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ABSTRACT 

 In this work modern control methods are used to design and analyze control 

methods for a variable-displacement hydraulic pump.  More accurate uncertainty 

descriptions are derived by using a structured uncertainty model as opposed to an 

unstructured uncertainty model.  The system studied includes one variable-

displacement swash-plate hydraulic pump with a constant engine speed model.  The 

input to the system is the current actuating the control valve position, while the 

system output is the discharge pressure of the pump.  The established PID controller 

design lacked robustness, encouraging design of a two degrees-of-freedom control 

scheme.  Frequency domain tests show robustness improvement over the classical 

PID control scheme.  Time domain results show similar performance from both the 

PID controlled system and the two degrees-of-freedom controlled system.  Time 

domain tests also show improved robustness to parametric variation from the modern 

control method, while system responses to large disturbances are similar among both 

the classical and modern control schemes.  
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Chapter 1 

INTRODUCTION 

 

Hydraulic system dynamics, in general, possess a great amount of variability.  

From changing parameters to input disturbances, the behavior of these systems tends 

to vary as operating conditions change.  Because stability and performance are 

affected when the system dynamics change, a controller for a hydraulic system must 

include consideration of these changing conditions.  In the past, classical control 

methods were designed with stability in mind, and only by experimentation could 

their performance robustness be verified.  A trial-and-error process involving the 

tuning of the controller was required.  System variation could only be considered if 

the uncertain condition could be replicated in these experiments.  By utilizing modern 

control design techniques, a designer may take into account many more aspects of the 

system than previously considered.  The uncertainty of a system due to variance 

within the plant can be directly calculated and the tradeoff between performance and 

stability can be shown graphically.  This ability allows modern controllers to perform 

over a wider range of conditions, improving the dependability of machinery.  By 

using H∞ control design, greater performance is possible relative to classical control 

techniques.  H∞ design allows for optimization of control routines and greater 

flexibility in the tradeoff between performance and stability by shaping the maximum 

singular value of specific transfer functions. 

Hydraulic systems are designed to ensure stability under all operating 

conditions, resulting in relatively conservative performance characteristics.  By using 
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more advanced, higher-order controllers, the performance of a system can be 

improved without sacrifices in stability.  A hydraulic pump is an excellent example of 

a hydraulic system in which performance sacrifices have been made to ensure 

stability.  For this reason, it is a good application of robust modern control design 

methods.  A hydraulic pump can possess large amounts of variance from several 

different sources, making it likely that performance can be improved by these 

methods while still maintaining a stable system.  The classical control technique 

currently employed for this system, known as proportional, integral, and derivative 

control (PID), cannot take all of these uncertainties into account, making modern 

control an excellent alternative. 

The method for characterizing the uncertainty in a system is important in 

modern control design.  The uncertain parameters of a system can be analyzed as a 

whole or they can be analyzed individually.  Individual analysis is more complicated 

but yields more accurate results.  Analyzing the uncertainty as a group produces 

controllers that are less accurate and therefore too conservative. 

 

1.1 Classic Control Design and Analysis Limitations 

 One of the main difficulties of classical control system analysis is the inability 

to look beyond the ideal system.  Uncertainty and variance cannot be quantified under 

classical methods, making extensive machine testing the sole option in uncertainty 

research.  Njabeleke et al. [1] showed that some measure of overall uncertainty could 

be derived from experimental results using hydraulic equipment; however, this 

uncertainty model represents a conservative measure of system variance.  The choice 
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of an uncertainty model is a key to the successful design of modern controllers, and 

Shamma [2] showed mathematically that structured uncertainty provided an inherent 

increase in accuracy over unstructured uncertainty.   

 

 1.2 Modern Control in Hydraulic Systems 

 Many examples exist of research using modern control methods in hydraulic 

systems.  H∞ control techniques in a multiple-input, multiple-output hydraulic 

powertrain system were implemented by Zhang et al. [3], showing that H∞ methods 

could produce robust controllers.  While the methods utilized in multiple-input, 

multiple-output control differ from those in single-input, single-output control, the 

same algorithms hold for both cases.  Modern control methods were successfully 

applied in a double inverted pendulum system regulated by hydraulic actuators by 

Fales et al. [4], [5].  This system also possesses multiple outputs.  A single-input, 

single-output hydraulic system was studied by Njabeleke [1], controlling the velocity 

of a cylinder using modern control methods.  This work also concluded that the 

controllers produced by modern control methods need not necessarily be of high 

order.  The high-order dynamics of modern controllers is often considered a 

disadvantage over lower-order classical controllers.  Model order reduction was used 

to ensure the feasibility of using these controllers in hydraulic systems. 

 

1.3 Research Objectives 

 The objectives of this research are to model a variable displacement hydraulic 

pump from first principles and test data, analyze the uncertainty of the model using 
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linear methods, develop modern controllers to increase robustness and performance, 

and analyze these controllers in the frequency and time domains to verify these 

properties. 

 

1.4 Thesis Outline 

 Chapter 2 will address the modeling of the hydraulic pump.  First-principles 

modeling and assumptions are discussed, followed by the validation of the model 

using test data.  This chapter also involves the linearization of the model.  Chapter 3 

discusses the idea of system uncertainty.  Both lumped uncertainty and structured 

uncertainty are investigated.  Chapter 4 introduces modern control techniques.  

Chapter 5 contains control design techniques, with pressure control being the main 

topic.  After control design, analysis of the resulting controllers begins in Chapter 6 

with frequency domain studies of the controlled system.  Chapter 7 presents the time 

domain analysis of the controllers.  The behavior of the simulated controlled system 

is of great interest.  Finally, overall conclusions about the research, suggestions for 

solutions to the problem statement, limitations of H∞ control and future work are 

presented in Chapter 8. 

 4



Chapter 2 

Hydraulic Pump Modeling 

 

2.1 First Principles Model 

 The model constructed to simulate the variable displacement hydraulic pump 

assembly consists of three sections: the displacement model, the pump model, and the 

load model.  Each of these three sections is kept separate as a means of ensuring 

accuracy.  The connection from the displacement model to the pump model 

represents pump flow.  The connection from the pump model to the load model 

represents pump pressure.  A schematic of this assembly is shown in Figure 1. 

 

Displacement Pump 
Pp Q 

i 

Load 

Figure 1.  Schematic of the first principles model. 
 

 The test data describing this system that will eventually validate the model fits 

into this mold nicely.  Data characterizing pump displacement as a function of input 

and pump pressure as a function of input exists, further encouraging this modeling 

strategy. 

 The displacement model was designed first.  The inputs to the displacement 

model are the pump pressure (in Pa) and the pump command input (in Amps).  The 

output of the displacement model is the pump flow rate (in cubic meters per second).  

The model itself consists of a control valve connected to a control chamber, which 
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directs the motion of the swash-plate.  It also contains a swivel torque model, which 

affects the steady-state position of the swash-plate, and the dynamics of all moving 

parts within the system.  The path of each input is summarized next. 

 The pump speed is involved in the calculation of the swivel torque.  To 

simplify the problem, swivel torque is analyzed under a steady-state assumption for 

the swash-plate angular velocity.  The swivel torque in a variable displacement 

swash-plate pump can be thought of as a torque either opposing or aiding the control 

cylinder’s efforts to set the angle of the swash-plate.  The swivel torque in this model 

is determined using a look-up table.  The look-up table’s inputs are the pump speed, 

the pump displacement, and the pump pressure.  The exact figures of this look-up 

table will not be disclosed here, but overall, the swivel torque has a positive 

relationship with pump speed and displacement.  This relationship means that, as the 

pump speed or the pump displacement increases, the swivel torque also increases.   

 After analyzing the steady-state characteristics of the swivel torque, the 

dynamic characteristics were modeled.  The only dynamic effect on the swash-plate is 

the effect of viscous friction.  The friction is determined by the pump pressure and the 

angular velocity of the swash-plate.  The exact amount of torque that this friction 

exerts upon the swash-plate cannot be disclosed here, but the friction always opposes 

the movement of the swash plate, and the friction increases as the angular velocity of 

the swash-plate increases and as the pump pressure increases. 

 The pump pressure input to the displacement model has many different uses, 

just as the discharge pressure of a pump is used to regulate and control many different 

aspects of the system.  One of the key uses of the pump pressure in pump control 
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centers on the control valve.  This spool valve is used to regulate the pressure within 

the control chamber, which actuates the cylinder attached to the swash-plate, shown 

in Figure 2. 

 

Figure 2.  Pump schematic.  Note that the position of the control cylinder (gray) 
dictates the displacement of the swash-plate. 
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To model the control valve in the pump, a decision had to be made.  Either an 

analytical flow-force model of the valve could be used, taking into account the valve 

geometry and characteristics, or use of a table of flow information provided by the 

valve manufacturer.  Due to the fact that 13 separate control valves had previously 

been constructed and tested, produced by three different manufacturers, and that data 

was readily available on all 13, the decision was made to use a table of flow 

information in lieu of a flow-force model.  The advantage of this method was that 

tables could easily be changed in the system model to simulate different valves being 

used to control the swash-plate in the pump.  The ability to introduce uncertainty into 

the system by using different control valves will be useful later when analyzing the 

system uncertainty. 

The control valve used in the pump is a three-way spool valve with 

asymmetric porting angles.  The port that connects the valve to the supply pressure is 

set at an angle relative to the other two ports, as shown in Figure 3.  This port is 

known as the failure port.  If the system were to lose electrical power, the resetting 

spring in the valve would force the spool to the end-stop, allowing full flow from the 

pump to reach the actuator chamber.  This action fully displaces the swash plate, 

forcing the pump to achieve maximum pressure and flow.  The reason for this design 

choice is due to the fact that in an excavator, for example, if the pump were forced to 

operate at maximum flow and pressure with no control, the system would still be 

operable using the control valves for each load.  The disadvantage of this situation is 

that the system would then operate quite inefficiently, with a large pressure drop 

across each load valve. 
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Port A 
“Failure Port” Supply Port Port B 

Figure 3.  Schematic of spool valve with asymmetric porting. 
 

