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ABSTRACT 

 

Signs of long-term glaciological processes and past ice sheet structure are 

preserved in the internal layer signatures of the Greenland ice sheet. Internal layer data 

have been collected over a considerable portion of the Greenland ice sheet using ice-

sounding radar. We traced these layers along thousands of kilometers of flight lines from 

the ice divide toward Jakobshavn, which is the most active glacier in Greenland. We 

determined the traced-radar layers age at the GRIP site using the GRIP core age-depth 

relationship. Since the depth varies spatially for a layer of a specific dated age, an age-

depth relationship for each position along the flight lines of this study can be found using 

the traced layers. We analyzed 31 points where flight lines crossover one another. From 

the flight line crossover analysis, we found a 9 m maximum difference, which is less than 

a 1% difference. 
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Chapter 1 Introduction 

 

1.0 Polar Ice Sheets 

Ice sheets were mainly formed from layers of snow that were compressed together 

for many thousands of years. They cover about 10 percent of the Earth's land area, and 

interact with the Earth’s atmosphere and oceans to influence the global climate system. 

Therefore, National Aeronautics and Space Administration (NASA) started a polar 

research project in support of a global climate study in 1991. About 70 percent of the 

earth’s surface is covered with water and the remaining parts are covered by the 

continental landmasses. Water exists in the natural environment in many forms, such as 

snow and ice. At high elevations and/or high latitudes, snow that falls to the ground can 

gradually condense to form thick consolidated ice masses called glaciers. Glaciers, large, 

thickened masses of ice, accumulate from snowfall over long periods of time. Rising 

temperatures can shrink polar glaciers and lead to sea level rise. Worldwide 

measurements from tidal gauges indicate that global mean sea level has risen between 10 

and 25 cm (18 cm average) during the last 100 years [Dahl-Jensen, 2000]. The estimated 

rate of sea level rise over the last century has been on the order of 1-2 mm/yr [Church, 

2001]. The contribution of all mountain glaciers to rising sea levels during the last 

century is estimated to be 0.2 to 0.4 mm/year [Meier, 1984; Zuo et al., 1997; Dyurgerov 

et al., 1997].  
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Even small amounts of sea-level rise would have substantial societal and economic 

impacts through coastal flooding, increased susceptibility to storm surges, groundwater 

contamination by salt intrusion, and other effects. A 50-cm sea-level rise could inundate 

up to 50% of North American coastal wetlands [Shriner and Street, 1998]. The costs of 

responding to it are estimated at between $20 and $200 billion in the United States alone 

[Shriner and Street, 1998]. Therefore, finding the changing information of current ice 

sheets is important for the overall picture of their role in sea level rise. 

The Antarctic and Greenland ice sheets are the largest ice sheets on the earth. The 

Greenland and Antarctica ice sheets cover 10% of the Earth’s land area and contain 77% 

of the world’s freshwater [Khazenie and Price, 1994]. The ice sheets comprise 99% of all 

the glacier ice on earth [Glacier, 2006]. A significant portion of recent sea-level rise is 

attributed to thermal expansion of the oceans and the melt of the earth’s ice. Both ice 

sheets contain enough ice to raise sea levels approximately 80 m [Williams and Hall, 

1993] (see Table 1-1). 

Table 1-1.  Estimated potential maximum sea-level rise from the total melting 

of the current Antarctic and Greenland ice sheets 

Ice sheet Volume 
(km3) 

Percent of 
world ice (%) 

Maximum surface 
elevations (m) 

Potential maximum 
sea level rise (m) 

Antarctica 30,109,800 91.5 >4200 73.4 

Greenland 2,600,000 7.9 >3000 6.5 
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1.1 Ice Sheet Mass Balance 

An ice sheet gains mass through snow and ice accumulation, and loses mass from 

glacier discharge and melting of surface ice and floating ice shelves. The difference 

between the ice gain and loss is called the mass balance. A negative balance contributes 

to global sea-level rise and vice versa. Mass balance may vary seasonally and annually 

due to different loss and gain. It is determined by the annual precipitation, ablation, 

drainage at the edges, and iceberg calving. Each year about 8 mm (0.3 inches) of water 

from the entire surface of the oceans goes into the Antarctica and Greenland ice sheets as 

snowfall [Legates, 2006]. The changing mass of the great ice sheets of Greenland and 

Antarctica represents the largest unknown in predictions of global sea-level rise over the 

coming decades.  

1.1.1 Greenland Ice Sheet 

The Greenland ice sheet would raise global sea level by about 7 m if it melted 

completely [Gregory et al., 2004]. It gains mass through snowfall and loses it by surface 

melting and runoff to the sea, together with the production of icebergs and melting at the 

base of its floating ice shelves. In recent years, some important changes of the Greenland 

glaciers have been observed. First, the floating ice shelves of several outlet glaciers have 

broken up [Joughin et al., 2004]. Second, the flow rates of a number of glaciers have 

approximately doubled over the past 5 years or so [Joughin et al., 2004]. These effects 

cause more ice discharge, which increases the mass deficit of the ice sheet from a little 
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more than 50 km3/year to in excess of 150 km3/year [Rignot, 2006]. The behavior of 

these outlet glaciers influences the mass balance of the ice sheet. 

Jakobshavn (pronounced “yah-cub-SAH-ven”) glacier is a fast moving glacier, 

draining 6.5 percent of Greenland's ice sheet area [Allen et al., 1997]. Its discharge of ice 

has nearly doubled since late 2000. The ice stream's speed-up and near-doubling of ice 

flow from land into the ocean has increased the rate of sea level rise by about 0.06 

millimeters (about .002 inches) per year, or roughly 4 percent of the 20th century rate of 

sea level increase [Joughin et al., 2004]. Therefore, the ice sheets can respond rather 

dramatically and quickly to climate changes. 

1.1.2 PARCA 

To determine whether the Greenland ice sheet mass is increasing or decreasing and 

how this will affect the global sea level, Program for Arctic Regional Climate Assessment 

(PARCA) was started in 1991 and formally initiated by NASA to measure the elevation 

and thickness of the Greenland ice sheet [Gogineni et al., 2001]. 

PARCA conducts a variety of tasks including [Thomas et al., 2001]: 

1. Ice thickness and ice surface motion measurements along the same flight lines 

using Airborne Radar Measurements; 

2. Periodic airborne laser-altimetry surveys along precise repeat tracks across all 

major ice drainage basins; 
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3. Deducing recent climate history, atmospheric chemistry, and inter annual 

variability of snow-accumulation rates by detecting shallow ice cores (10 - 200 

meters) at many locations; 

4. Investigating individual glaciers and ice streams responsible for much of the 

outflow from the ice sheet; and, 

5. Continuously monitoring of crustal motion using Global Positioning System 

(GPS) receivers at coastal sites. 

