DEANTIAROMATIZATION AS A DRIVING FORCE IN AN ELECTROCYCLIZATION OF CYCLOPENTADIENONE AND THE TOTAL SYNTHESIS OF 1-EPI- SECO - PSEUDOPTEROXAZOLE

A Dissertation Presented to The Faculty of the Graduate school University of Missouri-Columbia

In Partial Fulfillment of
The Requirements for the Degree
Doctor of Philosophy

by
PINGUAN ZHENG
Dr. Michael Harmata, Dissertation Supervisor
DECEMBER 2007

The undersigned, appointed by the dean of the graduate school, have examined the dissertation entitled,

PART 1 DEANTIAROMATIZATION AS A DRIVING FORCE IN AN
 ELECTROCYCLIZATION OF CYCLOPENTADIENONE AND

PART 2 TOTAL SYNTHESIS OF 1-EPI-SECO-PSEUOPTEROXAZOLE
presented by Pinguan Zheng
a candidate for the degree of Doctor of Philosophy
and hereby certify that in their opinion it is worthy of acceptance.

Professor Michael Harmata

Professor Kent S. Gates

Professor Timothy Glass

Professor Peter A. Tipton

Professor Renee Jiji

To Rong Xu and Ryan Miancheng Zheng

ACKNOWLEDGEMENTS

First and foremost I thank my advisors Dr. Michael Harmata for his guidance, encouragement, and insights in the course of my graduate studies. He is always available in the office and ready to help me when I was stuck in my experiments. Without him, this dissertation would not have been possible. His expertise in the organic chemistry improved my research skills and prepared me for future challenges.

I would like to thank my committee members: Dr. Kent S. Gates, Dr. Timothy E. Glass, Dr. Peter A. Tipton, Dr. Renee Jiji and former committee member Dr. Paul R. Sharp for their helpful suggestions on the thesis.

I also want to give my gratitude to Dr. Wei Wycoff for NMR training, Dr. Charles Barnes for performing X-ray crystallography. I appreciate Bill Vellema for his continuous technical support for a wide range of instruments. I will also never forget the "coffee break" with Mary Laney, who helped me improve my English in my first two years. I thank the administrative staffs of chemistry department, especailly Jerry Brightwell and Ashley Francher, for their assistance.

I want to thank Nathan Calkins, Derrick Seiner and Roberts Braun for proof-reading my thesis. I thank Weijiang Ying, Dr. Yugang Chen, Dr. Xuechuan Hong, and Nathan Calkins for the gifts of benzothiazines $548,550,552$, and 559 in the chiral sulfinamide project.

I would like to thank Dr. Xuechuan Hong, who offered the sincere help and helpful discussion especially in the beginning of my graduate studies. I also want to thank other Harmata group members: Nathan Calkins, Chaofeng Huang, Maria Gomes, Weijiang Ying,

Dr. Yugang chen and previous members: Dr. Sumrit Wacharasindhu, Dr. Kanok-on Raynil (Amy), Dr. Dong Reoul Lee, Gayatri Balan for their friendship during my graduate studies.

I want to give my greatest thanks to my family: my parents, Meihua Zheng and Xianfeng Yin, and my brother, Guanbo Zheng, whose love has been providing precious supports all these years.

Last, I want to thank my son, Ryan Miancheng Zheng, whose smile is the sweetest thing I have ever seen. He is the angel in my life. At last but most importantly, I wish to sincerely thank my wife, Rong Xu, for all of her support these years. Insightful scientific discussions and her encouragement help me get through the difficulties in the course of graduate studies. Without her, I would never accomplish this thesis.

PART 1 DEANTIAROMATIZATION AS A DRIVING FORCE IN AN ELECTROCYCLIZATION OF CYCLOPENTADIENONE
 PART 2 TOTAL SYNTHESIS OF 1-epi-seco-PSEUDOPTEROXAZOLE

Pinguan Zheng
Dr. Michael Harmata, Dissertation Supervisor

Abstract

Deantiaromatization has been successfully demonstrated as a driving force in an electrocyclization of cyclopentadienones. The reaction was found to be general for a number of substrates and provides a unique way to access tricyclic ring systems with high stereoselectivity. Some evidence was uncovered to show that the process is indeed an 8π conrotatory electrocyclic ring closure.

During the exploration of substituent effects in the electrocyclization, a novel coupling reaction of an organolithium with primary halides was discovered. The experimental data suggested the engagement of the silicon atom and the important role of terminal alkene in the coupling reaction. However, the application of thiw methodology to other silane systems was successful.

The total synthesis of 1-epi-seco-pseudopteroxazole was accomplished in 17 steps, featuring the Buchwald-Hartwig coupling, a stereoselective intramolecular Michael reaction, a Heck coupling and asymmetric reduction of trisubstituted alkene.

In the course of reductive cleavage of the C-I bond to access key intermediate 358, a novel dephenylation of Harmata benzothiazines was discovered to provide chiral cyclic

sulfinamides with complete stereocontrol. Preliminary mechanistic studies were carried out and a plausible mechanism was proposed based on our experimental results.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
ABSTRACT iv
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF SCHEMES xii
Chapter I Deantiaromatization as a Driving Force in an electrocyclic Reaction
1 Background on Electrocyclization 1
1.1 All-carbon Systems 2
1.1.1 2π Systems 2
1.1.2 4π Systems 2
1.1.3 6π Systems 8
1.1.4 8π Systems 11
1.2 Heteroatom-containing Systems 13
1.2.1 Oxa-6 π Systems 13
1.2.1.1 Access $2 H$-pyran Ring System 13
1.2.1.2 Access $2 H$-chromene Ring System 15
1.2.2 Aza-6 π Systems 16
2 Background on the Cyclopentadienones Chemistry 18
2.1 Preparation 19
2.2 Reactions of Cyclopentadienones 21
3 Results and Discussion 24
3.1 Discovery of Electrocyclization Reaction 24
3.2 Exploration of Electrocyclization of a Number of Substrates 29
4 Summary 40
Chapter II An Unusual Observation During a Lithium-bromine Exchange Reaction
1 Introduction 41
1.1 Characterization of Pentaorganosilicates 41
1.2 Reactions Involving Pentaorganosilicates 44
1.2.1 Nucleophilic Substitution 44
1.2.2 Rearrangement Invovlving Pentaorganosilicate Intermediates 47
2 Results and Discussion 52
2.1 Discovery of a Novel Coupling Reaction with Primary Halides 52
2.2 Preliminary Mechanistic Studies 55
2.3 Phenyldimethylsilane Derivate 62
2.4 Attempts of Coupling Reaction on Other Silane Substrates 65
3 Summary 67
Chapter III Total Synthesis of 1-epi-seco-pseudopteroxazole
1 Introduction 69
1.1 Serrulatane Diterpenoids from Pseudopterogorgia Elisabethae 69
1.2 Serrulatane Diterpenoids from Other Sources 71
1.3 Biosynthesis of Serrulatane Diterpenoids 73
1.4 Synthetic Efforts 74
1.4.1 seco-pseudopterosin Aglycone 75
1.4.2 Erogorgiaene 78
1.4.3 Synthetic Efforts from Our Group 82
1.4.3.1 Formal Synthesis of Erogorgiaene 82
1.4.3.2 Total Synthesis of Pseudopteroxazole 84
2 The Studies Towards the Total Synthesis of seco-Pseudopteroxazole86
2.1 Synthetic Plan 86
2.2 Results and Discussion 87
2.2.1 $1^{\text {st }}$ Approach to Introduce the Stereochemistry at C-4 and C-11 position 87
2.2.2 $\quad 2^{\text {nd }}$ Approach to Introduce the Stereochemistry at C-4 and C-11 position 103
2.2.3 Finish the Total Synthesis of 1-epi-seco-Pseudopteroxazole 107
3 Summary 108
Chapter IV A Novel Approach to Chiral Cyclic Sulfinamide
1 Introduction 113
1.1 Approach to Acyclic Sulfinamides 113
1.1.1 Chirality Transfer from Sulfinic Acid Derivatives 113
1.1.2 Ene Approach to Access the Chiral Sulfinamides 115
1.1.3 Sulfinamides Generated from Sulfoximine Derivatives 117
1.2 Approach to Cyclic Sulfinamides 119
1.2.1 Access 4-membered Cyclic Sulfinamides 119
1.2.2 Access 5-membered Cyclic Sulfinamides 120
1.2.3 Access 6-membered Cyclic Sulfinamides 122
1.3 Applications in Organic Synthesis 124
1.3.1 Acyclic Sulfinamides in Organic Synthesis 124
1.3.2 Cyclic Sulfinamides in Organic Synthesis 129
2 Results and Discussion 132
3 Summary 142
Chapter V Experiments
1 General Information 143
2 Deantiaromatization as a Driving Force in an Electrocyclic Reaction 144
3 An Unusual Observation During a Lithium-bromine Exchange Reaction 162
4 Total Synthesis of 1-epi-seco-pseudopteroxazole 171
5 A Novel Approach to Chiral Cyclic Sulfinamide 197
Appendix I 207
Appendix II 208
Refferences 356
VITA 375

LIST OF TABLES

Table 1 Synthesis of $\mathbf{1 2 5}$ from 126 26
Table 2 Optimization of the Electrocyclization Reaction of $\mathbf{1 2 5}$ 28
Table 3 Preparation of 2-bromocyclopentenones 30
Table 4 Electrocyclization of a series of bromocyclopentenones 32
Table 5 Halogen-metal Exchange of $\mathbf{2 4 2}$ Followed by Alkylation 54
Table 6 Reduction of $\mathbf{2 4 2}$ 57
Table 7 Halogen-lithium Exchange of $\mathbf{2 7 0}$ under Different Tempearatures 62
Table 8 Low Temperature ${ }^{29}$ Si-NMR Experiments 64
Table 9 Attempts of Intermolecular Coupling Reaction 67
Table 10 Synthesis of E-trisubstituted α, β-unsaturated Ester $\mathbf{3 6 6}$ 89
Table 11 Optimization of Intramolecular Michael Reaction 90
Table 12 Reduction of Ester 361 93
Table 13 Preparation of Sulfonate Esters and Iodide 94
Table 14 Preparation of Sulfonate Esters and Iodide from Ester 357 in One-pot 95
Table 15 Reductive Cleavage of Messylate Group 98
Table 16 Asymmetric Reduction of 359 109
Table 17 ortho-Nitration of Phenol 410 110
Table $18{ }^{1} \mathrm{H}$-NMR Comparison of Natural Product and Synthetic Product 276. 111
Table 19 Whitesell's synthesis of sulfinamides 117
Table 20 Synthesis of Chiral Alcohol 126
Table 21 Optimization of Dephenylation of 529 134
Table 22 Dephenylation of a Series of Harmata Benzothiazines 136