The control valve data acquired from the valve manufacturers was incomplete.  

Each valve, individually, was to be tested by the manufacturers at four different 

supply pressures (1.5 MPa, 10 MPa, 20 MPa, and 30 MPa) and at a variety of input 

currents ranging from 0 A to 1.75 A.  The parameter measured for each valve was the 

flow rate through the valve under each test condition.  The problem was due to the 

fact that many of the data sets lacked information for one of the two output ports.  In 

some data sets, there was no information given for the flow rate through the failure 

port, while in other sets, information was lacking for port B.  An example of an 

erroneous and incomplete data set for a single pressure drop is shown in Figure 4.  

For comparison, a set of complete data for several pressure drops is shown in Figure 

5.  In these data sets, the flow measured for an input current less than 1 A signifies 

flow through the failure port while flow for an input current greater than 1 A passes 

through port B. 
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Figure 4.  Erroneous data set acquired from manufacturer.  Note that the flow data for 
the case of current less than 1 Amp is not valid 
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Figure 5.  Complete set of flow data for several pressure drops across the valve. 
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The resolution to this issue was to mirror the available data sets to create new 

data sets.  If information existed for flow through the failure port but not for port B, 

then the valve was assumed to be symmetrical and the available data was used to 

recreate the missing data.  An example correcting the erroneous data shown in Figure 

4 is shown in Figure 6.  The justification for this action lies in the uncertainty 

analysis.  The reason for using different control valves in this system is to study the 

uncertainty that is introduced when doing so (Chapter 3).  If valve flow characteristics 

are assumed to be symmetrical through both ports, then the uncertainty due to this 

valve in the system is effectively zero.  No variation in system performance can be 

observed when moving the valve’s spool between the two outlet ports, therefore not 

affecting the system’s uncertainty model.  While this assumption might at first seem 

too liberal, it was the only option available considering the data supplied. 
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Figure 6.  Example showing corrected flow data 
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 It should be noted that the pressure that supplies the control valve has a lower 

limit.  This limit is known as the charge pressure.  A smaller pump runs alongside the 

larger hydraulic pump, supplying a constant pressure of 4.4 MPa.  When the large 

pump’s discharge pressure is lower than this value, a valve in the pump allows the 

charge pressure to supply the control valve.  The reason for this action is that the 

pump must be primed before it can run normally.  As the pump starts up, the pump 

pressure is 0 Pa (gage).  To be able to increase the pump displacement, and therefore 

the pump pressure, the control cylinder must be moved.  This cylinder can only be 

moved when a force imbalance exists between its two actuation areas (see Figure 2).  

If the pump pressure is not high enough to displace the control cylinder, then the 

pump pressure cannot, in turn, be increased.  The charge pump solves this problem by 

supplying a constant pressure high enough for the initial displacement of the swash-

plate when the pump pressure is too low to do so. 

 The control cylinder adjusts the position of the swash-plate mechanically.  

These two components are attached, and knowing the position of one equates to 

knowing the position of both.  The control cylinder’s actuation surfaces have two 

different areas, shown in Figure 2.  The small area is acted upon by the pump 

pressure, while the large area is acted upon by the control pressure.  While the control 

pressure tends to be lower than the pump pressure, the area difference between the 

two actuation surfaces allows for the movement of the cylinder in either direction.  

The sum of forces on the control cylinder can be written as 

  (1) SPPPCC FAPAP =−
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where FSP is the force exerted by the swash-plate on the control cylinder.  The control 

pressure, PC, is calculated using the pressure-rise rate equation 

 ( )VQ
V

PC
&& −=

β  (2) 

where β is the fluid bulk modulus, Q is the flow rate from the control valve into the 

control chamber, and V is the volume of the control chamber.   

 Once the force exerted on the swash plate by the control cylinder is calculated, 

the total torque on the swash plate can be found.  Using all of the torque calculations 

thus far, the total swash plate torque is  

 swivelviscousSPSPSP lF τττ −+=  (3) 

where lSP is the moment arm that the control cylinder acts upon, τviscous is the amount 

of torque due to viscous friction, and τswivel is the amount of torque due to flow forces.  

This moment arm is the distance between the control cylinder connection and the 

swivel point of the swash plate. 

 With the total torque on the swash plate calculated, the behavior of the swash 

plate can be analyzed.  The rotational acceleration, , of the swash plate is calculated 

using 

θ&&

 . (4) SPSPJ τθτ ==∑ &&

The rotational speed and position of the swash plate are then determined from this 

equation.   

 The position of the swash plate determines the displacement of the pump.  

When the swash plate’s angle is at its maximum value, the pump is at full 

displacement.  Likewise, when the swash plate’s angle is zero, the pump is at zero 
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displacement.  Also, in this pump the relationship between the swash plate angle and 

the pump’s displacement is linear. 

 The next section modeled was the pump.  The input to the pump is the flow 

rate from the displacement model.  The output of the pump is the pump pressure.   

 The pump model consists mainly of unit conversions, efficiency calculations, 

and a single pressure-rise rate equation.  The output of the displacement model is the 

volumetric displacement of the pump, in units of cm3/revolution.  In the pump model, 

the pump displacement is multiplied by the pump speed to obtain the ideal discharge 

flow rate of the pump.  This value, though mathematically correct, is not the actual 

discharge flow rate of the pump.  In practice, actual flow rate is less than the 

calculated theoretical value, due to the inherent inefficiencies within a hydraulic 

system.  The actual discharge flow rate of the pump is a percentage of this ideal flow 

rate.  This percentage is known as the “volumetric efficiency” of the pump.   

 The overall efficiency of a pump is equal to the product of its volumetric 

efficiency and its mechanical efficiency.  The volumetric efficiency is calculated by 

 
ideal

observed
vol Q

Q
=η  , (5) 

while the mechanical efficiency is calculated by 

 
ideal

observed
mech τ

τ
η = . (6) 

The model constructed for this study did not include an engine model, and therefore 

did not include values for engine torque.  The engine was assumed to be ideal, 

running at a constant speed of 2000 rpm.  The volumetric efficiency, however, was 
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used in this study.  Volumetric efficiency data was provided by machine tests, using 

the calculation 

 
in

d
ideal

V
Q

ω
=   (7) 

where Vd is the displacement of the pump and ωin is the input speed to the pump.   

 The volumetric efficiency is a function of three variables: pump speed, pump 

displacement, and discharge pressure.  In general, the volumetric efficiency increases 

as displacement increases and pump speed increases.  The efficiency decreases as 

pump pressure increases.   

 With the correct pump flow calculated, the pump pressure can then be 

determined.  The pressure rise rate equation from Eq. (2) is used to find the discharge 

pressure.  The flow term used in this equation is shown to be 

 . (8) loadleakpump QQQQ −−=∑

The flow rate loss due to leaks, Qleak, is proportional to the pump pressure.  This loss 

is equal to 

   (9) Plleak PKQ =

where Kl is the leak coefficient.  For new hydraulic systems, this value is small and 

has little effect on the pressure rise rate equation.  However, as a system ages, this 

leakage can become more of an issue and its effects can be felt through the entire 

system. 

 The flow rate through the load valve, Qload, is also the flow rate passing 

through a downstream valve.  The difference between the pump discharge flow rate 

and the load flow rate is equal to the flow rate entering the pump volume.  For a low 
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flow rare passing through the downstream valve, this difference can be large, causing 

a large increase in pump pressure.  If a high percentage of the discharge flow rate 

passes through the load valve, this difference shrinks and the pump pressure falls.   

 With the pump section completed and the pump pressure calculated, the final 

component is the downstream load valve.  This valve consists solely of a flow 

restriction.  Its input is the pump pressure and its output is the downstream flow rate.  

All of the flow passing through the load valve is returned to the hydraulic fluid 

storage tank. 

 The load valve model consists of a single equation: the orifice equation.  This 

equation states that 

 ( )21
2 PPACQ d −=
ρ

 , (10) 

where the discharge coefficient, Cd, is set equal to 0.62 nominally.  The fluid density, 

ρ, has a value of 850 kg/m3, and the orifice’s nominal area, A, is 0.50 cm3.  The inlet 

pressure of this valve is the pump pressure (noted as P1), the outlet pressure is the 

atmospheric pressure (noted as P2), and Q denotes the flow through the valve. 

 With all three components of the system modeled, some modeling strategies 

can be outlined.  The most important issue in computer modeling of any system is 

accuracy.  In a state-based model such as a hydraulic system, numerical accuracy 

issues may arise from the integration routines used to solve the system’s governing 

differential equations.  Since the integration used in numerical solvers is generally 

geometrical, the size and scale of the integrated values, relative to one another, is 

important.  For simplicity’s sake, the numerical simulation tool used in this project 

(Simulink) requests an overall accuracy requirement spanning the entire model.  
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Because this requirement is a scalar and not a percentage, it is not possible to demand 

the same accuracy of two separate integrators if one calculates a pressure state in 

units of Pascals (generally on the scale of 106) and another calculates a radial position 

state in units of radians (on a scale of 0-3).  If the accuracy required of the position 

state were converted to the pressure state, the simulation speed would slow to an 

unusable speed.   

 To combat this effect, the pressure integrators in the system were scaled.  The 

integrators in the system that calculated the control chamber pressure and the 

discharge pressure were scaled by a factor of one million.  For example, these 

integrators would now calculate a pressure state that varied between 0.1 and 10, 

whereas before they calculated states varying between 100,000 and 10,000,000.  The 

accuracy required for this integration routine would then be equivalent to the 

accuracy required of the position states mentioned earlier. 

 To summarize the first-principles model, the four equations of the system are 

presented in Eqs. (11 – 14).  Expressing the state derivative equations in this manner 

will also aid in organizing the linearization section in this chapter. 