 

1.2 Past Climate Record from Ice Cores 

The Greenland ice sheet provides a record of the climate covering the previous tens 

of thousands of years, both chemically (e.g., isotope and particle data) and physically 

(e.g., in the layering structure of the ice) [Fahnestock et al., 2001]. Layers of snow 

different in chemistry and texture, fall over the ice sheets throughout each year. Inasmuch 

the ice forms from the incremental buildup of annual layers of snow, lower layers are 

older than upper layers. Each layer gives scientists a great amount of useful information 

about the climate each year. The properties of the ice can then be used to reconstruct a 

climatic record [Fahnestock et al., 2001].    

1.2.1 Ice Core and Internal Layers 

The ice cores can provide an annual record of temperature, precipitation, atmospheric 

composition, volcanic activity, and wind patterns. The thickness of each annual layer is 
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an indicator of how much snow accumulated at that location during the year. More 

importantly, the make-up of the snow itself can tell scientists about past temperatures 

[Fahnestock et al., 2001]. 

The climate history may be recovered by drilling deep cores in the ice [Fahnestock et 

al., 2001]. An ice core is a core sample of ice removed from an ice sheet, most commonly 

from the polar ice caps of Antarctica, Greenland or from high mountain glaciers 

elsewhere. As a deep ice core may contain ice formed hundreds of thousands of years 

ago, it provides a vertical timeline of past climates stored in ice sheets and mountain 

glaciers. Ice cores have been drilled in many locations around the world. Deep cores from 

Greenland and Antarctica and shorter cores from minor ice caps and glaciers have recorded 

annual and decadal climate change back to the last interglacial. The Greenland Ice Core 

Project (GRIP) and Greenland Ice Sheet Project (GISP) cores, each about 3000 m long, 

were drilled by European and US teams, respectively on the summit of Greenland. Ice 

cores provide chemical and isotopic records that can be used to determine the age-depth 

relationship. Many different approaches may be used such as chemical analysis, physical 

analysis and ice flow modeling [Dansgaard and Johnsen, 1969; Johnsen et al., 1997]. The 

isochronous nature of internal ice-sheet layers in radar data can be used to correlate 

age-depth relationships between ice-core sites [Siegert et al., 1998]. 

A modern ice-sounding radar (ISR) system has been widely accepted and used as an 

effective technique to determine ice thickness and the depth distribution of internal ice 
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layers [Fahnestock et al., 2001]. ISR has been flown over Greenland to collected 

ice-sounding data for the NASA PARCA Program [Tee et al., 1998]. A large amount of 

flight tracks (more than 100,000 km) were collected by the University of Kansas (KU) ISR 

from 1993 to 2002 [Fahnestock et al., 2001]. The internal layers in the ice sheet detected 

from ISR have been observed to be isochronous and relatively coherent along hundreds of 

kilometers [Jacobel and Hodge, 1995]. A recent method including cross-correlation and 

peak-following techniques [Fahnestock et al., 2001] has been developed to trace internal 

ice layers starting from the flight line through the GRIP site and across the ice sheet. 

Knowledge of the age-depth relationship over large spatial area can be established using 

GRIP ice core age-depth relationship. 

 

1.3 Study Focus 

This study analyzed the internal ice layers measured by ISR from the ice divide toward 

the Jakobshavn region. The Fahnestock et al. [2001] method is used to trace the internal 

layers from about 4000 km worth of flight lines. The ages of these layers are determined 

according to information from the GRIP ice core site. These ages are extended along the 

flight lines in the study area. 
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Chapter 2 Radar and Ice Core Data 

 

2.0 Introduction 

 In our study, internal ice sheet layers were traced and dated using radar sounding 

data and ice core data from Greenland. The radar data were collected by the University of 

Kansas using the coherent radar depth sounder [Fahnestock et al., 2001]. The ice core 

data were collected and analyzed by the GRIP participants [Johnsen et al., 1997]. 

 

2.1 Coherent Ice Sounding Radar 

Since 1991, the NASA PARCA has sought to accurately estimate the mass 

balance of the Greenland ice sheet using ground, airborne, and spaceborne measurements. 

The initial airborne program consisted of a laser altimeter for measuring surface elevation 

of the ice sheet along selected flight lines. In 1993, the airborne instrumentation suite was 

expanded to include a radar depth sounder to collect the ice thickness data [Gogineni et 

al., 2001]. The radar uses pulse compression techniques and coherent integration to 

obtain the high sensitivity required to measure the thickness of more than 4 km of cold 

ice [Gogineni et al., 2001]. These systems have been used to collect radar data over the 

interior and margins of the ice sheet and several outlet glaciers. Advanced signal 

processing techniques are applied to the radar data. Synthetic-aperture radar (SAR) 

processing for depth sounding radars [Legarsky et al., 2001] improves the along-track 

resolution and allows the measurement of ice thickness (> 4 km in cold ice).  

The radar system operates at a center frequency of 150 MHz. The radar 

characteristics and coherent processing system result in a depth resolution of about 4.5 m, 
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assuming a value of 1.78 for the ice index of refraction [Gogineni et al., 2001; Tee et al., 

1999; Fletcher, 1970]. Separate transmit and receive antennas are mounted beneath the 

left and right wings of the P-3 aircraft platform, with each antenna being a four-element, 

half-dipole array. The transmitter generates a frequency modulated (chirped) pulse over a 

bandwidth of 17 MHz with duration of 1.6 μs, using a surface acoustic wave (SAW) 

expander. It has a peak power of 200 W. The receiver, protected by a blanking switch 

during transmits events, compresses the received signal using a SAW filter to a pulse 

about 60 ns wide. The radar transmitter and receiver are mounted in a rack inside the 

aircraft and connected to their respective antennas with 20 m-long RF cables and a feed 

network with a combined loss of about 3 dB. The effective transmit power at the antenna 

is about 100 W [Gogineni et al., 2001].  

The received signal is filtered, amplified, compressed and detected by a low-noise 

receiver with an overall gain of about 100 dB. The coherent system converts the received 

signal to baseband in-phase (I) and quadrature (Q) analog outputs. I and Q components of 

the return signal from the coherent detector are digitized and integrated by two 12-bit 

A/D converters sampling at a rate of 18.75 MHz. The hardware digital signal processor 

(DSP) allows for averaging of complex amplitudes (I + j Q) and/or averaging of power 

(I2 + Q2) before storing on a computer hard disk. Also, the on-board GPS receiver 

collects aircraft positional data [Gogineni et al., 1998; Gogineni et al., 2001].  

 

2.2 Parameters Associated with PARCA Radar 

             Table 2-1 lists a summary of the KU  ISR system parameters. 
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Table 2-1.  A summary of the KU ISR system parameters. 

System Parameter Value Units 

Radar center frequency 150 MHz 

Transmitted bandwidth 17 MHz 

Nominal aircraft altitude 500 m 

Radar type Pulse Compression - - 

Transmitted pulse duration 1.6 μs 

Compressed pulse duration, tpw 60 ns 

A/D sampling rate, fAD 18.75  MHz 

Peak transmit power 200 W 

Pulse repetition frequency (PRF) Selectable Hz 

A/D dynamic range 72 dB 

Index of refraction for ice, ηice 1.78 - - 

Antenna type 4-element dipoles array - - 

Range sample spacing (per pixel in ice) 4.5 m 

 

2.2.1 Radar Center Frequency 

The radar system is designed to operate at a center frequency of 150 MHz. The 

choice of an appropriate frequency is constrained by the absorption of the 

electromagnetic waves in ice. VHF frequencies are preferred since the absorption is 

smaller at these frequencies than microwaves, whereas antennas are smaller and 

resolution can be better than for lower frequencies [Raju et al., 1990].  

