_{\infty}') 
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Appendix B 

MATLAB CODE FOR MACFARLANE-GLOVER LOOP-SHAPING 

 

 
 
 
 
 
MacFarlane-Glover (MG) H∞ loop shaping utilizes a PID design for performance and 

creates a controller that improves robustness.  This controller bridges the gap between 

SISO PID design and MIMO H∞ robust control design.  The plant L is the shaped-plant.  

coprimeunc.m is an m-file from Skogestad and Postlethwaite found on [10]. 

 
 
L=Gs*comp; 
gamrel=1.00000001; 
[Ac,Bc,Cc,Dc,gammin]=coprimeunc(L.a,L.b,L.c,L.d,gamrel); 
 
 
Due to the high order of the controller, K, there were many fast poles that affected 

performance and simulation.  To reduce these problems, a model reduction method found 

on page 466 of Skogestad [2] was used.  It requires an iterative process dropping the 

order so that the dimensions are as small as possible but still stable.  In this case, the 

system was reduced to 16th order. 

 
%Model Reduction Page 466 Skogestad 
sysred=pck(Ac,Bc,Cc,Dc); 
sysd=strans(sysred); 
syst=strunc(sysd,16); 
sysr=sresid(sysd,16); 
[Ac,Bc,Cc,Dc]=unpck(sysr); 
 
 

K(s) C(s) G(s)+

-
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To test for nominal performance and robust performance, performance requirements must 

be laid out 

 
%1 - Margin Pressure 
%2 - Velocity Control 
M_1 = 2; % *100% 
bandwidth_1 = 2*pi*2; 
A_1 = .15; % *100% 
 
M_2 = 2; 
bandwidth_2 = 1.5*pi*2; 
A_2 = .05; 
 
w_p1 = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1]); 
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2]); 
 
w_p(1,1) = w_p1; 
w_p(2,2) = w_p2; 
w_p(1,2)=0; 
w_p(2,1)=0; 
 
To determine robust characteristics, the plant matrix N is formed.  P, the generalized 

plant model, is defined for output uncertainty.  That matrix is: 
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In this form, wp is the matrix of performance requirements, wo is the uncertainty bound 

and Gs is the plant.  The matrix is turned into N via the linear fractional transformation 

which can be compiled using the Matlab function, lft.m using the matrix P and the 

controllers.  The code ends with the code used to plot the robustness specifications. 

Dimensions are 2x2 hence dim=2.  WaSS is wo in the code. 

 
dim=2; 
P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; -w_p w_p w_p*Gs; -eye(dim,dim) 
eye(dim,dim) Gs]; %creates the generalized plant 
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N=lft(P,W1*sys_mac); 
N=pck(N.a,N.b,N.c,N.d);   %competes the packed form 
Nf = frsp(N,w);                  %examines the frequency response over the frequency 
% mu for RP 
blk = [2 2; 2 2];  %creates the block for the mu command 
 [mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c');    %calculates the structured singular 
value 
muRP = sel(mubnds,':',1);              % selectes the correct structured value 
pkvnorm(muRP)                             %computes the norm of the condition 
% mu for RS 
Nrs=sel(Nf,1:2,1:2); [mubnds,rowd,sens,rowp,rowg]=mu(Nrs,[2 2],'c'); 
muRS = sel(mubnds,':',1); pkvnorm(muRS)            
% mu for NP (= max. singular value of Nnp) 
Nnp=sel(Nf,3:4,3:4); [mubnds,rowd,sens,rowp,rowg]=mu(Nnp,[2 2],'c'); 
muNP = sel(mubnds,':',1); pkvnorm(muNP)            
  
figure(43) 
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),'-k') 
hold on 
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),'--b') 
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),'-.r') 
hold off 
grid, xlabel('Frequency, Hz'), ylabel('Magnitude, abs') 
legend('RP','RS','NP') 
axis tight 
title('Robustness Analysis for McFarlane Glover H_{\infty}') 
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Appendix C 
 

MATLAB CODE FOR TWO DEGREES-OF-FREEDOM LOOP-SHAPING  

Designing the 2 degrees-of-freedom H∞ Loop-shaping controller uses the Matlab code 

laid out.  Each step of code and how to use it will be explained in detail.  W1 is the PID 

controller designed for performance for the closed loop system.  Creating this controller 

is done by following standard PID design methods.  Select the desired closed-loop 

transfer function Tref between the commands and controlled inputs.  This code section 

uses standard second order dynamic transfer functions that specify dynamic performance 

for each reference input, margin pressure and velocity.   

