

A PERVASIVE MIDDLEWARE FOR ACTIVITY RECOGNITION WITH SMARTPHONES

A THESIS IN
Computer Science

Presented to the Faculty of the University
Of Missouri-Kansas City in partial fulfillment

 Of the requirements for the degree

MASTER OF SCIENCE

By
PRAKASH REDDY VAKA

B.E, Andhra University College of Engineering, 2011

Kansas City, Missouri
2015

©2015

PRAKASH REDDY VAKA

ALL RIGHTS RESERVED

iii

A PERVASIVE MIDDLEWARE FOR ACTIVITY RECOGNITION WITH SMARTPHONES

Prakash Reddy Vaka, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2015

ABSTRACT

Activity Recognition (AR) is an important research topic in pervasive computing. With the

rapid increase in the use of pervasive devices, huge sensor data is generated from diverse devices on

a daily basis. Analysis of the sensor data is a significant area of research for AR. There are several

devices and techniques available for AR, but the increasing number of sensor devices and data

demands new approaches for adaptive, lightweight and accurate AR. We propose a new middleware

called the Pervasive Middleware for Activity Recognition (PEMAR) to address these problems. We

implemented PEMAR on a Big Data platform incorporating machine-learning techniques to make it

adaptive and accurate for the AR of sensor data. The middleware is composed of the following: (1)

Filtering and Segmentation to detect different activities; (2) A human centered adaptive approach to

create accurate personal models, leveraging on the existing impersonal models; (3) An activity library

to serve different mobile applications; and (4) Activity Recognition services to accurately perform AR.

We evaluated recognition accuracy of PEMAR using a generated dataset (15 activities, 50 subjects)

and USC-Human Activity Dataset (12 activities, 14 subjects) and observed a better accuracy for

personal trained AR compared to impersonal trained AR. We tested the applicability and adaptivity of

PEMAR by using several motion based applications.

iv

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and Engineering, have

examined a thesis titled “A Pervasive Middleware for Activity Recognition with Smartphones,”

presented by Prakash Reddy Vaka, candidate for the Master of Science degree, and certify that in their

opinion, it is worthy of acceptance.

Supervisory Committee

Yugyung Lee, Ph.D., Committee Chair
School of Computing and Engineering

 Deendayal Dinakarpandian, M.D, Ph.D.

School of Computing and Engineering

 Praveen Rao, Ph.D.
School of Computing and Engineering

v

TABLE OF CONTENTS

ABSTRACT .. iii

ILLUSTRATIONS ... vii

TABLES ... ix

ACKNOWLEDGEMENTS .. x

Chapter

1. INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Problem Statement .. 2

2. RELATED WORK .. 3

2.1 Activity Recognition Technology .. 3

2.2 Online Recognition ... 7

2.3 Offline Recognition ... 10

2.4 Machine Learning Algorithms used for Activity Recognition ... 12

2.5 Accelerometer Devices and Applications ... 14

2.5.1 Chronos Watch .. 14

2.5.2 Wired Gloves ... 15

2.5.3 Sensor Tag ... 16

3. MIDDLEWARE FOR GESTURE RECOGNITION .. 19

3.1 Overview ... 19

3.2 Data Collection ... 20

3.3 Data Processing .. 22

3.4 Model Generation and Training ... 32

vi

3.5 Activity Recognition .. 34

4. IMPLEMENTATION AND APPLICATIONS ... 36

4.1 PEMAR Architecture ... 36

4.2 PEMAR Implementation and Applications ... 43

5. RESULTS AND EVALUATION .. 48

5.1 Experimental Setup .. 48

5.2 Dataset ... 50

5.3 Accuracy ... 51

5.4 Run Time Performance ... 56

6. CONCUSION AND FUTURE WORK .. 60

6.1 Conclusion .. 60

6.2 Future Work ... 60

REFERENCES ... 61

VITA .. 68

vii

ILLUSTRATIONS

Figure Page

1: Presentation of Acceleration Experienced by an Accelerometer .. 6

2: Wearable Sensors ... 8

3: Flow Diagram of the Recognition System .. 19

4: Different Wearable Accelerometer Sensors .. 20

5: Graphical Representation of Raw Data from an Accelerometer .. 21

6: Different Activities and Segmentation Techniques .. 23

7: Dynamic Segmentation for Short Activities ... 25

8: Raw Data Windows based Segmentation .. 26

9: Sample Raw Data from Sensor Devices .. 28

10: Low Pass Filter Applied on Raw Data ... 29

11: Raw Sensor Data ... 30

12: Sensor Data after High Pass Filter .. 30

13: Sensor Data Input for Directional Equivalence Filter ... 31

14: Sensor Data Output from Directional Equivalence Filter ... 31

15: PEMAR Model Handling ... 33

16: PEMAR Gesture Recognition Framework ... 34

17: PEMAR Framework ... 36

18: Maze Runner and Long Running Application ... 44

19 : Meta App List of Applications .. 45

20 : List of activities that work with PEMAR ... 45

21: 2048 - Gesture based Gaming App ... 46

https://d.docs.live.net/984c141e088e0020/Documents/Vaka-Thesis-Draft-Spring2015.docx#_Toc420060449

viii

22: MSnake - Motion based Gaming App ... 47

23: Accuracy User Specific .. 54

24: Accuracy User Independent ... 55

25: Percentage Accuracy with Number of Models ... 57

26: Performance Evaluation of PEMAR for Individual Activity Models .. 58

27 : Individual Gesture Recognition Accuracy .. 59

https://d.docs.live.net/984c141e088e0020/Documents/Vaka-Thesis-Draft-Spring2015.docx#_Toc420060450

ix

TABLES

Table Page

1: Comparing Different Online Gesture Recognition Systems ... 9

2: Comparing Different Offline Gesture Recognition Systems ... 11

3: Features for Activity Recognition ... 14

4: Comparing Different Platforms .. 18

5: Data Collection Device and Network Protocols ... 20

6: Different Activities Classification .. 22

7: Segmentation Techniques are Suitable Activities .. 27

8: User Dependent Activity Recognition Accuracy ... 53

9: User Independent Algorithms Accuracy ... 56

10: Time Taken to Build Model .. 57

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to Dr. Lee for her continuous support

throughout my thesis. Also I would never have been able to finish my dissertation without the

guidance of my committee members, help from friends and family. I would like to acknowledge the

students of Big Data Analytics & Apps for their support. This work was in part supported by a grant

from the University of Missouri Research Board.

1

CHAPTER 1

1. INTRODUCTION

1.1 Motivation

There is an increase in the use of wearable sensors during the past few years and this increase

is predicted to grow seven folds by the year 2019 [1]. These wearable sensors are becoming part of

human life; integrated into various accessories and garments that are used in our day-to-day life such

as hats, wristbands, socks, shoes, eyeglasses, wristwatches, headphones and smartphones. With the

advancements of cloud-computing, many wearable sensor systems can now be easily connected to a

cloud service, which makes it easier and cheaper to maintain the data generated from these sensors.

There are many applications of wearable sensors in health and wellness monitoring, safety monitoring,

home rehabilitation, treatment efficacy assessment and early detection of disorders. Below are some

of the factors driving the sensors and wearable markets are the affordability of the sensors, fusion of

sensors into consumer-end devices, decreasing size of physiological sensors, increased health and

fitness awareness, rise in home and remote patient monitoring, reduced digital health costs,

increasing mobile and smartphone penetration into day to day life and increasing patient/physician

acceptance.

In coming years, data generated by the sensors is expected to increase by 42% of all data by

2020, up from 11% in 2005. Recognition of human activities from the data generated from wearable

sensors is an interesting area of research, but there is a demand for a system/framework that could

use the massive data generated from these sensors and also be adaptive in nature for used on mobile

platforms to achieve pervasiveness.

2

1.2 Problem Statement

The growing wearable sensors demand an adaptive approach for pervasive platforms that can

support diverse sensors and activity recognition on diverse devices. Some of the factors inhibiting the

activity recognition of wearable sensors are reusability and portability. Pervasive approach of activity

recognition also requires a framework that could reduce the computation on integrating

device/mobile platforms. Activity Recognition system should also support modularity where the

activity model generation could be separated from recognition module for reusability and portability.

To support adaptive activity recognition and mobile applications, there is a very strong need for

adaptive, real-time platforms for mobile devices that can handle diverse stream data generated from

various sensing devices. The major obstacles involved in handling real-time stream data on a mobile

platform are due to the lack of the capabilities that dynamic activity recognition applications demand,

such as support for performance, adaptability, real-time, and applicability. Traditional activity

recognition systems either perform activity recognition on the server (offer recognition) or on a

mobile platform (online recognition) [2], while there is a need to combine both to address above

issues.

3

CHAPTER 2

2. RELATED WORK

In this section, we introduce activity recognition and discuss some of the existing human

activity recognition systems that rely on wearable sensors. Human activity recognition is an important

area of computer vision research and applications. The goal of the activity recognition is an automated

analysis (or interpretation) of ongoing events and their context from sensor data. Its applications

include surveillance systems, patient monitoring systems, and a variety of systems that involve

interactions between persons and electronic devices such as human-computer interfaces. Most of

these applications require recognition of high-level activities, often composed of multiple simple (or

atomic) actions of persons. We discuss different research works and techniques for human activity

recognition. We talk about both the methodologies developed for simple individual-level activities

and compare different approaches with PEMAR. We describe some of the wearable sensors used for

human activity recognition. A variety of devices and techniques are used for gesture and activity

recognition, such as wired gloves, cameras and accelerometers.

2.1 Activity Recognition Technology

Human activity recognition has been addressed in two different ways, namely using external

sensors and wearable sensors. In the case of external sensors, the devices are fixed in foreordained

points of interest, so the deduction of activities entirely depends on the voluntary interaction of the

users with the sensors. In the case of wearable sensors, the devices are attached to the user. We

discuss each of the approaches in detail in the later sections.

4

External Sensor (Video Tracking) for Activity Recognition:

Video Signals from cameras are used as input for the recognition of gestures. Hand and body

gestures are detected using an edge detection algorithm [3]. These algorithms are computationally

expensive and dedicated hardware is required to detect the gestures or body movement. Recent

research carried at Cambridge on digits, utilizes a camera for the gesture control offered by Kinect [4].

