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Abstract

The visualization of extremely large multi-dimensional datasets requires highly scal-

able geometric algorithms. We consider an algorithm to be scalable if its complexity

remains constant independent of the size of the complete dataset. The complexity of

the algorithm should only depend upon the visible volume and display resolution.

This thesis develops several algorithms for the display of 2-D and 3-D datasets

that achieve scalable performance. We present approaches for visibility culling and

level of detail calculation for large datasets in orthogonal and oblique projections.

These techniques are extended to support visualizing geophysical data on a sphere

with terrain elevation data, as well as volumetric data.

The algorithms presented herein are implemented on top of an existing out-of-core

image tile caching and paging system known as Kolam, developed at the University of

Missouri, Columbia. Discussions of Kolam’s architecture are provided, which include

image representations, tile request methods, cache structures, and thread interactions.

A detailed user interface description is included as well, covering GUI components,

navigation modes, API functions, and a third-party extension framework.

xi



CHAPTER 1

Introduction

1.1 Motivation

The amount of data being produced by scientists and technicians in a wide variety

of fields has been increasing steadily over the past decade, and this trend is likely to

continue. As sensor technology improves and the cost of storage decreases, the task

of producing and archiving data on a large scale is becoming feasible for more and

more organizations.

Imaging companies using satellites such as IKONOS and MODIS produce panchro-

matic and multispectral 2D geospatial imagery that can be hundreds of gigabytes or

more in size. Images of this magnitude are typically anything from 30 meter per pixel

resolution of the continental US to 1 meter resolution of an entire city. Multiple such

images are often georegistered and mosaicked to produce composite images of even

greater size [1, 2, 3].
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Medical practitioners regularly produce large amounts of data in the form of 3D

volumetric datasets during routine scanning procedures using Magnetic Resonance

Imaging (MRI), Computed Axial Tomography (CAT or CT), Positron Emission To-

mography (PET), and Ultrasound [4]. The Visible Human Project is a particularly

notable example where two human bodies, both male and female, were digitized using

MRI, CT and anatomical images. The datasets provide resolutions of 0.33 mm per

pixel (1 mm per pixel over the height of the male dataset), and require 40 gigabytes

of storage (15 gigabytes for the male) [5].

The size of these datasets makes visualizing them with a traditional approach

nearly impossible. Since a dataset of this size is larger than the amount of physi-

cal memory on a typical computer system, a specialized visualization algorithm is

necessary to extract the relevant portions of the dataset to load into memory. This

is accomplished by discarding data outside of a given region of interest (ROI) in a

process known as visibility culling. To prevent the entire dataset from being loaded

when the entire dataset is within the ROI, the algorithm must also calculate the

correct level of detail (LOD) for each data element. The LOD is based on each data

element’s contribution to the final rendered image, and should indicate the resolution

of the data to be loaded.

The focus of this paper will be to provide solutions to the problems of visibility

culling and level of detail calculation for arbitrarily large 2D and 3D datasets. For 2D

datasets within a 3D world, several geometric image projections are explored as well.

In many cases, these solutions will be discussed in the context of their implementation

during the development of the Kolam software package (see Section 1.3).
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1.2 Background

The problem of large data visualization (LDV) has received much attention over the

past decade. Both commercial and academic researchers have proposed numerous

solutions for a wide range of applications [4, 6, 7, 8, 9, 10, 11].

The traditional and most straightforward approach for extracting a region of in-

terest is to subdivide the image into tiles suitable for display as single textures on

graphics hardware. The advantage of this approach lies in its simplicity and speed; a

tile may be found on disk using a lookup table and loaded into memory with a single

read operation. The disadvantage is that, in most cases, more data is read from disk

than is necessary to produce the visual result.

The traditional approach for extracting various level of details is to use a pyramid

structure, which caches additional coarser resolutions of the image on disk. The

advantage of this approach is that retrieving tiles from disk at coarse resolutions is

as fast as retrieving the original tiles since these resolutions have been precomputed.

The downside is that most images originate as a scanline order array and must be

converted to the pyramid format before reaping this structure’s benefits.

Wavelet-based image encoding techniques used in the JPEG-2000 and MrSID file

formats have been developed as an alternative to the tiled pyramid structure. These

encoding schemes work by recursively downsampling and filtering an image in such

a way that any intermediate resolution can be retrieved by performing the correct

number of recursion steps during the decoding process. Each recursive step works by

dividing the image into subbands, each one quarter the size of the original. Each of

these four are filtered such that the top-left image contains the low frequency infor-

mation, the top-right contains high horizontal frequencies, the bottom-left contains

high vertical frequencies, and the bottom-right contains high vertical and horizontal

3



frequencies. In the next recursive step, the same process is performed on the top-left

image.

Several researchers at Silicon Graphics Inc. (SGI) in 1998 provided another so-

lution to the LDV problem that is not based on tiling. Their concept of a clipmap

caches data surrounding a given point of interest at both the finest resolution and

successively coarser resolutions. They use toroidal addressing to perform incremental

updates to cached data without processing data that remains resident in the cache

[12]. Their caching mechanism is inherently spatial since data is loaded based on its

proximity to the point of interest.

Our implementation is based on the tiled pyramid concept. While this formulation

is suboptimal for reasons described earlier, it has the advantage of ease of implemen-

tation and flexibility. With this structure, individual tiles may be compressed using

any desired method rather than being limited to wavelet-based algorithms. Also, the

caching mechanism is not tied to any particular navigation pattern, so erratic view-

point manipulation such as instantaneous jumps to distant locations can potentially

be supported with high efficiency

1.3 Credits

Kolam is a software package designed for interactive visualization of arbitrarily large

datasets. Its development has taken place at the University of Missouri Columbia

since the year 2000 under the direction of Dr. K. Palaniappan.

The original version of Kolam was written by Joshua Fraser in late 2000. This

version was written in C and relied upon OpenGL for rendering and GLUT (GL

Utility Toolkit) for window management and event handling. Its only rendering

capabilities were raster drawing techniques, which limited the visualization of data

4



to orthogonal projections of 2D data. GLUT was also not sufficient for providing an

intuitive and useful GUI.

A series of dataset processing utilities were written by Jared Hoberock in early

2002. These include pyramid file read/write utilities, image mosaicking tools, and

encoding/decoding methods for ZLIB, BZ2, JPEG and JPEG-2000 compression stan-

dards.

The current version was written by Ian Roth from summer 2001 to summer 2004.

The majority of the original code was rewritten to take advantage of features of C++

and the Qt GUI toolkit (see Section B.1.2). Many additional features were added

including texture mapping, support for non-orthogonal projections, and terrain and

volumetric data visualization. A Small Business Innovation Research (SBIR) proposal

was written by Ian in June 2004 with the help of Dr. K. Palaniappan to obtain funding

for continued research and development in large data visualization.

Dr. K. Palaniappan is responsible for much of the vision and inspiration behind

this work. He participated in discussions on the direction of the project and techniques

for efficiently accomplishing technical objectives. He authored several grant proposals

and research papers regarding the software to obtain funding and to disseminate

knowledge obtained during the research.

5



CHAPTER 2

Out-of-core Architecture for Real-time

Visualization

2.1 Overview of Kolam Modules

The goal of Kolam is to provide tools for visualizing any number of arbitrarily large

datasets simultaneously while providing interactive frame rates and intuitive navi-

gation controls. Kolam achieves these objectives by delegating them to specialized

components.

Engine The Kolam engine consists of one or more worker threads that perform data

I/O and processing for requests from the client application. It provides a layer

of abstraction so that applications can access the image as if it were entirely

resident in memory.

Application Applications are clients that determine which sections of the data are

6



needed and request them from the engine. They are responsible for displaying

images, processing data and providing user interface components.

Application Extensions Application extensions are implemented as plugins to add

user-specific features without modifying the application source code. Typical

extensions may define file format I/O procedures, data processing algorithms,

viewing modes and user interface components.

2.1.1 Definitions of Images and Tiles

An image pyramid is an arbitrarily large dense multi-dimensional dataset stored at

multiple resolutions. Each resolution, or pyramid level, is an image consisting of a

single resolution. Each pyramid level is segmented into tiles.

We denote an image pyramid I as a vector of raw images. The functions dim(I)

and res(I) are used to extract the number of dimensions and resolutions of the image.

Each vector element is denoted Ir, where r is the image resolution index such that

0 ≤ r < res(I). We represent the size of the image in pixels using the function

sipd(Ir) where d is the dimension index such that 0 ≤ d < dim(I). Each resolution

r > 0 of an image is subject to the constraint that sipd(Ir−1) = 2 sipd(Ir) for each

value of d such that 0 ≤ d < dim(I). This implies that each successive resolution is

half the size of its predecessor in each dimension.

We denote a tile T of an image pyramid I as an n-dimensional array of pixels,

where n = dim(I). The notation Tr is used to represent a tile within a specific pyramid

level Ir. The function sipd(T ) determines the size of tile T in pixels. Each tile within

an image pyramid is required to be the same size in pixels, and the pixel size in each

dimension must be a power of 2. Under these constraints, it is possible to use the

image’s tile grid as a uniform coordinate system, with the origin at the top-left corner
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of the image. Tiles that overlap the image’s right or bottom boundaries may contain

padded data. The function sitd(Ir) is used to determine the size of a pyramid level

in tile coordinates, which is equivalent to dsipd(Ir)/sipd(T )e.
Although some techniques presented throughout the rest of this paper apply to any

image dimensionality, we are often interested in viewing 2D and 3D images. Hence

it is helpful to introduce a more convenient notation. We denote the width, height

and depth of an image Ir as w(Ir), h(Ir) and d(Ir). These values may be expressed

without the resolution as wI , hI and dI with the assumption that r = 0. We represent

the width, height and depth of a tile T from an image pyramid I similarly as wT , hT

and dT , respectively.

2.2 Hierarchical Caching — Multi-level Memory

Management within the Data Transfer Pipeline

Kolam builds a hierarchy of caches for each dataset in order to optimize interactivity

and performance. Each tile enters at the lowest level of the cache and is copied to

higher levels as needed.

Each level of the cache typically holds more data than the next higher level, but

the cost of performing IO is more significant on lower levels (see Figure 2.1).

2.2.1 Disk Cache for Offline Storage

When an arbitrary image is loaded into Kolam for visualization, it is most likely laid

out on disk in scanline order. The tiles displayed by Kolam are 2n× 2m subimages of

the original where n and m are positive integers. To read such a tile from a scanline

ordered image would require 2m separate disk reads. By segmenting the image into
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Texture Cache

Memory Cache

Disk Cache

Image File

Display

Figure 2.1: Each image tile is cached three times before display: first on disk, then in

memory, and finally in texture memory on the graphics hardware. Darkened squares

represent filled cache slots in this example.
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tiles on disk, each tile requires only one read operation to load it into memory.

The current Kolam implementation builds the entire disk cache for a given image

before loading it. This is a slow process that can take several minutes to several

days, depending on the size of the dataset. For uncompressed images at the original

resolution, the disk cache can be built on-the-fly by reading each requested tile from

the original image and immediately writing it to the disk cache. To produce additional

coarser resolutions, a more complex scheme is needed.

Coarse resolutions generated from the original can be produced in a variety of

ways. These methods are sometimes called downsampling filters. Two of most com-

mon downsampling filters use the mean and median of four high resolution pixels

to determine the value of one low resolution pixel. Hence a low resolution tile is

generated using the four high resolution tiles that compose it.

The naive approach for creating additional resolutions on-the-fly is to use the same

method as the cache precomputation algorithm; simply read in all original resolution

tiles that compose a given lower resolution tile and downsample them to get the

desired low resolution tile. Of course, this is unsatisfactory since it requires the entire

image to be read at the original resolution to obtain a single tile at a low enough

resolution.

A better approach is to read low resolution tiles as uniform samples from the

original image. For a given resolution r having width and height w
2r and h

2r where w

and h are the original image dimensions, every rth scanline is read from the original

image. Every rth pixel from each scanline is then used in constructing resolution r.

This same process is done on a per-tile basis for uncompressed images by only reading

m scanlines of length r · n.

Although the uniform sampling method serves as an easy way to read a low

resolution tile quickly, we may wish to use more visually pleasing downsampling filters
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as more high resolution tiles become available in the cache hierarchy. For example,

a tile at resolution r > 0 created by uniform sampling can be regenerated using a

different downsampling filter once the four tiles that compose it at resolution r − 1

are cached. Low resolution tiles may be signaled for refiltering once enough data is

available.

For compressed images, this uniform sampling method becomes considerably more

complex. For example, run-length encoding (RLE), one of the simplest encoding

methods, creates scanlines of variable length. Hence we can no longer simply read

every rth pixel since they are not uniformly spaced in the file, nor can we read every

rth scanline since we must examine the intermediate scanlines to find the position of

the next rth scanline.

One way to avoid reading every scanline is to scan the entire image during the

initial loading step and create a lookup table for the starting position and length of

each scanline. If the size of each scanline is very large, the lookup table my also contain

one or more breakpoint positions for each scanline, each breakpoint corresponding to

a tile boundary.

Precomputing the disk cache remains a useful options since it is far more efficient

than constructing the cache on-the-fly. The overhead of refiltering downsampled tiles

once more high resolution tiles are available is not an issue for disk cache precompu-

tation. Building a lookup table for scanline positions in not necessary either.

Pyramid File Format

Kolam currently uses a pyramid file format to represent the disk cache. We define a

pyramid format to include an original resolution image of size S0 along with several

coarser resolutions, each additional resolution r > 0 being approximately 1
4

the size

of the image at resolution r − 1. The total size of the image data Sp associated with
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a pyramid file (not including header information) is computed by

Sp =
r−1∑
i=0

S0

4i
(2.1)

where r is the total number of resolutions in the file. Since the base of the exponent

i is less than 1, we conclude that this geometric series [13] converges to

lim
r→∞

Sp = S0

∞∑
i=0

1

4i
=

4

3
S0 (2.2)

as the number of resolutions increases to infinity [1]. This number is only approximate

since each image resolution may include border tiles containing padded data.

In addition to image data, Kolam’s pyramid file format includes a header speci-

fying the size and layout of the image data portion. The original image dimensions,

the pixel format, the total number of resolutions and the total number of tiles are

each stored in addition to a lookup table specifying the location of each tile within

the file. See section B.3 for a more detailed description.