LIST OF FIGURES

Figure 1 X-ray Structure of 128 27
Figure 2 NOE Correlations for $\mathbf{1 5 8}$ and $\mathbf{1 6 0}$ 37
Figure 3 NOESY Spectrum of 158 37
Figure 4 X-ray Structure of $\mathbf{1 5 8}$ 38
Figure 5 NOESY Spectrum of $\mathbf{1 6 0}$ 39
Figure 6 Pentaorganosilicate 41
Figure 7 Some Organosilicates under Investigation 43
Figure 8 Some Stable Pentaorganosilicates 43
Figure $9{ }^{29}$ Si-NMR Experiment of $\mathbf{2 4 2}$ with t-BuLi and HMPA 60
Figure $10{ }^{29} \mathrm{Si}$-NMR Experiment of $\mathbf{2 6 2}$ with t-BuLi 61
Figure $11{ }^{29} \mathrm{Si}-\mathrm{NMR}$ Experiments of $\mathbf{2 7 0}$ with t-BuLi and HMPA 65
Figure 12 Frame Structure of Serrulatane 69
Figure 13 Serrulatane-based Marine Natural Products 70
Figure 14 Natural Products Isolated from Heliopora Coerulea and Dictyota Dichotoma 72
Figure 15 Natural Products Isolated from Eremophila Species 73
Figure 16 Configuration Analysis 83
Figure 17 X-ray Structure of 381 96
Figure 18 Byproducts in the Reductive Cleavage of C-X 99
Figure 19 NOE Spectrum of $\mathbf{3 8 9}$ 101
Figure 20 Key NOE correlations of 389 102
Figure 21 Conformational Analysis of 403 105
Figure 22 Conformational Analysis of 395 106
Figure 23 Model for Protonation 106
Figure 24 X-ray Structure of 539 134
Figure 25 X-ray Structure of 555 138
Figure 26 X-ray Structure of 561 139
Figure 27 Calculation of Responding Factor for Equimolar of Compound A Relative to Standard Compound 140
Figure 28 Calculation of GC Yield of Compound A 140

LIST OF SCHEMES

Scheme 1 Banwell's Total Synthesis of Maritinamine 6 2
Scheme 2 Nazarov Reaction 3
Scheme 3 Danishefsky's Total Synthesis of (-)-scabronine G 16 4
Scheme 4 Williams's Total Synthesis of (+)-fusicoauritone 19 4
Scheme 5 Srikrishna's Total Synthesis of (-)-cucumin H 23 5
Scheme 6 Frontier's Total Synthesis of (\pm)-merrilactone 28 5
Scheme 7 Tius's Total Synthesis of (\pm)-terpestacin 32 6
Scheme 8 Tius's Total Synthesis of Enantiomerically Pure Roseophilin 38 7
Scheme 9 Li’s Total Synthesis of (\pm)-cephalotaxine 43 7
Scheme 10 Suzuki's Total Synthesis of TAN-1085 46 8
Scheme 11 Total Synthesis of Steroid 55 9
Scheme 12 Funk's Total Synthesis of cis-trikentrin A 62 10
Scheme 13 Total Synthesis of Carbazomycin G 65 10
Scheme 14 Parker's Total Synthesis of SNF4435 C and D 11
Scheme 15 Trauner's Total Synthesis of Elysiapyrone A and B 12
Scheme 16 Funk's Total Synthesis of (\pm) - β-erythroidine 84 13
Scheme 17 Stoltz's Synthesis of the Core of Saudin 14
Scheme 18 Porco's Total Synthesis of (+)-torreyanic acid 93 14
Scheme 19 Trauner's Total Synthesis of Microphyllaquinone 96 15
Scheme 20 Thodorakis's Total Synthesis of Desoxymorellin 101 16
Scheme 21 Weinreb's Total Synthesis of Ageladine A 108 17
Scheme 22 Horne's Biomimetic Total Synthesis of Grossularine 115 18
Scheme 23 Generation of $\mathbf{1 1 8}$ from 4-bromocyclopentenone 19
Scheme 24 Synthesis of $\mathbf{1 2 1}$ from 1,4-diiodo-1,3-diene 19
Scheme $25[2+2+1]$ Cycloaddition Approach to 126 20
Scheme 26 [3+2] Cycloaddition Approach to 129 21
Scheme 27 Cyclopentadienone in the Diels-Alder Reaction 22
Scheme 28 Whitehead's Biomimetic Total Synthesis of Manzamenone A 23
Scheme 29 Unusual Reaction of Cyclopentadienone 23
Scheme 30 Generation of $\mathbf{1 1 8}$ from 2-bromocyclopentenone 24
Scheme 31 Possible Electrocyclizations of Cyclopentadienone 119 24
Scheme 32 Preparation of $\mathbf{1 2 5}$ from 2-bromocyclopentenone 122 25
Scheme 33 Electrocyclization of $\mathbf{1 2 5}$ via a Cyclopentadienone Intermediate 26
Scheme 34 Synthesis of $\mathbf{1 4 2}$ 31
Scheme 35 Dimerization of $\mathbf{1 3 9}$ 34
Scheme 36 Reaction with 4-methyl-2-bromocyclopentenone 34
Scheme 37 Proposed Mechanism for the Conversion of $\mathbf{1 2 8}$ 35
Scheme 38 Computed Relative Free Energies $\Delta \mathrm{G}_{298.15 \mathrm{~K}}$ Values for the Proposed Reaction Pathways 36
Scheme 39 Electrocyclization of $\mathbf{1 3 5}$ 37
Scheme 40 Computed relative free energies $\Delta \mathrm{G}_{298.15 \mathrm{~K}}$ 40
Scheme 41 The First Observation of Pentaorganosilicate in Solution 42
Scheme 42 Reactions Involving Pentaorganosilicates 45
Scheme 43 Unusual reaction of $\mathbf{1 8 6}$ with Dilithiobiphenyl 185 45
Scheme 44 Nucleophilic Substitution Reaction of 187 46
Scheme 45 Synthesis of Tetraethylsilole 193 46
Scheme 46 Reactions of 5,5'-spirobi-[dibenzosilole] 170 47
Scheme 47 Nucleophilic Substitution Reaction of 197 47
Scheme 48 1, 2-rearrangement of 198 and 202 48
Scheme 49 1, 2-rearragement of Allyl Group 49
Scheme 50 1, 3-rearrangement of TMS Group 49
Scheme 51 1, 3-rearrangement of TMS Group 50
Scheme 52 1,4-rearrangement of TMS Group 50
Scheme 53 Carbene Rearrangement of Silyl Group 51
Scheme 54 Synthesis of Silole from 1,4-diiodo-1,3-diene 228 51
Scheme 55 Proposed Mechanism 52
Scheme 56 Proposed Electrocyclization of 236 52
Scheme 57 Synthesis of Bromosilane 242 53
Scheme 58 An Unusual Observation during the Attempt to Access 236 53
Scheme 59 Proposed Mechanism 55
Scheme 60 Preliminary Mechanistic Studies 56
Scheme 61 Lithium-halide Exchange of 262 59
Scheme 62 Preparation of Phenyldimethylsilane Derivative 270 62
Scheme 63 Attempts of Intramolecular Coupling Reaction on 164 and 277 66
Scheme 64 Biosynthesis of Serrulatane Diterpenoids 74
Scheme 65 McCombie's Total Synthesis of Racemic seco-pseudopterosin Aglycone 75
Scheme 66 McCombie's Enantioselective Synthesis of Key Intermediate 311 76
Scheme 67 Schmaltz's Enantioselective Total Synthesis of seco-pseudopterosin Aglycone 77
Scheme 68 Hoveyda's Enantioselective Total Synthesis of Erogorgiane 282 79
Scheme 69 Davies's Synthesis of Key Intermediate 333 80
Scheme 70 Mechanism of C-H Activation/Cope Rearrangement 80
Scheme 71 Davies's Enantioselective Total Synthesis of Erogorgiaene 81
Scheme 72 Yadav's Total Synthesis of Erogorgiaene 82
Scheme 73 Harmata's Benzothiazine Chemistry 82
Scheme 74 Harmata's Synthesis of Key Intermediate Benzothiazine Chemistry 84
Scheme 75 Harmata's Total Synthesis of Pseudopteroxazole 359 85
Scheme 76 Proposed Synthesis of Key Intermediate 362 86
Scheme 77 Synthetic Plan to seco-pseudopteroxazole 281 87
Scheme 78 Synthesis of Bromoaldehyde 367 88
Scheme 79 Synthesis of Phosphate 368 88
Scheme 80 Synthesis of Benzothiazine Ester 360 89
Scheme 81 Mechanism and Stereo Rationale 91
Scheme 82 Proposed Route 358 92
Scheme 83 Proposed Mechanism for the Formation of 380 and 381 97
Scheme 84 Proposed Mechanism for the Formation of 388 and 389 102
Scheme 85 Preparation of Aniline 394 103
Scheme 86 Second Approach to Aniline 394 103
Scheme 87 Preparation of Allylic Sulfoximine 400 104
Scheme 88 Model Studies to Access Allylic Benzothiazine 403 105
Scheme 89 Synthesis of Allylic Benzothiazine 396 106
Scheme 90 Another Approach to Aniline 394 107
Scheme 91 Preparation of Heck Precursor 363 108
Scheme 92 Finish the Total Synthesis of 1-epi-seco-pseudopteroxazole 281 111
Scheme 93 Harmata's Synthesis of Sulfinamide 415 113
Scheme 94 Asymmetric Synthesis of Chiral Sulfinamides from Chiral Sulfinates 114
Scheme 95 Ellman's Asymmetric Synthesis of 422 114
Scheme 96 Senanayake's Synhesis of ent-422 115
Scheme 97 Ene Approach to Chiral Sulfinamide 427 116
Scheme 98 Epoxidation and Cyclopropanation Using Sulfoximine as Reagent 118
Scheme 99 Synthesis of Sulfinamide from Benzothiazine or Sulfoximine 118
Scheme 100 Asymmetric Synthesis of Sulfinamide 446 119
Scheme 101 [2+2] Cycloaddition Spproach 119
Scheme 102 [3+2] Cycloaddition Approach 120
Scheme 103 Doi's synthesis of 5-membered Sulfinamides. 120
Scheme 104 Radical Cyclization 121
Scheme 105 Nucleophilic Addition of Triple Bond 121
Scheme 106 Synthesis of N-carboxy Cyclic Sulfinamide 469 121
Scheme 107 Diels-Alder Approach to Cyclic Sulfinamides 122
Scheme 108 Asymmetric Diels-Alder Reaction 123
Scheme 109 Synthesis of Rricyclic Sulfinamide 482 123
Scheme 110 Mechanism of Formation of 482 124
Scheme 111 Sulfinimine Chemistry 125
Scheme 112 Harmata's Synthesis of Benzothiazine 496 126
Scheme 113 Synthesis of Olefin and Ketone 127
Scheme 114 Sigmatropic Rearrangement 127
Scheme 115 Sulfinamide as Chiral Auxiliary in Diels-Alder Reaction 128
Scheme 116 PNS=O Ligand in the Asymmetric Pauson-Khand Reaction 129
Scheme 117 Enantioselective Reduction of Ketimine 517 129
Scheme 118 Hydrolysis of 520 in the Basic Medium 130
Scheme 119 Ring Contraction of 523 130
Scheme 120 Synthesis of E-threo-hydroxy Carbamate 526 130
Scheme 121 Weinreb's Synthesis of Agelastatin A 131
Scheme 122 Reductive Cleavage of C-I Bond 132
Scheme 123 Dephenylation of 362 133
Scheme 124 Preparation of Benzothiazine 538 133
Scheme 125 Reduction of rac-559 138
Scheme 126 Reduction of Acyclic Sulfoximines 139
Scheme 127 Quantitative GC Studies of Dephenylation of 538 140
Scheme 128 Reaction of Sulfones with $\mathrm{LiEt}_{3} \mathrm{BH}$ 141
Scheme 129 Pd-catalyzed Desulfonation Reaction 141
Scheme 130 Proposed Mechanism for the Dephenylation of 538 143