The camera can be worn on a wrist with the help of a wrist strap and it tracks 2D movement of the

hand rather than 3D. It could also recognize finger movement that is used to control the software.

This approach can be used in applications such as controlling the games with hand movements and

translation of a sign language into a written text.

A company called Leap Motion uses a new type of motion controller for controlling gestures

[5]. Leap consist of a simple motion controller, which can be plugged into a USB port to transfer data

to the PC. Leap software has to be installed and once the motion controller is plugged in, it turns the

8 cubic feet of air in front of it into 3D interaction space. All the user gestures which are performed in

that space are tracked by the leap. The size of the camera is about the size of a business-card holder,

and can discern all 10 fingers individually. Such a detail in scanning and recognition allows us to do

track actions like pinch-to-zoom, or zero in which can be used in application like maps and to view

images in an operation theater.

Wearable Sensors for Activity Recognition:

The major part of the previous work on gesture recognition is based on human detached

recognition or computer vision techniques. Computer vision techniques will not the need the user to

wear any external sensor, but lighting condition and camera angle/field of vision are important

constraints of computer vision based approaches. In cases of poor lighting and object obstructions, it

is difficult to recognize gestures using a camera-based system. Additionally, it is not practically

possible to have to face the camera all the time.

5

Accelerometer-based gesture recognition is a technique that is compatible with almost all

physical and computing environments. The accelerometer sensors are small enough and are able be

to fit in small devices, and communicate wirelessly, hence easily wearable for interacting with a wide

range of applications. Examples of some of the accelerometer based gesture recognition devices

include Nintendo Wii-mote, Chronos watch from Texas Instruments [6], Fitbit and smart phones. The

Nintendo Wii-mote contains an integrated 3-axis acceleration sensor, and connects via the Bluetooth

human interface device protocol for transmitting data [7].

The HAR systems are broadly classified as online recognition systems and offline recognition

systems. Online recognition systems are pervasive in nature and provide real time response for

activity recognition. Offline recognition systems perform HAR on a backend server where the

response times are not real time, but are scalable enough for multiple activity recognitions. In this

thesis we evaluate on the common HAR wearable sensors, accelerometers. Figure 1 shows a typical

accelerometer sensor, typical accelerometer is a device that is used to measure proper acceleration

(g-force). Proper acceleration is different from coordinate acceleration; i.e. rate of change of velocity.

For example, an accelerometer at rest on the surface of the Earth will measure an acceleration g=

9.81 m/s2 straight upwards. By contrast, accelerometers in free fall orbiting and accelerating due to

the gravity of Earth will measure zero.

http://en.wikipedia.org/wiki/Standard_gravity
http://en.wikipedia.org/wiki/Standard_gravity
http://en.wikipedia.org/wiki/Free_fall

6

Figure 1: Presentation of Acceleration Experienced by an Accelerometer

Different HAR systems have very different purposes and associated challenges, so they are evaluated

separately. General Human activity system dependent on the following factors.

 • Different Recognized activities

• Type of sensors and the measured attributes

• Integration device

• Level of obtrusiveness (low, medium, or high).

• Type of data collection protocol

• Level of energy consumption (low, medium, or high).

• Classifier flexibility level, either user-dependent or user independent.

• Feature extraction method(s)

• Learning algorithm(s)

• Overall accuracy for all activities

7

2.2 Online Recognition

Applications, which use online activity recognition systems, can be more responsive and

interactive, compared to offline recognition. In the field of healthcare, monitoring patients’ physical

or mental pathologies continuously is crucial for their safety, and quick recovery. Similarly, activities

and games can enhance user experience in interactive games or simulators. We describe some of the

most recognized works on online HAR in detail.

eWatch [8]

eWatch is an online activity recognition system, which embeds a microcontroller and sensors

within a device [8]. This can be can be worn as a sport watch. There are four sensors included in the

device

 accelerometer

 light sensor

 thermometer

 microphone

The sensors are passive, hence there is no external communication necessary, thus making

the eWatch energy efficient. A decision tree C4.5 approach and time-domain feature extraction are

extracted for activity recognition. There a total of six ambulant activities and the overall accuracy is

92.5% and less than 70% for activities such as descending and ascending. The detection time (feature

extraction and classification) for the eWatch are 0.3 ms, which is very responsive. The data collection

was under a supervision of researchers, which makes the dataset not ideal for real case scenario.

Figure 2 shows some of the wearable sensors used today.

8

Figure 2: Wearable Sensors

Vigilante [9]

Vigilante is a mobile application developed for real-time human activity recognition [9] and it

uses android platform. A hardware is a chest sensor strap, which can measure acceleration and

physiological characteristics. Three ambulation activities with C4.5 decision tree classifier, gave an

overall accuracy of 92.6%. The response time of the new gesture classification is 8% of the window

length e. Evaluation results were with different users, without the need of training for each user.

System uses permanent Bluetooth to communicate between the sensor and the mobile device, which

makes it moderately energy efficient.

Tapia et al [10]

Tapia system can recognize 30 activities, which include activities like lifting weight, rowing,

push-ups, etc. Evaluation data consists of user dependent and user independent from 21 subjects.

9

Reported accuracy is at an average is 94.6% for user-dependent analysis and 56% for user-

independent. If the activities are not considered based on the intensities, then the user-independent

accuracy is reported at 80.6%. The system consists of five accelerometers place on the subject’s arm,

wrist, hip, ankle and thigh. It also includes a heartrate monitor attached to the chest. Since the sensors

communicate wirelessly via Bluetooth protocol, the system consumes high energy. The integration

device being a laptop restricts the subject free movement.

ActiServ [10]

ActiServ is an activity recognition service for mobile phones [10]. They make use of only the

accelerometer sensor from the mobile phone. Using fuzzy inference system, they classify ambulation

and phone activities. ActiServ is energy efficient system and portable, there is no use of external

sensor involved. User dependent training accuracy is 90% and user-independent lies in between 71%

and 97%. For higher accuracy, user-independent data is processed for days on the mobile platform,

for real-time response the accuracy drops to 71%. The drawback from this system, is the orientation

of the device should be proper to classify activities. Sitting and standing get confused if the orientation

of the device is not proper.

Table 1: Comparing Different Online Gesture Recognition Systems

Online HAR system Sensors Learning Algorithm Accuracy

eWatch [7] ACC,EMV(wrist) C4.5,NB 94%

Vigilante [8] ACC,VS C4.5 92.6%

Tapia [9] ACC, HRM C4.5,NB 86%

ActiServ [10] ACC RFIS 71%-98%

Ermes [12] ACC DT 94%

Brezmes [11] ACC KNN 80%

10

Other Approaches

Brezmes et al. [11] proposed a system for HAR, featuring a mobile application. They have used

the k-nearest neighbors’ classifier. This is computationally expensive and is not suitable to scale in

smart phones, since it need the complete data set, which can be huge. Besides the system requires

each user to provide his own data for better accuracy. Ermes et al. [12] developed an online system

for HAR which reaches 94% overall average accuracy. However, the evaluation carried is user-

dependent. The data collected is from three users and suggests this is not applicable and adaptive for

new users.

2.3 Offline Recognition

Applications, which use offline recognition system, can be less responsive and interactive,

compared to online recognition. Application requiring slow response time for HAR use offline systems,

such as application that track patients diet habits, and calculating the calories burnt during an exercise

routine. We describe some of the most recognized works on offline HAR in detail.

Parkka [13]

Parkka introduced a system that classifies seven activities, such as rowing, riding a bike,

standing, walking, running and Nordic walk. Twenty two signals were analyzed. This requires a number

of sensors on the individual’s chest, wrist, finger, forehead, shoulder, upper back, and armpit. A

compact computer is the integration device, which weighs 5kg. Speech recognizer is applied to the

speech signal to extract the time- and frequency-domain. This demands a high processing

requirement and also privacy related issues reading subject’s continuous speech data. The paper

reports an accuracy of 86%.

Bao [14]

Bao introduced a system that classifies twenty daily activities and ambulation, such as

watching TV, vacuuming and scrubbing. A total of 5 accelerometers were used to collect the

11

acceleration data, located at subject’s arm, knee, ankle and hip. A 5% reduce accuracy is reported

with only two accelerometers. Activities are classified with a C4.5 decision tree classifier, the overall

accuracy reported was 84%. There is confusion between activities such as moving on elevator or an

escalator, adding location data has increased the accuracy significantly up to 95%.

Khan [15]

Khan introduced a system that classifies ambulation, activities and transitions between such

as watching TV, vacuuming and scrubbing. A single accelerometer is placed on the subject’s chest and

the data is transferred to the computer via Bluetooth protocol. The sampling rate of the

accelerometer is 20Hz. An artificial neural network is used for classification, and an accuracy of 97.76%

is reported of user independent activities in the paper.

Zhu [16]

 Zhu and Sheng [16] proposed a system, which used Hidden Markov Models (HMM) to

recognize activities. Two accelerometers are used to collect data, which are placed on user’s wrist and

waist. The raw data is sent to a computer via Bluetooth protocol to process the data. This device

placement and configuration makes it uncomfortable, since the subject has to wear wired links, which

can interfere with his movements. The data is collected from a single subject, hence the evaluation

and performance is not comparable with other systems.

Table 2: Comparing Different Offline Gesture Recognition Systems

Offline HAR
system

Sensors Learning
Algorithm

Features Accuracy

Parkka [13] ACC,ENV KNN TD,FD 86%

Bao [14] ACC (wrist, ankle,
thigh, elbow, hip)

C4.5,KNN,NB TD,FD 84%

Khan [15] ACC (chest) C4.5,NB AR,SMA,TA,LDA
[3]

97.9%

Zhu [16] ACC (waist, wrist) HMM AV,3DD 90%

12

2.4 Machine Learning Algorithms used for Activity Recognition

 In this section, we discuss some of the machine learning approaches for activity recognition

used in the related works. Some of the approaches are lightweight to be used on an online recognition

system for real time response, where some are heavy and cannot be run an online platform.

