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ABSTRACT 
 

Activity Recognition (AR) is an important research topic in pervasive computing. With the 

rapid increase in the use of pervasive devices, huge sensor data is generated from diverse devices on 

a daily basis. Analysis of the sensor data is a significant area of research for AR. There are several 

devices and techniques available for AR, but the increasing number of sensor devices and data 

demands new approaches for adaptive, lightweight and accurate AR. We propose a new middleware 

called the Pervasive Middleware for Activity Recognition (PEMAR) to address these problems. We 

implemented PEMAR on a Big Data platform incorporating machine-learning techniques to make it 

adaptive and accurate for the AR of sensor data. The middleware is composed of the following: (1) 

Filtering and Segmentation to detect different activities; (2) A human centered adaptive approach to 

create accurate personal models, leveraging on the existing impersonal models; (3) An activity library 

to serve different mobile applications; and (4) Activity Recognition services to accurately perform AR. 

We evaluated recognition accuracy of PEMAR using a generated dataset (15 activities, 50 subjects) 

and USC-Human Activity Dataset (12 activities, 14 subjects) and observed a better accuracy for 

personal trained AR compared to impersonal trained AR. We tested the applicability and adaptivity of 

PEMAR by using several motion based applications. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Motivation 

There is an increase in the use of wearable sensors during the past few years and this increase 

is predicted to grow seven folds by the year 2019 [1]. These wearable sensors are becoming part of 

human life; integrated into various accessories and garments that are used in our day-to-day life such 

as hats, wristbands, socks, shoes, eyeglasses, wristwatches, headphones and smartphones. With the 

advancements of cloud-computing, many wearable sensor systems can now be easily connected to a 

cloud service, which makes it easier and cheaper to maintain the data generated from these sensors. 

There are many applications of wearable sensors in health and wellness monitoring, safety monitoring, 

home rehabilitation, treatment efficacy assessment and early detection of disorders. Below are some 

of the factors driving the sensors and wearable markets are the affordability of the sensors, fusion of 

sensors into consumer-end devices, decreasing size of physiological sensors, increased health and 

fitness awareness, rise in home and remote patient monitoring, reduced digital health costs, 

increasing mobile and smartphone penetration into day to day life and increasing patient/physician 

acceptance.  

In coming years, data generated by the sensors is expected to increase by 42% of all data by 

2020, up from 11% in 2005. Recognition of human activities from the data generated from wearable 

sensors is an interesting area of research, but there is a demand for a system/framework that could 

use the massive data generated from these sensors and also be adaptive in nature for used on mobile 

platforms to achieve pervasiveness. 
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1.2 Problem Statement 

The growing wearable sensors demand an adaptive approach for pervasive platforms that can 

support diverse sensors and activity recognition on diverse devices. Some of the factors inhibiting the 

activity recognition of wearable sensors are reusability and portability. Pervasive approach of activity 

recognition also requires a framework that could reduce the computation on integrating 

device/mobile platforms. Activity Recognition system should also support modularity where the 

activity model generation could be separated from recognition module for reusability and portability. 

To support adaptive activity recognition and mobile applications, there is a very strong need for 

adaptive, real-time platforms for mobile devices that can handle diverse stream data generated from 

various sensing devices. The major obstacles involved in handling real-time stream data on a mobile 

platform are due to the lack of the capabilities that dynamic activity recognition applications demand, 

such as support for performance, adaptability, real-time, and applicability. Traditional activity 

recognition systems either perform activity recognition on the server (offer recognition) or on a 

mobile platform (online recognition) [2], while there is a need to combine both to address above 

issues.  
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CHAPTER 2 

2. RELATED WORK 

 
In this section, we introduce activity recognition and discuss some of the existing human 

activity recognition systems that rely on wearable sensors. Human activity recognition is an important 

area of computer vision research and applications. The goal of the activity recognition is an automated 

analysis (or interpretation) of ongoing events and their context from sensor data. Its applications 

include surveillance systems, patient monitoring systems, and a variety of systems that involve 

interactions between persons and electronic devices such as human-computer interfaces. Most of 

these applications require recognition of high-level activities, often composed of multiple simple (or 

atomic) actions of persons. We discuss different research works and techniques for human activity 

recognition. We talk about both the methodologies developed for simple individual-level activities 

and compare different approaches with PEMAR. We describe some of the wearable sensors used for 

human activity recognition. A variety of devices and techniques are used for gesture and activity 

recognition, such as wired gloves, cameras and accelerometers.  

2.1 Activity Recognition Technology 

Human activity recognition has been addressed in two different ways, namely using external 

sensors and wearable sensors. In the case of external sensors, the devices are fixed in foreordained 

points of interest, so the deduction of activities entirely depends on the voluntary interaction of the 

users with the sensors. In the case of wearable sensors, the devices are attached to the user. We 

discuss each of the approaches in detail in the later sections. 
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External Sensor (Video Tracking) for Activity Recognition: 

Video Signals from cameras are used as input for the recognition of gestures. Hand and body 

gestures are detected using an edge detection algorithm [3]. These algorithms are computationally 

expensive and dedicated hardware is required to detect the gestures or body movement. Recent 

research carried at Cambridge on digits, utilizes a camera for the gesture control offered by Kinect [4]. 

The camera can be worn on a wrist with the help of a wrist strap and it tracks 2D movement of the 

hand rather than 3D. It could also recognize finger movement that is used to control the software. 

This approach can be used in applications such as controlling the games with hand movements and 

translation of a sign language into a written text.  

A company called Leap Motion uses a new type of motion controller for controlling gestures 

[5]. Leap consist of a simple motion controller, which can be plugged into a USB port to transfer data 

to the PC. Leap software has to be installed and once the motion controller is plugged in, it turns the 

8 cubic feet of air in front of it into 3D interaction space. All the user gestures which are performed in 

that space are tracked by the leap. The size of the camera is about the size of a business-card holder, 

and can discern all 10 fingers individually. Such a detail in scanning and recognition allows us to do 

track actions like pinch-to-zoom, or zero in which can be used in application like maps and to view 

images in an operation theater. 

Wearable Sensors for Activity Recognition: 

The major part of the previous work on gesture recognition is based on human detached 

recognition or computer vision techniques. Computer vision techniques will not the need the user to 

wear any external sensor, but lighting condition and camera angle/field of vision are important 

constraints of computer vision based approaches. In cases of poor lighting and object obstructions, it 

is difficult to recognize gestures using a camera-based system. Additionally, it is not practically 

possible to have to face the camera all the time. 



  

 

5 
 

Accelerometer-based gesture recognition is a technique that is compatible with almost all 

physical and computing environments. The accelerometer sensors are small enough and are able be 

to fit in small devices, and communicate wirelessly, hence easily wearable for interacting with a wide 

range of applications. Examples of some of the accelerometer based gesture recognition devices 

include Nintendo Wii-mote, Chronos watch from Texas Instruments [6], Fitbit and smart phones. The 

Nintendo Wii-mote contains an integrated 3-axis acceleration sensor, and connects via the Bluetooth 

human interface device protocol for transmitting data [7].  

The HAR systems are broadly classified as online recognition systems and offline recognition 

systems. Online recognition systems are pervasive in nature and provide real time response for 

activity recognition. Offline recognition systems perform HAR on a backend server where the 

response times are not real time, but are scalable enough for multiple activity recognitions. In this 

thesis we evaluate on the common HAR wearable sensors, accelerometers. Figure 1 shows a typical 

accelerometer sensor, typical accelerometer is a device that is used to measure proper acceleration 

(g-force). Proper acceleration is different from coordinate acceleration; i.e. rate of change of velocity. 

For example, an accelerometer at rest on the surface of the Earth will measure an acceleration g= 

9.81 m/s2 straight upwards. By contrast, accelerometers in free fall orbiting and accelerating due to 

the gravity of Earth will measure zero. 

http://en.wikipedia.org/wiki/Standard_gravity
http://en.wikipedia.org/wiki/Standard_gravity
http://en.wikipedia.org/wiki/Free_fall
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Figure 1: Presentation of Acceleration Experienced by an Accelerometer 

 

Different HAR systems have very different purposes and associated challenges, so they are evaluated 

separately. General Human activity system dependent on the following factors. 