For future implementations, we are considering switching to the HDF5 file format

[14]. This format supports the same concept of tiles as our pyramid format (except

called chunks), but includes several other promising features. The biggest advantage

is that the IO library handles tile insertions and deletions automatically, thus making

the implementation of on-the-fly disk caching much simpler.

2.2.2 Memory Cache for Fast Data Access in Software

The Kolam memory cache is where tiles are held temporarily in RAM. They enter

this cache from either an image file or the disk cache and are removed when no longer

needed. The process of swapping old tile for new ones is known as paging.

The two basic paging strategies are temporal and spatial strategies. Temporal

strategies remove tiles based on how long they have been in the cache. These methods
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Figure 2.2: An example of a cache and a possible user navigation path. Assuming the

cache is full at this point, temporal paging will remove the least recently used tiles even

though they are close to the user’s current viewpoint and are likely to become visible

soon. Spatial paging will remove those furthest from the user’s current position.

are simple to implement and work well regardless of the visualization technique being

used. Spatial strategies remove tiles based on their distance from the visible region of

interest (ROI). These methods are sometimes more difficult to implement since the

distance between tiles is highly dependent on the method used to project the image

onto geometry during the visualization process. However, spatial methods are still

preferable in certain cases, such as the one illustrated in Figure 2.2.

Kolam’s temporal paging mechanism uses a least recently used (LRU) queue to

remove those tiles that have not been used by the application for the longest period

of time. Each time the application uses a tile, the tile is moved to the back of the

queue. Tiles that are no longer needed are removed from the front of the queue, a

constant time operation. When a tile needs to be moved to the back of the queue,
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it is located in constant time by maintaining a pointer for each cache slot indicating

the tile’s position on the queue. We will assume a LRU caching scheme is used in the

rest of this paper.

Prefetching is accomplished with this scheme by using more than one queue, each

with a unique priority. Currently visible tiles receive the highest priority, while

prefetched tiles have successively lower priorities based on their distance from the

visible ROI. Tiles on a queue are not removed until all lower priority queues have

been emptied, and tiles are only allowed to move to higher priority queues based on

the priority of their request.

The memory cache has five basic methods available to application developers:

Checkout This method checks the cache to see if the specified tile is resident in

memory and returns a handle to the tile if it is present. If a LRU queue is used,

this method also moves the tile to the back of the queue.

Checkin After a tile has been successfully checked out, no other threads are allowed

to access it until the checkin method is invoked. Every checkout call that returns

a non-null value must always be followed by this method or else a deadlock may

occur on subsequent checkouts.

Query This method allows an application to query the status of a tile without modi-

fying its position on the LRU queue. This is useful for doing cache performance

analysis on the application level.

Add Request This method places a request for a specific tile. If the tile is already

resident in memory or a request for it has already been placed, nothing happens.

Invalidate Tile This method removes a tile from the cache and frees its resources.

This is useful for removing outdated requests as described in Section 2.3.2.
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The memory cache provides three variations of the checkout method:

Basic Checkout This method returns immediately with a handle to the tile if it is

resident in memory. A null value is returned otherwise.

Checkout First Available If the specified tile is already resident in memory, this

method works exactly like the basic checkout method. If the tile is not resident,

the method searches for the same tile at a coarser resolution. If no coarser

resolution is found, a null value is returned.

Wait for Tile This method does not return until either the specified tile has been

loaded into the cache or a time limit has been reached. The calling thread is

suspended until a new tile appears in the cache to avoid busy waiting.

2.2.3 Texture Cache for Fast Data Rendering on GPU

The texture cache is a tile’s last stop in the cache hierarchy before being displayed.

This cache is controlled on the application level since its parameters are highly de-

pendent on the visualization techniques being used.

The texture cache is essentially a simplified version of the memory cache. No

synchronization is necessary since the visualization process is confined to a single

thread. No requests are needed since transferring tiles from the memory cache to the

texture cache requires no system calls or unbounded waiting.

The only major difference between the memory and texture caches is in the way

that space is allocated for cache entries. The memory cache allocates tile memory

either by using the program’s heap space or by segmenting its own internal memory

block. The texture cache must store its tile data on the graphics hardware, so the

allocation is often done through some external graphics API (OpenGL in our case). A
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temporal paging strategy is generally preferred since the limited texture memory on

graphics hardware eliminates most advantages of the more complex spatial strategies.

2.3 The Kolam Engine

The Kolam engine is the entity that performs low-level data IO and memory manage-

ment for one or more applications. It is based on the workpile design pattern. The

simplest form of this pattern takes a large task and breaks it down into numerous

subtasks, dispatching a new thread to handle each subtask. A more efficient imple-

mentation will have a limit on the number of concurrently running threads and be

able to reuse existing threads rather than spawning new ones for each new task.

2.3.1 Worker Threads for Background Data Transfer

Kolam implements the workpile pattern by first spawning a fixed number of worker

threads at startup. Each thread is initially idle and remains so until it receives a

request. Requests are produced by the application to indicate that a particular piece

of data that is not resident in memory is needed for rendering or processing. Once

a request is made, an idle thread is awoken to process it. After its work is done,

a thread will check to see if any more requests have been queued and are awaiting

processing. If not, the thread returns to its idle state.

Worker threads have several states that they can be in at any given time:

Idle A worker thread is idle when there are no requests to be processed. Threads

do not periodically check the request queue, a process known as busy waiting.

Instead they suspended themselves upon finding an empty queue and are awoken

whenever a new request is added by the thread making the request.
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Caching/Paging In this state, the worker thread attempts to find a free block of

memory in the cache to store incoming tile data. If no free space is available,

some cached data must be discarded to make room (see Section 2.2.2).

Reading/Writing A worker thread is reading or writing when tile data I/O is being

performed. While currently only disk/memory I/O capabilities are implemented

in Kolam, this state applies equally well to I/O to and from a network, printer,

scanner, digital camera, or other I/O device.

Notifying After the requested I/O operation is complete, the thread notifies the

application that new data is available. This will usually trigger a display refresh,

although any other response can be implemented at the application level.

2.3.2 Tiles and Requests — A Tile’s Path from Disk to Mem-

ory

Each cache slot is a pointer that may refer to a tile, a tile request, or a null pointer.

These values correspond to three tile states of resident, requested, and empty. Since

both tiles and requests share the same data structure and are often treated identically,

we will refer the union of both groups as cache entries. A cache entry is uniquely

identified by its image and index. It is treated as either a tile or a request based on

its state. Cache entries have several states that they can be in at any given time:

Inactive This state corresponds to a non-existent cache entry. This value is returned

by the cache whenever a query is made to a slot containing a null pointer.

Requested In this state, the cache entry is a request rather than a tile and is guar-

anteed to be on the request queue.
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Figure 2.3: This diagram shows the interaction between the display thread and multi-

ple worker threads. The display thread determines which tiles should be rendered and

places requests onto a queue. The worker threads process these requests by loading

tiles from the disk cache and inserting them into the memory cache. Image courtesy

of [15].
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Processing In this state, the cache entry is a tile rather than a request and is either

preparing for or actively performing data I/O.

Resident After the requested I/O operation is complete, the tile is fully resident in

memory and ready to be used by the application.

Kolam maintains two main memory cache representations at all times: an array

of cache slots that may or may not have data associated with them and two priority

queues to keep track of current cached tiles and tile requests. Requests are always

stored on a priority queue whereas cached tiles may or may not be depending on

whether a LRU caching scheme is being used (see Section 2.2.2). Here a LRU caching

scheme will be assumed.

The array representation allows constant time lookup of tile data, while the queues

provide linear time traversal of cached and requested tiles. By combining the two,

constant time push, pop and remove operations can be implemented on the priority

queue (see Figure 2.4). For a cache with a constant tile size, these are the only oper-

ations required and all caching and paging operations can be performed in constant

time. For tiles of varying sizes, several tiles near the tail of the queue may need to

be popped for a single paging operation before enough memory has been freed for in-

coming data. Since tile sizes often do not vary dramatically, the number of additional

pops is usually small.

Kolam uses a priority queue to manage both tiles and requests. This queue is

more accurately described as an array of queues, each with a unique priority value.

Multiple priorities are especially useful for prefetching tiles as currently visible tiles

should always have a higher priority than non-visible tiles.

When the application makes a request for some tile from the image, the request

is put onto a queue to await processing by a worker thread. This becomes a problem
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Figure 2.4: An example of a single-priority least recently used (LRU) queue with

constant time push, pop and remove operations.Random access is provided using the

associated cache entry lookup tables (bottom).

20



when requests are produced faster than the threads can consume them. The queue

structure forces the threads to process the oldest requests first, in turn increasing the

time needed for the user to see the visible tiles. This problem can be solved by using

a stack instead of a queue, but this still requires the threads to waste time processing

old requests after the new ones.

The solution is to let the application maintain two lists: one for the visible tiles

in the current frame, another saved from the previous frame. At each frame, the

application compares the two lists to find the tiles that have ceased to be visible

between the last two frames. The requests for these tiles are then removed from the

request queue.
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CHAPTER 3

Visualization Techniques for Large

Geospatial Datasets

3.1 Overview

The viewer components in Kolam are responsible for determining which tiles are

visible and at what resolution. Once these tiles are determined, they are requested

from the core server. The server will either respond with a block of image data to

be drawn or indicate that the requested tile is not yet resident in memory. In the

latter case, the next available tile covering the same region at a coarser resolution

may be requested by the viewer. If no coarser resolution is available, the viewer will

have no choice but to display no data. However, this case is rare since the overview

tiles (the coarsest resolution) are never discarded. For more information on retrieving

data from the cache, see section 2.2.2.
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Running Time

The goal of Kolam is to be able to handle any size dataset, not withstanding size

limitations of the operating system or physical storage device. Keeping this in mind,

the efficiency of the visualization algorithms can be measured by the number of tiles

processed per frame (this may, and probably will, be different than the number of

tiles rendered per frame). For convenience, we define the value

nr =

dim(I)−1∏

d=0

sitd(Ir) (3.1)

to be the number of tiles at resolution r. We also define

n =

res(I)−1∑
r=0

nr (3.2)

to be the total number of tiles in a given image (see Section 2.1.1).

We also wish to define the total number of visible tiles for any given frame since

this number is the minimum number of tiles that can be process per frame. While this

number does not have a well-defined minimum or maximum value for arbitrary image

projections, it is always well-defined at a single frame. Therefore we will represent it

as a time-variant function m(t), or simply m in the context of a single frame.

A visualization algorithm that processes O(n) tiles per frame will scale linearly

as the number of tiles n grows arbitrarily large. Processing only the finest resolution

yields the same complexity since n0 ≈ 3
4
n = O(n) (see Section 2.2.1). While linear

running time is generally considered quite good for most algorithms, it is more time

than is necessary in our case since we are only interested in rendering m visible tiles.

Since some image projections presented in this paper can be represented analyt-

ically (i.e. planes, spheres and hexahedra), we can compute their intersection with

the viewing volume in constant time relative to n. The intersected region can then

be projected into tile coordinates, thereby yielding the set of visible tiles. If all tiles
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are at the same resolution and approximately equidistant from the eye, the time

taken to render one frame using this algorithm will be O(m). To account for multi-

ple resolutions, we can subdivide the viewing volume into different regions based on

their distance from the eye. Since a 2D image has approximately log4 n resolutions,

this new formulation can require O(lg n) separate intersection calculations, yielding

a running time of O(m + lg n).

In practice, it is usually far simpler to implement an algorithm that determines

tile visibility using an iterative approach over each resolution of an image. Such

algorithms will run in a somewhat slower O(m lg n) time (this will be justified later

at the end of Section 3.3.2). This approach has a big advantage over the previous

formulation in that we do not have to derive a separate intersection scheme for every

type of image geometry. This geometry can also be represented as a discrete or

piecewise function, for example a triangular mesh, rather than as an implicit surface

or volume.

In the next few sections, if it suffices to render all tiles at the same resolution, an

O(m)-time algorithm will be presented. If multiple levels of detail may exist within

the same view, an iterative O(m lg n)-time algorithm will be presented. If an image

projection can be represented implicitly, an analytical O(m + lg n)-time algorithm

will be presented also.

3.2 Orthogonal Viewer

The orthogonal viewer is the simplest and often the most useful for 2D imagery. It

acquires its name from its restriction that, given a camera located at ceye with focal

point ccenter, the vector

n = ccenter − ceye (3.3)
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is always orthogonal to the image plane. Most image processing programs use this

and only this viewing paradigm since it maintains a uniform sampling of image pixels.

A translation vector τ may be applied by computing ccenter = ccenter + τ and

ceye = ceye + τ . Scaling the image by a diagonal matrix S may be accomplished by

computing ceye = ccenter + Sn. Arbitrary rotations about n may be applied using

successive rotations about the x, y and z-axes. As shown in [16], these rotations

can be combined to form a generic system of linear equations for performing vector

rotations.

In practice, it is often assumed that the image plane is orthogonal to the z-axis and

that the vector [0, 1, 0]T (the positive y-axis) indicates the user’s upward orientation.

In this case, the camera representation may be discarded in favor of a unit eye distance

from the image. Under these assumptions, the above formulation can be simplified

considerably.

3.2.1 Visibility Culling

If it is assumed that the viewport is rectangular, a list of visible tiles can be determined

by a series of simple affine transformations. For non-rectangular viewports, the more

general tile culling method presented in the next section (see Section 3.3) would be

more appropriate.

Assume we are given a 2D translation vector t in image pixel coordinates and a

zoom factor z such that z ≥ 1 at resolution r = 0, and 1/2r ≤ z < 1/2r−1 for all

coarser resolutions 0 < r < res(I). All tiles will be at the same resolution since each

point on the image plane is equidistant from its corresponding point in the parallel

viewing plane. Hence a global image resolution ρ can be computed by

ρ = dlog2(1/z)e. (3.4)
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The global scale should be clamped to the range 0 ≤ ρ < res(I) to ensure a valid

resolution index is produced.

The translation vector t can then be transformed from pixel coordinates to tile

coordinates using the transformation matrix

S =
1

2ρ




1/wT 0

0 1/hT


 . (3.5)

We can also compute the visible region R in tile coordinates so that each integral

coordinate contained in R is a visible tile at resolution ρ. Since the region R is a

rectangle in an orthogonal projection, it is sufficient to determine its width wR and

height hR. This is accomplished by computing



wR

hR


 =

1

z
S




wV

hV


 (3.6)

where wV and hV are the viewport width and height. Combining equations (3.5) and

(3.6), we can obtain the top-left tile coordinate (xR, yR)of the rectangular region R

using 


xR

yR


 = S t− 1

2




wR

hR


 . (3.7)

3.3 Oblique Viewer

The oblique viewer is similar to the orthogonal viewer in the respect that each visual-

izes a dataset confined to a plane. However, the oblique viewer relaxes the constraint

that the camera angle must be orthogonal to the image plane. As a consequence, most

assumptions that allow us to simplify the tile culling formulation of the orthogonal

viewer are no longer valid. First of all, the image plane and viewing plane are not

necessarily parallel, so tiles of different resolutions may be present in the save visible
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region. Second, although the viewport is still rectangular in 3D, it is likely to become

deformed once projected onto image coordinates.