 

2.2.2 Dielectric Constant for Ice  

 The dielectric constant is the ratio of the electrical conductivity of a dielectric 

material to free space. The dielectric constant for ice depends on the composition and 



structure of the ice. Figure 2-1 schematically shows the dielectric constant of pure ice as a 

function of frequency. The dielectric constant εice is approximately 3.17 over a large 

frequency range from 10 MHz to 1000 GHz [Lamb and Turney, 1949; Fletcher, 1970]. 

The index of refraction, nice, is related to the dielectric constant over the microwave 

region as εice = nice
2. Thus, the index of refraction for ice would be about 1.78 [Fletcher, 

1970] with an εice value of 3.17. 

 

Figure 2-1.  Dielectric constant of ice frequency dependence at -10oC [Fletcher, 1970]. 

 

2.2.3 Depth Resolution in Ice 

The depth resolution in ice is given by [Raju et al., 1990] 

 
ice

pw
icer n

ct
R

2, =   (2-1) 
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where c is the speed of light in a vacuum (~  m/s), t8103× pw is the compressed pulse 

width, and nice is the ice index of refraction. Thus, the depth resolution is about 5 m.  

2.2.4 Range Sample Spacing  

The range sample spacing corresponds to the distance traveled in ice depth from 

one pixel to the next pixel. It is given by 

 
ADice

s fn
cR

2
=  (2-2) 

where c is the speed of light in a vacuum (~  m/s), and f8103× AD is the A/D sampling 

frequency. Thus, the range sample spacing is about 4.5 m. 

2.2.5 Radar Data Collection 

The PARCA radar system is typically mounted on a NASA P-3 aircraft, which is 

equipped with a laser altimeter and GPS receiver. As part of PARCA, the NASA P-3 

aircraft has flown over the Greenland ice sheet to collect the ice-sounding radar data 

[Gogineni et al., 2001; Joughin et al., 1996]. The aircraft is usually flown at a 500 m 

altitude at a speed of about 130 m/s.  

Data have been collected over 100,000 km worth of flight lines (see Figure 2-2) 

[Fahnestock et al., 2001], which covered all major drainage basins and the interior 

regions in Greenland (e.g., along Greenland’s 2000-m elevation contour and the ice sheet 

summits around 3200 m thick ice). An extensive data set was also obtained for the 

Jakobshavn outlet glacier, which is considered to have the highest iceberg production of 

all Greenland glaciers and is a major drainage outlet for a large portion of the western 

side of the ice sheet [Joughin et al., 2004]. For this study, we analyzed ISR data from the 
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ice divide toward Jakobshavn, Greenland. Figure 2-3 illustrates on a Greenland map the 

flight lines used in this study. The GRIP site is denoted as an asterisk on the map.  

 

  

 Figure 2-2. PARCA flight lines with KU ISR data are illustrated on the Greenland map. 
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Figure 2-3. Greenland map illustrating the flight lines from the ice divide towards Jakobshavn, 
Greenland. The location of the Greenland Ice Core Project (GRIP) site is denoted as an asterisk on 
the map. 
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2.2.6   Archive Radar Data Format 

From the Greenland PARCA missions, radar echograms and ice thickness 

information are archived on the KU server [Tee et al., 1999]. Figure 2-4 illustrates an 

example radio echogram.  Table 2-2 summarizes the available parameters stored in the 

archived files.  

 

Figure 2-4. A radio echogram example from the vicinity of the GRIP deep drilling site. 

 

 Table 2-2. Summary of archive file parameters for ISR data. 

File Variable Name Unit 

A Radar Echogram αVolts

lon Longitude Coordinate for each radar sample °W 

lat Latitude Coordinate for each radar sample °N 

top Ice surface location for each radar sample Pixels 

bot Bedrock location for each radar sample Pixels 
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 Each archive file typically consists of 1000 records (or 1000 stacked A-scopes). 

The location (i.e., latitude and longitude from GPS) at the time of collection is given for 

each record. Figure 2-5 shows an example of an A-scope signal. The ice thickness is 

calculated by multiplying the difference in pixels (between the bottom pixel and top pixel 

locations) by the range sample spacing (i.e., 4.5 m).   

 

Figure 2-5.   An archive A-scope example. The ice thickness is the difference between the ice 

bottom return value and the ice top return value on the scale shown.  

 

2.3 Ice Core Data 

Polar ice cores contain a record of the past atmosphere (e.g., temperature, 

precipitation, gas content, chemical composition, and other properties). Deep cores from 

the Greenland ice sheet provide information about the past climate conditions and past 

environmental conditions. Annual layers from snow deposition can be counted along the 
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length of the ice core. As snow is compressed to ice near the surface, samples of 

atmospheric air are trapped as tiny bubbles in the ice. Ancient atmospheres may therefore 

be studied by analyzing the air in the bubbles. Other characteristics from the past (e.g. 

temperature, precipitation and storminess) can be estimated by studying the ice and its 

impurities [Dahl-Jensen et al., 1997; Andersen et al., 2006]. 

2.3.1 GRIP Ice Core Introduction 

The GRIP drilled a 3029 m long ice core from Central Greenland Summit from 

1989 to 1992 at the coordinates 72o 35' N, 37o 38' W [Dahl-Jensen et al., 1997]. The 

GRIP site is denoted as an asterisk in Fig. 2-3. The age of the ice is estimated to be 

greater than 200,000 years.  

2.3.2 GRIP Ice-core Relationship 

The GRIP researchers published the age-depth relationship of the GRIP ice core 

[Johnsen et al., 1997]. Parameters used to date the core include electrical conductivity 

measurements (ECM), dust, nitrate and ammonium, which all give excellent annual 

layers. The age-depth relationship data for the ice core are also archived at the National 

Snow and Ice Date Center in Boulder, Colorado. Figure 2-6 illustrates the age-depth 

relationship for the GRIP ice core. The timescale is in years before present (yr BP) where 

year 0 BP refers to the northern hemisphere summer of the year 1950 A.D. Using the ice-

layer tracing techniques discussed in the next chapter, we can trace internal layers in the 

radar data along flight lines in Greenland. Inasmuch as the internal layers are isochronal 

nature, each internal layer in the radar data at GRIP can be dated using the GRIP ice core 

age-depth relationship. 



