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ABSTRACT 

 
The ecdysone agonists methoxyfenozide and tebufenozide are designed to affect 

the larval stage of Lepidopteran pests. Recent studies have reported sublethal 

effects on the adults of several tortricid apple tree pests exposed to these insect 

growth regulators. These effects include changes in mean fecundity and fertility 

and reduced mate-finding abilities. Here we report sublethal effects of these 

insect growth regulators on the oriental fruit moth, Grapholita molesta (Busck). 

Wind tunnel assays showed a reduction in mate finding capabilities of the moths 

when exposed to methoxyfenozide. Mating assays showed a reduction in mean 

fecundity but, generally, not mean percent fertility when females were exposed to 

either tebufenozide or methoxyfenozide. Median female longevity was also 

reduced. In another study presented here the feeding patterns of the oriental fruit 

moth were compared to that of codling moth, Cydia pomonella (L.). Differences in 

sites of entry as well as visible tunneling and frass were observed. Differences 

were also detected in the internal fruit damage between the two moth species.  

 
 
 
 

 ix



Objectives 

 

1. Determine the sublethal effects of methoxyfenozide-treated surfaces on 

the attractiveness and responsiveness of adult oriental fruit moth, 

Grapholita molesta (Busck). 

 

2. Determine what effects adult exposure to tebufenozide- and 

methoxyfenozide-treated surfaces would have on the fecundity and fertility 

of the oriental fruit moth. 

 

3. Compare and contrast the larval feeding patterns and damage of oriental 

fruit moth and codling moth, Cydia pomonella (L.). 
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 Chapter 1: Literature Review 

 

A. Insect Growth Regulators 

Since the advent of crop cultivation, the need to find effective strategies 

for the control of agricultural pests has been a constant struggle. The earliest 

record of such efforts appears to be the use of sulfur by the Sumerians as early 

as 2500 B.C. By the 1600’s the insecticidal properties of some soaps, botanicals, 

and inorganic compounds such as arsenic had been discovered. The modern 

insecticide era began in the 1930’s with the synthesis of new insecticidal 

compounds such as DDT (dichlorodiphenyltrichloroethane). These broad 

spectrum insecticides targeted physiological processes found across many 

higher animal taxa. The early 1960’s saw public pressure for the development of 

control strategies that would reduce the amount of broad spectrum synthetic 

insecticides in pest control (Pedigo 2002). 

 One group of compounds that has received much attention over the past 

several years, because of their environmental safety and relative target 

specificity, are the synthetic insect growth regulators (IGR's). Such compounds 

tend to disrupt the target pest’s natural physiology and development, such as the 

molting process, while being relatively safe to non-target organisms (Pedigo 

2002). 

 Insects undergo periodic shedding of their exoskeleton during their 

immature stages. The molting process begins with an increase of the hormone 

20-hydroxyecdysone. The insect ceases feeding and goes through apolysis (the 
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separating of the epidermis from the old cuticle), which forms an ecdysial space 

filled with fluid. The epidermal cells then reorganize to form new cuticular layers. 

As ecdysone levels begin to decline in the insect, the procuticle is digested and 

recycled for new cuticle formation. Once ecdysone levels reach basal levels 

ecdysis occurs. This is when the insect sheds the old cuticle. The levels of 

another key hormone, juvenile hormone, during the molting process dictate the 

next developmental stage. The lower the juvenile hormone titer, the more 

advanced the life stage the insect will develop into (Dhadialla et al. 1998). 

 Synthetic IGR’s disrupt several steps in an insect’s molting process. Some 

are targeted at juvenile hormone activity within the insect prior to molting. Others 

are designed to disrupt chitin synthesis at the end of a molt. Some compounds 

impact the ecdysone receptors in the molting process. The fact that IGR’s can 

disrupt chemical pathways specific to some insect types is their greatest 

advantage over conventional insecticides. They are considered third generation 

insecticides because of their greater environmental safety when compared to 

first-generation (stomach poisons) and second-generation (contact poisons) 

insecticides (Pedigo 2002). 

 Because of their relative specificity, IGR’s do have limitations. For 

example, if they are effective only upon certain developmental stages of the 

target pest, then the timing of application is critical for effective use. In addition, 

IGR’s are most effective against insects with short life cycles. If an application 

misses the critical developmental stage an entire generation of pests may be 

unaffected. Another limitation is that most IGR's are slow-acting. Consequently, 
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plant injury from a pest can continue for a longer period of time than when 

conventional insecticides are used. IGR's are of value against stored product and 

secondary damage pests, but show little promise for crops where visual fruit 

quality is of importance to the consumer (Mondal and Parween 2000, Pedigo 

2002, Abo-Elghar et al. 2004, Dallaire et al. 2004). 

 

1. Juvenile Hormone Mimics 

 Within the insect juvenile hormone influences many key physiological 

activities including development, reproduction, behavior, pheromone production, 

adult diapause and caste determination (Wilson 2004). The first to suggest the 

potential exploitation of juvenile hormone as an insect control agent was Carol 

Williams in 1967 (Retnakaran et al. 1985). Unfortunately, the use of natural 

juvenile hormone was not feasible due to its environmental instability and the 

difficulties involved with its synthesis. The major breakthrough came a short time 

later when William Bowers, in 1969, discovered a way to synthesize a juvenile 

hormone analog several hundred times more active than natural juvenile 

hormone. There was immediate interest in this new technology. Within 15 years 

of Bowers’ discovery more than 500 different mimics with varying degrees of 

insecticidal activity had been developed (Retnakaran et al. 1985).  

A standard larva-to-pupal molt is induced by the presence of 20-

hydroxyecdysone in the absence of juvenile hormone. Juvenile hormone mimics 

disrupt this life stage by causing an extra, typically lethal, larva-to-larva molt 

(Dhadialla et al. 1998). In recent years, juvenile hormone has also been shown to 
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be instrumental in stimulating vitellogenesis and oocyte development in many 

insects (Cruz et al. 2003). Addition of juvenile hormone mimics into an insect’s 

system usually results in adult sterility or the inability to successfully mate. 

 

2. Juvenile Hormone Antagonists 

 Some botanicals were discovered that inhibit juvenile hormone production. 

These juvenile hormone antagonists can block the manufacture of juvenile 

hormone in the corpora allata. This has the effect of inducing a premature larva-

to-pupal molt which results in miniature, sterile adults. William Bowers was the 

first to discover juvenile hormone antagonists when he isolated the chemicals 

from the bedding plant Ageratum houstonianum (Retnakaran et al. 1985). Most 

of the resulting synthesized compounds used today are known as precocenes 

(Retnakaran et al. 1985). Because juvenile hormone has the ability to affect 

many insect activities including development, reproduction, behavior, pheromone 

production, adult diapause and caste determination (Wilson 2004), as well as 

maternal behavior (Rankin et al. 1997, Kight 1998), these antagonists can be 

highly effective in disrupting key physiological activities.  

 

3. Chitin Synthesis Inhibitors 

 Chitin is one of the major components in an insect’s exoskeleton. For 

example, it is responsible for giving the exoskeleton its rigid characteristics the 

insect needs for internal support and water conservation. Chitin synthesis 

inhibitors disrupt the molting process through inhibition of chitin synthesis, 
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endocuticular deposition, egg hatch, and DNA synthesis, as well as disruption of 

ecdysis and alteration of carbohydrases and phenyloxidases (Retnakaran et al. 

1985, Mondal and Parween 2000, Medina et al. 2002). The majority of the chitin 

synthesis inhibitors belong to the group benzoylphenyl ureas. They were 

discovered around 1970 by the Philips-Duphar Company when they combined 

the herbicide dichlobenil with the urea herbicide diuron (Retnakaran et al. 1985). 

 

4. Ecdysone Agonists 

 Ecdysone agonists are one of the most recently developed groups of 

IGR's. They were discovered by the Rohm and Haas Company in 1983. 

Ecdysone agonists mimic the molting hormone, 20-hydroxyecdysone, resulting in 

premature molting. The lethal effects are a multi-step process. First, the larva 

ceases to feed within 4-16 hours of ingestion. Within 24 hours the larva goes 

through apolysis, most noticeable at the head capsule. The larva, however, is 

unable to complete ecdysis. With the old head capsule not being completely 

shed, the new head and mouthparts are unable to sclerotize. In addition, the hind 

guts are extruded, resulting in loss of hemolymph and molting fluid. Desiccation 

and death soon occur (Dhadialla et al. 1998).  

Soon after the discovery of these ecdysone agonists, Rohm and Haas 

developed the first analog (RH-5849) to be extensively tested in the field 

(Dhadialla et al. 1998). It had activity over a small range of Lepidoptera, 

Coleoptera and Diptera (Smagghe and Degheele 1994a, Dhadialla et al. 1998, 

Mondal and Parween 2000). RH-5849 was eventually replaced by the more 
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selective, potent, and cost-effective analogs, tebufenozide (RH-5992) and 

methoxyfenozide (RH-2485) (Smagghe and Degheele 1994a, Dhadialla et al. 

1998, Beckage et al. 2004).  

 

a. Tebufenozide 

 Tebufenozide (RH-5992), the first successor of RH-5849 was released in 

1992 (Dhadialla et al. 1998). It is a more directed ecdysone agonist with a higher 

toxicity to lepidopteran insects and a lower toxicity to other insect orders, making 

it a desirable tool for integrated pest management regimes (Smagghe and 

Degheele 1994b, Dhadialla et al. 1998). There have been isolated examples of 

higher effectiveness of tebufenozide to non-lepidopteran insects when compared 

to RH-5849 (Beckage et al. 2004). Tebufenozide’s high level of specificity allows 

for adequate control of the target pests without negatively affecting any biological 

control agents and other beneficial organisms (Rodriguez et al. 2001). It is also 

possible to couple it with a mating disruption tactic for enhanced control (Trimble 

and Appleby 2004). However, recent studies have demonstrated a potential 

development of cross resistance among some pests with conventional 

insecticides such as azinphosmethyl (Smirle et al. 2002). Tebufenozide was the 

first ecdysone agonist on the commercial market and is now sold under the 

names Confirm®, Mimic®, and Romdan® (Dhadialla et al. 1998).  
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b. Methoxyfenozide 

 Methoxyfenozide (RH-2485) is the most recent addition to the ecdysone 

agonist family. It was introduced by the Rohm and Haas Company in 1996. As 

with tebufenozide, it is highly specific to lepidopteran pests, but has a low toxicity 

towards other insect orders. Unlike tebufenozide, methoxyfenozide has root 

systemic activity, especially with monocotyledonous plants like rice. 

Methoxyfenozide, however, is not systemic through leaves. Depending on the 

target pest, application rates can vary between 20 and 200 g/ha, approximately 

half the required rates of tebufenozide (Carlson et al. 2001), reflecting its greater 

effectiveness to susceptible insects over tebufenozide. One example of this is 

with mosquitoes (Beckage et al. 2004). As with tebufenozide, recent studies have 

reported that pests resistant to conventional insecticides, such as 

azinphosmethyl, can also be resistant to methoxyfenozide (Smirle et al. 2002). 

Gore and Adamczyk (2004) went so far as to artificially create resistance in a 

population of beet armyworms, Spodoptera exigua (Hübner), to help in the 

development of a resistance management program. Methoxyfenozide is currently 

being sold under the trade names Intrepid®, Runner®, and Prodigy® (Carlson et 

al. 2001). 

 

B. Sublethal Effects of Insecticides 

 The behavior of all animals, including insects, is governed through proper 

communication between the hormonal and nervous systems. Insecticides have 

been developed to exploit these physiological systems. Thus, it is fair to assume 
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if an insect is exposed to a sublethal dose of an insecticide the behavior and 

physiology of the insect would probably be affected. For example, mate location 

and courtship, oviposition, oogenesis, ovulation, spermatogenesis, sperm 

mortality, and physiological effects on egg fertilization could all be negatively 

influenced through a sublethal exposure to an insecticide (Haynes 1988). 

 

1. Neurotoxic Insecticides 

  Neurotoxic insecticides make up the majority of what are commonly 

known as “conventional broad spectrum insecticides.” They disrupt normal 

neurological functions within the insect. These chemicals provide an effective, 

inexpensive, and reliable means of insect control (Haynes 1988). The three most 

common classes of insecticides in this group are the organophosphates, 

carbamates (synaptic poisons) and the synthetic pyrethroids (axonic poisons). 

Synaptic poisons interrupt the normal cell-to-cell signal transmission of the 

nervous system. Axonic poisons inhibit signal transmission along individual cell 

axons (Pedigo 2002). 

 Bariola (1984) determined that two organophosphates, azinphosmethyl 

and methyl parathion, were capable of reducing mating occurrences of pink 

bollworms, Pectinophora gossypiella (Saunders), as well as reducing oviposition 

when treated with sublethal doses as freshly emerged adults. Alford and Holmes 

(1986) demonstrated that sublethal doses of the organophosphate fenitrothion 

reduced the fecundity of the spruce budworm, Choristoneura fumiferana 

(Clemens), when both sexes had been placed on treated artificial diet as fourth 
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instar larvae for seven days. Nuessly and Hentz (2004) observed that when the 

organophosphates chlorpyrifos and methyl parathion where sprayed at field rates 

they were able to induce sublethal activities described as “uncoordinated 

movement, uncontrolled twitching and hyperextension of mouthparts and 

ovipositor” in adult corn silk fly, Euxesta stigmatias Loew, within one hour of 

treatment. Nuessly and Hentz (2004) observed these same effects with two 

carbamates, methomyl and thiodicarb on adult corn silk fly.  

Alford and Holmes (1986) showed that when both sexes of spruce 

budworm had been placed on treated artificial diet as fourth instar larvae for 

seven days sublethal levels of carbaryl and aminocarb extended the larvae’s 

developmental period , and aminocarb also caused a reduction in fecundity. 

Carbaryl appears to also have an effect on pink bollworms, reducing mating and 

oviposition in treated adults (Bariola 1984). 

 Pink bollworm physiology, while affected by both the organophosphates 

and carbamates, was most influenced by pyrethroids. For example, the 

pyrethroids cyfluthrin, flucythrinate, fenpropathrin fenvalerate and permethrin all 

were capable of reducing mating and oviposition in treated adults (Bariola 1984). 

Sublethal rates of cyfluthrin was also shown to slow the growth rate of the 

Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Bernard and Lagadic 

1993). In adult corn silk fly Nuessly and Hentz (2004) found that the pyrethroids 

esfenvalerate, cyfluthrin, and lambda-cyhalothrin could all cause “uncoordinated 

movement, uncontrolled twitching and hyperextension of mouthparts and 

ovipositor” within one hour of treatment. 
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2. Juvenile Hormone Mimics 

Juvenile hormone mimics (JHM) induce the insect to proceed through an 

extra, lethal larva-to-larva molt. By far, the most commonly studied JHM is 

fenoxycarb. For example, fenoxycarb has been shown to have sublethal effects 

on tufted apple bud moth, Platynota idaeusalis (Walker). When larvae were fed 

treated diet the subsequent adults displayed a reduction in fecundity and fertility 

and an increase in female development time (Biddinger and Hull 1999). Hicks 

and Gordon (1992) and Gordon (1995) both proved fenoxycarb treated adult 

eastern spruce budworm, Choristoneura  fumiferana (Clemens), developed a 

substantial reduction in fertility. Fenoxycarb has also been reported to reduce the 

number of oocytes in codling moth, Cydia pomonella (L.), females when treated 

as pupae and as freshly emerged adults (Webb et al. 1999). Additional studies 

have shown fenoxycarb to reduce fertility in the California fivelined ips beetle, Ips 

paraconfusus Lanier, the pear psylla, Cacopsylla pyricola Foerster, and the 

oriental cockroach, Blatta orientalis (L.) (Chen and Borden 1989, Evans et al. 