 ( control
control

C VQ
V

Px &&& −== )β
1  (11) 

 ( pumpedisch
pump

P VQ
V

Px &&& −== arg2 )β  (12) 

 
SP

SP

J
x ∑==

τ
θ&&&3  (13) 

   (14) 34 xx == θ&&
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2.2 Model Validation Using Test Data 

 The design model includes certain assumptions and approximations.  These 

were necessary for model completeness, and also to ensure that the system was 

simple enough to analyze using the resources available.  The most notable assumption 

made was that the control valve dynamics were not necessary to model; the 

undamped natural frequency of the control valve was estimated to be 

 Hzsrad
m
k

n 50/300 ≈≈=ω  (15) 

where k is the valve spring constant and m is the mass of the spool.  The speed of 

response of this valve is assumed to be fast enough so as not to impact the model. 

 The justification for the assumptions and approximations made in this study 

lies in the requirements for robustness.  The control scheme that will eventually be 

designed for this system will emphasize robustness to system variance and 

disturbances.  These modeling assumptions can be treated as system variances in that 

respect. 

 The nonlinear system model of the pump was compared with the machine test 

data in terms of displacement.  The test data provided gives the volumetric 

displacement of the model as a function of time.  The input to the machine is the 

current supplied to the control valve within the pump which, in turn, adjusts the 

swash-plate angle.  The current profile is a pulse input, varying the pump 

displacement from minimum to a preset value.  The current data provided was used as 

the input to the nonlinear model, and the displacement of the pump was compared 

with the machine test data under four different circumstances: 25% displacement, 

50% displacement, 75% displacement, and 100% displacement.  Plots of the 
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comparisons of the swash plate angle response between test data and nonlinear 

simulations can be found in Figures 7-10. 

0 5 10 15 20 25 30 35 40 45
-5

0

5

10

15

20

25

30

35

Time (s)

S
w

as
h 

P
la

te
 A

ng
le

 (%
 o

f m
ax

.)
Experimental
Simulation

 

Figure 7.  Comparison of nonlinear simulation and machine test data.  The 
displacement here pulses between minimum displacement and 25% displacement. 
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Figure 8.  Comparison of nonlinear simulation and machine test data.  The 
displacement here pulses between minimum displacement and 50% displacement. 
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Figure 9.  Comparison of nonlinear simulation and machine test data.  The 
displacement here pulses between minimum displacement and 75% displacement. 
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Figure 10.  Comparison of nonlinear simulation and machine test data.  The 
displacement here pulses between minimum displacement and 100% displacement. 
 
 
 From these comparisons it is apparent that the nonlinear pump model matches 

up well with the real model.  The variations observed in Figures 7 and 8 can be 

attributed to the fact that a mechanical efficiency model was not included in the 

system, since most of the variation disappears as the displacement increases.  

Mechanical efficiency, like volumetric efficiency, increases as displacement 

increases.   

The errors observed here are within the boundary of being acceptable.  The 

inaccuracies shown can be included in future control design, since the goal of robust 

control design is to account for system variation.  Some of the discrepancies between 

the nonlinear model and the machine test data will also be addressed in the 

uncertainty analysis in this chapter. 
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2.3  Model Linearization 

While the nonlinear model of the system has proved to be accurate, in its 

current state it is difficult to study.  This is because most control techniques require a 

linear system model, preferably in a state-space format.   

Linearization of a system is generally done by analyzing the state equations 

and constructing first-order Taylor series expansions of them.  The pump model 

makes this technique nearly impossible.  The presence of nonlinearities such as the 

look-up tables for calculating swivel torque, control valve flow, and volumetric 

efficiency makes studying the system equations less useful.  Instead of 

mathematically linearizing the system from its constituent state equations, a 

numerical technique was used.  Using the numerical solver software package Matlab 

and numerical simulation program Simulink, a linear model could be found.  The 

Matlab utility “linmod.m” uses a finite-differencing linearization method to construct 

a state-space model of a nonlinear system. 

Finite-differencing is a numerical method for building the system matrices of 

a model.  By perturbing each state incrementally and then observing the state 

derivative vector response, the system matrices can, in turn, be constructed.  By using 

the approximation 

 
perturbedmnomm
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=

Δ
Δ
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∂
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 (16) 

each individual element of the A and B matrices can be found, where fn is the nth state 

derivative function.  The system matrices can be calculated by using 
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Upon creating the linearized system, verification was necessary to ensure that 

the future analysis would be valid.  The states of the linear model needed to be 

compared with those of the nonlinear model.  A small disturbance of 0.1% was given 

to both models via the current input, and the responses of the four states of the system 

to this disturbance are compared in Figure 11 through Figure 14.  The nominal 

operating point in this test is 
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Figure 11.  Comparison of the swash-plate position state between the linear and 
nonlinear models. 
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Figure 12.  Comparison of the swash-plate velocity state between the linear and 
nonlinear models. 
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Figure 13.  Comparison of the control pressure state between the linear and nonlinear 
models. 
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Figure 14.  Comparison of the pump pressure state between the linear and nonlinear 
models. 
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The two systems exhibit similar responses to the step disturbance inputs with 

comparable dynamics as shown.  The linearization is accurate enough so that the 

linear and nonlinear state responses lie on top of one another in the comparison plots. 

Due to the fact that the linearized system was built from knowledge of the 

non-linear system, the same limitations that applied to the original full-state simulated 

model apply to the linearized approximation of it.  The only addition to those 

limitations is the fact that linearized systems tend to be less accurate as the system 

deviates from the point of linearization.  Again, these discrepancies will be accounted 

for in the robustness analysis and will not cause any significant future problems. 

Once the linear model of the system has been created, linear analysis can be 

applied.  One of the most powerful tools in linear system analysis is the pole-zero 

map of a system.  This plot can, at a glance, show a significant amount of information 

about a system including stability, performance limitations, and response 

characteristics.  The pole-zero map of the linear pump model is shown in Figure 15
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Figure 15.  Pole-zero map of the linear system. 
 

All of the poles of the system lie in the left-half s-plane, implying that the 

system is asymptotically stable.  The single pole that lies far away from the other 

three implies that one of the states of the system will react much faster than the 

others.  Also, there are no zeros that lie in the right-half s-plane, meaning that there 

are no inherent performance limitations observed.   

One important finding from studying the pole-zero map is that one of the 

assumptions made about the system may be incorrect.  Earlier, it was hypothesized 

that the dynamics of the control valve were fast enough to neglect modeling.  

However, it would seem from observing the pole-zero map in Figure 15, that the 

dynamics of the valve, calculated from Eq. (15), are necessary to study.  The three 

poles of the system nearest the origin lie between R= 0 rad/sec and R= -1600 rad/sec., 
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resulting in a dynamic system with a natural frequency of oscillation of about 300 

rad/sec, which is significant for study.  In this case, the dynamics of the control valve 

may interact with the dynamics of the previously modeled system, resulting in 

unexpected effects. 

However, rebuilding the first principles model of the system is not necessary, 

even after this late discovery.  To simulate the dynamics of the control valve, a 

second-order transfer function of the form 

m
ks

m
bs

m
k

sF
++

=
2

)(  (20) 

is cascaded with the electric current input to the system, representing the effect of a 

mass-spring-damper system.  In Eq. (20), the spool damping is shown as b.  The 

valve is assumed to have a maximum overshoot of 5%, resulting in a damping term of 

b = 0.707.  This assumption is necessary because no damping information for this 

particular spool valve is available.  This transfer function has a unity dc-gain, 

meaning that it can be added to the system in series, as shown in Figure 16.  Because 

transfer functions are so well understood, no analysis of the simulated spool valve 

dynamics and their effect on the linear model is needed.  However, it should be noted 

that the addition of the transfer function in Eq. (20) increases the number of states in 

the system from four to six.   

 

 28



 Hydraulic 
Pump 

PPi 

m
ks

m
bs

m
k

++2

 

Figure 16.  Block diagram of system with spool valve dynamics simulated by transfer 
function 
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Chapter 3 

UNCERTAINTY MODEL 

 

3.1 Defining System Uncertainty 

 In a robustness study, it is important to determine the amount of variance that 

exists within a system.  A robust controller is designed such that it can maintain 

stability under all expected operating conditions, making it important to establish 

what these conditions might be.  By creating an uncertainty model, the variance 

within a system can be quantified.  The uncertainty model will be used in ensuing 

chapters to calculate the level of robustness of a controlled system. 

 An uncertainty model is, essentially, a statement of the maximum variance the 

system will experience, making it a “worst-case scenario”.  Mathematically, an 

uncertainty model is a transfer function that represents the maximum error in the 

output of a system.  A block diagram showing the architecture of a system with a 

multiplicative output uncertainty model (wO) is shown in Figure 17.   

Plant 
yu 

wO ΔO

+ 

 

Figure 17.  Block diagram displaying system uncertainty 
 
 
 The as-yet unexplained parameter shown in Figure 17 is the complex 

perturbation matrix Δ.  This accompanying term is the set of all transfer function 

matrices whose maximum singular value is less than one.  The Δ term can be thought 
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of as a scaling matrix: essentially a gain within the system that will amplify its input 

to a value between ±100% of the input (±1) over all frequencies. This term is, in 

practice, ignored and is generally only addressed in mathematical derivations in 

robust control analysis.  The focus of this project will remain on the output 

uncertainty, wO.   

 There are many different configurations for analyzing uncertainty.  The 

multiplicative output uncertainty design shown in Figure 17 is one choice.  The 

choice of which uncertainty configuration to use is left to the analyst.  Some of the 

other uncertainty configuration choices are input multiplicative uncertainty (Figure 

18-a), inverse multiplicative input uncertainty (Figure 18-b), and inverse 

multiplicative output uncertainty (Figure 18-c).  For this project, the multiplicative 

output uncertainty configuration was chosen over the others for several reasons.  For 

a single-input single-output (SISO) system, there is no difference between the 

calculation of input multiplicative uncertainty and output multiplicative uncertainty, 

which will be shown.  Also, the multiplicative uncertainty configuration was chosen 

over the inverse multiplicative uncertainty configuration because of the nature of the 

system.  In this model, parameter fluctuations and operating point variation are 

expected to have an effect similar to a steady-state error in the output.  Inverse 

multiplicative uncertainty, conversely, would cause an increasing error in the output 

as time passed. 
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Figure 18.  (a) Multiplicative input uncertainty, (b) Inverse multiplicative input 
uncertainty, (c) Inverse multiplicative output uncertainty. 
 