 

Figure 2-6. An age-depth relation plot for the GRIP ice core. Years BP is years before 1950.  
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Chapter 3 Layer Tracing Methods 

 

3.0 Method Introduction 

The internal layering in the ice sheet has been shown to be mainly isochronous 

and relatively coherent along hundreds of kilometers [Jacobel and Hodge, 1995]. By 

tracing the layers away from the GRIP site with its reported age-depth relationship, the 

ages of the layers can be determined far from the GRIP site. The layer tracing process is 

semi-automatic [Fahnestock et al., 2001].  We traced the internal layers along thousands 

of kilometers of flight lines from the ice divide towards Jakobshavn. The first step of the 

processing is the enhancement of each echogram to visually optimize the radio image 

display. Then, cross-correlation and peak-following techniques are used to trace the 

internal layers. A diagram of the overall approach (i.e., layer tracing and age 

identification) is illustrated in Figure 3-1. In this chapter, we mainly discuses the layer 

tracing methods, which include image preprocessing, layer tracing by peak following, 

and cross-correlation layer tracing. The typical parameters used in the study is shown in 

Table 3-1. This chapter also include a discussion of the analysis of flightline crossover 

points. The ages of the layers are discussed in Chapter 4.

 

 23

 

 

 

Image 
Preprocessing 

Peak 
Following 

Cross-
Correlation 

Layer 
Check 

Radio Layer 
Value 

 

 

Image 
Ages of 
Layers 

GRIP Age-depth 
Relationship 

Figure 3-1. A diagram of the layer tracing and layer age identification approach. 



 24

Table 3-1.  Typical Parameters Used in Study. 

Description Value Units 
Ice index of refraction 1.78 - 
Maximum no. of bits used in the A/D converter 12 bits 
Sampling rate of A/D converter 18.75 MHz 
Lower pixel in threshold computation window, xnl 825 pixels 
Upper pixel in threshold computation window, xnh 1024 pixels 
Peak parameter search pixels about center  +/-2 pixels 
Correlation parameter search pixels about center  +/-9 pixels 
Correlation parameter reference pattern 3 pixels 
 

3.1 Image Preprocessing 

The purpose of image preprocessing in this study is to optimize the radio image 

display by applying an exponential normalization [Fahnestock et al., 2001]. Since the 

strength of the radar return signal diminishes near exponentially with depth due to beam 

divergence and energy losses in the medium, the return signals from the deeper ice are 

often weaker than those from the shallower regions. To visually enhance the deeper 

layers, the image preprocessing consists of three main steps: 1) find an average of the 

columns of the input image; 2) apply an exponential fit over the desired depth range in 

ice to the average of all columns; and, 3) normalize the radar echogram using the 

exponential fit to values above a threshold.  

3.1.1 Average of Columns from Input Image 

To help identify the layers, which may not be clearly seen, normalized average 

values of columns from the input image are calculated at the beginning of preprocessing. 

A radar echogram, A, can be described by an m rows by n columns matrix (typically m is 

1024 and n is 1024), which is the amplitude of the complex signal (i.e., A equal 

sqrt(I2+Q2) where I is the in-phase component and Q is the quadrature component). 
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Ai is the ith column of A, that is 

[ ]nAAAAA L321= .                                              (3-2) 

First, Ai is normalized by the max possible value (e.g., 212 based on 12-bit analog to 

digital converter for each channel, I and Q) [Gogineni et al., 1998] based on the number 

of A/D converter bits per channel, numbits. Thus, each column of the normalized radar 

echogram is given by
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= i
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AA .                                            (3-3) 

The normalized average values, Ai na, of Ai are calculated as  
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1 ,                                                                 (3-4) 

3.1.2 Exponential Fit to Average of All Columns  

An exponential function is applied to each column of the normalized radar 

echogram, Ai nor, to visually enhance the deeper layers. An exponential function is fit to 

the normalized average values, Ai na, over a window of depths (i.e. lowest depth value, d1, 

to the highest depth value, d2). For our study, the depth values of d1 and d2 are 400 m (89 

pixels) and 2000 m (445 pixels), respectively [Fahnestock et al., 2001].  Since the ice 

surface is not normally at a row 1 or a constant row, the ice surface reference is 

determined by calculating the average value of the top pixel locations (xtop avg) in the 
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image. Thus, the exponential fit is determined from the windowed values between the 

lowest pixel number, xlf, and highest pixel number, xhf , in relationship to the surface as 

                                         
5.4
1dxx avgtoplf += ,                                                       (3-5) 

                                         
5.4
2dxx avgtophf += .                                                      (3-6) 

Thus, the exponential fit will be applied to windowed values over the pixel range, 

hfhflflff xxxxx ,1,,1, −+= K .                                      (3-7) 

The exponential and natural logarithm forms are given by the following equations: 

( ) fbx
fain aexA = ,                                                            (3-8) 

( )( ) )ln(ln abxxA ffain += .                                            (3-9) 

where a is the exponential fit amplitude factor and b is the exponential fit exponent factor. 

Inasmuch as the natural logarithm form (Eq 3-9) can be expressed in the slope-intercept 

form of a line, its slope is b and its intercept is ln(a). Given Aina(xf) and xf, the exponential 

fit variables (i.e. a and b) are calculated from the slope (i.e., slope equals b) and intercept 

(i.e., a equals eintercept).  

After expressing indices, Vx, for each column as a vector,  

  ,                                                                   (3-10) 
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the fit for an average column using the exponential function may be written as, 

xbVaeV =exp .                                                                (3-11) 
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To remove the average exponential fit from each column, Ai nor, that is above a threshold, 

Nthreshold, the column is divided (i.e. element by element manner) by the Vexp; therefore, 

the normalized and exponential removed radar echogram columns are found as 
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where the threshold is defined by the average of the values in the threshold computation 

window multiplied by sqrt(2) (i.e., )2(10log20∗  is about a 3 dB signal-to-noise ratio 

(SNR)) 
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Figure 3-2 shows an example of an exponential fit superimposed on a single column. 

Figure 3-3 illustrates the column with the exponential function applied as in (Eq 3-12) to 

visually enhance the deeper layers.  

 

Figure 3-2. An example of an exponential fit superimposed on a single column.  
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Figure 3-3.   An example column with the exponential function applied to 
 visually enhance the deeper layers.  

 
 

3.2 Peak-following Method for Layer Tracing 

       A reflecting internal layer often manifests as a peak in the vertical profile (i.e. 

column) from a radar echogram. A layer in a vertical profile is traced horizontally (i.e. 

along the flightline) throughout the radar echogram. The preprocessing output radar 

echogram, D, may be written as 
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To begin a layer tracing, we select a point by placing and clicking the cursor on or 

near a visually observable peak [Fahnestock et al., 2001]. The peaking-following 
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method is used to search the nearby coordinates in the same column and identify the 

maximum value (i.e., usually within ±2 pixels). The coordinates (m, n) of the 

selected point are recorded in position 1 for a peak layer p (i.e., Lp1) in the peak layer 

p vector, Lp. For the next column, the coordinates (m, n) of the previous selected 

point are used as the initial guess; moreover, the coordinates for the current column 

(i.e., Lp2) are found by searching the nearby coordinates in the same column and 

identifying the maximum value (i.e. usually within ±2 pixels). The same procedure 

is continued until the coordinates of nth column (i.e., Lpn) are found.  Thus, the peak 

layer vector, Lp, may be written as 

                                           Lp = [Lp1   Lp2   ···   Lp(n-1)   Lpn],                                       (3-15) 