1995, Higbee et al. 1995). Reductions in fecundity through sublethal exposure of  

fenoxycarb also occur in the oriental cockroach the migratory grasshopper, 

Melanoplus sanguinipes (F.), the differential grasshopper, Melanoplus 

differentialis (Thomas), and the red imported fire ant, Solenopsis invicta Buren 

(Glancey and Banks 1988, Capinera et al. 1991, Evans et al. 1995). 
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3. Juvenile Hormone Antagonists 

Juvenile hormone antagonists work against the normal effect of juvenile 

hormone in the molting process. The result of exposure to juvenile hormone 

antagonist is a premature larva-to-pupa or nymph-to-adult molt. While the 

juvenile hormone antagonist’s function is counteractive to JHM’s, it has similar 

sublethal effects such as a reduction in fecundity (Connat and Nepa 1990). 

Numerous studies have reported that sublethal exposure to precocene I or 

precocene II can reduce fecundity in the fruit fly, Drosophila melanogaster 

Meigen, the black blowfly, Phormia regina Meigen, and the brown planthopper, 

Nilaparvata lugens (Stal) (Wilson et al. 1983, Yin et al. 1989, Ayoade et al. 1996). 

In addition, precocene can also reduce the mating and sex attractancy in the 

migratory locust, Locusta migratoria (L.) and the Mediterranean fruit fly, Ceratitis 

capitata (Wiedemann) (Chang et al. 1984, Shalom and Pener 1986). 

 

4. Chitin Synthesis Inhibitors 

Chitin synthesis inhibitors prevent the insect from synthesizing chitin and 

completing the molting process. Sublethal doses of diflubenzuron, the most 

widely studied chitin synthesis inhibitor, has been reported to delay ecdysis in 

codling moth larvae, Cydi pomonella (L.) (Soltani and Soltani-Mazouni 1992). 

When applied to boll weevil, Anthonomus grandis grandis Boheman, larvae it 

reduces cuticle hardness (Haynes and Smith 1994, Villavaso et al. 1995). The 

sublethal effects of diflubenzuron exposure are not limited to the molting process. 

For example, adult boll weevils suffered from reduced fertility and flight activity 
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when exposed to diflubenzuron as larvae (Haynes and Smith 1994, Villavaso et 

al. 1995). When larvae are reared on diet containing sublethal doses of 

diflubenzuron, a reduction in fertility in the corn earworm, Helicoverpa zea 

(Boddie), results (Carpenter and Chandler 1994). Rup and Chopra (1985) 

reported reduced fertility as well as fecundity and adult longevity of 

diflubenzuron-treated banana fruit fly, Zaprionus paravittiger (Godble and 

Vaidya). Kim et al. (1992) also reported a reduction in fecundity and adult 

longevity of diflubenzuron-treated adult alydids, Riptortus clavatus (Thunberg). 

Interestingly, two Brachymeria parasites of gypsy moth pupae develop multiple 

progeny within a single host when adults are treated with diflubenzuron. Typically 

only one offspring rears within a single host (Khoo et al. 1985). 

 

5. Ecdysone Agonists 

Ecdysone agonists induce molting by emulating 20-hydroxyecdysone. Due 

to their persistence in the body, however, ecdysone agonists prevent the 

completion of molting, usually resulting in death of the individual. However, if 

applied at sublethal doses or at alternate life stages, they can have multiple 

effects. The most common of these effects is a reduction in fecundity and fertility. 

When neonate tufted apple bud moth, Platynota idaeusalis (Walker), were 

treated with sublethal doses of tebufenozide the resulting adults had a reduced 

fertility (Biddinger and Hull 1999). Smagghe and Degheele (1994b) noticed the 

same effect when fifth instars of the beet armyworm, Spodoptera exigua 

(Hubner), were treated with tebufenozide. Codling moth, Cydia pomonella (L.), 
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redbanded leafroller, Argyrotaenia velutinana (Walker), and oblique-banded 

leafroller, Choristoneura rosaceana (Harris), all showed reductions in fecundity 

and fertility when exposed to field rates of tebufenozide and methoxyfenozide 

throughout their adult lives (Sun and Barrett 1999, Sun et al. 2000).  These same 

moth species showed a reduction in fertility and fecundity when recently 

emerged, virgin females were treated with the same levels of tebufenozide and 

methoxyfenozide for only a 24 h period (Sun and Barrett 1999, Sun et al. 2000). 

RH-5849 and, to a greater extent, tebufenozide have been determined to reduce 

fecundity and fertility in the cluster caterpillar, Spodoptera litura (F.), most likely 

due the reduced number of sperm transferred from male to female (Seth et al. 

2004). 

The negative effects due to sublethal or non-target stage exposure to 

ecdysone agonists are not restricted to fecundity and fertility. Seth et al. (2004) 

noticed a reduction in mating success and adult longevity of the cluster 

caterpillar, Spodoptera litura (F.). Smagghe and Degheele (1994b) saw a 

reduction in weight gain and feeding of Spodoptera exigua (Hubner) when 

treated. Tebufenozide treated larvae of Choristoneura fumiferana (Clem) and 

Choristoneura rosaceana (Harris) developed a plethora of problems such as an 

increase in development time, a decrease in adult weight, a reduction in sperm 

production, a delay in ovarian maturation, a reduction in mating success and a 

reduced ability of the males to successfully orient themselves upwind in a wind 

tunnel (Dallaire et al. 2004). 
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C. Wind Tunnel Research with Lepidoptera 

 Studies on orientation responses of insects to visual environmental cues 

and to host odors have stimulated the use of wind tunnels in insect research. The 

increased interest in insect sex pheromones that began in the 1970’s has made 

the wind tunnel an invaluable research tool. For example, wind tunnels are being 

used in several areas of pheromone work including pheromone identifications, 

blend quality testing, designing of pheromone traps and orientation studies, 

including the behavioral effects from sublethal insecticide exposure (Baker and 

Linn 1984). 

 There are several distinct advantages of using wind tunnels when 

compared to field flight bioassays. The first is the ability to adjust individual 

variables. Temperature, humidity, wind speed, light intensity, and plume 

conditions can all be manipulated or maintained for consistency. Another 

advantage is the ability to test throughout the year, as there is no dependence on 

seasonal field conditions. A third advantage is the ease of manipulation of the 

experimental procedure to develop meaningful studies within a shorter time span 

(Baker and Linn 1984). 

 The majority of wind tunnels utilize horizontal air flow, yet vertical ones do 

exist. Some have fans that push air through the tunnel, which helps maintain 

consistent plumes. Others pull the air through the tunnel, allowing for the ability 

to better control the quality of the incoming air. The latter type is usually used in 

pheromone research, as it makes exhausting the air away from the intake system 

easier to accomplish (Baker and Linn 1984). 
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 Several orders of insects are regularly studied in wind tunnels. The most 

common of which is Lepidoptera, as many aspects of lepidopteran behavior 

revolve around wind as a stimulus or as a carrier of stimulating odors. For 

example, a wind tunnel was utilized to accurately gauge flight distances and 

dispersal patterns of the fall webworm, Hyphantria cunea (Drury) (Yamanaka et 

al. 2001). Reddy et al.(2004) showed the diamondback moth, Plutella xylostella 

(L.), was able to orient towards favored host plants via the wind tunnel. The 

moths Tuta absoluta (Meyrick), a pest of tomatoes, and Tyta luctuosa (Denis and 

Schiffermuller), a potential biological control agent of field bindweed, both 

became subjects in wind tunnel studies determining trapping efficiency of sex 

pheromone components (Ferrara et al. 2001, Cao et al. 2003). Nansen and 

Phillips (2004) looked at combining permethrin with an established synthetic sex 

pheromone attractant for control of the indianmeal moth, Plodia interpunctella 

(Hubner). 

Some wind tunnel work in recent years have provided a better 

understanding regarding pheromone-mediated communication and host-finding 

processes of tortricid pests. Willis and Baker (1994) used a video recording 

device to map and quantify the orientation behavior of a male oriental fruit moth, 

Grapholita molesta (Busk), toward the female. They found that as the male 

approached the female his ground speed decreased, angle of tack with respect 

to the female increased, and rate of counterturning increased, giving the overall 

result of the male track slowing and narrowing as he approached. Valeur and 

Lofstedt (1996) used the wind tunnel to compare synthetic pheromone blends for 
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oriental fruit moth by placing blend components in series or parallel to each other 

and monitoring the attraction to them by the male. The ultimate result was that 

males were more attracted to complete blends rather than just blend 

components. Evenden and McLaughlin (2004) compared the combination of 

pheromones at several rates mixed and unmixed with the pyrethroid permethrin 

to see if permethrin affected the attractiveness of the pheromone, ultimately 

showing no effect. Natale et al.(2004) utilized flight chambers to quantify oriental 

fruit moth attraction to host plant odors. Three tests were performed: no-choice, 

short-term (5 min) individual insect choice and long-term (14 h) multiple insect 

tests. All tests showed positive responses to the host volatiles. Hoelscher and 

Barrett (2003a) reported a reduction in responsiveness of male redbanded 

leafroller, Argyrotaenia velutinana (Walker), and oblique-banded leafroller, 

Choristoneura rosaceana (Harris), treated with methoxyfenozide when exposed 

to female sex pheromone. 

Much research has been conducted concerning the makeup of the sex 

pheromone of female codling moth, Cydia pomonella (L.), and its role in moth 

courtship. For example, studies comparing the moth’s main pheromone 

component, (E,E)-8-10-dodecandienol (codlemone), with other isomers and other 

secondary components have been conducted (Arn et al. 1985, Preiss and 

Priesner 1988, McDonough et al. 1995, Ebbinghaus et al. 1998, El-Sayed et al. 

1998). A complimentary study showed that males do not respond as well to 

synthetic codlemone as they do to calling females or female gland extracts (El-

Sayed et al. 1999). Castrovillo and Carde (1979) used a wind tunnel to show that 
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females exhibit the same calling periodicity to which they were reared, even 

under constant photophase or scotophase conditions. Castrovillo and Carde 

(1980) were able to prove codling moth males use visual cues as well as 

pheromones to locate females by showing that males spent more time close to a 

dead female than to a pheromone lure. Wind tunnel studies were used to 

determine codlemone concentrations in an attracticide formulation containing 

cyfluthrin (Losel et al. 2000). Other studies were able to determine that mated 

female codling moths were attracted to apple odors, with enhanced attraction to 

apples already infested with moths (Reed and Landolt 2002). 

Several other tortricid moths have also been the subject of wind tunnel 

studies. Mating disruption, behavior, habituation and pheromone component 

studies have been performed on the European grapevine moth, Lobesia botrana 

Den. & Schiff. (Hurtrel and Thiery 1999), European grape moth, Eupoecilia 

ambiguella Hubner (Rauscher et al. 1984), light-brown apple moth, Epiphyas 

postvittana (Walker) (Foster and Harris 1992, Rumbo et al. 1993), spruce 

budworm, Choristoneura fumiferana (Clemens) (Sanders 1985, Dallaire et al. 

2004), smaller tea tortrix moth, Adoxophyes sp. (Kainoh et al. 1984, Hiyori et al. 

1986), redbanded leafroller, Argyrotaenia velutinana Walker (Miller and Roelofs 

1978) and obliquebanded leafroller, Choristoneura rosaceana (Harris) (Evenden 

et al. 2000, Dallaire et al. 2004). 
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D. Experimental Organisms 

1. Oriental Fruit Moth 

 The oriental fruit moth, Grapholita molesta (Busck), is a member of the 

family Tortricidae. It is a native of northwest China. The earliest documentation of 

its spread outside of China was to Japan in 1901, but by the 1930’s every 

continent had proof of its presence (Rothschild and Vickers 1991). The oriental 

fruit moth was introduced to North America from Japan in 1913 through the 

importation of flowering cherry trees (Rothschild and Vickers 1991, Beers et al. 

1993). 

Common host plants include various species of Prunus and Pyrus, as well 

as fruiting myrtle (Eugenia myrianthus), rose (Rosa sp.), loquat (Eriobotrya 

japonica), and apple (Malus silvestris) (Rothschild and Vickers 1991, Beers et al. 

1993). The preferred wild host is fruiting quince (Cydonia vulgaris), but the 

primary cultivated hosts are peach and nectarine (Summers 1966, Rothschild 

and Vickers 1991, Beers et al. 1993). 

Beginning in Brazil in 1982 (Reis Fo et al. 1988), reports throughout the 

world indicated oriental fruit moth moving into commercial apple orchards, but the 

reasons for this host shift are, as yet, unclear (Usmani and Shearer 2001, 

Hughes and Dorn 2002). 

 

a. Biology 

 Oriental fruit moth eggs are small (0.8 mm in diameter), flat, oval discs 

that are white in color. They turn amber in color just before hatch (Rothschild and 
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Vickers 1991, Beers et al. 1993). Eggs are typically laid on smooth surfaces of 

leaves or young twigs (Reis Fo et al. 1988, Rothschild and Vickers 1991, Beers 

et al. 1993). A single female can produce up to 200 eggs (Beers et al. 1993), but 

there is great variation between individuals (Rothschild and Vickers 1991). Egg 

incubation is typically 4-8 days (Rothschild and Vickers 1991, Beers et al. 1993). 

 Freshly hatched larvae are approximately 2 mm long and 0.5 mm in 

diameter with a cream-colored body and a black head (Beers et al. 1993). The 

Oriental fruit moth typically goes through four larval instars with five instars 

possible under certain conditions. The mature larvae are pink/white in color with 

a brown head capsule and are between 8 and 13 mm long. Larval development 

typically takes two to three weeks (Rothschild and Vickers 1991, Beers et al. 

1993). 

 Prior to pupation, the mature larva leaves the host’s shoot or fruit and 

finds a protected site to spin a cocoon, such as under the tree’s bark or in brush 

or ground litter (Beers et al. 1993). Early generations split their choices between 

in-tree sites and ground litter sites. Later generations, including the overwintering 

generation, primarily leave the tree to pupate, which takes about 10-16 days 

(Rothschild and Vickers 1991). 

 Adults are approximately 5 mm long and are gray with indistinct light and 

dark bands, giving the oriental fruit moth a salt-and-pepper appearance (Beers et 

al. 1993). Adult life expectancy is between 12 and 15 days. Both sexes are 

attracted to plant volatiles related to host plants, presumably for host-finding 

(Natale et al. 2004). Mate-finding is pheromone mediated, but the process can be 
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regulated by light and temperature. Adults become sexually active within two 

days of emergence. Mating procedures begin with the female moving to the 

upper canopy of the tree to begin “calling.” This consists of the female releasing 

sex pheromone from glandular tissue in the intersegmental membrane between 

the posterior abdominal segments. Females begin calling approximately 3 hours 

before the onset of scotophase and will continue 1 hour into scotophase, but 

onset of calling could be much earlier on cool days (Rothschild and Vickers 

1991). 

 Male moths show similar activity patterns to the female, but some data 

suggests they remain sexually responsive later into scotophase. Three of the four 

components that make up the female sex pheromone are responsible for arousal 

and upwind flight of the male, while the fourth is believed to be critical in the final 

stages of courtship. Once the male finds the female he everts his hair pencils 

(hair-like structures at the tip of the abdomen) that release a blend of 

components used to enhance female receptivity. Once in the mating posture 

insemination occurs via a spermatophore. Males will typically mate only once per 

night, but may mate with several females on successive nights. One mating is 

enough for the female to lay her full complement of eggs (Rothschild and Vickers 

1991). 

