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EFFECT OF PLAGIOCLASE CRYSTALLIZATION ON LIQUID AND MAGMA 

VISCOSITY IN THE ANORTHITE-DIOPSIDE-FORSTERITE-QUARTZ 

SYSTEM 

Jackie Getson 

Dr.  Alan Whittington, Thesis Advisor 

ABSTRACT 

  In order to compare the chemical effect of changing composition on residual 

liquid viscosity to the physical effect of entrained crystals, seventeen CaO-MgO-Al2O3-

SiO2 (CMAS) glasses were synthesized as analogs for dacitic and basaltic lavas. Liquid 

viscosities were measured between 10
1 
and 10

13
 Pa s, over the temperature range of 

approximately 1600 to 700˚C, using concentric cylinder and parallel plate viscometry.  

Phase diagrams combined with calculations of the crystal fraction during cooling were 

used to calculate the viscosity of the magma as a function of temperature. 

The results demonstrate that magma viscosities increase during cooling and 

crystallization as expected.  However, in basaltic systems the residual liquid viscosities 

change little during cooling, due to removal of the anorthite component and the 

depolymerization of the melt with progressive crystallization.  Changing liquid 

composition counteracts decreasing temperature and increasing crystal content, until the 

physical effect of crystals begins to dominate at crystal fractions greater than about 40%, 

assuming crystals remain in the magma.  In contrast to basalts, liquid and magma 

viscosity in dacitic systems always increases during cooling. This suggests that the 

viscosity of cooling basaltic magma chambers may change little over extended 

temperature intervals. 
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CHAPTER 1 
 INTRODUCTION AND BACKGROUND 

 

 

". . . its feet founded in ashen ruin, its huge cone rising to a great height, where its reeking 

head was swathed in cloud.  Its fires were now dimmed, and it stood in smoldering 

slumber, as threatening and dangerous as a sleeping beast."  

�J.R.R. Tolkien 

 

1.1  Introduction 

 Volcanoes are one of the most spectacular and perhaps one of the more elusive 

geological phenomena.  The globe is peppered with volcanoes, most dramatically along 

the aptly named “Ring of Fire” that surrounds the Pacific Ocean (Figure 1.1).  Despite 

their splendor, volcanoes are also one of the most destructive natural forces.  The 1980 

explosion of Mt St. Helens shocked the nation with its violence.  The eruption caused an 

enormous blast, avalanches of debris, overpowering ash falls, and fifty-seven deaths 

(Fisher et al. 1997).  Perhaps the most concerning aspect of volcanic eruptions is that 

there is currently no accurate way to predict how, why, and especially when these 

destructive eruptions will occur.  For vulcanologists, this is a most tantalizing problem. 

 Volcanology research has been performed at both large scale (plate tectonics) and 

small scale (magma melt structure).  This study’s primary investigation is in the small 

scale in terms of magma rheology with the eventual goal of applying the results to larger 

scale processes. Magma rheology is defined by Spera (2000) as “the science of 

deformation and flow of magma.”  The flow of magma is described by its viscosity.  

Lava viscosity is an outwardly visible property of lava, which makes it a simple way of 

characterizing erupted lava.  Viscosity has a large effect on both petrological and 

volcanological processes.  One of the primary purposes in petrological research is to 

determine and understand the factors that create the multitude of different magmatic 
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rocks.  When first introduced to igneous rocks, geologists are taught to identify these 

rocks based on their composition and textural features.  These features can then be 

interpreted in terms of processes affecting the origin of the magma and its subsequent 

history, cooling and solidification.  Volcanic rocks are quenched relatively rapidly, which 

presents an insight into plutonic rocks by preserving a freeze frame image of the 

composition of natural melts (Spera 2000). 

 

Figure 1.1.  Ring of Fire demonstrating abundance of volcanoes (Francis and 

Oppenheimer 2004). 

 Specific lava types display different rheological properties based on both internal 

and external characteristics.  External parameters include variables like topography and 
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effusion rates.  Internal characteristics include variations in crystallinity, bubble content, 

water content, viscosity, and liquid composition to name a few. The most common lava 

types and the primary focus of this paper are basaltic, andesitic, and dacitic. 

Basaltic lava flows typically erupt at temperatures between 1000-1300°C (Spera 

2000) and are extremely fluid with flow rates measured as high as 60 kilometers per hour 

(Francis and Oppenheimer 2004).  Basaltic type lava flows can be seen at Hawaii and 

Iceland.  Basalt is composed primary of SiO2 (40-50 wt %), Al2O3, CaO, FeO, and MgO.  

Compositionally, basalts can be divided into two main groups, alkaline and tholeiitic 

basalts.  Alkaline basalts are enriched in sodium and potassium, are silica undersaturated, 

and commonly contain phenocrysts of olivine.  Tholeiitic basalts are silica saturated to 

weakly undersaturated, dominated by clinopyroxene and plagioclase and typically have a 

fine glassy groundmass.  Generally, basaltic lava flows have very low viscosities and 

yield strength and tend to travel large distances.  As the lava flows, it begins to cool, 

causing the surface of the magma to solidify and form a casing around the lava flow.  As 

cooling proceeds, lava blocks begin to accumulate on the solidified surface and solidified 

lava begins to build up as the lava flow slowly advances.   

Andesitic lavas are very similar to basaltic lava flows but the viscosity and yield 

strength are higher and thus they do not travel as far.  Andesitic lavas have a tendency to 

form block lava flows, which are very steep and results in piles of angular rock piled atop 

one another.  While flow continues, the surface consists of brittle rock and the core is 

viscous, molten rock (Francis and Oppenheimer 2004). 

Dacitic lava is the next step above andesite lavas in viscosity and yield strength.  

For example, Mt St. Helens in Washington, Santiaguito in Guatemala, and Unzen 
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Volcano, Japan all have characteristic dacitic lava domes.   Dacites move very slowly, 

which leads to thick, steep extrusions.  One cause of this decrease in flow rate is the 

higher crystal content.  Dacitic lavas can exhibit as much as fifty percent crystal content.  

This high crystallinity causes the lava to move extremely sluggishly, particularly as the 

lava cools.  In rare cases, as seen at Santiaguito, these lavas form steep sided, thick flows, 

with tall levees with a 30° angle of repose at 17-35 meters tall (Harris et al. 2002).  Dacite 

lavas are so resistant to flow that they typically form lava domes rather than flows.  Lava 

domes are near-symmetrical features with their ‘peaks’ similar to block lavas.  They 

typically grow incrementally from inside the dome and slowly push the dome outwards.  

This is known as endogenous growth, as opposed to exogenous growth, where lava 

domes grow as separate lobes pile atop each other (Francis and Oppenheimer 2004).  

 Rheology data for natural magmas are scarce and hard to obtain but simple 

systems are easier to quantify and more commonly found in the literature.  As a general 

rule, the more complicated a melt is, the greater the difficulty to pinpoint how a specific 

constituent alters the rheology.  This study takes an experimental approach to determine 

the viscosity of crystallizing magma by analyzing CaO-MgO-Al2O3- SiO2 (CMAS) 

analogs of some common volcanic rocks. 

1.2 Viscosity 

 Viscosity is a description of a liquid’s resistance to flow.  Viscosity is affected by 

many factors and consequently can be a useful tool because it is an extremely visible 

characteristic of lavas.  Generally, viscosity is defined as the ratio of an applied stress to 

the resulting strain rate, 
ε
σ

η
&

= , and conventionally expressed in units of poise (g cm
-1
 s

-

1
) or in Pascal seconds (N m

-2 
s; 10 poise = 1.0 Pa s).  Magma viscosity depends on a 
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multitude of factors; including but not exclusive to composition, melt structure, 

temperature, pressure, volatile and crystal content (e.g. Dingwell et al. 1993).  The 

magma viscosity is dependent on these factors so it is important to be able to quantify 

them; however, many of them are interconnected in volcanic settings, so determining 

how each one individually effects the viscosity can be challenging.   

 In this study three terms magma, liquid, and glass will be frequently used and 

their correct definitions must be outlined to avoid confusion.  1) Magma describes the 

combination of liquid, volatiles, and solids.  The main aim of this study is to describe the 

effect of crystals in a magma.  In order to perform this task, measurements were 

conducted on specific silicate compositions while they were completely molten and glass 

cylinders were used to measure the viscosity of a supercooled liquid.  2) If a composition 

is completely molten it is considered to be a liquid where it is entirely fluid.    If a liquid 

is cooled, the viscosity increases with decreasing temperature, and if crystallization does 

not occur it will form a glass.  3) A glass is an amorphous solid lacking an orderly atomic 

arrangement (Mysen and Richet 2005; Spera 2000).  The shift from a liquid to a glass is 

described by the glass transition, which occurs over a narrow range in temperature.  The 

glass transition temperature (Tg) is highly variable depending on composition and 

experimental conditions.  For example, the Tg is higher for an experiment using a faster 

rate of heating or cooling.  This variable temperature is due to the fact that Tg is not a 

thermodynamic phase transition, which can take place at equilibrium, but rather entirely 

kinetic in origin (Moynihan 1995).  Tg is more specifically where the temperature of the 

tangents to the glass and liquid curves of a given property intersect (Figure 1.2).  The 
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general definition of Tg is where the liquid’s atomic configuration is frozen in place 

during cooling (Mysen and Richet 2005). 

 

Figure 1.2.  Glass transition temperature as determined by the break in the thermal 

expansion curve of an industrial glass, where l is the sample length (Mysen and 

Richet 2005). 

 

 Melt composition has a large effect on viscosity, especially at lower temperatures.  

As previously mentioned, it is generally known that basaltic magmas are more fluid than 

dacitic magmas.  The basic explanation for this relationship is when there is more silica 

present in a melt the more viscous it will be; however, for a deeper understanding of the 

relationship between composition and viscosity the melt structure must be investigated.  

The primary way melt structure is described is based on the polymerization of the melt.  

Cations in the melt are divided into network-formers and network modifiers.  Network-

formers are cations that are in tetrahedral coordination including silicon and aluminum, 

when aluminum is in tetrahedral coordination it requires charge balancing by alkali 

metals or alkaline earths (Mysen 1987).  A hypothetical melt containing all Si-O and Al-

O bonds is considered fully polymerized.  Network-modifiers include alkali and alkaline 

earth cations such as potassium, sodium, calcium, and magnesium. Network-modifiers 

cause more nonbridging oxygens which results in the melt being depolymerized.  NBO/T 
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describes the ratio of the nonbridging oxygens (NBO) and tetrahedrally (T) coordinated 

cations.   NBO/T can range from 0-4.  If a melt has a high NBO/T then it is considered to 

be depolymerized and consequently has a low viscosity.  If a melt has a low NBO/T the 

melt is polymerized and is viscous. 

1.3 Rheological Behavior of Fluids 

 There are many components that alter magma viscosity and therefore it is prudent 

to begin with a basic understanding of how simple fluids behave and build up to a 

discussion of more complicated magmas. 

Newtonian flow describes a fluid that has a linear relationship between shear 

stress and strain rate.  Viscosity is defined as the ratio of shear stress divided by strain 

rate i.e. Newtonian viscosity is independent of stress or strain rate (Figure 1.3).   

 

Figure 1.3.  Description of different flow behavior (Francis and Oppenheimer 

2004). 

 

Most lavas, however, do not behave in a Newtonian fashion due to a number of factors, 

particularly crystallinity.  Non-Newtonian flow occurs in fluids that do not have a linear 

relationship between stress and strain rate.  This type of flow pertains to many lava flows 
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but not all.  More complex fluids are more likely to behave like a Bingham body that 

possesses a yield strength that must be exceeded before it will flow.  Silicate liquids 

exhibit Newtonian behavior under the stress-strain conditions of lava flows but for 

magmas with a significant crystal content this simple relationship is not accurate.   

 The temperature dependence of viscosity can be described in many ways.  

Basaltic lavas extrude at higher temperatures than other lava types which makes them 

very fluid in comparison.  This temperature difference could possible be more important 

then the low silica content.  One of the simplest and most commonly used viscosity-

temperature relationships is the Arrhenius law (Equation 1.1). 

