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ABSTRACT 
Obesity is a growing epidemic and a major health concern in the United States and 

elsewhere.  The Fetal Basis of Adult Disease (FBAD) theory holds that events that occur 

during development can permanently alter gene expression throughout the lifetime of the 

individual.  A link has emerged between fetal nutrition, birth weight, and metabolic 

profile in adulthood.  Metabolic diseases represent a host of conditions relating to 

abnormal “programming” of nutrient management. We have developed a CD-1 mouse 

model which shows that fetuses within two body weight ranges at birth are at increased 

risk for developing metabolic diseases such as obesity, hypertension, cardiovascular 

disease, and Type II diabetes.  It is not just individuals that are born with abnormally high 

birth weights (macrosomia) that are at risk for becoming overweight later in life.  

Paradoxically, this risk also applies for individuals who are born with extremely low birth 

weights, which are termed intrauterine growth restricted (IUGR).  Mice identified with 

IUGR at birth show a dramatic increase in body weight during the first week post-

weaning, which results in adult obesity and an altered metabolic profile for the remainder 

of their adult life.  Preliminary studies indicate that when examined in adulthood, 

adipocytes in males identified with IUGR or macrosomia at birth showed evidence of 

differences in “programming” of expression of genes involved in fat cell differentiation 

and function.  Certain xenoestrogens in the environment are known to interrupt the 

process of cell differentiation.  Utilizing this model, we will be able to test the effects of 

 



these chemicals on individuals that already have a metabolic deficit.  By examining the 

relationship of fetal nutrition and growth with endocrine disruption, greater evidence may 

emerge for the need of regulation of endocrine disrupting chemicals. 
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Introduction 

With the growing prevalence of obesity and its related metabolic diseases in the 

United States, the need for an explanation and a working animal model to evaluate 

treatments is greatly needed.  There is an increasing volume of literature on the subject of 

a fetal basis of obesity and metabolic disease.  The studies on this subject point to two 

fetal conditions that have a higher incidence of obesity and metabolic disease in 

adulthood, and figure 1 details the visual differences between these two distinct body 

types.  The first of these is Intrauterine Growth Restriction (IUGR).  IUGR is 

characterized by birth in the bottom fifth percentile of full term offspring (Xiu 2003), but 

this also applies to premature babies.  Several factors may lead to IUGR, including 

maternal malnutrition, and maternal environment, such as endocrine disrupting 

chemicals.  The second is Macrosomia or birth weight in the top fifth percentile for a full 

term offspring.  Just as several factors may increase the incidence of IUGR, several 

factors also play a role in the development of macrosomia.  These characteristics include: 

gestational diabetes, maternal over nutrition, and the maternal environment including 

endocrine disrupting chemicals. 

 

Background 

Current animal models of metabolic disease typically involve the gross 

manipulation of maternal diet.  The manipulations involve one of two methods: either 

malnutrition (Jones 1982) or increasing fat intake.  The studies using malnutrition 

showed similar effects to the epidemiological studies performed on the male children of 

Dutch women who were food deprived during pregnancy due to the German invasion 
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during WWII (Ravelli 1976).  Studies have been performed on sheep, where the mothers 

were purposefully malnourished to observe the effect on their fetuses.  As would be 

expected, the mothers who were malnourished the longest had the lowest birth weights 

among their offspring.  These offspring also had higher blood glucose levels and 

increased blood pressure in adulthood (Oliver 2002).  The studies where the maternal fat 

intake was increased produced larger than normal offspring, which retained their 

increased weight throughout life.  Offspring produced through increase in maternal fat 

intake were defined as being macrosomic (vomSaal, unpublished). 

The role that the maternal environment plays in development was noted in higher 

vertebrates, such as rabbits and horses in the early 1900s.  Dr John Hammond of 

Cambridge University performed experiments in which he reduced the size of the uterus, 

by either crossing two strains of horses thereby restricting the maximal growth in utero, 

or by using a larger number of rabbit fetuses to increase litter size (Walton 1938, 

Hammond 1933).  In each Hammond study, fetal growth was limited by the amount of 

space in the uterus, and all other factors affecting development, i.e. food intake and 

chemical exposure, were held constant.  A further study to explore the restriction of 

uterine size was performed by transplanting fetuses from a small breed of pig into the 

uterus of a large breed, and vice versa.  The fetuses were collected four days prior to 

parturition, and substantial changes from the norm were found in both breeds (Nathnielsz 

