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Abstract

High-grade quartz-scheelite veins (up to 3.7 wt. % WO3) in the Open Pit orebody
of the Cantung mine, Tungsten, NWT occur 300 m vertically above a Cambrian
limestone-Cretaceous monzogranite contact along which the E-Zone orebody, a world-
class tungsten skarn, is developed. The trend of the 80 m wide quartz-scheelite vein
swarm is nearly parallel to the strike and dip of a near-vertical aplite dike along the edge
of the Open Pit. Adjacent to these quartz-scheelite veins, dark green alteration selvedges
overprint earlier light green skarn alteration, indicating that the high-grade quartz-
scheelite veins are not part of the early skarn-forming event, but represent a distinct, later
event.

Oxygen isotope data from quartz-scheelite pairs yield equilibrium temperatures of
430° to 595°C. These temperatures indicate that the quartz-scheelite veins are related to a
deep magmatic-hydrothermal system and are likely a distal expression of a protracted
skarn-forming event, perhaps related to aplite dike emplacement. Quartz-scheelite veins

did not form in a shallower, cooler, hydrothermal system during uplift.

xi



Primary ore fluids in quartz-scheelite veins from the Open Pit orebody, in skarn-
related quartz veins from the E-Zone skarn orebody, and in aplite dikes are grossly
similar HyO-CO,-NaCl+CH4 fluids. However, two distinct end-member fluids have been
documented: aplite-related fluids and skarn-related fluids. Fluids in high-grade quartz-
scheelite veins contain components of both end-member fluids. Fluids in veins from the
Open Pit orebody contain an aplite-related fluid end-member even when occurring up to
70 meters from the nearest exposed aplite dike. Thus, quartz-scheelite veins and aplite
dikes in the Open Pit orebody may have a genetic relationship in addition to their
structural relationship.

I envision a conceptual model for the Cantung hydrothermal system in which ore-
grade tungsten deposits formed where fluids emerged from the granite and encountered
rocks favorable for skarn development (e.g. cleaner ‘Ore Limestone’ versus cherty ‘Swiss
Cheese Limestone’). Due to the folded geometry of the sedimentary sequence in other
areas along the granite contact, fluids emerging from the granite encountered strata less
favorable to skarn development (i.e. argillite). Where these less favorable units were
breached by fracture systems, potential skarn-forming fluids (and aplite dikes) gained
access to host rocks more conducive to ore development vertically distal to the granite
contact. The presence of magmatic ore fluids distal to intrusions is intriguing and has

significant implications for mineral resource assessment in the region.
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CHAPTER 1: INTRODUCTION

History

The Cantung mine, Tungsten, Northwest Territories, Canada (Fig. 1), is an
unusually large (4 Mt of ore) and high-grade (> 1.6 wt. % WQ3) tungsten skarn deposit
(Hart and Lewis, 2003). Two skarn orebodies are developed in a package of folded and
overturned Proterozoic to Cambrian metasedimentary rocks above a Cretaceous (~98.2
Ma) monzogranite (Mathieson and Clark, 1984; Bowman et al., 1985; Marshall et al.,
2003; Rasmussen et al., 2006).

Discovered in 1954, the Cantung area was explored originally for copper
(Crawford, 1963). In 1958, the area was bought by Mackenzie Syndicate who restaked
the deposit for tungsten. Diamond drilling exploration from 1959 until 1961 indicated
1,176,000 tons of ore at 2.47 wt. % WOQOg3, one million tons of which could be mined by
open pit methods. By 1962, the mine was acquired by its current owner, North American
Tungsten Corporation Ltd., which built a mill and town site that year. By 1973, North
American Tungsten Corporation Ltd. recovered 1,343,370 tons of ore averaging 1.64 wit.
% WOj3; from the Open Pit orebody. Exploration in 1971 discovered the E-Zone orebody
approximately 600 m north and 300 m below the Open Pit orebody. Underground
production began in 1974 and by 1977, 498,000 tons of ore had been extracted (Hodgson,
2000). Reserves were calculated at 5,221,640 tons of ore averaging 1.54 wt. % WOs.
The mine closed in May 1986 due to low metal prices and was subsequently placed into
care and maintenance. Cantung was the western world’s largest tungsten producer during

its operation from 1962 to 1985.
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Figure 1. Location of the Cantung mine, Northwest Territories, Canada. Modified after

Mortensen et al. (2000) and Rasmussen et al. (2006).



The mine reopened for two years in 2001. It reopened again in 2004, thanks to
rising tungsten prices. Remaining reserves are estimated at 771,000 tons of ore grading

1.75 wt. % WO3 (Yukon Geological Survey, 2005).
Rationale for Study

The initiation and completion of this project complements the area’s Mineral and
Energy Resource Assessment (MERA) process (Yuvan et al., 2006). MERA was
founded in 1980 to take an “inventory of non-renewable natural resource potential of
areas in the Yukon and Northwest Territories prior to their establishment as new national
parks” (MERA Homepage, 2006). The Cantung mine is located within the Nahanni
MERA study area (Fig. 1).

Two skarn orebodies in the Cantung mine have been exploited for tungsten, the E-
Zone and Open Pit orebodies. High-grade quartz-scheelite (CaWQ,) veins and aplite
dikes crosscut the Open Pit orebody. Aplite dikes that crosscut the E-Zone orebody can
be seen grading into (1) massive garnet and pyroxene with abundant scheelite and (2)
quartz-scheelite veins similar to those in the Open Pit orebody. Quartz-scheelite veins
from the Open Pit orebody and aplite dikes from both orebodies share a common
structural attitude. The origin of these late-stage, high-grade quartz-scheelite veins from
the Open Pit orebody and their genetic relationship to aplite dikes is poorly understood.

Geochemical studies of high-grade quartz-scheelite veins and their relationship to
aplite dikes test the possibility that the veins may represent distal products of a protracted
magmatic-hydrothermal event. If this idea proves true at Cantung, there are important
implications for recognizing similar distal, granite-related deposits regionally. Distal

exploration targets need not be manifested as massive skarns, but could take on various



forms depending on the geometry and chemistry of host lithologies. Vein and
replacement-type deposits in metasedimentary rocks of the Tungsten region frequently
have been assumed to represent older ore-forming events. Their origins should be re-
evaluated, as some of them could instead represent distal, granite-related deposits.
This study utilizes trace metal analysis, fluid inclusion microthermometry, and
oxygen isotope geochemistry to investigate the genesis of high-grade quartz-scheelite
veins and their relationship to the skarn-forming magmatic-hydrothermal system at

Cantung.
Questions Addressed

Specific research questions addressed in this study include:
1. Did the quartz-scheelite veins form at similar high temperatures and pressures as the
skarn ores? Or, do they represent a cooler, shallower hydrothermal system that
developed after uplift of the area?
2. Did late skarn-forming fluids form the quartz-scheelite veins or do the veins represent
a unique fluid chemistry?
3. Do the quartz-scheelite veins that share a common structural attitude with aplite dikes
also share a genetic relationship with them?
4. What are the implications for regional resource assessment if the veins represent a

distal expression of a protracted magmatic-hydrothermal skarn-forming event?
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CHAPTER 2: TRACE METAL, FLUID INCLUSION, AND
OXYGEN ISOTOPE STUDIES OF HIGH-GRADE
QUARTZ-SCHEELITE VEINS AT THE CANTUNG MINE,
NORTHWEST TERRITORIES, CANADA: A LATE-STAGE
MAGMATIC-HYDROTHERMAL EVENT

Introduction

The Cantung mine, Tungsten, Northwest Territories, Canada (Fig. 1) is an
unusually large (4 million tonnes of ore) and high-grade (1.6 wt. % WOs3) tungsten skarn
deposit (Yukon Geological Survey, 2005) developed in folded and overturned Cambrian
limestones above a Cretaceous monzogranite (Mathieson and Clark, 1984; Bowman et al.,
1985). Two skarn orebodies have been exploited in the mine, the E-Zone and Open Pit
orebodies. The E-Zone orebody occurs at the monzogranite-limestone contact, and the
Open Pit orebody is located approximately 300 m vertically above the E-Zone orebody
(Fig. 2). Due to the folded geometry of the sedimentary rocks, the two skarn orebodies
were deposited in the same stratigraphic units.

An 80 m wide en echelon swarm of high-grade quartz-scheelite veins crosscuts
the Open Pit orebody. These veins contain up to 3.7 wt. % WOs3. Adjacent to these
quartz-scheelite veins, dark green alteration selvedges overprint earlier light green skarn
alteration. This overprint implies that the high-grade quartz-scheelite veins are not part
of the early skarn-forming event, but represent a distinct, later event (Yuvan et al., 2005).

In the underground E-Zone skarn orebody, near-vertical aplite dikes that crosscut
skarn ore infrequently grade into quartz veins similar to the high-grade quartz-scheelite
veins found in the Open Pit orebody. Other aplite dikes in the E-Zone orebody are

observed to extend upward into massive garnet and pyroxene with abundant scheelite
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modified after Cummings and Bruce (1977). A Cretaceous monzogranite intruded a
sequence of folded and overturned Proterozoic to Cambrian metasedimentary rocks. The
E-Zone and Open Pit orebodies are separated vertically by approximately 300 m,

although they are developed in the same stratigraphic units.




(Yuvan et al., 2004). Aplite dikes that crosscut both orebodies share a common structural
attitude with quartz-scheelite veins from the Open Pit orebody, suggesting a possible
genetic relationship.

Questions this study addresses are: (1) Did the quartz-scheelite veins form at
similar high temperatures and pressures as the skarn ores? Or, do they represent a cooler,
shallower hydrothermal system that developed after uplift of the area? (2) Did late skarn-
forming fluids form the quartz-scheelite veins or do the veins represent a unique fluid
chemistry? (3) Do the quartz-scheelite veins that share a common structural attitude with
aplite dikes also share a genetic relationship with them? (4) What are the implications for
regional resource assessment if the veins represent a distal expression of a protracted
magmatic-hydrothermal skarn-forming event?