 • Different Recognized activities 

• Type of sensors and the measured attributes 

• Integration device  

• Level of obtrusiveness (low, medium, or high).  

• Type of data collection protocol 

• Level of energy consumption (low, medium, or high).  

• Classifier flexibility level, either user-dependent or user independent.  

• Feature extraction method(s)  

• Learning algorithm(s)  

• Overall accuracy for all activities 
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2.2 Online Recognition 

Applications, which use online activity recognition systems, can be more responsive and 

interactive, compared to offline recognition. In the field of healthcare, monitoring patients’ physical 

or mental pathologies continuously is crucial for their safety, and quick recovery. Similarly, activities 

and games can enhance user experience in interactive games or simulators. We describe some of the 

most recognized works on online HAR in detail. 

eWatch [8] 

eWatch is an online activity recognition system, which embeds a microcontroller and sensors 

within a device [8]. This can be can be worn as a sport watch. There are four sensors included in the 

device 

 accelerometer 

 light sensor 

 thermometer 

 microphone  

The sensors are passive, hence there is no external communication necessary, thus making 

the eWatch energy efficient. A decision tree C4.5 approach and time-domain feature extraction are 

extracted for activity recognition. There a total of six ambulant activities and the overall accuracy is 

92.5% and less than 70% for activities such as descending and ascending. The detection time (feature 

extraction and classification) for the eWatch are 0.3 ms, which is very responsive.  The data collection 

was under a supervision of researchers, which makes the dataset not ideal for real case scenario. 

Figure 2 shows some of the wearable sensors used today. 
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Figure 2: Wearable Sensors 

 

 

Vigilante [9] 

Vigilante is a mobile application developed for real-time human activity recognition [9] and it 

uses android platform.  A hardware is a chest sensor strap, which can measure acceleration and 

physiological characteristics. Three ambulation activities with C4.5 decision tree classifier, gave an 

overall accuracy of 92.6%. The response time of the new gesture classification is 8% of the window 

length e. Evaluation results were with different users, without the need of training for each user. 

System uses permanent Bluetooth to communicate between the sensor and the mobile device, which 

makes it moderately energy efficient. 

Tapia et al [10] 

Tapia system can recognize 30 activities, which include activities like lifting weight, rowing, 

push-ups, etc.  Evaluation data consists of user dependent and user independent from 21 subjects. 
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Reported accuracy is at an average is 94.6% for user-dependent analysis and 56% for user-

independent. If the activities are not considered based on the intensities, then the user-independent 

accuracy is reported at 80.6%. The system consists of five accelerometers place on the subject’s arm, 

wrist, hip, ankle and thigh. It also includes a heartrate monitor attached to the chest. Since the sensors 

communicate wirelessly via Bluetooth protocol, the system consumes high energy. The integration 

device being a laptop restricts the subject free movement.   

ActiServ [10] 

ActiServ is an activity recognition service for mobile phones [10]. They make use of only the 

accelerometer sensor from the mobile phone. Using fuzzy inference system, they classify ambulation 

and phone activities. ActiServ is energy efficient system and portable, there is no use of external 

sensor involved. User dependent training accuracy is 90% and user-independent lies in between 71% 

and 97%. For higher accuracy, user-independent data is processed for days on the mobile platform, 

for real-time response the accuracy drops to 71%. The drawback from this system, is the orientation 

of the device should be proper to classify activities. Sitting and standing get confused if the orientation 

of the device is not proper. 

Table 1: Comparing Different Online Gesture Recognition Systems 

Online HAR system Sensors Learning Algorithm Accuracy 

eWatch [7] ACC,EMV(wrist) C4.5,NB 94% 

Vigilante [8] ACC,VS C4.5 92.6% 

Tapia [9] ACC, HRM C4.5,NB 86% 

ActiServ [10] ACC RFIS 71%-98% 

Ermes [12] ACC DT 94% 

Brezmes [11] ACC KNN 80% 
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Other Approaches 

Brezmes et al. [11] proposed a system for HAR, featuring a mobile application. They have used 

the k-nearest neighbors’ classifier. This is computationally expensive and is not suitable to scale in 

smart phones, since it need the complete data set, which can be huge. Besides the system requires 

each user to provide his own data for better accuracy. Ermes et al. [12] developed an online system 

for HAR which reaches 94% overall average accuracy. However, the evaluation carried is user-

dependent. The data collected is from three users and suggests this is not applicable and adaptive for 

new users. 

2.3 Offline Recognition 

Applications, which use offline recognition system, can be less responsive and interactive, 

compared to online recognition. Application requiring slow response time for HAR use offline systems, 

such as application that track patients diet habits, and calculating the calories burnt during an exercise 

routine. We describe some of the most recognized works on offline HAR in detail. 

Parkka [13] 

Parkka introduced a system that classifies seven activities, such as rowing, riding a bike, 

standing, walking, running and Nordic walk. Twenty two signals were analyzed. This requires a number 

of sensors on the individual’s chest, wrist, finger, forehead, shoulder, upper back, and armpit. A 

compact computer is the integration device, which weighs 5kg. Speech recognizer is applied to the 

speech signal to extract the time- and frequency-domain. This demands a high processing 

requirement and also privacy related issues reading subject’s continuous speech data. The paper 

reports an accuracy of 86%. 

Bao [14] 

Bao introduced a system that classifies twenty daily activities and ambulation, such as 

watching TV, vacuuming and scrubbing. A total of 5 accelerometers were used to collect the 



  

 

11 
 

acceleration data, located at subject’s arm, knee, ankle and hip. A 5% reduce accuracy is reported 

with only two accelerometers. Activities are classified with a C4.5 decision tree classifier, the overall 

accuracy reported was 84%. There is confusion between activities such as moving on elevator or an 

escalator, adding location data has increased the accuracy significantly up to 95%.  

Khan [15] 

Khan introduced a system that classifies ambulation, activities and transitions between such 

as watching TV, vacuuming and scrubbing.  A single accelerometer is placed on the subject’s chest and 

the data is transferred to the computer via Bluetooth protocol. The sampling rate of the 

accelerometer is 20Hz. An artificial neural network is used for classification, and an accuracy of 97.76% 

is reported of user independent activities in the paper.  

Zhu [16] 

  Zhu and Sheng [16] proposed a system, which used Hidden Markov Models (HMM) to 

recognize activities. Two accelerometers are used to collect data, which are placed on user’s wrist and 

waist. The raw data is sent to a computer via Bluetooth protocol to process the data. This device 

placement and configuration makes it uncomfortable, since the subject has to wear wired links, which 

can interfere with his movements. The data is collected from a single subject, hence the evaluation 

and performance is not comparable with other systems. 

Table 2: Comparing Different Offline Gesture Recognition Systems 

Offline HAR 
system 

Sensors Learning 
Algorithm 

Features Accuracy 

Parkka [13] ACC,ENV KNN TD,FD 86% 

Bao [14] ACC (wrist, ankle, 
thigh, elbow, hip) 

C4.5,KNN,NB TD,FD 84% 

Khan [15] ACC (chest) C4.5,NB AR,SMA,TA,LDA 
[3] 

97.9% 

Zhu [16] ACC (waist, wrist) HMM AV,3DD 90% 
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2.4 Machine Learning Algorithms used for Activity Recognition 

 In this section, we discuss some of the machine learning approaches for activity recognition 

used in the related works. Some of the approaches are lightweight to be used on an online recognition 

system for real time response, where some are heavy and cannot be run an online platform. 