3.3.1 Analytic Solution

Visibility Culling

The analytic solution to image tile culling calculates the intersection of the view-

frustum and the image plane using implicit equations.

We begin with the simple case where it is assumed that each tile is to be displayed

at the same resolution r. Each plane of the viewing frustum is represented by the

equation

nF · (x− pF ) = 0 (3.8)

where n is the plane’s unit normal vector (facing inward w.r.t. the frustum) and p is

any point on the plane. The image plane is defined similarly as

nP · (x− pP ) = 0. (3.9)

The intersection between this view frustum plane and the image plane can be calcu-

lated by equating the two planar equations (both are equal to zero) and solving for

x. The resulting system of equations is underdetermined, but a solution can be found

by picking an initial value for a single component of x. The vector m parallel to the

line of intersection is found by

m = nF × nP . (3.10)

The parametric equation for the line is given by

x(t) = p + tm. (3.11)

where p is the renamed value of x from equations (3.8) and (3.9).
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The lines of intersection of each of the six view frustum planes can then be inter-

sected in the image plane to find set of points. The view frustum lines should also be

intersected with the edges of the image in the plane. The intersection of two lines is

given by

x = p1 + m1
(−−→p1p2 ×m2) · (m1 ×m2)

|m1 ×m2|2
. (3.12)

The convex hull of all of these points yields a polygon containing the region of visible

tiles in the image.

Once the polygon is found in the image plane, any standard polygon fill algorithm

can be used to traverse the tiles within the polygon boundaries. Scanline filling

methods are directly applicable. Flood fill methods may be used if the polygon edges

are first discretized by marking individual tiles as boundary tiles using the DDA or

Bresenham line drawing algorithms [17].

Multiple Resolution Tiles

We can now expand upon this formulation to incorporate tiles of varying resolutions

within the same framework. We do so by dividing the view frustum into regions

based on their distance from the eye. Each region can be intersected with the image

plane individually, and the tiles within each resulting polygon can be rendered at that

region’s resolution (see Figure 3.1).

We can split the view frustum into regions using either planes or spheres. Planes

are simpler, although tiles near the left, right, top and bottom clipping planes may be

calculated to be closer than they acually are. Spheres provide a more exact calculation

at the expense of added complexity.

Regardless of whether planes or spheres are used to divide the frustum, the

distance from the eye to the division must be calculated for each available image

resolution. We start by calculating the distance p in pixel coordinates (1 unit =
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Figure 3.1: The intersection of the view frustum with the image plane show in 2D

(top) and 3D (bottom).
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tile width in global coords
tile width in pixels

) from the eye to a point in the image plane displayed at its actual

resolution. Imagine a tile orthogonal to the viewing vector with the same width and

height as the display viewport that fills the entire screen pixel-for-pixel when rendered

(see Figure 3.2). This tile is at actual resolution and its distance can be calculated

by

p = (hV /2) cot θ. (3.13)

Given a distance d in pixel coordinates, we can now use p to scale it to resolution

coordinates. The resolution of any point in space can be obtained by taking the log

of this scaled distance using

r = blog2(d/p)c. (3.14)

By solving for d using

d = p2r for r = 0, 1, 2, . . . , res(I)− 1 (3.15)

we get the distance from the eye of the plane or sphere used to divide the view frustum

into regions.

3.3.2 Iterative Solution

Visibility Culling

One way to determine which tiles are visible is to mimic the approach used by well-

known scene graph culling algorithms. The different resolutions of the visible image

form a quadtree if each tile at resolution r > 0 is considered to have at most 4

children at resolution r− 1. A tile t with tile coordinates {x, y}t could have children

with coordinates {2x, 2y}t, {2x+1, 2y}t, {2x, 2y+1}t, and {2x+1, 2y+1}t. In image

coordinates {x, y}i, t’s children could have coordinates {x/2, y/2}i, {(x+1)/2, y/2}i,

{x/2, (y + 1)/2}i, and {(x + 1)/2, (y + 1)/2}i (see figure 3.3). Since the boundary of
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Figure 3.2: A tile with the same width and height as the viewport {wV , hV } is

displayed at its actual resolution (pixels are the same size on the tile as on the

viewing plane) when its four edges touch but do not cross the left, right, top and

bottom planes of the viewing frustum. The distances wV , hV and p are measured in

pixels.

(a) (b)

Figure 3.3: Tile coordinates shown in (a) vary depending on the resolution while

image coordinates in (b) are resolution invariant.

each child is completely contained by the boundary of any of its ancestors in image

coordinates, we can say that if no part of t is visible, then no part of any of its children

is visible either.

We can exploit this property of multi-resolution images by performing a top-down
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search through the image tiles, i.e. a search from coarsest to finest resolution. For

each tile, we check to see whether or not it is visible and only continue searching

its children if the tile itself is visible. For now, we will assume that the search will

terminate when some constant resolution is reached.

Here we present scene graph rendering algorithms (3.3.2) and (3.3.2) for rendering

all visible tiles at the finest resolution. This approach will be modified slightly in the

next section to reflect view-dependent tile resolution calculations.

Algorithm 1 GetVisibleTiles

for all tiles t at resolution rmax do

ProcessTile( t )

end for

Algorithm 2 ProcessTile( t )

if t is visible then

if rt = 0 then

render tile t

else

for all children c of tile t do

ProcessTile( c )

end for

end if

end if

We can determine whether or not a vertex of a given tile is visible by performing a

standard view-frustum intersection test. This test can be performed in either R3 or in

the canonical view volume (CVV) space. Each has its advantages and disadvantages

which we will discuss shortly. In either case, we begin by transforming our world
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coordinates using a transformation function f(x).

To perform the intersection test in R3, we only need to transform our world

coordinates into eye coordinates. We define a transformation function f(x) : R3 → R3

on a vertex x by

f(x) = Mx (3.16)

where M is a standard modelview matrix [18]. If the transformed vertex x′ = f(x)

lies within the six planes of the viewing frustum, we conclude that it is visible.

To perform the intersection test in CVV space, we need to perform an additional

non-linear transformation using homogeneous coordinates to fit the entire visible re-

gion into the unit cube defined by [−1, 1]3. We define a transformation function

f(x) : R3 → R4 on a vertex x by

f(x) = PM




x

1


 (3.17)

where M and P are standard modelview and projection matrices [18]. If the trans-

formed vertex x′ = f(x) lies within the canonical view volume (CVV) [−1, 1]3, we

conclude that it is visible. This test can be performed in either homogeneous coordi-

nates or after the homogeneous division step [17].

We will first describe the view-frustum intersection test in R3. The view frustum

has six planes, each of which has a corresponding equation

n · −→px = 0 (3.18)

where n is the plane’s unit normal vector and p is any point on the plane. Equation

(3.18) is satisfied if x lies on the plane. If x does not lie on the plane, the sign of the

left side of equation (3.18) determines whether x is inside or outside the plane. If x

lies inside each of the frustum’s six planes, it intersects the frustum’s volume.
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We can use the results of the vertex visibility test to determine if any part of a

tile is visible. Obviously, any of a tile’s four vertices passing the visibility test implies

that part of the tile is visible. However, if no vertices of a tile are visible, at least one

edge or interior point may still be visible.

We can check for edge visibility whenever two connected vertices lie on opposite

sides of one of the frustum’s six planes. We then compute the intersection point

of the edge with the plane and check whether this point passes the vertex visibility

test, thereby implying a visible edge. This can be accomplished by substituting the

parameterized line segment equation formed by the two opposing vertices into the

equation for each plane. The equation for the parameterized line segment q1q2 is

given by

x = q + tv (3.19)

where q is one of the two vertices on the line segment, i.e. q1, and v is a vector

parallel to the line, i.e. −−→q1q2. We substitute equation (3.19) into (3.18) and solve for

t to obtain

t =
n · (p− q)

n · v . (3.20)

By substituting equation (3.20) into (3.19) and solving for x we get the point of

intersection between the line segment and the plane. We then verify that this point

lies within the quadrilateral created by the intersection with the current plane and

its four neighboring planes on the frustum. This can be accomplished using the

vertex/plane intersection test described above. If the point of intersection lies within

the quadrilateral, it lies on the frustum boundary and hence the line segment q1q2

intersects the frustum.

Even if no vertices or edges of a tile intersect the frustum, any of its interior points

may still intersect. We can perform a simple test for the visibility of the interior of
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a tile after both the vertex and edge tests fail. The failure of the previous two tests

implies that the tile in question must either fill the entire visible region with its interior

(i.e. the intersection of its interior with the left, right, top and bottom planes forms

a quadrilateral in R3) or not be visible at all. We can then perform one additional

plane/line segment intersection test, this time intersecting the line segment along the

line of sight between the near and far clipping planes with the plane defined by the

tile.

Performing the visibility culling test in the transformed CVV space rather than

R3 has a big performance advantage. For an arbitrary frustum in R3, each component

of each plane’s normal vector n is likely to be non-zero, hence requiring 18 multipli-

cations, 18 subtractions, 12 additions and 6 comparisons. After transforming to CVV

space, each frustum plane is aligned with one of the three axes of R3, thus yielding

values of n with one unit and two zero terms. The result is that two multiplications

cancel out due to zeros and the other is unnecessary because the factor is one, so

no multiplications need to be performed at all. Since the sides of the CVV are all

constant distances from the origin, the additions and subtractions can be eliminated

yielding only a single comparison for each plane. Hence only six comparisons is all

that is necessary to determine if a vertex intersects the view frustum. A similar

strategy can be used to simplify the plane/line segment intersection test in CVV

space.

Multiple Resolution Tiles

The approaches for tile culling listed above are limited in that they only determine

the appropriate tiles to render in spatial coordinates. Additional steps must be taken

in either approach to ensure that the correct resolution of each tile is chosen.

For the scene graph approach, determining the correct resolution is fairly straight-
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forward. During traversal of the graph, instead of continuing to process children of a

visible tile t until a leaf node is reached, we can check whether the current resolution

is fine enough for rendering before continuing.

This method is illustrated in algorithm (3.3.2), a modification of algorithm (3.3.2).

Algorithm 3 ProcessLODTile( t )

if t is visible then

if t is at a fine enough resolution then

render tile t

else

for all children c of tile t do

ProcessTile( c )

end for

end if

end if

We can determine if the current resolution is fine enough by simply calculating the

area of the quadrilateral projected into window coordinates from each tile t. Due to

the perspective transformations used for projection, we cannot make any assumptions

about the projected quadrilateral, i.e. it is not guaranteed to have any parallel edges.

Therefore we must use the generic quadrilateral area formula

A =
1

4

√
4p2q2 − (b2 + d2 − a2 − c2)2 (3.21)

where a, b, c and d are the lengths of each edge in counter-clockwise order and p

and q are the distances between opposite vertices (see Figure 3.4) [19]. If the area A

is above some threshold T , the children of tile t can be traversed to achieve a finer

resolution.
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Figure 3.4: The quantities a, b, c and d are the lengths of each edge, while p and q

are the distances between opposite vertices.

The value of T is typically chosen in the range S ≤ T ≤ 4S where S is the number

of pixels used by a tile. Setting T = S will increase the likelihood that no tiles are

displayed more coarsely than their actual resolution.

In section 3.1 we stated without proof that this algorithm will run in O(m lg n)

time. Here lg n is the maximum height of the graph and m is the number of visible

tiles. For each tile, a maximum of 4 children can be processed, so at least 4m tiles

are guaranteed to be processed per frame. Since each tile has at most lg n ancestors,

each of which may require up to 4 children to be processed, the graph traversal of

each visible tile can require no more than 4 lg n tiles to be processed. For a total of

m visible tiles, no more than 4m lg n tiles can be processed. Therefore was can state

that the upper bound on the running time of this algorithm is O(m lg n).

3.4 Sphere Viewer

The sphere viewer takes a 2D image and projects it onto a spherical shape approxi-

mated by a triangular mesh. We still maintain the concept of a 2D image I, but each

tile t not only has an {x, y} offset in the image plane, but also a latitude and longitude

pair {u, v}. While latitudes and longitudes are usually measured in degrees in the
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range [−90, 90] and [−180, 180], we will use radian values in the range [−π/2, π/2]

and [0, 2π] to simplify our calculations. Vertices on the surface of a sphere can be

calculated using parametric equations defined in [20] by

x =




x

y

z




=




cos v cos u

sin v

cos v sin u




. (3.22)

The trigonometric functions are prohibitive to calculate for every tile in every frame,

so each tile’s position x on the sphere can be precalculated. To reduce the space

requirement from Θ(n) to Θ(wI + hI), the trigonometric functions of u and v can be

precomputed and then combined using equation (3.22) for each frame.

3.4.1 Analytic Solution

We can directly calculate the intersection of the viewing frustum and the sphere onto

which the image is projected using similar methods to those described in section 3.3.

There are a few key differences, mainly in the determination of the polygon in the

image plane which overlaps the region of visible tiles.

The intersection of a view frustum plane with the image sphere is a circle in 3D

space. This circle is defined by the same center and radius as is used to define a 2D

circle, except that it is restricted to lie in the view frustum plane. We can calculate

the circle’s center by first finding the distance d from the sphere’s center cs to the

frustum plane along the plane’s unit normal vector n. The value of d is given by

d = |(cs − p) · n| (3.23)

where p is any point on the frustum plane. This circle’s center cc can then be

calculated using

cc = cs − dn. (3.24)
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Figure 3.5: Intersection of a sphere with a frustum plane.

By observing figure 3.5 we see that the circle’s radius rc is related to d and the sphere’s

radius rs by

rc =
√

r2
s − d2. (3.25)

Now that we have found the circles of intersection, they still need to be projected

onto the image plane to be of any use. We do so by defining the parametric equations

for a circle and sphere and solving for the sphereical parametric coordinates u(t) and

v(t) in terms of the circle parameter t.