Hidden Markov Model

A hidden Markov model [17] is one in which you do not know the sequence of states the

model went through to generate the emissions, but you observe a sequence of emissions. Hidden

Markov Model is used in many fields, such as Pattern recognition, Gesture Recognition and Speech

Recognition. HMMs are stochastic models, which are used for data that is serial or temporal. The word

"hidden" in the Hidden Markov Model refers to the hidden states that are mapped to the data. HMM

model is typically used for modeling sequences of events. HMM model is particularly useful when the

data is noisy and incomplete. This is based on efficient algorithms for learning and recognition such

as Baum-Welch and Viterbi algorithms and estimating probability distributions

Support Vector Machine

This technique is also used extensively for gesture recognition [17]. It is a supervised linear

classification method with a property of maximizing margins between classes. It also has nonlinear

extensions with an appropriate choice of kernel functions. An SVM model represents the examples as

points in space, mapped such that the examples of the different categories will have a clear gap

between them, which is as wide as possible. Represent new examples/data, on the map in the same

space and predict on which side of the gap they fall on. Such a representation of new data could

classify new gesture data. Z-normalization is used to make all the dimensions equal. During the

recognition phase, the incoming movement data is transformed and normalized. This is similar to the

training samples before SVM classifies the gesture.

13

Decision Tree Algorithm

 A decision tree [18] is a flowchart-like structure in which each internal node represents a

"test" on an each branch represents the outcome of the test and each leaf node represents a class

label. The paths from root to leaf represents classification rules. In these decision tree

structures, each leave represents a class label. Branches represent conjunctions of features that lead

to those class labels. Decision tree approach is used for activity recognition with high accuracy [18].

Decision tree algorithm is less computational expensive compared to others such as SVM, Naïve Bayes

and HMM. Extracted features from the accelerometer data are used to build the decision tree, which

can then classify new acceleration data.

Random Forest Algorithm

Random Forests [19] grows many single classification trees, similar to a tree in a forest.

Creating of Individual trees is similar to the decision tree approach. Each tree in the random forest

will extend to the largest possible limit and without pruning. Building of individual tree takes place

with sampling from the original training data at random, but with replacement. To classify any new

data (input vector), the vector will pass down each free in the forest. Each tree gives the classification,

and votes “yes” for the class. The forest chooses the result or classification of the input vector by

picking the most voted class. Random forest is used in application of activity recognition to achieve

high accuracy detection.

Naïve Bayes

 Naive Bayes classifiers is a set of simple probabilistic classifier based on applying Bayes'

theorem with strong independence assumptions between the features. Naive Bayes classifiers

algorithms are highly scalable, requiring a number of parameters linear in the number of variables

(features/predictors) in a learning problem.

http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Probabilistic_classifier
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Statistical_independence

14

Table 3 shows some of the features used by several related works in the field of human activity

recognition. These features are selected depending on the related algorithm being implemented and

the computational complexity for each of the technique.

 Table 3: Features for Activity Recognition

Group Features

Time Domain Mean, standard deviation, variance,
interquartile range (IQR), mean absolute
deviation (MAD), correlation between axes,
entropy, and kurtosis

Frequency Domain Fourier Transform (FT) and Discrete Cosine
Transform (DCT)

Others Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Autoregressive
Model (AR), and HAAR filters

2.5 Accelerometer Devices and Applications

2.5.1 Chronos Watch

eZ430-Chronos is a wearable wireless development system[6]. It can be used as a wirelsess

sensor to receive and collect data. It consists of a three-axis accelerometer that can detect the

movement of the device in 3 dimensional space.

Acceleration mode – RF

This mode on the chronos watch would activate the accelerometers on the watch and would

stream the data. Collection of the stream data is possible with the Chronos control center PC software.

The take the watch to acceleration mode, “#” key on the on the watch has to be long pressed until

ACC" is shown on the LCD. Once the watch is “Acc” mode a continuous 3D acceleration data is

transmitted to the PC using TI's SimpliciTI protocol stack.

15

eZ430-Chronos RF Access Point

RF access point is a hardware component which could communicate with the Chronos watch

wirelessly using RF and also to receive data from it. The Control center can read data from the chronos

watch only if the RF access point is plugged into the PC when the transmission is taking place.

Transmission of Acceleration Data

Acceleration data, which is being generated on the watch when it is ACC mode, can be seen

in the PC (Control Center) when the RF access point is connected. A “start access point button” is

available in this interface, the data from the watch is collected to the PC and 3D acceleration values

are transmitted.

The Chronos Flying Mouse is an application developed in integration with chronos watch,

which could mimic the behavior of an actual mouse connected to a PC [6]. It is designed to be highly

accurate and customizable depending on user requirements. Since the device is wireless and can be

customized to multiple inputs to mimic the mouse input, this has many application to control power

point presentations or play interactive games. The primary mode of the application allows user to

control the mouse movement. We have used chronos flying mouse to collect data for analysis.

This flying mouse application has many joystick modes that allow gaming using a wide variety

of PC games. This joystick mode allows any existing video game to use chronos without special

programs and allows the Chronos to interact with a wide variety of applications.

2.5.2 Wired Gloves

Wired gloves or data gloves is an input device used for human-computer interaction. These

devices are worn like normal gloves and consist of various sensors and technologies which can detect

delicate movements. These are used to detect the 3D orientation of the hand and also the movement

of the fingers.

16

There are multiple application for such devices, these are used in areas such as 3D simulations,

virtual reality interactions, multimedia education, help physically challenged people and even in for

rehabilitation programs to train people.

Electronic transducers and strain gauge sensing devices determine the position and orientation of the

hand wearing the data glove. The wired gloves also contain small lightweight sensors, which can

connect using a connection port.

A 3 space and 3 dimensional position and orientation sensor tracks and records the hand

gestures [22]. A motion tracker available in the gloves, such as a magnetic tracking device tracks data

rotation and position of the glove. Software that comes with device handles the recognition of the

device movement and orientation. Sign language or other symbolic functions can be categorized using

the useful information derived from the software. Data glove is a part of hap-tic science. Hap-tic

science is the field of science, which is concerned with applying tactile sensation to human interaction

with computers [23]. A wired glove can act as a hap-tic device because it simulates physical contact

between the human and computer. The cost of wired gloves is huge, with the tracking device and the

finger bend sensors have to be bought separately.

2.5.3 Sensor Tag

Sensor tag is a sensor device developed by Texas Instruments and which has a collection of

inbuilt sensors. Below are some of the sensors that are available in the sensor tag.

 KXTJ9 accelerometer

 MAG3110 magnetometer

 IMU-3000 MEMS gyroscope

 C953H barometric pressure sensor

 TMP006temperature sensor

 SHT21 digital humidity sensor

http://www.kionix.com/accelerometers/kxtj9
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MAG3110
http://www.invensense.com/mems/gyro/imu3000.html
http://www.epcos.com/inf/57/ds/T5400.pdf
http://www.ti.com/product/tmp006
http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht21/

17

The device has a Bluetooth low energy protocol to transmit the data to any computing device, which

has Bluetooth low energy compatibility. Since the device can communicate over wirelessly, it has

many applications as that of sensor tag and even more with the availability of other sensors. This

device reduced the development time of Bluetooth enabled application in mobile platforms from

months to hours.

Sensor Tag Android Application

Texas instruments has released an android application (Simplelink SensorTag), which can

connect to the sensor tag using bluetooth low energy protocol and read data from multiple sensors

on the device at the same time. The data read from the device is customizable; i.e the application has

an option to set up the frequency of the receiving data. With the increase in the frequency of the data,

the power consumption of the device increases.

The sensor, which was used, for this thesis work is the 3-axis accelerometer; the frequency

of the accelerometer is customizable. The highest frequency of acceleration data received using the

sensor tag is 10Hz.

18

Table 4: Comparing Different Platforms

 Portable Motion

Recognition

Requires

Dedicated Space

Cost

Kinect No Yes Yes $100 (Kinect) +
$300 (Xbox) +

$300 (TV)

Second Life No No No $0 (Second Life) +
$500 (High end

Desktop
configuration)

Mobile
Fitness Apps

Yes No No $100 (Appending
Hardware) + $200

(Smartphone)

Active Mobile
Interface

Yes Yes No $20 (Wiimote) +
$200

(Smartphone)

19

CHAPTER 3

3. MIDDLEWARE FOR GESTURE RECOGNITION

3.1 Overview

This thesis work presents a middleware, called the Pervasive Middleware for Activity

Recognition (PEMAR) that aims to turn the above challenges into an opportunity for increasing the

adaptability and applicability of activity recognition with a middleware for active games/applications

on mobile computing devices. The PEMAR middleware is based on two-layer architecture: Activity

Modeling layer and Activity Recognition layer. In this work, we have proposed an intelligent and

adaptive model for recognizing gestures when motions are involved with the orientation, speed, and

resulting accuracy that are significantly dependent on the complexity of gesture models, overlapping

gesture models, and variations in gestures between individuals.

 Figure 3: Flow Diagram of the Recognition System

Figure 3 shows the steps involved in human activity recognition with accelerometer data. The

first step includes the data collection, where the data is collected from different sensing devices via

data transfer protocols. These data transfer protocols include Bluetooth low energy, ZigBee and

Wireless networks IEEE 802.11. The second stage is the data processing layer, where the data is

segmented and filtered depending of the configuration for each of the device and activity type. The

20

third module is the human activity recognition module where the sensor data is labelled into one of

the existing activity classes. We will discuss each of the above modules in detail in the later sections.

3.2 Data Collection

 With the wide range of wearable sensors, the data collected from these devices need to be

transferred to an integrating platform. Different wearable sensors use different network protocols to

communicate with the wearables sensors. Table 5 shows some of the existing data transfer protocols

and wearable sensors.

Table 5: Data Collection Device and Network Protocols

Device Network Protocol Maximum Frequency Energy

Consumption

Chronos Watch Radio Frequency 915MHz <35 mA

Sensor Tag Bluetooth Low Energy 2.4 GHz <15mA

Wii Remote Bluetooth Classic 2.4 GHz <30mA

Each of the above protocols has a maximum limit for data transfer that can be achieved using each

device. The energy consumption of each of the devices also depends on the operating configuration

of the sensor, mainly the frequency of the operating accelerometer sensor and the network protocol.

Figure 4 shows the different devices discusses above.