Hidden Markov Model 

A hidden Markov model [17] is one in which you do not know the sequence of states the 

model went through to generate the emissions, but you observe a sequence of emissions. Hidden 

Markov Model is used in many fields, such as Pattern recognition, Gesture Recognition and Speech 

Recognition. HMMs are stochastic models, which are used for data that is serial or temporal. The word 

"hidden" in the Hidden Markov Model refers to the hidden states that are mapped to the data. HMM 

model is typically used for modeling sequences of events. HMM model is particularly useful when the 

data is noisy and incomplete. This is based on efficient algorithms for learning and recognition such 

as Baum-Welch and Viterbi algorithms and estimating probability distributions  

Support Vector Machine 

This technique is also used extensively for gesture recognition [17]. It is a supervised linear 

classification method with a property of maximizing margins between classes. It also has nonlinear 

extensions with an appropriate choice of kernel functions. An SVM model represents the examples as 

points in space, mapped such that the examples of the different categories will have a clear gap 

between them, which is as wide as possible. Represent new examples/data, on the map in the same 

space and predict on which side of the gap they fall on. Such a representation of new data could 

classify new gesture data. Z-normalization is used to make all the dimensions equal. During the 

recognition phase, the incoming movement data is transformed and normalized. This is similar to the 

training samples before SVM classifies the gesture. 
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Decision Tree Algorithm 

 A decision tree [18] is a flowchart-like structure in which each internal node represents a 

"test" on an each branch represents the outcome of the test and each leaf node represents a class 

label. The paths from root to leaf represents classification rules.  In these decision tree 

structures, each leave represents a class label. Branches represent conjunctions of features that lead 

to those class labels. Decision tree approach is used for activity recognition with high accuracy [18]. 

Decision tree algorithm is less computational expensive compared to others such as SVM, Naïve Bayes 

and HMM. Extracted features from the accelerometer data are used to build the decision tree, which 

can then classify new acceleration data. 

Random Forest Algorithm 

Random Forests [19] grows many single classification trees, similar to a tree in a forest. 

Creating of Individual trees is similar to the decision tree approach. Each tree in the random forest 

will extend to the largest possible limit and without pruning. Building of individual tree takes place 

with sampling from the original training data at random, but with replacement.  To classify any new 

data (input vector), the vector will pass down each free in the forest. Each tree gives the classification, 

and votes “yes” for the class. The forest chooses the result or classification of the input vector by 

picking the most voted class. Random forest is used in application of activity recognition to achieve 

high accuracy detection. 

Naïve Bayes 

  Naive Bayes classifiers is a set of simple probabilistic classifier based on applying Bayes' 

theorem with strong independence assumptions between the features. Naive Bayes classifiers 

algorithms are highly scalable, requiring a number of parameters linear in the number of variables 

(features/predictors) in a learning problem.  

http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Probabilistic_classifier
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Statistical_independence
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Table 3 shows some of the features used by several related works in the field of human activity 

recognition. These features are selected depending on the related algorithm being implemented and 

the computational complexity for each of the technique. 

 Table 3: Features for Activity Recognition 

Group Features 

Time Domain Mean, standard deviation, variance, 
interquartile range (IQR), mean absolute 
deviation (MAD), correlation between axes, 
entropy, and kurtosis 

Frequency Domain Fourier Transform (FT) and Discrete Cosine 
Transform (DCT) 

Others Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Autoregressive 
Model (AR), and HAAR filters 

 

2.5 Accelerometer Devices and Applications 

2.5.1 Chronos Watch 

eZ430-Chronos is a wearable wireless development system[6].  It can be used as a wirelsess 

sensor to receive and collect data. It consists of a three-axis accelerometer that can detect the 

movement of the device in 3 dimensional space.  

Acceleration mode – RF 

This mode on the chronos watch would activate the accelerometers on the watch and would 

stream the data. Collection of the stream data is possible with the Chronos control center PC software. 

The take the watch to acceleration mode, “#” key on the on the watch has to be long pressed until 

ACC" is shown on the LCD. Once the watch is “Acc” mode a continuous 3D acceleration data is 

transmitted to the PC using TI's SimpliciTI protocol stack. 
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eZ430-Chronos RF Access Point 

RF access point is a hardware component which could communicate with the Chronos watch 

wirelessly using RF and also to receive data from it. The Control center can read data from the chronos 

watch only if the RF access point is plugged into the PC when the transmission is taking place.  

Transmission of Acceleration Data 

Acceleration data, which is being generated on the watch when it is ACC mode, can be seen 

in the PC (Control Center) when the RF access point is connected. A “start access point button” is 

available in this interface, the data from the watch is collected to the PC and 3D acceleration values 

are transmitted. 

The Chronos Flying Mouse is an application developed in integration with chronos watch, 

which could mimic the behavior of an actual mouse connected to a PC [6]. It is designed to be highly 

accurate and customizable depending on user requirements. Since the device is wireless and can be 

customized to multiple inputs to mimic the mouse input, this has many application to control power 

point presentations or play interactive games. The primary mode of the application allows user to 

control the mouse movement. We have used chronos flying mouse to collect data for analysis.  

This flying mouse application has many joystick modes that allow gaming using a wide variety 

of PC games.  This joystick mode allows any existing video game to use chronos without special 

programs and allows the Chronos to interact with a wide variety of applications.   

2.5.2 Wired Gloves 

Wired gloves or data gloves is an input device used for human-computer interaction. These 

devices are worn like normal gloves and consist of various sensors and technologies which can detect 

delicate movements. These are used to detect the 3D orientation of the hand and also the movement 

of the fingers.  
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There are multiple application for such devices, these are used in areas such as 3D simulations, 

virtual reality interactions, multimedia education, help physically challenged people and even in for 

rehabilitation programs to train people. 

Electronic transducers and strain gauge sensing devices determine the position and orientation of the 

hand wearing the data glove. The wired gloves also contain small lightweight sensors, which can 

connect using a connection port. 

A 3 space and 3 dimensional position and orientation sensor tracks and records the hand 

gestures [22]. A motion tracker available in the gloves, such as a magnetic tracking device tracks data 

rotation and position of the glove. Software that comes with device handles the recognition of the 

device movement and orientation. Sign language or other symbolic functions can be categorized using 

the useful information derived from the software. Data glove is a part of hap-tic science. Hap-tic 

science is the field of science, which is concerned with applying tactile sensation to human interaction 

with computers [23]. A wired glove can act as a hap-tic device because it simulates physical contact 

between the human and computer. The cost of wired gloves is huge, with the tracking device and the 

finger bend sensors have to be bought separately.  

2.5.3 Sensor Tag 

Sensor tag is a sensor device developed by Texas Instruments and which has a collection of 

inbuilt sensors. Below are some of the sensors that are available in the sensor tag.  

  KXTJ9 accelerometer 

  MAG3110 magnetometer  

  IMU-3000 MEMS gyroscope 

  C953H barometric pressure sensor 

  TMP006temperature sensor 

  SHT21 digital humidity sensor 

http://www.kionix.com/accelerometers/kxtj9
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MAG3110
http://www.invensense.com/mems/gyro/imu3000.html
http://www.epcos.com/inf/57/ds/T5400.pdf
http://www.ti.com/product/tmp006
http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht21/
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The device has a Bluetooth low energy protocol to transmit the data to any computing device, which 

has Bluetooth low energy compatibility. Since the device can communicate over wirelessly, it has 

many applications as that of sensor tag and even more with the availability of other sensors. This 

device reduced the development time of Bluetooth enabled application in mobile platforms from 

months to hours.  

Sensor Tag Android Application 

Texas instruments has released an android application (Simplelink SensorTag), which can 

connect to the sensor tag using bluetooth low energy protocol and read data from multiple sensors 

on the device at the same time. The data read from the device is customizable; i.e the application has 

an option to set up the frequency of the receiving data. With the increase in the frequency of the data, 

the power consumption of the device increases. 