 

3.3 Cross-correlation Method 

To begin a layer tracing, we select a point by placing and clicking the cursor on or 

near a visually observable peak [Fahnestock et al., 2001]. The cross-correlation method is 

used to search the nearby coordinates with a window (typically within ±1 pixel of the 

peak) in the same column and identify the maximum cross-correlation value (i.e., usually 

within a Hanning multiplied larger window of ±9 pixels). The coordinates (m, n) of the 

selected point are recorded in position 1 for a cross-correlation layer p (i.e., Cp1) in the 

cross-correlation layer p vector, Cp. For the next column, the coordinates (m, n) of the 

previously selected point are used as the initial guess; moreover, the coordinates for the 

current column (i.e., Cp2) are found by searching the nearby coordinates in the same 

column and identifying the maximum cross-correlation value (i.e., usually within ±9 



pixels). The same procedure is continued until the coordinates of nth column (i.e. Cpn) are 

found.  Thus, the cross-correlation layer vector, Cp, may be written as 

                           Cp = [Cp1   Cp2   ···   Cp(n-1)   Cpn].                                         (3-16) 

Figure 3-4 illustrates an example of a traced layer, in which blue and red lines 

denote the results using the peak-following and cross-correlation methods, respectively.  

We visually inspect and choose which one appears to better trace the layer [Fahnestock et 

al., 2001].  

For layer tracing, the peak-following technique is straightforward and effective in 

areas where a peak is distinctly visible. The correlation technique is more appropriate in 

situations where the peak fades, but the overall layer pattern still remains preserved 

[Fahnestock et al., 2001].  

 

Figure 3-4.   A radio diagram with a traced layer. The blue line and the red line illustrate  

 

           the result using peak-following and cross-correlation methods, respectively.  
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3.4 Layer Tracing Implementation 

The layer tracing methods were implemented in Matlab. A flow chart of the 

Matlab implementation is shown in Figure 3-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5.   Flow chart of layer tracing process 
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Graphical-interface-driven Matlab routine software is used to implement the layer 

tracing process. At the beginning of layer tracing, an image file is loaded and 

preprocessed. The exponential fit is applied to enhance the deeper layer for layer tracing. 

The normalized average values of columns from the input image are calculated 

[Fahnestock et al., 2001]. Each layer is processed horizontally throughout the echogram. 

The software processes the radio echogram of each file along the flight line using peak-

following and cross-correlation techniques.  

The layer tracing results are visually inspected to insure the layer trace actually 

lies on a layer in the radar echogram. An incorrect layer trace can occur for a number of 

reasons [Fahnestock et al., 2001] (e.g., warmer ice [i.e., increased signal absorption in 

ice] makes it harder to distinguish the layer from its surrounding environment). If the 

layer can be seen visually and the layer tracing produces incorrect results, then layer 

locations are picked by hand (i.e., using the mouse input and spline function in Matlab).  

Once the layer results reasonably match the visible layer line, the results are saved. 

Additional visual inspections are discussed in the next section. Figure 3-6 shows an 

image with five layers, the ice surface and the bedrock in the vicinity of the GRIP deep 

drilling site. 
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Figure 3-6.   Five internal ice layers of radio echogram from the vicinity of the GRIP deep drilling 

site are superimposed on a radar echogram along with  the locations of the ice surface and bedrock  

 

3.5 Crossover Point Inspection  

A crossover point occurs when flight lines intersect each other. At a crossover point, 

the top and bottom pixel values may differ for each flight for various reasons (e.g. the 

aircraft altitude may slightly differ or the time delay is different before the first A/D 

sample is collected). To inspect the layer tracing results, the radar images at crossover 

points are shifted such that the ice surfaces for both images are at the same row. The user 

visually inspects the shifted images to insure that the layer in one image has been traced 

to the corresponding layer in the second image. An example inspection of the layers at a 
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crossover point can be seen in Figure 3-7. The yellow line denotes the location of 

crossover point #1 (37.406°W, 71.704°N). 
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           Figure 3-7. Five ice layers superimposed on radar echogram are shown at crossover point #1.  
 

3.6 Flight Line Nearest to GRIP Site  

The isochronous nature of the layers and the dating results provided by the GRIP 

ice core allow us to determine the age-depth relationship in our study area [Fahnestock et 

al., 2001]. The flight line nearest to the GRIP site is found by calculating the shortest 

distance between GRIP ice core and each point on the nearby flight lines. To calculate the 

distance between two points on the earth, the points of spherical coordinate arrays should 

be transformed to the corresponding points of Cartesian or xyz coordinates. For example, 

P1 (θ1, ϕ1, R) and P2 (θ2, ϕ2, R) are two points on the earth. θ1 and θ2 are longitudes of 

the corresponding points and ϕ1, ϕ2, are the latitudes. The unit of the angles is radians.  
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The Earth is a rough sphere with the average radius of about 6370 km. Figure 3-8 

shows θ1, ϕ1 and R of P1. 
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Figure 3-8.  The mapping from spherical coordinates to three-dimensional Cartesian coordinates is 
shown. 

 

The xyz coordinates of P1 are found as follows 

),cos(*)cos( 111 θϕ∗= Rx                                               (3-17) 

                                            ),sin(*)cos( 111 θϕ∗= Ry                                                 (3-18) 

                                            ).sin( 11 ϕ∗= Rz                                                                (3-19) 

Also, the xyz coordinates of P2 are found as follows 

                                     ),cos(*)cos( 222 θϕ∗= Rx                           (3-20) 

         ),sin(*)cos( 222 θϕ∗= Ry                                                 (3-21) 

   ).sin( 22 ϕ∗= Rz                                            (3-22) 

The distance, d12, between P1 and P2 in the xyz coordinates can be obtained by the 

following equation. 
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The flight line of May 23, 2001 is the closest to the GRIP site. Beginning from 

this line, the age-depth relationship of all the flight lines in our study area may be found. 

The total ISR data covers more than 4000 km of flight lines over this region. All these 

flight lines form an interconnected web over the study area. The flight lines have a total 

of 31 crossover points. The filenames of the flight lines are listed in Appendix A. The 

longitudes and latitudes of crossover points can be found in Chapter 4 (see Table 4-1).  

 

3.7 Internal Layer Continuity  

To graphically check the internal layer continuity throughout the entire study area, 

the traced layers are connected with each other based on 11 different long lines. The line 

numbers are denoted as L1, L2, L3…and L11 as shown in Figure 3-9. The internal layers 

of L3 are superimposed on the radar echogram given in Figure 3-10. The ice layers are 

continuously extended from the ice divide to the Jakobshavn region. Based on the 

continuity of the traced layers and the consistency at the crossover points, the age-depth 

relationship of these layers can be defined according to the GRIP age-depth relationship 

discussed in Chapter 2. 