The parametric equation for a circle in 3D is given by

x(t) = cc + rc cos t a + rc sin tb (3.26)

where a and b are any two relatively orthogonal unit vectors that are also orthogonal

to n. If an “up vector” is defined by u, we can use it to determine suitable values for

a and b using

a = n× u (3.27)

and

b = n× a. (3.28)
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The parametric equation for a sphere is given by

x(t) = cs + rs




cos v(t) cos u(t)

sin v(t)

cos v(t) sin u(t)




(3.29)

where cs is the sphere’s center.

Combining these two equations and solving for u(t) and v(t), we obtain two equiv-

alent relations for u(t)

u(t) = cos−1

(
xx(t)− csx

rs cos v(t)

)
= sin−1

(
xz(t)− csz

rs cos v(t)

)
(3.30)

that are both dependent on v(t) and a single relation for v(t)

v(t) = sin−1

(
xy(t)− csy

rs

)
(3.31)

that can be solved directly. By picking sample values of t in the range [0, 2π], we

can use equations (3.30) and (3.31) to generate points on the curve represented by

equation (3.27) projected onto the image plane. These points form a boundary around

an unclipped region of the image. Two unclipped regions can be intersected by

tesselating them into non-convex polygons and performing polygon intersection tests

between each pair of polygons between two unclipped regions (here each unclipped

region corresponds to a single projected circle).

3.4.2 Iterative Solution

Visibility Culling

As described in the previous section, a simple and efficient algorithm for determining

visible tiles in 3D can be achieved by representing the image as a scene graph. For

the sphere viewer, the same overall approach can be used; however, extra steps must
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be taken at each tile to determine whether or not is it visible. The main difficulty in

spherical visibility culling is that tiles are no longer confined to a plane. Instead, they

are projected onto a sphere and can be extremely warped at the coarsest resolutions.

Therefore we must treat the tiles as more general curved surfaces rather than planar

polygons.

To generalize the previous visibility culling strategy described in section 3.3 to

general non-linear 3D surfaces, we can use bounding spheres to simplify the view

frustum intersection tests. Bounding spheres are particularly attractive in comparis-

son to bounding boxes (BB), axis-aligned bounding boxes (AABB), and binary space

partitioning (BSP) trees due to their simplicity and efficiency. All that is necessary

is to find the center of the object and its radius and the sphere is defined. The center

vertex of an object can be found by simply by finding the minimum and maximum

positions of points separately for each of the three spatial dimensions. The average of

these two vertices is the center. The radius can be found by computing the maximum

distance from the center to each point on the object. The center and radius can be

precomputed for each tile as the spherical geometry does not change throughout the

visualization process.

Itersecting a bounding sphere with the viewing frustum is simply a matter of

determining if the center of the sphere is close enough to the frustum volume, i.e.

within a threshold distance equal to the radius of the sphere. For each plane of

the frustum, the center is translated along the plane’s normal vector by a distance

equal to the radius of the sphere (assuming the frustum plane normals are pointing

inward). The same vertex/frustum intersection test described in section 3.3 can then

be performed.

When performing this test in CVV space rather than R3, the sphere undergoes

some non-linear warping due to the transformed space. On the surface, this may
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seem negligable since the bounding sphere intersection method is an approximation

anyway. However, the errors from the intersection test in R3 are guaranteed to be

false positives, meaning that more tiles will be found to be visible than the number

that actually are visible. This will have no effect on the visible result, although some

inefficiency is inherent. The results of the warping in CVV space do not guarantee

the errors to be false positives. The false negatives which can occur in this space

will result in unfilled pixels in the viewing plane. It is recommended that the test be

performed in R3 as correctness of output is generally valued more than efficiency of

computation.

One major flaw with this method presented so far is that it allows both the near

and far surfaces of the sphere to pass the intersection test if the entire sphere lies

between the near and far clipping planes. One simple solution for removing the

occluded portion of the sphere surface is to move the far clipping plane closer to the

viewpoint. This solution is valid for the simple case when the vector

v = s− ceye (3.32)

is parallel to n as defined in equation (3.3). However, the problem of exactly how

close to move the far clipping plane requires a little more thought.

By observing Figure 3.6, we see that regardless of the orientation of the camera,

the set of all rays ui ∈ U emminating from ceye tangent to the sphere form a cone. The

intersection of this cone with the sphere is a circle in 3D space. The plane containing

this circle separates the front-facing potentially-visible portion of the sphere from the

back-facing occluded portion.

It should now be clear that the simple case where the vectors v and n are parallel

is very similar in theory to the more general case where the two are not necessarilly

related at all. However, it is still useful to distinguish them for implementation pur-
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Figure 3.6: Clipping plane P divides the sphere into visible and invisible regions. Any

point pi on P combined with v define the equation v
‖v‖ · (x− pi) = 0 for plane P .
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Figure 3.7: 2D slice of a sphere through a plane containing s and ceye.

poses since clipping planes orthogonal to n can be included in the projection matrix

P whereas arbitrarily-oriented planes cannot, thereby requiring an extra intersection

test to determine the visibility of an object. Keeping this in mind, we will now focus

our attention to the case of arbitrary plane and camera orientations.

We can see in Figure 3.6 that P must be orthogonal to v, so our planar equation

will be of the form

v

‖v‖ · (x− p) = 0 (3.33)

where p is any point on P . We can find a suitable value for p by finding h, the

shortest distance from ceye to P , and computing

p = ceye + h
v

‖v‖ . (3.34)

The value of h can be found using trigenometry, as shown in Figure 3.7. We first
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compute the distance u using

u =
√
‖v‖2 − r2. (3.35)

Using Figure 3.7 (a), we can see that

cos θ =
u

‖v‖ . (3.36)

In Figure 3.7 (b), we have a similar relationship

cos θ =
h

u
. (3.37)

By combining equations (3.36) and (3.37), we get

h =
u2

‖v‖ . (3.38)

By substituting equations (3.38) and (3.34) into (3.33), we get the equation for the

plane that divides the visible regions from the occluded regions of the sphere. During

the top-down scene graph traversal of the quadtree, each tile is first checked for an

intersection with the viewing frustum. An intersection test with the plane defined

by equation (3.33) must also be performed. In the general case where the camera

may be arbitrarilly oriented, these two test must be performed separately since the

intersection of the space in front of this plane with the interior of the viewing frustum

is not guaranteed to produce a hexahedral volume.

Multiple Resolution Tiles

Just as the visibility culling techniques had to be modified for curved tiles, the method

for determining the appropriate resolution of a tile must be augmented likewise. The

method presented in the iterative solution part of section 3.3 works well for planar

polygonal tiles, but fails for curved surfaces. This is because curved tiles are not
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guaranteed to have a one-to-one and onto mapping between window coordinates and

object coordinates. Curved surfaces can overlap when projected onto the viewing

plane, so some portions of the projected shape represent more pixel data than is

represented by a polygon area calculation.

Instead of calculating the area of a tile to determine its resolution, we can compute

the resolution at sample points and pick a resolution for the entire tile based on the

sample calculations. Recall equation (3.14) from the analytic solution part of section

3.3. By calculating the value of r at various sample points, we can choose the closest,

furthest or average value to determine the whole tile resolution. The tile can also be

divided at the points where the resolution changes and rendered at two different levels

of detail. This can be accomplished by intersecting the planar divisions of the view

frustum whose distance from the eye is given by equation (3.15) with the tile plane.

The line of intersection will split the tile into two halves, each containing (mostly)

sample points of the correct resolution. This calculation is approximate since we have

assumed that planar frustum divisions are used. If sphereical divisions are used, the

result will be more exact.

3.5 Arbitrary Geometry Viewer

While the arbitrary geometry viewer has not yet been implemented in Kolam, it is

defined here as an extension of techniques used for the sphere viewer. It relies more

on well-known computer graphics methods of visibility culling and hidden surface

removal, as there techinques are well suited for arbitrary geometric meshes. The in-

teresting feature here is the application of these techniques to extremely large multiple

resolution datasets.

One difference between the sphere rendering algorithm and this one is that the
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geometry itself is a dataset, and cannot be analytically computed at runtime as the

sphere geometry is. Therefore, we must apply the same multi-resolution tiled pyramid

format to the geometry as well as the imagery to avoid filling up memory with more

geometry than is necessary. One of the main difficulties here is partitioning the

geometry into tiles at multiple resolutions. There are several well known techniques

for creating low resolution geometry tiles through model simplification. The basic

idea behind these is to remove vertices and edges that connect faces whose normal

vectors have the most similar orientations.

3.5.1 Visibility Culling

Visibility culling of tiled pyramid geometry is highly influenced by the method of tiling

used. The ideal tiling method would partition the geometry into tiles of arbitrary

spatial size whose convex hulls overlap as little as possible, but contain roughly the

same number of geometric primitives. Using binary space partitioning (BSP) trees is a

simple well known method for accomplishing this, and produces axis-aligned bounding

boxes of data for easy intersection testing. Once the tiled pyramid of geometry data

is assembled offline, it can be loaded and traversed at runtime using the scene graph

rendering algorithms presented in earlier sections.

One important thing to note about visibility culling is that it may require two

stages. Remember that in the previous viewer descriptions, each geometry tile was

bound to an image tile, so culling non-visible geometry tiles was essentially culling

non-visible image tiles also. In this case, we may not necessarily want to have ge-

ometry tiles match imagery tiles. While this may make it easier to implement an

algorithm, it may require users to create many redundant tiled pyramid datasets for

geometry: one for each image to be overlayed that uses a different translation, scale,
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or tile size. This approach would also require an image’s geometric tiled pyramid to

be completely rebuilt each time the image location changes.

It would be more ideal for the imagery to be pasted onto arbitrary geometry

tiles, much like the traditional texture mapping approach in computer graphics. To

accomplish this, we may need to implement a two stage visibility culling process. We

first cull the geometry tiles that are not visible, and determine the correct resolution

of those that remain. Then, for each dataset we wish to paste onto the geometry, we

partition each geometry tile into subsections, each mapping to a single tile of imagery.

Each subsection goes through the same intersection test as the entire geometry tile

to cull those image tiles that are not visible. The partitioning of geometry tiles into

subsections should be done ideally once at startup, and again each time an image’s

location is changed during runtime. While this may be an expensive operation, it is

far less expensive than rebuilding the image’s entire geometric tiled pyramid.

3.5.2 Hidden Surface Removal

Hidden surface removal is another challenge here. In traditional computer graphics,

hidden surface removal for opaque primitives can be done entirely on the GPU using

the depth test and depth buffer. Unfortunately, we cannot use this approach since

we desire to remove image tiles before they are sent down the graphics pipeline.

One possible approach is to use a technique called identifier image mapping. This

techinque requires two rendering passes. The first pass renders each image tile’s

geometric primitives with a unique color, which becomes that tile’s identifier. If the

depth test is enabled, only those tiles that are not occluded will be represented. The

framebuffer is then read back into memory, and each pixel is traversed. The pixels’

unique identifiers are dereferenced to create a map of non-occluded tiles. The second
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rendering pass loads and renders only those tiles that are in this map. The advantage

of this approach is that the graphics card still does all the work of hidden surface

removal. The disadvantage is that it requires two rendering passes, a framebuffer

read, and a traversal of each screen pixel. This is likely to decrease performance

dramatically on PCs with anything but the top of the line CPUs and GPUs.

A far better approach for hidden surface removal may be achieved using OpenGL

occlusion queries. These operations perform essentially the same task as the identifier

image mapping technique, but eliminate the need to read the framebuffer back into

memory and traverse each pixel. Queries can be performed on single primitives or

arbitrary groups of primitives, so we can still perform queries on entire tiles. They

also provide a count of how many pixels are represented by a particular tile, so tiles

that are spatially near the viewer but comprise only a few pixels on the screen can

be loaded at a very coarse resolution. The two pass rendering can be avoided at the

cost of some momentary inaccuracies by always performing occlusion queries while

the previous frame’s state is still active on the GPU.

3.6 Volume Viewer

The volume viewer employs similar techniques to those of the oblique veiwer, but

extends the imagery data to three dimensions. Instead of a quadtree to store our

image data, we now use an octree. This means that each tile will now have eight

children instead of four. Tiles will generally be smaller spatially, since these datasets

will be more dense that their 2D counterparts.

The current volume viewer implementation is a separate codebase, and is not part

of the main Kolam application. It has been tested with two of the Visible Human

datasets [5], and screenshot of the application displaying one of these datasets is
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Figure 3.8: This screenshot of the volume viewer version of Kolam shows a tiled

segment of one of the Visible Human datasets [5].

shown in figure 3.8. The datasets is stored in a modified image pyramid format, and

each tile contains 643 voxels.

3.6.1 Visibility Culling

Since we defined a 3D view frustum culling test for the oblique viewer using planar

tiles, this technique can be adapted directly to work for volumetric tiles also. The

only difference is in the complexity of the tile intersection test. Part of the test can be

done most efficiently in R3, while the other can be done most efficiently in cannonical

view volume (CVV) space. The test in R3 will compute the intersection of the view

frustum’s vertices and edges with the tile’s bounding box. The test in CVV space

will compute the intersection of the tile bounding box’s vertices and edges with the

CVV. At eight test per vertex, with 12 total vertices to test, and 12 tests per edge

with 12 edges to test, this comes out to a maximum of 240 tests per tile to determine

if it lies withing the viewing frustum.
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A less expensive test would involve using bounding spheres for each tile. Each

bounding sphere is defined to have the same center point as the tile’s bounding box,

and a radius equal to the distance between the bounding box’s center and each of its

eight corners. The sphere’s center is tested against each plane of the CVV, minus the

sphere’s radius, which requires only 6 tests per tile. While this test is less accurate,

it can improve efficiency when used as the first pass of a two-stage intersection test.

While the sphere test can yeild false positives for up to six neighboring tiles, it can

still eliminate all the others. Only if one of the seven possible tiles (the center tile

plus its six neighbors) passes is the more expensive bounding box test executed.

3.6.2 Multiple Resolution Tiles

In oblique viewer, we determined if the current resolution of a tile was fine enough by

projecting the four corners onto the viewing plane to form a quadrilateral in screen

space, measuring the area of the quadrilateral in pixels, and analyzing the ratio of

screen pixels to tile texels.

We can use a similar technique to determine the correct resolution of 3D tiles.