The sensor, which was used, for this thesis work is the 3-axis accelerometer; the frequency 

of the accelerometer is customizable. The highest frequency of acceleration data received using the 

sensor tag is 10Hz.  
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Table 4: Comparing Different Platforms 

 Portable Motion 

Recognition 

Requires 

Dedicated Space 

Cost 

Kinect  No Yes Yes $100 (Kinect) + 
$300 (Xbox) + 

$300 (TV) 

Second Life  No No No $0 (Second Life) + 
$500 (High end 

Desktop 
configuration) 

Mobile 
Fitness Apps  

Yes No No $100 (Appending 
Hardware) + $200 

(Smartphone) 

Active Mobile 
Interface 

Yes Yes No $20 (Wiimote) + 
$200 

(Smartphone) 
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CHAPTER 3 

3. MIDDLEWARE FOR GESTURE RECOGNITION 

3.1 Overview 

This thesis work presents a middleware, called the Pervasive Middleware for Activity 

Recognition (PEMAR) that aims to turn the above challenges into an opportunity for increasing the 

adaptability and applicability of activity recognition with a middleware for active games/applications 

on mobile computing devices. The PEMAR middleware is based on two-layer architecture: Activity 

Modeling layer and Activity Recognition layer. In this work, we have proposed an intelligent and 

adaptive model for recognizing gestures when motions are involved with the orientation, speed, and 

resulting accuracy that are significantly dependent on the complexity of gesture models, overlapping 

gesture models, and variations in gestures between individuals. 

 

 Figure 3: Flow Diagram of the Recognition System 

Figure 3 shows the steps involved in human activity recognition with accelerometer data. The 

first step includes the data collection, where the data is collected from different sensing devices via 

data transfer protocols. These data transfer protocols include Bluetooth low energy, ZigBee and 

Wireless networks IEEE 802.11.  The second stage is the data processing layer, where the data is 

segmented and filtered depending of the configuration for each of the device and activity type.  The 
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third module is the human activity recognition module where the sensor data is labelled into one of 

the existing activity classes. We will discuss each of the above modules in detail in the later sections. 

3.2 Data Collection 

 With the wide range of wearable sensors, the data collected from these devices need to be 

transferred to an integrating platform. Different wearable sensors use different network protocols to 

communicate with the wearables sensors. Table 5 shows some of the existing data transfer protocols 

and wearable sensors. 

Table 5: Data Collection Device and Network Protocols 

Device Network Protocol Maximum Frequency Energy 

Consumption 

Chronos Watch Radio Frequency 915MHz <35 mA 

Sensor Tag Bluetooth Low Energy 2.4 GHz <15mA 

Wii Remote Bluetooth Classic 2.4 GHz <30mA 

 

Each of the above protocols has a maximum limit for data transfer that can be achieved using each 

device. The energy consumption of each of the devices also depends on the operating configuration 

of the sensor, mainly the frequency of the operating accelerometer sensor and the network protocol. 

Figure 4 shows the different devices discusses above. 

 

Figure 4: Different Wearable Accelerometer Sensors 
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In this thesis section, we tested the PEMAR framework with Sensor tag and Android Smart 

Phone sensor, we found that the frequency on both the devices is different and the signature for the 

same activity is different on each device. The frequency on the Sensor Tag is found to be 10Hz and 

the one on the Android Smart Phone gave close to 200Hz, when the data was read not in a UI thread 

in the smart phone. To test the accuracy of the application, we used a benchmark dataset (Human 

Activity Dataset) released by University of Southern California [17]. The data collected for the 

benchmark dataset is from a Motion Node inertial sensing device with a frequency of 100Hz. 

Magnitude of the accelerometer sensor used in the benchmark data is +-6g. Figure 5 shows the 

graphical representation of the accelerometer data from the benchmark dataset. In the next section, 

we discuss about the data processing part of activity recognition. 

 

Figure 5: Graphical Representation of Raw Data from an Accelerometer 
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3.3 Data Processing 

 The human activities can be represented as a set of vectors data generated from 

the sensors device. Different activities have an individual footprint unique to each other. But the data 

generated or collected during the data collection phase from the inertial accelerometer sensors tend 

to have noise associated with it. Hence, we need a data processing module which would remove the 

noise from the data and prepare the data for any activity recognition approach. We perform filtering 

and segmentation on the sensor data in the processing phase. In the next sections we discuss in detail 

each of the steps involved. For data processing we categorize activities broadly into three groups (i) 

Short activities, (ii) Long activities and (iii) Short gestures. Short activities are performed for a short 

duration and tend to have an end of activity after a short period. Long activities are carried out for a 

long duration of time and do not have an immediate end. Short gestures are used during an interactive 

game. Table 6 shows examples for each of them.  

 Table 6: Different Activities Classification 

Activity Type Activities 

Short Activities Push Up, Pull Up, Crunch, Jumping, Stomp, 

Dumbbell Curl, Toe touches   

Long Activities Running, Walking, Cycling, Sleeping, Walking 

Down Stairs, Walking Up Stairs, Elevator Ride 

Short Gestures Circle, Square, Triangle, Z, Move left , Move 

Right, Move Up, Move Down, Move forward, 

Move backward 
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Segmentation 

The activity vector generated for each of the above categories of activities is to be detected 

with accuracy. The body position and acceleration of players are expressed in X, Y, and Z coordinates 

in motion space. The X, Y, and Z axes are the body axes of the accelerometer. The start point for an 

activity and end of a particular activity has to be determined depending on the activity category. We 

propose an activity aware segmentation framework, which handles the segmentation depending on 

the activity category. 

Below are the three segmentation techniques supported by PEMAR. We will discuss each of 

the below techniques in details. 

(i) Dynamic Segmentation 

(ii) Windows-based Segmentation 

(iii) User triggered Segmentation 

 

 

 

Figure 6: Different Activities and Segmentation Techniques 
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Dynamic Segmentation 

 This segmentation is used for recognizing the start and end of short activities, where the 

system automatically detects the activity vector. In the case of an accelerometer sensor, the start and 

end are determined by the change in the accelerometer values. The start is determined if the change 

in acceleration value from the previous instance is greater than an already determined threshold 

depending on the sensor details. Similarly, the end of each gestures is calculated if the change in 

acceleration vector from the previous vectors is less than an already set threshold. 

𝑑 =  √(𝑥1 − 𝑥)2 +   (𝑦1 − 𝑦)2 +  (𝑧1 − 𝑧)2 

x, y, z – acceleration data at time t 

𝑥1, 𝑦1, 𝑧1– acceleration data at time 𝑡 +  𝛼 (next instance) 

The start of gesture is triggered when d > Δ and the end is determined when d < µ. These values of µ 

and Δ are constants and need to be configured depending on the sensors settings. Based on the 

heuristic approach we found the best set of µ and Δ to be 0.2 and 0.6 respectively. Figure 7 shows the 

dynamic segmentation of accelerometer data. 
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Figure 7: Dynamic Segmentation for Short Activities  

 

Windows-based Segmentation 

The windows based segmentation is used in scenario where the start and end of any activity 

cannot be determined, since the activity is long running. Window-based segmentation uses a time 

frame based approach to segment the sensor data. The generated sensor data is segmented using a 

period of t seconds and considering an overlap of 50%. The overlap is considered to take into account 

the transition data and not to lose any sensor data for activity recognition. 
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Figure 8: Raw Data Windows based Segmentation 

 

The window size t is customizable depending on the sensors configuration. Windows based 

segmentation is best suitable for long running activities. The response time for activity recognition 

using this approach is not real time and fails to detect short activities. The t value of 2 seconds is 

determined to give good accuracy for ambulation. Figure 8 shows the windows-based segmentation 

of the accelerometer data. 

User Triggered Segmentation 

 The segmentation using this approach gives the best results, since the start and end of each 

gesture or user, mostly using an input trigger such as a button, which triggers the segmentation. This 

approach can be used for detecting short gestures, since the user performs these gestures during an 

interactive system, which generally asks for user to specify the start and end of the gesture. Activity 

recognition using this segmentation is carried out in real time, since the user triggers the end of a 

gesture and the recognition kicks off immediately after the user trigger. 
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Short activities require the response time of recognition to be short, which allows the short 

activities or gestures to be used to interactively use the applications. The response time for an 

interactive system is considered instantaneous if it response time is less than 0.1 sec. Such quick 

responses are not achieved using an offline approach, hence online approach are required.  Table 7 

summarizes different segmentation techniques and the activities suitable for each of them. 