Chapter I

Deantiaromatization as a Driving Force in an Electrocyclic Reaction

1 Background on Electrocyclization

Electrocyclic reactions have been long considered as powerful approaches to access different ring systems ranging from 3- to 8 -membered rings by the simple rearrangement of a carbon-carbon bond. In general, electrocyclic reactions are stereoselective and the products can be well predicted by Woodward-Hoffmann rules.

No. of electrons	thermal	photochemical
$4 n$	conrotatory	disrotatory
$4 n+2$	disrotatory	conrotatory

Electrocyclic reactions are usually classified by the number of electrons in the reaction. And they can also be divided into an all-carbon system or a heteroatom system based on the atoms involved in the electrocyclic reaction. ${ }^{1}$

Over 480 papers have been published since 2000 on this topic. Other than the progress in methodological development, electrocyclic reactions have been engaged in a number of biomimetic total synthesis of natural products, which have been well reviewed by Trauner. ${ }^{1}$ In order to show the power of electrocyclic reactions in the limited space, we will focus on the application of electrocyclic reactions in the total synthesis of natural products published since 2000.

1.1 All-Carbon Systems

1.1.1 2π Systems

There is only one synthesis involving 2π electrons documented since 2000 . Maritinamine 6, isolated in 1989, showed potential antimalarial and cytotoxic activities. ${ }^{2}$ In 2001, Banwell reported the first total synthesis of $\mathbf{6}$. Addition of phenyllithium to 3ethoxycyclopentenone $\mathbf{1}$ provided 3. $\mathbf{3}$ was converted into intermediate $\mathbf{4}$ in a few steps. Key intermediate $\mathbf{5}$ was obtained by the silver(I)-catalyzed the electrocyclic ring-opening of cyclopropane ring, followed by intramolecular nucleophilic cyclization (Scheme 1). ${ }^{3}$

Scheme 1 Banwell's Total Synthesis of Maritinamine 6

1.1.2 4π Systems

Of the electrocyclic reactions involving 4π-electrons, the Nazarov cyclization is well known. It involves the conversion of divinyl ketones $\mathbf{7}$ to cyclopentenones $\mathbf{1 1}$ by Lewis acid activiation. The process likely involves the complexation with Lewis acid (8), conrotatory cyclization to form $\mathbf{1 0}$ and subsequent loss of one proton (Scheme 2).

Scheme 2 Nazarov Reaction

Remarkable progress has been made on the Nazarov cyclization, which has been reviewed by Denmark, ${ }^{4}$ Tius, ${ }^{5}$ and Frontier. ${ }^{6}$ Herein, only applications in the total synthesis will be discussed.

Scabronine G (16) was isolated from metabolites from the mushroom Sarcodon scabrosus in 1998. ${ }^{7}$ It was found to promote the excretion of the nerve growth factor. Encouraged by the potent bioactivity and challenging tricyclic structure, Danishefsky and coworkers ${ }^{8}$ reported the first total synthesis of 16. The synthesis started from (-)-Wieland-Miescher ketone (12). Dissolving metal reduction of the α, β-unsaturated ketone and acylation afforded a β-ketoester (not shown), which was converted to unsaturated ester $\mathbf{1 3}$ by the sequential triflation and hydride reduction. Vinyl ketone $\mathbf{1 4}$ was formed in 66% yield with the addition of Grignard reagent to Weinreb amide. Lewis acid-mediated classic Nazarov cyclization occurred smoothly to provide 15 in 72% yield. The total synthesis of (-)-16 was accomplished in a few more steps (Scheme 3).

Scheme 3 Danishefsky's Total Synthesis of (-)-scabronine G 16

Very recently Willams reported the biomimetic total synthesis of (+)-fusicoauritone 19 featuring the Nazarov reaction of proposed biogenic precursor dolabelladienone 17. Under acidic conditions, $\mathbf{1 7}$ was successfully converted to cyclopentenone 18 in 92% yield with retention of double-bond geometry. Stereoselective allylic oxidation provided 19 in moderate yield (Scheme 14).

Scheme 4 Williams's Total Synthesis of (+)-fusicoauritone 19

Other than divinylketone, propargyl diol 20 was demonstrated as a valuable precursor in the Nazarov reaction in the total synthesis of (-)-cucumin H23. ${ }^{9}$ When $\mathbf{2 0}$ was exposed to Eaton's reagent $\left(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{MsOH}\right)$, Nazarov cyclization occurred smoothly to
provide tricyclic product $\mathbf{2 2}$ in 70% yield, which presumably proceed via enyne $\mathbf{2 1}$ intermediate (Scheme 5).

Scheme 5 Srikrishna's Total Synthesis of (-)-cucumin H 23

Catalytic Nazarov cyclization utilizing silyloxyfuran $\mathbf{2 5}$ was successfully applied to the total synthesis of (\pm)-merrilactone A in the Frontier group. ${ }^{10}$ The requisite silyoxyfuran 25 was prepared from known aldehyde 24 in 5 steps. Catalyzed by the dicationic iridium catalyst 26, Nazarov cyclization of $\mathbf{2 5}$ proceeded successfully to give key intermediate $\mathbf{2 7}$ as a single diastereomer. Finally, $\mathbf{2 7}$ was converted into merrilactone A 28 after a few manipulations (Scheme 6).

Scheme 6 Frontier's Total Synthesis of (\pm)-merrilactone 28

The Nazarov cyclization of allenyl vinyl ketone was another variant of the Nazarov reaction that was developed by Tius. ${ }^{11}$ This methodology was employed in the total
synthesis of (\pm)-terpestacin (32). ${ }^{12}$ Highly substituted cyclopentenone $\mathbf{3 1}$ was prepared by the reaction of γ-lactone $\mathbf{2 9}$ with lithioallene $\mathbf{3 0}$ in moderate yield. The 15 -membered ring was constructed to deliver terpestacin $\mathbf{3 2}$ in a few steps (Scheme 7).

Scheme 7 Tius' Total Synthesis of (\pm)-terpestacin 32

Asymmetric Nazarov cyclization of allenyl vinyl ketones was developed by Tius and developed in the total synthesis of roseophilin $\mathbf{3 8}$. The chemistry of $\mathbf{3 8}$ has attracted considerable attention since the isolation from Streptomyces griseoviridis in 1992 by Seto. ${ }^{13}$ The strong in vitro activity against several cancer cell lines, together with an unusual 13-membered macrocyclic ring and pyrrolylfuran core structure have made roseophilin one of the most popular target in the past decade. ${ }^{14}$ In 2001, Tius ${ }^{15}$ reported the enantiospecific total synthesis of 38 . Key intermediate $\mathbf{3 4}$ was prepared from commercially available 5 -hexenal in 6 steps. Addition of chiral lithioallene $\mathbf{3 5}$ to the α, β unsaturated amide $\mathbf{3 4}$ proceeded smoothly to give allenyl ketone 36. Upon treatment with $\mathrm{HCl}, \mathbf{3 6}$ spontaneously underwent a Nazarov cyclization to form cyclopentenone $\mathbf{3 7}$ in 78% yield with 86% ee. The first enantiospecific total synthesis of roseophilin 38 was accomplished by a few transformations (Scheme 8).

Scheme 8 Tius's Total Synthesis of Enantiomerically Pure Roseophilin 38

During the total synthesis of cephalotaxine $\mathbf{4 3}, \mathrm{Li}$ and coworkers ${ }^{16}$ found that upon treatment with FeSO_{4} in hot acetic acid in air, enamine 39 underwent cyclization to produce 42 in 57% yield. They proposed a mechanism involving an azo-Nazarov cyclization. Acid-mediated oxidation of enamine 39 provided iminium salt 40, which could tautomerize to divinyl cation 41 . Nazazov cyclization of 41 would deliver 42 , which is a key intermediate to cephalotaxine 43 (Scheme 9).

Scheme 9 Li's Total Synthesis of (\pm)-cephalotaxine 43

Besides the Nazarov reaction, electrocyclic ring opening reactions involving 4π electrons have been adopted by Suzuki in the total synthesis TAN-1085 (46). ${ }^{17}$ Swern oxidation of diol 44 was carried out at $-78^{\circ} \mathrm{C}$ and the reaction was warmed up to $25^{\circ} \mathrm{C}$. Key intermediate 45 was formed. The reaction proceeded through the electrocyclic 4π electron ring-opening reaction and subsequent 6π electron cyclization $(\mathbf{4 7} \boldsymbol{\rightarrow} \mathbf{4 8})$.

Scheme 10 Suzuki's Total Synthesis of TAN-1085 46

1.1.3 6 $\boldsymbol{\pi}$ Systems

Electrocyclic reaction of hexatriene provides rapid access to 6-membered rings. Recently, Meijere and coworkers ${ }^{18}$ demonstrated the total synthesis of steroids and their analogues featuring a 6π electrocyclization. Vinylstannane 50 was prepared from the known bicyclic ketone 49 . Compound $\mathbf{5 0}$ was selectively coupled with triflate $\mathbf{5 1}$ to form 52. Subsequent intermolecular Heck coupling with t-butyl acrylate was fulfilled to provide 54 in the presence of Herrmann's catalyst. Finally, 6π-electrocyclic ring closure smoothly formed steroid 55 in reasonable yield (Scheme 11).