 
 It is important to realize that the uncertainty in a system is equivalent to its 

variation from a nominal case.  The uncertainty model of a system attempts to 

incorporate the complete range of variance of that system.  Therefore, it should be 

noted that one of the goals of uncertainty analysis is to achieve the least conservative 

uncertainty description possible that retains accuracy.  This is important in order to 
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prevent overestimates of uncertainty in the robustness analysis (Chapter 3), creating a 

controller that is too conservative. 

 With an uncertainty architecture selected, calculation of the uncertainty 

transfer function wO can begin.  The first step in this process is to determine which 

properties of the system will vary.  It was determined in [8] that the uncertainty 

within a hydraulic system increases as the system strays from its nominal operating 

point.  Therefore, one of the main variances in this study will be the system’s 

integrity as it drifts from this point.  Another concern within a hydraulic system is the 

fluctuation of fluid parameters.  The fluid bulk modulus (β) can vary due to many 

different operating situations [8], [9] and will be included in this uncertainty study.   

 Another cause of uncertainty within a system is manufacturing variability.   

Tolerances and errors of a machined part can significantly impact a system’s 

characteristics.  In this model, the control valve within the pump is subject to this 

variability.  Several different manufacturers each provided several separate spool 

valves to be used in this study.  Each valve’s flow coefficient is different, varying 

from an average value by some percent.  As this deviation from the average increases, 

the uncertainty due to using the corresponding valve also increases.   

 The final source of uncertainty explored is that due to different pump 

applications.  The pump studied in this project will be used for many different 

functions, and therefore, the load valve as modeled earlier will change for each 

application.  In other words, a constant load valve area is not realistic since load 

valves generally control flow to hydraulic implements.  A load valve’s area changes 

as the requirements of the load change. 
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 To calculate the uncertainty of a system, the set of perturbed plants must first 

be defined.  The set of perturbed plants (Gp) is the collection of all possible linear 

plants given every combination of uncertain characteristics.   Its variance from the 

nominal plant is normalized by calculating 

 ( ) ( )( ) ( )[ ]ωωω jGjGjGw nomnompOO
1−−=Δ . (21)  

Using the property that 

 ( )( ) ωω ∀=Δ 1max jO , (22) 

one can calculate the uncertainty description outright: 

                   (23) ( ) ( )( ) ( )[ ( )Onomnompo l
G

jGjGjG
G

w
Π∈

=−
Π∈

≥ − maxmax 1 ωωω ]

 The uncertainty description calculated in Eq. (23) is known as the “lumped 

uncertainty” model.  By calculating wO in this manner, the assumption is made that 

every uncertain parameter in the model affects the output of the model in the same 

manner.  This is equivalent to declaring an entire machine as “broken” when, in 

reality, only a small piece or several small pieces of it are in need of repair.  The 

alternative to lumped uncertainty, known as structured uncertainty, will be presented 

later in this chapter.  However, a lumped uncertainty model can be very accurate for 

simple systems and is an excellent starting point for an analysis. 

 

3.2 The Lumped Uncertainty Model 

 The varying conditions within the model should be outlined first.  The two 

varying physical conditions within the system (fluid bulk modulus and load valve 
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area) were each allowed to vary over a range of possible values centered around a 

nominal value.  The full range of variance for each parameter is outlined in Table 1.   

 

Table 1.  Parameter variation within the hydraulic system  

 

Parameter Lowest Value Nominal Value Highest Value 

Bulk Modulus, β 1.050 GPa 1.575 GPa 2.010 GPa 

Valve Area 0.10 cm2 0.30 cm2 0.50 cm2

 The variance within the system due to a changing operating point can best be 

summarized by outlining the operating points explored in the analysis.  Table 2 

contains information on the four separate states of the system at the six operating 

points investigated.  Notice that the fourth operating point investigated is the nominal 

operating condition.  The operating point of the system is allowed to vary by 

adjusting the input to the system and linearizing the system using the new input. 
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Table 2.  The six operating points studied in uncertainty analysis. 

Operating 
Point 

Pump Pressure 
(MPa) 

Control 
Pressure (MPa) 

Swash-Plate 
Position (rad) 

Swash-Plate 
Velocity (rad/s) 

1 5.98 3.86 0.150 0.156 

2 5.01 3.03 0.137 0.104 

3 3.78 2.39 0.119 0.057 

4 (nom) 2.69 1.96 0.100 0.000 

5 1.49 1.46 0.075 -0.064 

6 0.93 1.18 0.059 -0.101 

 

 The 13 separate control valves used in the uncertainty analysis were each 

treated as a variation from a nominal valve.  The nominal valve characteristics were 

calculated by creating an “average valve.”  This average valve consisted of a look-up 

table that calculated flow for a given set of pressure and input current conditions, in a 

manner similar to each of the other 13 valves.  Each value contained within the 

average valve’s look-up table was the average value calculated from all 13 valves at 

that operating condition. 

 A perturbed plant, Gp, can be constructed with a specific knowledge of the 

varying parameters and conditions.  First, however, each plant must be scaled to 

allow for analysis on an relative scale.  To scale a plant, the maximum expected input 

(umax) and output (ymax) must first be defined.  The plant, G, must then be arranged as 

shown in Figure 19 to find Gscaled.   
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G 
yuuscaled yscaled[ymax]-1umax 

Gscaled  

Figure 19.  Example of plant scaling. 
 
 
 After exploring every possible combination of plant variances, the frequency 

responses of the normalized, varied systems are plotted in Figure 20.  This is 

equivalent to a plot of Eq. (21) for the pump model G. 

 

Figure 20.  Output uncertainty transfer function 
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 In Figure 20, the perturbed plant errors, lO, are shown as dotted lines while the 

solid line represents the bounding transfer function, wO.  This transfer function 

represents the worst possible plant variation under the given conditions.  The scale of 

Figure 20 is absolute, meaning that the system error at low frequencies is equal to 

800% while the maximum error is over 3000%.  The significance of these values is 

that the plant output is expected to vary, under worst-case conditions, between 800 

and 3000% over the operating frequencies of the pump.  This amount of variance 

seems unusually high, and in reality it is unlikely that the system could vary by such a 

large amount.  The lumped uncertainty model does not appear to provide the accuracy 

required for this application.  A robustly stable control design would be difficult to 

achieve with such a large uncertainty. 

  

3.3 The Structured Uncertainty Model 

 The second, more precise, approach to modeling system uncertainty is 

structured uncertainty.  In the structured uncertainty approach, each component of the 

model is analyzed as an individual plant.  The uncertainty for each component is 

determined, yielding a much more accurate and less conservative system uncertainty 

model.   

 The pump model was separated into the following components for structured 

uncertainty analysis: the displacement model and the pump/load model.  The 

displacement model consists of the architecture of the same name as described in 

Section 2.1, while the pump/load model is a combination of the pump model and the 

load valve model as described in the same section.  The two inputs of the 
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displacement model are the valve current and the pump pressure, while its output is 

the pump discharge flow rate.  The input to the pump/load model is the pump 

discharge flow and its output is the pump pressure.  Performing individual uncertainty 

analyses on these two components results in the block diagram structure shown in 

Figure 21. 

 

 
  

 
  

 Displace. Pump/Load 

wo,d Δo,d Δo,pwo,p 
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Pp Q 
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Figure 21.  Block diagram of structured uncertainty architecture 
   

 The calculation of the uncertainty description wO for each component is 

identical to the uncertainty calculation described by Eq. (14).  The only observation 

here is that the order of matrix multiplication must be preserved when calculating the 

uncertainty of the displacement model.  The displacement model is a Multiple-Input 

Single-Output (MISO) system, meaning that simple magnitude plots of its frequency 

response are not sufficient to describe its behavior.  The analogy of the magnitude 

plot of a SISO system in the MISO and MIMO (Multiple-Input Multiple-Output) 

domains is the singular value function, σ.  The singular value of a plant G is defined 

as 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

2

u
Gu

Gσ , (24) 

where u is the input vector.  The 2-norm of a vector ( 2⋅ ) is defined as 

 ∑= 2
2 ixxr . (25) 
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The singular value of a system can be thought of as the gain of the system from its 

inputs to its outputs.  The maximum singular value of a system at a frequency is the 

maximum gain of the system from its inputs to its outputs at that frequency.  

Therefore, to calculate the uncertainty of a MISO system, wO must be found by 

( ) ( )( ) ( )[ ωωω ]σ
jGjGjG

G
w nomnompo

1max −−
Π∈

=  (26) 

where σ is the maximum singular value of a system at a given frequency. 

 By using structured uncertainty, the number of varying parameters within a 

component is less than the total number of varying parameters.  For example, because 

the control valve chosen in the displacement model has no impact on the pump/load 

model, this component does not need to be varied when looking at the uncertainty 

description of the pump/load model.  When analyzing the displacement model, the 

operating point, fluid bulk modulus, and control valve chosen were allowed to vary.  

When analyzing the pump/load model, the operating point, fluid bulk modulus, and 

load valve area were allowed to vary.  The uncertainty description for the 

displacement model, wO,d, is shown in Figure 22. 
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Figure 22.  Uncertainty description of the displacement model. 
 