Table 7: Segmentation Techniques are Suitable Activities 

Segmentation Technique Suitable Activity Group 

Dynamic Segmentation Short Activities (Push Up, Pull Up, Crunch, 
Jumping, Stomp, Dumbbell Curl, Toe touches) 

Windows-based Segmentation Long Activities (Running, Walking, Cycling, 
Sleeping, Walking Down Stairs, Walking Up 
Stairs, Elevator Ride) 

User Triggered Segmentation Short Activities/Gestures (Circle, Square, 
Triangle, Z, Move left , Move Right, Move Up, 
Move Down, Move forward, Move backward) 

 

Filtering 

 The sensor data collected for activity recognition contains a lot of noise, because of the nature 

of the wearable sensors are built. Hence, we have to clean the sensors data before processing it. Each 

gesture has some essential components that constitute the signature of an activity, but also include 

actions at the beginning and end of the gesture that confound its interpretation. We implement a 

sensors aware filtering approach, where different filtering techniques are implemented and can be 

used to clean the data as follows:  

(i) Low pass filter removes fast and sudden gestures (Very High Jerk)  

(ii) High pass filter removes short and low magnitude sensor data 

(iii) Directional Equivalence Filter 
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Low Pass Filter 

 This filter removes noise sensor data that is very high in magnitude that is caused by any 

sudden jerks in the sensor movement. It is used in scenarios where the set of gestures/activities being 

recognized and the sensor configuration never produce any high magnitude jerk data. Figure 9 shows 

the raw accelerometer data. Figure 10 shows the result after the low pass filter is applied  the raw 

data. 

 

Figure 9: Sample Raw Data from Sensor Devices 
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Figure 10: Low Pass Filter Applied on Raw Data 

 

High Pass Filter 

 High pass filter is used to attenuate sensor data that is not significant and not contributing to 

the footprint of the activity. We implement a high pass filter by keeping track of the magnitude of 

sensor data and if magnitude of the sensor data |�⃗�| <  𝛼, we attenuate these sensor readings. Figure 

11 shows the raw accelerometer sensor data. Figure 12 shows the high pass filter output. 
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 Figure 11: Raw Sensor Data  

 

Figure 12: Sensor Data after High Pass Filter 

 

Dynamic Equivalence Filter 

 Directional equivalence filter is used to reduce redundant sensor data from the activity 

recognition flow; this would reduce the computation required for activity recognition on pervasive 

devices. Figure 13 shows the accelerometer data output from the high pass filter. Figure 14 shows the 

directional equivalence filter result. 
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 Figure 13: Sensor Data Input for Directional Equivalence Filter 

 

Figure 14: Sensor Data Output from Directional Equivalence Filter 
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3.4 Model Generation and Training 

Model Generation 

 Human activity recognition, similar to other machine learning approaches contain two stages, 

training and testing. Measured attributes from users activity data is used for training stage. This 

requires a dataset of user performing certain activity. Using one of the above mentioned 

segmentation in section 3.3, time series data is split into windows to apply feature extractions. After 

this required features are filtered from the raw sensor data. With the extracted feature data learning 

techniques are used to generate an gestures/activity model. Similarly, for recognizing activities, data 

is collected using a segmentation technique, and features are extracted from the window. Extracted 

feature set is evaluated with the prior trained activity/gestures model to generate a label for the 

tested gesture. 

 PEMAR framework provides a plug and play feature for the above model generation flow. The 

model generation using training data is separated with the testing/evaluation modules, does 

providing portability and reducing the training data generation time for each user. It uses an offline 

approach for feature extraction and model generation. The sensor data generated from the user is 

segmented and filtered on a pervasive platform (Smart Phone), this processed data is transferred over 

the network to offline model generation system. Offline system would then extract the features from 

the segmented data and use this for generating a model for that particular activity. These models are 

updated to a database (HBase). PEMAR supports multiple machine learning approaches for activity 

recognition. As discussed before the data is diverse and there is  need of an adaptive framework to 

support such a change and the sensor data is expected to grow with the increase of wearable sensors. 

Hence, to address both the above issues we implemented PEMAR on a big data platform, by using the 

distributed computing paradigm Map Reduce. 
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For the evaluation of PEMAR we have only considered some of the time domain features, 

which will be explained in detail in the implementation of PEMAR. PEMAR model generation and 

training was carried out using Hidden Markov Model (HMM) algorithm, but the evaluation was carried 

on with other algorithms considering some of the time domain features. The sequence of the vectors 

generated for an activity is split into different states for the HMM algorithm. And the transition of the 

acceleration vector between the states is observed with a training data for each of the activities. These 

trained models with the training data are saved to database (Activity Library).  

  

Figure 15: PEMAR Model Handling 

PEMAR also introduce an approach for model updating using user personal data. The user 

first fetches a user independent trained activity model from the database, and as the user continues 

to use the application, PEMAR collects the user personal activity data. Collected user personal data is 

used to generated personal activity model. This personal activity model is downloaded the next time 

the user tried to use the recognition application. The frequency of data from each device is different 
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and the acceleration magnitude range, hence a separate activity model is generated for each of these 

devices in PEMAR. The frequency reported in the one received on an integrating device/application 

such as smartphone or desktop. 

3.5 Activity Recognition 

The proposed activity recognition model is composed of four major steps for recognition:  

(i) Segmentation of activities based on the type of activity 

(ii) Filtering of data to remove noise 

(iii) Feature Extraction for machine learning approaches and model training 

(iv) Activity Labelling for activity recognition 

PEMAR framework provides an activity library that contains trained activity models. These 

models can be fetched onto a pervasive platform where the recognition is carried out directly using 

the already trained activity models. This approach reduces the time for model generation on a mobile 

platform and provides the reusability of the activity model and also adaptive in nature for new activity 

recognitions. 

 

Figure 16: PEMAR Gesture Recognition Framework 
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PEMAR provides an activity library and an application library; these can be used to detect 

different activities on same/different applications. The training models generated are with different 

machine learning applications; the recognition can use different machine learning model and the 

respective features for the recognition. PEMAR provides modularity for different machine learning 

applications for activity recognition. Figure 16 shows different sensing devices and integrating device 

collecting data from them and using the activity library for human activity recognition. 

For the Active Mobile layer, motion based games that involve the whole body, especially hand 

and leg movements captured by diverse devices such as SensorTag, TI Chronos Watch, remote Wii 

systems, and smart phones can be downloaded from the activity library, and then they can be 

dynamically configured with the users’ customized gestures. In this middleware, gesture models 

developed and stored in the activity library were utilized by different gaming applications. 

Current implementation of PEMAR on mobile platform doesn’t involve any feature extraction 

techniques, to keep the activity recognition as light weight as possible. We implemented mobile 

recognition of PEMAR using a lightweight version of JAVA HMM library.  The communication of the 

sensing device with the mobile device is carried over Bluetooth Low Energy and the data is then 

transferred to the offline system over the network. 
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CHAPTER 4 

4. IMPLEMENTATION AND APPLICATIONS 

 

 

Figure 17: PEMAR Framework 

4.1 PEMAR Architecture 

Previous chapters focus on explaining the architecture and different methodologies involved. 

In this section we discuss how the PEMAR system has been implemented. In this section we discuss 

the implementation of individual module in detail in PEMAR. For human actviity recognitinon subjects’ 

can use an exisiting recognition modal to start their activity recognition, they can also traing their own 

specific gesture modal for recognition. We have written custom program job to run in batch that can 

generate user specific modals for specific activities taking into consideration of device. 
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 PEMAR implementation of data collection was done for two sensing devices in detail, the 

Sensor Tag from Texas Instruments and the Android inbuilt sensor. There are multiple sensors 

available in the Sensor Tag, but we have only activated and used the accelerometer sensors of the 

device. Each sensor on the Sensor Tag has a unique UUID assosciated with it. Below are the UUIDs of 

the accelerometer sensor in the Sensor Tag. 

1. Accelerometer Service : f000aa10-0451-4000-b000-000000000000 

2. Data Char        : f000aa11-0451-4000-b000-000000000000 

3. Config Char       : f000aa12-0451-4000-b000-000000000000 

4. Period Char       : f000aa13-0451-4000-b000-000000000000 

The config char UUID of the accelerometer is used to set the frquency of the data for the 

accelerometer. We have seen a maximum of 10Hz with the version of Sensor Tag ( CC2541 ) we used.   