    RTEA /exp ηηη =     (1.1)  

The Arrhenius law is also commonly expressed as TEA /log ηηη += , where Aη is a 

constant, Eη represents the activation energy of viscous flow, and R is the universal gas 

constant.  The activation energy is related to the ratio of molar (Si+Al)/O for a melt 

(McBirney and Murase 1984; Spera 2000).  Bottinga and Weill (1972) presented a model 

for viscosity based on the Arrhenian relationship between temperature and viscosity.  

This model works well at superliquidus temperatures but extrapolation of Arrhenian 

behavior is not applicable to lower temperatures or viscosities greater than 10
5
 Pa s that 

are outside of their experimental range. 

 The Arrhenian equation depends heavily on an atom being capable of exceeding 

the energy barrier or Eη constant in order for the liquid to flow.  The Adam and Gibbs 

(1965) theory states that flow occurs due to the availability of configurational sites.  The 

basic premise behind this relationship between flow and configuration is that a 

rearrangement of the configuration of a liquid’s structure is required in order to have 
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viscous flow.  For example, when configurational entropy increases with increasing 

temperature the rearrangement can occur in a smaller and smaller volume and therefore 

the liquid becomes more fluid.  Richet (1984) applied the Adam and Gibbs (1965) theory 

of configurational entropy to derive an expression for viscosity (Equation 1.2). 

     
conf

e
e
TS

B
A +=ηlog     (1.2) 

Ae is a constant, Be is a constant independent of temperature but dependent on 

composition and represents the Gibbs free energy preventing structural rearrangement in 

a melt  (Neuville and Richet 1992).  This theory is beneficial because it takes into 

account viscosity’s dependence on temperature and composition.  The S
conf

 is the 

configurational entropy of the melt which depends on the temperature, isobaric heat 

capacity, Cp, and the entropy of the glass at its glass transition temperature.  

Configurational entropy is dependent on temperature therefore it can be calculated based 

on the following equation (Equation 1.3).   

    ∫+=
T

T

conf

p

g

confconf

g T

dTC
TSTS )()(    (1.3) 

where Cp
conf

 is the configurational heat capacity, which is the difference between the heat 

capacity of the liquid (Cpl) and the heat capacity of the glass at Tg (Cpg).   

     )( gpgpl

conf

p TCCC −=     (1.4) 

The theory of configurational entropy has been demonstrated to reproduce viscosity data 

very well where independent means can be used to determine the configurational entropy 

of the glass at Tg (Richet 1984).  The drawback to the Adam and Gibbs theory is that in 

order to calculate the configurational entropy, the heat capacity must be known; however, 

there is a limited amount of heat capacity data for silicate melts. 
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 Since very little data are available to calculate the S
conf

 of silicate melts, another 

method for interpolation is required.  A very common method of viscosity interpolation 

uses the Tammann-Vogel-Fulcher or TVF equation (Equation 1.5) (Tammann 1926, 

Vogel 1921, and Fulcher 1925).  Although it has a very similar format to the Adam and 

Gibbs theory, the TVF equation is an empirical method of prediction: 

     
CT

B
A

−
+=ηlog     (1.5) 

where A, B, and C (in some literature referred to as T1) are constants.  A has been found to 

be independent of composition and represents the value of log viscosity (Pa s) at infinite 

temperature.  B is proportional to the activation energy, which corresponds to the 

potential energy barriers hindering the rearrangement of the melt to allow viscous flow, 

and C is a temperature (K) at which viscosity would be infinite (Russell and Giordano 

2005).  The parameterization of this non-Arrhenian method has been used in multiple 

studies including this one to predict viscosities of multicomponent silicate melts, to be 

discussed further in later chapters. 

 The above viscosity calculation models apply to homogeneous liquids (in simple 

systems).  These models are not capable of predicting the viscosity for magmas with 

entrained crystals.  Now it is necessary to investigate the effect of crystals on magma 

viscosity. 

1.4  Effect of Crystals 

Crystals can affect the evolution of igneous rocks in many ways.  Crystal growth 

controls mineral textures and affects crystal size distribution and chemical zoning.  One 

of the basic principles taught in any introductory geology is that crystals increase the 

overall viscosity of the magma.  A major goal for this study is to dissect this generality in 
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order to quantify the precise effect entrained crystals will have on the viscosity of a lava.  

Ryerson et al. (1988) argues that the magma as a whole will behave as a non-Newtonian 

liquid but the liquid minus the crystals will still act as a Newtonian fluid.  It is imperative 

to understand the effect of crystals on lavas because most are extruded at temperatures 

below their liquidii and therefore crystallization takes place.  Marsh (1981) remarks that 

most lavas once cooled contain 25-55 volume percent crystals. 

 The Einstein-Roscoe equation calculates the viscosity as it varies with volume 

fraction of crystals: 

     5.2

0 )1( −−= φηη R     (1.6) 

where η0 is the viscosity of the liquid, and R is a constant that represents the volumetric 

ratio of solids at maximum packing; 1.67 is found to be the most accurate for lavas 

(Marsh 1981) and is used in this study.  The symbol φ represents the actual volume 

fraction of solids in suspension (McBirney and Murase 1984).  The Einstein-Roscoe 

equation is the primary method used to determine viscosity of a melt with crystals 

present.  Unfortunately, there are multiple drawbacks associated with using this method 

of viscosity prediction.  One of the problems and a primary concern of this study is that 

the equation does not take into account the chemical change of the liquid composition 

due to the onset of crystal growth.  Despite this inability, however, it still remains the best 

method to calculate the effect of crystals on magma viscosity. 

Crystals can have a substantial effect on the overall magma viscosity.  An 

experimental study performed by Lejeune and Richet (1995) found that at 40 volume 

percent crystals the viscosity was substantially greater than at smaller volume fractions.  

They applied an experimental approach by measuring the viscosity of melt-crystal mix as 
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a function of temperature at constant crystal fraction.  Their composition consisted of 

partially crystallized aluminous enstatite in order to examine the effect of increasing 

crystal fraction.  Aluminous enstatite crystals have a low rate of nucleation and crystal 

growth.  Below is a graphical representation of their results (Figure 1.4). 
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Figure 1.4. Viscosity of aluminous enstatite at varying crystal volume fraction as a 

function of temperature plotted with their TVF equations (Lejeune and Richet 

1995). 

 

From the data it is clear that as crystal fraction increases so does the viscosity of the 

“magma”.  Samples were also prepared to measure above 40 volume percent crystals; 

however, these samples demonstrated a drastic increase in viscosity that prevented good 

measurements from being collected.  One important feature of this study, however, is that 

the crystals and the melt are of the same composition.  The composition of the melt never 

changes and therefore is not an accurate description of what occurs in real lavas during 

partial crystallization. 
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 Bouhifd et al. (2005) investigated the difference between the chemical effects, the 

change in liquid composition during crystallization, and the physical effects of a partially 

crystallized alkali basalt melt with different redox states.  Synthetic glasses were 

produced analogous to the real alkali basalt and were comprised of eight components, 

SiO2, Al2O3, Na2O, K2O, FeO, MgO, CaO, and TiO2.  The viscosities of both the natural 

and the synthetic liquids were determined at high and low temperatures.  The results are 

best described in the following figure (Figure 1.5).   

 

Figure 1.5.  Physical and chemical effects of entrained crystals (Bouhifd et al. 2005) 

The above diagram demonstrates the large change in viscosity of the basalt as the crystal 

volume fraction exceeds 40%, as found by Lejeune and Richet (1995), and also 

demonstrates how viscosity changes with composition of the synthetic glass produced to 

demonstrate the compositions after different stages of crystallization (samples SFB5-60).  
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These data show a remarkable difference in the viscosity of the melt versus the viscosity 

of the magma. 

 The purpose of this research is to study synthetic systems where phase equilibria 

are well understood but little viscosity data are available, examine the chemical effect of 

crystallization on liquid and magma viscosity, and demonstrate the importance of the 

results for physical models of igneous processes such as crystal settling, magma ascent 

and eruption dynamics.  This study’s principal objective is to examine the effect of 

crystals on magma viscosity during crystallization.  In other words, the magma can be 

altered in two primary ways: chemically and physically.  The physical change of a 

magma is caused by the presence of solids within a fluid.  The chemical property 

examined is the changing liquid composition as a function of plagioclase crystallization. 

1.5  The Importance of Plagioclase 

 This study investigates the change of melt viscosity as plagioclase progressively 

crystallizes by analyzing the liquid lines of descent for three separate series of melts 

when anorthite is the liquidus phase.  Looking beyond the realm of experimentally 

produced glasses, many examples can be found to demonstrate the importance of 

plagioclase crystallization in real magmas. 

 The three series of synthetic glasses produced for this study are based on three 

common igneous rock types; tholeitiic basalts, basaltic andesites, and dacites.  Tholeiitic 

basalts are the most common extrusive rock types on Earth, including at mid-ocean ridges 

and ocean islands.  Sometimes they occur as lava lake, formed when lava erupts from a 

fissure or conduit and fills into an older crater creating a pond of lava.  For example, in 

1965 an eruption created a pond of lava 84 m deep and 800 m wide in the Makaopuhi 
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crater at Kilauea volcano on Hawaii (Wright and Okamura 1977).  Below are pictures 

from two Kilauea lava lakes, Manuna Ulu and Aloi Pit crater, respectively (Figure 1.6). 

 

 

Figure 1.6.  Mauna Ulu lava lake with a 10 m high lava fountain (a).  Aloi Pit Crater 

with walls that are 15 meters high (b) (Schmincke 2004). 

 

As described by Kirkpatrick (1977), “The Hawaiian lava lakes offer an unparalleled 

opportunity to study the processes that occur during crystallization of basaltic magma.”  
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Primarily the studies performed on the Kilauea lava lakes are concerned with the physical 

and chemical processes that occur during cooling.  Wright and Okamura (1977) 

investigated the cooling and crystallization of the Makaopuhi lava lake.  Kirkpatrick 

(1977) investigated the nucleation and growth of plagioclase in the Makaopuhi and Alae 

lava lakes by analyzing thin sections from drill-cores taken at different depths at one 

time.  The major crystals found were plagioclase, olivine, and pyroxene.  Below, is a thin 

section demonstrating the abundance of plagioclase within the basaltic magma (Figure 

1.7). 

 

Figure 1.7.  Plagioclase nucleating on plagioclase in partially crossed polarizers.  (0.1 

mm scale bar) (Kirkpatrick 1977). 

 

 An outstanding example of basaltic andesites and dacitic lava can be found in 

Guatemala at Santiaguito Lava Dome.  Santiaguito and its neighboring volcanoes are the 

result of arc volcanism caused by the subduction of the Cocos plate under the Caribbean 

plate (Figure 1.8).  The Santa Maria composite cone, a precursor to Santiaguito, began 

growing 20,000 years ago.  Today, Santa Maria stands 12,375 feet in tropical Guatemala.  

Santiaguito lies in a crater resulting from the explosion of Santa Maria in 1902 (Harris et 
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al., 2002).  This eruption caused the death of 6,000 people when the southwest side of 

Santa Maria released 8.5 km
3 
of dacitic material and a small amount of basaltic andesite 

material, leaving a 20 km
3 
crater, which would eventually become the site of Santiaguito 

(Harris et al., 2001).  

 

Figure 1.8. Tectonic setting of Santa Maria and Santiaguito (Conway et al. 1994) 

In the aftermath of the explosion in 1902, two decades passed with little or weak 

activity, i.e. weak ash emission and geyser activity.  Since 1922, activity increased with 

continuous slow moving dacitic lava pouring from the center of the crater, which over 

time built up to be the Santiaguito lava dome complex of today (Figure 1.9). 
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Figure 1.9.  Santa Maria and Santiaguito Lava dome complex (March 2005). 