Scheme 11 Total Synthesis of Steroid 55

Electrocyclic ring closure of 6π electrons system was also employed to access the polysubstituted phenyl rings. One such example is the concise total synthesis of cistrikentrin A (62) from Funk's group in 2006. ${ }^{19}$ cis-Trikentrin A (62) was isolated from a marine sponge in $1986 .{ }^{20}$ Due to its interesting tricyclic structure and potent antibacterial activity, $\mathbf{6 2}$ has attracted much interest in the organic synthetic community. Funk started from readily avaible pyrroline aldehyde 56. Compound 56 was converted to vinyl stannane $\mathbf{5 8}$ by a routine reaction sequence. Subsequent $\mathrm{Pd}(0)$-catalyzed Stille coupling of $\mathbf{5 8}$ with triflate $\mathbf{5 9}$ gave rise to the labile triene $\mathbf{6 0}$. The crude $\mathbf{6 0}$ was further converted to indoline 61 utilizing facile electrocyclic ring-closure and in situ oxidation with MnO_{2}. The total synthesis of $\mathbf{6 2}$ was accomplished by the deprotection of the Boc group and aromatization (Scheme 12). Due to its rapid access to polysubstituted phenyl ring, the
sequence of electrocyclic ring-closure of triene and subsequent aromatization has been widely applied in the total synthesis of natural products. ${ }^{21-25}$

Scheme 12 Funk's Total Synthesis of cis-Trikentrin A 62

Other than the triene as the precursor of electrocyclization, dienyl propargyl alcohol was also used as starting material. In Hibino's total synthesis of carbazomycin G, propargyl alcohol 64 was converted to 64 in good yield. When 63 was subjected to t BuOK, the propragyl moiety would rearrange to allene intermediate $\mathbf{6 6}$, which could undergo rapid electrocyclization to afford intermediate $\mathbf{6 7 . 6 4}$ could be generated by the aromatization of 67 (Scheme 13). Application of this methodology was made in the total synthesis of murrayaquinone A^{26} and calothrixin $B .^{27}$

Scheme 13 Total Synthesis of Carbazomycin G 65

1.1.4 8 π Systems

Due to the low activation barrier, the octatetraene system tends to undergo facile conrotatory ring-closure electrocyclization to provide cyclooctatriene, which can further undergo 6π electron ring-closing to afford a bicyclo[4.2.0]-octadiene system. Such a biomimetic process involving an $8 \pi-6 \pi$ cascade electrocylization was first developed by Nicolaou, ${ }^{28}$ which offered an intriguing and rapid approach to access a number of complex natural products. Recent application of this process was made in the total synthesis of SNF4435 by Parker. In Parker's synthesis, ${ }^{29}$ Stille coupling of iodide 68 and stannane 69 delivered octatetraene 70. Tandem electrocyclization took place spontaneously to afford a mixture of endo and exo isomers of 71. Subsequent disrotatory cyclization of $\mathbf{7 1}$ provided a 4: 1 mixture of two isomers of SNF4435 C (72) and SNF4435 D (73) in 53% yield (Scheme 14). Similar strategies were applied to the total synthesis of SNF4435 ${ }^{30,31}$ and ocellapyrone A. ${ }^{32}$

Scheme 14 Parker's Total Synthesis of SNF4435 C and D

In the elegant total synthesis of elysiapyrone A and B, Trauner also employed the $8 \pi-6 \pi$ cascade electrocylization to convert an octatetraene to bicyclic products 75 with a 2:1 ratio of endo and exo. Cycloaddition of singlet oxygen, followed by isomerization of peroxides into epoxides furnished the total synthesis of 78 and 79 (Scheme 15). ${ }^{33}$

Scheme 15 Trauner's Total Synthesis of Elysiapyrone A and B

1.2 Heteroatom-containing Systems

1.2.1 Oxa-6 π Systems

1.2.1.1 Access $2 H$-pyran Ring System

Funk ${ }^{34}$ elegantly set up two rings of erythroidine $\mathbf{8 4}$ by a sequential intramolecular Heck coupling and electrocyclic ring-closure of dienyl ester. Aldehyde was reacted with Still-Gennari reagent to give the single Z-unsaturated ester 81 in excellent yield. Intramolecular Heck coupling smoothly furnished dienyl ester 82 in 90% yield. Hydrolysis of methyl ester and heating the resulting carboxylic acid in refluxing toluene promoted a clean 6π-electrocyclic ring-closure to furnish lactone 83 (Scheme 16).

Scheme 16 Funk’s Total Synthesis of (\pm)- β-erythroidine 84

In the model studies toward the total synthesis of saudin, Stoltz ${ }^{35}$ employed the oxa6π electrocyclic reaction to establish the quaternary carbon. Stille coupling of $\mathbf{8 5}$ with $\mathbf{8 6}$ gave dienyl ketone 87 . Tandem oxa-electrocyclization of 87 provided the core of the saudin (Scheme 17).

Scheme 17 Stoltz's Synthesis of the Core of Saudin

One should note that 2 H -pyran intermediate from oxa-electrocyclization can also act as either a diene or a dienophile in the Diels-Alder reaction, which was well demonstrated by Porco ${ }^{36}$ in the biomimetic total synthesis of $(+)$-torreyanic acid. Alcohol 89 was converted to dienyl aldehyde 90 by treatment of Dess-Martin periodinane. Electrocyclization proceeded smoothly to form 2 H -pyran intermediate 91, which is ready for the intermolecular Diels-Alder dimerization to provide 92. Acidic hydrolysis of $\mathbf{9 2}$ furnished the total synthesis of (+)-93 (Scheme 18). Similar strategies were also shown in the total synthesis of expoxyquinol A^{37-40} and naphthoquinones ${ }^{41}$.

Scheme 18 Porco’s Total Synthesis of (+)-torreyanic acid 93

1.2.1.2 Access $2 H$-chromene Ring System

Electrocyclization of an oxa-triene also provided an excellent approach to access a polysubstituted 2 H -chromene ring system. In the biomimetic synthesis microphyllaquinone $96,{ }^{42}$ base-induced tautomerization of 94 delivered 95 , which underwent an oxa-electrocyclization to form 96 (Scheme 19).

Scheme 19 Trauner's Total Synthesis of Microphyllaquinone 96

In the total synthesis of desoxymorellin 101, Theodorakis ${ }^{43}$ developed a tandem Claisen/electrocyclization reaction to establish the chromene ring system at a late stage of the process. Selective alkylation gave $\mathbf{9 8}$ in 67% yield. Claisen rearrangement of the resulting propargyl ether $\mathbf{9 8}$ delivered $\mathbf{9 9}$, which could be further converted to $\mathbf{1 0 0}$. Oxa6π electrocyclization occurred smoothly to provide the target product 101 in 91% yield (Scheme 20).

Scheme 20 Theodorakis's Total Synthesis of Desoxymorellin 101

1.2.2 Aza-6 π Systems

Electrocyclization of azatrienes can form dihydropyridines, which can be easily oxidized to pyridines. The overall process is particularly useful in the synthesis of pyridine-containing natural products. Recently, Weinreb ${ }^{44}$ applied aza- 6π electrocyclization into the total synthesis of ageladine A, which showed high inhibitory activity against zinc matrixmetalloproteinase (MMPs). Iodide $\mathbf{1 0 2}$ was coupled with amide in the presence of CuI to form 104 in excellent yield, which was then converted to key intermediate $\mathbf{1 0 5}$ in two steps. Thermal electrocyclization of azatriene provided $\mathbf{1 0 7}$ in moderate yield, which was a key intermediate in the total synthesis of ageladine A (Scheme 21).

Scheme 21 Weinreb's Total Synthesis of Ageladine A 108

In an elegant biomimetic synthesis of grossularine $\mathbf{1 1 5},{ }^{45}$ imine $\mathbf{1 1 4}$ was produced in 60% yield when 109 was exposed with the ammonia in methanol solution in the air. The mechanism was proposed as follows. Oxidative coupling of $\mathbf{1 0 9}$ could form dimer 110, which could further tautomerize into the azatriene system 111. Aza-6 π electrocyclization took place to offer 112, which could be converted into imine $\mathbf{1 1 4}$ by tautomerization and cleavage with ammonia. Finally, grossularine 115 was achieved by the alcoholysis of imine (Scheme 22).

Scheme 22 Horne's Biomimetic Total Synthesis of Grossularine 115

2 Background on the Cyclopentadienones Chemistry

Since the pioneering work from Depuy ${ }^{46,47}$ and Hafner ${ }^{48}$ in the early 1960s, the chemistry of cyclopentadienones has been of great interest in the organic chemistry community. ${ }^{49}$ Due to the labile property of cyclopentadienones, monomeric cyclopentadienone dimerizes rapidly. The existence of cyclopentadienone intermediacy was elucidated by "three-phase" experiments. ${ }^{50,51}$ Monomeric cyclopentadienone was finally characterized by IR spectroscopy in matrix studies. ${ }^{52}$

Theoretical chemist Caramella ${ }^{53}$ proposed a bispericyclic transition structure model to explain the high reactivity and endo selectivity in the dimerization. Secondary orbital interactions accounted for the endo selectivity and deantiaromatization was believed to the driving force for the dimerization.

2.1 Preparation

Depuy ${ }^{46}$ reported the generation of cyclopentadienones from 4-bromocyclopentenone 116. When 116 was treated with triethylamine in the ether solution, cyclopentadienone $\mathbf{1 1 7}$ was formed and underwent rapid dimerzation to provide cyclopentadienone dimer 118 in 92% yield (Scheme 23). Attempts at characterization of 117 utilizing UV spectroscopy turned out to be fruitless.

Scheme $\mathbf{2 3}$ Generation of $\mathbf{1 1 8}$ from 4-bromocyclopentenone

Other than the bromo precursors, 4-acetoxycyclopentenone, ${ }^{46}$ 4-hydroxycyclopentenone, ${ }^{54}$ and 4-(phenylsulfonyl)-cyclopentenone ${ }^{55}$ can also serve as precursors to 117.

Synthesis of cyclopentadienone by the condensation of dithio species $\mathbf{1 2 0}$ with CO_{2} was developed by Xi in 2000. ${ }^{56}$ Cyclopentadienone 121 was synthesized in 75% yield by the lithium-halide exchange, followed by double addition to carbon dioxide (Scheme 24).