 The oriental fruit moth overwinters as a mature larva within a silken 

cocoon (Beers et al. 1993). Depending on latitude two to seven generations can 

be expected per year (Rothschild and Vickers 1991). Missouri typically sees five 
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generations per year, with a partial sixth in the southern portions of the state 

(Sarai 1970). 

 

b. Pest Status and Control 

 The oriental fruit moth modifies its food preference throughout the year. 

First generation larvae primarily bore into young shoot tips of the cultivated host 

plant, but can also feed upon young, developing fruit. The proportion of larvae 

attacking shoots versus those attacking fruit shifts toward the fruit with each 

subsequent generation (Reis Fo et al. 1988, Rothschild and Vickers 1991, Beers 

et al. 1993). Damage of the young fruit is relegated to near the surface, but as 

the fruit matures the larvae burrow further into the ripening flesh. Larval presence 

in fruit is indicated by tiny entrance holes near the stem containing fine, brown 

frass (Rothschild and Vickers 1991, Beers et al. 1993). 

 Before the advent of synthetic organic insecticides in the 1940’s, inorganic 

chemicals were largely ineffective against the oriental fruit moth. Farmers were 

relegated to numerous forms of cultural control. This prompted the successful 

development of biological control programs. Most of this work has revolved 

around the larval parasitoid Macrocentrus ancylivorus Rohwer and several 

Trichogramma egg parasites (Merritt 1933, Rothschild and Vickers 1991). 

 With the advent of DDT (dichlorodiphenyltrichloroethane), chemical control 

became an effective tool against newly hatched larvae. This continued with the 

development of several organophosphate and carbamate compounds 

(Rothschild and Vickers 1991). Despite the long-term and widespread use of 
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these insecticides, resistance did not show up until the mid 1990’s (Kanga et al. 

1999, Usmani and Shearer 2001). To limit resistance development, some current 

management programs suggest utilizing organophosphates to control first 

generation larvae, and pyrethroids or mating disruption for all subsequent moth 

generations (Kanga et al. 1999, Trimble et al. 2001). 

 The process of mating disruption includes releasing synthetic sex 

pheromone in concentrations high enough to create a background of pheromone 

which masks the natural pheromone released by the female. Mating disruption 

programs were established in the 1970’s. By the 1980’s mating disruption 

showed enough potential to reach mass-market. In some areas where the 

oriental fruit moth is a key pest mating disruption has been shown to be as 

effective, or more effective, than conventional insecticide programs (Rothschild 

and Vickers 1991). In recent years synthetic sex pheromones have been 

combined with insecticides such as permethrin to create attracticides where the 

oriental fruit moth comes into contact with the insecticide (Evenden and 

McLaughlin 2004). 

 In recent years IGR's, like methoxyfenozide, have been added to spray 

regimes, with applications occurring at the egg or neonate stage (Borchert et al. 

2004a). 

 

2. Codling Moth 

The codling moth, Cydia pomonella (L.), is a member of the family 

Tortricidae. It originated in Asia Minor and was first recorded by Theophrastus, a 
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favorite pupil of Aristotle, in 371 B.C. (Smotavac 1963). Emigrants from the 

region spread the moth into Europe from which it has radiated out into all apple 

growing regions of the world. The codling moth has been a well known pest of 

apples since the mid 1700’s (Slingerland 1898), and considered a serious pest of 

apples for 250 years. Other known hosts include various Pyrus and Prunus 

species as well as, quince (Cydonia sp.) and walnut (Juglans sp.) (Barnes 1991, 

Beers et al. 1993, Howitt 1993). 

 

a. Biology 

 Codling moth eggs are laid singly and are transparent (Beers et al. 1993). 

They are flat, oval and measure 1 to 1.2 mm in diameter (Beers et al. 1993, 

Howitt 1993). A single female can deposit as many as 100 eggs, which can hatch 

within six to 14 days (Beers et al. 1993, Howitt 1993). Greater than eighty 

percent of codling moth eggs are laid on apple leaves in the immediate vicinity of 

fruit (Jackson 1979). Studies have demonstrated that oviposition is stimulated by 

volatiles released by growing and ripening apple fruit (Vallat and Dorn 2005, 

Witzgall et al. 2005). 

Neonate larvae are approximately 2 mm long and 0.5 mm in diameter with 

a cream-colored body and black head (Beers et al. 1993, Howitt 1993). Since 

they are incapable of developing on a diet of leaves alone (Pszczolkowski et al. 

2002), newly hatched larvae are attracted to apple volatiles released by the fruit 

(Landolt et al. 1998). Upon reaching the fruit they promptly enter it via the side or 

calyx end and feed on the inside flesh and seeds. Mature larvae are white or pink 
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in color with brown heads. They reach up to 13 mm long by the end of their fifth 

and final larval instar. Mature larvae leave the interior of the apple in search of an 

appropriate pupation site, usually under bark on the trunk or branches of the tree 

or in brush or litter on the ground (Beers et al. 1993, Howitt 1993). A recent study 

by Jumean et al. (2005) has identified a larval aggregation pheromone used to 

locate suitable pupation sites. 

Codling moth pupae are brown and approximately 12 mm in length. They 

are contained within a loose cocoon made of silk spun by the mature larva, and 

remain enclosed for two to three weeks during the summer generations (Beers et 

al. 1993, Howitt 1993). 

Adults are 9 mm long with a wingspan of 19 mm. They are gray-brown 

with criss-crossing fine bands of alternating white and gray. The forewings are 

tipped with bronze scales (Beers et al. 1993, Howitt 1993). Like larvae, mated 

adults are attracted to apple odors. This host-finding is augmented by odors 

released from infested or damaged fruit. The location of an infested apple tree 

could show proximity to other, uninfected trees or fruits (Reed and Landolt 2002).  

Mate-finding is pheromone mediated, and is regulated by light, 

temperature, humidity and air movement (Borden 1931). There is some debate 

over the time of day at which peak flight activity occurs: one hour before to one 

hour after sunset (Castrovillo and Carde 1979), beginning at sunset for 30 

minutes (Howell et al. 1990), or 0-1 hour after sunset and again at the onset of 

sunrise (Knight et al. 1994b). Moth flight is mainly limited to temperatures ranging 

from 130C to 270C (Castrovillo and Carde 1979). The act of mate finding begins 
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with the female getting into the releasing posture, head down, abdomen up, and 

wings slightly apart, and emitting the pheromone. The male begins by flying 

upwind in response to the sex pheromone. Once close to the female, he lands 

and begins walking towards her while fanning his wings. The male then touches 

her with his head and positions himself beside her to probe her abdomen with 

his. Once the male’s valves grasp the female’s genitalia wing fanning ceases and 

the male rotates 1800 to the female (Castrovillo and Carde 1980). 

The codling moth overwinters as a mature larva (Beers et al. 1993, Howitt 

1993). One to four generations occur a year in North America, dictated by 

latitude and elevation (Riedl and Croft 1978). A typical Missouri climate produces 

three broods a year (Jenkins et al. 1942). 

 

b. Pest Status and Control 

The codling moth is considered a direct pest, as it attacks the harvestable 

portion of the plant, the fruit. This damage comes in two forms, “stings” and 

“entries.” Stings are areas of damage where a larva has chewed through the skin 

but died or gave up and moved on before getting to the flesh. Entries occur when 

the larva chews through the skin and into the flesh. Entries are usually 

accompanied by brown frass, a mixture of fruit particles and insect excrement 

forced out the opening (Beers et al. 1993). 

The codling moth has been the target of chemical control strategies since 

the late 1800’s. Over the years changes in control measures have been required 

due to its penchant for developing resistance. In 1900 only one to three arsenical 
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sprays per year were required to control the moth. By the 1940’s that number 

had jumped up to six to 10 sprays a season. Within a few years of the 

introduction of DDT (dichlorodiphenyltrichloroethane) the codling moth was 

already showing signs of resistance (Cutright 1954). By the mid 1950’s 

organophosphates were already widely used for codling moth control (Dunley 

and Welter 2000). Carbamate and pyrethroid use soon followed. Unfortunately, 

the moth began showing resistance to these as well (Knight et al. 1994a, 

Chapman and Barrett 1997, Dunley and Welter 2000). Resistance management 

strategies have included the use of alternative methods of control: granulosis 

virus (Glen and Clark 1985), biological control (Falcon and Huber 1991), mating 

disruption (Pfeiffer et al. 1993), and particle films (Unruh et al. 2000). Another 

recent area of interest has been the use of IGR's. These somewhat specialized 

compounds are currently effective at lower rates than their conventional 

predecessors (Pasquier and Charmillot 2004), but care needs to be taken as 

some evidence of cross resistance with conventional insecticides has been 

observed (Bouvier et al. 2002). Several studies have reported the lethal and 

sublethal efficacy of tebufenozide and methoxyfenozide on all life stages of the 

codling moth (Sun and Barrett 1999, Knight 2000, Smagghe et al. 2004).  
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Chapter 2: Materials and Methods 

 

A. Insects 

 All oriental fruit moth, Grapholita molesta (Busck), and codling moth, 

Cydia pomonella (L.), used in the studies came from laboratory colonies 

maintained at the University of Missouri, Horticulture and Agroforestry Research 

Center (HARC), New Franklin, Missouri. These colonies were started in 2004 

with egg masses obtained from a laboratory colony at the Department of 

Entomology, Rutgers State University, New Jersey, and larvae from a laboratory 

colony at the Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, 

Washington, respectively. Periodic stocking of the HARC colonies from both 

parent colonies were performed throughout the season to maintain colony vigor. 

 All moth colonies were kept in environmental chambers set at 24oC with a 

photoperiod of 16L:8D. 

 

B. Chemical Treatments 

 The chemicals used in the studies were methoxyfenozide (Intrepid® 2F), 

tebufenozide (Confirm® 2F), both produced by Dow Agrosciences (Indianapolis, 

Indiana), and Latron B-1956® (a resin-based nonionic surfactant), produced by 

UAP-Loveland Industries Inc. (Greeley, Colorado). Small volume quantities (1000 

ml) of methoxyfenozide and tebufenozide were prepared at concentrations 

corresponding with recommended field rates (300 ppm and 360 ppm, 

respectively.) This included 1.25 ml/1000 ml of water and 1.50 ml/1000 ml of 
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water, respectively. Latron B-1956® (or a similar spreader sticker) is 

recommended to be included in field applications of both methoxyfenozide and 

tebufenozide. As such, a proportionate field rate of the surfactant (0.125% 

vol./vol.) was added to both treatment solutions (1.25 ml/1000 ml of water). 

Hereafter, Latron B-1956® will be referred to only as Latron. 

 Due to some inconclusive results of Latron’s sublethal effects on 

previously tested tortricid moth pests (Sun and Barrett 1999, Hoelscher and 

Barrett 2003a) some of the treatment combinations in this study included Latron. 

For example, a Latron-Latron treatment was established as a positive control, 

and water alone was used as a negative control treatment. 

 The treatment solutions were stored in Pyrex® glass flasks (wrapped in 

aluminum foil) in the dark at room temperature when not in use. Fresh solutions 

were prepared every 7 days. 

 

C. Wind Tunnel Setup 

 The wind tunnel used in these studies was located at the University of 

Missouri, Horticulture and Agroforestry Research Center (HARC), New Franklin, 

Missouri. The wind tunnel was housed in a basement room that was connected 

with the building’s central air conditioning and heating system. In addition, the 

room had two wall vents (input and exhaust) with fans to access outside air. 

 The wind tunnel consisted of three main parts: the air input section, the 

main tunnel body, and the air exhaust section (Figure 1). The air input section 

consisted of a 15-inch, 120 volt, rotary-blade fan (Patton® high velocity fan, 
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model U2-1487) connected to the main body of the tunnel by a 0.9 m long tube of 

plastic sheeting. The input end of the tunnel was near a central air 

conditioning/heating vent and the outside air intake vent. This allowed the 

appropriate combination of air temperature and humidity to be maintained during 

the experiments.  

Air flow from the rotary fan first entered a ‘mixing chamber’ on the tunnel 

body that consisted of two sheets of sheer, 100% polyester cloth stretched tightly 

across the tunnel’s opening and separated from each other by 10 cm. The 

purpose of this mixing chamber was to dampen the air turbulence created by the 

rotary fan, thus creating a laminar flow of air throughout the tunnel body. Laminar 

flow of air through a wind tunnel is crucial when predicting the path of a 

pheromone plume from a point source. Smoke plumes of titanium tetrachloride 

(TiCl4) were utilized to confirm that laminar flow was occurring in the desired 

pattern. Small pieces of cotton were saturated in a TiCl4 solution and placed in 

cages and positions in the tunnel identical to those used in the experiments. After 

each use of TiCl4, usually once a month, the inside of the wind tunnel was 

washed thoroughly with soap and water to remove any contaminants. 

The main tunnel body consisted of a 2.9 m length of white polyvinyl 

chloride (PVC) pipe with an interior diameter of 60 cm. On the top of the tunnel, 

and just off-center, running the length of the tunnel body, were three observation 

windows measuring 39 x 14 cm each. Below each window was a hinged door 

measuring 60 x 18 cm also with windows. All windows were covered with clear 
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Plexiglas sheets attached from the inside to maintain even, smooth walls on the 

interior of the tunnel. 

The air exhaust portion of the wind tunnel consisted of 18 gauge sheet 

metal forming a cone that tapered from the 60 cm diameter of the wind tunnel 

body to 30.5 cm diameter. Flexible ductwork connected the cone to the exhaust 

wall outlet, accompanied by a fan used to help pull air from the wind tunnel out of 

the building. Between the PVC tunnel body and the sheet metal ductwork was a 

single layer of nylon tulle cloth stretched tightly across the opening to prevent 

moths from escaping the tunnel body. 

 

D. Wind Tunnel Assays 

1. Non-choice Flight Assay 

Exposure Cage- The treatment exposure cages were constructed from 

clear plastic vials 9.2 cm long with an internal diameter of 4.5 cm (Fisher 

Scientific® Polystyrene Containers) (Figure 2). The closed end of the vial was 

removed and replaced with wire mesh screen measuring 1.5 x 1.5 mm. The 

center portion of the snap cap lid was also removed and replaced with mesh 

screening. The cages were then lined with a removable plastic mesh (2 x 2 mm). 

The vials and lids and plastic mesh liners were submerged and agitated in a 

treatment solution for one minute then allowed to air dry.  

Insects and Equipment- Four to five recently emerged virgin oriental fruit 

moth (0-24 h old), of the same sex were placed in a treatment exposure cage. All 

cages containing the same sex were placed in an 18 x 31 cm Sterilite® plastic 
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sealable container for 48 h. All cages were stored inside an environmental 

chamber set at 24oC with a 16L:8D photoperiod. 

 A pedestal for female cage placement was constructed 5 cm downwind 

from the mixing chamber at the head of the wind tunnel. The pedestal consisted 

of a 35 cm stainless steel rod with a sheet metal platform adhered at each end. 

The top platform measured 8 x 15 cm. A small section of PVC tube, cut in half 

lengthwise, was attached to the top of the platform. This provided a holding 

position for the exposure cage to rest without rolling off the platform. A paper 

card measuring 8 x 12 cm, covered with a thin layer of TangleTrap® insect 

adhesive, was positioned in front of the exposure cage (Figure 2). 

 One meter downwind from the female platform a second platform of the 

same height was positioned for the male moth release cage. This cage consisted 

of a Plexiglas cylinder measuring 9 cm long with an internal diameter of 6.5 cm. 