 The uncertainty description shown in Figure 22 does not appear to be 

accurate.  Two outlying uncertainty cases exist, one with a low frequency error of 

nearly 200% and another with an error near 80%.  The root of this problem was the 

inclusion of two specific valves in the uncertainty study.  The presence of these two 

valves increased the uncertainty of the system dramatically, and they were therefore 

removed from the study as outliers.   The revised uncertainty description wO,d is 

shown in Figure 23, while the uncertainty description of the load valve model, wO,p, is 

shown in Figure 24. 
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Figure 23.  Uncertainty description of the displacement model 
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Figure 24.  Uncertainty description of the pump/load model. 
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 The results seen in Figure 23 and Figure 24 are encouraging.  The uncertainty 

observed in the displacement model is equal to 6% at low frequencies and increases 

to 74% at a frequency of 316 rad/s (50.4 Hz).  The uncertainty seen in the pump/load 

model is equal to 125% at low frequencies decreasing to a high-frequency uncertainty 

of 32%.  While uncertainties of this magnitude might seem rather high, they are 

actually manageable in the field of robust control design and far better than the result 

for the lumped uncertainty case.   
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Chapter 4 

H∞ CONTROL DESIGN 

 

4.1 The Case for H∞ Control  

 H∞ control methods were developed in response to the poor robustness 

qualities of LQG control, outlined in [7], [9].  The earliest use of H∞ optimization 

techniques is found in the work by Helton in 1976, however, the majority of 

development in the field occurred in the 1980s.  Research by Zames, Helton, Glover, 

and Doyle sought to develop the control design methods known as H∞ and H2.  These 

methods were modeled to both achieve robustness properties not possible with LQG 

control, and also introduce a more realistic disturbance model than previously 

available [7].  The following sections establish a general control problem formulation, 

applicable to all H∞ problems of interest, and a design algorithm for a specific H∞ 

control design. 

 

4.2 The Generalized Plant 

 While the approaches of H2 and H∞ are both reasonable with regard to modern 

control design, only the optimizations associated with H∞ will be pursued in this 

study.  The reasoning behind this decision lies in the similarity between the two 

methods.  Both H2 and H∞ require the solutions to Riccati equations.  Both yield 

controllers of state-dimension equivalent to that of the generalized plant P.  Finally, 

both exhibit a controller/observer separation structure in the controller architecture 

already seen in LQG control [7].   
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 The design of H∞ controllers differs from application to application, making it 

useful to have a standard problem formulation in which any specific control problem 

can be expressed.  This general formulation is described by 
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with a state-space representation of the generalized plant, P, expressed by 
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where the u represents the control variables, w represents the exogeneous signals 

(such as noise), z represents the error signal, and v represents the measured variables.  

This generalized plant is shown in Figure 25.  

 
K 

P 
w z 

vu 

Figure 25.  General control configuration 
 

 Skogestad et al. [7] shows that the transfer function matrix from input w to 

error signal z can be expressed by the linear fractional transformation 

  (30) wKPFz l ),(=

where 
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Note that in Eq. (31), the notation Pij represents the transfer function from the ith 

input to the jth output.  Using Eq. (32), the H∞ optimal control problem is to find all 

stabilizing controllers K which minimize the infinity norm 
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where the infinity (∞) norm is calculated by 
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The 2-norm of a vector is described in Eq. (25). 

 Skogestad et al. states that, “In practice, it is usually not necessary to obtain an 

optimal controller for the H∞ problem, and it is often computationally (and 

theoretically) simpler to design a sub-optimal one” [7].  Therefore, define γmin such 

that  

 ( )
∞

= KPFlK ,
min

minγ  (34) 

such that K is a stabilizing controller.  Then the H∞ control problem becomes 

 γ<
∞

),( KPFl  (35) 

where γ > γmin.  By reducing γ iteratively, an optimal solution can be approached.   

 

4.3 Two Degrees-of-Freedom H∞ Control Design 

 The design of H∞ controllers consists of shaping the maximum singular value 

of certain transfer function matrices within a system over a frequency range.  The 

choice of which transfer functions to shape is entirely left to the designer, with 
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choices ranging from minimizing control effort to minimizing disturbance effects 

within the system.  The reason that two degrees-of-freedom H∞ Control is chosen for 

this system is due to its ability to reject system disturbances, which is important in 

hydraulic control design.  Also, the work of Bax [9] showed that this particular 

control architecture worked well when controlling a hydraulic valve assembly, 

encouraging the use of this control design in other hydraulic work. 

 The roots of two degrees-of-freedom H∞ Control lie in the control designs of 

MacFarlane and Glover.  Their MacFarlane-Glover H∞ Loop-shaping design, while 

allowing only one degree of freedom, utilized a prefilter to meet steady-state tracking 

requirements.  The work by Hoyle and Limebeer sought to redesign the MacFarlane-

Glover H∞ Loop-shaping into a true two degrees of freedom controller [7].  The 

architecture they chose allowed for the feedback portion of the controller to be 

designed to meet robust stability and disturbance rejection requirements except that 

only a pre-compensator weight is used.  Schematics of the controlled system are 

shown in Figure 26 and Figure 27. 

Controller G y r 

 

Figure 26.  General two degrees-of-freedom control architecture 
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Figure 27.  Complete two degrees-of-freedom control architecture 
 
 
 The design problem of this particular control scheme involves finding the 

stabilizing controller 

  (36) [ 21 KKK = ]

for the shaped plant 

  (37) 1GWGs =

which minimizes the H∞ norm of the transfer function between the input and output 

signals via the coprime factorization 

  (38) sss NMG 1−=

To solve Eq. (38), the Matlab function coprimeunc.m [10] was utilized, available 

from Skogestad et al. [7].  The input to this function is the state-space representation 

of the shaped plant GW1 and a relative tolerance term, typically set equal to 1.1.  The 

output of the function is the state-space representation of the stabilizing controller, K. 

 The control signal applied to the shaped plant Gs is  

  (39) [ ] ⎥
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⎤
⎢
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⎡
=

y
KKus
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21

where β is the scaled reference, y is the measured output, and K1 and K2 are referred 

to as the prefilter and feedback controller, respectively.  The task of the prefilter is to 

ensure that  
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where Tref is the desired closed-loop transfer function and ρ is a scalar parameter used 

to place more or less emphasis on model matching at the expense of robustness.  The 

reference model Tref is used to incorporate time-domain specifications into the design 

process, such as a desired natural frequency of oscillation and damping ratio. 

 With the optimization routines nearly established, the generalized plant P 

must be defined.  Assembly of the generalized plant can be performed from 

knowledge of the shaped plant and reference model, of the forms 
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where Zs is the unique positive definite solution to the generalized Riccati equation 

for the state-space representation Gs  

  (44) 0)()( 1111 =+−−+− −−−− TTTTT BBSCZRZCCDBSAZZCDBSA

and  
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To find a solution to this optimization, the Matlab routine hinf2dof.m [11] was used, 

which is available from Skogestand et al. [7].   

 The final portion of the controller is the prefilter gain Wi, used to ensure 

steady-state tracking.  This gain is defined by 
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where Wo is the output selection matrix, allowing the designer to choose between 

distinct system outputs to control.  If no extra feedback measurements beyond those 

already controlled, exist, then Wo=I.  The reason for this prefilter gain is that the 

previous optimization routine seeks only to minimize the ∞-norm of the error, not the 

actual error. 
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Chapter 5 

PRESSURE CONTROL DESIGN 

 

5.1 Performance Weighting 

 The objective of the study in this project and any control design study is to 

meet a set of performance requirements while maintaining stability.  In this 

application, restrictions have been set in the time domain on allowable steady-state 

error and maximum overshoot.  In the frequency domain, a restriction has been set on 

system bandwidth.  These requirements are outlined in Table 3.  Along with these 

requirements, it is necessary that the system does not oscillate when tracking a steady 

signal. 

 

Table 3.  Performance design objectives 

Design Criteria Design Objective 

Bandwidth 2 Hz 

Steady-State Error 5% 

High Frequency Error 200% 

 

 The performance requirements outlined in Table 3 can be incorporated into a 

single transfer function requirement for use with the performance analysis in the 

frequency domain.  These requirements are summarized in the performance weight, 

 ( )
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s
Msw
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P ω

ω
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+
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where M is the high frequency error in percent, A is the steady-state tracking error in 

percent, and ωB is the bandwidth.   B

 

5.2 PID Controller Design and Implementation 

 To compare “modern” controllers to current techniques in hydraulic control, a 

controller representing classical control methods needs to be constructed.  A PID 

controller representing a performance “baseline” can be quickly formulated using 

classical design methods.   

 The input to a PID controlled plant is calculated as 

 
dt
dekdtekeku DIP ++= ∫  (48) 

where kP is the proportional control term, kI is the integral control term, and kD is the 

derivative control term.  The algorithm for designing a PID controller consists of 

choosing each of these three parameters individually.   

 The first step of control design is the analysis of the plant that is to be 

controlled.  The linear plant analyzed in Section 2.3 is stable, making the design task 

simpler.  Even if the plant were unstable, control design would still be possible.  

Recall that the input to the model is the current input to the control valve and the 

output of the system is the pump discharge pressure.   

 To analyze the controllability of the linear model, a Bode diagram of the 

open-loop model is constructed, shown in Figure 28.  Note that while the gain margin 

of the plant is infinite, the phase margin is roughly 135º.  This is encouraging, as a 

phase margin greater than zero generally translates to a controllable system.  Another 

important piece of information learned from Figure 28 is that the plant is closed-loop 
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stable.  What this means is that a control gain of K=1 would yield a stable system, 

although with poor performance characteristics. 
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Figure 28.  Bode diagram of the open-loop plant 

 
 The addition of a controller gain should improve the performance 

characteristics of the system even further.  To design a PID controller, a proportional 

gain alone is first selected to control the system.  The reason for this is that a 

proportional controller is relatively simple, and if it alone has the ability to control a 

system to meet its design goals, it should be used.  However, the disadvantages of 

using a proportional controller to manage a hydraulic pump will be shown. 