The trick is in projecting the 3D tile onto the viewing plane in a way that represents

how its texels will be mapped to pixels. If the tile intersects the viewing plane, we

simply intersect the viewing plane with the tile’s edges to get the four points of our

quadrilateral. If the tile lies in front of the viewing plane, we can find which of its six

faces is most directly facing the eye point by taking the dot product of each plane’s

normal vector and the viewing vector. The result closest to the value of −1 wins,

since this vector pair is most parallel, but facing opposing directions. We then project

this tile’s face onto the viewing plane in the same way we would project a 2D tile.
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3.7 Rendering Tiled Image Data

Once the set of visible tiles has been determined by a viewer, the tiles must be passed

to a renderer. A renderer in Kolam is a method for projecting a set of tiles from a

given viewpoint onto the viewing plane. There are numerous ways to do this, and

different methods will yield better performance based on the organization and format

of the data, the graphics hardware present, and the complexity of the tile projection.

3.7.1 Raster Renderer — The Bare Essentails

The simplest renderer available in Kolam is the raster renderer. This method renders

scaled and translated data from main memory directly to the framebuffer. No rotation

or interpolation between color samples is performed. It is of little use except when

viewing 2D data in an orthogonal projection.

The simplicity of this renderer can provide advantages in certain situations. On

systems with little or no hardware accellerated 3D rendering, this method is likely

to be considerably faster than any of the more complex methods. Also, since there

is no cached data stored on the graphics hardware, any changed made to the data

in main memory will automatically be updated on the display on the next rendering

pass without having to update an additional cache.

3.7.2 Texture Renderer — Storing Data on the Graphics

Hardware

The main difference between the texture and raster renderers is that the texture

renderer stores visible data in an additional cache located on the graphics hardware.

Once it is cached, the data can be rendered directly by the graphics hardware rather
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than being reloaded from main memory for each frame. The graphics hardware can

also perform transformations and pixel interpolation on the cached data prior to

rendering. This added flexibility allows textured data to be rendered in perspective

projections with blending between color samples rather than sharp color transitions

at texel borders.

One subtle drawback of the texture renderer that does not exist with the raster

renderer occurs when trying to composite several color channels into a single image

on-the-fly. The raster renderer can use the OpenGL API to render images stored as

grayscale or luminance values to any of the red, green, blue or alpha channels using

a color mask. However, a texture stored as luminance values cannot be rendered to

any channel other than red because the luminance values are always stored in the red

channel. The only way to composite channels on-the-fly using textures is to combine

the channels before loading them into texture memory, which significantly increases

the display latency when adding or removing channels from the composite image.

Texture Borders — Interpolating Boundary Samples

The graphics hardware’s ability to perform fast harware interpolation on enlarged

areas between color samples leads to a somewhat more noticeable problem than com-

bining color channels: how to perform interpolation between neighboring color sam-

ples from different tiles? Although the samples may appear to be adjacent on the

display, they appear completely unrelated to the graphics hardware.

OpenGL provides two solutions to this problem. The first is a special flag applied

to each texture in memory which tells the hardware to blend each edge pixel with

itself. In other words, interpolation is performed only in the interior of a texture, but

not at the edges. This is barely noticeable when viewing an image at approximately

equal to or less than its original resolution. As the image is enlarged, the lack of

53



interpolation between two adjacent textures becomes visible as a sharp difference

between color values in an otherwise smooth image.

The second solution provided by OpenGL allocated additional memory on the

graphics hardware for each texture to store border sample information. This technique

of using texture borders eliminates the artifacts caused by the lack of interpolation

between tiles. However, it is not widely supported on all graphics hardware. If used

on the wrong hardware, this technique can decrease performance dramatically by

dropping frame rates to sub-interactive levels.

A third solution is to simulate texture borders without using the OpenGL solution.

Increasing the texture size is not feasible since texture sizes must be powers of two.

We can, however, shrink our data tiles to make room for a border in a fixed size

texture. For an image with tiles of width and height 2n for some n > 1, this can be

done by storing tiles of size 2n−2 in main memory. These smaller tiles are loaded into

texture memory at the index (1, 1) rather than the usual (0, 0). The one pixel radius

around the actual data is filled with neighboring pixels from surrounding tiles. The

borders of edge tiles should be loaded with duplicated data from the interior region.

The resulting texture is rendered using texture coordinates of (1/2n, (2n − 1)/2n).

The border information may be loaded on-the-fly from neighboring tiles or stored as

redundant data surrounding each tile. Either way, this method eliminates the likely

performance hit caused by using OpenGL texture borders.

3.7.3 Terrain

The terrain renderer is an extension of the texture renderer that generates additional

geometry to represent height values associated with the textured image. Height values

are typically defined by an 8 or 16 bit signed integer value corresponding to each image
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pixel. The height values can therefore be represented as a single component image

and stored in memory using a quadtree in much the same way as any other image.

The generated geometry is often simplified to maintain acceptable frame rates, as

generating two additional triangles for each texel would be prohibitive to interactive

display. The method of simplification can be classified as either subsampling or

adaptive methods.

The current implementation of Kolam uses the subsampling method to display

terrain data. This method is considerably simpler than the adaptive method, though

it is less optimal in the sense that it does not select triangles based on their contri-

bution to the projected image. This method instead chooses a uniform subsampling

of the array of height samples and uses this data as the basis for geometry genera-

tion. The data between samples is effectively eliminated from the rendering pipeline,

thereby lowering the resolution of the terrain.

The adaptive terrain simplification method is more complex, but can generate

much more pleasing visual results. The same number of triangles as is used with the

subsampling method can be used more efficiently by selecting those that contribute

most to the visual accuracy of the rendered image. A fairly simple and elegant

framework for accomplishing this is described by Lindstrom and Pascucci in [21].

The adaptive framework begins with the initial geometry of a tile consisting of two

right triangles who share a hypotenuse. Additional triangles are added recursively by

subdividing each right triangle via an additional edge from the apex to the midpoint

of the hypotenuse. The result is a directed acyclic graph (DAG) with edges (i, j) and

j ∈ Ci where Ci represents all children of i. The recursion terminates when some

error threshold has been exceeded.

The most simple and common error metric used for simplified terrain is to mea-

sure the object space distance εi between the actual height value at vertex i and its
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trianglular mesh approximation. However, for true terrain adaptivity, one would also

expect the mesh to change with the viewpoint; as a point pi becomes closer to the

camera eye e, its surrounding area’s triangle count should increase based on a view-

dependent error metric. Lindstrom and Pascucci present a framework for combining

these object space and view-dependent error metrics in a simple and elegant way.

They first generate an object space error measurement for each height value. This

metric is precalculated and saved with the height values. At each frame, the view-

dependent error metric is calculated and combined with the object space metric to

form a generic monotonic screen space error ρi = ρ(εi,pi, e). To guarantee that the

addition of more triangles will not increase the screen space error, the condition

ρ(εi,pi, e) ≥ ρ(εj,pj, e) ∀j ∈ Ci (3.39)

is imposed. Since ρ is monotonic, defining

εi = max {ε̂i, max
j∈Ci

{εj}} (3.40)

where ε̂i is the actual error metric will satisfy ρ(εi,pi, e) ≥ ρ(ε̂i,pi, e), but not neces-

sarilly (3.39). To satisfy (3.39), ρi can be rewritten as

ρi = max
x∈Bi

ρ(εi,x, e) (3.41)

where Bi is a ball centered at pi containing all points within radius ri. By defining

the radius as

ri =





0 if Ci isempty

max
j∈Ci

{‖pi − pj‖+ rj} otherwise
, (3.42)

we are guaranteed that Bi ⊇ Bj. Since we are also guaranteed that εi ≥ εj from

(3.40), (3.39) is now satisfied.
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CHAPTER 4

Kolam User Interface

4.1 Windows

At the application level, Kolam’s interface consists of one main visualization window

along with several other supplementary windows. Supplementary windows can be im-

plemented as plugins so that users can develop and distribute their own visualization

tools without modifying the application source code.

The main visualization window allows the most freedom for interactively viewing

the image data (see Figure 4.1). Any number of viewers (see Section 3.1) may be

attached to this windows to allow different views of the data. Additionally, a viewer

may use one or more renderers (see Section 3.7) to display each tile using a specific

rendering technique. A viewer may also employ one or more navigators (see Section

4.3) to define how roam, zoom and tilt operations are performed.

The overview window displays only the coarsest resolution of the current active

57



layer. It’s viewpoint is shared by the main display, so any navigation actions taken

on this view will affect the main display and vice-versa. This is useful for quickly

jumping from one region to another. This window also displays all tiles currently being

rendered in the main window as sub-rectangles of the coarsest resolution. Although

this was originally designed as a debugging tool, it has also proved useful for quickly

identifying one’s viewpoint position in the main window (see Figure 4.1).

The cache glyph was also intended as a debugging tool, but is has found other

uses as a tool for measuring the performance of disk I/O and cache management

techniques. A user running Kolam on a specific platform may view cache updates in

real time and change the application settings to maximize performance on that plat-

form (see Figure 4.1). Options that may affect performance include caching/paging

algorithms (LRU/priority queues, distance calculations, modular arithmetic regions),

the number of reader threads, tile compression method, and per-tile image processing

algorithms.

In addition to these visualization windows, Kolam also provides several GUI win-

dows for manipulating data parameters. The GUI windows organize several control

panes into a tabbed interface based on the class of data they can manipulate, such as

layers or colormaps (see Section 4.2). Users may implement their own control panel

tabs using Kolam’s plugin architecture (see Section B.2).

The layer editor displayed in Figure 4.2 provides controls for manipulating in-

dividual image layers (see Section 4.2.1). This editor currently provides tools for

naming layers, viewing file information, changing rendering parameters and applying

histogram enhancement, colormaps and height maps. Although each layer is currently

bound to a single dataset, future implementations will provide container layers to en-

capsulate one or more child layers. Using this mechanism, all child layers can undergo

the same manipulations applied to the parent layer without having to perform the
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Figure 4.1: The main window (left) provides a detailed view of specific regions of

the image. The overview window (bottom right) allows the user to quickly identify

his position in the main window and cache glyph (top right) shows which tiles are

resident in memory.
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same operation multiple times.

The colormap editor displayed in Figure 4.2 provides tools for not only manipu-

lating colormaps (see Section 4.2.2), but creating them also. Currently only simple

linear gradient maps can be created, but arbitrary maps can be read from disk. The

colormaps on disk are specified by a simple text file containing an RGB or RGBA

color lookup value on each line.

4.2 Scene Components

4.2.1 Layers

A layer is defined as a visual representation of a dataset in Kolam. An arbitrary

number of layers can be combined and displayed simultaneously at runtime to produce

a composite dataset from multiple sources. The ability to combine layers can add

many dimensions of information to even a small area. For example, by combining

layers representing geospatial imagery, elevation data, cloud coverage and city lights,

one can obtain a much more complete picture of the area’s environment than by

viewing any of these layers individually.

Layers are higher level representations of datasets such as images or heightmaps.

They encapsulate both the dataset and any relevant metadata. This metadata may

include such properties as whether the dataset is visible or not visible, whether certain

colors should be displayed as transparent, and the location and size of the dataset

relative to some global coordinate system.
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Figure 4.2: The main window (left) can show many datasets simultaneously. The layer

editor (top right) allows each dataset to be configured individually and the colormap

editor (bottom right) manipulates and creates colormaps that can be attached to

datasets.
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4.2.2 Colormaps

A colormap is a built-in image filter. It is used to transform the color space of an

image in an arbitrary way. This is typically used for greyscale or luminance images,

where each pixel is a value from a one-dimensional linear distribution. This value is

used as a the key to an entry in the colormap.

One example of the usefulness of colormaps is evident in global lighting datasets.

Each pixel of these datasets is a measurement of how much light is emitted by the

pixel’s area of the globe at a particular instant in time. If these datasets were displayed

as raw images, they would show a single opaque layer of grey values, closer to white

for lights areas, and closer to black for dark areas. Colormaps can be used to add

both color and transparency to these datasets. By mapping each value to a constant

shade of yellow, and mapping the luminance of each pixel to its opacity, one can

obtain a visual result not unlike one our eyes would expect to see when perceiving an

aerial photograph of the same phenomenon (see Section A.3.2).

Another example of the usefulness of colormaps can be seen in weather data.

Datasets showing weather severity may use dark pixel luminance values to represent

calm weather and light values to represent severe weather. Although we could use

the same trick as with the global lights datasets to map the entire range to a single

color, in this case it may be more useful to map ranges of values to different colors

to discretize the data into something like blue for calm, green for moderately calm,

yellow for moderate, orange for moderately severe, and red for severe.

4.3 Navigators for Interpreting User Input

Navigators in Kolam are modules that define how stimulation from various input

devices affect the state of the current viewer module. The most common stimulation
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and input device combination is in the form of click and drag operations from a mouse.

Other potential sources of stimulation may come from joysticks, 3D trackballs, virtual

reality gloves, or force feedback devices. The only input device currently supported by

Kolam is the mouse, but the framework is general enough to allow for fairly painless

integration of new devices and behaviours.

4.3.1 Roam, Zoom and Tilt Navigators

This roam, zoom and tilt navigators define the default mode of operation in Kolam.

Users perform mouse gestures to translate, rotate, and scale their current view. Each

of the three standard mouse buttons maps to one of the roam, tilt, or zoom opera-

tions, and dragging while holding one of these buttons results in corresponding scene

transformations.

The roam operation tries to emulate a translation in image space. For the or-

thogonal view, this means a translation in screen space. For the oblique view, the

translation is confined to the image plane so that the eye’s distance from the image

plane remains constant while roaming. For the sphere view, the sphere rotates around

its center to bring a new area closer to the eye. For the arbitrary geometry view and

volume view, the roam operation may be implemented as a translation within the

viewing plane or a rotation around some fixed point.

The zoom operation typically results in a translation orthogonal to the viewing

plane or a scaling of the scene. For the orthogonal view, a simple scene scaling is

sufficient. For each of the other 3D views, a translation orthogonal to the viewing

plane is generally more appropriate, since the user may in some cases expect to pass

through objects as they become closer rather than watch them grow infinitely larger.

The tilt operation is not present in the orthogonal view, since this would eliminate
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this view’s primary advantage of simplicity, and would make it unsuitable for using the

raster renderer described earlier. For the oblique view, the tilt operation rotates the

image plane around the current focal point, which is the intersection of the viewing

vector with the image plane. For the sphere view, the tilt operation is actually a

translation in screen space. This is an indirect tilt which allows the viewing vector

intersect the sphere closer to the horizon, where the image will appear more oblique

or tilted. For the arbitrary geometry view and volume view, this operation may have

a similar effect.