 

 

 

 

 

 

 



 

 

Figure 3-9.   Long flight lines of study area.  
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Figure 3-10.   Layer continuity of Line 3.  
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Chapter 4 Processing Results and Discussion 

 

4.0 Introduction 

Our study area spans from the Greenland ice divide line toward the Jakobshavn 

region in order to provide the layer information needed for ice modeler about the 

Jakobshavn fast-moving outlet. Using a semi-automated software system including 

preprocessing, cross-correlation and peak-following techniques, the internal layers of 

these flight lines are traced along the flight line through the GRIP site located at the 

summit of Greenland, on the ice divide line. The layer continuity and the consistency at 

the crossover points are checked. The age-depth relationship of internal layers is found 

using the GRIP age-depth relationship. 

 

4.1 Traced Layers  

Figure 4-1 illustrates the larger view of our study area, in which the dotted line and 

the circle mark denote the ice divide and the GRIP site respectively. The red asterisks 

denote the crossover points. 

We chose to trace five internal layers that are spaced about 1000 yrs in time over study 

region. They are traceable over the majority of the study site. Using the method discussed 

in the last chapter, five layers are traced and illustrated in Figure 4-2. The vertical yellow 

line denotes the GRIP ice core. The ice surface, bedrock, and the five traced internal 



layers, are shown on the radar image. The archived files are traced one by one along the 

flight lines. After the layers of one whole flight line are found, we begin to trace the 

layers of next flight line from the corresponding crossover points. The traced layers for 

each flight line can be seen in Appendix B. 

 

 
 
Figure 4-1. A portion of Greenland map illustrating the flight line of the study area. The location of 
the GRIP ice core is denotes as a yellow circle mark. The diamond dotted line illustrates a portion of 
ice divide. The crossover points are shown as red asterisks on the map.  
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Figure 4-2.  Five internal layers are shown on a radar echogram from nearby GRIP. 

 

4.2 Crossover Point Analysis 

We analyzed the 31 flight line crossover points that are found within our study region. 

The difference in each layer thickness for each crossover location is shown in Table 4-1. 

Closer to the Jakobshavn region, the deeper layers may become not readily discernable 

mainly by signal absorption loss through relatively warm ice or melt conditions and by 

clutter from the crevassed surfaces [Braaten et al., 2002]; therefore, the crossover 

difference for a number of entries is listed in Table 4-1 as ‘-’. As the flight lines crossover 

at many points, we verified the layers consistency at each crossover point. Since the layers 
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are known to be isochronal in nature, the consistency at the crossover points is an 

important check on the tracing process and the temporal variation of the flight lines (e.g. 

collected between 1993 to 2002). Moreover, analysis of the layer thickness at the crossover 

points agrees to within 4.5 m (one range bin) for most cases, and 9 m (two range bins) for 

a few of the worst cases. The high consistency over the crossover points supports the 

claim, which indicates that once dated, that these layers can define the age-depth 

relationship throughout much of the study region [Fahnestock et al., 2001]. It is notable 

that differences were zero for more than 68% of the entries in the crossover Table 4-2. 

 

4.3 The Age-depth Relationship of Traced Layers 

Since the GRIP core provides an age estimate for each of the traced layers, the five 

traced-radar layers ages are determined at the GRIP site using the GRIP core age-depth 

relationship [Johnsen et al., 1997], which is also described in Chapter 2. No correction was 

made for the accumulation rate, because the present accumulation rate at GRIP is about 

0.22 m ice equivalent/yr [Braaten et al., 2002] or up to 1 radar range bin for the radar data 

set collected over ten years.  

To compare the radar-measured depth to the depth in the ice core, an 8 m correction is 

added to the radar-measured depth to account for the higher radar velocity in the firn than 

in ice [Fahnestock et al., 2001]. After correction, the radar-based values correspond to true 

depth for comparison to the GRIP core. The age-depth relationship of each traced layer at 
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GRIP is given in Table 4-2. The age range of the traced layers covers a period of 4657 

years.   

Table 4-1.  Crossover Results 

 
Difference  ( m ) Crossover 

Site 
Latitude 

( o N ) 
Longitude

( o W ) Layer1 Layer2 Layer3 Layer4 Layer5 
1 71.704 37.406 0 0 0 0 0 
2 71.458 40.269 0 0 0 0 0 
3 71.454 42.214 4.5 0 0 0 0 
4 72.561 42.508 4.5 0 0 0 4.5 
5 72.350 38.683 0 0 0 0 0 
6 72.708 38.007 0 0 0 0 0 
7 73.498 40.562 0 0 0 0 0 
8 71.137 37.074 0 0 0 0 0 
9 70.809 41.315 4.5 4.5 4.5 4.5 0 
10 69.920 42.635 4.5 4.5 4.5 4.5 - 
11 70.469 37.139 0 0 0 0 0 
12 69.524 37.682 0 0 0 0 0 
13 68.416 40.112 0 0 0 0 - 
14 68.317 40.858 0 4.5 0 0 - 
15 68.983 42.783 0 0 9 0 - 
16 68.90 44.001 0 0 - - - 
17 68.819 44.057 4.5 9 - - - 
18 69.237 43.564 4.5 0 - - - 
19 70.894 45.444 0 0 0 0 0 
20 70.577 45.196 4.5 4.5 4.5 4.5 - 
21 70.243 44.941 4.5 9 9 4.5 4.5 
22 69.682 44.533 4.5 0 - - - 
23 69.638 44.862 4.5 0 - - - 
24 69.499 44.405 4.5 0 4.5 0 - 
25 67.702 44.889 4.5 4.5 - - - 
26 70.027 46.265 4.5 4.5 - - - 
27 70.129 46.592 4.5 0 - - - 
28 70.115 46.611 0 0 - - - 
29 69.906 46.959 0 4.5 - - - 
30 69.356 46.855 0 - - - - 
31 67.653 46.498 0 0 - - - 
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Table 4-2.  Age-Depth Relationship 

Layer # GRIP Core Depth ( m ) Age ( yrs BP* ) 
1 736 3596 
2 929 4849 
3 1069 5863 
4 1221 7102 
5 1347 8253 

 

The northeast portion of our study area partially overlaps with the flight line used by 

Fahnestock et al. [Fahnestock et al., 2001]. The overlap covers about 300 km of flight 

line (i.e. from crossover point 7 to 6 to 1 as shown in Figure 4-1). Our layers 1, 2, and 4 

are also shown in the previous study. Over the overlapping line, the corresponding layer 

thickness values appear to be consistent with each other. At GRIP, these layers are within 

1 range bin (4.5 m) for each independent study. 

 

4.4 Radar Internal Layer Tracing Results  

To visually describe how the ice thickness changes over our study area, we plotted 

the each layer thickness (color coded) values (~5 km averages) on a map of the flight 

lines as shown in Figures 4-3 to 4-7. A portion of the ice divide is illustrated on each map 

using diamond dotted lines. Each layer is traced over the majority of the study area; 

however, some layers were not easily traceable, as discussed in the crossover analysis, in 

the southwest portion of our study area.  

Radar-detected thickness values for layers 1 through 5 are shown in Figures 4-3 to 4-7, 
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respectively. For each layer thickness, the trend is increasing layer thickness from the 

northeast corner towards the southwest corner of the study area. Since layer thickness and 

long-term accumulation rate are strongly related [Dahl-Jensen et al, 1997], the layer 

thickness increases in large part due to increases in the long-term accumulation rate 

[Fahnestock et al., 2001], which increases towards the Jakobshavn Isbrae in our study area. 