2000).  Epidemiological studies have been performed on humans using homozygous 

twins that shared a single placenta.  This condition occurs in roughly 70-80% of all cases 

of human homozygous twins.  The placenta is never shared equally, but is more often an 

unequal sharing that leads to a whole host of differences including malnutrition and 
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growth retardation.  Typically, when one of the two twins develops diabetes later in life, 

it is the twin that was born with the lower birth weight and this twin is also more 

susceptible to cardiopulmonary disease (Machin 1996, Machin et al 1996).  Past studies 

have shown that macrosomia can be induced in mice by selective fetal reduction resulting 

in singleton litters (Ogata 1988). 

 

Purpose 

Due to the need for an animal model of obesity and its related metabolic diseases, an 

attempt to alter the fetal environment in order to induce either IUGR, or macrosomia was 

attempted.  In this experiment, the birth weight of individual mouse pups are altered by 

either overcrowding the horn of the uterus through super ovulation, caused by hemi-

ovariectomy, creating smaller pups, or by under-crowding the uterus through fetus 

reduction, giving the fetus the ability to grow to a larger size.  There is support to the 

crowded horn uterus model for inducing IUGR.  Figure 2 is a schematic of a mouse with 

a crowded uterine horn that was induced by the compensatory response to 

hemiovariectomization.  The crowded horn causes a decrease in blood flow to the 

different uterine segments, and thus decreases fetal weight in the offspring (Yang and 

vom Saal Unpublished).  This is an important observance for the validity of the crowded 

uterus model for IUGR.  The effects of IUGR do not end at the end of fetal life; however, 

further effects begin developing later in life.  Most IUGR individuals exhibit a period of 

‘catch up’ growth.  This period of catch up growth has been associated with increased 

risks of cardiovascular deficit, and with insulin resistance syndrome (IRS).  The growth 

velocity is even more strongly associated with IRS than individual endpoints (Yajnik, 
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2001).  This study evaluated the effect of the crowded uterus as to its validity as an 

animal model for human adult disease based on its effects on neonatal birth weight, adult 

weight, and adult glucose tolerance. 

 

Procedure 

Animals, Husbandry, and Mating Procedures. 

CD-1 mice (Mus domesticus) were purchased from Charles River Breeding 

Laboratories (Wilmington, MA) in December 2004, and were maintained as an out-bred 

colony since that time.  The mice were housed in 18 x 29 x 13-cm polypropylene cages 

on corncob bedding.  Pregnant and lactating mice were fed Purina mouse breeder chow 

5008 (soy-based, Ralston-Purina, St. Louis, MO).  After weaning, offspring were fed 

Purina standard lab chow 5001(soy-based).  Water was provided ad libitum in glass 

bottles and was purified by ion exchange followed by a series of carbon filters.  Rooms 

were maintained at 25 ± 2°C under a 12:12 light: dark (L: D) cycle, with the lights on at 

1030 h. 

Two methods of mating were used, depending on group within the study.  Group 1 

consisted of mice that were to be collected for fetal assays and tissues.  Adult female 

mice that had given birth to one previous litter had the left ovary removed.  The females 

were anesthetized using a cocktail of drugs (Ketamine 25 mg/ml, Xylazine 1 mg/ml, 

Acepromazine 0.5 mg/ml).  The dose is 0.0036 ml/g for an average of 90µl per animal.  

Once anesthetized, each female had her left ovary removed and the wound was closed 

with a wound clip.  The left ovary was chosen for removal due to the normal anatomy of 

the female mouse.  Normally, the left ovarian artery branches off from the left renal 
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artery.  The right ovarian artery, however, branches from the descending aorta, as 

demonstrated in figure 3.  Five days following surgery, females were placed in groups of 

3 with a stud male for 4 hours each day beginning at 0830 h.  Mating was verified by the 

presence of a vaginal plug (day 0 of gestation).  After mating, pregnant females were 

housed three per cage.  The pregnant dams were singly housed on gestation day 16.  On 

gestation day 18, the females were killed by asphyxiation followed by decapitation, and 

blood was collected in 12 x 75 mm borosylicate glass tubes.  Fetuses were killed by 

decapitation, and blood was collected by pipette using 200 µl heparin-coated micro-

capillary tubes and then stored in 200 µl Eppendorf tubes.  All blood samples were stored 

overnight at 4°C.  The blood was centrifuged, and serum was stored for future analysis.  