Geology

The Cantung mine is located within a polymetallic W-Au province of the
Northwest Territories near the Yukon border (Brown, 1961; Lang et al., 2000; Baker et
al., 2005). Proterozoic and Cambrian metasedimentary rocks that host ore deposits in the
Cantung area include, from oldest to youngest, the Lower Argillite, the Swiss Cheese
Limestone, the Ore Limestone, and the Upper Argillite (Fig. 2).

The Upper Proterozoic Lower Argillite is light-brown to dark gray and fine-
grained (Zaw, 1976). It is infrequently fractured and crosscut by aplite dikes and quartz
veins in the Cantung mine area.

The Lower Cambrian Swiss Cheese Limestone contains massive, boudinaged or
nodular calcareous pods and lenses, composed of microcrystalline calcite, intercalated

with siltstone (Blusson, 1967; Rasmussen, 2004). The siltstone is composed of



cryptocrystalline clay minerals, carbonates, and quartz (Crawford, 1963). The Swiss
Cheese Limestone has been metamorphosed to a mineable calc-silicate/siliceous skarn
unit and has also been termed the “Chert” (Cathro, 1969). In other areas where it is not
converted to a skarn, the different weathering rates between the limestone and siltstone
result in the unit’s porous (“swiss cheese”) nature.

The Ore Limestone is composed of anhedral, finely crystalline calcite. It is
vaguely laminated with dark and light gray to white layers. It is a relatively clean
limestone receptive to skarn development.

The Upper Argillite is brown to gray and interbedded with thin, impure carbonate,
mudstone, and sandstone lenses. Carbonate lenses are converted to calc-silicate skarns
(Dick and Hodgson, 1982).

The Upper and Lower Argillites appear to act as confining units for ore fluid flow.
Where breached by faults and fractures, fluids gain access to more reactive units higher
in the section. The Swiss Cheese and Ore Limestones host ore at the contact with the
Mine Stock (E-Zone orebody) and approximately 300 m vertically above the contact
(Open Pit orebody).

Description of Skarn Orebodies

E-Zone Orebody: The underground E-Zone skarn orebody is hosted in the Ore
Limestone at the Mine Stock-Ore Limestone contact. It occurs on the flat to gently
dipping east limb of an overturned anticline and has a tabular cross section (Blusson,
1967). The E-Zone skarn orebody is approximately 40 to 200 m wide, 450 m in length,

and originally contained 4.2 Mt of ore averaging 1.6 wt. % WOj3; (Zaw, 1976; Mathieson
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and Clark, 1984). Current mineable reserves are 771,000 tons of ore averaging 1.75 wt.
% WOj3 (Yukon Geological Survey, 2005).

Four mineral assemblages were documented in the skarn orebodies and were
interpreted as facies by Dick (1980) and Dick and Hodgson (1982): garnet-pyroxene,
pyroxene-pyrrhotite, amphibole-pyrrhotite, and biotite-pyrrhotite. Scheelite is present in
all four assemblages, but its abundance increases with increasing pyrrhotite content.
Open Pit Orebody: The Open Pit orebody is located approximately 300 m above the E-
Zone orebody (Figs. 2 and 3). It is hosted in the base of the Ore Limestone and in the
upper Swiss Cheese Limestone, where calcareous lenses were converted preferentially to
skarn. Main ore-bearing skarn zones are tabular in shape and approximately 200 m long,
90 m wide, and up to 25 m thick. Because the orebody is within 120 m of a fault that
predates ore formation, Zaw (1976) hypothesized that this fault acted as a conduit for
migrating ore fluids. Hodgson (2000), however, stated that a nearby aplite dike could
also be responsible for the influx of ore fluids. In the Open Pit orebody, scheelite-bearing
skarn is dominated by anhydrous garnet-pyroxene mineral assemblage. An 80 m wide en
echelon swarm of high-grade quartz-scheelite veins crosscuts the Open Pit orebody along

a 025 trend (Fig. 3).
Igneous Rocks

Mine Stock: The Mine Stock is a monzogranite, consisting of quartz, plagioclase, K-
feldspar, and biotite (Rasmussen, 2004). It is an “S”-type granitoid and conforms to
Ishihara’s (1977) “ilmenite-series” (Mathieson and Clark, 1984; Christiansen and Keith,

1996). Dating of the Mine Stock by Rasmussen et al. (2006) yielded a U-Pb age of

11
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approximately 98.2 + 0.4 Ma. Igneous biotite yielded a “°Ar-**Ar cooling age of 95.1 +
0.4 Ma. The difference in ages was interpreted to indicate slow cooling of the Mine
Stock over a time interval of up to 3 m.y. This is sufficient time to develop an extensive
magmatic-hydrothermal system capable of depositing the world class tungsten skarn at
Cantung and later vein deposits during the waning stages of a protracted magmatic-
hydrothermal skarn-forming event.

Aplite Dikes: Aplite dikes, present as both pre- and post-skarn intrusions, crosscut the
Mine Stock and the Open Pit and E-Zone skarn orebodies (Bowman et al., 1985;
Rasmussen, 2004). Aplite dikes crosscutting the E-Zone orebody are <2 cm to 1 m wide
and are concentrated around the Mine Stock’s margins. In the Open Pit orebody, dikes
are 2 to 5 m wide with wall rock alteration selvedges extending 10 to 20 cm from vein
margins (Rasmussen, 2004).

In the E-Zone and Open Pit orebodies, aplite dikes are similar mineralogically and
geochemically. Aplite dikes contain phenocrysts of quartz, plagioclase, K-feldspar,
tourmaline, and biotite, but quartz and tourmaline are the only phenocrysts that have not
been altered and which retain sharp grain margins. Potassic, sericitic, calcic, and albitic
alteration styles have all been observed within the aplite dikes (Rasmussen, 2004).

The dikes display two interesting features relative to ore. Firstly, aplite dikes
from the E-Zone orebody can be seen crosscutting skarn and extending into massive
garnet and pyroxene with abundant scheelite (Yuvan et al., 2004; Fig. 4). These dikes
could have leached tungsten from deeper in the skarn orebody and concentrated tungsten
at higher levels. Alternatively, the dikes could be bringing in a new, unique source of

tungsten. No matter which explanation is correct, these aplite dikes are responsible for
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localized higher concentrations of tungsten, increasing the economic feasibility of mining
the ore. Secondly, some aplite dikes from the E-Zone orebody can be seen grading
vertically into quartz-scheelite veins (Fig. 5). These E-Zone quartz veins are similar in
mineralogy to the high-grade quartz-scheelite veins crosscutting the Open Pit orebody
and suggest a possible genetic link to aplite intrusion.

Quartz Veins

High-Grade Quartz-Scheelite Veins from the Open Pit Orebody: Quartz-scheelite veins
from the Open Pit orebody are 10 cm to 1 m wide (Fig. 6). They are typically unzoned or
crudely zoned and contain massive, white quartz and lesser amounts of clear quartz
especially where adjacent to scheelite (Fig. 7).

Scheelite is up to 2 cm in diameter. It is white to light orange in hand specimen
and fluoresces blue under ultraviolet light. Scheelite is found as isolated, fractured,
euhedral to subhedral grains or as crystal clusters in the central parts of veins or adjacent
to wall rock contacts. Blocky, white alkali feldspar grains are present infrequently.
Sulfides, dominantly pyrrhotite and minor chalcopyrite, occur in pods and in late veinlets
cutting massive quartz (Fig. 6).

Infrequently, quartz-scheelite veins from the Open Pit orebody contain biotite-rich
masses with abundant fine-grained scheelite. The biotite-rich masses are similar
mineralogically to biotite-pyrrhotite assemblages in the underground E-Zone skarn
orebody and may indicate that the Open Pit veins are distal products of the subjacent
magmatic skarn-forming event.

Quartz Veins from the Underground E-Zone Skarn Orebody: Two types of quartz veins

were found in the underground E-Zone orebody. One type of vein contains quartz, alkali
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garnet +
pyroxene +
scheelite

Figure 4. Aplite dike crosscutting E-Zone skarn orebody from the 3850 drift. The aplite
pinches out and extends upward into massive pyroxene and garnet with abundant

scheelite. Scale bar is 50 cm.
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Figure 5. Aplite dikes grading vertically into quartz-scheelite vein in the E-Zone orebody
near the Four Corners area of the 4100 level. These veins are similar to the high-grade

quartz-scheelite veins in the Open Pit orebody. Scale bar is 30 cm.
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Figure 6. Quartz-scheelite vein in the Open Pit orebody within diopsidic skarn. Note the

presence of dark green alteration adjacent to the vein that overprints earlier light green
skarn alteration. Rust-colored veinlet near the vein center is pyrrhotite rich. Scale bar is

10 cm.
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Figure 7. Doubly polished thin section of high-grade quartz-scheelite vein HF03-17 from
the Open Pit orebody. Note the highly fractured nature of the vein. Dark lineations in
quartz are healed fractures containing abundant secondary aqueous brine inclusions.