 

wn_p=2.1*2*pi; m  % Natural frequency for margin pressure 
zeta_p =0.7;            % Damping ratio for margin pressure 
wn_v=1.7*2*pi;     % Natural frequency for velocity 
zeta_v=0.7;             % Damping ratio for velocity 
Tref11 = tf([wn_p^2],[1 2*zeta_p*wn_p wn_p^2]);   % Margin pressure reference model 
Tref22 = tf([wn_v^2],[1 2*zeta_v*wn_v wn_v^2]);   % Velocity reference model 
Tref=ss([Tref11 0;0 Tref22]); 
 

The algorithm that will derive the optimized controller requires that the shaped plant, 

G*W1, and the desired closed-loop transfer function, Tref , be in the packed matrix form. 

G_shaped = Gs*W1;   % shaped plant 
Gs_pck = pck(G_shaped.a, G_shaped.b, G_shaped.c, G_shaped.d);  %convert into 
packed form 

y(t)u(t)r(t)
Plant, G

W
1

Shaping Filter

K
1

K
2

W
i

+

Shaped Plant
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Tref_pck = pck(Tref.a, Tref.b, Tref.c, Tref.d);  %convert into packed form 
 

ρ is set to a value between 1 and 3.  This parameter is a scalar value that lets the designer 

determine emphasis on model matching in the optimization at the expense of robustness.  

Increasing ρ will place more emphasis on model matching.  

 

rho=1.1; 

 

With the shaped plant, the desired closed-loop matrix and ρ, the optimization is run to 

determine the controller.  The Matlab file ‘hinf2dof’ can be found on [11].  

This file is simply the optimization routine used to find the controller.  To use the 

controller, it should be unpacked and, in this case, turned into state-space. 

 

K_2dof_pck=hinf2dof(Gs_pck, Tref_pck,rho); 
[Ak2dof,Bk2dof,Ck2dof,Dk2dof]=unpck(K_2dof_pck); 
K_2dof=ss(Ak2dof,Bk2dof,Ck2dof,Dk2dof); 
 

Due to the high order of the controller, K, there were many fast poles that affected 

performance and simulation.  To reduce these problems, a model reduction method found 

on page 466 of Skogestad [2] was used.  It requires an iterative process dropping the 

order so that the dimensions are as small as possible but still stable.  In this case, the 

system was reduced to 19th order. 

 

sysred=pck(K_2dof.a,K_2dof.b,K_2dof.c,K_2dof.d); 
sysd=strans(sysred); 
sysr=sresid(sysd,19); 
[asysr,bsysr,csysr,dsysr]=unpck(sysr); 
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K_2dof=ss(asysr,bsysr,csysr,dsysr); 
 

The controller given by the optimization is a meshing of K1 and K2.  The model calls for 

two controller gains, one for the feedback and one for the reference transfer functions.  

Because there are 2 inputs and 2 outputs, K had dimensions of 2x4.  The upper quadrant 

is K1 while the lower is K2.  Therefore, the controller was split into two 2x2 controllers. 

Wi is created by looking at the DC gain of the closed loop system and the reference 

transfer function.  This code is directly a translation of the equation: 

( )[ ] 0,

1

0,10,
1

0,20, refSSi TKGKGIW
−−−=  

The code follows: 

 

K1=K_2dof(:,1:2); K2=K_2dof(:,3:4);  %extract K1 and K2 
Hinf2dof_cl=series(K1,feedback(G_shaped,-K2));  %form closed-loop system for Wi 
Wi_2dof=inv(dcgain(Hinf2dof_cl))*dcgain(Tref);  % calculate Wi 
 

To test for nominal performance and robust performance, performance requirements must 

be laid out 

 

%1 - Margin Pressure 
%2 - Velocity Control 
M_1 = 2; % *100% 
bandwidth_1 = 2*pi*2; 
A_1 = .15; % *100%  
M_2 = 2; 
bandwidth_2 = 1.5*pi*2; 
A_2 = .05;  
w_p1 = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1]);   %form performance weight 
TFs 
w_p2 = tf([1/M_2 bandwidth_2], [1 bandwidth_2*A_2]);  %form performance weight 
TFs 
w_p(1,1) = w_p1; 
w_p(2,2) = w_p2; 
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w_p(1,2)=0; 
w_p(2,1)=0; 
 

To determine robust characteristics, the plant matrix N is formed.  P, the generalized 

plant model, is defined for output uncertainty.  That matrix is: 
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In this form, wp is the matrix of performance requirements, wo is the uncertainty bound 

and Gs is the plant.  The matrix is turned into N via the linear fractional transformation 

which can be compiled using the Matlab function, lft.m using the matrix P and the 

controllers.  The code ends with the code used to plot the robustness specifications. 

Dimensions are 2x2 hence dim=2.  WaSS is wo in the code. 