Scheme 24 Synthesis of $\mathbf{1 2 1}$ from 1,4-diiodo-1,3-diene

Metal-catalyzed cycloaddition reactions of alkynes provide another powerful approach to access cyclopentadienones. Pearson and coworkers ${ }^{57}$ demonstrated the synthesis of unsymmetrically substituted cyclopentadienones. Two different propargyl alcohols were reacted with dichlorosilane respectively to form $\mathbf{1 2 4} . \mathrm{Fe}(\mathrm{CO})_{5}$-mediated [2+2+1] cyclocarbonylation reaction to provide iron complex $\mathbf{1 2 5}$ in 83% yield. Oxidative decomplexation produced 126 in reasonable yield (Scheme 25).

Recently, Wender ${ }^{58}$ employed a [3+2] cycloaddition approach to access cyclopentadienones. When cyclopropenone $\mathbf{1 2 7}$ reacted with alkyne $\mathbf{1 2 8}$ in the presence of $1 \mathrm{~mol} \%\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$, only one regioisomer $\mathbf{1 2 9}$ was isolated in 94% yield (Scheme 26).

Besides $\mathrm{Fe}(\mathrm{CO})_{5}$ and $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}$, other metal complexes, such as $\mathrm{CpCo}(\mathrm{CO})_{2}{ }^{59}$ $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}{ }^{60}$ and a chromium-carbene complex, ${ }^{61}$ also participate in cycloaddition reactions to afford cyclopentadienones.

Scheme $25[2+2+1]$ Cycloaddition Approach to 126

Scheme 26 [3+2] Cycloaddition Approach to 129

2.2 Reactions of Cyclopentadienones

Diels-Alder reactions are best known in the cyclopentadienone chemistry. Cyclopentadienones can act as dienophiles in the Diels-Alder reaction. Fuchs demonstrated that cyclcopentadienone intermediate, which was generated in situ by the treatment of $\mathbf{1 3 0}$ with base, reacted with different dienes to afford Diels-Alder adducts in good yield. ${ }^{55}$ Very recently, Harmata and coworkers ${ }^{62}$ systematically investigated the Diels-Alder reaction of methyl 3-oxo-cyclopenta-1,4-dienecarboxylate with a wide range of dienes. The Diels-Alder adducts were formed in good to excellent yield with excellent diastereoselectivity.

Cyclopentadienones can also participate in the Diels-Alder reaction as a diene. One such example is the synthesis of (\pm)-sarkomycin 137 . Cycloadduct $\mathbf{1 3 6}$ was obtained in moderate yield when bromocyclopentenone $\mathbf{1 1 6}$ was treated with ethyl acrylate in the presence of base. Compound $\mathbf{1 3 6}$ was further converted to $\mathbf{1 3 7}$ in a few steps (Scheme 27).

Scheme 27 Cyclopentadienone in the Diels-Alder Reaction

As mentioned before, cyclopentadienone tends to react with itself to generate dimer in the absence of dienes or dienophiles. One such example was demonstrated by Whitehead in the biomimetic total synthesis of manzamenone A $142 .{ }^{63}$ Compound 142 was isolated from Okinawan marine sponge Plakortis, together with its biogenetic precursor untenone A 139. ${ }^{64}$ Compound $\mathbf{1 3 9}$ was synthesized from readily available 2furanacetonitrile $\mathbf{1 3 8}$ in a few steps. When a neat sample of $\mathbf{1 3 9}$ was heated at $70{ }^{\circ} \mathrm{C}$ for 24 hours, $\mathbf{1 4 2}$ was obtained in very respectable yield. Dehydration of $\mathbf{1 3 9}$ could provide cyclopentadienone 140, which would readily dimerize to afford 141 . Natural product 142 could be generated by retro Dieckmann ring-opening reaction (Scheme 28).

Scheme 28 Whitehead's Biomimetic Total Synthesis of Manzamenone A

Interestingly, when stabilized cyclopentadienone 143 was treated with propargyl amine at $0{ }^{\circ} \mathrm{C}$ to room temperature, bicyclic product $\mathbf{1 4 5}$ was isolated in 75% yield. No Diels-Alder adduct was observed. A proposed mechanism is as follows. 1,4-conjugate addition of amine could deliver intermediate $\mathbf{1 4 4}$, which would set up for ene rearrangement to afford compound $145{ }^{65,66}$ (Scheme 29).

Scheme 29 Unusual Reaction of Cyclopentadienone

3 Results and Discussion ${ }^{67,68}$

3.1 Discovery of Electrocyclization Reaction

During the exploration of 2-bromocyclopentenone as a possible oxyvinyl cation in the $[4+3]$ cycloaddition reaction, Harmata and coworkers ${ }^{69}$ discovered a mild procedure for the formation of cyclopentadienone. When 2-bromocyclopentenone 119 was refluxed in the presence of triethylamine, $\mathbf{1 1 8}$ was isolated in $\mathbf{9 0 \%}$ yield. It was believed that intermediate cyclopentadienone $\mathbf{1 1 7}$ was slowly generated from bromocyclopentenone 119 via a 2,5-elimination of HBr (Scheme 30).

Scheme $\mathbf{3 0}$ Generation of $\mathbf{1 1 8}$ from 2-bromocyclopentenone

As a part of continuing interest in this reaction, we wondered whether the transient cyclopentadienone could be intercepted rather than dimerize. We chose to examine the electrocyclic ring closing reaction of cyclopentadienones represented by 119. Even though research showed that the electrocyclization via 8π conrotatory pathway (121) usually prevails over 6π disrotatory (120), ${ }^{1}$ we were still interested in whether this would be the case and wished to establish the role of deantiaromatization as a driving force in organic chemistry.

Scheme 31 Possible Electrocyclizations of Cyclopentadienone 119

The synthesis of $\mathbf{1 2 5}$ was quite straightforward. Addition of 2-lithiostyrene to 2bromocyclopentenone $\mathbf{1 2 2}$ afforded $\mathbf{1 2 4}$ in 45% yield, which was further converted to 125 in 90% yield with PCC oxidation (Scheme 32).

Scheme $\mathbf{3 2}$ Preparation of $\mathbf{1 2 5}$ from 2-bromocyclopentenone $\mathbf{1 2 2}$

Alternatively, we also explored a one-pot process to access 125 from 2-bromo-3ethoxycyclopentenone. The results were summarized in Table 1. Addition of organolithium to $\mathbf{1 2 6}$ provided desired product in only 21% yield, together with some complicated mixture (entry 1, 2). Switching to a non-cordination solvent toluene significantly suppressed the deprotonation (entry 3). Not surprisingly, a complicated mixture was obtained with the addition of HMPA, which decreases the aggregation state of organolithium and enhances the reactivity of organolithium reagent. (entry 4). We turned to an organocerate, which possessed enhanced oxophilicity and reduced basicity.
61% and 71% yields of $\mathbf{1 2 5}$ were obtained respectively when different methods ${ }^{70,71}$ were used to dry CeCl_{3} (entry 5, 6).

Table 1 Synthesis of $\mathbf{1 2 5}$ from 126

entry	Reagent (eq), solvent	T (${ }^{\circ} \mathrm{C}$), $\mathrm{t}(\mathrm{h}$ or m)	125 (\%)
1	$n-B u L i ~(1.5), ~ T H F ~$	$-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~m} ;-10^{\circ} \mathrm{C}, 50 \mathrm{~m}$	$21^{\text {a }}$
2	$n-B u L i(1.1)$, THF	$-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{rt}, 1 \mathrm{~h}$	$20^{\text {b }}$
3	$n-B u L i ~(1.5), ~ P h M e ~$	$-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h} ;-10^{\circ} \mathrm{C}, 30 \mathrm{~m}$	$38^{\text {b }}$
4	$n-\operatorname{BuLi}$ (1.5), HMPA (20\%), THF	$-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~h} ;-10^{\circ} \mathrm{C}, 30 \mathrm{~m}$	$0^{\text {a }}$
5	$n-\operatorname{BuLi}(2.0), \mathrm{CeCl}_{3}(2.5)^{\text {c }}$, THF	$-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$	38 (61)
6	$n-\operatorname{BuLi}(1.5), \mathrm{CeCl}_{3}(1.5)$ d, THF	$-78{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	61 (77)

$\overline{{ }^{a}}$ A complicated mixture was obtained. ${ }^{b}$ Significant amount of starting material was recovered. ${ }^{\mathrm{c}} \mathrm{CeCl}_{3}$ was dried using Paquette's procedure ${ }^{70}$. ${ }^{\mathrm{d}} \mathrm{CeCl}_{3}$ was dried using Bunnelle's procedure ${ }^{71}$.

When $\mathbf{1 2 5}$ was subjected to 3.0 equiv. of TEA in refluxing TFE solution, $\mathbf{1 2 8}$ was formed in 63% yield, along with the elimination product 129 (ca. 6\%) ${ }^{72}$ and recovered starting material (16\%). The fact that TFE was incorporated into $\mathbf{1 2 8}$ was clearly evident in both the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$-NMR spectra of the product. For example, a quartet appeared at δ $=66.1 \mathrm{ppm}(J=34.1 \mathrm{~Hz})$ in the ${ }^{13} \mathrm{C}$-NMR spectrum, which is indicative of the trifluoro
methyl group (Scheme 33). The structural assignment based on this and other NMR data was later confirmed by X-ray analysis (Figure 1).

Scheme $\mathbf{3 3}$ Electrocyclization of $\mathbf{1 2 5}$ via a Cyclopentadienone Intermediate

Figure 1 X-ray Structure of $\mathbf{1 2 8}$

Excited by this result, we carried out optimization of reaction conditions that might minimize the formation of $\mathbf{1 2 9}$, while promoting complete conversion of starting material. The results are shown in Table 2.

Table 2 Optimization of the Electrocyclization Reaction of $\mathbf{1 2 5}$

Entry	Base (equiv)	Solvent	T ${ }^{\circ} \mathrm{C}, \mathrm{t}$	Yield \%
1	TEA (3)	TFE	reflux, 2 d	63
2	TEA (3)	TFE	50, 50 h	56
3	TEA (3)	TFE	50, 7 d	66
4	TEA (3)	TFE	60, 3 d	66
5	TEA (3)	TFE	70, 2 d	69
6	TEA (3)	TFE	90-5, 2 d	$60^{\text {a }}$
7	TEA (3)	ACN	reflux, 12 h	b
8	TEA (3)	THF	reflux, 12 h	b
9	TEA (3)	EtOH	50, 2 d	b
10	TEA (3)	HFIP	50, 2 d	b
11	TEA (3)	HFIP	50, 2 d	b
12	TEEDA (1.2)	TFE	50, 2 d	39
13	TEEDA (1.2)	ACN	reflux, 2 d	b
14	DIPEA (1.2)	TFE	50, 2 d	43
15	DIPEA (1.2)	ACN	reflux, 2 d	b
16	DBU (1.2)	TFE	50, 2 d	63
17	DBU (1.2)	ACN	50, 2 d	c
18	DBU (1.2)	THF	50, 2 d	c
19	HMPP (1.5)	TFE	70, 2 d	54

${ }^{\mathrm{a}} \mathrm{A} \overline{29 \%}$ yield of $\mathbf{1 2 9}$ was also isolated. ${ }^{\mathrm{b}}$ Only starting material was recovered during the reaction. ${ }^{\text {c }}$ Only cyclopentadienone dimers were isolated in $\sim 30 \%$ yield.