Scale bar is 1 cm. Abbreviations: sch = scheelite; gtz = quartz.
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feldspar, pyrrhotite, and scheelite, and has biotite-rich alteration selvedges, similar to
alteration associated with skarn ore. This vein type appears to be related directly to skarn
formation. A second type of quartz vein appears to be related genetically to aplite dikes.
Vertical aplite dikes can be seen extending upward into quartz veins mineralogically
similar to quartz-scheelite veins from the Open Pit orebody (Fig. 5).
Vein Attitudes: High-grade quartz-scheelite veins from the Open Pit orebody are steeply
dipping (~90°) and have strikes between 000 and 080, with most near 030 (Fig. 8a). The
overall trend of the 80 m wide en echelon vein swarm is approximately 025 (Fig. 3).
Aplite dikes, faults, fractures, and sulfide veinlets from the E-Zone and Open Pit
orebodies also have strikes that cluster near 030 (Fig. 8b). If quartz-scheelite vein-
forming fluids and aplite magmas utilized the same structural pathways, it is also possible
that they may have shared a common genetic relationship (similar to that observed in the
underground E-Zone skarn orebody, Fig. 5).
Vein Alteration: High-grade quartz-scheelite veins from the Open Pit orebody have dark
green alteration selvedges up to 15 cm wide. This alteration overprints light green
alteration associated with development of the earlier Open Pit skarn (Fig. 6). The dark
green alteration adjacent to the veins consists of finer-grained diopside, quartz, opaque
minerals, and lesser chlorite (Fig. 9a). Earlier, light green skarn alteration consists of
coarser-grained diopside, quartz, K-feldspar, and calcite with minor epidote, chlorite, and
garnet (Fig. 9b).

The overprinting nature of the vein-related alteration indicates that the high-grade
quartz-scheelite veins represent a later event distinct from the early skarn-forming event

(Yuvan et al., 2005).
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N (a) N (b)

Figure 8. Equal area rose diagrams. (a) Strikes of quartz-scheelite veins from the Open
Pit orebody. Outer circle is 19 % of the data. Strikes cluster around 030. (b) Trends of
aplite dikes, fractures, faults, and sulfide veinlets within quartz veins from the E-Zone
and Open Pit orebodies. Outer Circle is 29 % of the data. These features also cluster
around 030, similar to the strikes of high-grade quartz-scheelite veins in the Open Pit

orebody. Diagrams made using Stereowin program of Allmendinger (2002).
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Figure 9. (a) Finer-grained alteration adjacent to quartz-scheelite vein in Open Pit
orebody. (b) Coarser-grained skarn alteration 15 cm from the quartz-scheelite veins.
Both views under cross polarized light. Scale bars are 0.5 mm in length. Abbreviations:

cc = calcite; K-spar = potassium feldspar; px = clinopyroxene; gtz = quartz.
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Trace Metal Analysis

Due to their simple mineralogy, consisting dominantly of quartz, scheelite, and
pyrrhotite, it is difficult to link the quartz-scheelite veins definitively to a particular event
in the protracted history of skarn formation at Cantung. Trace metal concentrations may
be helpful in determining the source(s) of metals and fluid(s) responsible for deposition
of quartz-scheelite veins in the Open Pit orebody.

Potential metal sources may include magmas and igneous rocks, or metals
remobilized from country rocks. Magmatic sources could have metal suites similar to
those of the Mine Stock-related E-Zone skarn ores, namely W £ Mo. Alternatively,
aplite-related sources could have distinct metal suites (Stern et al., 1986). It is possible
that some magmatic/igneous metal sources may have metal suites, including Au, Bi, Cu,
and Ag, similar to those in regional quartz veins of the Cantung area thought to represent
Intrusion Related Gold Deposits (IRGD) (Lang et al., 2000; Baker et al., 2005).

Alternatively, if the quartz-scheelite veins in the Open Pit orebody at Cantung
formed in a shallow, possibly meteoric, hydrothermal system after uplift, metals could
have been leached from many different lithologies, including metasedimentary and
igneous rocks.

Trace metal concentrations (ppm) and tungsten ore grades (wt. % WO3) were
determined for fourteen quartz-scheelite veins from the Open Pit orebody by ICP analysis
at ACT Labs, Vancouver. Errors are typically 1.0 to 2.0 % of the measured

concentration, never exceeding 5.0 %.
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Interpretation of Trace Metal Analysis

The correlation of various trace metals with tungsten were tested to determine if
trace metals in the high-grade quartz-scheelite veins from the Open Pit orebody came
from the same source as the main skarn ore metal at Cantung. A linear plot of Mo (ppm)
versus WO3 (wt. %) has a regression coefficient (R) of 0.71 (Fig. 10a). This strong
correlation is common in tungsten ore deposits because of the similar geochemistry of
tungsten and molybdenum (lvanova, 1986). This implies that tungsten and molybdenum
likely had a similar source. A similar correlation should exist for the E-Zone skarn
orebody, as molybdenite (MoS,) and powellite (CaMoQO,) are present in minor amounts
in the scheelite skarn orebodies at Cantung.

A plot of Bi (ppm) versus WO3 (wt. %) has an R value of 0.46 (Fig. 10b). The
lower correlation coefficient for tungsten and bismuth, compared to that for tungsten and
molybdenum, implies that bismuth was likely derived from a different source than
tungsten (or molybdenum).

By contrast, a plot of Bi (ppm) versus Au (ppm) has the highest correlation, R =
0.92 (Fig. 10c). This correlation implies that the source for bismuth is likely the same as
that for gold. Copper and silver (ppm) have correlation coefficients of 0.59 and 0.69,
respectively, when plotted versus bismuth (Fig. 17, Appendix V1). Thus, copper and
silver may also reflect a similar source with bismuth and gold that is different from the
source of tungsten in the Cantung mine.

Mathieson and Clark (1984) reported that bismuth and copper were byproducts of
tungsten ores of the E-Zone skarn orebody. | have documented correlated enrichments of

Au, Ag, and Cu with Bi in high-grade quartz-scheelite veins of the Open Pit orebody,
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Figure 10. Plots of trace metal contents and tungsten ore grades of high-grade quartz-

scheelite veins from the Open Pit orebody. (a) Mo (ppm) versus WO3; (wt %). (b) Bi

(ppm) versus WO3 (wt. %). (c) Bi (ppm) versus Au (ppm).
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300 m vertically above the E-Zone skarn orebody. | hypothesize that byproduct Bi and
Cu (as well as Au and Ag) in the underground E-Zone skarn orebody may be the result of
an overprint by a late-stage magmatic-hydrothermal system responsible for the quartz-
scheelite veins in the overlying Open Pit orebody.

Previous Geochemical Studies

Previous geochemical studies at Cantung have focused on the T-P-X conditions of
formation of the E-Zone and Open Pit skarn orebodies. Fluid inclusion studies by Zaw
(1976) and Mathieson and Clark (1984) interpreted a low-salinity (< 10 wt. % equiv.
NaCl), aqueous brine fluid as the ore fluid. Geobarometry based on the Fe content of
sphalerite coexisting with pyrrhotite and pyrite led Zaw (1976) to conclude that the E-
Zone orebody formed at pressures of ~1.0 to 2.0 kbar. Based on that pressure estimate,
Mathieson and Clark (1984) determined that initial hydrothermal activity began at about
450° to 500°C and continued to lower temperatures near 270°C.

Oxygen isotope thermometry in the E-Zone orebody by Bowman et al. (1985)
confirmed the temperature estimates of Mathieson and Clark (1984). Their stable isotope
studies of the E-Zone orebody concluded that the ore-forming fluid had an igneous
origin, either magmatic water or possibly other waters that equilibrated with the Mine
Stock or aplite dikes. The ore fluid was determined to have a limited meteoric water
component.

More recently, Marshall et al. (2003) refined the T-P-X conditions of skarn
formation by analyzing primary CO,-bearing fluid inclusions in apatites from the E-Zone

skarn orebody. Combining fluid inclusion analysis with F-OH thermometry from biotite
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and apatite, they determined that the E-Zone orebody formed at temperatures of 400° to

520°C and pressures of 2 to 3 kbar.

Fluid Inclusion Studies

Thirty-two quartz vein and five aplite dike samples from the Open Pit and E-Zone
orebodies were prepared as 100-um-thick doubly polished thin sections for fluid
inclusion analysis. The abundance and quality of fluid inclusions resulted in thirty-three
of the doubly polished thin sections yielding usable data.

Microthermometric data were obtained using a FLUID Inc. gas-flow
heating/freezing stage calibrated with pure CO, and H,0O inclusions (Shelton and Orville,
1980). Temperatures of total homogenization (T}) have standard errors of + 2°C, and
temperatures of melting (T, of ice, clathrate, and solid CO;) and homogenization of the
carbonic phase (Thcoz2) have standard errors of + 0.2°C. The composition and density of
trapped fluids were determined from thermometric data using the MacFlinCor program
(Brown and Hagemann, 1995) and the compiled data of Kerrick and Jacobs (1981),

Bodnar and Vityk (1994), and Thiery et al. (1994).
Occurrence and Compositional Types of Fluid Inclusions

Fluid inclusions were found in quartz and scheelite from quartz veins and in
tourmaline and quartz grains from aplite dikes. Two compositional types of fluid
inclusions have been identified based on their phase relationships at 20°C and behavior
upon cooling: H,0-CO,-NaCl+CH, fluids and aqueous brines.

H,0-CO,-NaCl+CHy, Inclusions: These inclusions are present as isolated inclusions and
three-dimensional clusters of inclusions in quartz, tourmaline, and scheelite, indicating a

primary origin. This fluid type is interpreted to be the ore fluid.

26



At 20°C, these inclusions consist of either two (liquid H,O + CO, dominant
liquid) or three phases (liquid H,O + liquid CO, + vapor CO,). Upon cooling, the two-
phase inclusions generated a third phase, vapor CO,. The volume percentage of liquid +
vapor CO; in these inclusions is typically between 25 and 55 %. Typical XCO;, + CH,
values range from 0.02 to 0.30.

These inclusions have more regular shapes than the aqueous brine inclusions and
range from <5 to 30 um in length (Fig. 11a). Negative crystal shapes are common
among these inclusions, especially when hosted by scheelite.