In addition to fetal blood, the following organs and data were collected for each 

individual pup: liver, brain, pup weight, and intrauterine position of the pup relative to 

the ovary or cervix as well as in relation to the sex of adjacent pups. 

Group 2 consisted of mice that were to be carried to term following hemi-

ovariectomy.  Adult, hemi-ovariectomized female mice that had given birth to one 

previous litter (as described above) were singly housed with a stud male for up to 14 

days, beginning five days after surgery.  Pregnancy was verified by animal weight of at 

least 40 grams, post pairing.  All animals were allowed to deliver naturally on gestation 

day 19 (postnatal day 1).  On the day of weaning on PND 21, all mothers were 

euthanized with CO2, and were necropsied to verify location of implantation sites, as well 

as the location of the blood supply to the uterus.  Any abnormalities were noted.  All pups 

were toe clipped, so that each individual could be identified.  Each clipping occurred on 

the back paws of the animal by a set numbering system.  Mouse pups were not handled 
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between the day of birth and the day of weaning.  Mouse pups were weaned at 21 days 

and housed by sex until they were 3-months old.  Body weights were determined for all 

animals at weaning and each week thereafter.  At the end of the study, animals were 

killed by asphyxiation and blood was collected by decapitation in 12 x 75 mm 

borosilicate glass tubes.  Blood samples were stored overnight at 4°C.  The blood was 

centrifuged, and serum was stored for future analysis.  In addition to blood, the following 

organs were collected:  liver, kidney, gonadal fat, inguinal fat, adrenal fat, heart, right 

epididymis, spleen, right gastrocnemius, and both testes.  Weights were taken on all of 

the preceding organs. 

 

Micro MRI analysis of body fat in a lean and fat adult male mouse in relation to 

fat pad weight and body weight at autopsy 

Adult male mice were anesthetized using an isoflourane respirator set at 5% 

isoflourane.  Anesthetization was maintained at 2.5%.  Animals were monitored for 

temperature, breathing rate, and heart rate while being scanned.  Adult male mice were 

placed in the micro MRI, after which body weight and combined weight of 3 fat pads 

(epididymal, renal and inguinal) were determined at autopsy. 

Tests Performed on organs collected 

Several organs were collected, as previously noted.  To date, the only collected tissue 

to be analyzed is the gonadal fat pad.  The left fat pad, which was frozen at the time of 

necropsy, was used to perform RT PCR to observe the expression of several key genes.  

Gene specific real-time RT-PCR analysis.  mRNA was determined for each gene by 

reverse transcription (RT) and PCR amplification, which was carried out on an ABI 
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PRISM 7700 Sequence Detector System.  Primers/probe sets were obtained from Applied 

Biosystems (Foster City, CA).  All RNA samples were run in duplicate, Linearity and 

specificity was confirmed in each run.  The genes that were examined were: GLUT4, Lpl, 

PPARγ, CYP19, 11βHSD, and C/EBPα.  The basis for the selection of these genes is 

presented in table 2. 

 

Fasting Glucose Measurements 

Glucose measurements were taken using the methods of Heine et al.  A Reli-On 

Ultima glucometer was used.  The glucose challenge concentration was 1.5mg/g body 

weight glucose in 0.9% saline solution and was given I.P.  (Heine 2000). 

 

Statistical Analyses 

All analyses were conducted using the Statistical Analyzing System, Mixed 

Model procedure (SAS Institute, Inc., Cary, NC).  Planned comparisons were made using 

the LSmeans procedure in SAS, using P < 0.05 as the criterion for statistical significance. 