Vector vs. Velocity Navigators

Each gesture in the vector navigator transforms the view from one constant state to

another based on the vector created by the difference between the gesture’s ending

and starting points in screen space. The velocity navigator instead uses each gesture

to define a velocity vector which is continuously applied to the view at each frame

update until the gesture is completed. The velocity vector is defined by the difference

between the gesture’s current point and starting point in screen coordinates. The

vector navigator is the default mode of operation in Kolam. The velocity navigator

is also referred to as fly mode.

4.3.2 Image Processing Navigators

Navigators can also be used to perform traditional image processing operations such

as image positioning, resizing, and cropping. The orthogonal view is best suited

for this class of operations, since it can map rectangles in screen space directly to

rectangles in image space. These operations are typically used to position and size

embedded datasets when their real world position and size is not known. Mouse
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gestures are usually translated into a 2D vector for positioning, a vector distance or

scale factor for resizing, or a rectangle for cropping.

4.3.3 Modeling Navigators

Navigators can be used to perform traditional modeling tool operations also. Terrain

geometry can be modified in a variety of ways by different mouse gestures. The height

of a single vertex can be changed, or an entire area can be selected for processing.

The concept of spring-mass systems can be applied to neighboring vertices to pull

them closer to a single modified vertex, thereby smoothing the geometry.
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CHAPTER 5

Performance Optimizations and

Characterization

5.1 Performance Optimizations

This section is a description of some simple tricks employed to mask some of the

inherent problems with the algorithms provided in earlier sections of this document.

Some of these problems are merely visually unpleasant, while others can have ad-

verse effects on performance. Despite their simplicity, each of these techniques is

significantly beneficial.

5.1.1 Hiding Disk Latency

One inherent problem of an out-of-core visualization system is that the data to be

rendered is not always available when it is needed. Once the view frustum culling
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and hidden surface removal operations have completed, leaving a small set of visible

tiles to be rendered, it is likely that some of those tiles will not be fetched from disk

until several frames later. The question is what to display in place of the missing tiles

until they can be rendered.

The most basic solution to this problem is to display nothing. If the tile is not

available, don’t render it. This was the solution used in the original version of Kolam,

and the visual results made the tile loading latency painfully obvious to anyone using

the software. When roaming, the effect was somewhat tolerable. The user can’t

see any tiles that are offscreen, so when they continue to be invisible for a moment

after they appear onscreen, this quickly becomes a logical and expected phenomenon

for the user. When zooming in the orthogonal view, however, the result can be a

complete upset to the user. Since the resolution of all visible tiles changes at once,

if none of these tiles are present in the memory cache, the user will see nothing but

a blank screen when the resolution changes. Tiles will then load and become visible

one by one until the screen is filled at the new resolution.

The better solution is to use a gradual level-of-detail approach to always display

some form of the tile’s data, no matter how coarse it may be. This is done by searching

upward through the quadtree for each tile that is deemed visible, but is not present

in the memory cache. The first tile found that is currently present in the cache will

be displayed instead of the higher resolution tile until that tile is finally loaded. By

always keeping the coarsest level of the pyramid in memory, there will always be a

low resolution version of any tile available. The user will always see some form of the

tile’s image, even if it is excessively blurred by downsampling extremely coarse data.

The texture coordinates of the low resolution tile must also be updated appropriately

to select only the portion corresponding to the desired but unavailable tile. With the

raster renderer, this type of on-the-fly indexing and scaling of image data can also be
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done, but is more difficult and has yet to be implemented.

5.1.2 Maintaining Constant FPS

Another problem with early Kolam implementations was that the frame rate would

increase or decrease noticeably with the number of visible tiles on the screen. This was

the most problematic in the orthogonal viewer, since zooming in across a resolution

boundary could cause the number visible tiles to quadruple from one frame to the

next, thereby causing a sudden decrease in the frame rate.

A simple way around this issue is to artificially limit the number of visible tiles

on the screen in an attempt to preserve a constant frame rate. For each frame, the

resolution of tiles farthest from the edge can be artificially lowered until the total

number of tiles is below the limit. When the user is zooming in, upon passing a

resolution boundary, they will see the the center tiles increase in resolution first. As

the outer tiles are zoomed off of the screen, the tiles surrounding the center will also

increase in resolution.

Setting the limit on the number of visible tiles can be accomplished by calculating

how many tiles will fit on the screen at the original resolution.

dwscreen − 1

wtile

+ 1eḋhscreen − 1

htile

+ 1e (5.1)

This is the maximum number of tiles that will ever be displayed without imposing

any limits. Divide this number by 4 to get the minimum number of tiles that will

be displayed, except when at or above the coarsest resolution. The limit should be

within this range, ideally closer to the minimum.
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5.1.3 Prioritizing Requests

A third problem noticed early in Kolam development with the LRU cache was that

tile request were never deleted until the tile’s data was finally cached. This was a

problem when navigating over large areas, since a trail of requests would follow the

navigation path. If the user continues to navigate faster than the reader threads can

process requests, the trail can become quite long and will contain request for tiles

that are no longer visible. Therefore some method was needed to delete old requests

before they are processed if they are no longer visible.

The deletion of expired requests is accomplished by maintaining list of visible tiles

for current and previous frames. For each frame, the current list is compared with the

previous frame’s list. Any requests corresponding to tiles that were visible at the last

frame but not at the current frame are either discarded or assigned a lower priority.

5.1.4 Prefetching

Prefetching is a useful technique for pre-loading tiles that are expected to be requested

in the near future. While there are several basic approaches to the problem, none of

them can always accurately predict where a user will navigate to next.

One prefetching method is to load tiles that are spatially close to the viewpoint

but are not currently visible. This works well when the user is roaming in an arbitrary

patterns but not zooming. Another approach is to load tiles that are close in resolution

to the currently visible tiles. This works well when the user is zooming in arbitrary

patterns. If the user’s navigation pattern is more well defined, it may make more sense

to characterize their motion vector at the current instant and use that to determine

the most likely area that will be requested next.
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5.2 Performance Characterization

Two tests were performed on Kolam to determine how certain variables affect perfor-

mance. In each test, performance was measured in two ways. The number of frames

displayed per second is a typical measure of performance in real-time graphics ap-

plications, so this was our first measurement. The number of dropped requests was

chosen as the second performance measurement, since a dropped request implies that

there were not enough resources available to fill the request until after it had expired

(i.e. the tile was no longer visible at that resolution).

In the first test, the independent variable was the degree of multithreading, mea-

sured by the number of tile reader threads running simultaneously. It was expected

that as the number of threads increases, the frame rate would decrease, since there

would be fewer processor cycles available for the rendering thread. We also expected

that the number of dropped requests would decrease, since there would be more

threads available to process requests before they expire.

The second test used cache size as the independent variable. It was expected that

this test would show that as the cache size increases, the number of dropped requests

would decrease since there would not be as many requests made in the first place. It

was expected that the frame rate would increase also since there would be less work

for the reader threads, leaving more cycles for the rendering thread.

Each test was run with a fixed navigation script. The navigation procedure was

heavily biased toward rapid zoom operations rather than roam operations, as these

operations require more tile updates are likely to produce a clearer difference in

performance metrics. The graphical results of these tests are displayed in figures

5.1 and 5.2.

Since there is a wide variance between results of the multithreading tests, it would
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Figure 5.1: Multithreading performance test results

Figure 5.2: Cache size performance test results
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appear that the number of reader threads does not have a well defined or easily

measured effect on performance. As the number of threads increases, there is a slight

trend toward a decreasing frame rate, as well as a more significant trend toward fewer

dropped requests. The results support out hypothesized trend of decreasing dropped

requests, but the experiment is inconclusive regarding the effect of the number of

threads on frame rate.

The results of the cache size tests are much more robust than those of the mul-

tithreading tests. There is a clear indication that as the cache size increases, the

number of dropped requests decreases, as does the frame rate. The trend of decreas-

ing dropped requests matches our hypothesis. However, the fact that the frame rate

decreased is contradictory to what was expected. This decrease can be explained by

noting that as the cache size increases, the number of tiles that are available at the

requested resolution is likely to increase. Thus it becomes more likely that the ren-

dering thread displays more high resolution data, instead of displaying low resolution

data while it waits for the high resolution data to be loaded.
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CHAPTER 6

Conclusions and Future Work

6.1 Future Work

Of all the techniques outlined in Chapter 3, only a handful have been fully integrated

into the Kolam software. Among these are the orthogonal and sphere viewers, the

raster and texture renderers, and the roam, tilt and zoom navigators. While the

combination of these abilities enables a working visualization platform, there are still

many ways in which the software could potentially be improved.

In Section 3.5, several possible implementation strategies for an arbitrary geometry

viewer were described. Adding this capability to Kolam would allow the visualization

of not only massive images, but massive 3D models also. While a fairly large subset

of practical 3D models can be displayed using heightmaps (which Kolam already

supports in the sphere viewer), the heightmap representation is not general enough

to visualize more complex scenes, such as anything indoors. Many potential Kolam
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users, such as video game developers and real-time military simulation designers,

would likely be interested in this capability.

In Section 3.6, an implementation of a volume viewer was described. Although

this capability has actually been implemented using these techniques and a modi-

fied version of the Kolam core library, it was never integrated into the main Kolam

application. It is also in need of considerable optimization before it can come close

to matching the interactive performance of the Kolam 2D image viewing methods.

Again, adding this capability to Kolam would increase the range of potential users

to include medical professionals and military physical simulation designers, among

others.

Even in the 2D image viewing modes already present in the Kolam software, there

are still improvements to be made in data processing. Adding sparse vector overlays

to layers to display metadata such as roads and political boundaries would provide

new dimensions of information to users while improving overall efficiency (less data

means less storage and faster I/O). Enabling transformations between widely used

geospatial coordinate systems such as latitude/longitude, UTM and MGRS would

simplify registration of embedded datasets. Providing the ability to edit image pixels

and save tiles would open the door to the implementation of efficient tile-based image

processing algorithms while using Kolam’s out-of-core architecture to overcome the

memory limitations of its competitors. Optimizing Kolam for loading tiles efficiently

from remote sources would enable its use in a client/server architecture, with data

stored in a shared repository that can be accessed by multiple Kolam visualization

clients.
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6.2 Conclusion

Kolam is a software architecture for visualizing arbitrarily large 2D and 3D dense

datasets on commodity PC hardware. The techniques described in this document

are used to extract visible areas of interest from these datasets and refine them to

the appropriate level of detail in order to display them efficiently. The methods of

extraction and refinement vary depending on the geometry used to map image data to

3D coordinates (planes, spheres, polygonal meshes, and 3D volumes) and the limita-

tions imposed on the viewer’s perception of the scene (orthogonal vs. oblique views).

Layers are used to combine multiple datasets from different coordinate systems into

the same view, colormaps are used to manipulate color values, and heightmaps are

used to display elevation data. A tabbed dialog-based GUI provides a front end to

all of these features, and is extendable through a basic plugin architecture.

The algorithms presented in this paper have been used to display a wide variety of

datasets, especially those much larger than the amount of memory available on today’s

standard computer hardware. This fundamental capability will become increasingly

important as the size of scientific datasets grows beyond anything we could imagine

today.
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APPENDIX A

User’s Manual

A.1 Introduction

The Kolam application allows users to load, view and navigate within multiple images

simultaneously. The images that can be loaded are in a tiled pyramid format (see

Section B.3). Once loaded, each image is encapsulated by a layer. The enables users

to combine images as layers and manipulate high level properties with a simple user

interface (see Section A.3.1). The application provides several views of the data

(see Section A.2), each of which respond to mouse events to allow quick and easy

navigation.

A.2 Kolam Windows

Kolam currently shows three views of the currently loaded datasets (see Figure A.1).
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Figure A.1: The display window (left) provides a detailed view of specific regions of

the image. The overview window (bottom right) allows the user to quickly identify

his/her position in the display window. The cache view window (top right) shows

which tiles are resident in memory.
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A.2.1 Display Window

The display window is the primary Kolam view (see Figure A.1). It can combine all

layers into a single rendered image.

Navigation controls are dependent on the current viewing method (i.e. orthogonal,

oblique, or spherical views). However, whenever possible, some attempt has been

made to maintain consistency of operations between different viewers. For example,

even though the left mouse button may translate the user in the orthogonal view and

rotate the globe in spherical view, each of these amounts to a translation in image

space. In both viewing modes, new portion of the image comes into view from the

north, south, east or west, and the old portion of the image exits the visible region

toward the opposite direction.

Users can navigate through the image using the following mouse controls:

Left Button Dragging with this button will change the user’s position in the image

(translate left/right/up/down).

Middle Button Dragging with this button will change the user’s distance from the

image (zoom in/out).

Right Button Dragging with this button will change the user’s rotation in the image

(tilt left/right/forward/backward).

A.2.2 Overview Window

This window provides a top-level orthogonal view of the dataset as a whole (see Figure

A.1). No matter where a user is in the main display, they can always use the overview

window as a map to find their way around. Green squares will be displayed on the

78



overview around the region currently visible in the main display window. Note that

only the active layer is visible in the overview window at any given time.

Users can click on the overview to change their positions in the main display:

Left Button Clicking with this button will move the user’s position in the main

display window to the location clicked on the overview.

A.2.3 Cache View Window

This window displays the current layout of tiles in memory by showing a virtual 3D

pyramid (see Figure A.1). This view is useful mainly for debugging and performance

tuning. The average user will never need to use this display. Tiles are displayed in

different colors to signify their current states. The colors are as follows:

Transparent These tiles are not present in the cache.

Red These tiles are not present in the cache, but have been requested to be loaded

next.

Yellow These tiles are currently being loaded into the cache.

Blue These tiles are fully loaded and present in the cache.

Users can navigate through the cache display using the following mouse controls:

Left Button Dragging with this button will translate the user through the virtual

pyramid.

Middle Button Dragging with this button will zoom the user in and out of the

virtual pyramid.

Right Button Dragging with this button will rotate the user within the virtual

pyramid.
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A.3 Editor Dialogs

The editor dialogs allows the user to select objects from a list and edit them indi-

vidually using a tabbed interface. Items that can be edited are currently limited

to layers and colormaps (see Sections A.3.1 and A.3.2), although future Kolam de-

velopers may eventually provide custom editors for heightmaps, mesh datasets, and

individual image file formats.

A.3.1 Layer Dialog

Layer Tab

The layer tab (see Figure A.2) displays the name of the current layer at the top. This

name can be changed by clicking in the text field and typing. When many layers are

open at once, naming makes it easier to find the one you want quickly.