Figure 4: Different Wearable Accelerometer Sensors

21

In this thesis section, we tested the PEMAR framework with Sensor tag and Android Smart

Phone sensor, we found that the frequency on both the devices is different and the signature for the

same activity is different on each device. The frequency on the Sensor Tag is found to be 10Hz and

the one on the Android Smart Phone gave close to 200Hz, when the data was read not in a UI thread

in the smart phone. To test the accuracy of the application, we used a benchmark dataset (Human

Activity Dataset) released by University of Southern California [17]. The data collected for the

benchmark dataset is from a Motion Node inertial sensing device with a frequency of 100Hz.

Magnitude of the accelerometer sensor used in the benchmark data is +-6g. Figure 5 shows the

graphical representation of the accelerometer data from the benchmark dataset. In the next section,

we discuss about the data processing part of activity recognition.

Figure 5: Graphical Representation of Raw Data from an Accelerometer

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

Accelerometer Data

X

Y

Z

22

3.3 Data Processing

 The human activities can be represented as a set of vectors data generated from

the sensors device. Different activities have an individual footprint unique to each other. But the data

generated or collected during the data collection phase from the inertial accelerometer sensors tend

to have noise associated with it. Hence, we need a data processing module which would remove the

noise from the data and prepare the data for any activity recognition approach. We perform filtering

and segmentation on the sensor data in the processing phase. In the next sections we discuss in detail

each of the steps involved. For data processing we categorize activities broadly into three groups (i)

Short activities, (ii) Long activities and (iii) Short gestures. Short activities are performed for a short

duration and tend to have an end of activity after a short period. Long activities are carried out for a

long duration of time and do not have an immediate end. Short gestures are used during an interactive

game. Table 6 shows examples for each of them.

 Table 6: Different Activities Classification

Activity Type Activities

Short Activities Push Up, Pull Up, Crunch, Jumping, Stomp,

Dumbbell Curl, Toe touches

Long Activities Running, Walking, Cycling, Sleeping, Walking

Down Stairs, Walking Up Stairs, Elevator Ride

Short Gestures Circle, Square, Triangle, Z, Move left , Move

Right, Move Up, Move Down, Move forward,

Move backward

23

Segmentation

The activity vector generated for each of the above categories of activities is to be detected

with accuracy. The body position and acceleration of players are expressed in X, Y, and Z coordinates

in motion space. The X, Y, and Z axes are the body axes of the accelerometer. The start point for an

activity and end of a particular activity has to be determined depending on the activity category. We

propose an activity aware segmentation framework, which handles the segmentation depending on

the activity category.

Below are the three segmentation techniques supported by PEMAR. We will discuss each of

the below techniques in details.

(i) Dynamic Segmentation

(ii) Windows-based Segmentation

(iii) User triggered Segmentation

Figure 6: Different Activities and Segmentation Techniques

24

Dynamic Segmentation

 This segmentation is used for recognizing the start and end of short activities, where the

system automatically detects the activity vector. In the case of an accelerometer sensor, the start and

end are determined by the change in the accelerometer values. The start is determined if the change

in acceleration value from the previous instance is greater than an already determined threshold

depending on the sensor details. Similarly, the end of each gestures is calculated if the change in

acceleration vector from the previous vectors is less than an already set threshold.

𝑑 = √(𝑥1 − 𝑥)2 + (𝑦1 − 𝑦)2 + (𝑧1 − 𝑧)2

x, y, z – acceleration data at time t

𝑥1, 𝑦1, 𝑧1– acceleration data at time 𝑡 + 𝛼 (next instance)

The start of gesture is triggered when d > Δ and the end is determined when d < µ. These values of µ

and Δ are constants and need to be configured depending on the sensors settings. Based on the

heuristic approach we found the best set of µ and Δ to be 0.2 and 0.6 respectively. Figure 7 shows the

dynamic segmentation of accelerometer data.

25

Figure 7: Dynamic Segmentation for Short Activities

Windows-based Segmentation

The windows based segmentation is used in scenario where the start and end of any activity

cannot be determined, since the activity is long running. Window-based segmentation uses a time

frame based approach to segment the sensor data. The generated sensor data is segmented using a

period of t seconds and considering an overlap of 50%. The overlap is considered to take into account

the transition data and not to lose any sensor data for activity recognition.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

Dynamic segmentation

X

Y

Z

26

Figure 8: Raw Data Windows based Segmentation

The window size t is customizable depending on the sensors configuration. Windows based

segmentation is best suitable for long running activities. The response time for activity recognition

using this approach is not real time and fails to detect short activities. The t value of 2 seconds is

determined to give good accuracy for ambulation. Figure 8 shows the windows-based segmentation

of the accelerometer data.

User Triggered Segmentation

 The segmentation using this approach gives the best results, since the start and end of each

gesture or user, mostly using an input trigger such as a button, which triggers the segmentation. This

approach can be used for detecting short gestures, since the user performs these gestures during an

interactive system, which generally asks for user to specify the start and end of the gesture. Activity

recognition using this segmentation is carried out in real time, since the user triggers the end of a

gesture and the recognition kicks off immediately after the user trigger.

27

Short activities require the response time of recognition to be short, which allows the short

activities or gestures to be used to interactively use the applications. The response time for an

interactive system is considered instantaneous if it response time is less than 0.1 sec. Such quick

responses are not achieved using an offline approach, hence online approach are required. Table 7

summarizes different segmentation techniques and the activities suitable for each of them.

Table 7: Segmentation Techniques are Suitable Activities

Segmentation Technique Suitable Activity Group

Dynamic Segmentation Short Activities (Push Up, Pull Up, Crunch,
Jumping, Stomp, Dumbbell Curl, Toe touches)

Windows-based Segmentation Long Activities (Running, Walking, Cycling,
Sleeping, Walking Down Stairs, Walking Up
Stairs, Elevator Ride)

User Triggered Segmentation Short Activities/Gestures (Circle, Square,
Triangle, Z, Move left , Move Right, Move Up,
Move Down, Move forward, Move backward)

Filtering

 The sensor data collected for activity recognition contains a lot of noise, because of the nature

of the wearable sensors are built. Hence, we have to clean the sensors data before processing it. Each

gesture has some essential components that constitute the signature of an activity, but also include

actions at the beginning and end of the gesture that confound its interpretation. We implement a

sensors aware filtering approach, where different filtering techniques are implemented and can be

used to clean the data as follows:

(i) Low pass filter removes fast and sudden gestures (Very High Jerk)

(ii) High pass filter removes short and low magnitude sensor data

(iii) Directional Equivalence Filter

28

Low Pass Filter

 This filter removes noise sensor data that is very high in magnitude that is caused by any

sudden jerks in the sensor movement. It is used in scenarios where the set of gestures/activities being

recognized and the sensor configuration never produce any high magnitude jerk data. Figure 9 shows

the raw accelerometer data. Figure 10 shows the result after the low pass filter is applied the raw

data.

Figure 9: Sample Raw Data from Sensor Devices

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
a
m

p
le

 S
e
n
s
o
r

D
a
ta

 M
a
g
n
it
u
d
e

Time

Sample Raw Data

Signal

29

Figure 10: Low Pass Filter Applied on Raw Data

High Pass Filter

 High pass filter is used to attenuate sensor data that is not significant and not contributing to

the footprint of the activity. We implement a high pass filter by keeping track of the magnitude of

sensor data and if magnitude of the sensor data |�⃗�| < 𝛼, we attenuate these sensor readings. Figure

11 shows the raw accelerometer sensor data. Figure 12 shows the high pass filter output.

-15

-10

-5

0

5

10

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
a
m

p
le

 S
e
n
s
o
r

D
a
ta

 M
a
g
n
it
u
d
e

Time

Low pass filtered

Series1

30

 Figure 11: Raw Sensor Data

Figure 12: Sensor Data after High Pass Filter

Dynamic Equivalence Filter

 Directional equivalence filter is used to reduce redundant sensor data from the activity

recognition flow; this would reduce the computation required for activity recognition on pervasive

devices. Figure 13 shows the accelerometer data output from the high pass filter. Figure 14 shows the

directional equivalence filter result.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

Accelerometer Sensor data

X

Y

Z

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

High pass filter

X

Y

Z

31

 Figure 13: Sensor Data Input for Directional Equivalence Filter

Figure 14: Sensor Data Output from Directional Equivalence Filter

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

Sensor Data

X

Y

Z

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

A
cc

el
er

o
m

et
er

 m
ag

n
it

u
d

e

Directional Eqvuivalence Filter

X

Y

Z

32

3.4 Model Generation and Training

Model Generation

 Human activity recognition, similar to other machine learning approaches contain two stages,

training and testing. Measured attributes from users activity data is used for training stage. This

requires a dataset of user performing certain activity. Using one of the above mentioned

segmentation in section 3.3, time series data is split into windows to apply feature extractions. After

this required features are filtered from the raw sensor data. With the extracted feature data learning

techniques are used to generate an gestures/activity model. Similarly, for recognizing activities, data

is collected using a segmentation technique, and features are extracted from the window. Extracted

feature set is evaluated with the prior trained activity/gestures model to generate a label for the

tested gesture.

 PEMAR framework provides a plug and play feature for the above model generation flow. The

model generation using training data is separated with the testing/evaluation modules, does

providing portability and reducing the training data generation time for each user. It uses an offline

approach for feature extraction and model generation. The sensor data generated from the user is

segmented and filtered on a pervasive platform (Smart Phone), this processed data is transferred over

the network to offline model generation system. Offline system would then extract the features from

the segmented data and use this for generating a model for that particular activity. These models are

updated to a database (HBase). PEMAR supports multiple machine learning approaches for activity

recognition. As discussed before the data is diverse and there is need of an adaptive framework to

support such a change and the sensor data is expected to grow with the increase of wearable sensors.

Hence, to address both the above issues we implemented PEMAR on a big data platform, by using the

distributed computing paradigm Map Reduce.

33

For the evaluation of PEMAR we have only considered some of the time domain features,

which will be explained in detail in the implementation of PEMAR. PEMAR model generation and

training was carried out using Hidden Markov Model (HMM) algorithm, but the evaluation was carried

on with other algorithms considering some of the time domain features. The sequence of the vectors

generated for an activity is split into different states for the HMM algorithm. And the transition of the

acceleration vector between the states is observed with a training data for each of the activities. These

trained models with the training data are saved to database (Activity Library).