 Four vents contributed to the growth of Santiaguito, the Caliente Vent being the 

dominant provider in more recent years.  In the years between 1922 and 1984, 

Santiaguito was observed to have a cyclic pattern of a three-five year period of high 

extrusion rate (0.6-2.1 m
3
/s) coupled with a ten-twelve year period of lower extrusion 

rates (0.2 m
3
/s) (Harris et al., 2001).  In this sixty-two year period the average extrusion 

rate was 0.46 m
3
/s (Harris et al., 2001).  Santiaguito is theorized to be a plug volcano, 

which promotes continual build up and release at regular intervals, consistent with the 

regularity of the system.  In the years following 1984, dacitic extrusions in the form of 

block lava flows have dominated the system as well as regular ash emissions and 

continual rock falls that average one fall per minute.  The ash emissions are typically 

about one kilometer high or less, and average about two per hour.  However, it is noted 
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that the length of the periods of low extrusion rates have been increasing, which could 

suggest that the present activity might cease in the coming decades possibly due to the 

depressurization and depletion of the source (Bluth and Rose 2004).  The data might also 

suggest that the volcanic activity is changing and becoming less cyclic and instead having 

a steady extrusion of 0.2-0.4 m
3
/s suggesting a more stable constant supply of magma 

(Harris et al., 2001).  Conversely, there is also a steady slight decrease in SiO2 content of 

erupted material, which could correlate with a depleted magma chamber (Harris and 

Rowland 2001; Harris et al. 2002). 

Santiaguito is comprised of dacitic lava that contains about 35% phenocrysts 

(Bluth and Rose 2004).  This study examines the path of liquid descent as plagioclase 

crystallizes.    Samples from Santa Maria and Santiaguito were collected and thin sections 

were produced.  From thin section analysis plagioclase is clearly abundant both as a 

phenocryst and in the groundmass.  The figure below demonstrates the abundance of 

plagioclase in these lavas (Figure 1.10). 
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Figure 1.10. Thin section from Santiaguito in (a) cross polarized (b) and plane 

polarized (4x, field of view is 2 mm). 

 

Overall, Santiaguito presents a site of active dacitic volcanism in a relatively safe 

collecting environment.  The presence of the looming Santa Maria volcano allows access 

for observation from above the active volcanic activity, an uncommon occurrence.  The 

predictability of the volcano permits and encourages active study.  This study will result 

in improved understanding of the rheology of the block lava flows prevalent in the area, 

which are extremely hazardous to the local people.  The results of this study can be 

applied to other dacitic volcanoes, including those in populated regions such as Mount St. 

Helens.  

 The following work utilizes an experimental approach in order to enhance the 

understanding of the difference between the physical effects of entrained crystals and the 

chemical effects of the changing melt composition by analyzing the liquid evolution of 

three series with the overall goal of applying the results to natural magmas. 
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 In the subsequent chapters the methods, results, and applications to petrological 

processes are discussed.  In Chapter 2 the methods to produce and measure the viscosities 

of synthetic glasses are described.  Chapter 3 discusses the results from the viscosity 

measurements, TVF modeling of viscosity as a function of temperature and composition, 

and evolution of liquidus viscosity along liquid lines of descent.  Chapter 4 compares the 

viscosity measurements to previous viscosity prediction models, and reports the 

calculated magma viscosity of the synthetic liquids, and finally the implications of these 

calculations on larger geological processes are discussed. 

 

1.6 Summary 

� An experimental approach is applied in order to study the difference between the 

physical effect of entrained crystals and the chemical effect of the changing melt 

composition with the overall goal of applying the results to real magmas. 

� Viscosity is a measure of a fluid’s resistance to flow and is defined as stress/strain 

rate. 

� Viscosity decreases with increasing temperature.  Several viscosity-temperature 

relations have been proposed; including the Arrhenian, Adam and Gibbs, and the 

TVF equation. 

� The best method to calculate the effect of crystals on magma viscosity is the 

Einstein-Roscoe equation. 

� The presence of entrained crystals increases magma viscosity, at 40 volume % 

crystals the viscosity increases drastically. 
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� This study analyzes the effect of changing the liquid lines of descent as 

plagioclase crystallizes and the residual liquid composition changes.  Hawaiian 

lava lake basalts and Santiaguito dacites in Guatemala provide excellent examples 

where plagioclase crystallization is evident. 
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CHAPTER 2 
 METHODS 

“A thinker sees his own actions as experiments and questions--as attempts to find out 

something. Success and failure are for him answers above all.” 

!Friedrich Nietzsche 

 

2.1  Overview 

 To better understand how entrained crystals and the corresponding change in melt 

composition alter the overall viscosity of magma, this study applies an experimental 

approach.  A series of viscosity measurements were collected on seventeen simplified 

glasses in the CaO-MgO-Al2O3-SiO2 (CMAS) system, with compositions analogous to 

dacitic and basaltic lavas.  The measurements were carried out using two different 

methods: parallel plate viscometry and concentric cylinder viscometry.  Parallel plate 

viscometry can analyze cylindrical glass cores in the range of 10
9
-10

13
 Pa s.  Concentric 

cylinder viscometry measures the sample at superliquidus temperatures in the range of 

10-10
5
 Pa s.  Below, the basic methodology for creating these glasses and how their 

viscosities were measured are described in greater detail. 

2.2 Composition selection 

 In volcanic research, there are gaps in the data collected in the ongoing task of 

creating a comprehensive model to describe the viscosity of lava. One tool used in 

understanding the viscosity of the complicated and often dangerous geology is the 

producing and measuring of synthetic glasses.  The compositions for this study were 

selected for two primary reasons.  First, the systems in which these compositions lie have 

very limited viscosity databases.  Thus, this study serves a necessary function of 

increasing the understanding of these simple systems.  Second, the systems are simplified 

analogs of more complicated lavas; therefore, allowing for comparison to real volcanic 
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rocks.  The selected compositions are based on basaltic lavas typically found in 

association with Hawaiian-type volcanism, and lavas derived from the Santiaguito dome 

complex and Santa Maria stratovolcano in Guatemala, whose rocks are very similar to 

those found at Mount St. Helens. 

In total, seventeen synthetic glasses were produced.  Eight were synthesized 

analogous to tholeiitic basalts.  Nine were synthesized based on the composition of the 

lavas found at Santiaguito lava dome.  Silicic lava flows at Santiaguito contains that 

produces about 35 volume % phenocrysts, predominantly plagioclase.  Cross-Iddings-

Pirsson-Washington (CIPW) norms were performed on XRF whole-rock data provided 

by Bill Rose of Michigan Tech for samples from Santiaguito and Santa Maria (Cross et 

al. 1902).  CIPW norm calculations generate normative mineralogy based on the typical 

minerals that would be expected to crystallize from an anhydrous melt composition.  The 

normative mineralogy is dominated by the minerals quartz, plagioclase, orthoclase, 

hypersthene, and diopside.  There were also a few samples from Santa Maria data that 

contained minor normative olivine.  For glass synthesis, the iron content in hypersthene 

has been assimilated into the magnesium, calcium and aluminum content to also avoid 

problems of Fe
2+
/Fe

3+
 ratio.  The network modifier Fe

2+
 is transferred to calcium and 

magnesium in such a way as to preserve the bulk structure of the liquid and the overall 

Ca/Mg ratio.  This allows for a relatively easy simplification of the lava compositions 

into the CMAS system.  

 The normative values for the Santiaguito and Santa Maria complexes were then 

plotted in the anorthite-forsterite-quartz ternary system (Figure 2.1).  The diagrams 

demonstrate a basic difference between the two complexes, in that the Santiaguito dome 
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is slightly more silicic in composition than Santa Maria.  Both sets of samples are within 

the anorthite stability field, consistent with the observation of abundant plagioclase 

feldspar phenocrysts in both suites. 

 
Figure 2.1. Normative compositions of (a)  Santiaguito dome complex (n=43), (b) 

Santa Maria Volcano (n=49). (wt %) 

 
Figure 2.2 a.  Santiaguito dome complex.  b.  Santa Maria Volcano. (mole %) 

 

2.3  Glass preparation 

 Synthetic glasses were produced by mixing a combination of oxides and 

carbonate powders.  Only four powders are used in the synthesis of these seventeen 

glasses:  SiO2, Al2O3, MgO, CaCO3.  The weight percent of the constituent oxides was 

calculated from the normative mineralogy, and then the weight of added CaCO3 was 

a. b. 

b. a. 
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adjusted in order to account for the amount of carbonate being included.  Two batches of 

about 70 grams each were weighed with precision of better than 0.2 wt % for each oxide.  

Once the powders were weighed they were mixed with acetone using an alumina tray, to 

prevent any contamination, in a shatter box for three minutes.  The powder was then 

placed in a platinum crucible and was decarbonated by slowly step-heating to 1030°C 

(Table 2.1) in a Thermolyne high temperature furnace (model number 46200).  

 

The sample was removed and weighed to check that all of the CO2 has been removed 

from the sample.  The sample was then replaced back in the furnace at 1600°C to melt the 

powder.  The sample remained in the furnace for at least an hour before being removed 

and air-quenched to produce a glass.  This glass was then crushed, reground in the 

shatterbox, and placed back in the furnace at 1600°C.  This melting, pouring, crushing, 

and mixing procedure was repeated 3 times to ensure a homogeneous glass.  After the 

final melting the sample was poured into a graphite crucible to cool slowly and prevent 

shattering, forming a solid ~60-70 g plug of glass approximately 6.5 cm long that tapers 

from 3 cm to 2.5 cm wide.  The compositions were verified using electron microprobe 

analysis using a JEOL 733 Superprobe at Washington University, St. Louis, Missouri.  

The density of each glass was measured, using Archimedes’ principle in conjunction with 

the Mettler Toledo density determination kit and using distilled water as the immersion 
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liquid.  Archimedes’ Principle states that every solid mass immersed in a fluid will lose 

weight by an amount equal to the weight of displaced fluid. 

   aaOH
BA

A
ρρρρ +−

−
= )(

2
     ( 2.1) 

where A represents the weight of the sample in the air, B is the weight of the sample in 

distilled water, OH2
ρ  is the density of distilled water (corrected for measurement 

temperature), and aρ  is the density of the air.  The density of each glass was measured 

twice on three glass chips per sample.  The average precision for these measurements was 

0.02 g for all glasses.  Following density measurements, the glass was then either 

annealed to drill cores for the parallel plate viscometer or prepared for the concentric 

cylinder viscometer. 

2.4  Parallel Plate Viscometry 

 The sample preparation is more intensive for parallel plate viscosity analysis than 

for concentric cylinder viscometery.  Whereas the concentric cylinder requires about 60 

grams of glass placed in an alumina crucible the parallel plate requires a cylinder with 

polished parallel faces.  In order to produce these cylinders the glass is first annealed by 

heating slowly at 3°C per minute to 700°C (close to the glass transition), then slowly 

cooled at 2°C per minute to room temperature,  to prevent breakage while drilling.  The 

glass is drilled using a Starlite diamond core drill bit.  This produces cylinders 

approximately 66 mm diameter, which are cut using a diamond saw to approximately 1 

cm in length.  These cores are then polished using 240, 600, and finally 800 diamond grit 

paper to produce a parallel surface.  The cylinders are measured using a micrometer to be 

sure they are parallel, to within 50µm.  The length and diameter of the sample are then 

carefully measured before being placed in the parallel plate viscometer. 
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 The parallel plate viscometer used for this study is the Rheotronic III 1000C 

Parallel Plate Viscometer, which was purchased from Theta Industries, New York 

(Figure 2.3).  The viscometer can measure over the range 10
9
-10

13
 Pa s.  The viscometer 

was reassembled and the instrument calibration was checked using the National Institute 

of Standards and Technology (NIST) glass standard 717a, a borosilicate.  The basic 

principle of the parallel plate is based on γτη &/= , where τ is defined as the shear stress 

and γ& is the strain rate.  In this case, the glass is being sheared at a rate determined by the 

viscosity of the glass between two silica plates (Figure 2.4). 

 

Figure 2.3.  Parallel Plate Viscometer. 
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Figure 2.4.  Specimen holder geometry. 

 

As seen in the Figure 2.4, the sample sits in a silica sample holder tube and is placed 

between two pieces of platinum foil and then between two silica plates.  To the left of the 

plates is the push rod that measures the amount of deformation.  In the back of the holder 

tube is a K-type thermocouple. During measurements, the thermocouple is always in 

contact with the sample to measure as precisely as possible the sample temperature.  The 

load rod exerts a stress upon the sample via the upper plate.  The weight of the load rod 

itself is counterbalanced by weights atop the measuring head (Figure 2.5).  Two sets of 

coils are connected to a linear variable displacement transducer (LVDT).  Deformation of 

the sample results in movement of the top of the load rod relative to the stationary push 

rod.  This relative movement is measured by means of the LVDT.  The LVDT then sends 

the data to the signal conditioner.  The signal conditioner transfers the data to the 

computer which can later be retrieved for analysis. 
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Figure 2.5.  Parallel Plate measuring head. 