Agueous Brine Inclusions: All samples examined contain these two-phase (liquid +
vapor) aqueous inclusions (Fig. 11b). They occur in trails or healed fracture planes that
crosscut grain boundaries, indicating a secondary origin. Vapor occupies 5 to 30 vol %
of these inclusions. Aqueous brine inclusions are <5 to 20 um in length, typically near
10 um. Aqueous brine inclusions have highly irregular shapes. They are frequently
elongated and may appear to impart a lineation to the samples (Figs. 7 and 11).

Many fluid inclusion studies of other Western Canadian deposits have noted the
presence of ubiquitous aqueous brine inclusions. These inclusions have been variously
interpreted to represent (1) fluids integral to the ore-forming event (Nesbitt et al., 1986),
(2) synore fluids that are not the ore fluid (Goldfarb et al., 1988), or (3) post-ore fluids
(Kerrich and King, 1993; Fayek and Kyser, 1995; Jia et al., 2003; Shelton et al., 2004).

Similar aqueous brine inclusions were observed at Cantung by Zaw (1976) and
Mathieson and Clark (1984). These inclusions were interpreted by those authors to be

the ore fluid, likely because of their overwhelming abundance and ubiquitous occurrence.
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Figure 11. (a) Primary H,0-CO,-NaCl+CHy, inclusions in scheelite. These three-phase
inclusions (vapor CO,, liquid CO,, and liquid H,0) typically have negative crystal
shapes. Scale bar is 30 um. (b) Two-phase aqueous brine inclusions in vein quartz.
Scale bar is 20 um. These inclusions are typically arranged in linear trails indicating a
likely secondary origin. The trails appear to impart a lineation to the samples, similar to

those observed in Figure 7.

29



However, based on textural relationships and reconstructed isochores (Fig. 20, Appendix
V1), | believe that the aqueous brine inclusions are secondary fluids unrelated to ore

formation.
Heating and Freezing Data

Approximately 200 H,0-CO,-NaCl+CHjy inclusions and 300 aqueous brine
inclusions were measured. The vast majority of fluid inclusions in samples are aqueous
brine inclusions with a subordinate amount of H,O-CO,-NaCl+CH, inclusions.

However, because aqueous brine inclusions are secondary and are not representative of
the ore fluid, I chose to measure a percentage of H,O-CO,-NaCl+CHj, inclusions that is
disproportionate to their occurrence.

H,0-CO,-NaCl+CHy Inclusions: These inclusions contain solid and vapor CO, and ice
when cooled to approximately -150°C. Upon heating, the first melting of the solid CO,
(Tt co2) occurs between -125.9° and -76.2°C.

Final melting temperatures of the solid CO, (T coz) form two groups, from -64.4°
to -56.6°C and -110.6° to -82.1°C (Fig. 12). The higher temperature group is present in
all samples analyzed. The carbonic phase of these inclusions has XCH, values of 0.00 to
0.21.

The lower temperature group is present in aplite dikes, in quartz-scheelite veins
from the Open Pit orebody, and in one quartz vein from the E-Zone orebody. This quartz
vein from the E-Zone orebody was collected from an aplite/quartz vein transition zone,
and therefore, may have more of an affinity to aplite dike fluids than other quartz veins
from the E-Zone orebody. In these inclusions, the carbonic phase has XCH, values from

0.93 to 0.96.
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Figure 12. Frequency diagram for the temperature of last CO, solid melt (T, co2) for
primary H,O-CO,-NaCIl+CHj, fluid inclusions in aplite dikes, quartz-scheelite veins from
the Open Pit orebody, and quartz veins from the E-Zone orebody. Note the horizontal

scale is different for the left and right sides of the diagram.
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The carbonic phases of H,0-CO,-NaCIl+CHj, inclusions in quartz-scheelite veins
from the Open Pit orebody have homogenization temperatures (T, co2) that vary from
-86.4° to +28.7°C, dominantly to the liquid phase. The Thco2 values yield carbonic phase
densities of 0.28 to 0.91 g/cm®. Similar inclusions in quartz veins from the E-Zone
orebody have T}, co2 values of -6.8° to +23.9°C, corresponding to carbonic phase densities
of 0.39 to 0.81 g/cm®. H,0-CO,-NaCl+CHj inclusions in aplite dikes from the E-Zone
and Open Pit orebodies have Ty, co2 values of -87.8° to +8.1°C, yielding carbonic phase
densities of 0.28 to 0.97 glem®.

Clathrate melting temperatures (Tm cian) are 2.1° to 18.3°C. Methane clathrates
are known to melt as high as 18°C (Roedder, 1984). T clath Values correspond to fluid
salinity values (calculated up to only 10°C, because of the limits of the MacFlinCor
program) of 0.2 to 9.5 wt. % equiv. NaCl (Diamond, 1992; Brown and Hagemann, 1995).
The low Tt coz values and T, coz Values, below -56.6°C, along with high Tr cian Values (>
10°C), indicate that other species, such as H,S and CHg, are present in the H,O-CO,-
NaCIl+CHj, fluid (Collins, 1979; Burruss, 1981).

Total homogenization temperatures (T) range from 218° to 401°C (Figure 13a).
As they were nearing homogenization, about half of the H,O-CO,-NaCI+CHy, inclusions
decrepitated.

Aqueous Brine Inclusions: First ice melting temperatures (Te) in aqueous brine

inclusions range from -49.7° to -21.5°C, which attests to the presence of other salts in
addition to NaCl, such as CaCl, and KCI (Crawford, 1981; Zhang and Frantz, 1989).
Final ice melting temperatures (T ice) are between -0.4° and -8.8°C, yielding salinity

values between 0.7 and 12.6 wt. % equiv. NaCl. These salinity values are similar to
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Figure 13. Frequency diagram of total homogenization temperatures (Ty) for (a) H,O-
CO,-NaCl+CHg, inclusions and (b) aqueous brine inclusions. Diagram includes
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adjacent inclusions.
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values of 4 to 14 wt. % equiv. NaCl found by Mathieson and Clark (1984). Ty values, to

the liquid phase, range from 188° to 404°C (Figure 13b).
Interpretation of Fluid Inclusion Data

Primary ore fluids in quartz-scheelite veins from the Open Pit orebody, quartz
veins from the E-Zone orebody, and aplite dikes from both orebodies are grossly similar
H,0-CO,-NaCl+CHj, fluids. However, plots of Ty, co2 versus Ty co2 Values (Fig. 14a) and
salinity versus Ty, values (Fig. 14b), indicate that two distinct end-member fluids exist, a
skarn-related fluid and an aplite-related fluid.

Figure 14ais a plot of Tr, co2 versus Thcoz Values. The vertical axis, Tmco2, IS
dependant on the CH,4 content of the carbonic phase of H,O-CO,-NaCIl+CHj, inclusions,
with higher XCHj, values at lower temperatures and lower XCH, values at higher
temperatures. The horizontal axis, Th cop, IS dependant on the density of the carbonic
phase of H,O-CO,-NaCIl+CHjy inclusions, with lower densities at lower temperatures and
higher densities at higher temperatures. Fluids in aplite dikes (from both the E-Zone and
Open Pit orebodies) define a broad field at low T, coz and Ty coz values (higher CHy,
lower density fluid). Fluids in skarn-related quartz veins from the E-Zone orebody are
restricted to a narrower field of higher T, co2 and T coz values (lower CHy, higher
density fluid). Fluids in high-grade quartz-scheelite veins from the Open Pit orebody
overlap both end-member fluid fields.

The low Ty, coz-low T coz Cluster in Figure 14a represent extremely CHg-rich,
low density fluids hosted in three different quartz veins from the Open Pit orebody.
These three veins occur adjacent to and up to 70 m away from the exposed aplite dike in

the Open Pit.
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Figure 14. (a) Thco2 versus T coz Values for H,0-CO,-NaCl+CHj, inclusions. Fluids in
aplite dikes plot at lower Ty, co2 values (lower densities) and lower Ty, co2 values (higher
XCHy). Fluids in skarn-related quartz veins from the E-Zone orebody plot at higher
Tmcoz Values (higher densities) and higher Ty, co2 values (less XCH,). Fluids in high-
grade quartz-scheelite veins from the Open Pit orebody overlap both fields outlined by
the end-member fluids. (b) Salinity versus Ty, values for H,O-CO,-NaCIl+CHj, inclusions.
Fluids in aplite dikes and those in skarn-related quartz veins from the E-Zone orebody
form distinct end-member fields. Fluids in high-grade quartz-scheelite veins from the

Open Pit orebody overlap both fields.
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Figure 14b is a plot of salinity versus Ty values. Fluids in aplite dikes (from both
the E-Zone and Open Pit orebodies) define a field of higher Ty, and salinity values. Fluids
in skarn-related quartz veins from the E-Zone orebody form a distinct field of lower Ty,
and salinity values. As in Figure 14a, fluids in high-grade quartz-scheelite veins from the
Open Pit orebody overlap both end-member fluid fields.

Regardless of whether they overlap the aplite dike field or the skarn-related E-
Zone quartz vein field of Figure 14, H,0-CO,-NaCl+CH, fluid inclusions in high-grade
quartz-scheelite veins from the Open Pit orebody are primary inclusions. This
observation requires that both end-member fluids entrapped in the veins were present
contemporaneously. The fluid end-members may have been trapped individually, or the
fluids may have mixed, with the entrapped fluids consisting of various mixtures of the
fluid components. In either scenario, there is an apparent influence of aplite dike-related
fluids on the quartz-scheelite vein swarm even though veins occur up to 70 meters
laterally from the nearest visible aplite dike. We envision a scenario in which quartz-
scheelite veins and aplite dikes utilized the same structures to ascend from the subjacent
Mine Stock, so it should be no surprise that the quartz veins entrapped an aplite-related
fluid.