Figure 15: PEMAR Model Handling

PEMAR also introduce an approach for model updating using user personal data. The user

first fetches a user independent trained activity model from the database, and as the user continues

to use the application, PEMAR collects the user personal activity data. Collected user personal data is

used to generated personal activity model. This personal activity model is downloaded the next time

the user tried to use the recognition application. The frequency of data from each device is different

34

and the acceleration magnitude range, hence a separate activity model is generated for each of these

devices in PEMAR. The frequency reported in the one received on an integrating device/application

such as smartphone or desktop.

3.5 Activity Recognition

The proposed activity recognition model is composed of four major steps for recognition:

(i) Segmentation of activities based on the type of activity

(ii) Filtering of data to remove noise

(iii) Feature Extraction for machine learning approaches and model training

(iv) Activity Labelling for activity recognition

PEMAR framework provides an activity library that contains trained activity models. These

models can be fetched onto a pervasive platform where the recognition is carried out directly using

the already trained activity models. This approach reduces the time for model generation on a mobile

platform and provides the reusability of the activity model and also adaptive in nature for new activity

recognitions.

Figure 16: PEMAR Gesture Recognition Framework

35

PEMAR provides an activity library and an application library; these can be used to detect

different activities on same/different applications. The training models generated are with different

machine learning applications; the recognition can use different machine learning model and the

respective features for the recognition. PEMAR provides modularity for different machine learning

applications for activity recognition. Figure 16 shows different sensing devices and integrating device

collecting data from them and using the activity library for human activity recognition.

For the Active Mobile layer, motion based games that involve the whole body, especially hand

and leg movements captured by diverse devices such as SensorTag, TI Chronos Watch, remote Wii

systems, and smart phones can be downloaded from the activity library, and then they can be

dynamically configured with the users’ customized gestures. In this middleware, gesture models

developed and stored in the activity library were utilized by different gaming applications.

Current implementation of PEMAR on mobile platform doesn’t involve any feature extraction

techniques, to keep the activity recognition as light weight as possible. We implemented mobile

recognition of PEMAR using a lightweight version of JAVA HMM library. The communication of the

sensing device with the mobile device is carried over Bluetooth Low Energy and the data is then

transferred to the offline system over the network.

36

CHAPTER 4

4. IMPLEMENTATION AND APPLICATIONS

Figure 17: PEMAR Framework

4.1 PEMAR Architecture

Previous chapters focus on explaining the architecture and different methodologies involved.

In this section we discuss how the PEMAR system has been implemented. In this section we discuss

the implementation of individual module in detail in PEMAR. For human actviity recognitinon subjects’

can use an exisiting recognition modal to start their activity recognition, they can also traing their own

specific gesture modal for recognition. We have written custom program job to run in batch that can

generate user specific modals for specific activities taking into consideration of device.

37

 PEMAR implementation of data collection was done for two sensing devices in detail, the

Sensor Tag from Texas Instruments and the Android inbuilt sensor. There are multiple sensors

available in the Sensor Tag, but we have only activated and used the accelerometer sensors of the

device. Each sensor on the Sensor Tag has a unique UUID assosciated with it. Below are the UUIDs of

the accelerometer sensor in the Sensor Tag.

1. Accelerometer Service : f000aa10-0451-4000-b000-000000000000

2. Data Char : f000aa11-0451-4000-b000-000000000000

3. Config Char : f000aa12-0451-4000-b000-000000000000

4. Period Char : f000aa13-0451-4000-b000-000000000000

The config char UUID of the accelerometer is used to set the frquency of the data for the

accelerometer. We have seen a maximum of 10Hz with the version of Sensor Tag (CC2541) we used.

Since the Sensor Tag operated with Bluetooth Low energy protocol for communication of the device

also depends on the integrating device to support BLE. Android version 4.3 and above supports BLE

and hence the Sensor Tag as well. We observed that the version of BLE API on Android 4.3 is not stable

enough to give reliable commincation every time. Since we wanted the data to be collected in the

backend for activity recognition, we made a service class to interact with the sensing device. This

service class has no UI thread assisicated hence the data read is the highest possible for

communcation.

 We also used the android smart phone built-in accelerometer sensor, the API is availabe from

Google Android to use the built-in sensor. We observed that the built-in android sensor has better

frequency than the Sensor Tag, hence the footprint of a particular human activity could be tracked

precisely. We also save the data collected from the sensing device to a file which will be transffered

over the network to offline big data platform.

38

Once the data is collected from the sensing device we use one of the segmentation and filtering

technique to remove noise from the data and do the pre processing. The segmentation technique is

decided based on the activity type being recognized. We implemented different apporaches for

sigmentations and made code snippets available for use on mobile platform for each of them.

Code Snipper for Dynamic Segmentation

/*** Start*****/
d= Math.sqrt(Math.pow((x-x1),2) + Math.pow((y-y1),2) + Math.pow((z-z1),2));
 if(d>=0.3 && !trigger){
 Log.i("start","start");
 trigger=true;
 }else if(d<=0.1 && trigger){
 Log.i("end", "end");
 trigger=false;
 try {
/*** End*****/

The collected train data for the first time is used to train an activity model, we used HMM for model

generation building and recognition.

Code snippet for the Model Generation.

Map function

Map function mark all the data for each user and activity respectively, the format of the key for the

map input would be <userId_activity Id>.

public void map(LongWritable key, Text value, Context context

) throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString(),","); // line to string token

 word.set(itr.nextToken());

 if(itr.hasMoreTokens())

 values.set(itr.nextToken()+",");

39

 context.write(word,values);

 }

Reduce function

Reduce function input is the list of all the gestures which are performed by that user in the

data. Since the key is <userId_ActivityId> all the gestures with this key will be returned to the same

reduce function. HMM alogirthm is used to train the modals for each of the activities performed by

individual subject. Existing java based HMM library JAHMM is used for the implementation.

public void reduce(Text key, Iterable<Text> values,Context context

) throws IOException, InterruptedException {

 ArrayList<String> punchdata=new ArrayList<String>();

 int sum =0;

 //get the count of seq data

 for (Text val : values) {

 sum+=1;

 punchdata.add(val.toString().trim());

 }

 reducerOutValue = HMMTraining(punchdata,key.toString());

 //HMM coding

 context.write(key, reducerOutValue); // create a pair <keyword, number of occurences>

 }

40

Algorithm HMM MapReduce Training Algorithm

Input: String P which contains <Gesture name G + “token” + sequence S>

Output: Gesture name G and sequence concatenate C Map M2<G, C>

1. map

2. define Gesture and sequence Map M1<G,S>

3. Iteration<- P StringTokenizer with “token”

4. if Iteration hasMoreTokens

5. M1 save pair (G, S)

6. end if

7. end map

8. reduce

9. for each e ∈ M1

10. var a = M1 get value with e

11. if M2 has key e

12. var b = M2 get value with e

13. M2 save pair (e, a+”:”+b)

14. end if

15. else

16. M2 save pair (e, a)

17. end else

18. end for

19. HMMTraining (M2)

20. end reduce

41

Sample Accelerometer Data

Key : <user + walking + nexus7>

Data:

1.16278 -0.18929 -0.29578

1.032296 -0.20014 -0.3763

0.905245 -0.20376 -0.3946

0.778195 -0.211 -0.3763

0.633975 -0.2291 -0.37996

0.524094 -0.24719 -0.40925

0.513792 -0.23634 -0.45317

0.589336 -0.19291 -0.50075

0.733555 -0.12414 -0.51905

0.860606 -0.08071 -0.51173

0.96362 -0.07709 -0.49709

0.984223 -0.10243 -0.43487

0.970487 -0.14224 -0.36532

0.960186 -0.16033 -0.28846

0.91898 -0.19291 -0.21526

0.86404 -0.20738 -0.17134

0.802231 -0.17119 -0.14937

0.723254 -0.13862 -0.13473

0.699217 -0.08433 -0.13839

0.723254 -0.00109 -0.13839

0.723254 0.027861 -0.14937

0.771327 0.089386 -0.12375

Model Retrieval

Generated models are available in Hbase, a RESTful Web service is available to download the required

HBase gesture model.

Below method returns the HMM serialized object model in the string format, which can be de-

serialized.

@GET

 @Path("/name/{i}")

42

 public String getModel(@PathParam("i") String gesture) throws IOException{

 Configuration config = HBaseConfiguration.create();

 config.clear();

 config.set("hbase.zookeeper.quorum", "localhost");

 config.set("hbase.zookeeper.property.clientPort","2181");

 config.set("hbase.master", "localhost:60010");

 HTable table = new HTable(config, "gestures");

 Get g = new Get(Bytes.toBytes(gesture));

 g.addColumn(Bytes.toBytes("device"), Bytes.toBytes("chronos"));

 Result r = table.get(g);

 String s1="";

 for(KeyValue kv: r.list()){

 s1 = Bytes.toString(kv.getValue());

 }

 return s1;

 }

The PEMAR system is implemented and evaluated on a Cloudera CentOS VMware virtual

machine with Intel Xeon processor and 12GB memory. The system and evaluation model are

implemented in Java programming language. We used Eclipse as IDE to run the Java code. In addition,

we used Hadoop 2.0.1, HBase 0.93, and JAHMM library as Java dependencies to compile the whole

project. In order to demonstrate the applicability of the PEMAR middleware, we developed many

sensor-based motion games controlled by a wide variety of the gesture models available from the

Activity library. These apps were implemented by modifying existing open source game projects for a

43

transformation of their touch-based control model into a motionbased control through some devices

such as SensorTag andChronos watch. These devices were used to generate our datasets including

Acceleration, Temperature, Humidity GPS, and luminous intensity. The frequency of the data collected

varied based on the sensor. The acceleration data from the device had a frequency up to 10 Hz and

was transferred to the Action library using a web service. The MazeMan motion sensor app (Fig. 3) is

a single player game, and it can recognize five gestures like left, right, up, down, restart. By utilizing

the gesture models we built, we were able to capture each and every move, which we made, and we

reported the total number of moves made by the player. We also showed the number of unscored

moves made by the player, and this might be useful to understand how many moves were wasted

without scoring. Max response time is the maximum time taken by the player in order to make a move.