Since the Sensor Tag operated with Bluetooth Low energy protocol for communication of the device 

also depends on the integrating device to support BLE. Android version 4.3 and above supports BLE 

and hence the Sensor Tag as well. We observed that the version of BLE API on Android 4.3 is not stable 

enough to give reliable commincation every time. Since we wanted the data to be collected in the 

backend for activity recognition, we made a service class to interact with the sensing device. This 

service class has no UI thread assisicated hence the data read is the highest possible for 

communcation. 

 We also used the android smart phone built-in accelerometer sensor, the API is availabe from 

Google Android to use the built-in sensor. We observed that the built-in android sensor has better 

frequency than the Sensor Tag, hence the footprint of a particular human activity could be tracked 

precisely. We also save the data collected from the sensing device to a file which will be transffered 

over the network to offline big data platform. 
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Once the data is collected from the sensing device we use one of the segmentation and filtering 

technique to remove noise from the data and do the pre processing. The segmentation technique is 

decided based on the activity type being recognized. We implemented different apporaches for 

sigmentations and made code snippets available for use on mobile platform for each of them. 

Code Snipper for Dynamic Segmentation 
 
/*** Start*****/ 
d= Math.sqrt( Math.pow((x-x1),2 )  + Math.pow((y-y1),2 ) + Math.pow((z-z1),2 )); 
       if(d>=0.3 && !trigger){ 
        Log.i("start","start"); 
        trigger=true; 
       }else if(d<=0.1 && trigger){ 
        Log.i("end", "end"); 
        trigger=false; 
        try { 
/*** End*****/ 
 
The collected train data for the first time is used to train an activity model, we used HMM for model 

generation building and recognition.  

 
 
Code snippet for the Model Generation. 

Map function 

Map function mark all the data for each user and activity respectively, the format of the key for the 

map input would be <userId_activity Id>. 

public void map(LongWritable key, Text value, Context context 

                    ) throws IOException, InterruptedException { 

      StringTokenizer itr = new StringTokenizer(value.toString(),","); // line to string token 

    

      word.set(itr.nextToken()); 

            if(itr.hasMoreTokens()) 

      values.set(itr.nextToken()+","); 
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      context.write(word,values); 

     } 

Reduce function 

Reduce function input is the list of all the gestures which are performed by that user in the 

data. Since the key is <userId_ActivityId> all the gestures with this key will be returned to the same 

reduce function. HMM alogirthm is used to train the modals for each of the activities performed by 

individual subject. Existing java based HMM library JAHMM is used for the implementation. 

public void reduce(Text key, Iterable<Text> values,Context context 

                       ) throws IOException, InterruptedException { 

     ArrayList<String> punchdata=new ArrayList<String>(); 

     int sum =0; 

     //get the count of seq data 

        for (Text val : values) { 

        sum+=1; 

        punchdata.add(val.toString().trim()); 

        } 

    reducerOutValue = HMMTraining(punchdata,key.toString()); 

      //HMM coding 

      context.write(key, reducerOutValue); // create a pair <keyword, number of occurences> 

  } 
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Algorithm HMM MapReduce Training Algorithm 

Input: String P which contains <Gesture name G + “token” + sequence S> 

Output: Gesture name G and sequence concatenate C Map M2<G, C> 

1.   map 

2.         define Gesture and sequence Map M1<G,S> 

3.               Iteration<- P StringTokenizer with “token” 

4.               if Iteration hasMoreTokens 

5.                   M1 save pair (G, S) 

6.       end if 

7.   end map             

8.   reduce 

9.      for each e ∈  M1 

10.            var a = M1 get value with e 

11.            if M2 has key e 

12.                  var b = M2 get value with e 

13.                  M2 save pair (e, a+”:”+b) 

14.      end if 

15.         else 

16.          M2 save pair (e, a) 

17.        end else 

18.     end for 

19.     HMMTraining (M2) 

20.   end reduce 
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Sample Accelerometer Data 

Key : <user + walking + nexus7>  

Data:  

1.16278 -0.18929 -0.29578 

1.032296 -0.20014 -0.3763 

0.905245 -0.20376 -0.3946 

0.778195 -0.211 -0.3763 

0.633975 -0.2291 -0.37996 

0.524094 -0.24719 -0.40925 

0.513792 -0.23634 -0.45317 

0.589336 -0.19291 -0.50075 

0.733555 -0.12414 -0.51905 

0.860606 -0.08071 -0.51173 

0.96362 -0.07709 -0.49709 

0.984223 -0.10243 -0.43487 

0.970487 -0.14224 -0.36532 

0.960186 -0.16033 -0.28846 

0.91898 -0.19291 -0.21526 

0.86404 -0.20738 -0.17134 

0.802231 -0.17119 -0.14937 

0.723254 -0.13862 -0.13473 

0.699217 -0.08433 -0.13839 

0.723254 -0.00109 -0.13839 

0.723254 0.027861 -0.14937 

0.771327 0.089386 -0.12375 

 

Model Retrieval 

Generated models are available in Hbase, a RESTful Web service is available to download the required 

HBase gesture model.  

Below method returns the HMM serialized object model in the string format, which can be de-

serialized. 

@GET 

 @Path("/name/{i}") 
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 public String getModel(@PathParam("i") String gesture) throws IOException{ 

     

   Configuration config = HBaseConfiguration.create();    

                config.clear(); 

                config.set("hbase.zookeeper.quorum", "localhost"); 

                config.set("hbase.zookeeper.property.clientPort","2181"); 

             config.set("hbase.master", "localhost:60010"); 

    HTable table = new HTable(config, "gestures"); 

    Get g = new Get(Bytes.toBytes(gesture)); 

    g.addColumn(Bytes.toBytes("device"), Bytes.toBytes("chronos") ); 

    Result r = table.get(g); 

    String s1=""; 

    for(KeyValue kv: r.list()){ 

       s1 = Bytes.toString(kv.getValue()); 

    } 

    return s1; 

  } 

The PEMAR system is implemented and evaluated on a Cloudera CentOS VMware virtual 

machine with Intel Xeon processor and 12GB memory. The system and evaluation model are 

implemented in Java programming language. We used Eclipse as IDE to run the Java code. In addition, 

we used Hadoop 2.0.1, HBase 0.93, and JAHMM library as Java dependencies to compile the whole 

project. In order to demonstrate the applicability of the PEMAR middleware, we developed many 

sensor-based motion games controlled by a wide variety of the gesture models available from the 

Activity library. These apps were implemented by modifying existing open source game projects for a 
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transformation of their touch-based control model into a motionbased control through some devices 

such as SensorTag andChronos watch. These devices were used to generate our datasets including 

Acceleration, Temperature, Humidity GPS, and luminous intensity. The frequency of the data collected 

varied based on the sensor. The acceleration data from the device had a frequency up to 10 Hz and 

was transferred to the Action library using a web service. The MazeMan motion sensor app (Fig. 3) is 

a single player game, and it can recognize five gestures like left, right, up, down, restart. By utilizing 

the gesture models we built, we were able to capture each and every move, which we made, and we 

reported the total number of moves made by the player. We also showed the number of unscored 

moves made by the player, and this might be useful to understand how many moves were wasted 

without scoring. Max response time is the maximum time taken by the player in order to make a move. 

We estimated the playing style of the user by using the data. This app explicitly compares two motion 

profiles and highlights the differences with training consisting of iterative attempts to 

reduce/eliminate discrepancies. The activity analysis report will be shown to a user with his/her 

activity evaluation for each day/month. The path of the user’s movement during exercise is displayed 

on Google maps with the markers for path boundaries such as green for start and pink for end. 

4.2 PEMAR Implementation and Applications 

An android application is developed, to track the long running activities. As described in 

section 3.2, the application collects the subjects’ acceleration data and analyses using an online 

system. Along with the acceleration data, users’ location data is also collected. 
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Figure 18: Maze Runner and Long Running Application 

 

PEMAR provides an API to modify any existing android application or game to work with 

gestures input from any one of the compatible sensing device. We provide a ConnectionService class 

which would run in the backend thread to connect to sensing device (Sensor Tag) and would take care 

of the activity recognition. The user also has to change the onTouch trigger of the original application 

to work with the gesture input. Once the ConnectionService labels any new gesture/activity it would 

broadcast a signal across the current application running. The application should be changed to read 

the broadcasted data and trigger the respective onTouch events.  