 

Litter Information 

Through the course of the experiment, 57 litters were produced for the postnatal 

study.  This gave a total of 605 offspring, of which 585 survived to weaning.  This 

provided a neonatal mortality rate of 3.3%.  Twenty five percent of all pre-weaning 

deaths occurred in IUGR animals.  Additionally, only 0.05% of the pre-weaning deaths 

were in macrosomic animals.  Two hundred ninety seven (297) females and 308 males 

made up the total number of animals.  Analysis was performed to identify the top and 
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bottom fifth percentile weights based on calculating the mean and standard deviations for 

body weight at birth for males and for females (males were significantly heavier than 

females).  In males, the bottom fifth percentile was any animal born weighing less than 

1.25g, the average was 1.64g, and the top fifth percentile was any animal that was 2.01g 

or heavier.  Females were identified as being in the lower fifth percentile if they weighed 

less than 1.24 g, their average weight was 1.58g, and they were in the top fifth percentile 

if they weighed greater than 1.95g.  From the animals born to each group, 16 were 

randomly selected for collection as representative of all animals with similar 

characteristics. 

 

Growth Information 

Following categorization of birth weight, animals were further segregated based 

upon their post-weaning growth rate between weaning on PND 21 and PND 28.  The 

birth weight classifications of IUGR, average and macrosomia were further divided into 

thirds due to the appearance of a tri-modal distribution of rate of growth during this week, 

placing five to six animals in each subgroup.  As can be seen from this data, and in the 

graphs of figures 5 and 6, it is the IUGR animals that have the highest average post 

weaning growth rate.  These animals undergo a catch-up growth phase where they not 

only catch up to the animals that are born heavier than them, but surpass all non-

macrosomic animals and become as heavy as those identified with macrosomia at birth.  

This catch-up growth phase in humans has been associated with poor glucose tolerance 

(Crowther 1998). 
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It is important to note that the IUGR males that underwent the rapid post-natal 

growth phase retain their post-weaning growth profile, and in fact that it becomes more 

pronounced as time goes on.  This post-natal growth pattern allows the IUGR animals to 

become statistically the same in weight as macrosomic animals by as soon as four weeks 

post-weaning.  This can be seen all the way into adulthood.  When looking at the adult 

males in figure 6 the IUGR animals, which grew with at least 100% growth in week 3-4, 

were equivalent to the macrosomia animals that also had the highest growth rate in the 

same week.  The trend in females was different, with all females, regardless of birth 

weight, ending up at the same body weight by 7 weeks of age. 

 

Micro-MRI Imaging of Body Fat 

Two animals, one characteristic of the overweight animals produced, and one 

characteristic of the normal weight animals produced were subjected to micro-magnetic 

resonance imaging (mMRI).  The mMRI was used to observe the visual differences in the 

size of the fat pads in the animals these differences are illustrated in figure 7.  The NMR 

peaks show the difference in fat water ratio of the lean and the fat animal.  The mMRI 

accurately predicted the amount of body fat, this is shown in figure 8 and table 2, which 

will allow use of this method to determine peak periods of fat accumulation for 

examination of adipocyte gene activity in future studies. 

 

Epididymal Fat Pad Gene Expression by Real-time RT-PCR 

The gene expression within the gonadal fat pad was assayed for six genes.  The 

graphs in figure 9 present the data that were obtained from the PCR analysis.  As can be 
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seen, the results are varied by gene product.  The general trend suggests an increase in the 

expression of all of these genes in the IUGR animal with the exception of CYP19. 

 

Glucose Information 

The results presented in figure 10 show that there is no statistical difference 

between the glucose sensitivity of the low (IUGR) and average birth weight animals, 

however there is a difference between these two groups and the high birth weight animals 

(macrosomia group).  The high birth weight animals appear to be more sensitive to 

glucose than the low or average birth weight animals.  Additionally, there is no 

significant statistical difference between animals with a low or average postnatal growth 

rate, but there is a difference in animals with a rapid rate of post natal growth.   

 

Discussion 

The results of these experiments demonstrate the capability of the crowded 

uterine horn to induce IUGR and macrosomia in siblings.  As would be expected, there 

was a large number of animals that did not meet the requirements for either IUGR or 

macrosomia, purely by the definition of these conditions representing animals in the 

bottom fifth percentile and top 95 percentile for body weight at birth.  The major finding 

from this study is that IUGR fetuses go through a period of rapid catch-up growth 

immediately following weaning.  The consequence of this rapid period of growth is that 