When the reaction was carried out at $50{ }^{\circ} \mathrm{C}$ for 50 hours, $\mathbf{1 2 8}$ was isolated in 56% yield with no evidence for the formation of $\mathbf{1 2 9}$ (entry 2). NMR analysis of crude reaction mixture showed a 71: 29 ratio of $\mathbf{1 2 8}$ to $\mathbf{1 2 5}$. The ratio grew to $88: 12$ with the prolonged reaction time (7 days). In the hope that small rises in temperature would increase the rate of the reaction without lowering the yield of $\mathbf{1 2 8}$, a series of experiments running at 60 , 70 and $90{ }^{\circ} \mathrm{C}$ were carried out and found that the reaction at $70^{\circ} \mathrm{C}$ for 2 days proceeded to give product in good yield (69\%) with minimal formation of $\mathbf{1 2 9}$, though some starting material still remained (entry 5). The reaction at $60^{\circ} \mathrm{C}$ worked reasonably well (entry 4), but that at $90^{\circ} \mathrm{C}$ provided significant amounts of $\mathbf{1 2 9}$ (entry 6). Interestingly, when $\mathbf{1 2 8}$ was refluxed in TFE in the presence of TEA for 2 days the formation of $\mathbf{1 2 9}$ was not observed, indicating that $\mathbf{1 2 8}$ might not be an intermediate in the formation of $\mathbf{1 2 9}$.

We also investigated other solvents in the electrocyclization reaction (entries 7-11). TFE was the only solvent that worked in the reaction. It was both surprising and interesting to find that no reaction took place in hexafluoroisopropanol. The exact reasons for this are unclear at this time.

Other bases were also examined in the reaction, but none were superior to TEA (Table 1, entries 12-19). Interestingly, DBU promoted the dimerization in ACN and THF solution (entry 17, 18). Even though DBU also worked effectively, TEA was used for further exploration when considering cost analysis.

3.2 Exploration of Electrocyclization of a Number of Substrates

A series of bromides were converted to organocerates via a sequence of lithiumhalide exchange and transmetallation with CeCl_{3}. Subsequent treatment of cerate with
cyclopentenone $\mathbf{1 2 6}$ provided cyclopentenones 132-140. The reaction worked reasonably well (Table 3). Low (unoptimized) yields of $\mathbf{1 3 4}$ and $\mathbf{1 3 6}$ might be ascribed to steric effects, but may also be due to the quality (e.g., dryness) of the $\mathrm{CeCl}_{3} .{ }^{73,74}$ In our hands, drying protocols for this salt do not always produce consistent results. ${ }^{70,75}$

Table 3 Preparation of 2-bromocyclopentenones

130 (51\%)

131 (46\%)

132 (71\%)

136 (78\%)

133 (56\%)

135 (85\%)

139 (34\%)

140 (48\%)

Compound 142 was prepared by a two-step sequence of addition and oxidation from 4-methyl-2-bromocyclopentenone 141 (Scheme 34).

Scheme 34 Synthesis of 142

With a series of bromocyclopentenone derivatives in hand, we carried out the electrocyclization reaction on a number of substrates using the conditions of TEA, TFE, $50{ }^{\circ} \mathrm{C}, 7$ days. The results are shown in Table 4 together with those that were run at higher temperature ($70{ }^{\circ} \mathrm{C}$) for a shorter time (2 days).

The reaction showed reasonable generality. Electron rich aromatic systems worked better compared with less substituted aromatic rings. Compounds 146 and 148 were formed in high yields (entry 5, 7). Diastereoselectivity decreased when the reaction was carried out at higher temperature $(\operatorname{method} B)$. For example, the diastereomeric ratio of 148 was high at $50^{\circ} \mathrm{C}(10: 1)$ but deteriorated to $5.4: 1$ at $70^{\circ} \mathrm{C}$ (entry 7). We attributed this to a slower trapping of the intermediate cation by solvent, which perhaps allowed certain conformational changes to take place, resulting in some loss in facial selectivity.

Interestingly, 149 was obtained in 24% and 33% yield. It might be suggested that an electron-donating group on the cyclopentadienone does not prevent the cyclization reaction from occurring. The structure of 149 was established securely by X-ray analysis (entry 8).

Table 4 Electrocyclization of a series of Bromocyclopentenones

2

6461

54(72)

39(58)
61(72)

5

6
 27(48) 50(71)

7

$84^{\text {b }}$ $86^{\text {c }}$

8

$24(44)^{\text {d }}$ $33(67)^{e}$

9

150
${ }^{a}$ Yield in parentheses based on recovered starting material. ${ }^{b}$ Diastereomeric ratio $=$ 10:1. ${ }^{\mathrm{c}}$ Diastereomeric ratio $=5.4: 1 .{ }^{\mathrm{d}}$ Diastereomeric ratio: 5.5:1. ${ }^{\mathrm{e}}$ Diastereomeric ratio: 4.5:1.

Surprisingly, when 139 was subjected under the standard condition, no electrocyclization product was observed. Dimer 151 was generated in 79% yield with a single diastereomer (Scheme 35).

Scheme 35 Dimerization of 139

When 4-methyl-2-bromocyclopentenone 137 was treated under the optimized condition, elimination product 152 was isolated in ca. 25% yield. The fact that no cyclization product was observed indicated that the steric hindrance at $\mathrm{C}-4$ position might slow down the ring-closure reaction and elimination could prevail in the reaction.

Scheme 36 Reaction with 4-methyl-2-bromocyclopentenone

A plausible mechanism involving electrocyclization was proposed. Tautomerization of $\mathbf{1 2 5}$ might give 153. Subsequent 1,4 -debromination provides the cyclopentadienone intermediate 154. 8π-Electrocyclization would occur driven by deantiaromatization to afford zwitterionic intermediate 156. Product 128 would be
formed by the axial attack of TFE (Scheme 37).

Scheme 37 Proposed Mechanism for the Conversion of $\mathbf{1 2 8}$

Schreiner and Navarro-Vázquez ${ }^{67}$ carried out B3LYP/6-31G* calculations to examine our proposed mechanism. The results showed that the disrotatory cyclization of antiaromatic system 154 is both thermodynamically and kinetically preferred as compared with system 157. Furthermore, cyclization of $\mathbf{1 5 4}$ at C-4 position (154c) has a kinetic preference, $\left(\Delta \Delta \mathrm{G}_{298.15 \mathrm{~K}}=-6.6 \mathrm{Kcal} / \mathrm{mol}\right)$. This preference increased to $\Delta \Delta \mathrm{G}_{298.15}$ $\mathrm{K}_{\mathrm{K}}=-11.4 \mathrm{Kcal} / \mathrm{mol}$ with the incorporation of solvent effects The computational results strongly supported the proposed mechanism, that is, an 8π conrotatory electrocyclization driven by the antiaromatization. (Scheme 38).

Scheme 38 Computed relative free energies $\Delta \mathrm{G}_{298.15 \mathrm{~K}}$. Regular font: gas phase values; italics: PCM (TFE) data

Besides the theoretical computation, some new experimental evidence was also uncovered to support the 8π-electron conrotatory mechanism. Two isomeric compounds ($\mathbf{1 3 5}(E)$ and $136(Z)$) were prepared for this purpose. When E isomer $135(E: Z, 24: 1)$ was subjected to our standard conditions ($50^{\circ} \mathrm{C}, 7$ days), the desired product $\mathbf{1 5 8}$ was obtained in 43% yield with nearly complete diastereoselectivity (10:1), together with 33% recovered starting material and some dimer 159. The amount of dimer increased significantly at higher temperature $\left(70{ }^{\circ} \mathrm{C}\right)$. The ratio of $\mathbf{1 3 5}, \mathbf{1 5 8}$ and $\mathbf{1 5 9}$ in the crude reaction mixture changed from 0.39: $0.51: 0.10\left(50{ }^{\circ} \mathrm{C}\right)$ to $0.33: 0.48: 0.19\left(70{ }^{\circ} \mathrm{C}\right)$
(Scheme 39). A NOESY spectrum showed a correlation of H_{2} with methyl group and H_{3} with H_{4}. It suggested that the methyl group is cis to H_{2} and the OTFE group (Figure 2 and 3). Ultimately, the stereochemistry of $\mathbf{1 5 8}$ was firmly established by X-ray crystallography (Figure 4).

In contrast to 135 , the reaction of Z isomer 136 turned out to be very clean. Desired product 160 was obtained in 56% yield as a single diastereomer, accompanied by 27% recovered starting material. The stereochemistry of $\mathbf{1 6 0}$ was established by a NOESY experiment. A ${ }^{3} J_{\mathrm{H} 3-\mathrm{H} 4}$ equatorial-equatorial coupling constant of 2.2 Hz agreed well with the calculated value $(2.0 \mathrm{~Hz})$ by Schreiner and Navarro-Vázquez ${ }^{68}$ employing the Hassnoot-Altona empirical equation. ${ }^{76}$ Also, no NOE was observed for H_{2} and methyl group (Figure2 and 5).

Scheme 39 Electrocyclization of 135

158

Figure 2 NOE Correlations for 158 and 160. Dashed lines indicated the weak NOEs

Figure $\mathbf{3}$ NOESY Spectrum of $\mathbf{1 5 8}$

Figure 4 X-ray structure of 158

Figure 5 NOESY Spectrum of $\mathbf{1 6 0}$

The different behaviour of isomeric system $\mathbf{1 6 1}$ and $\mathbf{1 6 2}$ in the electrocylization was further explored by Schreiner and Navarro-Vázquez ${ }^{68}$ using B3LYP/6-31G* calculations. Even though it possesses a slightly higher activation free energy, the cyclization of $\mathbf{1 6 2}$ is less endothermic, which results in faster reaction and less side reactions as compared system 161 (Scheme 40).