 

dim=2; 
P=[eye(dim,dim)*0 eye(dim,dim)*0 WaSS*Gs; w_p -w_p -w_p*Gs; eye(dim,dim)     
eye(dim,dim)*0 eye(dim,dim)*0; eye(dim,dim)*0 eye(dim,dim) Gs];  %creates the 
generalized plant 
N=lft(P,[W1*K1*Wi_2dof W1*K2]);   %completes the linear fractional transformation 
N=pck(N.a,N.b,N.c,N.d);   %competes the packed form 
Nf = frsp(N,w);                  %examines the frequency response over the frequency range 
w 
% mu for RP 
blk = [2 2; 2 2];               %creates the block for the mu command 
[mubnds,rowd,sens,rowp,rowg] = mu(Nf,blk,'c');    %calculates the structured singular 
value 
muRP = sel(mubnds,':',1);              % selectes the correct structured value 
pkvnorm(muRP)                             %computes the norm of the condition 
% mu for RS 
Nrs=sel(Nf,1:2,1:2);  
[mubnds,rowd,sens,rowp,rowg]=mu(Nrs,[2 2],'c');    
muRS = sel(mubnds,':',1);                   
pkvnorm(muRS)                                  
% mu for NP (= max. singular value of Nnp) 
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Nnp=sel(Nf,3:4,3:4);                           
[mubnds,rowd,sens,rowp,rowg]=mu(Nnp,[2 2],'c'); 
muNP = sel(mubnds,':',1);  
pkvnorm(muNP)            
 

figure(1) 
semilogx(muRP(1:end-1,2),muRP(1:end-1,1),'-k') 
hold on 
semilogx(muRS(1:end-1,2),muRS(1:end-1,1),'--b') 
semilogx(muNP(1:end-1,2),muNP(1:end-1,1),'-.r') 
hold off 
grid, xlabel('Frequency, Hz'), ylabel('Magnitude, abs') 
legend('RP','RS','NP') 
title('Robustness Analysis for 2 Degree of Freedom H_{\infty}') 
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Appendix D 
 

CREATING THE GENERALIZED PLANT P FOR ROBUSTNESS ANA LYSIS 

 

PID/MIXED SENSITIVITY 
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MACFARLANE-GLOVER 
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TWO DEGREES-OF-FREEDOM 

 

 

 

 

 

 

P 
K 

r 
y 

u∆ 
y∆ 

P 

K 

r 

u∆  
u  

y∆ 

v1 
z 

v2 



 88 

REFERENCES 

[1] Zhang, R., Alleyne, A. and Prasetiawan, E., 2002, “Modeling and H2/H∞ Control 
of an Earthmoving Vehicle Powertrain,” Journal of Dynamic Systems, 
Measurement, and Control, 124, pp. 625-636. 

 
[2] Skogestad, S., and Postlethwaite, I., 1996, Multivariable Feedback Control: 

Analysis and Design, John Wiley and Sons, New York. 
 
[3] Chen, H., Liu, Z. Y., and Sun, P. Y., 2005, “Application of Constrained H∞ 

Control to Active Suspension Systems on Half-Car Models,” Journal of Dynamic 
Systems, Measurement, and Control, 127, pp 345-354. 

 
[4] Fales, R. C., White, W. N., and Kelkar, A. G., 1996, “A Hydraulically Actuated 

Compound Pendulum,” IEEE International Conference on Control Applications, 
Dearborn, MI, pp. 426-431. 

 
[5] Fales, R. C., and White, W. N., 1999, “Control of a Double Inverted Pendulum 

with Hydraulic Actuation: A Case Study,” American Control Conference, San 
Diego, CA, pp. 495-499. 

 
[6] Fales, R. C., and Kelkar, A., 2005, “Robust Control Design for a Wheel Loader 

Using Mixed Sensitivity H∞ and Feedback Linearization Based Methods,” 
American Control Conference, Portland, OR, pp. 4381-4386. 

 
[7] Manring, N. D., 2005, Hydraulic Control Systems, John Wiley and Sons, 

Hoboken, NJ. 
 
[8] Dean, P., Bax, B., and Fales, R., 2006, “Reliable Hydraulic Control System 

Design,” University of Missouri – Columbia, internal document. 
 
[9] Balas, G. J., Doyle, J. C., Glover, K., Packard, A., and Smith, R., 1995, 

“hinfsyn.m,” Mu Analysis and Synthesis Toolbox, for Use with MATLAB, 
Mathworks, Inc., MUSYN Inc. 

 
[10] Skogestad, S., 1995, “coprimeunc.m,” “Matlab Files for MULTIVARIABLE 

FEEDBACK CONTROL.” 
http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.html#c9. 
April 18, 2006. 

 
[11] Skogestad, S., 1995, “hinf2dof.m,” “Matlab Files for MULTIVARIABLE 

FEEDBACK CONTROL.” 
http://www.nt.ntnu.no/users/skoge/book/2nd_edition/matlab_m/matfiles.html#c9. 
April 18, 2006. 