We have also built an Android application which has the meta information of all the existing 

android games modified to work with gesture input and existing trained model for activity recognition. 

These models can be changed depending on the application being used. The Meta application allows 

the user to select a particular game and then depending on the game give the user an option to select 

a set of activities to choose. Figure 19 shows the Meta application, which contains the list of all the 
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existing modified applications that work with PEMAR. Figure 20 below shows list of all activities that 

work with PEMAR. 

 

Figure 19 : Meta App List of Applications 

 

Figure 20 : List of activities that work with PEMAR 
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Below are some of the applications modified to work with gestures input and using the PEMAR 

framework. 

 

 

 

 

 

 

 

 

 

 

Figure 21 shows a 2048 gaming application on android platform. The 2048 open source 

gaming application has been modified to take gesture as input and perform the touch actions. The 

total number of gestures considered for playing are five, which include Left,  right, up, down ,punch. 

2048 is a single player puzzle game, which requires the user to slide the number titles on a square 4*4 

grid, and upon combining them a tile would be created which has a number 2048. The sensor device 

used for the data collection and game play is Sensor Tag and the segmentation technique used is 

dynamic segmentation.   

 

 

 

 

 

Figure 21: 2048 - Gesture based Gaming App  
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Figure 22 shows, MSnake a gaming application on android platform. The Snake game consists of four 

movements, Left, Right, Up and Down. The Snake has to eat the apples on the screen to grow in size 

and gain points; snake should not touch the walls of the screen. The more the apples the snake eats, 

more the score.  

Below table shows the list of all the applications built using PEMAR. 
  

1. 2048 
2.  BigDataAnalytics_FinalProject_EmotionSense 
3.  Gesture Alert 
4.  GITRON 
5.  Maze_Man 
6.  MSnake 
7.  MSnake2 
8.  Number 2048 
9.  Sensor Write 
10.  Tetris 
11.  WhatToDo 

 
 

 
 
 
 
 
 

 
Figure 22: MSnake - Motion based Gaming App 
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CHAPTER 5 
 

5. RESULTS AND EVALUATION 

5.1 Experimental Setup 

 Different experimental setups are used to evaluate the PEMAR framework. For evaluating the 

recognition performance we used a mobile platform, and used Nexus 7 2012 model configuration. 

Below is the configuration of the mobile platform device. 

 

NETWORK Technology No cellular connectivity 

  

LAUNCH Announced 2012, June 

Status  Available. Released 2012, July 

BODY Dimensions 198.5 x 120 x 10.5 mm (7.81 x 4.72 x 0.41 in) 

Weight 340 g (11.99 oz) 

SIM No 

DISPLAY Type LED-backlit IPS LCD capacitive touchscreen, 16M colors 

Size 7.0 inches (~59.6% screen-to-body ratio) 

Resolution 800 x 1280 pixels (~216 ppi pixel density) 

Multitouch Yes, up to 10 fingers 

Protection Corning Gorilla Glass 

PLATFORM OS Android OS, v4.1 (Jelly Bean), upgradable to v4.4.2 
(KitKat), planned upgrade to v5.0 (Lollipop) 

Chipset Nvidia Tegra 3 

CPU Quad-core 1.2 GHz Cortex-A9 

GPU ULP GeForce 

MEMORY Card slot No 

Internal 8/16/32 GB, 1 GB RAM 

CAMERA Primary 1.2 MP, 1280 x 960 pixels 

Features  Video-calling 

Video 720p 

Secondary  No 

http://www.gsmarena.com/network-bands.php3
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=sim
http://www.gsmarena.com/glossary.php3?term=display-type
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=multitouch
http://www.gsmarena.com/glossary.php3?term=screen-protection
http://www.gsmarena.com/glossary.php3?term=os
http://www.gsmarena.com/glossary.php3?term=chipset
http://www.gsmarena.com/glossary.php3?term=cpu
http://www.gsmarena.com/glossary.php3?term=gpu
http://www.gsmarena.com/glossary.php3?term=memory-card-slot
http://www.gsmarena.com/glossary.php3?term=dynamic-memory
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=video-call
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SOUND Alert types Vibration; MP3, WAV ringtones 

Loudspeaker  Yes, with stereo speakers 

3.5mm jack Yes 

COMMS WLAN Wi-Fi 802.11 b/g/n 

Bluetooth v3.0 

GPS Yes 

NFC Yes 

Radio No 

USB  microUSB v2.0 

FEATURES Sensors  Accelerometer, gyro, proximity, compass 

Messaging Email, Push Email, IM 

Browser HTML 

Java No 

  - MP4/H.264 player 
- MP3/WAV/eAAC+/WMA player 
- Organizer 
- Photo/video editor 
- Document viewer 
- Voice memo 
- Predictive text input (Swype) 

BATTERY   Non-removable Li-Ion 4325 mAh battery (16 Wh) 

Stand-by   

Talk time Up to 10 h (multimedia) 

MISC Colors Black 

SAR EU 1.39 W/kg (body)     

Source: www.gsmarena.com 

We evaluated different machine learning algorithms accuracy using weka tool kit. Below is the 

configuration of the machine. 

 

 

 

 

http://www.gsmarena.com/glossary.php3?term=call-alerts
http://www.gsmarena.com/glossary.php3?term=loudspeaker
http://www.gsmarena.com/glossary.php3?term=audio-jack
http://www.gsmarena.com/glossary.php3?term=wi-fi
http://www.gsmarena.com/glossary.php3?term=bluetooth
http://www.gsmarena.com/glossary.php3?term=gps
http://www.gsmarena.com/glossary.php3?term=nfc
http://www.gsmarena.com/glossary.php3?term=fm-radio
http://www.gsmarena.com/glossary.php3?term=usb
http://www.gsmarena.com/glossary.php3?term=sensors
http://www.gsmarena.com/glossary.php3?term=messaging
http://www.gsmarena.com/glossary.php3?term=browser
http://www.gsmarena.com/glossary.php3?term=java
http://www.gsmarena.com/glossary.php3?term=stand-by-time
http://www.gsmarena.com/glossary.php3?term=talk-time
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=sar
http://www.gsmarena.com/
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System Configuration 

CPU 2.10-GHz Intel Core i5-3310M 

Operating System MS Windows 7 Professional (64-bit) 

RAM 8GB 

Hard Drive Size 1TB 

Hard Drive Speed 7,200rpm 

Hard Drive Type SATA 

Hard Drive Display Size 15.6 

Native Resolution 1366x768 

Optical Drive DVD /-RW 

Optical Drive Speed 8X 

Graphics Card Intel HD Graphics 3000 

Video Memory 1.6GB 

Wi-Fi 802.11b/g/n 

Wi-Fi Model Intel Centrino Wireless-N 1030 

Bluetooth Bluetooth 3.0 + EDR 

 

5.2 Dataset 

The datasets used for the evaluation are from University of Southern California [17]– Human 

activity dataset and generated dataset. This is a benchmark dataset for human activity recognition. 

Dataset consists of data collected from 14 subjects performing 12 activities. Each subject repeated 

each activity five times, that is 60 files generated for each subject, based on his activity, and 840 files 

in total. The activities performed are both outdoor and indoor on different days. The sampling rate 

on the device used for collecting the data is 100Hz, and the acceleration range of the device is +-6g. 

The device is mounted on the waist of the user in a mobile pouch. 