The next two lines display the layer’s current colormap and heightmap, if any.

Any colormap listed in the Colormap Editor dialog can be selected as this layer’s

colormap, and any heightmap from the Layer Editor dialog can be selected for this

layer’s heightmap.

The rendering group in the bottom-left corner provides frequently used options.

Toggling the visibility makes a layer visible or invisible. A layer is not processed on

a per-frame basis when it is invisible. Toggling the enhancement determines whether

it is subject to custom image processing settings such as histogram enhancement.

Toggling the alpha channel determines whether black pixels are displayed as the

color black or as completely transparent.

The two buttons on the right can open an image file for a new layer or close the

current layer.
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Layer Information Tab

The layer information tab (see Figure A.3) shows useful data about the image file

associated with the current layer.

Filename The filename of the image file with no directory information.

Pathname The full filesystem path to the image file.

Dimensions The width and height of the image in pixels.

Tile Dimensions The width and height of each image tile in pixels.

Total Tiles The total number of tiles in the image pyramid.

Total Levels of Detail The total number of levels of detail in the image pyramid.

Color Model The arrangement of color channels or color indices for each pixel.

Data Type The data type used to store each color channel or color index for each

pixel.

Bytes Per Pixel The size of each pixel in memory measured in bytes.

Compression Type The compression algorithm used to compress each tile.

Compressed Pyramid Size The actual size of the image pyramid file on disk.

Raw Image Size The size of the uncompressed original resolution image excluding

header information.

Raw Pyramid Size The size of the uncompressed image pyramid excluding header

information.
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Figure A.2: This tab provides basic layer manipulation options.

Figure A.3: This tab shows information about the image associated with this layer.

Note: this screenshot was taken from an older version of Kolam where the rightmost

portion of the info text was always truncated. This problem has been resolved in a

more recent version.
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Image Compression Ratio The ratio of the original resolution image’s compressed

size to its uncompressed size.

Pyramid Compression Ratio The ratio of the image pyramid’s compressed size

to its uncompressed size.

Navigation Tab

The navigation tab (see Figure A.4) shows basic information regarding embedded

datasets. The x- and y-offsets and the zoom factor of each layer are shown.

Rendering Tab

The rendering tab (see Figure A.5) allows the user to manipulate how a dataset is

rendered on the screen.

The pixel data group allows users to change how pixel data is interpreted by

the rendering engine. This capability is useful when dealing with luminance images,

which may be interpreted as a greyscale image, a colormapped image, or a single color

channel of an image. By specifying the ’Data Format’ parameter of three separate

luminance images to be ’Red Component’, ’Green Component’ and ’Blue Component’,

a combined RGB color image can be generated (this is currently only supported by the

raster renderer). All pixel data interpretations are checked to ensure the interpreted

pixel size matches the number of bytes in the pixel data. For example, specifying a

luminance 16 bit-per-pixel image to be interpreted as 2 bytes representing luminance

and alpha is a valid combination, but interpreting that same image as 3 byte RGB

pixels is not allowed.

The texture group allows users to modify certain OpenGL rendering parameters

related to texture maps. The ’Wrap Mode’ option controls how the borders of textures
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Figure A.4: The navigation tab provides information about the offset and zoom values

of the current layer relative to the rest of the world.

Figure A.5: The rendering tab lets users manipulate image data interpretations,

OpenGL rendering parameters, and grid display properties.
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are displayed (see Section 3.7.2). None of these modes are able to blend texels at a tile

border with those of the opposite border on an adjacent tile, but do at least provide

some control over the blending process. The default option, ’Clamp To Edge’, blends

texels at tile borders with themselves. This option is widely accepted as the preferred

blending method and should usually not be changed. The ’Clamp’ mode blends

texels at tile border with the color black, thereby making tile borders more visible.

The ’Repeat’ mode blends texels at tile borders with the texel from the same tile’s

opposite edge. Moving on to the next combo box, the ’Filter Mode’ option controls

how interpolation between texels is performed. The default is ’Linear Interpolation’,

although ’Nearest Neighbor’ interpolation is also available.

The grid group controls the display of a grid overlay on each layer to show current

tile boundaries. This grid’s visibility can be turned on or off, and its color can be

changed (white is the default). If the ’Show All Tiles’ option is enabled, all grid tiles

will be displayed at their highest resolution. Otherwise, only the currently visible

tiles will be rendered at their current resolution.

Unfortunately, some of these options were implemented early in Kolam develop-

ment for testing and debugging purposes, but have since been ”broken” by subsequent

code modifications. The known non-functional options are currently those in the tex-

ture group, and the grid color options.

Histogram Tab

The histogram tab (see Figure A.6) allows users to perform manual histogram-based

enhancements on the current layer’s image. The rendered histogram displays indi-

vidual pixel colors as percentages of all colors in the image. Each histogram shows a

single color channel. The x-axis of each channel is the range of color values, and the

y-axis is the number of pixels having that color value.
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Figure A.6: By moving the three carets under each color channel display, the user

can enhance the current layer’s image to increase the colors’ dynamic range.

The three carets under each color channel’s histogram allow the user to manually

adjust the mapping from input colors to output colors. The leftmost caret controls

the low cutoff of the mapping; all colors to the left of the leftmost caret will display

as the lowest possible color value (usually 0). The rightmost caret controls the high

cutoff of the mapping; all colors to the right of the rightmost caret will display as the

highest possible color value (usually 28 − 1). The middle caret controls the middle

color value (usually 28−1
2

); moving this caret modifies the color mapping between the

leftmost and rightmost carets.

The typical use for modifying the color mapping is to increase the dynamic range

of the colors. It is difficult for our eyes to distinguish between two similar colors,

but it becomes easier the farther apart these color values are. When two carets are

moved closer to one another, the colors in between are spread over a wider range,

hence appearing farther apart from each other in luminance. It then becomes easier

for our eyes to distinguish color values in this range. Figures A.7 and A.8 illustrate
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this concept.

A.3.2 Colormap Dialog

Colormap Tab

The colormap tab (see Figure A.9) displays the name of the current colormap at the

top. This name can be changed by clicking in the text field and typing. When many

colormaps are open at once, naming makes it easier to find the one you want quickly.

The two buttons on the right can open a file for a new colormap or close the

current colormap.

Colormap Information Tab

The colormap information tab (see Figure A.10) shows useful data about the file

associated with the current colormap.

File Name The filename of the image file with no directory information.

Path Name The full filesystem path to the image file.

File Size The size of the file containing this colormap’s information on disk.

Number of Colors The number of color entries in this colormap.

Colormap Creation Tab

The colormap creation tab (see Figure A.11) can be used to generate simple col-

ormaps when an appropriate colormap file does not exist. Currently only simple

linear gradient colormaps can be generated.

To generate a colormap, first choose two colors to interpolate between by clicking

the ’Color 1...’ and ’Color 2...’ buttons. The RGB color values for color 1 will show
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Figure A.7: The mapping from input colors to output colors is the identity (input

and output colors are the same).

Figure A.8: The mapping from input colors to output colors has been modified to

increase the dynamic range of each color channel.
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Figure A.9: This tab provides basic colormap manipulation options.

up in the top three fields of the second/middle column, and the values for color 2 will

show up in the third/rightmost column. Since the color chooser dialog does not allow

selection of alpha values, these values must be edited by hand in the fourth row of

the last two columns. Now that two RGBA colors have been defined, the left column

provides several option of how to use these colors to create a colormap. Either one of

the values from color 1 or color 2 can be held constant, or values between them can

be interpolated.

For a global lights dataset, it is usually desirable to keep a single color constant to

represent lights and only vary the transparency. This way, bright areas occlude the

underlying imagery but dark areas are transparent. Figure A.12 shows an example of

this configuration. Figure A.13 shows a similar example with a cloud coverage dataset.

Figures A.14 and A.15 show examples of combining colormaps and heightmaps to

create some interesting images.
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Figure A.10: This tab provides information about the current colormap. Note: there

is no file information associated with this colormap since it was generated in memory

by the colormap creation tab (see next section).

Figure A.11: The colormap creation tab allows users to create simple linear gradient

colormaps on the fly.
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Figure A.12: This colormap was created to display world lights as a transparent

overlay on top of world imagery.

Figure A.13: This colormap was created to display cloud coverage as a transparent

overlay on top of world imagery.
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Figure A.14: This image was created using the same settings as in Figure A.13, except

that the cloud layer uses its own image as a heightmap.

Figure A.15: This image was created using similar settings as in Figures A.12 and

A.13, except that the grid display is enabled and the cloud layer uses its own image

as a heightmap.
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Figure A.16: Main menu and toolbar.

A.4 Menus and Toolbars

A.4.1 Menus

File This menu displays options for opening and closing datasets stored on disk.

Open Image. . . Load an image or heightmap from a file on disk. Available

file formats are dependent on the application extensions loaded on startup.

See Section B.3 for more information on image file formats.

Open Colormap. . . Load a colormap from a file on disk. See Section B.3 for

more information on the colormap file format.

Close Close any files and release any memory associated with the current layer.

Close All Close all files and release all memory associated with each layer.

Quit Close the application and release all memory.

Layer This menu displays options pertaining to the current layer.

Grid Toggles grid visibility for the current layer. The grid displays boundaries

between tiles in a dataset. In future implementations it may also represent
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more real-world data such as latitude/longitude coordinates. See Section

A.3.1 for more information on configuring the grid.

Layer Editor. . . Opens the main control panel for managing layers. See Sec-

tion A.3.1 for more information on using this editor.

Colormap Editor. . . Opens the main control panel for managing colormaps.

See Section A.3.2 for more information on using this editor.

Display This menu contains a list of the available dataset viewers. By default,

this list will contain the orthogonal, oblique and sphere viewers. If a viewer has

additional options, they may be accessed via a submenu of the viewer menu item.

Additional viewers may be available depending on the application extensions

loaded on startup. See Chapter 3 for more information on viewers.

Window This menu contains a list of available windows in addition to the main

display window. By default, this list will contain the overview and cache view

windows. See Section A.2 for more information on additional windows.

A.4.2 Toolbars

The toolbar in Kolam provides buttons for switching between navigation modes (see

Section 4.3). The two existing modes are both represented by the same icon to

maximize confusion. The button on the left activates the roam/zoom/tilt navigator

(see Section 4.3.1). This is the default mode and is activated when the application

starts. The button on the right activates the embedded dataset positioning and

scaling tool. This is an example of an image processing navigator (see Section 4.3.2).

Users can use this tool to translate and scale the current active layer to ”embed” it

within a larger background layer.
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A.5 Keyboard Shortcuts

A few keyboard shortcuts are provided to simplify frequently used operations. All

functionality described here can alternately be performed using the layer editor. Key-

board shortcuts for menu items are not listed here.

G Toggle grid display on/off.

V Toggle the current layer’s visibility on/off.

0-9 Activate one of layers 0-9 (depending on which numeric key was pressed). This

layer becomes the current layer.

A.6 Command Line Options

A.6.1 Global Options

-h/--help Prints help and usage information.

--no-plugins Disables application extensions. Useful for debugging core application

functionality.

--num-threads Sets the number of read/write threads used by the application. Use-

ful for empirical performance testing and fine tuning for particular platforms.

--cache-size Sets the amount of memory (in megabytes) used for caching tiles in

main memory. Useful for empirical performance testing and fine tuning for

particular platforms.
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A.6.2 Layer Options

These options appear after an image filename in the command line sequence. Their

effects are applied to the layer associated with the previous image filename.

-cm Loads a colormap from a file and assigns it to the current layer.

-x Sets the x-offset of the current layer. This number can be a floating point or integer

value measured in pixels at a zoom factor of 1. Usually used for positioning

embedded datasets.

-y Sets the y-offset of the current layer. This number can be a floating point or integer

value measured in pixels at a zoom factor of 1. Usually used for positioning

embedded datasets.

-z Sets the zoom factor of the current layer. This number is multiplied by the global

zoom factor calculated by the viewing algorithm at each frame. Usually used

for resizing embedded images.

-a If this option is present, the current layer will be loaded with an artificial alpha

channel. All black pixels will generate a corresponding 100% transparent alpha

value while all other non-black pixels will generate a 100% opaque alpha value.

The generated alpha channel uses additional space in the main memory cache

but does not contribute significantly to the rendering time on typical graphics

hardware. This option is useful for eliminating the black background in non-

rectangular embedded images.
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A.7 Pyramid File Processing Tools

Several useful utility programs were written by Jared Hoberock to aid in the creation

and modification of Kolam pyramid files.

A.7.1 16sto16u

Biases 16 bit signed raw image data to 16 bit unsigned.

Usage: 16sto16u -i <infile.raw> -o <outfile.raw> -n <num channels>

-i: The input raw image filename

-o: The output raw image filename

-n: The number of channels per pixel

A.7.2 16uto8u

Scales 16 bit unsigned raw image data to 8 bit unsigned.

Usage: 16uto8u -i <infile.raw> -o <outfile.raw> -n <num channels>

-i: The input raw image filename

-o: The output raw image filename

-n: The number of channels per pixel

A.7.3 chopFooter

Removes the footer of a file.

Usage: chopFooter -i <infile.raw> -o <outfile.raw> -s <footer size>
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-i: The input raw image filename

-o: The output raw image filename

-s: The number of bytes to remove from the end of the file

A.7.4 chopHeader

Removes the header of a file.

Usage: chopHeader -i <infile.raw> -o <outfile.raw> -s <header size>

-i: The input raw image filename

-o: The output raw image filename

-s: The number of bytes to remove from the beginning of the file

A.7.5 extractChannel

Extracts a channel from a raw image file.

Usage: extractChannel -i <infile.raw> -o <outfile.raw>

-c <channel> -n <num channels> -d <bytes per channel>

[-h <skip header bytes>] [-f <skip footer bytes>] [-w]

-i: The input raw image filename

-o: The output raw image filename

-c: The channel to extract

-n: The number of channels per pixel

-d: The number of bytes per channel
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-h: The number of header bytes to skip

-f: The number of footer bytes to skip

-w: Enables swabbing of output bytes

A.7.6 extractLevel

Extracts and writes to disk a given level from a pyramid file. Pyramid levels are

numbered starting with zero at the base level, which is the level of highest resolution.

Output is written as a raw image file. The output image is written as pixel interleaved,

frame interleaved, or as a single color channel. A kolam header file is created for the

raw output image in the same location as the output file.