 

 For a typical experimental run, the software requires the starting height and 

diameter of the sample as well as the load as initial input from the operator.  Based on the 

composition of the sample a temperature program is created to measure the sample 

viscosity from 10
9
-10

13 
Pa s.  The deformation, temperature, and time of measurement are 

recorded and the viscosity is calculated by the software typically at 30 second intervals.  

An independent calculation based on the same sample height data is performed to achieve 

a more precise viscosity by averaging the deformation over longer time intervals.  The 

independent calculation is always very similar to the computer value but the independent 
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calculation is performed only on total deformation greater than 5 µm, therefore the 

calculated viscosity is more precise.  However, before any programs were run on 

unknown viscosity samples the instrument setup was checked for accuracy using the 

standard glass 717a, borosilicate (Figure 2.6).  The viscosity measurements were then 

compared to the TVF equation from the NIST certificate.   
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Figure 2.6.  Standard 717a Calibration Check.  The dotted lines represent ±0.1 log 

units from the TVF equation.  The red squares represent the average of the three 

runs. 

 

The borosilicate standard was run multiple times in the viscometer as an unknown and 

compared to the TVF equation developed by NIST.  The precision and accuracy were 

determined by calculating the absolute average deviation between the NIST equation and 

the three samples analyzed.  The precision and accuracy were found to be 0.04 and 0.05 

log units, respectively. 

 On completion of the sample run, the data were analyzed via Excel.  To 

independently calculate the viscosity only three variables were required, time, 



 32 

temperature, and height.  Temperature versus time was plotted to find the specific time 

interval over which the temperature was stable.  Height versus time was plotted to find 

the precise height change within that time interval.  With this information the viscosity 

can be calculated using the following equation (Equation 2.3). 

    
thV

mgh
sPa

∂∂
=

/3
)(

2

η      (2.3) 

Where m represents the mass of the load (kg), for all experiments in this study 1500 

grams is used for the load, g is gravity (m/s
2
), h is is the height of the cylinder (m), and t 

is time (s) ( Dingwell 1995).    

2.5  Concentric Cylinder Viscometry 

 In contrast to the parallel plate, the concentric cylinder measures viscosity at 

superliquidus conditions, between 10-10
5 
Pa s for this instrument.  In this geometry, the 

viscosity is measured as the fluid is being sheared between two cylinders.  The viscosity 

is defined by the relationship between the torque and the angular velocity, η≈τ/Ω. 

 The viscometer is a Theta Industries Rheotronic II 1600C Rotating Viscometer, 

using a Brookfield HBDV-III Ultra measuring head (Figure 2.7).  The instrument is 

based on a Searle design where the outside cylinder remains stationary and the inner 

cylinder rotates.  This type of rotating viscometer relies on an inner cylinder, known as a 

spindle or a rotor, being immersed into a fluid.  The spindle is driven by a motor through 

a calibrated spring within the measuring head.  The melted glass exerts viscous drag on 

the spindle, which is read by the measuring head.  The spindle is capable of rotating at 

different speeds allowing for a range of measurements at different shear rates, up to 250 

revolutions per minute. 
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Figure 2.7. Concentric Cylinder Schematic. 

 

 A typical experimental run uses approximately 60 grams of sample placed within 

a 33 mm inside diameter by ~6.5 cm tall alumina crucible.  The alumina crucible is 

centered on three alumina sample holder rods and lowered to a set position within the 

furnace.  The spindle is centered in the middle of the sample crucible just above the 

sample.  The computer controls the furnace, which heats at an operator specified rate to a 

point above the liquidus, normally in the range of 1550-1600°C.  At these temperatures 

the melt is typically very fluid and the spindle can be lowered into the specimen for 

measurements to be gathered. 

 Once the sample has reached its peak temperature the spindle spins at about 10 

rpm and is slowly lowered until a torque reading is acquired to ensure the spindle is 
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always lowered to the same depth within the melt.  This initial torque reading is the 

spindle hitting the top of the melt.  The spindle is then lowered into the melt 18 mm as 

indicated by the depth indicator micrometer situated on the measuring head, that moves 

in conjunction with the spindle.  At this point, the instrument is ready to measure the 

viscosity of the liquid.  Acquiring the same depth for every experiment is important 

because an empirical means is used to calibrate the viscometer (described below). 

 The basic theory for concentric cylinder viscometry is γτη &/= ;  where is τ stress 

and γ&  is the strain rate.  Stress is defined by the amount of torque and the spindle 

geometry (Equation 2.4).  Strain rate is also affected by the geometry of the cylinders as 

well as the angular velocity (Equation 2.5). 
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M represents the amount of torque, Rb is the radius of the spindle in centimeters,  Rc is the 

radius of the cylinder, and L represents the effective length that accounts for the end 

effects created by the fact the outside cylinder is not infinite in its dimensions (Figure 

2.8).  To reduce the effect of the outside crucible’s dimensions, during the experiment the 

bottom of the rotor is kept at least 10 mm from the bottom of the crucible to take 

measurements.  The ω represents the angular velocity of the spindle.  The angular 

velocity can be described by N
60

2π
ω = , where N is the revolutions per minute of the 

spindle. 
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Figure 2.8.  Concentric Cylinder spindle crucible geometry, Searle design. 

 

Recall that silicate glasses behave as a Newtonian liquid.  A Newtonian liquid is defined 

as the stress/strain rate ratio having a linear relationship.  Each sample run in this study 

was determined to be Newtonian.  This was determined by plotting the stress versus 

strain rate as the rpm changed and the temperature remained constant (Figure 2.9). 
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Figure 2.9.  Sample SA55 example of Newtonian behavior. 

 

 The measuring head is capable of running under two different settings.  It can be 

run manually via the measuring head or it can be run through a computer connection into 

the measuring head.  The system has to be calibrated manually using internal settings of 

the measuring head.  Due to experimental constraints, there were two spindle 

arrangements that were calibrated to function using the same measuring head.  The 

original Theta design required both a spindle and a rotor (Figure 2.10).  
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Figure 2.10.  Original Theta Inc. setup with coaxial cylinder. 

 

The spindle is a long hollow alumina tube with a small hole approximately 1 cm from the 

end.  The rotor is inserted in the bottom of the spindle and is connected by threading a 

platinum wire through the aforementioned hole.  This design was originally calibrated by 

Theta using certified standard oil.  The machine was shipped, reassembled and the 

original calibration was tested using standard glasses generated by the National Institute 

of Standards and Technology (NIST), specifically 717a, borosilicate, and 710a, soda lime 

silicate.  These were compared to their certified TVF equations (Equations 2.6, 2.7). 
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The certified equations are the result of comparison from many different experiments in 

several laboratories.  The samples were tested at the temperature range of about 1000-

1500°C.    Through the multiple experiments it was found that viscosity measurements 

are only accurate after the torque reading stabilizes; the instrument requires ten minutes 

at a given temperature and speed before the torque stabilizes.  Once stabilized, the 

viscosity reading remains very steady, and approximately five minutes of measurements 

at thirty second intervals at the stabilized temperature and speed, which are recorded and 
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averaged for an accurate viscosity.  In the following graph, the average data from 

multiple test runs (Figures 2.11, 2.12) are compared to the TVF equation from the NIST 

standard reference material certificate. 
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Figure 2.11.  Standard 710a Calibration Check.  The dotted lines represent ±0.1 log 

units from the TVF equation.  The data points represent data from the two runs. 
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Figure 2.12.  NIST standard 717a compared with TVF.  The dotted lines represent 

±0.1 log units from the TVF equation.  The red squares represent the data. 

 

The accuracy and precision was calculated for NIST 710a from two runs (Figure 2.11) 

and was found to be log 0.05 and 0.02 log units, respectively.  Accuracy was calculated 

710a 

717a 
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based on how well the viscometer reproduces the NIST certified values; precision was 

calculated by comparing the data from multiple runs.  NIST 717a (Figure 2.12) standard 

was run only one time and the accuracy was less than 0.005 log units from the TVF 

equation. 

 Unfortunately, the original Theta construct had a design weakness that required a 

modification of the spindle geometry.  Due to the high temperatures required for the 

samples tested in this study, the platinum wire required to hold the rotor in place would 

become malleable and the viscous drag created by the melt would shear the wire, causing 

the rotor to be pulled from the spindle and into the sample crucible.  In order to reach the 

desired viscosities, a new spindle design had to be calibrated. 

             
Figure 2.13.  Modified spindle geometry.   

 Using the same methodology as Theta for the original rotor design, the same 

reference oil was used to calibrate a new spindle geometry.  This spindle geometry is a 

more basic design then the original coaxial rotor assembly.  The modified spindle is a 

solid cylindrical alumina rod of approximately 46 cm in length and 6.25 mm in diameter.  
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A disadvantage for this modified setup is the small diameter, which makes it more 

difficult to get adequate torque readings at high T for low viscosity melts (Figure 2.13).   

 This new spindle geometry required a new calibration for the internal setting of 

the Brookfield measuring head.  This calibration required an adjustment of two internal 

constants within the measuring head.  These constants are the spindle multiplier constant 

(SMC) and the shear rate constant (SRC).  The spindle multiplier constant is used to 

calculate the viscosity in Poise and is found by testing different SMC numbers while 

taking viscosity measurements in the calibration oil.  The SRC is used to calculate the 

shear rate and the shear stress based on the spindle dimensions, effectively accounting for 

end effects.  The shear rate is calculated by multiplying the SRC by the RPM.  From this 

knowledge and the following equation the SRC can be calculated. 

    ( )222

222

bc

bc

RRx

RR
RateShear

−
=

ω
    (2.8) 

The shear rate is defined by the dimensions of the spindle and of the alumina crucible, 

where Rc represents the radius of the crucible, Rb is the radius of the spindle, x is the 

radius at which the shear rate is being calculated (in this case is the same as Rb), and ω is 

the angular velocity, where N
60

2π
ω =  and N is the rpm.  Once the SRC is calculated, it is 

entered into the measuring head as a constant and the SMC is found by trial and error on 

the standard oil (Brookfield Inc.).  These new calibration constants were then tested on 

NIST 710a and 717a, which were run as unknowns (Figures 2.14 and 2.15).  The 

accuracy of the measurements were calculated by comparing the measured data with the 

certified equations (Equations 2.6 and 2.7).  The average absolute deviation (AAD) 
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between measured and certified values was 0.05 log units for 710a and 0.01 log units for 

717a (Figures 2.14 and 2.15) 
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Figure 2.14.  Data for NIST standard glass 710a borosilicate, using modified spindle 

geometry.  Dotted lines represent ±0.1 log units from the certified TVF equation. 
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Figure 2.15.  Data for NIST standard glass 717a soda-lime silicate, using modified 

spindle geometry.  The dotted lines represent ±0.1 log units from the certified TVF 

equation. 

 

 Depending on the constraints of the experiment (temperature and sample 

composition) the specific spindle geometry would be selected.  For all samples in this 
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study, the second spindle geometry was selected based on the high temperatures required 

for viscosity measurements under superliquidus temperatures. 

2.6  Summary 

♦ Nine glasses in the An-Fo-Q ternary system were synthesized based on dacitic 

lavas from Santiaguito lava dome and basaltic andesites from Santa Maria 

stratovolcano in Guatemala 

♦ Eight glasses were synthesized in the An-Di-Fo ternary system based on tholeiitic 

basalts 

♦ Density measurements and microprobe analyses were performed to verify the 

compositions and homogeneity of synthesized glasses 

♦ Parallel Plate viscosity measurements were collected in the range of 10
9
-10

13
 Pa s. 

The precision and accuracy were found to be 0.04 and 0.05 log units, respectively. 