We estimated the playing style of the user by using the data. This app explicitly compares two motion

profiles and highlights the differences with training consisting of iterative attempts to

reduce/eliminate discrepancies. The activity analysis report will be shown to a user with his/her

activity evaluation for each day/month. The path of the user’s movement during exercise is displayed

on Google maps with the markers for path boundaries such as green for start and pink for end.

4.2 PEMAR Implementation and Applications

An android application is developed, to track the long running activities. As described in

section 3.2, the application collects the subjects’ acceleration data and analyses using an online

system. Along with the acceleration data, users’ location data is also collected.

44

Figure 18: Maze Runner and Long Running Application

PEMAR provides an API to modify any existing android application or game to work with

gestures input from any one of the compatible sensing device. We provide a ConnectionService class

which would run in the backend thread to connect to sensing device (Sensor Tag) and would take care

of the activity recognition. The user also has to change the onTouch trigger of the original application

to work with the gesture input. Once the ConnectionService labels any new gesture/activity it would

broadcast a signal across the current application running. The application should be changed to read

the broadcasted data and trigger the respective onTouch events.

We have also built an Android application which has the meta information of all the existing

android games modified to work with gesture input and existing trained model for activity recognition.

These models can be changed depending on the application being used. The Meta application allows

the user to select a particular game and then depending on the game give the user an option to select

a set of activities to choose. Figure 19 shows the Meta application, which contains the list of all the

45

existing modified applications that work with PEMAR. Figure 20 below shows list of all activities that

work with PEMAR.

Figure 19 : Meta App List of Applications

Figure 20 : List of activities that work with PEMAR

46

Below are some of the applications modified to work with gestures input and using the PEMAR

framework.

Figure 21 shows a 2048 gaming application on android platform. The 2048 open source

gaming application has been modified to take gesture as input and perform the touch actions. The

total number of gestures considered for playing are five, which include Left, right, up, down ,punch.

2048 is a single player puzzle game, which requires the user to slide the number titles on a square 4*4

grid, and upon combining them a tile would be created which has a number 2048. The sensor device

used for the data collection and game play is Sensor Tag and the segmentation technique used is

dynamic segmentation.

Figure 21: 2048 - Gesture based Gaming App

47

Figure 22 shows, MSnake a gaming application on android platform. The Snake game consists of four

movements, Left, Right, Up and Down. The Snake has to eat the apples on the screen to grow in size

and gain points; snake should not touch the walls of the screen. The more the apples the snake eats,

more the score.

Below table shows the list of all the applications built using PEMAR.

1. 2048
2. BigDataAnalytics_FinalProject_EmotionSense
3. Gesture Alert
4. GITRON
5. Maze_Man
6. MSnake
7. MSnake2
8. Number 2048
9. Sensor Write
10. Tetris
11. WhatToDo

Figure 22: MSnake - Motion based Gaming App

48

CHAPTER 5

5. RESULTS AND EVALUATION

5.1 Experimental Setup

 Different experimental setups are used to evaluate the PEMAR framework. For evaluating the

recognition performance we used a mobile platform, and used Nexus 7 2012 model configuration.

Below is the configuration of the mobile platform device.

NETWORK Technology No cellular connectivity

LAUNCH Announced 2012, June

Status Available. Released 2012, July

BODY Dimensions 198.5 x 120 x 10.5 mm (7.81 x 4.72 x 0.41 in)

Weight 340 g (11.99 oz)

SIM No

DISPLAY Type LED-backlit IPS LCD capacitive touchscreen, 16M colors

Size 7.0 inches (~59.6% screen-to-body ratio)

Resolution 800 x 1280 pixels (~216 ppi pixel density)

Multitouch Yes, up to 10 fingers

Protection Corning Gorilla Glass

PLATFORM OS Android OS, v4.1 (Jelly Bean), upgradable to v4.4.2
(KitKat), planned upgrade to v5.0 (Lollipop)

Chipset Nvidia Tegra 3

CPU Quad-core 1.2 GHz Cortex-A9

GPU ULP GeForce

MEMORY Card slot No

Internal 8/16/32 GB, 1 GB RAM

CAMERA Primary 1.2 MP, 1280 x 960 pixels

Features Video-calling

Video 720p

Secondary No

http://www.gsmarena.com/network-bands.php3
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=sim
http://www.gsmarena.com/glossary.php3?term=display-type
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=multitouch
http://www.gsmarena.com/glossary.php3?term=screen-protection
http://www.gsmarena.com/glossary.php3?term=os
http://www.gsmarena.com/glossary.php3?term=chipset
http://www.gsmarena.com/glossary.php3?term=cpu
http://www.gsmarena.com/glossary.php3?term=gpu
http://www.gsmarena.com/glossary.php3?term=memory-card-slot
http://www.gsmarena.com/glossary.php3?term=dynamic-memory
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=camera
http://www.gsmarena.com/glossary.php3?term=video-call

49

SOUND Alert types Vibration; MP3, WAV ringtones

Loudspeaker Yes, with stereo speakers

3.5mm jack Yes

COMMS WLAN Wi-Fi 802.11 b/g/n

Bluetooth v3.0

GPS Yes

NFC Yes

Radio No

USB microUSB v2.0

FEATURES Sensors Accelerometer, gyro, proximity, compass

Messaging Email, Push Email, IM

Browser HTML

Java No

 - MP4/H.264 player
- MP3/WAV/eAAC+/WMA player
- Organizer
- Photo/video editor
- Document viewer
- Voice memo
- Predictive text input (Swype)

BATTERY Non-removable Li-Ion 4325 mAh battery (16 Wh)

Stand-by

Talk time Up to 10 h (multimedia)

MISC Colors Black

SAR EU 1.39 W/kg (body)

Source: www.gsmarena.com

We evaluated different machine learning algorithms accuracy using weka tool kit. Below is the

configuration of the machine.

http://www.gsmarena.com/glossary.php3?term=call-alerts
http://www.gsmarena.com/glossary.php3?term=loudspeaker
http://www.gsmarena.com/glossary.php3?term=audio-jack
http://www.gsmarena.com/glossary.php3?term=wi-fi
http://www.gsmarena.com/glossary.php3?term=bluetooth
http://www.gsmarena.com/glossary.php3?term=gps
http://www.gsmarena.com/glossary.php3?term=nfc
http://www.gsmarena.com/glossary.php3?term=fm-radio
http://www.gsmarena.com/glossary.php3?term=usb
http://www.gsmarena.com/glossary.php3?term=sensors
http://www.gsmarena.com/glossary.php3?term=messaging
http://www.gsmarena.com/glossary.php3?term=browser
http://www.gsmarena.com/glossary.php3?term=java
http://www.gsmarena.com/glossary.php3?term=stand-by-time
http://www.gsmarena.com/glossary.php3?term=talk-time
http://www.gsmarena.com/asus_google_nexus_7-4850.php
http://www.gsmarena.com/glossary.php3?term=sar
http://www.gsmarena.com/

50

System Configuration

CPU 2.10-GHz Intel Core i5-3310M

Operating System MS Windows 7 Professional (64-bit)

RAM 8GB

Hard Drive Size 1TB

Hard Drive Speed 7,200rpm

Hard Drive Type SATA

Hard Drive Display Size 15.6

Native Resolution 1366x768

Optical Drive DVD /-RW

Optical Drive Speed 8X

Graphics Card Intel HD Graphics 3000

Video Memory 1.6GB

Wi-Fi 802.11b/g/n

Wi-Fi Model Intel Centrino Wireless-N 1030

Bluetooth Bluetooth 3.0 + EDR

5.2 Dataset

The datasets used for the evaluation are from University of Southern California [17]– Human

activity dataset and generated dataset. This is a benchmark dataset for human activity recognition.

Dataset consists of data collected from 14 subjects performing 12 activities. Each subject repeated

each activity five times, that is 60 files generated for each subject, based on his activity, and 840 files

in total. The activities performed are both outdoor and indoor on different days. The sampling rate

on the device used for collecting the data is 100Hz, and the acceleration range of the device is +-6g.

The device is mounted on the waist of the user in a mobile pouch.

The activities listed in the dataset are :

1. Walking Forward

2. Walking Left

3. Walking Right

51

4. Walking Upstairs
5. Walking Downstairs
6. Running Forward
7. Jumping Up
8. Sitting
9. Standing
10. Sleeping
11. Elevator Up
12. Elevator Down

The dataset contains other useful information as well, such as

• Age

• Height

• Weight

• Activity name

• Activity number

• Trial number

The benchmark dataset contains only long running activities and cannot be tested for short gestures,

hence we took the help of the students in the course Big Data Analytics and Applications to generated

a short activity dataset for evaluation. We collected data from 50 students and collected a total of 15

gestures among them. The students used Sensor Tag to collect the data. Based on both the datasets,

we evaluate the PEMAR framework.

5.3 Accuracy

Accuracy of multiple machine learning algorithms is compared using the above data set

(Benchmark USC-HAD). Tests are carried for user dependent recognition and user independent

recognition. It is observed that user dependent training has higher accuracy when compared to user

independent training. The segmentation technique used for the USC-HAD is window-based

segmentation. Accuracy evaluation is carried using a weka tool kit. The raw benchmark data set is

segmented and processed to be used with weka.

52

User Dependent

From the user dependent accuracy evaluation the better performing algorithm is Random Forest

followed by HMM in the most cases followed by Decision Tree, SVM and Naïve Bayes respectively.