 The proportional gain was chosen as kP=0.05 simply as a starting point.  The 

reason for this choice is that the current input to the control valve is on the order of 1 
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Amp, while the pump pressure is on the order of 10’s of MPa.  A quick calculation 

yields an approximate control resolution on the order of 0.5 Amps, which is within 

the sensitivity range of the system.  The time domain response of the pump pressure 

with proportional control is shown in Figure 29.  The reference input is a step 

function.  For 0 < t < 1s, the reference input is equal to 5.0 MPa.  For t > 1s, the 

reference input is equal to 5.2 MPa.   
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Figure 29.  Proportionally controlled system response to a step input 
   

 Upon studying Figure 29, several conclusions can be made about the 

proportional control system.  First, the system oscillates as it tracks the reference 

signal, a condition clearly outlined as unacceptable in Section 3.1.  Secondly, the 
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system appears to oscillate about the reference signal, meaning that the system could 

possess desirable tracking properties if the output oscillation could be removed.   

 Generally, to remove oscillation from a controlled system, the derivative term 

kD is added to the PID controller.  The reason for this is that derivative control works 

to drive the derivative of the error signal to zero.  If the derivative of the error is equal 

to zero, then the error does not change as a function of time, removing oscillatory 

behavior from the system. 

 As a general rule, the derivative control term in a PID controller is initialized 

as one tenth of the proportional control.  While this value is merely a starting point in 

control design, there is a valid reason for this scale.  The addition of derivative 

control tends to de-stabilize a controlled system, due to the fact that the derivative 

control portion of the PID controller only responds to the derivative of the error in the 

system, not to the actual error.  This property can sometimes cause the derivative 

controller to resist the efforts of the proportional controller in the system, impairing 

system performance. 

 The derivative control term kD was chosen to be 0.005.  The response of the 

system with proportional and derivative (PD) control is shown in Figure 30.  With the 

oscillatory behavior removed, the system can be more readily studied.   
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Figure 30.  PD controlled system response to a step input. 
 

 From observing Figure 30, several conclusions can be made.  First, the steady-

state error requirement from Section 3.1 has been satisfied.  Satisfaction of this 

requirement may seem surprising without the inclusion of integral control.  However, 

the work of Manring [6] supports this conclusion, as he states that a variable 

displacement hydraulic pump possesses integral-like behavior, allowing a pump 

control design to require at most a PD control scheme. 

 The second conclusion that can be made is that the performance output 

response has no overshoot.  This overdamped response is a very important quality of 

successful pump controllers, as overshoot is proportional to the change in pump 
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pressure.  For large and sudden changes in commanded pump pressure, large amounts 

of overshoot can be dangerous to both system components and operators. 

 Upon completion of the time domain analysis of the PD controlled system, 

frequency domain analysis can begin.  The Bode diagram of the open-loop controlled 

system is shown in Figure 31.  Notice that the phase margin of the system has been 

improved from 135º to nearly 180º.  This increase translates to better performance 

characteristics and greater robustness to variation.  Also, notice that the phase margin 

is near its maximum possible value under the current control scheme.  When the 

phase margin of a controlled system has been maximized, the controller has been 

optimized for performance.  Therefore, no additional controller tuning is necessary. 
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Figure 31.  Bode diagram of the open-loop PD controlled system 
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5.3 Two Degrees-of-Freedom H∞ Controller Implementation 

 In essence, many controllers possess two degrees of freedom in their design.  

Measured signals provide one degree while the reference signal provides the other.  

Often, one of these degrees of freedom is lost by driving the controller with the 

system error (the difference between the measured output and the reference input).  

However, reclaiming this degree of freedom by conditioning the reference input can 

enable the system to achieve better performance and increased robustness properties.  

The schematic of the two degrees-of-freedom control system is shown in Figure 26.  

By conditioning the reference input, the designer may set performance characteristics 

for the controlled system response.  The conditioning transfer function in the system 

uses an existing PID controller for the plant, designed purely for performance and not 

robustness, to define the desired closed-loop response of the controlled plant.   

 The reference model, possessing the desired closed-loop response 

characteristics, is defined by 

 22

2

2
)(

nn

n
ref ss

sT
ωζω

ω
++

= . (49) 

By defining the reference model in this fashion, the damping ratio and natural 

frequency of the desired system can be clearly defined.  The desired natural frequency 

of the pump pressure response is 2 Hz, and the desired damping ratio is 0.707.  A 

unit-step response of the reference model is shown in Figure 32.  The model matching 

factor ρ from Eq. (40) is set to 1.1 for the duration of the control design process. 
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Figure 32.  Step response of the reference model, Tref

 
  
The dynamic characteristics defined by the reference model appear to be present in 

Figure 32.  The percent overshoot of the response is 5% with no steady-state error.  

The controlled response of the linear model using the two degrees-of-freedom 

controller is shown in Figure 33. 
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Figure 33.  Linear response of the two degrees-of-freedom controlled model 
 
 
Again, the percent overshoot of the system is roughly 5% with no steady-state error, 

matching the reference model well.  The controlled response of the nonlinear system 

is shown in Figure 34. 
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Figure 34.  Nonlinear response of the two degrees-of-freedom controlled system 
 
 
Once again, the overshoot of the nonlinear system is roughly 5%, with slight steady-

state error.  This error is within the acceptable bound for this control study. 

 The disadvantage of using modern controller techniques, often, is that the 

controllers produced are of high order.  The pole-zero map of the 14th-order two 

degrees-of-freedom controller is shown in Figure 35. 
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Figure 35.  Pole-zero map of the original two degrees-of-freedom controller 
 
 
Based on Njabeleke’s work [1], showing that higher-order modern controllers can be 

reduced in order with little loss of precision, model order reduction was employed on 

the high-state controller using the Matlab utility minreal.m.   The pole-zero map of 

the 6th order revised two degrees-of-freedom controller is shown in Figure 36. 
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Figure 36.  Pole-zero map of the order-reduced controller 
 
 
While no exceptionally fast poles were removed from the system, the reduction of the 

order of the controller will help reduce computational requirements.  Additional order 

reduction can be achieved using a second Matlab utility, sresid.m, available from [7].  

This routine allows the designer to choose the number of system poles (and therefore 

states) to remove from the system, beginning with the fastest pole.  This routine was 

used to first reduce the high order controller gain K2, from Eq. (39), with little loss of 

accuracy.  However, use of routines such as sresid.m can lead to a loss of precision 

between order reductions.  If the reduction is too severe, the resulting system may 

possess unwanted controller dynamics.  When further order reduction was attempted 

on the controller shown in Figure 36, this loss of precision was observed, and thus 
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this sixth-order controller was used for the duration of the modern controller analysis 

in this study.  The design of the two degrees-of-freedom controller is shown in its 

entirety in Appendix A.   
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Chapter 6 

FREQUENCY DOMAIN ANALYSIS OF ROBUSTNESS 

 

6.1 Robustness Definitions in the Frequency Domain 

 While the idea of robustness might at first seem abstract, there are 

mathematical techniques for quantifying the robustness of a system using the 

frequency response of the system.  Certain robustness characteristics can be defined 

and analyzed to compare different control schemes.  These robustness characteristics 

are summed up in four categories:  nominal stability, nominal performance, robust 

stability and robust performance.  While nominal stability (NS) might not be defined 

as a measure of robustness, it is generally thought of as the starting point in all control 

research.  Nominal performance (NP), then, verifies whether or not the nominal 

controlled system meets the desired performance requirements.  Robust stability (RS) 

determines whether or not the control system is stable for all perturbations of the 

model.  Robust performance (RP) verifies whether or not the performance and 

stability criteria are met for all perturbations of the model.  These characteristics are 

then evaluated in the frequency domain.  The magnitude of each of these 

requirements is examined to determine if the system satisfies the requirement.     

 To begin analyzing robustness, several notations must first be explained.  

First, the system matrix N is created using a block diagram manipulation of the 

generalized plant model P and the controller K.  This arrangement can be seen 

schematically in Figure 37.  Mathematically, P and K are joined using a lower linear 

fractional transformation. 
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Figure 37.  Lower linear transformation schematic 
 

The system matrix N is then defined as 

  (50) 21
1

221211 )(),( PKPIKPPKPFN l
−−+≡=

It should be noted that both the first input and first output of the system matrix N are 

vector signals, due to the structured uncertainty model.  For a lumped uncertainty 

model, these signals are scalars.  The final notation necessary is that of the structured 

singular value µ.  The structured singular value is used in place of the singular value σ 

in an attempt to take advantage of the diagonal structure of the uncertainty 

description, versus an unstructured uncertainty description [7].  The structured 

singular value of a plant G is then defined as 

 ( ) ( ) ( ){ }( ) 11,0detmin −
Δ ≤ΔΔ=Δ−= σμ structuredforGkIkG mm  (51) 

where km is the scaling factor that allows  

 . (52) ( ) 0det =Δ− GkI m

 With these definitions in place, the robustness properties of a controlled 

system can be outlined.  The derivations for each of these properties can be found in 

[7].  The robustness properties are defined as: 
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 NS ↔ N is stable (53) 

 NP ↔ ωμσ ∀<= Δ 1)( 22 pN  (54) 
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The determination of nominal stability (NS) was made by analyzing the pole-zero 

map of each controlled system and observing pole location.  Nominal stability of each 

controlled system will not be discussed further. 