Usage: extractLevel -i <infile.pyr|infile.kh> -o <outfile.raw>

-l <pyramid level> -e <red|green|blue|pixel|frame> [-p]

-i: The input Kolam header or pyramid filename

-o: The output raw image filename

-l: The pyramid level to extract

-e: Specifies which data to extract

-p: Enables writing black pad pixels

A.7.7 interleaveRaw

Interleaves up to 10 channels into one raw image file.

Usage: interleaveRaw -i <file0,file1,file2,...,file9>

-o <outfile.raw> -b <pixel depth>
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-i: A comma-separated list of input raw image filenames

-o: The output raw image filename

-b: The number of bytes per channel

A.7.8 jpgToHybrid

Converts a JPEG-compressed pyramid file to a JPEG hybrid pyramid by changing

its magic number appropriately. Kolam viewers will page this new file as a hybrid

pyramid. Note that it will not reclaim disk space by removing unnecessary pyramid

levels.

Usage: jpgToHybrid -i <jpeg zero pyramid.pyr>

-i: The input Kolam pyramid filename

A.7.9 pyramidCompare

Compares two images and displays noise statistics for a specific pyramid level. Types

of noise statistics displayed are mean squared error, root mean squared error, peak

absolute error, mean absolute error, and peak signal-to-noise ratio.

Usage: pyramidCompare -o <original.kh|original.pyr>

-c <compressed.kh|compressed.pyr> -l <which level>

-o: The first (original) input Kolam header or pyramid filename

-c: The second (compressed) input Kolam header or pyramid filename

-l: The pyramid level for which to display statistics

100



A.7.10 pyramidInfo

Displays pyramid information about an input Kolam header or pyramid file. Will

output statistics for a complete pyramid or, if specified, a single pyramid level. Pyra-

mid levels are numbered starting with zero at the lowest level, which is the level of

highest resolution.

Usage: pyramidInfo -i <infile.kh|infile.pyr> [-l <pyramid level>]

[-b] [-h]

-i: The input Kolam header or pyramid filename

-l: The pyramid level for which to display statistics

-b: Prints out the full number of bytes for each level

-h: Prints a help screen and exits

A.7.11 removeChannel

Removes a channel from a file and writes the remaining channels to the output file.

You don’t have to specify a channel to remove if you don’t want to; do this to only

chop the header and footer.

Usage: removeChannel -i <infile.raw> -o <outfile.raw>

[-c <channel>] -n <num channels> -d <bytes per channel>

[-h <skip header bytes] [-f <skip footer bytes>] [-w]

-i: The input raw image filename

-o: The output raw image filename

-c: The channel to extract
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-n: The number of channels per pixel

-d: The number of bytes per channel

-h: The number of header bytes to skip

-f: The number of footer bytes to skip

-w: Enables swabbing of output bytes

A.7.12 writeTiledPyramid

Creates a Kolam pyramid file based on an input Kolam header or pyramid file. The

specified compressor and filter are used to create each level of the output pyramid.

When building a new pyramid from an existing pyramid, the utility creates a new

pyramid level by sampling the lower level of the source pyramid. This utility can also

assemble a mosaic pyramid made of an array of smaller pyramids as tiles. Following

the -m option, the dimensions of the mosaic are listed as rows*cols, followed by a

single string of the input files separated by commas. Use the -h option to show an

extensive help screen describing options for downsampling filters and tile compression

methods.

Usage: writeTiledPyramid <-i <infile.kh|infile.pyr> |

-m <rows*cols,file1,file2,...,filerows*cols>> -o <outfile.pyr>

-f <median|mean|subsample> -c <rle|zlib|bz2|jpg|jpgv2|jp2|none>

[-v] [-h] [-q <quality>] [-r <quality>]

-i: The input Kolam header or pyramid filename

-o: The output Kolam pyramid filename

-m: see above description
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-f: Specifies the downsampling filter type

-c: Specifies the tile compression method

-v: Print out verbose information by level

-h: Print help screen

-q: Set quality for JPEG compressor

-r: Set quality for JPEG-2000 compressor
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APPENDIX B

Developer’s Manual

B.1 Building the Kolam Application from Source

B.1.1 Platforms and History

The original implementation of Kolam was developed on the SGI Irix 6.5 operating

system. It has since been ported to Redhat Linux, Mac OS X, and Windows XP. The

most recent development has been done predominantly on Windows XP.

B.1.2 Third-party Dependencies

Required Dependencies

These dependencies are required to build the Kolam application and its pyramid file

utility programs (see Section A.7). These dependencies typically come pre-installed

on many Linux and UNIX-based operating systems. Ports are available for Win32
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platforms, but they must be acquired by the developer.

Qt 3.3.3 Educational : The Qt toolkit provides cross-platform C++ classes for

GUI development. The qmake utility included with Qt is required to run the

makefiles needed to build Kolam.

http://www.trolltech.com

pthread : The pthread library implements the threading component of the POSIX

1003.1 2001 standard. The Kolam thread class is based on pthreads.

http://sourceware.org/pthreads-win32

XGetopt : On UNIX-based systems, the standard command line parsing function

is getopt(). This library provides a similar Win32 version.

http://www.codeproject.com/cpp/xgetopt.asp

Optional Dependencies

These dependencies are optionally required to build Kolam. Each provides support

for compression methods that may be used by the Kolam reader classes and the

pyramid file utility programs (see Section A.7). To disable a specific reader compres-

sion type when building Kolam, open the qmake.defs.<platform> file corresponding

to your current platform, and remove the KOLAM READER <COMPRESSION> definitions

corresponding to the methods you wish to disable.

zlib 1.1.4 : The zlib data compression and decompression library.

http://www.zlib.net

bzip2 1.0.2 : The bzip2 data compression and decompression library.

http://www.bzip.org
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libtiff 3.5.7 : The Tag Image File Format (TIFF) image storage library.

http://www.libtiff.org

libjpeg 6b : The Joint Photographic Experts Group (JPEG) image compression

and decompression library.

http://www.ijg.org

jasper 1.500.4 : An open source implementation of the JPEG-2000 Part-1 standard

for image compression and decompression.

http://www.ece.uvic.ca/∼mdadams/jasper

libpng 1.2.4 : The Portable Network Graphics (PNG) image compression and de-

compression library.

http://www.libpng.org

gdal 1.1.7 : The Geospatial Data Abstraction Library (GDAL) image storage li-

brary.

http://www.gdal.org

B.1.3 Compilers

The following compilers have been used to successfully build Kolam.

Windows : Microsoft Visual Studio 7.0

Linux : gcc 3.x

IRIX : CC

MacOS X : gcc 3.x
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B.2 Writing Custom Plug-in Application Exten-

sions

Application extensions, or plugins, have a wide range of categories in which they can

add functionality. An extension may span any number of these categories to group

functionality in the way that makes the most sense. The potential categories include

file formats, viewers, renderers, navigators, GUI elements, and processing routines. At

present, plugins providing GUI components and basic histogram processing routines

have been successfully developed using the existing extension model.

B.2.1 Plugin Loading and Initialization

Plugins are implemented as DLLs (Dynamic Link Libraries) on Windows or as shared

libraries on UNIX-based operating systems. On startup, Kolam will look for a direc-

tory called ’plugins’ located in the same directory as the executable file. It will then

search the subdirectories of the plugins directory to find DLL or shared library files

to load as plugins.

A plugin developer should first create a class that inherits from the Kolam Plugin

class. A single object of this derived class type will be instantiated by the application

at load time. The plugin must be registered with the application in order for this

to happen. This is done by placing the REGISTER PLUGIN(PLUGIN CLASS) macro in

one source file of the plugin library. This macro takes as its only argument the class

type of the derived plugin class. It creates two C functions, createPlugin() and

deletePlugin(), which are called by the application.

A plugin developer can also define the plugin’s version information to ensure that

dependencies between plugins are resolved. This is done using the IDENTIFY PLUGIN(NAME,
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VERSION) macro. The Plugin::checkDependencies() member function can then be

used to check dependencies at runtime. A list of dependency objects is passed in as

an argument, and the function ensures that the current plugin’s version is greater

than or equal to each of the dependencies’ versions.

B.2.2 Application Data Access and Processing Hooks

Plugins have access to all public data fields and functions of the application objects.

A pointer or reference to any application object can typically be obtained by accessing

members of the global application class. A pointer to the global application object is

initialized by the base Plugin class when class constructor is invoked.

Certain types of plugins can be implemented using nothing more than the data

access paradigm. Tabbed dialog plugins, for example, can add a new tab to the Layer

Editor dialog at initialization. All further plugin tasks are initiated by GUI events. A

plugin developer who wanted to change some aspect of the data visualization process

could subclass one of the viewer or renderer classes, then add an instance of the new

derived class to the list of viewers or renderers (remember to synchronize access to

the rendering thread while modifying these lists).

Although a great deal of functionality can be added using data access alone, the

concept of processing hooks can simplify the plugin development task in certain cases.

A processing hook is a predefined point in the code where the current thread calls a

list of callback functions. These callback functions are implemented and inserted into

the appropriate lists by each plugin. There are currently very few processing hooks

in the Kolam application, so this is mainly a task for future developers.
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B.2.3 Attaching Custom Data to Layers and Colormaps

When writing a plugin, it may become apparent that the layer class which encap-

sulates a generic dataset would benefit from additional data storage. Considering a

histogram plugin as an example, it makes far more sense to cache and store histogram

data with each layer rather than creating and managing a separate and parallel list for

layer data. Managing this additional list becomes complicated when the user opens

and closes layers during program operation, as appropriate events must be generated

and sent to all plugins. Each plugins must then duplicate the functionality for adding,

removing, rearranging and grouping layers. We would prefer to keep these tasks in

the application and let plugin developers focus on implementing new functionality.

Additional data can be attached to the layer class by implementing the LayerData

interface. The LayerData interface is actually a subinterface of the AttachableData

interface. In fact, any class that implements the Attachable interface can have any

subclass of the AttachableData interface attached to it. Currently, only the Layer

and Colormap classes implement the Attachable interface. Each attachable object

stores either an array or hash table of pointers to extension data objects for fast

data access regardless of the number of loaded extensions. Each extension is assigned

a unique ID by the application that can be used as either an array index or hash

function input for accessing its AttachableData subclass. See Figure B.1 for a C++

code sample.
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Figure B.1: This is a skeleton of the HistogramPlugin C++ header file.
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B.3 File Formats

B.3.1 Pyramid File Format

The file format of a Kolam image pyramid consists of a header, a tile offset table,

and all tiled image data. Throughout the file, all integer values (excluding image

pixel values) are stored in big-endian format. This implies that on Windows/Intel

platforms, the byte order must be reversed when converting from disk integers to

memory integers and vice-versa.

The header describes the pyramid’s image and tile dimensions. It contains the

following fields, in this order:

Magic Number The magic number is a variable-length string identifying the tile

compression method used.

Image Width The width in pixels of the original resolution image as a 32-bit 2’s

complement signed integer.

Image Height The height in pixels of the original resolution image as a 32-bit 2’s

complement signed integer.

Bytes Per Pixel The number of bytes per pixel as a 32-bit 2’s complement signed

integer.

Tile Width The width in pixels of each pyramid tile as a 32-bit 2’s complement

signed integer.

Tile Height The height in pixels of each pyramid tile as a 32-bit 2’s complement

signed integer.
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Number of Tiles The total number of pyramid tiles as a 32-bit 2’s complement

signed integer.

Notice that there is no level of detail information stored here, or in any subsequent

portions of the file. The number of resolutions is calculated by finding the smallest

value of i for which d Iw

2i−1Tw
e = 1 and d Ih

2i−1Th
e = 1. Since the total number of tiles

can be calculated by
∑n

i=0 d Iw

2iTw
eḋ Ih

2iTh
e, this field is not necessary to include in the

header either, but exists anyway.

Next in the file is an table of tile offsets. Since the tiled pyramid format supports

any type of per-tile compression, tiles can potentially be of varying lengths. This

table of offsets is necessary to perform fast seeks to the desired tile data without

searching. The number of entries in this table is equal to the total number of tiles in

the image. Each entry is a 64-bit 2’s complement signed integer indicating the offset

of the tile’s data from the beginning of the file.

The final portion of the file contains the data for each tile. The tiles may appear

in any order, but each tile must be contiguous. The interpretation of the tile data

is dependent on the magic number read from the header. This number indicates

which Kolam module should be used to decode tiles from the image. At present, tiles

contain only image data, but may be either raw (uncompressed) or compressed using

ZLib, BZ2 or RLE (run-length encoding).

B.3.2 Colormap File Format

The colormap file is in plain-text ASCII format. The file contains a list of 28 color

values for 8 bit-per-pixel color indexed images, or 216 color values for 16 bit-per-pixel

color indexed images. Each value must be on a separate line, and should consist of

either 3 or 4 integer values comprising an RGB or RGBA color value. Each integer
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value must be in the range 0 to 255. Each 3 or 4 component color value represents

the output (mapped) color of a color index.

Color indices are assigned to the color values in the file sequentially. For example,

the color index 0 will be mapped to the first color value, color index 1 to the second

color value, and so on.

Please note that the current Kolam versions do not support this format. The code

from Joshua Fraser’s original implementation is still present in the source files, but is

commented out and requires a few syntax changes to complete the transition from C

to C++. This functionality could easily be resurrected by future Kolam developers,

and the format is documented here to aid their efforts.

B.3.3 Kolam Raw Header File Format

In addition to image pyramid files, Kolam can also load raw images. Since the location

on disk of any pixel in a raw image can be easily calculated, tiles can be constructed

on-the-fly by reading in each scanline one at a time. Coarser level of detail tiles can

be constructed by skipping an appropriate number of scanlines, and discarding the

appropriate number of pixels from each scanline.

Since raw image files are a simple sequence of pixel data and contain no metadata,

a separate header file format is needed to provide the image width, height and number

of bytes per pixel. Additional data, such as tile width and height, may be specified

also. See Figure B.2 for an example file. The following is a description of the format

of the required fields:

KOLAM RAW This is the magic number for Kolam raw images (see Section B.3.1).

This must be the first string in the file.

filename The path to the raw image file on disk. This must either be a full path or
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Figure B.2: An example of the Kolam raw header file format.

relative to the current directory.

width The width in pixels of the raw image.

height The height in pixels of the raw image.

tile width The desired width in pixels of each image tile.

tile height The desired height in pixels of each image tile.

bytes per pixel The number of bytes per image pixel.
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