Both ends of the cage were fitted with Plexiglas rings covered with mesh screen 

hinged to the top of the cage (Figure 3). Both ring covers were also attached to 

each other via a short length of monofilament fishing line. A thin wire was 

threaded through a small hole in the top of the wind tunnel above the release 

cage. When hooked onto the fishing line, the wire could be retracted from outside 

the wind tunnel, opening both ends of the release cage simultaneously. This 

arrangement allowed the male moths to leave the cage and fly either upwind or 

downwind with minimal moth or air flow disturbance. 

Procedures- Air velocity and temperature within the tunnel were 

maintained at 0.2-0.3 m/s and 23-25oC (as measured by a Fisher Scientific® 
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Economy Digital Anemometer), respectively. Illumination was maintained at full 

light levels (200-300 lux) throughout the duration of the experiments. Willis and 

Baker (1994) and Valeur and Lofstadt (1996) performed wind tunnel studies 

under similar light levels, at 250 lux and 400 lux, respectively. 

 The following treatment combinations, based on exposure to treated cage 

surfaces (by sex) for 48 h, were established:  

 

Treatment     Females          Males   

A  Water    Water 

B  Water    Latron 

C  Latron    Latron 

D  Latron    Water 

E  Water    Methoxyfenozide 

F  Methoxyfenozide  Water 

G  Latron    Methoxyfenozide 

H  Methoxyfenozide  Latron 

I  Methoxyfenozide  Methoxyfenozide 

 

 Prior to the beginning of each treatment trial, an exposure cage containing 

four to five females was removed from the environmental chamber and placed on 

the upwind pedestal of the wind tunnel. Two exposure cages containing eight to 

ten males were also removed from the environmental chamber and placed inside 
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the release cage on the downwind platform. All moths were then allowed to 

acclimate to the temperature and airflow within the tunnel for 10 minutes. 

 After the acclimation period the front and back hinged covers of the 

release cage were pulled up, releasing the males. Twenty minutes later the 

number of males captured on the sticky card in front of the female cage was 

recorded. All moths were then removed from the wind tunnel and the procedure 

was repeated with new female and male treatment replicates. 

 Each day the treatment trials began two hours before the onset of 

scotophase and were terminated one hour after the onset of scotophase (a 3 h 

testing period). Several studies performing wind tunnel research with oriental fruit 

moth decided on similar times of day for observation (Lacey and Sanders 1992, 

Valeur and Lofstedt 1996, Evenden and McLaughlin 2005). Hughes and Dorn 

(2002) reported that peak oriental fruit moth flight activity occurred during the first 

hour of scotophase. As a result of these past studies, only 5-6 treatment trials 

could be completed each day. As such, the experiment was completed in two 

phases. The first phase compared the effects of Latron 1956® to the water 

control (treatments A, B, C, D, and I). The second phase compared the effects of 

methoxyfenozide to the water control (treatments A, E, F, G, H, and I). To avoid 

any day-to-day variation, all treatments in a given phase were examined each 

day. The order of treatment testing was changed daily to eliminate the effect of 

time. Overall, each treatment had 10 replicates, and new moths were used for 

each replicate.  
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 After each day of testing the treatment cages, lids and liners were cleaned 

with hot, soapy water before being retreated with the same treatment solution. 

The wind tunnel was cleaned and rinsed down with water once a week to remove 

any possible pheromone residue buildup. Upon completion of the two phases, 

data were compared for equality and pooled for analysis. 

 Data Analysis- All statistical analyses were conducted using the SAS 

program (SAS Institute 2004). Differences among treatment combinations in 

regards to the mean number of male moths trapped on the sticky card in front of 

the females’ cage were determined by analysis of variance (ANOVA) using 

general linear model (GLM) procedures. If the overall treatment F tests were 

significant then the treatment means were separated by Fisher’s protected least 

significant differences (LSD). Differences were considered statistically significant 

at the level of P<0.05 unless otherwise noted. 

 

2. Treatment Choice Assay 

 Exposure Cage- The treatment exposure cages consisted of 5.7 cm long 

clear plastic vial tubes (Fisher Scientific® Polystyrene Containers) with an interior 

diameter of 2.5 cm (Figure 4). The closed end of the vial was removed and 

replaced with a polyester fine mesh fabric. The center of the snap cap lid was 

removed and replaced with the same polyester mesh. The cages were lined with 

a removable plastic mesh screen (2 x 2 mm). The vials, removable lids and 

plastic mesh liners were submerged and agitated in a treatment solution for one 

minute then allowed to air dry.  
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 Insects and Equipment - Two recently emerged virgin oriental fruit moth 

(0-24 h old), of the same sex were placed in a treatment exposure cage. All 

cages holding the same sex were placed in an 18 x 31 cm Sterilite® plastic 

sealable container for 48 h. All cages were stored inside an environmental 

chamber set at 24oC with a 16L:8D photoperiod. 

 A framework made of aluminum pieces (1.6 x 12.7 mm) spanning the 

width of the wind tunnel was placed at the upper portion of the tunnel 5 cm 

downwind from the mixing chamber. A platform measuring 8 cm wide was 

created that spanned the width of the wind tunnel at a height of 30 cm from the 

bottom of the tunnel. Two female exposure cages were centered in the tunnel on 

the framework (Figure 5). A white cardboard landing pad measuring 4 x 6.4 cm 

was suspended directly in front of each cage (Figure 4). The two female cages 

were placed far enough apart, 21.3 cm, to separate the pheromone plumes 

emanating from each cage before they intersected approximately 1.5 m 

downwind (as verified by test smoke plumes of titanium tetrachloride). 

 A male release cage was placed 1.5 m downwind of the female exposure 

cages, at the point of plume intersection. This cage consisted of a white polyvinyl 

chloride (PVC) tube measuring 8 x 15 cm (Figure 5). The downwind opening of 

the cage was covered with wire mesh screen (1.5 x 1.5 mm) to prevent moths 

from escaping via that direction. The upwind end of the cage was open. A hole 

measuring 4.5 cm in diameter was cut into the top of the cage 7 cm from the front 

to allow for moth placement inside the cage. A pedestal was created from 

stainless steel rod 26 cm long attached to sheet metal on the bottom and a 
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length of PVC pipe of similar diameter to the release cage cut in half to serve as 

a stable support on top. The male release cage was placed on top of this 

pedestal.  

Air velocity and temperature within the tunnel were maintained at 0.2-0.3 

m/s and 23-25oC (as measured by a Fisher Scientific® Economy Digital 

Anemometer), respectively. Illumination was maintained at full light levels (200-

300 lux) throughout the duration of the experiments. 

Procedures- The following treatment combinations, based on moth 

exposure to treated cage surfaces for 48 h, were established for the two upwind 

female cages:  

Treatment  Left female cage  Right female cage  

A  Water    Water 

B   Latron    Water 

C  Latron    Latron 

D  Methoxyfenozide  Water 

E  Methoxyfenozide  Latron 

F  Methoxyfenozide  Methoxyfenozide 

G  1 mg Septum Lure  Water 

The male moths were exposed to the following treated surfaces for 48 h: 

      Treatment           Male   

   1  Water  

   2  Latron 

   3  Methoxyfenozide 
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 All female treatments were combined with all male treatments to create a 

total of 21 treatment combinations. Due to the large number of treatment 

combinations an incomplete block design was utilized. The design separated the 

treatment combinations into sets of 5 treatment replicates per block. Typically, 

one to two blocks were completed each day. The incomplete block design 

changed the order of treatment combinations examined daily to avoid any effects 

of time on moth calling and responsiveness. Ten replications were completed for 

each of the 21 treatment combinations. New moths were used for each replicate. 

To remove any effect of female cage position (right versus left), the incomplete 

block design included rotating female cage position for the final 5 replicates. 

 Experiments were started three hours before the onset of scotophase and 

terminated one hour after the onset of scotophase. Prior to each experimental 

trial two exposure cages containing females were removed from the 

environmental chamber and placed on the framework at the front of the wind 

tunnel. An exposure cage containing two males was placed on the floor of the 

tunnel. All moths were allowed to acclimate to the tunnel temperature and airflow 

for 10 minutes. 

 After the acclimation period, the males were gently placed into the release 

cage by carefully shaking them out of the exposure cage into the opening at the 

top of the release cage. Males were then observed for 10 minutes. Of the two 

males released only data on the behavior of the most active individual was 

recorded. Careful measurements were taken on when the male left the release 

cage, when and how long it acquired a pheromone plume, which female 
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treatment plume it acquired, and when, which and how long it was in contact with 

a female cage assembly. At the termination of each 10 minute observation 

period, both males and all females were removed from the tunnel. The study was 

then repeated with another treatment replicate. 

 Data Analysis- All statistical analyses were conducted using the SAS 

program (SAS Institute 2004). Differences within treatment combinations in 

regards to the pheromone plume and cage choices and differences among 

treatment combinations in regards to the mean presence of males in the 

pheromone plume or on one of the female cages were individually determined by 

analysis of variance (ANOVA) using generalized linear model (GENMOD) 

procedures. If the overall treatment Chi-square tests were significant then the 

treatment means were separated by individual chi-square tests. Differences were 

considered statistically significant at the level of P<0.05 unless otherwise noted. 

 

E. Fecundity and Fertility Assays 

 Mating/oviposition cages were constructed from 10 cm long sections of 

white polyvinyl chloride (PVC) pipe with an interior diameter of 7.6 cm. Two lids 

were constructed of 9 mm wide PVC rings with inner diameters of 8.8 cm (equal 

to the outer diameter of the cage) covered with 1.5 x 1.5 mm wire mesh screen. 

Each cage was lined with 2 x 2 mm plastic mesh screen (Figure 6). The purpose 

of the plastic mesh liners and wire mesh covered lids was to remove any 

unintended smooth surfaces (preferred oviposition sites). Moths were exposed to 

removable thin, clear plastic discs 8.8 cm in diameter positioned between the 
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upper lid and the cage that served as oviposition sites. The lids, plastic 

oviposition discs and plastic mesh liners were submerged and agitated in one of 

the following treatment solutions for one minute then allowed to air dry: 

       Treatment   

   A Water 

   B Latron 

   C Tebufenozide 

   D Methoxyfenozide 

 Data Analysis- All statistical analyses were conducted using the SAS 

program (SAS Institute 2004). Differences among treatment combinations in 

regards to the number of replicates with eggs laid and eggs hatched were 

separated by the Continuity Adjusted Row by Column Chi-square Test. Rank 

transformations of the fecundity and fertility data, as outlined by Conover and 

Iman (1981), were performed before being analyzed. Differences among 

treatment combinations in regards to number of eggs laid and percent of eggs 

hatched were determined by analysis of variance (ANOVA) using general linear 

model (GLM) procedures. If the overall treatment F tests were significant then the 

treatment means were separated by Fisher’s protected least significant 

differences (LSD). Differences among treatment combinations in regards to the 

survivability of the females were determined by the Kaplan-Meier method of 

survival analysis (LIFETEST) procedures. Differences between survival curves 

were determined using the Log-Rank chi-square test. Differences were 

considered statistically significant at the level of P<0.05 unless otherwise noted. 
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1. Continuous Exposure Assay: both sexes 

 Procedures- One female and two male oriental fruit moth, all less than 24 

hours old and virgin, were placed in a treatment mating/oviposition cage. Ten 

replications were conducted for each treatment. After moth introductions all 

cages were stored inside an environmental chamber set at 24oC with a 16L:8D 

photoperiod. 

 Every 24 hours the cages were inspected for adult mortality and 

oviposition. The number of eggs found on each plastic disc was recorded and 

replaced with a clean, freshly treated disc. The discs with eggs were sealed in a 

plastic container (Tupperware®) measuring 15 x 27 x 6 cm with a moist paper 

towel (to retain high humidity). The egg discs were stored inside an 

environmental chamber set at 24oC with a 16L:8D photoperiod. The number of 

eggs hatched on each disc was recorded every 24 hours. Each disc was 

observed for 10 days. 

 

2. 24-hour Exposure Assay: Treated/Nontreated Pairings 

Exposure Cage- The treatment exposure cages were constructed from 

clear plastic vials 9.2 cm long with an internal diameter of 4.5 cm (Fisher 

Scientific® Polystyrene Containers). The closed end of the vial was removed and 

replaced with wire mesh screen measuring 1.5 x 1.5 mm. The center portion of 

the snap cap lid was also removed and replaced with mesh screening. The vials, 

lids and plastic mesh liners (2 x 2 mm) were submerged and agitated in a 

treatment solution for one minute then allowed to air dry.  
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 Procedures- One female or two male oriental fruit moth, depending on the 

study, all less than 24 hours old and virgin, were placed in a treated exposure 

cage for 24 hours. The untreated sex was immediately placed in a 

mating/oviposition cage. After 24 hours the treated sex was added to the 

mating/oviposition cages. Ten replications were conducted for each treatment. All 

cages were stored inside an environmental chamber set at 24oC with a 16L:8D 

photoperiod. 

 Every 24 hours the cages were inspected for adult mortality and 

oviposition. The number of eggs found on each plastic oviposition disc was 

recorded and the disc was replaced with a clean, freshly treated disc. The discs 

with eggs were sealed in a plastic container (Tupperware®) measuring 15 x 27 

cm with a moist paper towel (to retain high humidity). The eggs were stored 

inside an environmental chamber set at 24oC with a 16L:8D photoperiod. The 

number of eggs hatched on each disc was recorded every 24 hours.  

 

F. Codling Moth and Oriental Fruit Moth Feeding Comparison Assay 

 Feeding Cage- The feeding cages were constructed from opaque, soft 

plastic cups with removable lids (Fisher Scientific® Multipurpose Containers). The 

cups measured 11 cm tall with internal diameters at the base and top of 6.5 cm 

and 9 cm, respectively. Several pin-size holes were pierced into the lids to allow 

for gas exchange. Three lengths of 12 gauge wire approximately 9 cm long were 

punctured through the cup approximately 3.5 cm from the base and equidistant 

from each other to create a wire platform (Figure 7). 
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 Insects and Equipment - Organic, pesticide-free Jonathan apples were 

purchased from a local grocery store (Hy-Vee, Columbia, MO). The apples were 

soaked in warm water for five minutes then dried with paper towels to remove 

any dirt or other contaminants. The apples were then placed inside the cage on 

top of the wire supports. The purpose of the wire supports was to raise the 

apples off the bottom of the cage to allow the larvae free access to all parts of the 

apple. 

 First instar larvae of oriental fruit moth and codling moth (less than 24 

hours old) were placed inside the cages. Each cage received two larvae of the 

same species. All larvae were placed on the top of the apples, away from the 

stem. The cages were then stored inside an environmental chamber set at 24oC 

with a 16L:8D photoperiod. 

 Procedures- Observations on fruit damage in each cage were taken every 

three to four days for two weeks. Data collection on feeding damage included the 

presence and size of surface and subsurface damage, presence, size and 

moisture content of expelled frass (Figure 8), and any noticeable activity of the 

larvae. To easily separate and quantify the location of surface damage on the 

apple, each fruit was separated into six external regions. Regions one and six 

were located at the stem and calyx ends of the apple, respectively. Regions two 

through four were evenly separated transverse rings around the apple (Figure 9).  

Two weeks after introduction of the larvae into the cages, the apples were 

sliced open to make observations on any internal damage. To quantify the 

location of such damage, the interior of the apple was separated into four 
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regions. Regions one through three were the base of the stem to the seed cavity, 

the seed cavity, and the end of the seed cavity to the base of the calyx, 

respectively. The remainder of the fruit flesh, the outer ring, was designated 

region four (Figure 10). The percent damage occurring in each region was 

determined as well as the level of damage to and the number of seeds damaged. 

Due to mortality, 15 replicates of oriental fruit moth and 21 replicates of 

codling moth were performed during the study. Fourteen oriental fruit moth and 

16 codling moth replicates were observed for internal damage at termination of 

the study. 