 

6.2 Robust Analysis of PID Controlled System 

 To be able to analyze the robustness characteristics of the PID controller in 

the frequency domain, the structured uncertainty model must be added to the 

generalized plant P.  Figure 38 shows the block diagram structure of the generalized 

plant with structured uncertainty. 
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Figure 38.  Generalized plant model with uncertainty 
 
 
 It is important to note at this point the structural difference between the 

lumped uncertainty description and the structured uncertainty description, in terms of 

robustness analysis.  In Eq. (57), the Δ-block structure for the structured uncertainty 

model is written as 
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while the corresponding Δ-block structure for the lumped uncertainty case would be 

expressed as 
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The fact that all off-diagonal elements of the structured Δ-block are zero ensures that 

the uncertainty of a system component affects only that component.  In the case of 

lumped uncertainty, the non-zero off-diagonal terms allow the uncertainty of separate 

system components to affect each other.   
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 The generalized plant then consists of a set of dynamic equations, each 

represented by transfer functions.  The system equations are 
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where D is the linearized displacement model and V is the linear model of the 

pump/load valve assembly.  The specifications D1 and D2 represent subcomponents of 

the displacement model in which either the first or second input, respectively, is 

considered alone.  Therefore, the model D1 is the linearized displacement model 

considering only the current input and D2 is the linearized displacement model 

considering only the pump pressure input, such that 

[ ]21 DDD = .    (64) 

The resulting generalized plant PPID is defined by 
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After employing the lower linear fractional transformation with the PID 

controller shown in Figure 37, the system matrix N was calculated.  By using the 

robustness tests shown in Eqs. (54 – 56), the robustness characteristics of the PID 

controlled model are shown in Figure 39. 
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Figure 39.  Robustness characteristics of the PID controlled plant 
 
 
 The robustness characteristics shown in Figure 39 tell a great deal about the 

PID controlled system.  The nominal performance criteria does not pass the test 

outlined in Eq. (54), with a low frequency maximum near 7.  This means that the 

system is not expected to satisfy the performance constraints laid out in Section 5.1 

under nominal operating conditions.  The robust stability shown also does not satisfy 

the criteria from Eq. (55), meaning that the model is not expected to maintain stability 

under all system variations.  Finally, the robust performance criterion shown does not 

meet the qualifications of Eq. (56), meaning that the system is not expected to meet 

the performance requirements under all system variations.  However, these three 
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characteristics can be used as metrics to judge the stability or performance of a 

control system when compared with another control system.   

 

6.3  Comparing Robustness between Lumped and Structured Uncertainty 

Models 

 At this point it is interesting to analyze the effects of the structured uncertainty 

model, derived in Chapter 3.  In that chapter, the decision was made to pursue a 

structured uncertainty model to ensure a certain level of accuracy in robustness 

analysis.  The lumped uncertainty model shown in Figure 20 was determined to be 

too conservative, and the structured uncertainty model shown in Figure 23 and Figure 

24 was chosen for eventual robustness analysis.   

 While the robustness characteristics of the PID controlled system employing 

structured uncertainty were outlined in the previous section, this same analysis can be 

quickly applied to the model assuming that a lumped uncertainty model is used.  The 

generalized plant P of the system with lumped uncertainty is 
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as derived from the block diagram structure shown in Figure 40.  The resulting 

robustness analysis is shown in Figure 41. 
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Figure 40.  Generalized plant structure with lumped uncertainty model 
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Figure 41.  Robustness analysis of PID controlled system with lumped uncertainty 
model 
 
 
 The nominal performance test result shown in Figure 41 is consistent with the 

findings from the structured uncertainty trial of the previous section.  This makes 

sense, since the uncertainty of a system is unrelated to the nominal performance 
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properties of the system.  The robust stability displayed, however, differs greatly from 

the results of the structured uncertainty case.  The overly conservative lumped 

uncertainty model results in a robust stability measure of 8.00, more than four times 

less favorable than the structured uncertainty model.  Because the structured 

uncertainty model is more accurate than the lumped uncertainty model, the robust 

stability measure using structured uncertainty is more accurate than its lumped 

uncertainty counterpart.  What this means to the designer is that the controller in 

question is more robust than the lumped uncertainty model can relate, allowing for 

greater design freedom when using the structured uncertainty model. 

 

6.4 Robust Analysis of Two Degrees-of-Freedom H∞ Controlled System 

 To analyze the two degrees-of-freedom control system, only the structured 

uncertainty case was analyzed.  The generalized plant P for the two degrees-of-

freedom H∞ controller is calculated from the controller architecture shown in Figure 

42. 
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Figure 42.  Block structure of two degrees-of-freedom controlled system 
 
 
Using this structure, the generalized plant is defined by 
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The lower linear fractional transformation for this system is calculated in the same 

fashion as that for the PID controlled system of the previous section, with the 

exception that the reference input of the system acts as a second input to the 

controller K.  The robustness characteristics of this system are analyzed in the same 

manner as in the PID controlled system.  The graphical representation of the two 

degrees-of-freedom robustness characteristics is shown in Figure 43. 
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Figure 43.  Robustness characteristics of the two degrees-of-freedom controlled 
system 
 

 Analysis of Figure 43 reveals several characteristics of the modern controlled 

system.  Like the classically controlled system, the modern controlled system does 

not pass any of the three robustness tests.  However, improvements over the PID 

controlled system have been made in the two metrics Robust Stability and Robust 

Performance.   

 

6.5  Frequency Analysis Conclusions 

 Table 4 summarizes the results of the frequency domain tests on both control 

systems. 

 

 77



 

Table 4.  Summary of frequency analysis robustness characteristics 

Robustness Test, Maximum Result (abs.) 
Control Design 

Nominal 
Performance Robust Stability Robust 

Performance 

PID Control 6.70 1.90 8.60 

Two Degrees-of-
Freedom Control 6.70 1.25 7.95 

 

The information contained in Table 4 shows that the modern control scheme, while it 

does not pass any of the three robustness tests, does improve upon the PID controller 

in terms of robustness.  The modern controlled system does not, however, improve 

over the PID controlled system in terms of Nominal Performance.  This is expected, 

as the two degrees-of-freedom controller was built around the same PID controller 

designed in Section 5.2.  This classical controller was designed with an emphasis on 

performance, not robustness.  Therefore, only improvements on its design could be 

made in the area of robustness.  In the time domain, this robustness increase translates 

to a more predictable system response in the face of variation.  Time domain 

simulations of these controllers are presented in Chapter 7. 
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Chapter 7 

TIME DOMAIN ANALYSIS OF ROBUSTNESS 

 

7.1 Altered Models 

 To be able to analyze the uncertainty of a system in the time domain, varying 

models must be created.  These models simulate the effects of parameter variation 

and disturbances in the hydraulic system.  The parameters mentioned in the 

uncertainty analysis in Chapter 3 are the most logical candidates for variance, and 

will be explored here.   

 The most relevant issue to investigate in the field of hydraulics is the effect of 

a disturbance to the system.  The uncertainty model included two parameters which 

could experience a perturbation.  The fluid bulk modulus can be affected by many 

different system characteristics, some suddenly.  The load valve area can also 

experience sudden changes as a consequence of hydraulic implement movement.  

Another source of variation that could affect time responses is the control valve 

within the pump.  It has been shown in Chapter 3 that variations within this piece of 

equipment can cause the system to vary, even more than parameter variations. 

 Two time domain robustness tests were administered.  First, a model variation 

test was run to study the responses of the controlled systems to different system 

models.  These trials allowed parameters such as the fluid bulk modulus and the load 

valve area to vary between trials. 

 The second robustness test studied the effects of instantaneous changes in the 

load valve area.  After the system was allowed to reach steady-state (i.e. a constant 

 79



discharge pressure), the load valve was perturbed from an opening of 3.5 cm2 (70% 

open) to 5.0 cm2 (100% open) and then to an opening of 2.0 cm2 (40% open).   This 

effect was simulated instantaneously, allowing for robustness analysis to be 

performed under ideal circumstances.  The fluid bulk modulus was not perturbed in 

this fashion.  This is because the system is operating at steady-state, at which point 

the pressure rise rate equations (Eq. (2)) are equal to zero.  The fluid bulk modulus 

has an impact on the system only through these pressure equations, meaning that the 

impact of the fluid bulk modulus can only be observed during the transient response. 

 The results of these two robustness tests are analyzed differently from one 

another.  The results of the model variation tests are compared for the specific 

controlled system involved, meaning that the robustness of the system is represented 

by how similarly the controlled system reacts under differing operating conditions.  

This can be thought of as a test of individual robustness.  The parametric fluctuation 

test, however, can be analyzed most easily by comparing the reactions of the 

separately controlled systems with one another.  If one system reacts more favorably 

than another (i.e. parameter fluctuation has less effect on the output), then that system 

is said to have greater robustness relative to the other, less favorable, control system. 

 

7.2 Time Domain Responses 

 The time domain responses of the two controlled systems for a varying bulk 

modulus are shown first.  In Figure 44 and Figure 45, the fluid bulk modulus was 

varied as noted, while the systems attempt to track a discharge pressure of 5 MPa 

from 0 < t < 1 second, and a discharge pressure of 5.2 MPa for t > 1 second.  Figure 
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44 concerns the PID controlled system, while Figure 45 concerns the two degrees-of-

freedom controlled system. 
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Figure 44.  Variation of the PID controlled system for changing bulk modulus 
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Figure 45.  Variation of the Two DOF controlled system for changing bulk modulus 
 
 
 Upon comparing Figure 44 and Figure 45, it can be concluded that the PID 

controlled system response varies more than the modern controlled system as the bulk 

modulus changes between trials.  While the average rise time of the PID controlled 

system is faster (0.040 seconds) than the modern controlled system (0.075 seconds), 

the maximum percent overshoot of the PID controlled system across all runs is 

10.0%, while the maximum overshoot of the modern controlled system is 3.9%.  

Also, the oscillations observed in the PID controlled system can be harmful to 

hydraulic equipment, making the smoother response of the modern controlled system 

more favorable.  The step responses of the PID controlled system and the modern 

controlled system with varying load valve areas are shown in Figure 46 and Figure 

47, respectively. 
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Figure 46.  Variation of the PID controlled system for changing load valve area 
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Figure 47.  Variation of the modern controlled system for changing load valve area 
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 Once again, the rise time of the PID controlled system is faster (0.040 

seconds) than the modern controlled system (0.065 seconds).  The maximum 

overshoot of the PID controlled system over all trials is 6.05% and only 3.15% for the 

modern controlled system.  Oscillations similar to these observed in the bulk modulus 

trials are seen again in the load valve trials.   