♦ Concentric Cylinder viscometry was utilized to measure viscosities at 10-10
5
 Pa s 

at superliquidus temperatures the accuracy was calculated and was found to be 

0.05 log units for NBS 710a and 0.01 log units for NBS 717a.  Precision was 0.02 

log units based on duplicate runs of NBS 710a. 
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CHAPTER 3 
RESULTS AND DISCUSSION 

 

“Learning without thought is labor lost; thought without learning is perilous.” 

�Confucius 

 

3.1  Overview 

 This chapter is divided into four main sections: (1) glass composition, (2) liquid 

viscosity, (3) TVF modeling of viscosity as a function of temperature and composition, 

and (4) evolution of liquidus viscosity along liquid lines of descent.  First, synthesized 

compositions are described using ternary diagrams, and electron microprobe analyses are 

reported.  Next, the viscosity measurements of all samples are reported and discussed, 

including TVF equations with fitted A, B, and C parameters for each sample.  Next, TVF 

modeling was also performed using a constant A parameter as determined for the 

diopside-anorthite-albite system by Russell and Giordano (2005).  Two prediction models 

based on adapting the TVF equation, which calculates the viscosity along each series 

trajectory from anorthite based on composition, are described.  Finally, this chapter 

concludes with a discussion of the viscosity of liquidus compositions for each series in 

order to determine the chemical effect of progressive crystallization on the residual liquid 

viscosity. 

3.2   Composition of Glasses 

 Three series of CaO-MgO-Al2O3-SiO2 (CMAS) glasses were synthesized in the 

anorthite-forsterite-quartz and the anorthite-diopside-forsterite ternary systems.  In total, 

seventeen different glasses were made and their compositions were verified by electron 

microprobe analysis (Table 3.1 a, b.).  Nine glasses in the An-Fo-Q ternary system 

correlate to dacitic lavas from Santiaguito and basaltic andesites from Santa Maria 
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Volcanoes in Guatemala.  Eight glasses with compositions in the An-Di-Fo ternary 

system were synthesized to represent tholeiitic basalts.  Each sample name consists of 

two letters in uppercase which describes the series they belong to, as well as a number 

which represents the mole % anorthite for that composition.  For example, BA52 

represents the synthesis in the BA (basalt) series in the anorthite-diopside-forsterite 

system with 52 mole percent normative anorthite.   

 Eight compositions were synthesized in the first series along the An-Di90Fo10 (wt. 

%) pseudobinary in the anorthite-forsterite-diopside system.  This series is identified by 

“BA” (Figure 3.1).  Two series are located in the anorthite-forsterite-quartz system 

(Figure 3.2).  The first series, consisting of four glasses labeled “SM” (Santa Maria), lies 

approximately on the anorthite-enstatite binary between anorthite and the An-En cotectic; 

the second series, denoted by “SA” (Santiaguito), contains five glasses and lies between 

the anorthite and the An-En-Q ternary eutectic.  Electron microprobe analyses are 

reported in Table 3.1 along with the normative mineralogy, glass density, molar mass, 

NBO/T, alumina index, and SM (structure modifier parameter, to be discussed later) for 

all compositions.  If a melt has a high NBO/T value it is considered to be depolymerized, 

and will typically have a lower viscosity than a highly polymerized melt with a low 

NBO/T.  For CMAS glasses NBO/T is calculated, based on mole percent oxide, using the 

following equation: NBO/T=(2(CaO+MgO-Al2O3))/(SiO2+2Al2O3) (Mysen and Richet 

2005).  All tables and graphs will list the synthesized melts in ascending order of NBO/T 

with increasing depolymerization as the melt composition moves away from anorthite.  In 

all cases, the most anorthite-rich melts have the lowest NBO/T and highest viscosities.  
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Figure 3.1.  An-Di-Fo with BA series (wt. %, 1 atm) (Bowen 1915 and Morse 1980). 

 

Figure 3.2. An-Fo-Q with SM and SA series (wt. %, 1 atm) (Anderson 1915). 

3.3  Melt Viscosities 

 The viscosity data are presented in four separate tables divided by viscometer 

(parallel plate and concentric cylinder, respectively) and the ternary system they are 

    SM 

 

 

SA 
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located in (Table 3.2 a, b, c, d).  By measuring over a viscosity range of thirteen orders of 

magnitude, the non-Arrhenian behavior of the melts can be observed; if only a small 

temperature range was examined the relationship might be construed as Arrhenian.  This 

also allows for interpolation within the subliquidus, supersolidus temperature range that 

is experimentally inaccessible to the techniques used here. 

 The viscosity data from the previous tables were then graphed against inverse 

temperature in Kelvin for each series.  All points on the following graphs represent the 

viscometer data; the lines represent a TVF equation (Equation 1.5) for each composition 

(Figure 3.3 a, b, c).  In order to interpolate viscosity at temperatures between the 

measured ranges, the empirical TVF equation was applied (Equation 3.1). 

    
CT

B
A

−
+=ηlog      (3.1) 

The TVF equation has three adjustable parameters denoted by A, B, and C whose values 

are determined using the raw viscosity data using Kaleidagraph graphing software.  

These parameters for all series are presented in Table 3.3.  Along with the parameters in 

Table 3.3, the glass transition temperature and the fragility for each composition is 

reported.  Fragility is calculated by FD=C/B, which represents the two extreme types of 

liquids and their sensitivity of the liquid to temperature changes.  A high fragility value 

corresponds to fragile liquids (non-Arrhenian) and low F values correspond to strong 

liquids (Arrhenian-like). Also present in the figures and Table 3.3 is the TVF equation for 

anorthite.  This value was not obtained in this study but represents the compilation of 

previous experimental data and an empirical TVF fit performed by Russell and Giordano 

(2005).  The anorthite TVF parameters determined by Russell and Giordano (2005) are 

used in all following tables and figures unless otherwise denoted. 
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Figure 3.3 a. BA series (An-Di-Fo) viscosity data reported in log Pa s against the 

reciprocal of temperature plotted with TVF curves. 

 

-1.00

1.00

3.00

5.00

7.00

9.00

11.00

13.00

5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00

10000/T (K
-1
)

lo
g
 η

 (
P
a 

s)

An

SM66

SM52

SM44

SM36

1600 1500 1400 1300 1200 1100 1000 900 800

T (°C)

 

Figure 3.3 b.  SM series, (An-Fo-Q) viscosity data reported in log Pa s against the 

reciprocal of temperature plotted with TVF curves. 
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Figure 3.3 c.  SA (An-Fo-Q) viscosity data and TVF curves. 

 As seen in the above graphs, anorthite has the highest viscosity in all series.  The 

BA series (basalt) lies approximately along the An-Di90Fo10 (wt. %) from anorthite and 

runs through the eutectic and along the Fo-Di cotectic.  This series has a large range in 

NBO/T values, from 0.20 (BA81) to 2.21 (BA0) (Table 3.1. a).  BA81 has the fewest 

number of nonbridging oxygens resulting in the highest viscosity, disregarding anorthite.  

BA0 is a binary mixture of forsterite and diopside, which results in a very depolymerized 

melt and consequently very low viscosities.  BA0 appears to exhibit slightly more non-

Arrhenian behavior than the other compositions measured in this series.  This could be 

due to the total absence of alumina in the melt, which greatly affects the melt structure 

and results in a very depolymerized melt.  There is a greater spread of viscosity values at 

the lower temperatures and smaller differences in viscosity at higher temperatures. 
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 The SM series also demonstrates the compositional dependence of viscosity.  The 

SM series exhibits a smaller range in NBO/T than the BA series (0.27-0.62) (Table 3.1).  

Again the viscosities gradually decrease as NBO/T increases, and the greater 

compositional dependence of viscosity at lower temperatures can be seen, but in this 

series the data merges toward a common viscosity value at higher temperatures. 

 In the SA series, similar to the other series, the most anorthite-rich, highly 

polymerized samples have the greatest viscosities and at lower temperatures larger 
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differences in viscosities are again apparent.  The NBO/T values for the SA series 

demonstrate the smallest range from 0.11-0.32 and overall are the most polymerized of 

all series.  At higher temperature, the viscosities of all samples again converge; however, 

in this series there is some crossover at about 1460°C suggesting that polymerization is 

not always a reliable indicator of relative viscosity over all temperature ranges. 

 Comparing the three series, the most viscous for a given anorthite content is SA 

(dacites), followed by SM (basaltic andesites), and finally the most fluid is the BA series 

(tholeiitic basalts).  This stands to reason when the NBO/T values are examined and the 

most polymerized samples are found in SA, SM, and then BA (Figure 3.4a).  The figure 

below demonstrates the different ranges for each series. The NBO/T ratio also dictates 

the order of viscosity within each series as well, illustrated by a plot of Tg against NBO/T 

(Figure 3.4a).  For all series, except a couple of SA compositions at high temperatures, 

the more polymerized the melt, the greater the viscosity. 
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Figure 3.4 a.  Viscosity as a function of NBO/T at 800°C.  Symbols represent points 

calculated using the TVF equations given in Table 3.3. 
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Figure 3.4 b. Tg as a function of NBO/T.  Symbols represent points calculated using 

the TVF equations given in Table 3.3. 

 

3.4 TVF equations 

3.4.1 Constant A Parameter 

 This investigation allows for a different interpolation technique to verify the 

accuracy of the unconstrained TVF parameters utilized in Table 3.3 and Figure 3.3 as 

well as an opportunity to investigate the compositional dependence of the A parameter.  

As stated above the TVF equation has three internally adjustable variables; however, if it 

is assumed that all melts eventually converge to a single viscosity at very high 

temperatures the A parameter should be a constant.   The Maxwell relationship states 

τη ∞= G , where ∞G is the shear modulus and τ is the structural relaxation time (Richet 

and Bottinga 1995).  Knowing that A is equivalent to the viscosity at infinite temperature 

τ∞= GA , where τ  is approximately equivalent to the vibrational frequency of the silica 

network at 10
-12

 to 10
-14 

s (Dingwell and Webb 1989).  ∞G  is approximately a constant 

Anorthite 
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for silicate melts at 10
10

 Pascals because it was found that varies by less than a factor of 

ten (Dingwell and Webb 1989).  Thus, A is also approximately constant.  Russell and 

Giordano (2005) found A to be -5.06 in the diopside-albite-anorthite system.  This results 

in the following TVF equation, which still contains two composition dependent 

parameters B and C (Equation 3.2).   

   
CT

B

−
+−= 06.5logη      (3.2) 

The experimental data was again plotted in the Kaleidagraph software in order to 

quantify the B and C parameters for each composition (Table 3.4). 
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The object of this modeling is to determine if a constant A parameter results in the most 

accurate fit to the viscosity data.  These new TVF curves were then compared to the raw 

viscosity data.  Using a constant A value in the new TVF curves does not generate a 

better fit than the unrestricted A parameter of the first TVF calculation; however, using 

constant A values still result in a very good fit.  From Table 3.4 the overall AAD values 

from the viscosity data of all series is 0.07 log units and the maximum deviation for a 

single sample is 0.12 log units (SA47).  The AAD is the summation of the absolute value 

of each deviation from the measured viscosity 







−= ∑ xx

n
AAD i

1
.  These are very 

good values, however, examining the parameters from a variable A value reported in 

Table 3.3 the overall average deviation is 0.04 log units with a maximum deviation of log 

0.07 (for BA81 and BA36).  In this case using a varying A value results in a slightly 

better fit to the viscosity data and will be used in all subsequent graphs and tables unless 

otherwise denoted. 

3.4.2  Constructing a Predictive Viscosity Model Based on the TVF Equation 

 The next logical step is to attempt to predict viscosities for any composition and 

temperature along each series’ trajectory from anorthite using the experimental data 

obtained.  Two different methods were employed for this task.  The first is an empirical 

approach, which applies a 3
rd

 order polynomial to the data set; the second method applies 

the theory of the entropy of mixing, which results in a 2
nd

 order polynomial. 