 Data Analysis- All statistical analyses were conducted using the SAS 

program (SAS Institute 2004). Differences among treatment combinations in 

regards to the presence of subsurface damage, entrance/exit holes, and levels of 

frass moisture as well as the levels of damage to the fruit flesh and seeds were 

separated by the Continuity Adjusted Row by Column Chi-square Test. 

Differences among treatment combinations in regards to the presence of 

subsurface damage or entrance/exit holes were individually determined by 

analysis of variance (ANOVA) using generalized linear model (GENMOD) 

procedures. If the overall treatment Chi-square tests were significant then the 

treatment means were separated by individual chi-square tests. Differences were 

considered statistically significant at the level of P<0.05 unless otherwise noted. 
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Figure 1. Wind tunnel housed at the Horticulture Agroforestry Research Center 
(New Franklin, MO). 
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Figure 2. Upwind female exposure/calling cage and male landing platform used 
in the non-choice flight assay. 
 
 
 

 
 
Figure 3. Downwind male release cage used in the non-choice flight assay. 
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Figure 4. Upwind female exposure/calling cage and male landing platform used 
in the choice flight assay. 
 
 
 

 
 

Figure 5. Downwind male release cage (foreground) and two upwind female 
exposure/calling cages (background) used in the choice flight assay. 
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Figure 6. Mating and oviposition cage used in the fecundity and fertility assays.
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Figure 7. Opaque plastic feeding cage (with lid) and apple supports (12 gauge 
wire). 

 
 

 

 
 
Figure 8. Example of visible tunneling damage with frass on Jonathan apple 
produced by a codling moth larva from the feeding comparison assay.  
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Figure 9. Diagram of apple showing external separation zones. 
 
 
 

 
 
Figure 10. Diagram of apple showing internal separation zones. 
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Chapter 3: Results 
 

A. Wind Tunnel Assays 

1. Non-choice Flight Assay 

 When both female and male moths were exposed to water-treated 

surfaces (control) for 48 h over half of the released males, 55.5%, were captured 

at the female cage (Table 1). When both female and male moths were exposed 

to Latron-treated surfaces (control), the mean percent capture of released males 

was 40.1%. These values were not significantly different from each other. When 

the female was exposed to methoxyfenozide-, and the male exposed to Latron-

treated surfaces, there was no significant difference between the 47.4% male 

capture and the percent recaptures found in the water- and Latron-controls. 

When the female was exposed to Latron, and the male exposed to 

methoxyfenozide, there was no significant difference between the mean percent 

male capture of 32.2% and the Latron-control treatment. However, this was 

significantly less than the mean capture of the water-control treatment.  When 

males or females were exposed to methoxyfenozide and the other sex exposed 

to water the mean percent captures of males were 24.7% and 23.8%, 

respectively (Table 1). These treatments were significantly less than both control 

means. This was also true when both sexes were exposed to methoxyfenozide 

(24.3% capture.) 

 To examine the effect of each female-exposure treatment on overall mean 

male trap capture, all male treatment data were combined. The pooled mean 

percent capture of males for females exposed to water-, Latron-, and 
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methoxyfenozide-treated surfaces were 41.5%, 39.8% and 31.8%, respectively, 

regardless of male treatment exposure (Table 2). These means were not 

significantly different at the P<0.05 level. At the 90% confidence interval, 

however, females treated with methoxyfenozide attracted significantly fewer 

males than females exposed to water-treated surfaces, regardless of male 

treatment. There were no significant differences between mean male captures for 

Latron- and methoxyfenozide-treated females. 

 To examine the effect of each male-exposure treatment on mean male 

trap captures all female treatment data were combined. The pooled mean 

percent trap capture of males exposed to water-, Latron- and methoxyfenozide-

treated surfaces, regardless of female exposure, were 42.1%, 44.0% and 27.1%, 

respectively (Table 2). At the 95% confidence interval, methoxyfenozide-treated 

males were significantly less responsive to females than water- and Latron-

treated males, regardless of what the females had been exposed to. 
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Table 1. Mean percent of treated adult male oriental fruit moth released in a wind 
tunnel that were captured on an adhesive card in front of caged, treated females. 
 

Treatment Exposures by sex (F / M)a  
Nb

Mean (± SE) Percent 
of Male Captures 

Water / Water 10 55.5 ± 7.2 a 

Latron / Latronc 10 40.1 ± 8.0 ab 

Water / Latron 10 44.5 ± 3.0 ab 

Latron / Water 10 47.0 ± 5.4 ab 

Water / Methoxyfenozided 10 24.7 ± 7.4 c 

Methoxyfenozide / Water 10 23.8 ± 6.3 c 

Latron / Methoxyfenozide 10 32.2 ± 4.7 b 

Methoxyfenozide / Latron 10 47.4 ± 7.3 ab 

Methoxyfenozide / Methoxyfenozide 10 24.3 ± 6.5 c 
Means followed by the same letter are not significantly different (Fisher’s protected LSD, P<0.05). 
Actual means (not transformed means) are listed. 
aFemale (F) or male (M) moths, 0-24h old, exposed to treated surfaces for 48 h. 
bNumber of replicates per treatment. Each replicate consisted of 4-5 caged females and 5-7 
released males. New moths were used for each replicate. 
cThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a 
resin-based nonionic surfactant, mixed with water. 
dEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® 
as per label recommendations. 
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Table 2. Mean percent of treated adult male oriental fruit moth released in a wind 
tunnel that were captured on an adhesive card in front of caged, treated females. 
All female and male treatment data were pooled per treatment exposure. 
 

Mean (± SE) Percent of Male Capturesb
Treatment 
Exposure 

 
Na

Female Treatments Pooled Male Treatments Pooled 

Water 30 42.1 ± 4.2 a 41.5 ± 4.3 a y 

Latronc 30 44.0 ± 3.6 a 39.8 ± 3.7 a yz 

Methoxyfenozided 30 27.1 ± 4.3 b 31.8 ± 3.6 a z 
Means followed by the same letter are not significantly different (Fisher’s protected LSD). Actual 
means (not transformed means) are listed. 
aNumber of replicates per treatment. Each replicate consisted of 4-5 caged females and 5-7 
released males. New moths were used for each replicate. 
bThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column 
of letters (x, y, z) recognize significant difference at P<0.10. 
cThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a 
resin-based nonionic surfactant, mixed with water. 
dEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® 
as per label recommendations. 
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2. Treatment Choice Assay 

 All mean percent male captures for each male exposure treatment and 

female exposure treatment combination are given in Table 3. The highest mean 

level of incidence where males were observed within the pheromone plume 

(60%) was found with Latron-treated males exposed to the methoxyfenozide- 

and water-treated female combination. This level of response also occurred with 

Latron-treated males in response to a septum lure when paired with a water-

treated female.  

The female-treatment combinations that attracted 50% of the males, 

regardless of male exposure, were the female exposure combinations of water / 

water and septum lure / water for Latron-treated males, and the water / water 

combination for water-treated males (Table 3). The female- and male-treatment 

combinations that failed to attract any males in female plumes were with 

methoxyfenozide-treated males exposed to methoxyfenozide-treated females. 

This also occurred with methoxyfenozide-treated males exposed to Latron- / 

water- and Latron- / Latron- treated females. 

The largest difference between mean occurrences of males in female 

plumes occurred when 50% of water-treated males found the plume of water-

treated females and only 10% of the water-treated males occurred in the plume 

of methoxyfenozide-treated females (Table 3). This, however, was still not 

significant for this study, only showing significance at a 64% confidence interval. 

Similar patterns were observed for males making contact with female 

cages. For example, 60% of Latron-treated males made cage contact with water-
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treated females whereas 50% of males made cage contact with 

methoxyfenozide-treated females (Table 3). Other treatment combinations where 

50% of the released males made female cage contact were Latron-treated males 

on water-treated females that were paired against water-treated females and 

1mg septum lure, and water-treated males to water- and Latron-treated females 

paired against water- and methoxyfenozide-treated females, respectively (Table 

3). The only treatments with no males coming into contact with a female cage 

were all within the methoxyfenozide-treated males. 

 In order to examine the overall attractiveness of female treatment 

combinations, data on male responses to each female treatment pairing were 

combined. The female water / water combination had 50% of the water-treated 

males orient within their plumes (Table 4). The female methoxyfenozide / 

methoxyfenozide combination attracted the lowest percent of water-treated 

males, 15%. This was the only female treatment combination that was 

significantly less from the female water / water treatment. Interestingly, the 

highest observance of Latron-treated males that oriented within the female 

plumes (60%) was with the female methoxyfenozide / water combination. This 

was followed closely by 55% and 50% of Latron-treated males finding the 

pheromone plumes from the septum / water and water / water female 

combinations, respectively. The lowest observance of Latron-male plume 

orientation, and the only female treatment combination significantly different from 

the methoxyfenozide / water female treatment, was the Latron / water female 

treatment, at 15%. All female treatments exposed to methoxyfenozide-treated 
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males resulted in 0% to 35% of the males orienting within the female plumes. 

These were not significantly different at the 95% confidence interval, but at the 

90% confidence interval, the 35% of methoxyfenozide-treated males reaching the 

plume in the female water / water treatment combination was significantly 

different from all other female treatment combinations within the 

methoxyfenozide-treated male grouping (Table 4).  

When all male treatment data were pooled together, 45% of males 

oriented within the pheromone plumes in the female water / water treatment 

combination (Table 4). This was significantly greater than all other female 

treatments save the methoxyfenozide / water treatment, at 31.7% of males 

attracted. The methoxyfenozide / methoxyfenozide female treatment combination 

attracted only 15% of the males. 

 In terms of males contacting female cages, 40% of water-treated males 

came into contact with at least one of the cages in the female water / water 

treatment (Table 4). This was the highest response among the water-treated 

males. The lowest number of water-treated males contacting female cages was 

15% in the methoxyfenozide / methoxyfenozide and septum / water female 

treatments. These were not significantly different at the 95% confidence interval, 

but were significantly different at the 90% confidence interval. The female 

methoxyfenozide / water combination had the highest percent of latron-treated 

males contacting the female cages, 55% (Table 4). The only latron-treated male 

responses with significantly lower rates of cage contact were the 

methoxyfenozide / methoxyfenozide and latron / water female treatment 
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combinations, at 20% and 10%, respectively. The actual numbers of 

methoxyfenozide-treated males contacting female cages were so few that no 

analysis could be performed. However, the highest mean percentage among 

these males that made cage contact was 25% in the water / water female 

treatment combination. The 0% male response to the female methoxyfenozide / 

methoxyfenozide treatment was the lowest among methoxyfenozide-treated 

males (Table 4).  

When all male treatment data were pooled, 35% of males made cage 

contact with the female water / water combination (Table 4). The only female 

treatment combinations that were significantly less in percent male cage contact 

were the methoxyfenozide / methoxyfenozide treatment, at 11.7%, and the 

Latron / water treatment, at 18.3%. 

To consider the effect of each female treatment, regardless of the female 

treatment it was paired with on male responses, all identical female treatment 

data were pooled. Of water-treated males, 40% oriented to the pheromone 

plumes of water-treated females, but only 12.5% of such males oriented within 

the plumes of methoxyfenozide-treated female plumes (Table 5). Regarding 

Latron-treated males, there was no significant difference among the percentages 

of males oriented within the plumes of the water-treated (44%), Latron-treated 

(27.5%), and methoxyfenozide-treated (40%) females. The highest percent of 

methoxyfenozide-treated males that made pheromone plume orientation was 

22%, with the female water-treated combination. Latron- and methoxyfenozide-
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treated males were both at 5% towards the Latron- and methoxyfenozide-treated 

females, respectively (Table 5).  

When male data were pooled, water-treated females had 35.3% of the 

males finding their pheromone plume than both Latron- and methoxyfenozide-

treated females, at 21.7% and 19.2%, respectively (Table 5). 

 The mean percent of water-treated males that contacted the 

methoxyfenozide-treated female cages was 12.5% (Table 5). This was 

significantly less than both the water- and Latron-treated females, at 30.0% and 

32.5%, respectively. Regarding Latron-treated males, 40% contacted the cages 

of water-treated females, 27.5% contacted the cages of methoxyfenozide-treated 

females, and 25% contacted cages of Latron-treated females. These values were 

not significantly different. There was also no difference among the 

methoxyfenozide-treated males contacting female cages. The males contacted 

Latron-treated female cages and methoxyfenozide-treated female cages 5% of 

the time. Methoxyfenozide-treated males contacted Water-treated female cages 

14% of the time (Table 5).  

When all male data were pooled, males came in contact with cages of 

water-treated females 28.0% of the time (Table 5). This was significantly more 

than the 15% cage contact with the methoxyfenozide-treated females. Males 

made cage contact with Latron-treated females 20.8% of the time. This was 

significantly less than the water-treated females at the 90% confidence interval. 

 To examine the effect of male treatment on plume orientation and female 

cage contact, all female treatment data were combined. Only 11.4% of 
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methoxyfenozide-treated males oriented to a pheromone plume, which was 

significantly less than the 28.6% and 39.3% of plume orientation from water- and 

Latron-treated males, respectively (Table 6). The water-treated males oriented to 

a pheromone plume significantly less than Latron-treated males, at the 90% 

confidence interval. Water-treated and Latron-treated males contacted female 

cages 26.4% and 33.6% of the time, respectively. These percentages were both 

significantly higher than the 8.6% cage contact from methoxyfenozide-treated 

males (Table 6). 

 



Table 3. Percent of treated adult male oriental fruit moth released in a wind tunnel that were found to be orienting within 
each treatment pheromone plume or making treatment cage contact of two upwind treatment sources (choice assay). 
 

Water Treated 
Males 

Latron Treated 
Males 

Methoxyfenozidec 
Treated Males 

Pooled Male 
Treatments Female Treatment Exposuresa 

(Treatment A/Treatment B) 
Nb Left Right N Left Right N Left Right N Left Right 

Plume          
Water / Water 10 50.0 50.0 10 50.0 50.0 10 30.0 40.0 30 43.3 46.7 
Latron / Water 10 30.0 40.0 10 20.0 10.0 10 0.0 20.0 30 16.7 23.3 
Latron / Latronc 10 30.0 20.0 10 30.0 30.0 10 10.0 0.0 30 23.3 16.7 
Methoxyfenozided / Water 10 10.0 40.0 10 60.0 60.0 10 10.0 10.0 30 26.7 36.7 
Methoxyfenozide / Latron 10 10.0 50.0 10 40.0 30.0 10 10.0 10.0 30 20.0 30.0 
Methoxyfenozide / Methoxyfenozide 10 10.0 20.0 10 30.0 30.0 10 0.0 0.0 30 13.3 16.7 
Septum Lure / Water 10 20.0 20.0 10 60.0 50.0 10 10.0 10.0 30 30.0 26.7 

Cage          
Water / Water 10 30.0 50.0 10 30.0 50.0 10 30.0 20.0 30 30.0 40.0 
Latron / Water 10 30.0 40.0 10 10.0 10.0 10 0.0 20.0 30 13.3 23.3 
Latron / Latron 10 30.0 20.0 10 30.0 30.0 10 10.0 0.0 30 23.3 16.7 
Methoxyfenozide / Water 10 10.0 40.0 10 50.0 60.0 10 10.0 0.0 30 23.3 33.3 
Methoxyfenozide / Latron 10 10.0 50.0 10 40.0 30.0 10 10.0 10.0 30 20.0 30.0 
Methoxyfenozide / Methoxyfenozide 10 10.0 20.0 10 20.0 20.0 10 0.0 0.0 30 10.0 13.3 
Septum Lure / Water 10 10.0 20.0 10 40.0 50.0 10 10.0 0.0 30 20.0 23.3 
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Actual means (not transformed means) are listed. No significant differences exist for any treatment (Generalized Linear Model-odds ratio=1, 
P<0.10) 
aMoths, 0-24h old, exposed to treated surfaces for 48h. 
bNumber of replicates per treatment. Each replicate consisted of one male moth and two cages each with 2 females moths. New moths were used 
for each replicate. 
cThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
dEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 

 



Table 4. Percent of treated adult male oriental fruit moth released in a wind tunnel that were found to be orienting within a 
treatment combination pheromone plume or making treatment cage contact of one of two upwind treatment sources 
(choice assay).  
 