A comparison of disturbance rejection in the two controlled systems is shown 

in Figure 48.  At time t = 1 second, the load valve area is instantaneously increased as 

noted earlier, and at time t = 2 seconds, the load valve area is reduced 

instantaneously. 
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Figure 48.  Comparison of disturbance rejection between the two models 
 
 

 84



 The two system responses shown in Figure 48 are nearly identical, suggesting 

that the modern control scheme does not improve upon the PID controlled system 

response to large load valve disturbances.  The plot of normalized control valve input 

from both models during the disturbance trial is shown in Figure 49.  Both controllers 

attempt to actuate the control valve beyond its boundaries, saturating it at either its 

maximum or minimum position.  This indicates that the large disturbance rejection 

response of the system is dictated by the mechanical properties of the system, rather 

than its controller. 
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Figure 49.  System input comparison between the two controllers during disturbance 
trial 
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7.3 Time Domain Analysis Conclusions 

 Overall, the two degrees-of-freedom controlled system showed better 

robustness to parameter variation than did the PID controlled system.  While the time 

response of the PID controlled system was faster, it was characterized by greater 

oscillation and overshoot than observed in the modern controlled system response.   

 Both the classically controlled system and the modern controlled system 

produced nearly identical results during the large perturbation trial.  The similarity of 

the two responses suggests that the response of this hydraulic pump to large 

fluctuations in load valve area is determined by the attributes of the mechanical 

system, rather than the control method chosen.    

 86



Chapter 8 

CONCLUSIONS 

 

8.1 Overview 

   It can be seen from the results of this project that modern control can 

effectively increase the robustness qualities of a control system on a hydraulic pump.  

By comparing Figures 44 - 47, the variance of the system response due to parameter 

fluctuation was decreased by using a two degrees-of-freedom H∞ controller, rather 

than a classical PID controller.  These time domain results were predicted by the 

robustness analysis performed in the frequency domain.  The robustness test results 

shown in Table 4 concluded that, while the modern control design would not improve 

performance characteristics over the classical control scheme, the robust stability of 

the system was improved by 34%.   

 While the two degrees-of-freedom H∞ control design allowed for greater 

robustness to parameter fluctuation, the large disturbance response of the system was 

unaffected by the choice of control method.  The system output comparison between 

the two control schemes seen in Figure 48 shows that the response due to a large 

change in load valve area is nearly identical across both controller designs.  The 

notion that controller saturation is to blame for this effect is confirmed with the 

control valve input comparison shown in Figure 49. 

 The advantages of pursuing a structured uncertainty model rather than an 

unstructured uncertainty model were shown in Chapter 3.  By comparing the 

unstructured uncertainty description shown in Figure 20 and the structured 
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uncertainty description shown in Figure 23 and Figure 24, it can be concluded that 

analyzing the uncertainty in each system component separately allows for a much less 

conservative control scheme.  In fact, the peak uncertainty calculated by the 

unstructured model was found to be 15 times greater than the peak uncertainty 

calculated by the structured model. 

 

8.2 Limitation of H∞ Control 

 While the advantages of using modern control methods and analysis have 

been outlined in this project, the drawbacks of such concepts have not.  The main 

limitation of H∞ control design is the fact that it yields high-order controllers.  These 

controllers require increased processing capabilities during design and analysis, but 

more importantly, increased processing capabilities from the onboard computer 

running the controller in real-time. 

 Also, in terms of hydraulic pumps specifically, unwanted integral terms in 

high-order controllers can cause excessive overshoot effects when the system 

response is saturated.  This integrator “wind-up” effect can be observed in a hydraulic 

pump response for large, sudden changes in commanded discharge pressure when 

integrator terms are present in the controller. 

 

8.3 Scope of Future Work 

 While the time domain simulations shown in Chapter 7 are encouraging, they 

were not performed using a hydraulics-specific software package.  The utilization of 

the mechanical simulation program, Dynasty, would perhaps allow for more accurate 
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results.  This program would be able to assess the feasibility of using the high-order 

controllers derived on currently available signal processing equipment.  Also, analysis 

of the linear and nonlinear models using Dynasty to investigate which combination of 

varying parameters might cause an unstable system would be helpful.   

 Once extensive simulation testing was performed using these modern control 

methods, hardware testing could begin.  The results of hardware testing would be the 

final and most important assessment of the viability of these control methods.   

  One major concern of hydraulic pump control is instability due to control 

valve capabilities.  Previously, smaller control valves have been used to actuate 

hydraulic swash-plate pumps, since slow response is desired for enhanced 

controllability.  However, the use of larger control valves would allow for larger flow 

rates into the control chamber, yielding faster pump pressure responses.  Modern 

controllers could assure greater stability than classical controllers might, given this 

higher flow rate. 
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Appendix 

MATLAB CODE FOR TWO DEGREES-OF-FREEDOM CONTROL DESIGN 

 

 The following code creates a two degrees-of-freedom modern controller for 

the plant G.  The program is a stand alone unit, loading parameters from exterior 

sources when necessary.  The first step of the two degrees-of-freedom control design 

is to establish a reference model with the desired system response parameters. 

wn=4*2*pi;    
zeta =0.8;             
Tref11 = tf([wn^2],[1 2*zeta*wn wn^2]);    
Tref=ss(Tref11); 

A desired natural frequency of 4 Hz and damping ratio of 0.8 are chosen.  Next, the 

PID controller designed for performance is established, which will help form the 

shaped plant. 

K_PID=tf([.008 .5],[1/10000 1]); 
W1=K_PID; 
W1_ss=ss(W1); 
 
The linear plant G is loaded into the program from an external source and stored. 

load linear_plant_711; 
Gs=G; 
clear G; 
 
Next, the shaped plant Gshaped is formed by combining W1 and the open-loop plant.  

Also in this step, the shaped plant and reference model are converted into the 

“packed” format, which combines the A, B, C, and D matrices of a state-space 

representation into a single matrix for simpler analysis. 

G_shaped = Gs*W1;   % shaped plant 
Gs_pck = pck(G_shaped.a, G_shaped.b, G_shaped.c, G_shaped.d);   
Tref_pck = pck(Tref.a, Tref.b, Tref.c, Tref.d);   
 
With the shaped plant and reference model in the correct form, the calculation of the 

controller gains can begin.  The model-matching factor ρ is first chosen, then the 
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Matlab utility hinf2dof.m is used to calculate the controller gains K1 and K2, both 

contained within the variable K_2dof. 

rho=1.1;  
K_2dof_pck=hinf2dof(Gs_pck, Tref_pck,rho); 
[Ak2dof,Bk2dof,Ck2dof,Dk2dof]=unpck(K_2dof_pck); 
K_2dof=ss(Ak2dof,Bk2dof,Ck2dof,Dk2dof); 
 
Once the controller gains are “unpacked” and returned to a standard state-space 

representation, model-order reduction can begin.  The Matlab utility sresid.m is used 

to reduce the order of the controller to 6th order.  This process once again requires the 

controller to be in the “packed” form. 

sysred=pck(K_2dof.a,K_2dof.b,K_2dof.c,K_2dof.d);     
sysd=strans(sysred);                                 
sysr=sresid(sysd,6);                                 
[asysr,bsysr,csysr,dsysr]=unpck(sysr);         
K_2dof=ss(asysr,bsysr,csysr,dsysr); 
 

The separate controller gains K1 and K2 can now be individually extracted from 

K_2dof.   

K1=K_2dof(:,1); K2=K_2dof(:,2);   
 
Next, the scaling matrix, Wi, can be defined.  Recall that this matrix allows for 

reference model matching at steady-state, reducing the steady-state error of the 

system. 

Hinf2dof_cl=series(K1,feedback(G_shaped,-K2));   
Wi_2dof=inv(dcgain(Hinf2dof_cl))*dcgain(Tref); 
 
The controller model can now be assembled from the calculated matrices and values.  

The controller is of a two-input, single-output architecture, defined by the following 

code: 

Two_DOF_Controller = minreal([-K2*W1_ss Wi_2dof*K1*W1_ss]); 
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Next, the performance weighting characteristics can be established.  The maximum 

allowable high frequency error is 200%, the desired bandwidth is 2 Hz, and the 

allowable steady-state error is 5%.  These values are then entered into the 

performance weighting transfer function, wp. 

M_1 = 2;  
bandwidth_1 = 2*pi*2; 
A_1 = .05; 
w_p = tf([1/M_1 bandwidth_1], [1 bandwidth_1*A_1]); 
 
The displacement model and the load valve model along with the uncertainty 

descriptions must be introduced to the program. 

load V_G 
V=G; 
clear G 
  
load G_G  
  
load w_g 
w1 = WaSS; 
clear WaSS 
  
load w_v 
w2=WaSS; 
clear WaSS 
 
Next, the control valve dynamic approximation must be added to the system.  Along 

with this addition, the displacement model must be divided into two separate state-

space representations: one with the control valve current as an input and the other 

with the pump discharge pressure as its input. 

control_valve = tf([6750/.0623],[1 28.98/.0623 6750/.0623]); 
  
D1 = ss(G.a,G.b(:,1),G.c,0); 
D1 = ss(control_valve)*D1; 
D2 = ss(G.a,G.b(:,2),G.c,0); 
 
With all of the plant models, uncertainty descriptions, and performance weighting 

characteristics loaded into the program, the generalized plant, P, can be assembled. 

den=1-D2*V; 
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P=[ w1*V*D2/den     w1*D2/den       0       w1*D1/den; 
    w2*V/den        w2*V*D2/den     0       w2*V*D1/den; 
    -V*w_p/den      -V*D2*w_p/den   w_p     -D1*V*w_p/den; 
    0               0               1       0; 
    -V/den          -1/den          1       -D1*V/den ]; 
 
The generalized plant can then be combined with the controller using the lower-linear 

fractional transformation routine lft.m.  Once this is accomplished, the robustness 

characteristics of the controlled system can be analyzed graphically. 

N=lft(P,Two_DOF_Controller);    
  
w=logspace(-2,4,300); 
  
figure 
sigma(N(3,3),w) 
title('Nominal Performance, 2DOF') 
  
M=N(1:2,1:2); 
  
figure 
sigma(M,w) 
title('Robust Stability, 2DOF') 
 
figure 
sigma(N,w) 
title('Robust Performance, 2DOF') 
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