P-T Considerations

There is no evidence for unmixing of the ore fluids in the Cantung hydrothermal
system. There is a lack of fluid inclusions homogenizing to the vapor phase. Most
inclusions have similar vapor to liquid ratios. | did not recognize a high salinity inclusion
assemblage nor a high XCO, + CH, inclusion assemblage that might be expected from

unmixing along the right limb of the solvus in Figure 15. The lack of unmixing implies a
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minimum pressure of 2 kbar to prevent unmixing of fluids in the high-grade quartz-
scheelite veins from the Open Pit orebody (Gehrig, 1980).

Better estimates of pressure can be made using representative isochores for
primary H,O-CO,-NaCIl+CHj, fluid inclusions in quartz-scheelite veins from the Open Pit
orebody (Fig. 16). Isochores were calculated using the MacFlinCor program (Brown and
Hagemann, 1995) and my microthermometric data. Temperatures are constrained by
quartz-scheelite oxygen isotope thermometry (Table 1). Using a temperature range of
430° to 595°C, fluid inclusion isochores yield pressure estimates for quartz-scheelite vein
formation of 2 to 4 kbar.

Isochores for H,O-CO,-NaCl+CHy, fluid inclusions in aplite dikes reflect
temperatures and pressures similar to those calculated for quartz-scheelite veins from the
Open Pit orebody. The pressure range for quartz-scheelite veins from the Open Pit
orebody and aplite dikes from both orebodies at Cantung corresponds to depths of
approximately 6 to 9 km, assuming purely lithostatic pressure conditions. Rasmussen
(2004) stated that the Mine Stock was emplaced at a depth of about 6.6 to 12.7 km,
comparable to our depth estimates based on fluid inclusions.

Using F-OH thermometry and fluid inclusions from E-Zone orebody apatites,
Marshall et al. (2003) concluded that the skarn ore formed at temperatures of 400° to
520°C and pressures of ~2 to 3 kbar. These temperatures and pressures for the deeper E-
Zone skarn orebody are similar to my P-T estimates for the shallower quartz-scheelite
veins from the Open Pit orebody. This suggests that no significant uplift and cooling of

the magmatic-hydrothermal system had occurred prior to high-grade quartz-scheelite vein
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Figure 16. Representative isochores (g/cm?®) for primary H,O-CO,-NaCl+CHj fluid
inclusions in scheelite from quartz-scheelite veins from the Open Pit orebody. Combined
with temperatures of 430° to 595°C (from oxygen isotope thermometry, Table 1) and the
stability of andalusite in the metasedimentary rocks (Marshall et al., 2003), these
isochores indicate pressures of approximately 2 to 4 kbar for quartz-scheelite vein
formation. The shaded area represents pressure and temperature conditions for formation
of the high-grade quartz-scheelite veins from the Open Pit orebody. The positions of the
0.907 and 0.908 isochores are real and are the result of differences in CH, content of the

inclusions.
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formation. Therefore, quartz-scheelite veins at Cantung may be thought of as a distal

expression of a protracted magmatic-hydrothermal skarn-forming event.
Relevance of Aqueous Brine Inclusions

The aqueous brine inclusions are obviously secondary, but could they represent a
non-ore fluid present penecontemporaneously with the H,O-CO,-NaCIl+CH, ore fluid?
Isochores were determined for aqueous brine inclusions. These isochores rarely intersect
isochores for H,O-CO,-NaCI+CH, inclusions at reasonable temperature and pressure
conditions for ore formation (Fig. 20, Appendix V). They instead likely represent a
temperature and pressure range below 400°C and 2.0 kbar related to uplift of the Cantung
mine area. Thus, the aqueous brine fluids are not believed to be an integral part of the

scheelite ore-forming magmatic-hydrothermal event.
Comparison to Other Scheelite Skarn and Vein Deposits

High-grade quartz-scheelite veins from the Open Pit orebody at the Cantung mine
formed at temperatures of 430° to 595°C and pressures of 2 to 4 kbar. H,O-CO,-
NaCl+CHj, fluids in quartz-scheelite veins have magmatic affinities. These T-P-X
conditions are similar to those of other scheelite skarn deposits (e.g. Mactung, Northwest
Territories, Canada: Gerstner et al., 1989; Dongmyeong mine, Korea: Choi et al., 1992).

In contrast to Cantung, most quartz-scheelite vein deposits are not the result of
deep magmatic systems, but are more typically related to shallower granitic hydrothermal
systems (Grey River, Newfoundland: Higgins and Kerrich, 1982; Weolag, Republic of
Korea: So et al., 1983). In many cases, the early magmatic stages of these vein systems

are progressively inundated by meteoric waters coincident with scheelite deposition (e.g.
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Dae Hwa, Gyeongchang, and Susan, Republic of Korea: Shelton et al., 1987; So et al.,

1991; So and Yun, 1994: Beuchat et al., 2004).
Quartz-Scheelite Vein Deposition at Cantung

Mathieson and Clark (1984) linked the deposition of scheelite in the E-Zone skarn

orebody with pyrrhotite deposition through the reaction:

FeClagg) + H2S@g) = FeS (pyrrhotite) + 2H™ + 2CI°
This reaction fixes Fe*? in pyrrhotite and increases acidity. The resultant fluid has a
greater ability to react with Ca-bearing wall rocks and liberate Ca** from calcite and/or
calc-silicate minerals. Because Fe*? is sequestered in pyrrhotite, wolframite does not
form, and tungsten is able to react with Ca*? to form scheelite.

These same conditions would have led to the precipitation of scheelite in high-
grade quartz-scheelite veins from the Open Pit orebody. Highly reactive fluids likely
moved upward along vertical faults and fractures through the unreactive argillites (Fig.
2). When these fluids encountered the more reactive Ore and Swiss Cheese Limestones
of the Open Pit orebody, Ca*™ was liberated from the wall rock adjacent to quartz-
scheelite veins. This scenario for scheelite deposition is evident in thin section (Fig. 9).
Finer-grained, dark green alteration selvedges adjacent to quartz-scheelite veins in the
Open Pit orebody show complete removal of calcite that is present in the earlier coarser-

grained skarn assemblage.
Oxygen Isotope Studies

Samples of vein-hosted quartz and scheelite and whole-rock aplite from the Open

Pit and E-Zone orebodies were collected for oxygen isotope studies. Samples were
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separated by hand, crushed, sieved between 80 and 100 mesh sizes, and analyzed
following the procedures of Clayton and Mayeda (1963). Isotopic data are reported in
standard 6 notation relative to Vienna SMOW and the standard error for each analysis is
approximately + 0.1 %o (Table 1). Four quartz veins and one aplite dike were collected
from the E-Zone skarn orebody. Five high-grade quartz-scheelite veins and two aplite
dikes were sampled from the Open Pit orebody. I carefully selected quartz-scheelite pairs
in contact with one another from one quartz vein from the E-Zone orebody and three

high-grade quartz-scheelite veins from the Open Pit orebody for isotope thermometry.
Isotope Results

Quartz in veins from the E-Zone skarn orebody has 'O values of 11.9 to 13.1 %o

and quartz from high-grade veins in the Open Pit orebody has values of 12.2 to 13.1 %eo.
An aplite dike from the E-Zone orebody has a §'°O value of 12.4 %o and two aplite dikes
from the Open Pit orebody have values of 9.9 and 11.3 %o0. Vein-hosted scheelite from
the E-Zone skarn orebody has a §'*0 value of 6.8 %o, whereas scheelite in veins from the
Open Pit orebody has §'°0 values of 6.6 to 7.2 %o.
Oxygen Isotope Thermometry.: The Alquuartz_scheeute values for four quartz-scheelite pairs
from quartz veins are 5.1 to 6.5 %o. Using the oxygen isotope fractionation equations of
Clayton et al. (1972) for quartz-water and Wesolowski and Ohmoto (1986) for scheelite-
water, calculated equilibrium isotope temperatures for these mineral pairs are 430° to

595° + 45°C. These calculated temperatures are in good agreement with temperatures of
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400° to 520°C suggested for skarn formation by Mathieson and Clark (1984), Bowman et
al. (1985), and Marshall et al. (2003).

High-grade quartz-scheelite veins from the Open Pit orebody are related to a
deep, hot, magmatic-hydrothermal system. The veins likely represent a distal expression
of the magmatic-hydrothermal skarn-forming event. They are not the result of a cooler
system associated with uplift of the area.

Calculated &' 80 vater Values: Ranges of 8" 0 arer values responsible for quartz vein
precipitation were calculated using the quartz-water curve of Clayton et al. (1972) and a
temperature range of 430° to 595°C, based on isotope thermometry. The 8'*Oyaer values
in equilibrium with quartz in veins from the Open Pit orebody range from 8.8 to 11.8 %o,
and 8" Oyer values in equilibrium with quartz in veins from the E-Zone orebody are 8.5
to 12.0 %0. These overlapping ranges indicate that isotopically similar fluids deposited
vein quartz from both orebodies.

Since aplite dikes have all have been altered to various degrees, their Slgowater
values correspond to the fluids responsible for alteration. Ranges of SISOwater values
responsible for aplite dike alteration were calculated using the feldspar-water curve of
Freidman and O’Neil (1977). The 8'*0 values of waters responsible for altering the
aplite dikes range from 8.4 to 11.9 %eo.