Water Treated 
Malesc

Latron Treated 
Malesc

Methoxyfenozide 
Treated Malesc

Pooled Male 
TreatmentscFemale Treatment Exposuresa 

(Treatment A/Treatment B) 
Nb % % % N  N % N  

Plume     
Water / Water 20 50.0 a y 20 50.0 a 20 35.0 a y 60 45.0 a x 
Latron / Water 20 35.0 ab yz 20 15.0 b 20 10.0 a z 60 20.0 bc yz 
Latron / Latrond 20 25.0 ab yz 20 30.0 ab 20 5.0 a z 60 20.0 bc yz 
Methoxyfenozidee / Water 20 25.0 ab yz 20 60.0 a 20 10.0 a z 60 31.7 ab xy 
Methoxyfenozide / Latron 20 30.0 ab yz 20 35.0 ab 20 10.0 a z 60 25.0 bc yz 
Methoxyfenozide / Methoxyfenozide 20 15.0 b z 20 30.0 ab 20 0.0 a z 60 15.0 c z 
Septum Lure / Water 20 20.0 ab z 20 55.0 a 20 10.0 a z 60 28.3 bc y 

Cage     
Water / Water 20 40.0 a y 20 40.0 a xy 20 25.0 * 60 35.0 a x 
Latron / Water 20 35.0 a yz 20 10.0 c z 20 10.0 * 60 18.3 b yz 
Latron / Latron 20 25.0 a yz 20 30.0 abc xyz 20 5.0 * 60 20.0 ab yz 
Methoxyfenozide / Water 20 25.0 a yz 20 55.0 a x 20 5.0 * 60 28.3 ab xy 
Methoxyfenozide / Latron 20 30.0 a yz 20 35.0 abc xy 20 10.0 * 60 25.0 ab xy 
Methoxyfenozide / Methoxyfenozide 20 15.0 a z 20 20.0 bc yz 20 0.0 * 60 11.7 b z 
Septum Lure / Water 20 15.0 a z 20 45.0 ab x 20 5.0 * 60 21.7 ab yz 
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Means followed by the same letter are not significantly different (Generalized Linear Model-odds ratio=1). Actual means (not transformed means) 
are listed. 
aMoths, 0-24h old, exposed to treated surfaces for 48h. 
bNumber of replicates per treatment. Each replicate consisted of one male moth and two cages each with 2 females moths. New moths were used 
for each replicate. 
cThe first column of letters recognize significant difference as P<0.05. The second column of letters recognize significant difference as P<0.10. 
dThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
eEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 
*Number of males coming into contact with female cages was not high enough to compare for significant differences.

 



Table 5. Percent of treated adult male oriental fruit moth released in a wind tunnel that were found to be orienting within a 
treatment combination pheromone plume or making treatment cage contact of one of two upwind treatment sources 
(choice assay). The female treatment data were pooled per male treatment. 
 

Water Treated 
Males 

Latron Treated 
Males 

Methoxyfenozidee Treated 
Males 

Pooled Male 
TreatmentscTreatment 

Exposures of 
Femalesa

Nb % N % N % N % 

Plume         

Water 50 40.0 a 50 44.0 a 50 22.0 a 150 35.3 a 

Latrond 40 32.5 a 40 27.5 a 40 5.0 a 120 21.7 b 
Methoxyfenozidee

40 12.5 b 40 40.0 a 40 5.0 a 120 19.2 b 

Cage         

Water 50 30.0 a 50 40.0 a 50 14.0 a 150 28.0 a y 

Latron 40 32.5 a 40 25.0 a 40 5.0 a 120 20.8 ab z 

Methoxyfenozide 40 12.5 b 40 27.5 a 40 5.0 a 120 15.0 b z 
Means followed by the same letter are not significantly different (Generalized Linear Model-odds ratio=1). Actual means (not transformed means) 
are listed. 
aMoths, 0-24h old, exposed to treated surfaces for 48h. 
bNumber of replicates per treatment. Each replicate consisted of one male moth and two cages each with 2 females moths. New moths were used 
for each replicate. 
cThe first column of letters recognize significant difference as P<0.05. The second column of letters recognize significant difference as P<0.10. 
dThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
eEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 
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Table 6. Percent of treated adult male oriental fruit moth released in a wind 
tunnel that were found to be orienting within a treatment combination pheromone 
plume or making contact with cages of treated females (choice assay). The 
female treatment data were pooled per male treatment.  
 

Treatment 
Exposures of 

Malesa
Nb

Mean Percent 
Individuals Orienting in 

Pheromone Plumec

Mean Percent 
Individuals Contacting 

Female Cage 

Water 140 28.6 a y 26.4 a 

Latrond 140 39.3 a x 33.6 a 

Methoxyfenozidee 140 11.4 b z 8.6 b 
Means followed by the same letter are not significantly different (Generalized Linear Model-odds 
ratio=1). Actual means (not transformed means) are listed. 
aMoths, 0-24h old, exposed to treated surfaces for 48h. 
bNumber of replicates per treatment. Each replicate consisted of one male moth and two cages 
each with 2 females moths. New moths were used for each replicate. 
cThe first column of letters recognize significant difference as P<0.05. The second column of 
letters recognize significant difference as P<0.10. 
dThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a 
resin-based nonionic surfactant, mixed with water. 
eEach methoxyfenozide treatment solution contained a proportionate field rate of Latron B-1956® 
as per label recommendations. 
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B. Fecundity and Fertility Assays 

1. Continuous exposure: treated pairings 

 Continuous exposure to surfaces treated with tebufenozide and 

methoxyfenozide negatively impacted the mean number of eggs laid (Table 7). 

For example, the mean fecundity of moth pairings exposed to surfaces treated 

with water and Latron were 11.3 and 1.1 eggs/female, respectively. These two 

means were not significantly different. However, the mean number of eggs laid 

from moths exposed to tebufenozide- and methoxyfenozide-treated surfaces, 0.1 

and 0.0 eggs/female, respectively, were significantly less than the water-control 

treatment mean (Table 7). 

 The mean percent fertility from water-, Latron-, and tebufenozide-treated 

pairings were 74%, 31%, and 100%, respectively, none of which were 

significantly different from one another (Table 7). The mean fertility from the 

methoxyfenozide-treated pairings could not be determined, because there were 

no eggs laid in any replicates. 

 Exposure to tebufenozide and methoxyfenozide also negatively impacted 

the longevity of adult females. The median lifespan of females in the water- and 

Latron-controls were 8.0 and 7.5 days (Table 7). The females in 

methoxyfenozide-treated pairings had a median shorter lifespan than both 

controls, at 6.5 days. At 7.0 days, median longevity of tebufenozide-treated 

females was not significantly different from any other treatment.  

When considering the mean number of females that laid eggs throughout 

the study, no more than 10% of the females oviposited by day 3 (Table 8). By 
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day 5, however, 7 of 10 females in the water-control and 5 of 10 females in the 

Latron-control had laid eggs. These were both significantly more than the 

methoxyfenozide treatment, which had no ovipositing females. The tebufenozide 

treatment had 20% of females lay eggs, which was significantly lower than the 

water-control. In all treatments, no additional females laid eggs between day 5 

and day 10 (Table 8).  

 By 8 days after the start of the study, 50% of the water-control replicates 

had eggs that hatched (Table 8). This was significantly greater than the 

methoxyfenozide treatment that had no eggs hatch. By day 10, 60% of replicates 

in the water-control had hatched eggs. This was still significantly higher than the 

methoxyfenozide treatment. At the 90% confidence interval there was a 

significant reduction in replicates with hatched eggs in the tebufenozide study 

when compared to the water-control. There were also significantly more 

replicates with eggs that hatched in the Latron-control then the methoxyfenozide 

treatment. In all treatments, no additional replicates had eggs hatch between 

days 10 and 14 (Table 8). 

 



 

Table 7. Mean fecundity, percent fertility and median longevity of oriental fruit moth continuously exposed to surfaces 
treated with methoxyfenozide, tebufenozide or Latron.  
 

Treatment 
Exposuresa Nb Mean (± SE) 

Fecundity Nb Mean Percent (± SE) 
Fertility Nb Median (± SE) Longevity 

(days) 

Water 8 11.3 ± 14.4 a x 6 73.5 ± 16.8 a 8 8.0 ± 0.55 a 

Latronc 8 1.2 ± 1.56 ab y 4 31.3 ± 20.6 a 8 7.5 ±  0.40 a 

Tebufenozided 8 0.1 ± 0.35 bc z 1 100.0 ± 41.2 a 8 7.0 ± 0.37 ab 

Methoxyfenozided 8 0.0 ± 0.0 c z   8 6.5 ± 0.52 b 
Means followed by the same letter are not significantly different (Fisher’s Protected LSD, P<0.05). Actual means (not transformed means) are 
listed. 
aMoths, 0-24h old, exposed to treated surfaces for the duration of the study (10 days). 
bNumber of replicates per treatment. Each replicate consisted of two male moths and one female moth. New moths were used for each replicate. 
cThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
dEach methoxyfenozide and tebufenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 
 
 
 
 

67



Table 8. Mean percent of female oriental fruit moth, per treatment, continuously 
exposed to surfaces treated with methoxyfenozide, tebufenozide or Latron that 
laid eggs, and the mean percent of replicates with eggs that hatched over time. 
 

Mean Percent of 
Females that Laid Eggs 

by: 

Mean Percent of 
Replications with Eggs 

hatched by: Treatment 
Exposuresa

 
 
 

Nb
day 3 day 5 day 10 day 8 day 10c day 14c

Water 10 10 a 70 a 70 a 50 a 60 a x 60 a x 

Latrond 10 0.0 a 50 ab 50 ab 20 ab 30 ab xy 30 ab xy

Tebufenozidee 10 10 a 20 bc 20 bc 20 ab 20 ab yz 20 ab yz

Methoxyfenozidee 10 0.0 a 0.0 c 0.0 c 0.0 b 0.0 b z 0.0 b z 
Means followed by the same letter are not significantly different (Row by Column Chi Squared). 
Actual means (not transformed means) are listed. 
aMoths, 0-24h old, exposed to treated surfaces for the duration of the study (10 days). 
bNumber of replicates per treatment. Each replicate consisted of two male moths and one female 
moth. New moths were used for each replicate. 
cThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column 
of letters (x, y, z) recognize significant difference at P<0.10. 
dThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a 
resin-based nonionic surfactant, mixed with water. 
eEach methoxyfenozide and tebufenozide treatment solution contained a proportionate field rate 
of Latron B-1956® as per label recommendations. 

68 



2. 24 hour Exposure: treated/non treated pairings 

When male moths were exposed for 24 h to surfaces treated with water, 

Latron, tebufenozide, and methoxyfenozide, then paired with a non treated 

female, the mean number of eggs laid per female were 26.8, 25.0, 17.9, and 26.8 

eggs/ female, respectively (Table 9). There were no significant differences 

among these treatment means. When female moths were exposed for 24 h to 

surfaces treated with water, Latron, tebufenozide, and methoxyfenozide, then 

paired with a non treated male, the mean number of eggs laid were 23.5, 44.2, 

11.3, and 2.1 eggs/female, respectively. The largest mean fecundity, 44.2 

eggs/female, occurred with Latron-treated females. This mean was significantly 

higher than all other treatment means regardless of the treated sex. The lowest 

mean fecundities, 11.3 and 2.1 eggs/female, occurred with the tebufenozide and 

methoxyfenozide treatment exposures, respectively. These two treatments were 

significantly lower than all other treatment means regardless of the sex treated 

(Table 9). 

When male moths were exposed for 24 h to surfaces treated with water, 

Latron, tebufenozide, and methoxyfenozide, then paired with a non treated 

female, the mean percent of egg hatch per replication were 84.1%, 81.5%, 

76.3% and 75.0%, respectively (Table 9). When female moths were exposed for 

24 h to surfaces treated with water, Latron, tebufenozide, and methoxyfenozide, 

then paired with a non treated male, the mean percent of egg hatch per 

replication were 84.8%, 94.4%, 91.4%, and 77.3%, respectively. The mean 

percent egg hatch for replicates where males were treated with methoxyfenozide 
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was significantly lower than replicates where males were exposed to Latron, 

females exposed to Latron and females exposed to water treated surfaces. The 

mean percent egg hatch for replicates where males were exposed to Latron was 

significantly lower than replicates where females were exposed to Latron (Table 

9). 

The median longevity of females paired with males exposed to water and 

methoxyfenozide for 24 h was 9.0 days, and when paired with males exposed to 

Latron and tebufenozide was 6.0 days (Table 9). The females paired with 

tebufenozide-treated males had a significantly lower mean fecundity than 

females paired with both water- and methoxyfenozide-treated males. 

The median longevity of females treated with water and Latron then paired 

with untreated males was 10.0 days (Table 9).  The median longevity of females 

treated with tebufenozide and methoxyfenozide then paired with untreated males 

was 9.5 and 5.5 days, respectively. Methoxyfenozide-treated females had a 

median longevity that was significantly lower than the water- and Latron-treated 

females.  

By Day 3 of the study, the mean percent of females that laid eggs after 

being paired with males exposed to water-, Latron-, tebufenozide-, and 

methoxyfenozide-treated surfaces for 24 h were 80%, 60%, 90% and 90%, 

respectively (Table 10). There were no significant differences between these 

treatment means, nor did the treatment means change on Days 5 and 10. 

When females were exposed to water-, Latron-, tebufenozide-, and 

methoxyfenozide-treated surfaces for 24 h then paired with nontreated males, 
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the mean percent that laid eggs by Day 3 of the study were 70%, 80%, 50%, and 

40%, respectively (Table 10). The only significant differences that occurred 

between these means were at the 90% confidence interval between 

methoxyfenozide and Latron treatments. By Day 5, 80% of water-treated females 

had laid eggs. This was also significantly higher than methoxyfenozide-treated 

females, at the 90% confidence interval. There were no changes in the treatment 

means by Day 10.  

When considering both male-exposure and female-exposure treatments 

for Day 3, females exposed to methoxyfenozide had significantly fewer replicates 

laying eggs than replicates with males exposed to methoxyfenozide and 

tebufenozide (Table 10). Females exposed to tebufenozide had significantly 

fewer replicates laying eggs than replicates with males exposed to 

methoxyfenozide and tebufenozide, at the 90% confidence interval.  

In regards to the mean percent of replicates that had egg hatch, virtually 

all replicates that had egg laying on Days 3, 5 and 10 also had egg hatch on 

Days 8, 10 and 14 (Table10). There were no significant differences among male-

exposure and female-exposure treatments in mean percent of replicates with egg 

hatch through Days 8, 10 and 14. However, methoxyfenozide treated females 

had a significantly lower number of replicates with egg hatch than several other 

treatments including both water-treated female and male controls, at the 90% 

confidence interval.  

 



Table 9. Mean fecundity, percent fertility and median longevity of oriental fruit moth exposed, by sex, to surfaces treated 
with methoxyfenozide, tebufenozide or Latron for 24 h, then paired with a non-exposed partner (opposite sex) in a non-
treated cage. 
 