The data for each user consists of the 12 gestures, hence the accuracy is to recognize a gesture among

the 12 choices. The features used for the recognition algorithms are time domain features :

(i) Mean

(ii) Standard Deviation

(iii) Correlation between XY

(iv) Correlation between YZ

(v) Correlation between XZ

(vi) Root Mean Square (RMS)

53

Table 8: User Dependent Activity Recognition Accuracy

Algorithm Naive Bayes SVM Decision Tree Random Forest HMM

User1 83.3676 % 82.9569 % 87.0637 % 92.0945 % 84.3429 %

User2 79.3946 % 79.1036 % 87.7183 % 91.1525 % 83.6438 %

User3 89.0037 % 88.0443 % 86.7897 % 91.0701 % 87.6753 %

User4 80.7571 % 75.7729 % 81.6404 % 86.8139 % 82.2082 %

User5 79.7559 % 78.5355 % 85.5707 % 90.4523 % 85.6425 %

User6 82.8698 % 85.9039 % 88.4324 % 93.1732 % 87.6738 %

User7 89.56 % 90.6786 % 90.7532 % 93.1394 % 89.3363 %

User8 86.6699 % 86.573 % 84.6825 % 89.7722 % 85.4096 %

User9 87.5528 % 85.0557 % 87.1687 % 89.9731 % 87.6681 %

User10 84.1238 % 83.963 % 82.8376 % 88.6656 % 84.4051 %

User11 90.1752 % 92.0411 % 92.2696 % 93.8309 % 91.6984 %

User12 92.1131 % 91.4063 % 93.4524 % 94.6057 % 92.0015 %

User13 86.2109 % 84.5313 % 87.3438 % 91.6797 % 88.2422 %

User14 77.0406 % 74.6539 % 77.4702 % 83.8186 % 77.5656 %

Table 6 shows the respective overall accuracy of each of the user with user specific training data with

10 fold cross validation. We observed the maximum accuracy of activity recognition with Random

Forest algorithm and closely followed by decision tree algorithm. When compared to other algorithms

Random forest gave better accuracy, but the time taken to build a model with random forest is the

longest when compared to other algorithms. Hence this is not the best suitable approach for activity

recognition on a mobile platform.

54

Figure 23: Accuracy User Specific

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

User Dependent Accuracy

Naive Bayes

SVM

Decision Tree

Random Forest

HMM

55

Figure 24: Accuracy User Independent

User Independent

The accuracy of machine learning algorithms reduce with the increase in user independent

training data, the random forest algorithm and decision tree algorithms perform better compared to

other algorithms. We also observe that with the increase in the number of users the recognition

accuracies goes down.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Users

User Independent Accuracy

Naive Bayes

SVM

Decision Tree

Random Forest

HMM

56

Table 9: User Independent Algorithms Accuracy

Algorithm Naive Bayes SVM Decision Tree Random Forest HMM

User1 83.3676 % 82.9569 % 87.0637 % 92.0945 % 84.3429 %

User2 83.3676 % 72.6678 % 84.1517 % 89.7709 % 84.3429 %

User3 74.4473 % 71.1412 % 83.2703 % 90.1414 % 79.3467 %

User4 70.9507 % 70.3451 % 82.1223 % 88.1926 % 76.0672 %

User5 69.0461 % 68.296 % 82.4978 % 88.6986 % 75.1219 %

User6 62.9997 % 65.0245 % 80.8579 % 88.5189 % 74.7312 %

User7 64.0267 % 66.334 % 81.0383 % 87.8044 % 72.7339 %

User8 60.4775 % 68.0148 % 80.8702 % 87.9938 % 71.4209 %

User9 60.8545 % 67.9823 % 80.9084 % 87.9459 % 72.4724 %

User10 62.2759 % 64.8211 % 80.0232 % 87.4806 % 70.9947 %

User11 60.7961 % 65.0785 % 80.3014 % 88.1606 % 71.5728 %

User12 61.723 % 66.9569 % 80.7482 % 88.4181 % 70.6883 %

User13 61.7958 % 66.7788 % 82.4978 % 88.2004 % 70.4624 %

User14 59.4259 % 62.5851 % 79.9786 % 87.6841 % 68.6326 %

5.4 Run Time Performance

In the experiment, we analyzed the training/testing runtime performance of different

algorithms and the PEMAR runtime for each individual gesture. We conducted test cases for this and

measured the average time taken to run the training in both environments, that is online and offline.

The run time evaluation is carried out for the online systems. Systems in which the recognition

response should be instantaneous. We also evaluate the time taken to build a training model in online

system.

57

Table 10: Time Taken to Build Model

Device Training Repetition

for each gesture

Time Taken to build

model (sec)

Time to download

model (sec)

Nexus 7 60 64 0.7406

Nexus 7 120 123 0.8106

Nexus 7 180 183 0.7814

Nexus 7 240 255 0.7105

Table 10 shows the comparison of model building time on a mobile platform and the time it

takes to fetch and use an existing model from the database. We also evaluate the accuracy of

recognition with the increase in the choices of recognition models. We observed that with an increase

in the choices of the activity models the overall accuracy of the recognition system goes down.

Figure 25: Percentage Accuracy with Number of Models

80

85

90

95

100

3 6 9 12

A
cc

u
ra

cy
 in

 p
er

ce
n

ta
ge

Number of Gestures

58

Figure 26: Performance Evaluation of PEMAR for Individual Activity Models

For the performance evaluation of the system, we evaluated the PEMAR model generation and

download time with model generation time on a mobile platform. Figure 24 shows the evaluation

results, where the type of gesture is represented on the x-axis and runtimes are represented on the

y-axis. We found that the runtime performance of PEMAR, i.e model download time is better

compared to the model generation time on a mobile platform. Figure 27 shows the Precision, Recall

and F-measure of different activities performed and reported by the students of the Couse Big Data

Analytics and Applications.

800
757 729

675 677 700 697 686

571 565

456 458 457 461 462

44 47
92

38 36 44 41 42 42 39 38 51 45 43 47

0

100

200

300

400

500

600

700

800

900

R
u

n
ti

m
e

 (
m

s)

Gestures

PEMAR Model Generation and Testing (ms) PEMAR Runtime (ms)

59

Figure 27 : Individual Gesture Recognition Accuracy

60

6. CONCUSION AND FUTURE WORK

6.1 Conclusion

We proposed the middleware for activity recognition whose potential is to be able to support

both online and offline recognition systems to achieve better performance and reduce development

time. We have proposed an architecture for an adaptive middleware system, which can handle diverse

data from multiple users using the system at the same time. We developed multiple android

applications that use the existing system for long running activities and short running activities as well.

User dependent models are created dynamically without the user explicitly training for the model,

this makes save a lot of time and initial set up time and offer better accuracy with increased usage of

the application. An implementation of recognition system with the HMM model is created, which

uses a filter to remove the bad and not so significant data and capture the sequence data. We have

showed that such a middleware would increase the accuracy of the recognition and the performance

of the system.

6.2 Future Work

There are some of the limitations of the project and scope for enhancement. PEMAR

application requires a smart device for the carrying the computation, since the data from the wearable

sensors would require a computational system. The proposed system is limited and cannot handle

multiple sensors at the same time on a human body for activity recognition. The current algorithm

model generation is in a batch mode, this increase the wait time and adds delay for model updating.

Different gaming applications can be implemented with multiple mobile platforms. We can also

develop applications with multiple devices like Wiimote on the same platform.

61

REFERENCES

1. Information Handling Services. URL: www.ihs.com

2. Lara, O.D., and Labrador, M.A. A Survey on Human Activity Recognition using Wearable

Sensors. Communications Surveys & Tutorials. IEEE, Vol.15, no.3, p. 1192-1209, Third Quarter

2013

3. Goran, M. I., Reynolds, K. D., and Lindquist, C.H. Role of physical activity in the prevention of

obesity in children. International Journal of Obesity, Vol.23, p. 18-33, 1999.

4. Schlömer, T., Poppinga, B., Henze, N., and Boll, S. Gesture recognition with a Wii controller.

In Proceedings of the 2nd International conference on Tangible and embedded interaction.

ACM, p. 11-14, 2008.

5. Wang, S. B., Quattoni, A., Morency, L. P., Demirdjian, D., and Darrell, T. Hidden conditional

random fields for gesture recognition. In Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference. IEEE, Vol.2, p. 1521-1527, 2006.

6. Gavrila, D. M. The visual analysis of human movement: A survey. Computer Vision and Image

Understanding. Vol.73.1, p. 82-98, 1999.

7. Ehreumann, M., Lutticke, T., and Dillmann, R. Dynamic gestures as an input device for

directing a mobile platform. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE

International Conference. IEEE, Vol.3, p. 2596-2601, 2001.

8. Maurer, U., Smailagic, A., Siewiorek, D.P., and Deisher, M. Activity recognition and monitoring

using multiple sensors on different body positions. In International Workshop on Wearable

and Implantable Body Sensor Networks. IEEE Computer Society, p. 4-10, Washington, DC, USA,

2006.

9. Tapia, E. M., Intille, S. S., Haskell, W., Larson, K., Wright, J., King, A., and Friedman, R. Real-

time recognition of physical activities and their intensities using wireless accelerometers and

62

a heart rate monitor. Wearable Computers. 11th IEEE International Symposium. IEEE, p.37-

40, 2007.

10. Zephyr Bioharness BT. http://www.zephyr-technology.com/bioharness-bt.html.

11. Berchtold, M, et al. An extensible modular recognition concept that makes activity recognition

practical. In the book, In KI: Advances in Artificial Intelligence. Published by Springer Berlin

Heidelberg, p. 400-409, 2010.

12. Brezmes, T., Juan-Luis, G., and Josep, C. Activity recognition from accelerometer data on a

mobile phone. In the book, In Distributed computing, artificial intelligence, bioinformatics,

soft computing, and ambient assisted living. Published by Springer Berlin Heidelberg, p. 796-

799, 2009.

13. Ermes, M., Parkka, J., and Cluitmans, L. Advancing from offline to online activity recognition

with wearable sensors. In Engineering in Medicine and Biology Society. 30th Annual

International Conference of the IEEE. p. 4451-4454, 2008.

14. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., and Korhonen, I. Activity

classification using realistic data from wearable sensors. Information Technology in

Biomedicine. IEEE Transactions, Vol.10 (1), p. 119-128, 2006.

15. Bao, L., and Intille, S. S. Activity recognition from user-annotated acceleration data. In the

book, Pervasive computing. Published by Springer Berlin Heidelberg, p. 1-17, 2004.

16. Khan, A. M., Lee, Y. K., and Lee, S. Y. Accelerometer's position free human activity recognition

using a hierarchical recognition model. In e-Health Networking Applications and Services

(Healthcom). 12th IEEE International Conference, p. 296-301, 2010.

17. Zhu, C., and Sheng, W. Human daily activity recognition in robot-assisted living using multi-

sensor fusion. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference, p.

2154-2159, 2009.

63

18. Zhang, M., and Sawchuk, A. A. A feature selection-based framework for human activity

recognition using wearable multimodal sensors. In Proceedings of the 6th International

Conference on Body Area Networks. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), p. 92-98, 2011.