The SlgOer values for high-grade quartz-scheelite veins from the Open Pit
orebody and aplite dikes are in good agreement with values of 8.9 to 10.4 %o calculated
by Bowman et al. (1985) for waters that deposited the E-Zone skarn orebody. The
SISOWmer values are consistent with waters that equilibrated with igneous and

metasedimentary rocks at high temperatures and low water/rock ratios. The fluids that
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deposited high-grade quartz-scheelite veins of the Open Pit orebody are likely magmatic-
related fluids similar isotopically to those that deposited the underlying E-Zone skarn
orebody. There is no isotopic evidence of meteoric water involvement in these vein

systems.
Summary

Isochores from primary H,O-CO,-NaCl+CHy, inclusions in quartz-scheelite veins
from the Open Pit orebody, constrained by temperature estimates from oxygen isotope
thermometry (430° to 595°C), yield pressures of 2 to 4 kbar. These temperature and
pressure estimates are similar to those for the deeper E-Zone skarn orebody (400° to
520°C and 2 to 3 kbar). These temperatures and pressures indicate that the high-grade
quartz-scheelite veins are related to a deep magmatic-hydrothermal system and are likely
a distal expression of a protracted skarn-forming event. Quartz-scheelite veins did not
form in a shallower, cooler, hydrothermal system during uplift.

Primary ore fluids in quartz-scheelite veins from the Open Pit orebody, in skarn-
related quartz veins from the E-Zone orebody, and in aplite dikes are grossly similar
H,0-CO,-NaCIl+CHj, fluids. However, two distinct end-member fluids have been
documented: aplite-related fluids and skarn-related fluids. Fluids in high-grade quartz-
scheelite veins contain components of both end-member fluids.

High-grade quartz-scheelite veins from the Open Pit orebody share a common
structural attitude with aplite dikes. Fluids in quartz-scheelite veins contain an aplite-
related fluid end-member even when occurring up to 70 meters from the nearest aplite
dike. Thus, quartz-scheelite veins and aplite dikes in the Open Pit orebody may have a

genetic relationship in addition to their structural relationship.
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High-grade quartz-scheelite veins from the Open Pit orebody represent a distal
expression of a protracted magmatic skarn-forming event. The presence of magmatic ore
fluids distal to intrusions is intriguing as it has significant implications for mineral

resource assessment in the region.
Comparison to Other Distal Skarn Systems

Distal Skarns: Distal skarns are not uncommon in reactive carbonate rocks. They are
found 100’s of meters to several kilometers away from parental intrusions (e.g. Mines
Gaspé, Quebec: Shelton and Rye, 1982; Shelton, 1983; Malo et al., 2000; Riba de Alva,
Portugal: Gaspar and Inverno, 2000). Although these systems have magmatic
components, in comparison to Cantung, they typically involve large volumes of meteoric
water and shallower intrusions (1 to 2.5 km depth).
Veins in Distal Skarns: Hydrothermal vein systems within distal skarns are less well
known. The W-Mo deposits of the Hwanggangri district, Republic of Korea (Weolag
mine: So et al., 1983) illustrate the interplay of host rock geometry and fault/fracture
control on ore fluid migration. Similar to the Cantung mine, ore fluid flow at the Weolag
mine was concentrated through fractures in folded carbonate rocks. However, in contrast
to the Cantung mine, wolframite was the dominant ore mineral deposited during the
magmatic stage in the Hwanggangri District, whereas scheelite was deposited during
progressive meteoric water inundation of the ore-forming system.

The high-grade quartz-scheelite veins from the Open Pit orebody at the Cantung
mine are unusual because they are exclusively magmatic and formed at greater depths
than most other scheelite vein deposits. The fluids that formed the high-grade quartz-

scheelite veins in the Open Pit orebody more closely resemble magmatic fluids associated
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with scheelite skarn deposits than fluids associated with quartz-wolframite-scheelite vein

systems.
Conceptual Model for Cantung

I envision a conceptual model for the Cantung magmatic-hydrothermal system in
which ore-grade tungsten deposits formed where ore fluids emerged from the granite and
encountered rocks favorable for skarn development (e.g. cleaner ‘Ore Limestone’ versus
cherty ‘Swiss Cheese Limestone’). Due to the folded geometry of the sedimentary
sequence, in other areas along the granite contact, the fluids emerging from the granite
encountered strata less favorable to skarn development (i.e. argillite). Where these less
favorable units were breached by fracture systems, potential skarn-forming fluids (and
aplite dikes) gained access to host rocks more conducive to ore development vertically
distal to the granite contact.

These deposits need not be only massive skarn deposits, but could also be
manifested as vein and replacement-type deposits in metasedimentary rocks. Deposits
can take on various forms depending on wall rock composition. For example, in wall
rocks that contain K-feldspar, acidic fluids, that would have created skarn in carbonate
rocks, might instead form greisen deposits. Such a scenario is seen in tungsten showings
in the nearby Rifle Range Creek. If these same fluids moved along quartzite-argillite

contacts, vein-type deposits, like those of the nearby HY prospect, might develop.
Distal Vein Deposits of the Cantung Region

High-grade quartz-scheelite veins from the Open Pit orebody are a distal
expression of a protracted, magmatic skarn-forming event. These veins have trace metal

signatures similar to regional gold-bearing quartz veins.
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Intrusion-Related Gold Deposits: The association of gold mineralization with Cretaceous
intrusions of the Tombstone and Mayo plutonic suites of the Tintina Gold Province (Fig.
1) is so prevalent that it has provided a foundation for intrusion-related gold deposit
(IRGD) models (Thompson et al., 1999; Lang et al., 2000; Baker, 2002; Baker et al.,
2005; Goldfarb et al., 2005). Fluids in IRGD have low salinities, are CO,-bearing, and
have Ty, values of 200° to 400°C, similar to primary ore fluids in high-grade quartz-
scheelite veins from the Open Pit orebody at Cantung.

Recently, Hart and Lewis (2006) suggested that some of these deposits maybe
orogenic gold deposits. Rather than forming as distal products of magmatic fluids, they
were thought to be related to metamorphic fluid flow focused along faults.
Reconnaissance Fluid Inclusion Studies of Outlying Deposits: To shed light on this
controversy on the origin of regional quartz veins, I collected skarn and vein samples in
several tungsten and gold deposits and mineral showings in the Cantung area (see
Appendix VII). A quartz vein sample and a greisen alteration sample crosscut by quartz
veins were collected from glacial debris near the Rifle Range Creek tungsten showing.
Two distal skarn samples and one quartz vein sample contained within skarn alteration
were collected from the Lened W = Mo showing. One quartz vein was collected from the
Au-Ag-base metal showing at Zantung Creek. Two quartz veins (ribboned and massive
varieties) were collected from the HY gold prospect for fluid inclusion analysis.

Primary H,O-CO,-NaCl+=CHj, fluid inclusions were observed in samples from all
localities. H,O-CO,-NaCl+CHjy fluids similar to the skarn-related end-member fluid
observed in high-grade quartz-scheelite veins from the Open Pit orebody at Cantung (T,

coz values of -65.0° to -56.6°C and T, values of 230° to 315°C) were found in samples
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from Rifle Range Creek, Zantung Creek, and both vein types from the HY showing.
H,0-CO,-NaCl+CHy fluids resembling those of the aplite-related end-member fluid
observed in high-grade quartz-scheelite veins from the Open Pit orebody at Cantung
(Tm coz values below -65°C and Ty, values of 300° to 340°C) were found in a massive
vesuvianite skarn sample from the Lened prospect. I believe that it is probable that the
H,0-CO,-NaCl+CHy fluids in samples from Rifle Range Creek, Lened, Zantung Creek,
and HY gold prospect have a magmatic affinity, similar to the H,O-CO,-NaCl+CH4
fluids at Cantung.

Because H,O-CO,-NaCl+CHj fluids in all of these outlying deposits are grossly
similar, a likely factor that controlled the type of ore deposit formed is the mineralogy of
the host lithologic units. Deposits that result from the interaction of magmatic H,O-CO,-
NaCl+CH; fluids need not be manifested as massive skarns if the fluids encountered
mineralogically diverse, but reactive, lithologic units that were not limestones.
Reinterpretation of the HY Gold Prospect: The HY gold showing was interpreted to be
of orogenic (metamorphic) origin by Hart and Lewis (2006) because evidence supporting
an intrusion-related gold model was thought to be absent (i.e. plutons or dikes are not
present, skarns are not developed locally, and metal zonations typical of IRGD do not
exist).

However, one of the quartz veins I sampled from the HY prospect contained
abundant scheelite (Fig. 21, Appendix VII). Additionally, both quartz vein samples from
the HY gold prospect that I examined contain primary H,O-CO,-NaCl+CHj, fluid

inclusions, similar to the magmatic skarn-related end-member fluid in high-grade quartz-
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scheelite veins at Cantung. These observations suggest that there is a magmatic signature
contained within gold-bearing quartz veins of the HY gold prospect.

Although I am unable to speculate on the origin of gold at the HY prospect, the
magmatic signature (i.e. scheelite and magmatic H,O-CO,-NaCl+CHy inclusions) could
have formed two different ways. First, the entire vein system could be intrusion-related.
The gold and tungsten could have a magmatic source and the entire vein system may
instead be intrusion-related. Second, the tungsten could have been introduced into the
vein system during a later magmatic event. This later event could have introduced
tungsten into the HY vein system by reactivating faults and other ore-fluid conduits
(Bierlein and McKnight, 2005). No matter which scenario occurred, there is an apparent
magmatic signature associated with these gold-bearing veins.

Implications for Exploration: 1 have documented the presence of HyO-CO,-NaCl+=CHy
fluids in quartz vein and skarn samples from a variety of deposit types in the Cantung
region, which resemble the distal, magmatic fluids found in high-grade quartz-scheelite
veins from the Open Pit orebody at Cantung. It is possible that these and other deposits
in the region may be intrusion-related deposits.

Vein and replacement-type deposits in metasedimentary rocks of the Cantung
region frequently have been assumed to represent older ore events. Their origins should
be re-evaluated, as some of them could instead represent distal, intrusion-related deposits.