Treatment Exposuresa Nb Mean (± SE) 
Fecundity 

Mean Percent (± SE) 
Fertilityc

Median (± SE) Female  
Longevity (days)d

Water – M 10 26.8 ± 6.9 b 84.1 ± 9.1 abc yz 9.0 ± 0.78 A 

Latrone – M 10 25.0 ± 9.7 b 81.5 ± 10.5 b z 6.0 ± 0.79 AB 

Tebufenozidef – M 10 17.9 ± 4.5 b 76.3 ± 8.6 abc yz 6.0 ± 0.18 B 

Methoxyfenozidef – M 10 26.8 ± 6.8 b 75.0 ± 8.6 c z 9.0 ± 0.47 A 

Water – F 10 23.4 ± 7.2 b 84.8 ± 9.1 ab y 10.0 ± 0.47 a 

Latron – F 10 44.2 ± 13.4 a 94.4 ± 9.1 a y 10.0 ± 0.43 a 

Tebufenozide – F  10 11.3 ± 5.0 c 91.4 ± 11.5 abc yz 9.5 ± 0.97 ab 

Methoxyfenozide – F  10 2.1 ± 1.1 c 77.3 ± 12.9 abc yz 5.5 ± 0.81 b 
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Means followed by the same letter or symbol are not significantly different (Fisher’s Protected LSD). Actual means (not transformed means) are 
listed. 
aMoths, 0-24h old, exposed to treated surfaces for 24h. 
bNumber of replicates per treatment. Each replicate consisted of two male moths and one female moth. New moths were used for each replicate. 
cThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column of letters (x, y, z) recognize significant difference 
at P<0.10. 
dLongevity of the water-control treatments were significantly different. As such, male treatments and female treatments were analyzed separately. 
eThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
fEach methoxyfenozide and tebufenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 

 



 

Table 10. Mean percent fecundity and fertility, over time, of oriental fruit moth exposed, by sex, to surfaces treated with 
methoxyfenozide, tebufenozide or Latron for 24 h, and then paired with a non-exposed partner (opposite sex) in a non-
treated cage. 

Mean Percent of Females that Laid 
Eggs by:c

Mean Percent of Replications with 
Eggs hatched by:cTreatment Exposuresa  

Nb

day 3 day 5 day 10 day 8 day 10 day 14 

Water – M 10 80 ab xy 80 ab xy 80 ab xy 80 a y 80 a y 80 a y 

Latrond – M 10 60 ab xyz 60 ab xyz 60 ab xyz 60 a yz 60 a yz 60 a yz 

Tebufenozidee – M 10 90 a x 90 a x 90 a x 80 a y 80 a y 80 a y 

Methoxyfenozidee – M 10 90 a x 90 a x 90 a x 80 a y 80 a y 80 a y 

Water – F 10 70 ab xyz 80 ab xy 80 ab xy 70 a y 70 a y 70 a y 

Latron – F 10 80 ab xy 80 ab xy 80 ab xy 80 a y 80 a y 80 a y 

Tebufenozide – F  10 50 ab yz 50 ab yz 50 ab yz 50 a yz 50 a yz 50 a yz 

Methoxyfenozide – F  10 40 b z 40 b z 40 b z 40 a z 40 a z 40 a z 
Means followed by the same letter are not significantly different (Row by Column Chi Squared). Actual means (not transformed means) are listed. 
aMoths, 0-24h old, exposed to treated surfaces for 24h. 
bNumber of replicates per treatment. Each replicate consisted of two male moths and one female moth. New moths were used for each replicate. 
cThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column of letters (x, y, z) recognize significant difference 
at P<0.10. 
dThe Latron treatment consisted of a labeled field rate (0.125% vol:vol) of Latron B-1956®, a resin-based nonionic surfactant, mixed with water. 
eEach methoxyfenozide and tebufenozide treatment solution contained a proportionate field rate of Latron B-1956® as per label recommendations. 
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C. Codling Moth and Oriental Fruit Moth Feeding Comparison Assay 

 Four days after placing 1st instar codling moth (CM) or oriental fruit moth 

(OFM) on individual apples, 86.2% of the CM replicates showed levels of 

tunneling damage (Table 11). This level of damage was significantly higher than 

the 18.2% in the OFM replicates. By Day 7, 93.1% of CM replications had visual 

tunneling damage. This was still significantly higher than the OFM replications, at 

36.4%. By Day 10, a large increase occurred in the percent of apples with OFM 

tunneling damage, 77.3%. This was still significantly less than the 96.6% of 

apples with CM damage at the 90% confidence interval. By Day 14, 95.5% of the 

apples had OFM-induced damage, which was not significantly different from the 

96.6% CM damage (Table 11). The CM damage at Day 14 was not significantly 

higher than any of the previous days for CM. The damage pattern for OFM 

showed significant increases from Days 4 and to Days 10 and 14. 

 To determine if there was any preference displayed by CM and OFM for 

apple site entry, the apples were separated into upper and lower zones. Of the 

44.4% of the CM larvae that produced visible tunneling damage, 34.9% entered 

the upper half of the apples, while 9.5% entered the lower half of the apples 

(Table 12). These levels were not significantly different. OFM larvae showed the 

same trend, preferring the upper half of the applse over the lower half, at 31.1% 

and 13.3%, respectively. These were also not significantly different. There was a 

statistically higher percent incidence of CM damage in the upper half of the 

apples than OFM damage in the same portion. 
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 To determine the spatial distribution of sites containing frass, the apple 

exterior was further divided into several zones (Figure 9). CM showed a 

preference for the upper portion of the apple (Zone 2), with 52.4% of the 

replicates exhibiting frass (Table 13). This was closely followed by Zone 3, the 

mid-upper part of the apple, with 33.3%. The lower portion of the apple (Zone 5) 

and the calyx end (Zone 6) had significantly fewer replicates with observable 

frass, both at 4.8%. Conversely, OFM larvae showed a preference for the portion 

of the apple immediately surrounding the stem (Zone 1), at 80.0%. This was 

significantly higher than all other apple zones, save the calyx, at 33.3%. OFM 

preferred the calyx end of the apple significantly more so than CM. There was no 

significant difference in frass sites between the two species when considering the 

stem end. CM had significantly higher incidences of damage of all other zones, 

when compared to OFM. When the zones were combined together, both CM and 

OFM showed preferences for the upper half versus the lower of the apples, 

34.9% and 8.0% and 31.1% and 11.1%, respectively (Table 13). Only CM 

damage was significant. 

The progression of visible frass occurrence was compared between the 

two species. On Day 4, 82.8% of the CM replicates already showed frass (Table 

14). This was significantly higher than the 18.2% exhibited by OFM. This trend 

continued on Day 7, with 89.7% and 36.4% of CM and OFM replicates showing 

frass, respectively. The number of OFM replicates showing frass almost doubled 

by Day 10 (68.2%). This was still significantly lower than the 93.1% of CM 

replicates with frass. By Day 14, there was no increase in frass occurrence for 
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CM, but the number of OFM replicates with frass increased to 86.4%, and the 

two species were not significantly different at this time (Table 14). Within species, 

there was no significant difference over time on the percent of CM replicates 

displaying frass. Conversely, on Days 4 and 7, OFM replicates showed 

significantly fewer incidences of frass than Days 10 and 14. 

 The volume of frass produced by CM and OFM during the study was also 

compared. On Day 4, CM and OFM frass volumes produced were not 

significantly different, at 2.8 mm3 and 1.0 mm3, respectively (Table 15). This 

trend continued, with the mean volume of frass increasing for both species, until 

Day 14 when CM frass volume had increased to 17.7 mm3 and the OFM frass 

volume was 64.9 mm3. There was a significant difference between the two 

species on Day 14. Within species, there was a significant difference for OFM 

frass production across time, Day 14 being significantly greater than any of the 

previous days. There was no significant increase in frass volume over time for 

CM. 

 At the termination of the study the apples were cut open to determine the 

spatial distribution of damage. To determine the spatial distribution of internal 

feeding, the apple interior was divided into several zones (Figure 10). For CM, 

25% of the larvae had attacked the core of the apple under the stem (Zone 1) 

(Table 16). Significantly more (71.4%) OFM damaged this area. None of the CM 

replicates showed damage to the core around the seeds (Zone 2). For OFM, 

35.7% of the replicates showed damage to this area, and to the core of the apple 

just above the calyx (Zone 3). CM showed significantly less damage (6.3%) in 
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this area. For Zone 4 (the peripheral flesh surrounding the core), 62.5% of the 

CM replicates had damaged the area. This was significantly more than OFM 

whose damage was at 14.3%. Significantly more seeds were damaged by CM 

larvae than by OFM larvae, at 68.8% and 7.1%, respectively (Table 16). CM 

preferred the peripheral flesh of the apple and the seeds significantly more than 

the core flesh of the apple. OFM preferred the core, with significantly more 

replications showing damage to the upper portion of the core than to the 

peripheral flesh and seeds. 
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Table 11. Mean percent of apples exposed to codling moth or oriental fruit moth 
larvae that had tunneling damage over time. 
 

  Mean Percent Tunneling Damagea c

Species Nb Day 4 Day 7 Day 10d Day 14 

Codling Moth 21 86.2 a * 93.1 a * 96.6 a x * 96.6 a * 

Oriental Fruit Moth 15 18.2 b ** 36.4 b ** 77.3 a y * 95.5 a * 
Means followed by the same letter and symbol are not significantly different (Row by Column Chi 
Squared). Actual means (not transformed means) are listed. 
aTunneling damage included lateral feeding immediately below the surface of the apple and 
entrance and exit holes protruding through the skin into the meat of the apple. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same 
species less than 48 hours old placed on the upper portion of the apple (Zone 2). 
cSignificant difference designated by letters are determined vertically. Significant differences 
designated by asterisks are determined laterally. 
dThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column 
of letters (x, y, z) recognize significant difference at P<0.10. 
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Table 12. Mean percent of apples exposed to codling moth or oriental fruit moth 
larvae that had tunneling damage on the fruit’s upper or lower zones at the end 
of the study. 
 

 Mean Percent Tunneling Damagea c

Fruit Surface Zones Codling Moth n=21b Oriental Fruit Moth n=15b

Zone 1 (upper half) 34.9 a * 31.1 a ** 

Zone 2 (lower half) 9.5 a * 13.3 a * 
Means followed by the same letter and symbol are not significantly different (Generalized Linear 
Model-odds ratio=1, P<0.05). Actual means (not transformed means) are listed. 
aTunneling damage included lateral feeding immediately below the surface of the apple and 
entrance and exit holes protruding through the skin into the meat of the apple. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same 
species less than 48 hours old placed on the upper portion of the apple (Zone 2). 
cSignificant difference designated by letters are determined vertically. Significant differences 
designated by asterisks are determined laterally. 
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Table 13. Mean percent of apples exposed to codling moth and oriental fruit moth 
larvae that produced sites with frass exuding from entrance/exit holesa located on 
the different surface areas (Zones) of the apple by the end of the study. 
 

Mean Percent with Presence of Frassc e 
 

Fruit Surface Zones Codling Moth n=21b Oriental Fruit Moth n=15b

Zone 1 (stem) 19.0 a x * 80.0 a w * 

Zone 2 (upper) 52.4 a x * 6.7 ab xy ** 

Zone 3 (mid-upper) 33.3 a x* 6.7 b y ** 

Zone 4(mid-lower) 14.3 ab xy * 0.0 c z ** 

Zone 5 (lower) 4.8 b y * 0.0 c z ** 

Zone 6 (calyx) 4.8 c z ** 33.3 a wx * 

Zone A (upper half)d 34.9 a * 31.1 a ** 

Zone B (lower half)d 8.0 b * 11.1 a * 
Means followed by the same letter and symbol are not significantly different (Generalized Linear 
Model-odds ratio=1, P<0.05). Actual means (not transformed means) are listed. 
aEntrance and exit holes consisted of small, distinctly round holes that continued through the 
apple skin. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same 
species less than 48 hours old placed on the upper portion of the apple (Zone 2). 
cSignificant difference designated by letters are determined vertically. Significant differences 
designated by asterisks are determined laterally. 
dZone ‘A’ consists of an average of Zones 1, 2 and 3. Zone ‘B’ consists of an average of Zones 4, 
5 and 6. 
eThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column 
of letters (x, y, z) recognize significant difference at P<0.10. 
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Table 14. Mean percent of apples exposed to codling moth and oriental fruit moth 
larvae that produced sites with frass exuding from entrance/exit holes of the 
applea. 
 

  Mean Percent with Presence of Frassc

Moth Species Nb Day 4 Day 7 Day 10 Day 14 

Codling Moth 21 82.8 a * 89.7 a * 93.1 a * 93.1a * 

Oriental Fruit Moth 15 18.2 b ** 36.4 b ** 68.2 b * 86.4 a * 
Means followed by the same letter and symbol are not significantly different (Row by Column Chi 
Squared, P<0.05). Actual means (not transformed means) are listed. 
aEntrance and exit holes consisted of small, distinctly round holes that continued through the 
apple skin. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same 
species less than 48 hours old placed on the upper portion of the apple (Zone 2). 
cSignificant difference designated by letters are determined vertically. Significant differences 
designated by asterisks are determined laterally 
 
 



Table 15. Mean volume (mm3) of frass exuding from entrance/exit holes of apples damaged by codling moth or oriental 
fruit moth larvae over timea. 
 

  Mean (± SE) Volume of Frass (mm3)c

Moth Species Nb Day 4 Day 7 Day 10 Day 14 

Codling Moth 21 2.8 ± 0.9 a * 5.9 ± 1.6 a * 15.4 ± 5.2 a * 17.7 ± 6.2 a * 

Oriental Fruit Moth 15 1.0 ± 0.9 a * 1.0 ± 0.9 a * 27.5 ± 20.7 a * 64.9 ± 32.7 b ** 
Means followed by the same letter and symbol are not significantly different (Row by Column Chi Squared, P<0.05). Actual means (not 
transformed means) are listed. 
aEntrance and exit holes consisted of small, distinctly round holes that continued through the apple skin. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same species less than 48 hours old placed on the 
upper portion of the apple (Zone 2). 
cSignificant difference designated by letters are determined vertically. Significant differences designated by asterisks are determined laterally 82

 



 

Table 16. Mean percent of apples exposed to codling moth or oriental fruit moth larvae with damage occurring at different 
internal fruit zones. 
 

 Mean Percent Internal Apple Zones with Larval Feeding Damagea

Fruit surface zones Codling Moth n=16b Oriental Fruit Moth n=14b c

Zone 1 (above core to stem) 25.0 b ** 71.4 a x * 

Zone 2 (core excluding seed cavity) 0.0 b ** 35.7 ab y * 

Zone 3 (below core to calyx) 6.3 b ** 35.7 ab y * 

Zone 4 (peripheral flesh around core) 62.5 a * 14.3 b yz ** 

Seeds 68.8 a * 7.1 b z ** 
Means followed by the same letter and symbol are not significantly different (Generalized Linear Model-odds ratio=1). Actual means (not 
transformed means) are listed. 
aSignificant difference designated by letters are determined vertically. Significant differences designated by asterisks are determined laterally. 
bNumber of replicates per treatment. Each replicate consisted of two 1st instar larvae of the same species less than 48 hours old placed on the 
upper portion of the apple (Zone 2). 
cThe first column of letters (a, b, c) recognize significant difference at P<0.05. The second column of letters (x, y, z) recognize significant difference 
at P<0.10. 
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Chapter 4: Discussion 

A. Wind Tunnel Assays 

Few studies have examined the sublethal effects of methoxyfenozide on 

male moth orientation. Hoelscher and Barrett (2003 a,b) observed that adult male 

exposure to methoxyfenozide-treated surfaces decreased the ability of 

redbanded leafroller, Argyrotaenia velutinana (Walker), obliquebanded leafroller, 

Choristoneura rosaceana (Harris), and codling moth, Cydia pomonella (L.), 

(Lepidoptera: Tortricidae) males to orient towards females. In both of these 

studies, there was no observable effect on female attractiveness when they were 

treated with methoxyfenozide. 