The increasing layer thickness trend is similar to the increasing long-term accumulation 

rate trend reported [Bales et al., 2001] over our study area. The thicker layer values are 

observed in the catchment basin of Jakobshavn Isbrae. In Figures 4-3 to 4-7, this area of 

thicker layer values corresponds to the higher long-term accumulation rates reported by 

Bales et al. [Bales et al., 2001] in our study area. The thickness to the bedrock is shown in 

Figure 4-8. The bedrock thickness trend from the ice divide toward Jakobshavn region is 

decreasing thickness from about 3100 m down to 1500 m.



 

Jakobshavn 
Isbrae 

Figure 4-3. Thickness of Layer 1. 
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Jakobshavn 
Isbrae 

Figure 4-4. Thickness of Layer 2. 
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Jakobshavn 
Isbrae 

Figure 4-5. Thickness of Layer 3. 
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Jakobshavn 
Isbrae 

Figure 4-6. Thickness of Layer 4. 
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Jakobshavn 
Isbrae 

Figure 4-7. Thickness of Layer 5. 
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Jakobshavn 
Isbrae 

Figure 4-8. Thickness to the Bedrock. 
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Chapter 5 Conclusions 

 

5.0 Summary 

We demonstrated internal layers could be traced over our study region, which is 

from the ice divide toward the Jakobshavn outlet glacier region, and areas to the south. 

We successfully traced layers over multiple flight lines and multiple dates for our study 

region. These layers are dated using GRIP ice core data. Additionally, the internal layer 

tracing method has a high degree of consistency based on the crossover point analysis. 

The traceable internal layers from the ice divide toward Jakobshavn, Greenland 

maintain their structure over a large area. The age-depth relationships of these known 

isochronal layers from the ice divide towards the Jakobshavn region can be useful in 

modeling ice sheet flow far away from the GRIP core site. 

 

5.1 Future Work 

 This study traced 5 internal layers in radar data from more than 4000 km worth of 

flight lines, which was a significant accomplishment for this area of high interest. In 

the future, additional layers beyond 5 could be traced. With additional resources, 

layers could be traced in the radar data from the entire PARCA Greenland radar data 

set (> 100,000 km) for archiving in the National Snow and Ice Data Center (NSIDC). 
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Appendix 
 
 

Appendix Overview 
 

 
We processed 45 archive files for our study. Appendix A gives the list of these 

files. The locations of corresponding line numbers can be found in Figure 3-9. Appendix 

B includes the results of traced internal layers for each archive file. Appendix C lists the 

file formats for the archive results. 

 
 

Appendix A   The List of Filenames in Our Study Area 
 
 

Line number Filename Page number 

L1 may23_01.050-may23_01.057.mat 
may23_01.043-may23_01.050.mat 
may23_01.035-may23_01.043.mat 
may23_01.028-may23_01.035.mat 
may23_01.021-may23_01.028.mat 

56 
57 
58 
59 
60 

L2 may23_01.079-may23_01.087.mat 
may23_01.087-may23_01.094.mat 
may23_01.094-may23_01.102.mat 

61 
62 
63 

L3 jul14_98.059-jul14_98.063.mat 
jul14_98.063-jul14_98.066.mat 
jul14_98.066-jul14_98.070.mat 
jul14_98.070-jul14_98.073.mat 

64 
65 
66 
67 

L4 jun24_93.003-jun24_93.003.mat 
jun24_93.003-jun24_93.004.mat 
jun24_93.004-jun24_93.005.mat 
jun24_93.005-jun24_93.006.mat 

68 
69 
70 
71 

L5 jul17_98.003-jul17_98.007.mat 
jul17_98.007-jul17_98.010.mat 
jul17_98.010-jul17_98.014.mat 

72 
73 
74 

L6 jul15_98.048-jul15_98.052.mat 
jul15_98.052-jul15_98.055.mat 
jul15_98.055-jul15_98.059.mat 
jun27_98.016-jun27_98.019.mat 

75 
76 
77 
78   

L7 may18_99.018-may18_99.021.mat 
may18_99.021-may18_99.025.mat 

79 
80 
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may18_99.025-may18_99.028.mat 81 
L8 may20_96.023-may20_96.025.mat 

may20_96.025-may20_96.027.mat 
may20_96.027-may20_96.028.mat 
may20_96.034-may20_96.035.mat 
jun27_98.047-jun27_98.051.mat 
jun27_98.051-jun27_98.052.mat 
jun27_98.007-jun27_98.010.mat 

82  
83 
84 
85 
86 
87 
88  

L9 jun04_02.222-jun04_02.229.mat 
jun04_02.229-jun04_02.236.mat 
jun04_02.236-jun04_02.244.mat 
jun04_02.244-jun04_02.251.mat 

89 
90 
91 
92 

L10 jun01_02.088-jun01_02.095.mat 
jun01_02.095-jun01_02.102.mat 
jun01_02.102-jun01_02.110.mat 
jun01_02.110-jun01_02.117.mat 

               93   
94  
95 
96  

L11 jun30_98.008-jun30_98.011.mat 
jun30_98.011-jun30_98.011.mat 
jun30_98.012-jun30_98.019.mat 
jun30_98.019-jun30_98.026.mat 

97 
98 
99 

100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B   The Results of Traced Internal Layers 
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 42.7693W    42.9300W    43.0871W    43.2407W    43.3919W    43.5388W    43.6892W    43.8329W   43.9772W    44.1478W    44.4945W
    0km        14.25km       28.36km       42.29km      56.14km      69.80km       83.84km      97.42km      111.22km    125.02km    136.30km
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jun01_02.088-jun01_02.095.mat
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      71.5382N     71.4159N     71.2951N     71.1744N     71.0536N     70.9322N     70.8115N     70.6908N     70.5699N     70.4490N     70.3272N       
                45.9774W    45.8731W    45.7721W    45.6719W    45.5730W    45.4752W     45.3788W    45.2839W    45.1899W    45.0971W    45.0044W                

     0km       14.10km       27.99km       41.89km      55.79km       69.75km        83.62km     97.49km      111.37km     125.25km     139.23km
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        71.5382N     71.4159N     71.2951N     71.1744N     71.0536N     70.9322N     70.8115N     70.6908N     70.5699N     70.4490N     70.3272N       
                  45.9774W    45.8731W    45.7721W    45.6719W    45.5730W    45.4752W     45.3788W    45.2839W    45.1899W    45.0971W    45.0044W                