Scheme 40 Computed relative free energies $\Delta \mathrm{G}_{298.15 \mathrm{~K}}$.
Regular font: gas phase values; italics: PCM (TFE) data

4 Summary

We have discovered an electrocyclization of cyclopentadienones driven by antiaromatization. We also uncovered some evidence that this process is indeed an 8π conrotatory electrocyclic ring closure. The reaction provides a good way to access the tricyclic ring system with high stereoselectivity. Further application in the total synthesis is still going on in our lab.

Chapter II

An Unusual Observation During a Lithium-bromine Exchange Reaction

1 Introduction

1.1 Characterization of Pentaorganosilicates

Reactions involving pentaorganosilicate intermediates have been known for several decades. ${ }^{77-79}$ In 1981, Depuy reported the first observation of pentavalent organosilicate intermediate $\mathbf{1 6 3}$ in the gas phase by using a flowing afterglow experiment. ${ }^{80}$ The addition of allyl anion to 1,2-dimethylsilacyclobutane was favored by the relief of strain by allowing the cyclobutane ring to span one equatorial and one axial position.

163

Figure 6 Pentaorganosilicate

However, due to its lability and high reactivity in solution, the pentaorganosilicate intermediate had not been observed until 1996. Klumpp and coworkers ${ }^{81}$ successfully observed this transient species employing low temperature NMR techniques. When $\mathbf{1 6 4}$ was treated with t - BuLi at $-80{ }^{\circ} \mathrm{C}$, the exceptionally high-field ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signal (δ : 116.9 ppm) clearly indicated the presence of pentavalent silicon intermediate $\mathbf{1 6 6}$. As the temperature rised, this pentavalent intermediate $\mathbf{1 6 6}$ converted reversibly into methyllithium and 5,5-dimethyldibenzosilole 167 ($\delta: 0.6 \mathrm{ppm}$) (Scheme 39). With the coordination of HMPA, 167 was found to be as the only species present up to room
tempterature. In contrast, no ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ signal of pentacoordinated silicon was detected at $-80{ }^{\circ} \mathrm{C}$ in ethyl ether solution. An order of stabilization in solvents was proposed as followed: $\mathrm{HMPA}>\mathrm{THF}>\mathrm{Et}_{2} \mathrm{O}$.

Scheme 41 The First Observation of Pentaorganosilicate in Solution

Furthermore, Klumpp and coworkers ${ }^{81,82}$ also carried out NMR studies on a number of different organosilicates to investigate the structural requisites for stable pentaorganosilicates. Compound 168 was found to form pentaorganosilicate in the presence of HMPA at the low temperature. The hypervalent intermediate of $\mathbf{1 6 9}$ was obtained in 10% yield by ${ }^{29}$ Si-NMR, together with 90% of $\mathbf{1 6 9}$. Unexpectedly, [170$\mathbf{M e}]^{-}\left[\mathbf{L i}(\mathbf{T H F})_{4}\right]^{+}$was found to be very stable and did not decompose up to $50{ }^{\circ} \mathrm{C}$. No hypervalent species was observed with the substrate 171. Two phenyl silanes (tetraphenyl silane 172 and biphenyl silane 173) were also subjected to this examination. A weak signal for $[\mathbf{1 7 2 - P h}]^{-}\left[\mathbf{L i}(\mathbf{H M P A})_{4}\right]^{+}(5-10 \%$ intensity $)$ was obtained. ${ }^{82}$ In sharp contrast, $[173-\mathrm{Ph}]^{-}\left[\mathrm{Li}(\mathbf{H M P A})_{4}\right]^{+}$was obtained as the only product when phenyllithium was added to $\mathbf{1 7 3}$ at $-78{ }^{\circ} \mathrm{C}$. Moreover, this complex even survived prolonged time (14 h) at room temperature (Figure 7). ${ }^{83}$

168

169

170

171

172

173

Figure 7 Some Organosilicates under Investigation

Other than the solvent effects and structural factors, countercations also played an important role in the stabilization of hypervalent intermediates. It was found that 174a was stable up to $0{ }^{\circ} \mathrm{C}$, whereas $\mathbf{1 7 4 b}$ rapidly decomposed at $-30{ }^{\circ} \mathrm{C}$. And the corresponding $\mathbf{1 7 4 c}$ was found to decompose at $-10-0{ }^{\circ} \mathrm{C} .{ }^{84}$ Surprisingly, $\mathbf{1 7 5}$ was obtained as a highly stable white solid with a melting point of $177-182{ }^{\circ} \mathrm{C} .{ }^{85}$ Its phenylpyrrole analogue $\mathbf{1 7 6}$ also showed high stability (Figure 8). ${ }^{86}$

176

Figure 8 Some Stable Pentaorganosilicates

X-ray diffraction has been employed as another powerful tool for the characterization of pentaorganosilicate compounds. In 1999, Kolomeitsev ${ }^{84}$ reported the first X-ray structure of hypervalent silicate 174a, which showed perfect trigonalbipyramidal geometry at silicon atom. Two trifluoromethyl groups occupied two axial positions and methyl groups resided the remaining equatorial position. X-ray structures of $\mathbf{1 7 5}^{85,87}$ and $\mathbf{1 7 6}^{86}$ showed the slightly distorted trigonal bipyramidal geometry towards
square-pyramidal. Methyl groups were in an equatorial positions and the biaryl groups were in axial-equatorial positions.

Excited and curious about the high stability of $\mathbf{1 7 5}$ and 176, Lammertsma ${ }^{88}$ performed the B3LYP/6-31G(d) calculations on 175 and 176. With the comparison of bidentate biaryl pentaorganosilicates $\mathbf{1 7 5}, \mathbf{1 7 6}$ with other silicates, they found that biaryl ligands can provide electronic stabilization similar to two individual aryl groups, while avoiding the steric crowding between the axial aryl group and the ortho-hydrogen atoms on the equatorial aryl group. They also found the preference of axial over equatorial substitution on 175 and 176, which was consistent with previous experimental results. ${ }^{87}$

1.2 Reactions Involving Pentaorganosilicate Intermediates

1.2.1 Nucleophilic Substitution

Even though remarkable progress has been achieved in the preparation of pentaorganosilicates, the chemistry of pentaorganosilicates remains less developed. Nucleophilic substitution on the silicon atom was one of few known areas in a hypervalent organosilicate chemistry.

In the attempts to prepare 1,4-bis(triphenylsilyl)butane 180a, only 4.4% yield of 180a was obtained when the dilithiobutane was slowly added to chlorotriphenylsilane in cold diethyl ether solution. ${ }^{77}$ Diphenylsilacyclopentane 178a was formed in 39\%, together with 48% of tetraphenylsilane 179a. In contrast, bis(triphenylsilyl)pentane 180b was generated in 75% yield when dilithiopentane was employed. Trace amounts of cyclosilahexane 178b were also obtained.

Similar 5-exo-tet cyclization was reported by the Maercker group. ${ }^{89}$ Significant amount of 1,4 -TMS rearranged product $(\mathbf{1 8 3}, \mathbf{1 8 4})$ was obtained together with silacyclopentane $\mathbf{1 8 2}$ when organolithium $\mathbf{1 8 1}$ was quenched by chlorodimethylphenylsilane (Scheme 42).

Scheme 42 Reactions Involving Pentaorganosilicates

Moreover, Gilman uncovered an interesting cyclization for silane system. ${ }^{77,79} 38 \%$ of 5,5 '-spirobi-[dibenzosilole] $\mathbf{1 8 8}$ and 36% of 5,5 -dimethyldibenzosilole $\mathbf{1 8 7}$ were obtained upon treatment of 2,2-dilithiobiphenyl $\mathbf{1 8 5}$ with 2.0 equivalents of 5-chloro-5methyldibenzosilole 186. The fact that nearly equal amounts of 167 and $\mathbf{1 7 0}$ were found suggested that $\mathbf{1 7 0}$ was highly stable in ethereal solution and the formation of $\mathbf{1 7 0}$ might involve rapid bond cleavage and formation (Scheme 43).

Scheme 43 Unusual reaction of 186 with Dilithiobiphenyl 185

A similar nucleophilic substitution on the silicon atom was also observed by Ishikawa during the attempts to prepare a stable silacyclopentadienide anion. ${ }^{90,91}$ TMS groups were replaced by methyllithium in quantitative yields and no 5-hydro-5methyldibenzosilole was observed. Furthermore, 5,5-dimethyldibenzosilole 167 was converted to 5,5 -dibutyldibenzosilole $\mathbf{1 8 8}$ upon the treatment with excess n-BuLi. A pentacoordinated organosilicate $\mathbf{1 8 9}$ was proposed as a key intermediate for the unusually reactively silole. However, any attempt to trap this transient intermediate was unsuccessful (Scheme 44)

Scheme 44 Nucleophilic Substitution Reaction of 187

The formation of silole 193 by intramolecular nucleophilic substitution was achieved by Xi^{92} and Hudrlik ${ }^{93}$. Lithium-halide exchange followed by treatment of TMSCl gave silole 193 via hypervalent intermediate 192. Alternatively, 193 was also prepared upon treatment of bromosilane 191 with t-BuLi (Scheme 45).

However, the formation of 5 -membered siloles is reversible. When $\mathbf{1 7 0}$ was treated with lithium in DME solution, 194 was formed in 90% yield. ${ }^{87}$ Similarly, 195 was
obtained in 87% yield upon the treatment of $\mathbf{1 7 0}$ with excess amount of PhLi (Scheme 46). ${ }^{78}$

Scheme 46 Reactions of 5,5'-spirobi-[dibenzosilole] 170

Intermolecular nucleophilic substitution on the silicon atom was also investigated by Lukevics and coworkers. ${ }^{94}$ A dihydropyran ligand was selectively cleaved by butyllithium in the presence of methyl group. The sequence of nucleophiles with different reactivities is as follows: $n-\mathrm{BuLi}>2$-lithiofuran $>$ 2-lithiodihydropyran \sim 2-lithiodihydrofuran $>\mathrm{PhLi}$.

Scheme 47 Nucleophilic Substitution Reaction of 197

1.2.2 Rearrangement Involving Pentaorganosilicate Intermediates

Ishikawa ${ }^{90,91}$ and Jutzi ${ }^{95}$ demonstrated that 70% yield of 199a was obtained on the treatment of silole 198 with excess MeLi, accompanied by 7\% of 1,1-dimethyl-2,5-
bis(trimethylsilyl)-3,4-diphenylsilole (not shown) via nucleophilic displacement on the silicon atom. The reaction may proceed through pentacoordinated intermediate 200, which could undergo facile 1,2-migration of TMS group to form 201. The fact that excellent deuterium incorporation was observed strongly supports the proposed mechanism. Furthermore, a butyl group can also participate the rearrangement (202 to 203) (Scheme 48).