The activities listed in the dataset are : 

1. Walking Forward 

2. Walking Left 

3. Walking Right 
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4. Walking Upstairs 
5. Walking Downstairs 
6. Running Forward 
7. Jumping Up 
8. Sitting 
9. Standing 
10. Sleeping 
11. Elevator Up 
12. Elevator Down 

 

The dataset contains other useful information as well, such as  

• Age 

• Height 

• Weight 

• Activity name 

• Activity number 

• Trial number 

 
The benchmark dataset contains only long running activities and cannot be tested for short gestures, 

hence we took the help of the students in the course Big Data Analytics and Applications to generated 

a short activity dataset for evaluation. We collected data from 50 students and collected a total of 15 

gestures among them.  The students used Sensor Tag to collect the data. Based on both the datasets, 

we evaluate the PEMAR framework. 

5.3 Accuracy 

Accuracy of multiple machine learning algorithms is compared using the above data set 

(Benchmark USC-HAD). Tests are carried for user dependent recognition and user independent 

recognition. It is observed that user dependent training has higher accuracy when compared to user 

independent training. The segmentation technique used for the USC-HAD is window-based 

segmentation. Accuracy evaluation is carried using a weka tool kit. The raw benchmark data set is 

segmented and processed to be used with weka. 
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User Dependent 

From the user dependent accuracy evaluation the better performing algorithm is Random Forest 

followed by HMM in the most cases followed by Decision Tree, SVM and Naïve Bayes respectively. 

The data for each user consists of the 12 gestures, hence the accuracy is to recognize a gesture among 

the 12 choices. The features used for the recognition algorithms are time domain features : 

(i) Mean  

(ii) Standard Deviation 

(iii) Correlation between XY 

(iv) Correlation between YZ 

(v) Correlation between XZ 

(vi) Root Mean Square (RMS) 
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Table 8: User Dependent Activity Recognition Accuracy 

Algorithm Naive Bayes SVM  Decision Tree Random Forest HMM 

User1 83.3676 % 82.9569 % 87.0637 % 92.0945 % 84.3429 % 

User2 79.3946 % 79.1036 % 87.7183 % 91.1525 % 83.6438 % 

User3 89.0037 % 88.0443 % 86.7897 % 91.0701 % 87.6753 % 

User4 80.7571 % 75.7729 % 81.6404 % 86.8139 % 82.2082 % 

User5 79.7559 % 78.5355 % 85.5707 % 90.4523 % 85.6425 % 

User6 82.8698 % 85.9039 % 88.4324 % 93.1732 % 87.6738 % 

User7 89.56 % 90.6786 % 90.7532 % 93.1394 % 89.3363 % 

User8 86.6699 % 86.573 % 84.6825 % 89.7722 % 85.4096 % 

User9 87.5528 % 85.0557 % 87.1687 % 89.9731 % 87.6681 % 

User10 84.1238 % 83.963 % 82.8376 % 88.6656 % 84.4051 % 

User11 90.1752 % 92.0411 % 92.2696 % 93.8309 % 91.6984 % 

User12 92.1131 % 91.4063 % 93.4524 % 94.6057 % 92.0015 % 

User13 86.2109 % 84.5313 % 87.3438 % 91.6797 % 88.2422 % 

User14 77.0406 % 74.6539 % 77.4702 % 83.8186 % 77.5656 % 

 

Table 6 shows the respective overall accuracy of each of the user with user specific training data with 

10 fold cross validation. We observed the maximum accuracy of activity recognition with Random 

Forest algorithm and closely followed by decision tree algorithm. When compared to other algorithms 

Random forest gave better accuracy, but the time taken to build a model with random forest is the 

longest when compared to other algorithms. Hence this is not the best suitable approach for activity 

recognition on a mobile platform. 
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Figure 23: Accuracy User Specific 
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Figure 24: Accuracy User Independent 

User Independent 

The accuracy of machine learning algorithms reduce with the increase in user independent 

training data, the random forest algorithm and decision tree algorithms perform better compared to 

other algorithms. We also observe that with the increase in the number of users the recognition 

accuracies goes down. 
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Table 9: User Independent Algorithms Accuracy 

Algorithm Naive Bayes SVM  Decision Tree Random Forest HMM 

User1 83.3676 % 82.9569 % 87.0637 % 92.0945 % 84.3429 % 

User2 83.3676 % 72.6678 % 84.1517 % 89.7709 % 84.3429 % 

User3 74.4473 % 71.1412 % 83.2703 % 90.1414 % 79.3467 % 

User4 70.9507 % 70.3451 % 82.1223 % 88.1926 % 76.0672 % 

User5 69.0461 % 68.296 % 82.4978 % 88.6986 % 75.1219 % 

User6 62.9997 % 65.0245 % 80.8579 % 88.5189 % 74.7312 % 

User7 64.0267 % 66.334 % 81.0383 % 87.8044 % 72.7339 % 

User8 60.4775 % 68.0148 % 80.8702 % 87.9938 % 71.4209 % 

User9 60.8545 % 67.9823 % 80.9084 % 87.9459 % 72.4724 % 

User10 62.2759 % 64.8211 % 80.0232 % 87.4806 % 70.9947 % 

User11 60.7961 % 65.0785 % 80.3014 % 88.1606 % 71.5728 % 

User12 61.723 % 66.9569 % 80.7482 % 88.4181 % 70.6883 % 

User13 61.7958 % 66.7788 % 82.4978 % 88.2004 % 70.4624 % 

User14 59.4259 % 62.5851 % 79.9786 % 87.6841 % 68.6326 % 

 

5.4 Run Time Performance 

In the experiment, we analyzed the training/testing runtime performance of different 

algorithms and the PEMAR runtime for each individual gesture. We conducted test cases for this and 

measured the average time taken to run the training in both environments, that is online and offline. 

The run time evaluation is carried out for the online systems. Systems in which the recognition 

response should be instantaneous. We also evaluate the time taken to build a training model in online 

system. 
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Table 10: Time Taken to Build Model 

Device Training Repetition 

for each gesture 

Time Taken to build 

model (sec) 

Time to download 

model (sec) 

Nexus 7 60 64 0.7406 

Nexus 7 120 123 0.8106 

Nexus 7 180 183 0.7814 

Nexus 7 240 255 0.7105 

 

Table 10 shows the comparison of model building time on a mobile platform and the time it 

takes to fetch and use an existing model from the database. We also evaluate the accuracy of 

recognition with the increase in the choices of recognition models. We observed that with an increase 

in the choices of the activity models the overall accuracy of the recognition system goes down. 

 

 

Figure 25: Percentage Accuracy with Number of Models 
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Figure 26: Performance Evaluation of PEMAR for Individual Activity Models 

 

For the performance evaluation of the system, we evaluated the PEMAR model generation and 

download time with model generation time on a mobile platform. Figure 24 shows the evaluation 

results, where the type of gesture is represented on the x-axis and runtimes are represented on the 

y-axis. We found that the runtime performance of PEMAR, i.e model download time is better 

compared to the model generation time on a mobile platform. Figure 27 shows the Precision, Recall 

and F-measure of different activities performed and reported by the students of the Couse Big Data 

Analytics and Applications. 
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Figure 27 : Individual Gesture Recognition Accuracy 
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6. CONCUSION AND FUTURE WORK 

6.1 Conclusion 

We proposed the middleware for activity recognition whose potential is to be able to support 

both online and offline recognition systems to achieve better performance and reduce development 

time. We have proposed an architecture for an adaptive middleware system, which can handle diverse 

data from multiple users using the system at the same time. We developed multiple android 

applications that use the existing system for long running activities and short running activities as well. 

User dependent models are created dynamically without the user explicitly training for the model, 

this makes save a lot of time and initial set up time and offer better accuracy with increased usage of 

the application.  An implementation of recognition system with the HMM model is created, which 

uses a filter to remove the bad and not so significant data and capture the sequence data. We have 

showed that such a middleware would increase the accuracy of the recognition and the performance 

of the system.  

6.2 Future Work 

There are some of the limitations of the project and scope for enhancement. PEMAR 

application requires a smart device for the carrying the computation, since the data from the wearable 

sensors would require a computational system. The proposed system is limited and cannot handle 

multiple sensors at the same time on a human body for activity recognition. The current algorithm 

model generation is in a batch mode, this increase the wait time and adds delay for model updating. 

Different gaming applications can be implemented with multiple mobile platforms. We can also 

develop applications with multiple devices like Wiimote on the same platform.  
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