The documentation of ore-mineralizing fluids distal to the intrusion-country rock
contact expands the potential exploration area for ore targets. Exploration strategies in

the Cantung region should not focus solely on intrusion-country rock contacts. They
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should also consider the interplay of host rock geometry and fault/fracture control that

could allow fluids to form distal magmatic ore deposits.
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CHAPTER 3: CONCLUSIONS

Conclusions that can be reached from geochemical studies of quartz-scheelite
veins from the Open Pit orebody, quartz veins from the E-Zone orebody, and aplite dikes
from both orebodies are:

1. Isochores from primary H,O-CO,-NaCl+CHy inclusions in quartz-scheelite veins from
the Open Pit orebody, constrained by temperature estimates from oxygen isotope
thermometry (400° to 595°C), yield pressures of 2 to 4 kbar. These temperature and
pressure estimates are similar to those for the deeper E-Zone skarn orebody (400° to
520°C and 2 to 3 kbar) and indicate that the high-grade quartz-scheelite veins are related
to a deep magmatic-hydrothermal system. Quartz-scheelite veins did not form in a
shallower, cooler, hydrothermal system during uplift.

2. Primary ore fluids in quartz-scheelite veins from the Open Pit orebody, in skarn-related
quartz veins from the E-Zone orebody, and in aplite dikes are grossly similar H;O-CO,-
NaCl+CHy fluids. However, two distinct end-member fluids have been documented:
aplite-related fluids and skarn-related fluids. Fluids in high-grade quartz-scheelite veins
contain components of both end-member fluids.

3. High-grade quartz-scheelite veins from the Open Pit orebody share a common
structural attitude with aplite dikes. Fluids in quartz-scheelite veins contain an aplite-
related fluid end-member even when occurring up to 70 meters from the nearest aplite
dike. Thus, quartz-scheelite veins and aplite dikes in the Open Pit orebody may have a
genetic relationship in addition to their structural relationship.

4. High-grade quartz-scheelite veins from the Open Pit orebody represent a distal

expression of a protracted magmatic-hydrothermal skarn-forming event. The presence of
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magmatic ore fluids distal to intrusions is intriguing as it has significant implications for
mineral resource assessment in the region.

I envision a conceptual model for the Cantung magmatic-hydrothermal system in
which ore-grade tungsten deposits formed where fluids emerged from the granite and
encountered rocks favorable for skarn development (e.g. cleaner ‘Ore Limestone’ versus
cherty ‘Swiss Cheese Limestone’). Due to the folded geometry of the sedimentary
sequence, in other areas along the granite contact, the fluids emerging from the granite
encountered strata less favorable to skarn development (i.e. argillite). Where these less
favorable units were breached by fracture systems, potential skarn-forming fluids (and
aplite dikes) gained access to host rocks more conducive to ore development vertically
distal to the granite contact.

The conceptual model proposed for the Cantung magmatic-hydrothermal system
can be extrapolated to other regions. I have identified a process and geological
environment in which magmatic ore fluids may pass through unreactive lithologies and
deposit economic grade mineral deposits at significant distances from their igneous
source regions. The documentation of ore-mineralizing fluids distal to the intrusion-
country rock contact expands the potential exploration area for ore targets. Distal
exploration targets need not be manifested as massive skarns, but could take on various

forms depending on the geometry and chemistry of the host lithologic units.
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APPENDIX I

Sample No.

HF03-05:

HF03-14:

HF03-15:

HF03-16:

HF03-17:

HF03-18:

HF03-19:

HF03-20:

Sample Descriptions

Underground quartz vein from West Incline. White
massive to ribboned quartz vein with chalcopyrite,
pyrrhotite, and locally green fluorescing powellite.
Quartz-scheelite vein from the Open Pit orebody. Massive
white quartz with small wallrock fragments, adjacent to
calcite-quartz-pyrite fault zone.

Quartz-scheelite vein from the Open Pit orebody, 30 cm
wide.

Quartz-scheelite vein from the Open Pit orebody, 75 cm
wide. Massive white quartz with chalcopyrite in core of
vein.

Quartz-scheelite vein from the Open Pit orebody, 30 cm
wide, with coarse scheelite in core of vein.
Quartz-scheelite vein from the Open Pit orebody, 15 to 20
cm wide. Pyrrhotite and chalcopyrite in fractures and in
wall rock margins.

Duplicate of Open Pit quartz-scheelite vein 14,
Quartz-scheelite vein from the Open Pit orebody. In the
Chert ore near the Open Pit wall. It is accompanied by

pyritization of the wall rock.
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HF03-21:

HF03-22:

HF03-23:

HF03-24:

HF03-25:

HF03-26:

HF03-27:

HF03-74:

HF03-90:

Quartz-scheelite vein from the Open Pit orebody.
Quartz-scheelite vein 12 from the Open Pit orebody.
Massive white quartz, from the pit floor in the corner of the
pit.

Quartz-scheelite vein 31 from the Open Pit orebody, 20 to
30 cm wide. Minor pyrrhotite and some biotite alteration
present.

Quartz-scheelite vein 340 from the Open Pit orebody, 10
cm wide. Chalcopyrite filled fractures and along the wall
rock contact.

Quartz-scheelite vein 23 from the Open Pit orebody. Series
of quartz veins with 7 to 8 vein segments with iridescent
biotite wall-rock alteration.

Quartz-scheelite vein 27 from the Open Pit orebody. In pit
wall near vein 10. Itis an irregular vein rich in
chalcopyrite.

Quartz-scheelite vein 28 from the Open Pit orebody.
Contorted folded quartz vein with chalcopyrite, pyrrhotite,
and scheelite. On the Open Pit side of the fault zone.
Underground quartz vein from 3850 Stope. Coarse biotite
wall rock alteration.

Underground quartz vein from 3940-109. Quartz vein

sample from an aplite/quartz vein transition zone.
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HF03-91:

HF03-92:

HF03-93:

HF04-94:

HF03-95:

HF03-98:

HF03-99:

HF03-100:

15-4:

3900 POW:

Aplite I

Quartz-scheelite vein 8 from the Open Pit orebody.
Underground quartz vein from 108 Stope in Room 2.
Quartz vein from the hanging wall contact with the skarn
and the chert in Lift 3 of the stope.

High-grade quartz-scheelite vein sample from a
subhorizontal vein in the Open Pit along the north face
from near the Aplite Bench.

Quartz-scheelite vein from the Open Pit orebody. Sampled
at contact zone with limestone adjacent to aplite dike.
Quartz-scheelite vein from the Open Pit orebody, on the
North Face.

Quartz-scheelite vein from the Open Pit orebody with
coarse scheelite. In Swiss Cheese Limestone.
Quartz-scheelite vein 28 from the Open Pit orebody. In
back wall of the Open Pit, with coarse scheelite.
Quartz-scheelite vein 2 from Open Pit orebody, with coarse
scheelite.

Aplite dike from underground 1102 E Ramp, two samples.
Aplite dike from 3900 level underground at Cantung.
Sample contains quartz, k-spar, biotite, and powellite.
Aplite dike from the Open Pit orebody. Phenocrysts of

quartz, k-spar, and tourmaline. Same sample as Aplite II.
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Cantung Pit Vein 7:

Cantung Pit Vein 2:

JY-05-CAN4100:

PIT SCHEELITE:

KS-05-RR2:

KS-05-RR1:

KS-05-HY1B:

KS-05-HY1A:

KS-05-LEN2:

KS-05-LENS:

KS-03-LENV1:

Zantung Creek:

Quartz-scheelite vein from the Open Pit orebody. Open Pit
vein number 7 with abundant scheelite.

Quartz-scheelite vein from the Open Pit orebody. Open Pit
vein number 2 with abundant scheelite.

E-Zone skarn sample with garnet, calcite, quartz, and
scheelite from the 4100 level underground at Cantung.
Quartz-scheelite vein from the Open Pit orebody with
abundant scheelite.

Euhedral quartz vein from the Rifle Range Creek tungsten
showing. Vein is composed of quartz and scheelite.
Quartz-scheelite vein from the Rifle Range Creek in
greisen, containing quartz and scheelite.

Quartz vein from the HY gold showing. Vein is composed
of massive, white quartz.

Quartz vein from the HY gold showing. Vein is ribbon-
banded and contains scheelite.

Quartz-idocrase skarn from Lened showing.

Core sample from Lened. Sample contains quartz,
pyroxene, and garnet.

Quiartz vein from Lened.

Massive, white quartz vein from Zantung (Zenchuk) Creek.
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APPENDIX V

Raw Structural Data

Quartz

Vein Strike

(number) other info (degrees from N)  (right hand rule, degrees)
1 220 50
1 80 20
1 fractures 150 90
2 45 90
2 70 20
3 70 90
4 50 90
4 50 90
& 30 90
3 10 90
6 62 90
7 40 80
7 340 80
7 30 90
7 50 45
7 10 90
7 40 90
7 70 80
7 45 75
7 50 90
7 10 90
8 60 90
8 30 90
8 33 90
8 45 90
8 fault 50 90
8 30 90
9 50 90
10 320 35
10 340 40
10 fault 30 55
11 250 90
11 fault 340 35
12 20 90
12 10 90
12 20 60
13 195 70
14 10 90
15 70 90
15 330 0
16 15 90
16 150 65
17 15 90
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Quartz

Vein

(number) other info (degrees from N)  (right hand rule, degrees)
17 265 0
18 305 35
18 195 70
19 15 90
19 130 0
20 30 90
20 30 0
21 10 90
22 30 90
22 fault 25 920
23 10 0
23 45 0
23 ) 70
23 0 90
23 20 920
23 10 90
23 30 90
23 ) 920
23 5 90
23 20 90
23 0 920
23 20 90
24 340 80
24 320 90
24 30 90
25 30 90
26 5 90
26 70 90
26 10 90
26 30 90
27 335 90
27 10 920
28 340 60
28 70 90
29 270 20
29 25 90
29 fault 20 90
30 0 920
31 15 90
31 350 90
32 30 90
33 30 90
33 30 920
Lamprophyre Dike in pit 240 40
Lamprophyre Dike at Dutchman's Peak 70 90
Lamprophyre Dike at Dutchman's Peak 120 90
Circular Stock fault 30 g0
Circular Stock Breccia in Dolomite 340 90
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Quartz