3.4.2.1  3
rd
 Order Polynomial Empirical Method  

 This empirical approach involves taking the A, B, and C parameters from the 

experimentally derived TVF curves, plotting them in Kaleidagraph, and finding the best 

fit curve in the form of a 3
rd

 order polynomial for each of the parameters.  A 3
rd

 order 
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polynomial was not a good fit to the TVF parameters of the SM or the SA series; 

therefore, this technique was only attempted with the BA series (Figure 3.5).    
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Figure 3.5.  Third order polynomial fits to A, B, and C parameters for the BA series. 
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To generate this equation the parameters of two compositions were not used.  The first 

was BA42 whose parameters did not correspond well with the other data (Figure 3.5); the 

second was BA81 because high temperature data could not be obtained and an 

experimental TVF curve could not be accurately generated using just low temperature 

data.  Omitting these samples when generating the model presents the opportunity to test 

it.  The results of the curve fit are the three following equations representing the value for 

a specific parameter as a function of mole % anorthite content, X: 

32 240.00000127+0.00017988+(-0.02848)+-4.9357 XXXA =    (3.3) 

)8(-0.001640+)(-0.33043+61.072+4411.4 32 XXXB =    (3.4) 

32 20.00008771+0.028279+(-3.1429)+739.8 XXXC =    (3.5) 

The equations can be used to calculate a viscosity anywhere along the BA series for any 

temperature.  This allows for a direct comparison of the exact temperature at which the 

viscosity measurements were gathered.  Viscosity values were calculated and compared 

to the raw viscosity measurements as well as to their original TVF equations (from Table 

3.3).  The absolute average deviations are reported in Table 3.5.  The calculated and 

measured viscosities agree very well even for BA42 and BA81, which were not used to 

generate this model.  Unfortunately, this type of modeling was entirely empirical and 

only applicable to the BA series; therefore, a new method to predict the viscosity along 

each series was sought out. 
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3.4.2.2  Entropy of Mixing Model 

 As seen in the above figure (Figure 3.4), the TVF parameters display a distinct 

curvature.  This parabolic shape is characteristic of thermodynamic mixing curves.  From 

chapter 1, recall that 
conf

e
e

TS

B
A +=ηlog  (Equation 1.2).  Configurational entropy 

includes a contribution from entropy of mixing: mix

conf

ii

conf SSxS +Σ=  (3.6) (Neuville 

and Richet 1991).  Entropy of mixing is described by a 2
nd

 order polynomial using a 

Margules parameter for entropy, here denoted WS (Equation 3.7). 

   21

2

22 XXWXWXWS Sssmix =−=     (3.7) 

The value of each TVF parameter as a function of composition is given by Equation 3.8: 

 ( )[ ]XXWXCBAXCBACBA CBA −++−= 1)1(,, ,,111000    (3.8) 

Where X is the mole fraction of anorthite, A0, B0, or C0 and A1, B1, or C1 describes the 

parameter value for each series end-members, and WA, B, C is the Margules parameter for 
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each of the TVF parameters.  For example, the equation below describes parameter A for 

the BA series. 

  ( )[ ]XXWXXA A −+−+−−= 171.4)1(90.4     (3.9) 

In this case, -4.90 is the A value for BA0 and -4.71 is the A value for anorthite.  This 

results in the only unknown being the Margules parameter.  Continuing with the BA 

series, all three parameters were plotted in Kaleidagraph, which resulted in the following 

graphs (Figure 3.6).  The best fit Margules parameters derived by Kaleidagraph are 

shown in Table 3.6. 
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Figure 3.6.  A, B, and C parameters for Smix curve fit for BA series. 

 

 

The new prediction model was compared to the raw viscosity data and then against the 

TVF equations by calculating the absolute average deviation for each composition.  The 

model was able to predict the values very well for the BA series (Table 3.7).  This model 

can predict the viscosity of samples BA42 and BA81 very well, with an AAD of 0.07 for 

both samples, comparable to the AAD of TVF equations fitted directly to the measured 

data (0.04 and 0.07 respectively, Table 3.3).  For this reason the TVF equation used for 

all graphs for composition BA81, which lacks high temperature data, was computed 

using this method. 
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 The SA and SM series models were generated using the same technique as 

described above for the BA series; their AAD values were not as good as for the BA 

series, but still better than 0.35 log units for all compositions.  For the SM series, sample 

SM44 was not used in generating the model and can therefore be used to check the 

predictive power of the model.  Below is a list of the calculated Margules parameters 

(Table 3.8) and AAD values (Table 3.9) for both An-Fo-Q series. 
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Below, Figure 3.7 presents the mixing curves for the A, B, and C parameters for SM and 

SA series.  The points are values of the TVF parameters from Table 3.3, and the solid 

lines represent the mixing curves.  The AAD values for the SA series is much better than 

for the SM series (Table 3.9) but neither of these models are as accurate as the model 

determined for the BA series (Table 3.7).  It is likely that a better model could be 

generated for these series if the SM and the SA series spanned the entire length of their 

phase diagram, from end-member to end-member, as the BA series does.  More glasses 

would need to be synthesized to test this. 
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Figure 3.7.  TVF parameters for SM and SA series plotted with their mixing curves. 

3.5 Liquid Line of Descent 

 The liquid line of descent describes the compositional evolution of the liquid with 

decreasing temperature and progressive crystallization.  Figure 3.8 shows the liquid lines 
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of descent for all three series.  The viscosity of the liquid line of descent was determined 

using the ternary diagram and the viscosity data.  The points on the graphs below 

represent the temperature at which the compositions are at their liquidus temperature.  By 

connecting the points the viscosity of the liquid line of descent was defined. 

 

 

0

20

40

60

80

100

A
n
 (

m
o
l 

%
)

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1270 1320 1370 1420 1470 1520

T (°C)

lo
g
 η

 (
P
a 

s)



 68 

 

Figure 3.8.  Viscosity along the liquid lines of descent of all series as a function of 

temperature.  Also shown are the ternary diagrams (wt %) and the amount of 

anorthite component at each point in the liquid along the descent path (mol %). 
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largest range in NBO/T values (Figure 3.8 a).  Within the BA series there are two liquid 

lines of descent.  One path is from anorthite and the other is along the diopside-forsterite 

cotectic.  From BA0 the viscosity increases steeply to the eutectic as it becomes more 

polymerized with the crystallization of diopside and forsterite.  However, from anorthite, 

the liquid line of descent first demonstrates a decrease in viscosity then gradually 

increases and finally when the melt composition approaches the eutectic composition 

(BA36) the viscosity again decreases.  This suggests that as the first crystals form the 

liquid will become less viscous. 

 The SM series (basaltic andesites) demonstrates a small increase from anorthite to 

SM66 of about 0.20 log units, but again when the melt composition converges toward the 

eutectic composition (SM36) there is a slight drop in viscosity.  In contrast, the SA series 

(dacites), which demonstrates the smallest variation in the degree of polymerization, 

increases by more than half an order of magnitude from anorthite at the same temperature 

and consistently increases along the path of liquid evolution. 

 In summary, if plagioclase is the liquidus phase, anorthite crystallization always 

results in depolymerization of the residual liquid.  However, liquid viscosity can increase 

or decrease during cooling in basaltic systems (BA and SM series).  Liquidus viscosity in 

the dacitic series (SA) always increases during cooling. 

 

3.6 Summary 

� Seventeen glasses were synthesized in three series, analogous to tholeiitic basalts, 

basaltic andesites, and dacites.  Their compositions were checked using the 

electron microprobe at Washington University St. Louis. 
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� The viscosity of all compositions were measured using parallel plate and 

concentric cylinder viscometry.  Liquid viscosities increase with increasing bulk 

polymerization (NBO/T values). 

� TVF equations were generated for all compositions and compared with the 

measured viscosity.  Using a constant A parameter in the TVF equation also 

generated good results but it was found that using variable TVF parameters gave a 

slightly better match to measured viscosity data. 

� Two models were generated by parameterizing the TVF equation in order to 

predict the viscosity anywhere along a particular series.  A 3
rd

 order polynomial 

model functioned for only the BA series.  Another model based on entropy of 

mixing was generated for all series, and was an excellent match to the data for the 

BA series.  Similar models for the SA and SM series also reproduced measured 

data under 0.35 log units for all samples 

� Finally, liquid lines of descent were analyzed for each series, demonstrating a 

different evolution path for each series.  Because anorthite crystallization 

depolymerizes the residual liquid, liquid viscosity can increase or decrease during 

cooling in basaltic systems (BA and SM series) if plagioclase is the liquidus 

phase.  Liquidus viscosity in the dacitic series always increases during cooling. 
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CHAPTER 4 
 APPLICATIONS 

 

“Learning is to a man as the leaves and branches are to a tree, and it can be said that he 

should simply not be without it.” 

�Takeda Shingen 

4.1  Overview 

 In the previous chapter, viscosity data were presented and simple equations were 

determined to calculate the viscosity of liquids in the three systems as a function of 

anorthite content and temperature.  It was found that liquid viscosity changes little for the 

early stages of differentiation of anorthite-rich basaltic liquids.  For dacitic liquids, 

viscosity always increases during cooling and differentiation. 

 Here, predictive models are tested against the measured data from Chapter 3, in 

order to determine whether further research on viscosity in simple systems requires 

further experimental measurements.  It is shown that available models do not reproduce 

the measured viscosity of the simple systems of this study very well, especially at the 

lower temperatures. 

 Finally, for modeling petrological processes, the viscosity of magma (liquid-

crystal mixture) is usually the parameter of interest.  The magma viscosity of all series is 

calculated assuming a closed-system behavior, where crystallization occurs in 

equilibrium and all crystals that formed are retained in the melt.  In reality, some degree 

of crystal fractionation is likely to occur, so that actual magma viscosity will be between 

the two extremes, of total retention of crystals (equilibrium crystallization), and total 

removal of crystals (perfect fractional crystallization), where the magma follows the 

liquid line of descent.  Then the chemical effect of crystallization on liquid viscosity, 

which controls the rate of crystal differentiation on the bulk magma, is also discussed. 
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4.2 Comparison with Previous Viscosity Models 

 The viscosity data were compared with published models of melt viscosity as a 

function of temperature and composition in order to 1) determine if there was a need to 

measure the viscosity of these liquids or whether existing models would have been 

accurate enough, and 2)  determine which predictive model was most accurate.  The four 

models applied to the measured liquids of this study span decades of research and include 

Bottinga and Weill (1972), Shaw (1972), Giordano and Dingwell (2003), and Giordano et 

al. (2006). 

 The first model tested was the earliest of the four models. Bottinga and Weill 

(1972) compiled 2440 viscosity data points from anhydrous multicomponent silicate 

liquids in order to develop a predictive model to accurately calculate the viscosity of 

natural magmatic liquids.  From their data set they generated a list of partial molar 

viscosity values for the seventeen oxide components at fifty degree intervals from 1200 

to 1800°C.  They used a linear additive equation: ( )TDX ii∑=ηln , where η is the 

Newtonian viscosity, Xi is the mole fraction of oxide i, and Di is the experimentally 

derived effective partial molar viscosity for oxide i for a specific range of SiO2 

concentration at a specific temperature.  Figure 4.1 compares the calculated viscosity 

derived from the Bottinga and Weill (1972) model with the measured data from this study 

at 1200 and 1500°C.  While the Bottinga and Weill (1972) model reproduces the pattern 

of decreasing viscosity with increasing NBO/T for the BA and SM series, the calculated 

values do not match the measured viscosity very well.  This model is limited because the 

temperature range used, fifty degree intervals from 1200-1800°C, cannot be applied to 
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the parallel plate data or even reliably extrapolated to that range because of the non-

Arrhenian behavior of silicate liquid viscosity. 
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Figure 4.1.  Bottinga and Weill (1972) viscosity calculation (dashed lines) compared 

to the TVF equations (solid lines) at 1200-1500°C for all three series.   The BA series 

is represented by the green lines; SM is red; SA is blue. 

 

 The other commonly used model in petrological studies is that of Shaw (1972).  