19. Hu, J., Kong, Y., and Fu, Y. Activity recognition by learning structural and pairwise mid-level

features using random forest. In Automatic Face and Gesture Recognition (FG). 10th IEEE

International Conference and Workshops, p. 1-6, 2013.

20. Lester, J., Choudhury, T., and Borriello, G. A practical approach to recognizing physical

activities. In the book, Pervasive Computing. Published by Springer Berlin Heidelberg, p. 1-16,

2006.

21. Yang, J., and Xu Y. Hidden markov model for gesture recognition. Carnegie-Mellon Univ

Pittsburgh Pa Robotics Inst, No. Cmu-Ri-Tr-94-10, 1994.

22. Arteaga, S. M., Kudeki, M., and Woodworth, A. Combating obesity trends in teenagers

through persuasive mobile technology. ACM SIGACCESS Accessibility and Computing, Vol.94,

p. 17-25, 2009.

23. Dempster, W. T., and Gaughran, G. R. Properties of body segments based on size and weight.

American Journal of Anatomy 120.1. p. 33-54, 1967.

24. Physical Activity: A Journal about the Physical Activity and Factors Motivating Physical Activity.

URL: https://www.presidentschallenge.org/informed/digest/docs/200009digest.pdf

25. Goran, M. I., Reynolds, K. D., and Lindquist, C. H. Role of physical activity in the prevention of

obesity in children. International Journal of Obesity, Vol.23, p. 18-33, 1999.

26. Wang, S. B., Quattoni, A., Morency, L. P., Demirdjian, D., and Darrell, T. Hidden conditional

random fields for gesture recognition. In Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference, Vol.2, p.1521-1527, 2006.

64

27. Gavrila, D. M. The visual analysis of human movement: A survey. Computer Vision and Image

Understanding, Vol.73.1, p.82-98, 1999.

28. Ehreumann, M., Lutticke, T., and Dillmann, R. Dynamic gestures as an input device for

directing a mobile platform. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE

International Conference, Vol.3, p.2596-2601, 2001.

29. Mantyla, V. M., Mantyjarvi, J., Seppanen, T., and Tuulari, E. Hand gesture recognition of a

mobile device user. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International

Conference, Vol.1, p.281-284, 2000.

30. Liu, J., Zhong, L., Wickramasuriya, J., and Vasudevan, V. uWave: Accelerometer-based

personalized gesture recognition and its applications. Pervasive and Mobile

Computing, Vol.5.6, p.657-675, 2009.

31. Pylvänäinen, T. Accelerometer based gesture recognition using continuous HMMs. In the

book, Pattern Recognition and Image Analysis. Published by Springer Berlin Heidelberg, p.639-

646, 2005.

32. Obesity Statistics. URL: American Heart Association. URL:

http://www.heart.org/idc/groups/heartpublic/wcm/sop/smd/documents/downloadable/uc

m_319588.pdf.

33. Statistics about Obesity in US: Centers for Disease Control and Prevention. URL:

http://www.cdc.gov/healthyyouth/obesity/facts.htm.

34. Motivating Kids to do Physical Activity: URL: Presidents Council

https://www.presidentschallenge.org/informed/digest/docs/200009digest.pdf.

35. Second Life. URL: http://secondlife.com/.

36. Dean, E., Cook, S., Keating, M., and Murphy, J. Does this avatar make me look fat? Obesity

and interviewing in Second Life. Journal of Virtual Worlds Research, Vol.2.2, p.1-11, 2009.

file:///C:/Users/Prakash/AppData/Roaming/Microsoft/Word/American
http://www.heart.org/idc/groups/heartpublic/wcm/sop/smd/documents/downloadable/ucm_319588.pdf
http://www.heart.org/idc/groups/heartpublic/wcm/sop/smd/documents/downloadable/ucm_319588.pdf
http://www.cdc.gov/healthyyouth/obesity/facts.htm
https://www.presidentschallenge.org/informed/digest/docs/200009digest.pdf
http://secondlife.com/

65

37. Wu, Y., and Huang, T. S. Vision-based gesture recognition: A review. Urbana, Vol.51, p.103-

115 1999.

38. Microsoft Kinect. URL: http://www.xbox.com/en-US/kinect.

39. Texas Instruments. URL: http://www.ti.com.

40. Ginjupalli, S. A Gestural Human Computer Interface for Smart Health , MS Thesis, University

of Missouri – Kansas City, 2013.

41. Ganesan, S., and Anthony, L. Using the kinect to encourage older adults to exercise: a

prototype. In Proceedings of the 2012 ACM annual conference extended abstracts on Human

Factors in Computing Systems Extended Abstracts. ACM, p.2297-2302, 2012.

42. Morency, L. P., Quattoni, A., and Darrell, T. Latent-dynamic discriminative models for

continuous gesture recognition. In Computer Vision and Pattern Recognition, 2007. CVPR'07.

IEEE Conference, p.1-8, 2007.

43. Kollmann, A., Riedl, M., Kastner, P., Schreier, G., and Ludvik, B. Feasibility of a mobile phone–

based data service for functional insulin treatment of type 1 diabetes mellitus

patients. Journal of Medical Internet Research, Vol.9.5, p.1-9, 2007.

44. WiiGee: A Java Based Gesture Recognition Library for the Wii Remote. URL:

http://www.wiigee.org/.

45. Consolvo, S., Everitt, K., Smith, I., and Landay, J. A. Design requirements for technologies that

encourage physical activity. In Proceedings of the SIGCHI conference on Human Factors in

computing systems. ACM, p.457-466, 2006.

46. Lange, B., Chang, C. Y., Suma, E., Newman, B., Rizzo, A. S., and Bolas, M. Development and

evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect

sensor. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International

Conference of the IEEE, p.1831-1834, 2011.

http://www.xbox.com/en-US/kinect
http://www.wiigee.org/

66

47. DePriest, D., and Barilovits, K. LIVE Xbox Kinect© s Virtual Realities to Learning Games. In 16th

ANNUAL TCC Worldwide Online Conference. Hawa, p.48-54, 2011.

48. Staiano, A. E., and Calvert, S. L. The promise of exergames as tools to measure physical

health. Entertainment Computing. Vol.2.1, p.7-21, 2011.

49. Haskell, W. L., et al. Physical activity and public health: updated recommendation for adults

from the American College of Sports Medicine and the American Heart Association. Medicine

and Science in Sports and Exercise. Vol.39.8, p.1423-1434, 2007.

50. Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. The action workflow approach to

workflow management technology. In Proceedings of the 1992 ACM Conference on

ComputerSsupported Cooperative Work. ACM, p.281-288, 1992.

51. Jovanov, E., Milenkovic, A., Otto, C., and De Groen, P. C. A wireless body area network of

intelligent motion sensors for computer assisted physical rehabilitation. Journal of

NeuroEngineering and Rehabilitation. Vol.2.1, p.1-6, 2005.

52. Tsai, C. C., Lee, G., Raab, F., Norman, G. J., Sohn, T., Griswold, W. G., and Patrick, K. Usability

and feasibility of PmEB: A mobile phone application for monitoring real time caloric

balance. Mobile Networks and Applications. Vol.12.2-3, p. 173-184, 2007.

53. Wii Remote Controller. URL: http://en.wikipedia.org/wiki/Wii_Remote.

54. F-Measure: Information about Calculation Precision, recall and F-measure URL:

http://www.creighton.edu/fileadmin/user/HSL/docs/ref/Searching_-_Recall_Precision.pdf

55. Alhalabi, M., Daniulaitis, V., Kawasaki, H., Tetsuya, M. and Ohtuka, Y. Future haptic science

encyclopedia: An experimental implementation of networked multi-threaded haptic virtual

environment. In HAPTICS '06 Proceedings of the Symposium on Haptic Interfaces for Virtual

Environment and Teleoperator Systems, p. 507-513, IEEE, 2006.

http://en.wikipedia.org/wiki/Wii_Remote
http://www.creighton.edu/fileadmin/user/HSL/docs/ref/Searching_-_Recall_Precision.pdf

67

56. Chronos Watch. URL:

http://processors.wiki.ti.com/index.php/EZ430Chronos?DCMP=Chronos&HQS=Other+OT+c

hronoswiki

57. Wii Controller. URL: http://mentalfloss.com/article/19178/4-ways-unleash-power-your-

wiimote-controller

58. DarwiinRemote Application. URL: http://en.wikipedia.org/wiki/DarwiinRemote

59. Android Application. URL: http://www.your-android.de/ueber-uns/mach-mit/

60. Android Operating System. URL: https://en.wikipedia.org/wiki/Android_(operating_system)

61. Beurer Heart Rate Monitor. URL:

http://www.beurer.com/web/en/product/heart_rate_monitors/heart_rate_monitors

62. Wikipedia. URL: www.wikipedia.org

http://processors.wiki.ti.com/index.php/EZ430Chronos?DCMP=Chronos&HQS=Other+OT+chronoswiki
http://processors.wiki.ti.com/index.php/EZ430Chronos?DCMP=Chronos&HQS=Other+OT+chronoswiki
http://mentalfloss.com/article/19178/4-ways-unleash-power-your-wiimote-controller
http://mentalfloss.com/article/19178/4-ways-unleash-power-your-wiimote-controller
http://en.wikipedia.org/wiki/DarwiinRemote
http://www.your-android.de/ueber-uns/mach-mit/
https://en.wikipedia.org/wiki/Android_(operating_system)
http://www.beurer.com/web/en/product/heart_rate_monitors/heart_rate_monitors
http://www.wikipedia.org/

68

VITA

Prakash Reddy Vaka was born on December 14, 1989, in Guntur, Andhra Pradesh, India. He

completed his Bachelor’s degree in Electrical and Electronics Engineering from Andhra University

College of Engineering in Visakhapatnam in 2011. Upon the completion of his Bachelor’s, he worked

with Infosys Limited as a Systems Engineer for two years.

In December 2014, Mr. Prakash came to the United States to pursue Computer Science at the

University of Missouri-Kansas City (UMKC), specializing in Software Engineering. During January 2014

to May 2015, Mr. Prakash worked as a Graduate Research Assistant at University of Missouri – Kansas

City, under the guidance of Dr. Yugyung Lee. After graduation, he plans to join as an Application

Developer at Kansas State University.