Vein Strike Dip

(number) other info (degrees from N)  (right hand rule, degrees)
West Decline (UG ??) fault 0 90
West Decline (UG 77) fault 30 S0
UG 3850 level-101 magnetic fractures 10 90
UG 3850 level-101 magnetic fractures 30 90
Argillite (same as above) fractures 30 80
Argillite (same as above) fractures 15 90
Same Place fault slip direction 155 60
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APPENDIX VI

Other Graphs and Charts

(a)

8000 | =

R=0.57

Cu (ppm)
Ag (ppm)

Figure 17. Additional plots of trace metal contents of high-grade quartz-scheelite veins

from the Open Pit orebody at Cantung. (a) Cu (ppm) versus Bi (ppm). (b) Ag (ppm)

versus Bi (ppm).
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Figure 18. Salinity versus Ty values for aqueous brine inclusions. No systematic

relationship exists between salinity and Ty, values for the aqueous brine inclusions at

Cantung.
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Figure 19. Salinity versus XCO,+CHy, values for H,0-CO,-NaCIl+CH, and aqueous brine
inclusions at Cantung. No systematic relationship exists between salinity and carbonic

phase contents of the inclusions.
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Figure 20. Calculated isochores from secondary aqueous brine fluid inclusions (black
lines). One isochore from the primary H,O-CO,-NaCl+CH, fluid inclusions also plotted
(blue line). The densities of both inclusion assemblages are similar and their isochores
do not cross within the pressure and temperature range for high-grade quartz-scheelite

vein formation.
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APPENDIX VII
Reconnaissance Fluid Inclusion Studies of Other Deposits and Showings

in the Cantung Area

To evaluate the possibility that other mineral showings may have a magmatic
origin, reconnaissance fluid inclusion studies were initiated. Samples were collected for
fluid inclusion analysis from various mineral showings proximal to Cantung within the
Tombstone-Tungsten plutonic suite (Rifle Range Creek, Lened, Zantung Creek, and HY).
Rifle Range Creek: The Rifle Range Creek tungsten showing is approximately 15 km
east-southeast of the Cantung mine in the Northwest Territories. Tungsten anomalies
were measured in float samples at the toe of a glacier.

Two glacial debris samples with mineralization were collected from the toe of the
glacier for fluid inclusion analysis. One mineralized sample consists of greisen alteration
containing quartz, muscovite, tourmaline, and scheelite crosscut by quartz-scheelite
veins. The second sample, a quartz-scheelite vein, contains massive and clear quartz.

In quartz, primary (three-phase) H,O-CO,-NaCl+CH, and secondary (two-phase)
aqueous brine inclusions were observed. H,O-CO,-NaCIl+CHy inclusions have T, co2
values of -59.4° to -57.1°C, salinity values of 0.4 to 5.5 wt. % equiv. NaCl, and Ty, values
of 235° to 316°C.

The primary, H,0-CO,-NaCl+CHj, fluid from Rifle Range Creek samples is
similar to the primary, skarn-related end-member fluid observed in high-grade quartz-
scheelite veins from the Open Pit orebody at Cantung. It is likely that the H,O-CO-
NaCl+CHj, fluid in quartz-scheelite veins from Rifle Range Creek has a similar magmatic

origin.
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The mineralized samples appear to have affinities to a greisen vein-system with a
magmatic origin. The fact that mineralized samples have greisen characteristics, and not a
skarn, is a function of the chemical composition of the host rocks that ore fluids
encountered. If magmatic ore fluids at Rifle Range Creek had encountered a limestone, a
skarn might have been deposited.

Lened: The Lened showing is approximately 70 km north-northwest of the Cantung
mine. At Lened, nodular W + Cu skarn is developed in impure carbonate beds of
Cambrian to Cretaceous metasedimentary rocks that were intruded by a Cretaceous
granite (Dick, 1979; Marshall et al., 2004).

Two types of veins are present: quartz + carbonate + green beryl (emerald?) veins
and skarn-related quartz veins. The relationship of quartz + carbonate + beryl veins to
the skarn alteration is not well known. The quartz veins that | sampled are contained
within the skarn alteration and have a direct relationship to skarn formation. One
idocrase skarn sample, one garnet-pyroxene skarn sample, and one quartz vein sample
were collected for fluid inclusion analysis.

Primary (three-phase) H,O-CO,-NaCIl+CHj, inclusions were observed in one
skarn sample, but all three samples examined contained secondary (two-phase) aqueous
brine inclusions. H,0O-CO,-NaCl+CHy inclusions have Tp, co values of -91.2° to -61.4°C
and Ty, values of 309° to 337°C.

These values are similar to the aplite-related fluid end-member identified in high-

grade quartz-scheelite veins from the Open Pit orebody at Cantung.
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Zantung Creek: The Zantung (Zenchuck?) Creek showing is approximately 20 km north-
northeast of the Cantung mine. It is a Au-Ag-base metal quartz vein developed in
quartzite. One open-space filling quartz vein was collected for fluid inclusion analysis.

Primary H,O-CO,-NaCl+CHj, inclusions have Ty, co. values of -58.8° to -56.6°C,
salinity values of 2.2 to 5.9 wt. % equiv. NaCl, and Ty, values of 227° to 315°C.

The primary, H,0-CO,-NaCl+CH, fluid from Zantung Creek samples is similar
to the primary, skarn-related end-member fluid observed in high-grade quartz-scheelite
veins from the Open Pit orebody at Cantung, which had a magmatic origin.

HY Gold Prospect: The HY gold prospect is approximately 20 km east of the Cantung
mine. Steeply dipping north-northwest trending quartz-arsenopyrite and stockwork quartz
veins host gold mineralization at the HY prospect. These gold-bearing quartz veins
crosscut a Neoproterozoic to Cambrian quartzite (Yusezyu Formation). Quartz veins
contain massive, white to gray-blue or ribbon-banded quartz (Hart and Lewis, 2006).

I collected adjacent quartz veins for fluid inclusion analysis. One vein contains
massive milky quartz, and the other has ribbon banded quartz with elongated grains of
scheelite (Fig. 21).

Both samples contained rare, primary H,O-CO,-NaCIl+CH, and abundant
secondary (two-phase) aqueous brine inclusions. H,O-CO,-NaCIl+CHj, inclusions have
Tmcoz values of -65.5° to -59.9°C and Ty, values of 269° to 292°C. These values are
similar to the skarn-related end-member fluid found in high-grade quartz-scheelite veins
from the Open Pit orebody at Cantung, which had a magmatic origin.

The presence of scheelite and primary H,O-CO,-NaCI+CHy inclusions suggests

that there may be an intrusion-related component to the gold-bearing quartz veins from
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Figure 21. (a) Polished thin section of ribbon-banded quartz vein, KS-05-HY 1A, from
the HY gold prospect. (b) Same polished thin section with circles around the elongated

grains of scheelite. Scale baris 1 cm.

89



the HY prospect. At a minimum, there is evidence of W-rich fluids present at the time of
deposition of the ribbon banded quartz.

The HY gold prospect was interpreted recently by Hart and Lewis (2006) to be an
orogenic gold deposit because of the lack of evidence of an intrusion-related model. The
ribbon-banded quartz veins were interpreted to represent numerous fracturing events,
distinctive of orogenic gold vein deposits (Sibson et al., 1988).

Although I am unable to speculate on the origin of gold at the HY prospect, a
magmatic influence (i.e. scheelite and H,0-CO,-NaCl+CH, inclusions) could have
formed two different ways. First, the entire vein system could be intrusion-related. The
gold and tungsten could both have a magmatic source. Alternatively, the tungsten could
have been introduced into the vein system during a later magmatic event. This later event
could have overprinted an earlier orogenic system by reactivating faults and other
conduits for ore-fluid flow (Bierlein and McKnight, 2005). No matter which scenario
occurred, there is a definite magmatic signature associated with gold-bearing quartz vein

deposits.
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Appendix VIl

The Use of Scheelite Fluorescence in the Field

The optical properties of scheelite are very similar to quartz, making pale colored
scheelite difficult to observe in the field. Scheelite fluoresces a light blue color under
short wave ultraviolet light, distinguishing it from quartz and other minerals in the
Cantung area. Samples collected were routinely examined under ultraviolet light to
determine their scheelite content (Fig. 22).

Fluorescence is an interesting mineral property caused by the excitation of
electrons under ultraviolet light (Klein, 2002). The invisible short radiation given off by
the ultraviolet light excites electrons, making it possible for electrons to ascend to higher
energy levels. The electrons, though, may fall back to lower energy levels, and emit a
light photon of lower energy (longer wavelength). If the wavelength of the light photon
is in the visible light spectrum, it can be seen as fluorescence.

The fluorescent property of scheelite was used for two purposes. First,
underground exposures were observed routinely under ultraviolet light and the amount of
fluorescence was used to estimate tungsten ore grades. Secondly, the presence and
concentration of scheelite can be confirmed using fluorescence.

We routinely used ultraviolet fluorescence to check all samples (in the field and in
the lab) for the presence of scheelite. The recognition of scheelite in the HY deposit has
important implications for a magmatic versus metamorphic origin of its veins (Fig. 21).
Had we not used an ultraviolet lamp in a dark room, we would likely have overlooked the

presence of nearly colorless scheelite present in the veins.
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Figure 22. Improvised darkroom (underneath a coat) to examine the fluorescent property

of scheelite. This was performed routinely in the field to determine the presence and

concentration of scheelite in samples.
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