The Shaw (1972) model is very similar to the Bottinga and Weill (1972) model, again 

relying on the Arrhenius relationship, but is simpler.  Instead of using partial molar 

viscosity values of seventeen oxides, Shaw (1972) used only four partial molar 

coefficients of SiO2, derived from the activation energies of SiO2 in binary systems and 

the coefficients of Bottinga and Weill (1972).  The Shaw (1972) model is based on the 
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postulate that the viscosity curves of multicomponent silicate liquids will intersect the 

reference curve of pure SiO2 liquid at a specific temperature and viscosity.  The points of 

intersections are averaged and applied to the following equation 

   ( ) ηη cscKTsP T +−= ))(/10(ln 4     (4.1) 

Where s is the calculated slope for a specific composition using the four partial molar 

coefficients and the mole fraction of SiO2 and cT, -6.40, and cη, 1.50, are the average 

points of the intersections an the inverse temperature and ln η axes, respectively.  Shaw 

(1972) calculated the constants cT and cη by examining the Arrhenius plot of viscosity 

data for liquid SiO2 against a series of oxides from the Bottinga and Weill (1972) study.  

When compared to the data from this study, the Shaw (1972) model did not agree well.  

When the model is compared to our viscosity measurements at 800, 1200, and 1500°C, it 

is apparent that the model is particularly unreliable at lower temperatures (Figure 4.2).  

Shaw (1972) warns that the model should not be applied to viscosity values greater than 

10
5
 Pa s.  At 1200 and 1500°C  both measured and predicted viscosities are below this 

value but the disagreement frequently exceeds 0.5 log units at 1200°C and 0.3 log units at 

1500°C. 
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Figure 4.2.  Shaw (1972) viscosity calculation (dashed curve) compared to the TVF 

equations (solid lines) at 800, 1200, and 1500°C for all three series.   The BA series is 

represented by the green lines;  SM is red;  SA is blue.  

  

 The next model tested was the Giordano and Dingwell (2003) model.  This model 

expands the TVF equation to develop a non-Arrhenian model for silicate melt viscosities.  

From 19 natural multicomponent melts analyzed via concentric cylinder, parallel plate, 

and micropenetration methods, spanning a viscosity range of 10
0
-10

12
 Pa s, Giordano and 

Dingwell developed two sets of equations to determine the viscosity at a given 

temperature.  The first is based on the NBO/T of the melt and the second uses its own 

empirical parameter referred to as the structure modifier content (SM), which is the mole 
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% sum of the oxides of CaO, MgO, MnO, FeOtot/2, Na2O, and K2O.  The NBO/T method 

uses a series of equations listed below (Equations 4.2-5), where temperature is in Celsius.  

One useful aspect of this model is that viscosity can be calculated for any temperature 

and is not limited to specific intervals like the Bottinga and Weill (1972) calculation.   

   321 )/ln(log aaTNBOa +−=η     (4.2) 

  
321

1290000000138191419.1129
15139.0

TTT
a +−−−=    (4.3) 

  
322

2061030781.572047074.3
00071.0

TTT
a −+−−=    (4.4) 

  
323

3144300695339093588.9309
44516.5

TTT
a +−+−=   (4.5) 

The graphs below (Figure 4.3) compare the predicted viscosity with that obtained from 

the experimentally determined TVF equations at 800 and 1500°C.  Again the model 

demonstrates the relationship between NBO/T and viscosity but the calculated viscosities 

do not agree well with the measured data.  This is true in all cases but the most 

depolymerized samples of the BA series at the higher temperatures; in this case there is 

very good agreement. 
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Figure 4.3.  Giordano and Dingwell (2003) NBO/T calculation (dashed lines) at 800, 

1200, and 1500°C.  The BA series is represent by the green lines;  SM is red;  SA is 

blue. 

 

 For Giordano and Dingwell’s (2003) second model, the structure modifier content 

constant for the measured CMAS compositions is simply the mole percent sum of CaO 

and MgO.  The structure modifier was then applied to the following equation (Equation 

4.6). 

   
SMc

cc
csPa

+
+=

3

32
110 )(log η      (4.6) 

The temperature-dependent parameters c1, c2, and c3 variables were determined by 

Giordano and Dingwell (2003) from an extensive data set (Equations 4.7-4.9). 
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where T is in °C.  The graphs below compare the structure modifier model with the 

measured viscosities of CMAS glasses at 800, 1200, and 1500°C.  Since this model is 

dependent on the amount of structure modifier at a given temperature there is only one 

calculated model for each temperature.  The agreement is good (within approximately 0.2 

log units) at 1500°C, not as good at 1200°C (± 0.5 log units), and quite poor at 800°C. 
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Figure 4.4. Giordano and Dingwell (2003) structure modifier content model (dashed 

lines) at 800, 1200, and 1500°C.  The BA series is represented by the green lines;  

SM is red;  SA is blue. 

 

 The final model tested in this study was by Giordano et al. (2006), which expands 

the Giordano and Dingwell (2003) model.  The new model uses an expanded dataset to 

recalibrate the previous Giordano and Dingwell (2003) structure modifier model, which 

resulted in the following equations, where T is °C: 
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This new model is very similar to the 2003 Giordano and Dingwell model except for the 

addition of b4, which accounts for the alkali excess over the alumina content 
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(AE=Na2O+K2O-Al2O3).  They found that the 2003 model overestimated the viscosity of 

peralkaline melts and underestimated the viscosity of peraluminous melts.  To account 

for this, the new model then calculates the viscosity based on different amounts of excess 

alkali (AE) and the amount of structural modifiers (SM). This model was applied to the 

compositions of this study; however, since these are only CMAS glasses the b4 variable is 

always zero because the syntheses do not contain alkalis.  Although the Giordano et al. 

(2006) model uses a larger dataset, the calculated values were similar (Figure 4.5). 
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Figure 4.5. Giordano et al. (2006) SM calculation (dashed line) at 800, 1200, and 

1500°C.  The BA series is represented by the green lines;  SM is red;  SA is blue.   

 

 Overall, comparing the model predictions to data for the synthetic glasses 

indicates that currently available models do not adequately reproduce the viscosity of 

simple systems.  For example, none of the models tested were able to predict the 

crossover found at high temperatures for the SA series.  The inaccuracy of the models, 

particularly at the lower temperatures, suggests that more viscosity measurements are 

needed to develop better viscosity models.  For this type of simple system analysis, 

experimentally obtained measurements are imperative for an accurate description of 

liquid viscosity. 

4.3 Magma Viscosity 

 As described in Chapter 1 the physical effect of crystals on the viscosity of a melt 

and crystal mix can be calculated using the Einstein-Roscoe equation (Equation 4.15).  

     5.2

0 )1( −−= φηη R     (4.15) 

where η0 is the viscosity of the liquid, φ represents the volume fraction of solids in 

suspension, and R is a constant that represents the volumetric ratio of solids at maximum 
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packing (McBirney and Murase 1984).  The most commonly used value for R is 1.67, 

which was found to be the most accurate for lavas by Marsh (1981) and is used for the 

following calculations. 

 In order to calculate the volume fraction of crystals in each of the melts as the 

temperature decreases and the sample drops below its liquidus temperature, the lever rule  

was used to determine the amount of each phase at a given temperature.  The volume and 

density for each liquid composition was calculated at each temperature using the 

following equations (Lange and Carmichael 1987): 

   ( ) ( )∑ 




 −+= ref
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Tiiliq TT
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dV
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ref,    (4.16) 
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where Vliq(T) is the molar volume of the melt at temperature T (K), Xi is mole fraction of 

each oxide component, Vi is the partial molar volume of each oxide component, dVi/dT is 

the temperature derivative of Vi, and Tref (K) is the reference temperature.  The liquid 

density is the sum of the mole fraction of each oxide multiplied by its molecular weight, 

divided by the calculated volume at a given temperature.  The volume and density for 

anorthite crystals at a given temperature, as well as forsterite and diopside crystals for 

part of the BA series, were calculated using data from Fei (1995) and Smyth and 

McCormick (1995).  From this information the volume fraction of crystals can be 

calculated (Equation 4.18). 
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The viscosity of the magma can now be calculated at any temperature using the TVF 

curves of the liquids and the volume fraction of crystals determined from the phase 

diagram.  

 

 

Figure 4.6.  Magma viscosity for BA calculated using the Einstein-Roscoe equation. 
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Figure 4.7.  Magma viscosity for SM series calculated using the Einstein-Roscoe 

Equation. 
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progressive crystallization. 
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Figure 4.8.  Magma viscosity for SA series calculated with the Einstein-Roscoe 

equation. 

 

 These figures demonstrate the drastic physical impact crystals can have on 

magma viscosity.  However, during progressive cooling and plagioclase crystallization, 

magma viscosity in basaltic systems could initially decrease slightly, as changing liquid 

composition outweighs decreasing temperature and increasing crystal content.  But with 

further cooling, magma viscosity will always increase as the physical effect of the 

entrained crystals begins to dominate. 

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

1250 1300 1350 1400 1450 1500 1550

T (°C)

lo
g
 η
 (
P
a 
s)

0

20

40

60

Ф
 (
v
o
l 
%
)

liquid line of descent

from SA55

from SA47

from SA42

from SA31

An 

Eutectic 



 86 

 It is also important to know at what point along the liquid line of descent the 

magma starts at.  For example, in the BA series what is the viscosity at 1270°C?  If a lava 

of composition BA42 comes out of the vent at 1310°C, it is at its liquidus temperature.  

As it cools and equilibrium crystallization occurs, the viscosity of the magma would be 

10
1.54 

Pa s at 1270°C.  If, however, the bulk composition was BA58 it would already 

contain crystals when erupted at 1310°C, and by 1270°C would have more crystals and a 

viscosity of 10
2.26 

Pa s.  If the bulk composition was BA81 at 1270°C it would contain 

more than 40 volume % crystals. 

4.4  Implications for Petrological Processes 

 Previous research on petrological processes places great importance on viscosity; 

however, in order to describe the processes in question they tend to oversimplify the 

effect of crystals.  These previous studies assume the effect of crystals can be represented 

with a constant, assume their effect is negligible, or use outdated viscosity prediction 

models.  Some examples of models that oversimplify magma viscosity are described 

next. 

 The FLOWGO model (Harris and Rowland 2001) was developed as a kinematic, 

self-adaptive, numerical model that predicts the growth of channelized lava flows.  

However, the  FLOWGO model uses viscosity methodology dating back to Shaw (1972).  

Barmin et al. (2003) studied lava dome magma discharged through a conduit.  This model 

treated the magma as a Newtonian liquid with a viscosity dependent on the volume 

fraction of crystals, but did not include the compositional change of liquid viscosity due 

to crystal generation.  Gonnermann and Manga (2003) researched magma fragmentation 

during explosive volcanism.  Their model developed for viscosity accounts for strain rate 
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and volatile content but they assume that the effect of crystal growth is represented by a 

simple increase in viscosity due to the physical effects of inclusions.  This assumption 

does not account for the change in the liquid composition over time.  This assumption 

may lead to incorrect estimates of the depth of magma fragmentation.  McBirney and 

Murase (1984) reviewed the rheological properties of magmas, specifically on the 

interaction in the area between the liquidus and the solidus, and stated that “few fields of 

geological research hold greater potential for enhancing our understanding of basic 

magmatic and tectonic processes.”  The models mentioned above provide a good 

theoretical foundation but would greatly benefit from a more rigorous treatment of 

viscosity, and should include the chemical effect of progressive crystallization on melt 

composition. 

 The chemical effect of crystallization on viscosity can have a large effect on the 

igneous processes such as the ascent of a magma in a conduit.  As a magma ascends it 

can change its composition by differentiation or maintain a constant bulk composition 

while partitioning itself into different phases.  Fractional crystallization is a primary way 

a magma can differentiate, which was previously discussed in Chapter 3.  These 

compositional changes result in changes of the viscosity along the liquid line of descent, 

which in some cases, may result in the liquid maintaining near-constant viscosity or even 

becoming less viscous as crystallization occurs.  The evolving liquid viscosity can affect 

the behavior of a magma body.  The two processes discussed in more detail below are 

crystal settling and magma ascent. 
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4.4.1 Crystal Settling 

 Crystal settling, commonly referred to as gravity settling, is a mechanism that can 

fractionate crystals from a melt.  Settling in conjunction with the chemical effect of 

crystallization can thus reduce the viscosity of a melt below the original pre-

crystallization viscosity or completely alter the viscosity path.  The rate of crystal settling 

itself depends on liquid viscosity, and hence the chemical change caused by 

crystallization.  To calculate the terminal settling velocity of a crystal, Stokes’ Law is 

used (Equation 4.19). 