Other studies have also reported negative effects of chemical insecticide 

exposure on the mate-finding abilities of other male Lepidoptera. Henneberry et 

al. (1966) found that feeding the chemosterilant tepa (an aziridine compound) to 

adult male cabbage looper, Trichoplusia ni (Hübner), made them less responsive 

to the female sex pheromone. Permethrin, a synthetic pyrethroid, has also been 

shown to affect male response. For example, flight initiation and upwind 

orientation of male pink bollworm, Pectinophora gossypiella (Saunders), were 

reduced when they were exposed to sublethal doses of permethrin via liquid 

topical application (Haynes and Baker 1985). Moore (1988) found similar results 

using similar methods with the bollworm, Helicoverpa zea (Boddie), and reported 

that females treated with sublethal levels of permethrin attracted fewer males 

than untreated females.  
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Linn and Roelofs (1984) reported that permethrin, as well as carbaryl (a 

carbamate insecticide) and chlordimeform (a formamidine insecticide), reduced 

the ability of male oriental fruit moth, Grapholita molesta (Busck) (OFM), to orient 

to untreated females when treated topically with the chemical. This was 

substantiated by Evenden et al. (2005) when they showed that contact with an 

OFM attracticide containing permethrin reduced the subsequent responses of 

male OFM to the pheromone source for 24 h post-treatment.  

All of the wind tunnel assays in the current study have demonstrated that 

exposing adult OFM, regardless of sex, to methoxyfenozide has an effect on the 

mate-finding ability of the male. The non-choice study showed that, in most 

cases, when either sex was treated with methoxyfenozide a smaller percentage 

of males were captured on the sticky card in front of the female cage (Tables 1 

and 2). This suggests that either treated males were not as responsive to the 

female pheromone as untreated males or that treated females were not as 

attractive as untreated females. 

These effects were substantiated by the wind tunnel choice study. We 

found a lower percent of males, when treated with water as well as when all 

treatment data were pooled together, orienting to the pheromone plumes of the 

methoxyfenozide / methoxyfenozide female treatment combination than to the 

female water control (Table 4). This trend continued for the percent of males that 

made contact with the female cages. Similarly, methoxyfenozide-treated males 

consistently had the lowest percent of individuals orienting to the female 

pheromone plumes. In fact, exposure to methoxyfenozide-treated surfaces had 
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such an effect on the males’ ability to reach the female cages that the percent 

numbers were too few to analyze. 

There were no significant differences within the Latron- and 

methoxyfenozide-treated males for the mean percent of males found orienting to 

the pheromone plume and contacting cages of water, Latron-, or 

methoxyfenozide-treated females, but the water-treated males did respond to a 

treatment effect, being less responsive to methoxyfenozide-treated females than 

to water- and Latron-treated females (Table 5). Methoxyfenozide also reduced 

the male moths’ ability to orient to a pheromone plume and to make contact with 

the female cages, regardless of the female treatment (Table 6). 

It is unclear what modes of action are occurring in the moths when they 

are exposed to surfaces treated with methoxyfenozide. Exposure could have a 

physical effect upon the pheromone release of the female and/or the 

chemosensors of the male, although unpublished electroantennagram data 

(Bruce Barrett, University of Missouri; Kenneth Haynes, University of Kentucky) 

suggests that treated male redbanded leafroller are still sensitive to the main 

components of the pheromone. Further work is pending. Tebufenozide was 

reported to delay the mean onset of calling by female spruce budworms, 

Choristoneura fumiferana (Clem) (Lepidoptera: Tortricidae), by one h (Dallaire et 

al. 2004). Methoxyfenozide could have a similar effect on the calling of OFM. It is 

also possible the ecdysone agonist is capable of modifying the chemical makeup 

of the female pheromone, or physiologically inhibiting the female from releasing 

the pheromone. Trimble et al. (2004) reported that female obliquebanded 
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leafroller exposed to azinphosmethyl-treated surfaces released less pheromone 

as well as delaying the onset and incidence of calling. Future physiological 

research is needed in order to determine the mechanisms involved in the 

sublethal effects of methoxyfenozide on the attractiveness and responsiveness of 

OFM. 

 

B. Fecundity / Fertility Assays 

Several studies have reported that continuous exposure (and in some 

cases exposure for only 24 h) of adult moths to both methoxyfenozide- and 

tebufenozide-treated surfaces reduced the mean fecundity and percent fertility of 

both redbanded leafroller, Argyrotaenia velutinana (Walker), obliquebanded 

leafroller, Choristoneura rosaceana (Harris), and codling moth, Cydia pomonella 

(L.) (Lepidoptera: Tortricidae) (Sun and Barrett 1999, Sun et al. 2000, Smagghe 

et al. 2004). Knight (2000) substantiated these results with tebufenozide, stating 

that only a 1 h exposure to treated surfaces is required to negatively affect the 

fecundity and fertility of codling moth. However, Sun et al.(2004) reported that a 6 

h exposure period to surfaces treated with the ecdysone agonists did not 

significantly reduce mean fecundity and fertility of adult codling moth from the 

control treatment.  

Several mechanisms have been suggested for the reductions in fecundity 

and fertility associated with exposure to methoxyfenozide and tebufenozide. 

Carpenter and Chandler (1994) noted that larvae fed a diet containing RH-5992 

(a precursor to methoxyfenozide and tebufenozide) not only reduced the mean 
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fecundity in corn earworm adults, Helicoverpa zea (Boddie), but also resulted in a 

reduction in the number of adult males that were able to transfer sperm. Dallaire 

et al. (2004) reported similar results, showing a reduction in weight of the 

spermatophore and a lower number of eupyrenes when male obliquebanded 

leafroller were fed, as larvae, sublethal doses of tebufenozide. The ecdysone 

hormone produced in the adult testes has a role in stimulating spermatogenesis 

(Hagedorn 1985), and exposure to ecdysone agonists might negatively impact 

this spermatogenic cycle 

Other studies have suggested that reductions in fecundity and fertility are 

due to the impacts on the reproductive capacities of females. Some suggest 

tebufenozide has a chemosterilizing effect on oogenesis, either by inhibiting new 

oocyte formation or by degeneration and resorption of existing ovarioles (Wing et 

al. 1988, Smagghe and Degheele 1994a, Smagghe et al. 1996).   

Borchert et al.(2005) reported that methoxyfenozide has no deleterious 

effects on the fecundity of oriental fruit moth, Grapholita molesta (Busck) (OFM), 

when exposed to methoxyfenozide-treated surfaces. Results from the current 

studies contradict that fact. Here it is reported that methoxyfenozide, as well as 

tebufenozide, has been shown to be capable of affecting the fecundity and, in 

some cases, fertility of OFM. Female OFM longevity can also be affected by 

methoxyfenozide and tebufenozide. 

When both sexes were continuously exposed to treated surfaces, the 

methoxyfenozide and tebufenozide treatments had a negative impact on mean 

fecundity. In fact, moths exposed to methoxyfenozide produced no eggs. As 
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such, no statistical analysis on mean percent fertility could be made. However, 

there was no difference in mean percent fertility between tebufenozide and the 

controls. Similarly, Saenz-de-Cabezon Irigaray et al.(2005) reported that, when 

the grape berry moth, Lobesia botrana Dennis & Schiffermuller (Lepidoptera: 

Tortricidae), was fed methoxyfenozide orally via a water trough there was a 

reduction in fecundity, but no effect on fertility. Several studies have documented 

the increased effects of methoxyfenozide over tebufenozide (Sun and Barrett 

1999, Sun et al. 2000). One explanation for this could be the longer residual 

acitivity of methoxyfenozide over tebufenozide. This, however, is questionable, 

as tebufenozide, and methoxyfenozide have been shown to require up to one 

month to decline by 80% in the field (Borchert et al. 2004b). Residual differences 

should not be a factor for a two day laboratory experiment under controlled 

conditions. Female median longevity was lower for moths exposed to both 

methoxyfenozide and tebufenozide than for the water control. This was 

interesting since Saenz-de-Cabezon Irigaray et al. (2005) reported that the grape 

berry moth showed no change in longevity when fed methoxyfenozide orally via a 

water trough throughout the study.  

Egg oviposition was slow the first couple of days of the study, with only 

10% of moths laying eggs in the highest treatments. This increased by Day 5, 

with significantly higher numbers of moths laying eggs in the water control than in 

either the methoxyfenozide or tebufenozide treatments. Again, there were no 

eggs laid throughout the study by methoxyfenozide exposed females. This trend 

continued for fertility with a lower percentage of eggs from methoxyfenozide 
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exposed moths hatching than in the water control by Day 8 of the study. By Day 

10 tebufenozide also had a significantly lower number of replicates with egg 

hatch than the water control. 

The sexes were separated for the next study with only one sex being 

exposed to treated surfaces. This study shows that methoxyfenozide and 

tebufenozide affected female OFM more than males. For example, there was no 

difference in mean fecundity between any of the male exposure treatments, all of 

which were equal to the water control female exposure treatment. However, 

females exposed to methoxyfenozide- and tebufenozide-treated surfaces had a 

lower mean fecundity than all other treatments. Only when males were exposed 

to methoxyfenozide-treated surfaces did mean percent fertility drop below the 

controls. One of the only instances where tebufenozide seemed to have a 

stronger effect than methoxyfenozide was in female longevity when males were 

exposed to treated surfaces. Only when males were exposed to tebufenozide-

treated surfaces did a reduction in median longevity occur over the control. The 

trend reversed for females exposed to the chemicals, with methoxyfenozide 

negatively affecting female median longevity. 

Oviposition occurred sooner in this study than the previous study where 

both sexes were continuously exposed to treated surfaces. This may be due to 

the fact that the female moths were 24 h younger when introduced to males in 

the continuous study. Oriental fruit moths have been shown to have a longer pre-

ovipositional period when introduced to a mate on their day of emergence than 

when introduced two or more days after emergence (Fraser and Trimble 2001). 
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The number of replicates with egg lay among females paired with treated 

males were equal, while females exposed to methoxyfenozide-treated surfaces 

had a lower number of replicates that produced eggs. This trend continued for 

replicates with egg hatch. 

Previous studies have reported negative effects of the Latron surfactant 

on the percent fertility of codling moth (Sun and Barrett 1999, Knight, 2000). At 

no point in these studies did Latron have a negative impact on fecundity, percent 

fertility, or median longevity of OFM. All effects were due to the chemical nature 

of the ecdysone agonists modifying the males’ ability to transfer viable sperm, 

and/or the females’ ability to develop mature, viable eggs. These results, in 

combination with the results from the wind tunnel assays, show promising 

possibilities for the use of methoxyfenozide, and possibly tebufenozide, in 

controlling OFM populations more effectively than by simply targeting only the 1st 

instar larval stage. Data such as these need to be taken into account when 

developing more effective spray schedules for control of OFM. 

 

C. Feeding Comparison Assay 

Identification of a pest presence as well as the pest species are critical 

components of an effective control program. Fruit packers must be able to 

identify pest damage in order to cull damaged fruit. Importers and exporters must 

have positive identification of infestation species due to quarantine issues 

(Barcenas et al. 2005). It is extremely difficult to separate the larvae of codling 

moth, Cydia pomonella (L.) (CM), and oriental fruit moth, Grapholita molesta 
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(Busck) (OFM), with the naked eye. Even with the aid of 10-20x magnification, 

early larval instars are difficult, if not impossible, to separate. Thus it has been 

important to develop another method of identifying and separating the two 

species.  

One method of damage identification was proposed by Schatzki et 

al.(1997) when they attempted to use X-ray imaging to detect apples infested 

with CM. The results were inconclusive, but showed promise. Barcenas et al. 

(2005) showed that DNA diagnostics could be developed to identify species of 

internal apple feeding Tortricidae for use in pest quarantine and stored product 

conditions. 

This study examined and characterized the visual feeding damage 

produced by CM and OFM and demonstrated the visual characteristics of 

damage between CM and OFM. The percentage of CM that produced visual 

tunneling damage (shallow sub-surface feeding that produces a discoloration of 

the skin) was much higher than OFM early in the study (Table 11). There was 

little development of tunneling damage throughout the study for CM, while OFM 

damage increased significantly. This could be due to a couple of reasons. First, 

OFM have a shorter development time, with several instances of mature larvae 

leaving the apple in search of a pupating site before the end of the two week 

study period. Second, OFM entered the apple much more often in the stem and 

calyx ends than CM. Due to the structure of the apple, damage at the stem or 

calyx is much more difficult to see. Glen and Clark (1985) observed that damage 

on the sides of apples produced by 1st instar CM was visible, but damage 

92 



produced by CM in the calyx of the apples was not observable until larvae 

reached 3rd instar. The same results were observed for the presence of frass.  

Jackson (1982) reported that CM, when placed directly on an apple, take 

approximately 17 min to bite the apples, and 45 min to completely enter the 

apples. This leaves ample time for the larvae to traverse to any desirable portion 

of the fruit. The majority of OFM entered the apples via the stem or calyx. Thus 

the majority of frass observed for OFM was also in these zones (1 and 6) (Table 

13, Figure 1). Frass was most often observed on Zones 2 and 3 of CM replicates. 

This difference could be due to the smaller size of OFM and its propensity for the 

flesh at the core of the apple. It has been suggested that the initial bite into the 

fruit takes considerable energy. Thus, larvae may attempt to gain easier access 

to the flesh of the fruit through the calyx, or at cuts, stings, protuberances, 

lesions, or other irregularities of the fruit surface (Putman 1963). Both species 

showed an affinity for the upper half of the apple over the lower half. This, 

however, was likely an artifact of the experimental procedure. All larvae were 

placed in Zone 2 (upper third) of each apple. This was done because several 

publications had reported the majority of CM and OFM eggs are laid on leaves 

and stems within easy access to fruit instead of fruit itself (Jackson 1979, 

Yokoyama and Miller 1988). We tried to place the larvae on the apple close to 

where they would typically first come into contact with the fruit. 

The mean volume of frass produced also showed a trend. While not 

significant early in the study, CM frass volume was consistently higher than that 

of OFM (Table 15). The trend reversed for the last half of the study, with OFM 
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frass volume higher than that of CM, significantly so by Day 14. This was due to 

the increase in exit holes and presence of frass associated with mature larvae 

creating exit holes and clearing a path out of the apple to pupate.  

The internal damage observed at the completion of the study also showed 

marked differences between the two species. CM showed a much higher affinity 

toward the seeds as confirmed by Beers et al. (1993), as well as the peripheral 

flesh (Table 16). OFM had an attraction towards the flesh associated with the 

core of the apple, while ignoring the seeds. 

All observed characters showed distinct separation of the two species. 

The use of frass volume and percent presence as well as placement and percent 

presence of tunneling damage are all possible variables in field determinations of 

which species is present. They are, however, dependent on life stage. This would 

mean the amount of time post-egg hatch would be required to accurately utilize 

these parameters. The differences in internal damage were among the most 

distinct of the study. The apparent differences in the external and internal 

damage preferences of CM and OFM in this study may play an important role in 

the development of a field-based procedure to accurately separate CM and OFM 

damage.  
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