IUGR males end up significantly heavier than males who were not categorized at birth 

with macrosomia, which were the heaviest animals in adulthood. 
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Additionally, the results show the induction of obesity and impaired glucose 

tolerance in the male mouse as a result of experiencing a rapid weight gain during the 

week following weaning.  In contrast, as can be seen in figure 10-A, there was no 

significant difference between IUGR and normal body weight males in their response to a 

glucose challenge.  In viewing the results, it is important to note the two seemingly 

necessary factors for induction of obesity and impaired glucose tolerance through this 

model.  The first of these is a low birth weight.  The IUGR animals as a whole go through 

a catch-up growth phase where their weight rapidly increases to that of their litter 

cohorts.  This rapid growth phase makes up the second necessary factor.  The results in 

Figure 10-B show that a postnatal growth rate in the top one third of all of those animals 

within their particular birth weight class results in impaired glucose tolerance.  These data 

are interesting in that in humans, these same two factors when coupled together appear to 

create the greatest effect on the metabolic profile of the afflicted individuals (Oken 2003). 

The association of these two factors together is shown further by looking at the 

IUGR animals that do not go through the rapid postnatal growth.  The IUGR animals 

with the lowest level of postnatal growth have a growth rate equivalent to the 

macrosomia animals with the highest postnatal growth rate.  This sub-group of IUGR 

animals does not put on the amount of body weight that is seen in the other IUGR 

animals that experience almost a 2-fold increase in body weight during the week after 

weaning.  

The data in this study thus suggest that low birth weight alone does not causes 

obesity or the impaired glucose tolerance.  However, low birth weight can result in the 
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greatest rate of growth after weaning, and rapid postnatal growth the factor that is 

associated with impaired glucose tolerance.  

The decision of fast the animals overnight prior to collection of fat appears to 

have resulted in suppression of the activity of a number of the candidate genes we 

examined in epididymal adipocytes.  In future studies we will focus on examining gene 

activity in adipocytes during the period when animals with IUGR and macrosomia are 

experiencing markedly different rates of growth.  This study was thus valuable in 

identifying that it is the immediate postnatal period that should be the focus of future 

studies.  The importance of this finding is that this demonstrates that the crowded uterine 

horn model and the animals with IUGR and macrosomia that result from this model 

exhibit the same combination of characteristics seen in humans with IUGR and 

macrosomia.  Obesity in humans with IUGR requires a period of rapid postnatal growth 

that typically occurs in childhood (Oken, 2003), while obesity in babies with macrosomia 

does not involve this period of rapid postnatal growth. 



APPENDIX I

Figure 1 
Demonstration of differences between 
IUGR and macrosomia. 
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Figure 2 
Schematic of the crowded uterine horn model.  Note the 
shunted artery from the ovarian artery to the first fetus. 



Figure 3. 
The normal reproductive tract of an adult female 
mouse (Even et al, 1994). 
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Figure 5 
Panel A is the male weight profile during the experiment. 
Panel B is the female weight profile during the experiment 
Panel C is the percent weight gain of the different weight classifications during 
the first week post-weaning. 
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Figure 9 
Gene expression results from RT PCR analysis 
The darker shaded bars were collected at an earlier time, as a preliminary collection.  
No other data is available for these animals.  The lighter bars are the animals 
collected at the closure of the experiment.  All animals that were collected at the 
closure of the experiment were fasted overnight.  These animals show a profile that 
is characteristic to that fact. 
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Figure 10 
The left figure, figure a, is a graph of glucose clearance distributed by birth weight 
category. 
The right figure, figure b, is a graph of glucose clearance distributed by post natal 
growth rate. 
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APPENDIX II 
Gene sequences used for PCR analysis or where they were purchased. 
 
11β-HSD 
HSD11β1-04: GCA GCA TTG CCG TCA TCTC 
HSD11β1-05: GAA CCC ATC CAG AGC AAA CTTG 
HSD11β1-P1: 6FAM-TGG CTG GGA AAA TGA CCC AGC CTA TG-TAMRA 
 
CYP19 
CYP19-1: CCG AGC CTT TGG AGA ACA ATT 
CYP19-2: TCC ACA CAA ACT TCC ACC ATT C 
CYP19-1-P: 6FAM-TTT CTT TAT GAA AGC TCT GAC GGG CCC T-TAMRA 
 
The following gene primers were all purchased as pre-optimized and validated primer-
probe gene expression assays from Applied Biosytems.  
cEBP-α 
PPAR-γ 
GLUT-4 
LPL
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