      0km       14.10km       27.99km       41.89km      55.79km       69.75km        83.62km      97.49km     111.37km     125.25km     139.23km
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70.2978N     70.1764N     70.0541N     69.9328N     69.8115N     69.6897N     69.5691N     69.4485N     69.3262N     69.2040N     69.0830N
 44.9825W    44.8918W    44.8015W    44.7128W    44.6256W    44.5387W     44.4542W    44.3702W    44.2858W    44.2032W    44.1219W
      0km       13.93km       27.95km       41.85km       55.74km       69.70km       83.51km      97.31km     111.30km    125.28km    139.12km
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70.2978N     70.1764N     70.0541N     69.9328N     69.8115N     69.6897N     69.5691N     69.4485N     69.3262N     69.2040N     69.0830N
 44.9825W    44.8918W    44.8015W    44.7128W    44.6256W    44.5387W     44.4542W    44.3702W    44.2858W    44.2032W    44.1219W
      0km       13.93km       27.95km       41.85km       55.74km       69.70km       83.51km      97.31km     111.30km    125.28km    139.12km
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jun01_02.102-jun01_02.110.mat
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 69.0541N     68.9325N     68.8143N     68.6912N     68.5672N     68.4448N     68.3244N     68.2045N     68.0827N     67.9615N     67.8406N
  44.1025W    44.0217W    44.0641W    44.1613W    44.2573W    44.3497W     44.4392W    44.5279W    44.6171W    44.7041W    44.7908W
       0km       13.91km      26.72km       40.44km      54.51km       68.49km       82.28km      96.05km      110.04km     123.96km    137.85km
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 69.0541N     68.9325N     68.8143N     68.6912N     68.5672N     68.4448N     68.3244N     68.2045N     68.0827N     67.9615N     67.8406N
  44.1025W    44.0217W    44.0641W    44.1613W    44.2573W    44.3497W     44.4392W    44.5279W    44.6171W    44.7041W    44.7908W
       0km       13.91km      26.72km       40.44km      54.51km       68.49km       82.28km      96.05km      110.04km     123.96km    137.85km
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jun01_02.110-jun01_02.117.mat
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67.8116N     67.6916N     67.5737N     67.4531N     67.3299N     67.2072N     67.0841N     66.9604N     66.8384N     66.7177N     66.5968N
44.8112W    44.8959W    44.9782W    45.0613W    45.1455W    45.2285W     45.3109W    45.3927W    45.4730W    45.5510W    45.6287W
    0km         13.81km      27.37km       41.24km       55.41km       69.52km       83.67km      97.87km     111.89km    125.74km    139.61km
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67.8116N     67.6916N     67.5737N     67.4531N     67.3299N     67.2072N     67.0841N     66.9604N     66.8384N     66.7177N     66.5968N
 44.8112W    44.8959W    44.9782W    45.0613W    45.1455W    45.2285W     45.3109W    45.3927W    45.4730W    45.5510W    45.6287W
    0km         13.81km      27.37km       41.24km       55.41km       69.52km       83.67km      97.87km     111.89km    125.74km     139.61km
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jun30_98.008-jun30_98.011.mat

70.3190N     70.2548N     70.1802N     70.1142N     70.0403N     69.9624N     69.8830N     69.8024N     69.7229N     69.6454N     69.5673N
 46.7397W    46.9294W    46.8630W    46.6075W    46.3185W    46.0186W     45.7167W    45.4221W    45.1503W    44.8892W    44.6292W
    0km        10.08km       16.12km       23.32km      34.83km      48.11km        62.05km      76.14km     89.67km      102.83km     116.04km
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jun30_98.011-jun30_98.011.mat
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69.5311N     69.4524N     69.3717N     69.2908N     69.2097N     69.1279N     69.0455N     68.9628N     68.8799N     68.7969N     68.7165N
 44.5107W   44.2527W     43.9933W    43.7344W    43.4801W    43.2257W    42.9726W    42.7208W    42.4721W    42.2257W    41.9903W
    0km       13.33km        26.87km      40.45km       53.93km       67.49km      81.09km      94.70km     108.27km     121.79km    134.82km
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jun3098.012-jun30_98.019.matjun30_98.012-jun30_98.019.mat 
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jun3098.012-jun30_98.019.matjun30_98.012-jun30_98.019.mat 
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69.5311N     69.4524N     69.3717N     69.2908N     69.2097N     69.1279N     69.0455N     68.9628N     68.8799N     68.7969N     68.7165N
 44.5107W   44.2527W     43.9933W    43.7344W    43.4801W    43.2257W    42.9726W    42.7208W    42.4721W    42.2257W    41.9903W
    0km       13.33km        26.87km      40.45km       53.93km       67.49km      81.09km      94.70km     108.27km     121.79km    134.82km
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jun30_98.019-jun30_98.026.mat
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68.7157N     68.6380N     68.5592N     68.4786N     68.3965N     68.3148N     68.2317N     68.1465N     68.0578N     67.9982N     67.9911N
 41.9880W    41.7631W    41.5372W    41.3085W    41.0785W    40.8508W    40.6238W    40.3919W    40.1543W     39.8610W    39.6065W
    0km       12.55km       25.23km       38.16km      51.26km       64.30km       77.44km      90.91km     104.86km     118.22km    126.63km
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 41.9880W    41.7631W    41.5372W    41.3085W    41.0785W    40.8508W    40.6238W    40.3919W    40.1543W     39.8610W    39.6065W
    0km       12.55km       25.23km       38.16km      51.26km       64.30km       77.44km      90.91km     104.86km     118.22km    126.63km
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Appendix C  Layer Tracing File Formats 
 
C.1 Files with extension *.mat 
 

Variable 
Name 

Variable  
Short Description 

Format 

layer1 Pixel location of layer 1 for each column in radar echogram Mathworks 
MATLAB 

layer2 Pixel location of layer 2 for each column in radar echogram Mathworks 
MATLAB 

layer3 Pixel location of layer 3 for each column in radar echogram Mathworks 
MATLAB 

layer4 Pixel location of layer 4 for each column in radar echogram Mathworks 
MATLAB 

layer5 Pixel location of layer 5 for each column in radar echogram Mathworks 
MATLAB 

latitude Latitude in degrees Mathworks 
MATLAB 

longitude Longitude in degrees Mathworks 
MATLAB 

 
C.2 Files with extension *.pdf 
 
Each *.pdf file contains two images per radar echogram file for quick perusal purposes. 
The first image has the ice surface, layer 1, layer 2, layer 3, layer 4, layer 5 and the 
bedrock location superimposed on the radar echogram. The second image has the ice 
surface, layer 1, layer 2, layer 3, layer 4, layer 5 and the bedrock location plotted. 
 
C.3 Files with extension *.ht 
 
Variable Name Variable Short Description Column Format 

LAT Latitude in degrees 1 ASCII 
LON Longitude in degrees 2 ASCII 

LAYER 1 
THICK 

Layer 1 thickness [m] for radar echogram column  3 ASCII 

LAYER 2 
THICK 

Layer 2 thickness [m] for radar echogram column 4 ASCII 

LAYER 3 
THICK 

Layer 3 thickness [m] for radar echogram column 5 ASCII 

LAYER 4 
THICK 

Layer 4 thickness [m] for radar echogram column 6 ASCII 

LAYER 5 
THICK 

Layer 5 thickness [m] for radar echogram column 7 ASCII 

Note:  NaN values correspond to locations where the variables were not determined. 
 Thickness values do not include the firn velocity correction as described in Ch. 4. 
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