    
η

ρρ
9

)(2 2

lsgr
V

−
=      (4.19) 

where V is the settling velocity, g is gravity, r is the radius of the crystal, ρs is the density 

of the crystal, ρl is the density of the liquid, and η is the viscosity of the liquid.  Any 

increase in viscosity will slow the rate of crystal settling while a viscosity decrease results 

in more efficient crystal removal. 

 For example, if the magma viscosity for SM (Figure 4.7) is reexamined the 

varying settling rate along a series can be quantified.  Between liquid SM44 at 1360°C 

and SM36 at 1320°C there is a small drop in viscosity which will increase the settling 

velocity of crystals.   A 0.1 cm (r) plagioclase crystal settling in SM44 liquid at 1360°C it 

has a terminal settling velocity of 1.06x10
-3
 cm/s, compared to 1.13x10

-3
 cm/s at 1320°C 

for the SM36 liquid.  If crystals separate faster from the melt, this will result in the 

magma viscosity and bulk composition staying closer to the liquid viscosity and liquidus 

composition.  Therefore, bulk magma viscosity may also stay nearly constant or even 

decrease slightly in basaltic systems during the early stages of cooling and crystallization.  
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In dacitic systems, such as the SA series, the viscosity always increases along the liquid 

line of descent so a similar increase in terminal settling velocity would not be possible. 

4.4.2  Magma Ascent Rate 

 The speed of magma ascent is inversely proportional to its viscosity.  The average 

velocity of an ascending magma in a dike can be calculated using the following equation 

     
η
ρ

12

2wg
Vave

∆
=      (4.20) 

where g is gravity, ∆ρ is the density difference between the magma and the country rock, 

w is the width of the dike, and η is the viscosity of the magma (Petford et al. 1994).  As 

with crystal settling, the ascent rate will increase with decreasing viscosity.   Perhaps the 

largest assumption made in this study is in regard to equilibrium crystallization.  Using 

phase diagrams to deduce the amount of crystals given at a specific temperature and 

composition results in assuming thermodynamic equilibrium which is not necessarily the 

case.  In nature, some undercooling is required for crystallization to occur.  If ascent and 

cooling are rapid, the system will not attain or maintain equilibrium.  Evidence for this is 

presented in the form of glass either in the matrix (e.g. many basalts) or in some cases the 

whole-rock (e.g. obsidian).  In Table 4.1 the two extreme cases of magma viscosity are 

demonstrated: first, total retention of crystals (equilibrium crystallization), and second 

complete crystal removal (perfect fractional crystallization).   The difference between 

these two end-members is calculated in the column on the right (for reference see Figures 

4.6-8). 
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If a magma of composition BA58 retains all of its crystals until the eutectic point at 

1270°C (liquidus composition BA36) the viscosity will be 10
2.26

 Pa s; however, if the 

magma retains none of the crystals it will follow the path of liquid descent and have a 

viscosity of 10
1.32

 Pa s.  This results in a difference of approximately one order of 

magnitude in calculated magma viscosity and ascent rate.  Similar effects can be seen for 

the SM series (Table 4.1).  For the SA series a more drastic effect can be seen.  At 

1250°C the magma viscosity for bulk composition SA47 is 10
4.63

 (Pa s).  The melt 

viscosity at the same temperature is 10
2.79

 (Pa s).  This results in close to two orders of 

magnitude difference between the viscosities and hence also in calculated magma ascent 

rates.  Crystallization will have a large effect on the ascent of a magma through a conduit 

particularly at the lower temperatures found in nature for intermediate to silicic magmas 

where the viscosity will be much greater than obtained here in the CMAS system. 
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4.4.3  Viscosity Paths 

 Depending on how a magma differentiates, the resulting magma viscosity could 

follow one of several different paths.   The viscosity for a given starting composition can 

evolve in four possible ways; (i) if crystallization is impeded the magma viscosity will be 

the same as the viscosity of the liquid of the original bulk composition, (ii) if perfect 

fractionation occurs the melt will proceed along the liquid line of descent, (iii) if crystals 

form but are retained in the melt (equilibrium crystallization) the viscosity path will be 

described by the liquid line of descent modified by Einstein-Roscoe equation, or (iv) 

depending on the conditions imposed on the magma body it could be a combination of all 

three of the above patterns (Figures 4.10-12).  The different lines in Figures 4.10-12, are 

first described in the diagram below (Figure 4.9).  The first three are possibilities from 

the beginning composition (a) describes the liquid composition (no crystallization), (b) is 

the liquid line of descent (perfect fractionation), (c) represents the magma viscosity 

(equilibrium crystallization), and (d) is an impossible composition of the original bulk 

composition with crystals and ignoring the chemical effect of crystallization. 

 

Figure 4.9. (a) liquid; (b) fractionated liquid; (c) equilibrium crystallization; (d) 

original liquid plus crystals (violates conservation of 

matter).
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Figure 4.10.  BA58 demonstrating the different viscosity paths:  (a) BA58 liquid 

(thin black line); (b) liquid line of descent (bold black line); (c) magma viscosity with 

a changing liquid composition (bold dashed line); (d) BA58 liquid including the 

physical effect of crystals (thin dashed lines).  The shaded area represents the 

possible range of viscosity. 

 

 Figures 4.10, 4.11, and 4.12 show possible viscosity paths for one specific 

composition from each of the three different series.  For the SM and SA series the 

compositions selected are the closest to the bulk rock analyses for Santa Maria basaltic 

andesites and Santiaguito dacites, respectively.  Also plotted is the magma viscosity 

assuming a constant liquid composition but including the effects of crystals.  This is only 

a reasonable model for eutectic compositions, but it has been applied to non-eutectic 

compositions in the literature.  Here we examine how this erroneous simplification 

affects calculated magma viscosity. 

BA58 
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Figure 4.11.  SM52 demonstrating the different viscosity paths:  (a) SM52 liquid 

(thin black line); (b) liquid line of descent (bold black line); (c) magma viscosity with 

a changing liquid composition (bold dashed line); (d) SM52 liquid including the 

physical effect of crystals (thin dashed lines).  The shaded area represents the 

possible range of viscosity. 

 

The viscosity paths of the compositions are very different for each series.  If liquid 

viscosity changes little as a function of composition within a series, as seen for the SA 

series, the difference between the liquid line of descent and the original liquid viscosity is 

negligible.  Magma viscosity assuming perfect crystal retention is also the same, whether 

changing liquid composition is accounted for or not.  The greatest difference in viscosity 

paths would be seen if the crystals would completely settle from the melt, which would 

rapidly cause a decrease in the viscosity path before more crystals begin to form.  If there 

is a significant range of viscosity as a function of composition, as seen in the SM series, 

the pattern of the viscosity path would be very different from the original composition’s 

viscosity curve.  The larger the viscosity range within each series, the greater the error 

SM52 



 94 

resulting from ignoring the chemical effect of crystallization on residual liquid 

composition. 
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Figure 4.12.  SA47 demonstrating the different viscosity paths:  (a) SA47 liquid (thin 

black line); (b) liquid line of descent (bold black line); (c) magma viscosity with a 

changing liquid composition (bold dashed line); (d) SA47 liquid including the 

physical effect of crystals (thin dashed lines).  The shaded area represents the 

possible range of viscosity. 

 

 In a real geologic setting, magma viscosity is more complicated than can be 

illustrated here using simple CMAS compositions.  However, it is very beneficial to 

analyze these simple systems to identify what possible “options” a magma would have in 

nature because the phase diagrams are simple and experimentally verified.  Depending on 

the thermal history of the magma, the magma viscosity could oscillate between the 

different paths described in Figures 4.9-11.  Natural magmas mostly occur at lower 

temperatures than considered above, which would result in greater viscosity ranges for 

different paths because the viscosities of different silicate liquids diverge at lower 

SA47 
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temperatures.  It is imperative to understand that magma viscosity can increase, stay the 

same, or even decrease slightly during crystallization, depending on crystal retention.  

Broadly stating that crystals increase viscosity oversimplifies and devalues the 

importance the chemical effect can have on the melt viscosity and the overall behavior of 

the magma. 

4.5  Concluding Remarks 

 In the preceding work a few factors that could greatly affect crystallization and 

viscosity are not discussed but also not forgotten.  The factors include rate of crystal 

nucleation and growth, enthalpy of crystallization, introduction of volatiles, and changes 

in pressure.  Crystal nucleation, growth, and growth rate could have a large effect on the 

viscosity of a magma.  Poor or total lack of crystal nucleation could cause the viscosity 

path to follow the TVF curve and either quenching to a glass, or rapid disequilibrium 

crystallization, essentially skipping the intermediate magma mush stages. 

 Enthalpy is the description of the heat content of a system.  As crystals form they 

release a latent heat as they change phase.  Due to this latent heat the system would not 

cool as rapidly.  Volatiles can have a large affect on viscosity, particularly the addition of 

water.  Water will cause a decrease in viscosity, for example in a pure SiO2 liquid near its 

glass transition temperature 0.1 wt % water will cause a 10-fold decrease in the viscosity 

(Hetherington et al. 1964).  Finally, pressure could change how and when a melt 

crystallizes.  The phase diagrams analyzed in this study are for thermodynamic 

equilibrium at 1 atmosphere, any pressure change would significantly alter this 

equilibrium thus changing the viscosity paths.  A sudden decrease in pressure, for 
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example due to rapid ascent, could result in decompression melting and possibly 

superheating, again resulting in different viscosity paths. 

 Future paths for this research would include (i) extending the anorthite-forsterite-

quartz series to their respective forsterite-quartz binary end-members and (ii) performing 

more viscosity measurements in both ternary systems with the eventual goal of achieving 

a reliable predictive viscosity model for these systems.  The overall goal would be 

applying this type of analysis to include more complex compositions including synthetic 

glasses with more components, in particular alkalis, and natural melts, in order to apply 

these viscosities to natural magma crystal settling and magma ascent rates. 

 This work presents results that benefit many aspects of igneous petrology and 

volcanology.  The purpose of this research was to study synthetic systems where phase 

equilibria were well understood but little viscosity data were available, examine the 

chemical effect of crystallization on liquid and magma viscosity, and demonstrate the 

importance of the results for physical models of igneous processes such as crystal 

settling, magma ascent, and eruption dynamics.  Viscosity has a large impact on the 

formation, evolution, and emplacement of igneous rocks.  Since the beginning of the 

sixteenth century, the number of casualties caused by pyroclastic and debris flows has 

exceeded 128,000 people (Fisher et al. 1997 and Dobran 2001).   Volcanic activity is 

ever-present and imminent; consequently, understanding the factors that contribute both 

intrusively and extrusively to these devastating geologic wonders is important globally 

and in the world of igneous research. 
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4.6  Summary 

� Currently available predictive models do not adequately predict liquid 

viscosity in the simple systems studied here. 

� The viscosity of crystal bearing magma was calculated using the Einstein-

Roscoe equation.  The viscosity of a magma with entrained crystals will 

usually be greater than the viscosity of a melt of the same bulk 

composition. 

� During the early stages of cooling and plagioclase crystallization in 

basaltic systems, magma viscosity may remain approximately constant 

over large temperature intervals, as changing liquid composition 

outweighs decreasing temperature and increasing crystal content.  With 

further cooling, magma viscosity will always increase as the physical 

effect of the entrained crystals begins to dominate. 

� Magma viscosity in the dacitic system An-En-Q always increases during 

cooling, because there is little change in liquid viscosity along the liquid 

line of descent. 

� Igneous process such as crystal settling and magma ascent rate are heavily 

dependent on viscosity.  For example an increase in the viscosity will 

decrease both rates; likewise, any change in viscosity brought on by the 

chemical effect of crystallization would result in a change in the rate of 

both of these processes. 

� There are three distinct viscosity end-members that can determine 

viscosity paths, (i) original liquid (no crystallization), (ii) liquid line of 
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descent (perfect fractionation), and (iii) magma viscosity (equilibrium 

crystallization).  Depending on the thermal history of the magma the 

viscosity could even jump from one path to another. 
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APPENDIX 

 

 

 

Original Theta Rotor Calibration Checks on 710a and 717a. 
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Modified Spindle Calibration Checks on 710a and 717a. 
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