Scheme 48 1, 2-rearrangement of $\mathbf{1 9 8}$ and 202
α-Chlorosilane 204 was also found to undergo 1,2-migration of allyl group to give 206 in excellent yield. $\mathbf{2 0 5}$ was assumed as the key intermediate in this rearrangement (Scheme 49). The reaction also worked for a number of ligands on the silicon atom, like phenyl, Me, 2-furyl. ${ }^{96}$

Scheme 49 1, 2-rearragement of Allyl Group

Other than 1,2-rearrangement, 1,3-rearrangement was also observed in the silane system. Lithium-halide exchange of $\mathbf{2 0 7}$, followed by addition of benzyl bromide delivered $\mathbf{2 0 8}$ in 78\% yield (Scheme 50). ${ }^{97}$

209 (3\%)

Scheme 50 1, 3-rearrangement of TMS Group

When 1-bromo-2-((trimethylsilyl)methyl)benzene $\mathbf{2 1 1}$ was treated with magnesium, followed by deuterolysis, ${ }^{98}$ 1,3-silyl rearranged product $\mathbf{2 1 3}$ was obtained in moderate yield, accompanied by benzyltrimethylsilane $\mathbf{2 1 2}$ from the unreacted Grignard reagent. More interestingly, the deuterium hydrolysis of di-Grignard reagent of $\mathbf{2 1 4}$ offered an equal amount of 1,3-dideutero product 215 and 1,1-dideutero product 216. ${ }^{99}$ Both of reactions might proceed through a transient hypervalent organosilicate intermediate (Scheme 51).

Scheme 51 1, 3-rearrangement of TMS Group

1,4-Rearrangement was found by Vedejs and coworkers ${ }^{100}$ during the studies of chiral phosphines. Compound 219 was isolated in 26% yield and $\mathbf{2 2 0}$ was obtained in 42% yield when 217 was treated with MeLi. The mechanism proposed for the explanation of unexpected products is that first addition of MeLi to phosphonate 217, which could lead to 218. Deprotonation, subsequent formation of cyclosilapentane and hydrolysis could produce 219 and 220 (Scheme 52).

Scheme 52 1,4-rearrangement of TMS Group

In the course of the investigation of reactivity of arylcarbene, ${ }^{101}$ aryl diazo compound 221 was prepared and subjected to heat under reduced pressure. As a result, 5 major products were obtained. Among these, $\mathbf{2 2 2}$ and $\mathbf{2 2 3}$ were formed by the $\mathrm{C}-\mathrm{H}$ insertion to methyl group and phenyl ring respectively. Zwitterionic 227 was proposed to explain the formation of product 224, 225 and $\mathbf{2 2 6}$ via 1,2-migration (Scheme 53).

Scheme 53 Carbene Rearrangement of Silyl Group

Xi and coworkers ${ }^{102}$ demonstrated a novel approach to access lithiosiloles from 1,4-bis(trimethylsilyl)-2,3-diphenyl-1,4-diiodo-1,3-diene 228. Compound 228 was converted to corresponding 1,4 -dilithio intermediate $\mathbf{2 2 9}$ by the addition of t-BuLi at $-78^{\circ} \mathrm{C}$. The resulting solution was then refluxed in the presence of HMPA for 1 h before it was quenched by MeI. Compound $\mathbf{2 3 0}$ was generated in 85% yield (Scheme 54).

Scheme 54 Synthesis of Silole from 1,4-diiodo-1,3-diene 228

Two different mechanisms were proposed (Scheme 55). In path a, electrocyclic ring-closure of $\mathbf{2 3 1}$ could deliver 232, which might be further converted to lithio silole 235 by subsequent cyclosilapropane formation and electrocyclic ring opening. On the other hand, double bond isomerization of dilithiate $\mathbf{2 3 1}$ might give 234. Intramolecular anionic attack could result in $\mathbf{2 3 5}$.

Scheme 55 Proposed Mechanism

2 Results and Discussion

2.1 Discovery of a Novel Coupling Reaction with Primary Halides

During the exploration of substituent effects on the electrocyclic ring-closure of cyclopentadienones, we were quite interested in the trimethylsilyl-substituted cyclopentenone 236. We assume that $\mathbf{2 3 6}$ would undergo 1,4-debromination reaction to give cyclopentadienone intermediate 237, which could be further converted to $\mathbf{2 3 8}$ via $8 \pi \mathrm{e}$ electrocyclic ring-closure. Desilylation of 238 would deliver the product 239 (Scheme 56). The ability of a silicon-carbon bond to stabilize an adjacent carbonium ion might accelerate this electrocyclic ring-closure reaction. ${ }^{103}$

Scheme 56 Proposed Electrocyclization of 236

The synthesis of $\mathbf{2 3 6}$ was quite straightforward. Commercially available methyl 2bromobenzoate 240 was converted to $\mathbf{2 4 1}$ by the addition of Grignard reagent in the presence of cerium chloride. Compound $\mathbf{6}$ further underwent Peterson olefination to give 242 in 59% yield under acidic conditions (Scheme 57). ${ }^{104}$

Scheme 57 Synthesis of Bromosilane 242

Organocerate of $\mathbf{2 4 2}$ was prepared by lithium-bromine exchange, followed by transmetallation with CeCl_{3}. Addition of organocerate reagent to ketone $\mathbf{2 4 3}$ gave none of desired 236. However, a very interesting reaction color change did draw our attention: when n-BuLi was added dropwise to the cold THF solution of bromide compound 242, the color of the reaction mixture changed from colorless to bright yellow, which is the typical color for an aryl lithium species. The yellow color changed to pale yellow (almost colorless) when the addition of n-BuLi was complete. After workup of some of the reaction mixture, butylated product 244 was obtained in 89% yield (Scheme 58). To the best of our knowledge, no coupling reaction of this type has been observed before. ${ }^{\text {105-107 }}$

Scheme 58 An Unusual Observation during the Attempt to Access 236

We assumed that $\mathbf{2 4 4}$ might be formed by lithium-bromine exchange and sequential nucleophilic attack of $n-\mathrm{BuBr}$. The idea was confirmed by the following experiments. When $\mathbf{2 4 2}$ was treated 2.1 equivalents of $t-\mathrm{BuLi}$, followed by quenching with $n-\mathrm{BuBr}$, compound 244 was formed in nearly quantitative yield (94% NMR yield) (Table 5, entry 1).

Table 5 Halogen-metal Exchange of 242, Followed by Alkylation

Entry	Electrophiles	Time (15+t)	Product	NMR Yield (\%)
1	$n-\mathrm{BuBr}$	30 m	$\mathbf{2 4 4}$	94
2	$\mathrm{n}-\mathrm{PrBr}$	30 m	$\mathbf{2 4 5}$	83
3	EtBr	30 m	$\mathbf{2 4 6}$	89
4	1-bromo-3-chloropropane	30 m	$\mathbf{2 4 7}$	58
5	Allyl bromide	3 h	$\mathbf{2 4 8}$	74
6	$\mathrm{PhCH}_{2} \mathrm{Cl}$	3 h	$\mathbf{2 4 9}$	94
7	PhCHO	6 h	$\mathbf{2 5 0}$	68^{a}

[^0]Furthermore, the reaction worked well for a number of electrophiles (Table 5). The reaction worked well with primary bromides to afford alkylated products in good yields (entry 2 and 3). Bromide was selectively reacted in the presence of chloride (entry 4). Allyl bromide and benzyl chloride were also good electrophiles in this reaction (entry 5 and 6). Finally, the lithium reagent of $\mathbf{2 4 2}$ was also treated with benzaldehyde to afford $\mathbf{2 5 0}$ in 68% yield. The major byproduct in this alkylation reaction is $\mathbf{2 5 1}$, which might be formed by the protonation of unreacted organolithium 251 during the workup or the competitive E_{2} elimination of 1-bromobutane.

Based on the experimental results and previous literature reports, we proposed a silicon-assisted coupling mechanism (Scheme 59). Lithium-bromine exchange of $\mathbf{2 4 2}$ would give the organolithium intermediate 252 , which might cyclize to produce pentacoordinated silicon intermediate 253. This would then undergo rapid attack by the primary bromide to afford 244.

Scheme 59 Proposed Mechanism

2.2 Preliminary Mechanistic Studies

To probe the possible mechanism of the coupling reaction, we carried out some preliminary mechanistic studies.

The role of the silicon atom in the coupling reaction was explored by the replacement of TMS group with a H atom and t-butyl group. 2-Bromo- α-methyl styrene 254 and t-Bu substituted substrate $\mathbf{2 5 8}$ were prepared for this purpose. When 254 was
treated with t - BuLi and 1 -bromobutane, 14% of alkylated product $\mathbf{2 5 6}$ was obtained. A yield of $\mathbf{7 6 \%}$ of protonated product $\mathbf{2 5 9}$ was formed in the case of lithium-bromine exchange of $\mathbf{2 5 8}$ (Scheme 60). These results strongly suggested the involvement of silicon in the unprecedented coupling reaction of phenyllithium and primary alkyl halide.

Scheme 60 Preliminary Mechanistic Studies

In order to fully understand the role of the alkene in this novel coupling reaction, (2-(2-bromophenyl)propyl)trimethylsilane $\mathbf{2 6 2}$ was prepared. Even though the synthesis seemed straightforward, the reaction from 242 to 262 was not simple due to labile properties of aryl bromide and allylsilane. The results were shown in Table 6.

Compound 242 was first subjected to hydrogenation using Pd/C (10\%) catalyst. But the desired bromosilane $\mathbf{2 6 2}$ was obtained in only 30% yield (entry 1). The major product was 1-bromo-2-isopropyl benzene 264 (51\%), formed by the cleavage of TMS group. The cleavage of aryl bromide was also found in significant amounts in the crude reaction mixture (266, 19\%). Lower reaction times did not show significant change (entry 2).

Table 6 Reduction of 242

[^1]Deactivation of catalyst by employing $5 \% \mathrm{Pd} / \mathrm{C}$ did not yield any promising result (entry 3). Significant amounts of side product 264 and 265 were obtained with the treatment of $1 \% \mathrm{Pd} / \mathrm{C}$ (entry 4). When the hydrogenation reaction of 242 was catalyzed by Lindlar catalysis, almost equal amount of desired product $\mathbf{2 6 2}$ and desilylation product 264 was obtained, together with 89% of starting material (entry 5). Our experimental data suggest the order of reactivity of functional group under Pd-catalyzed hydrogenation reaction of $\mathbf{2 4 2}$ to the: $\mathrm{C}=\mathrm{CH}_{2} \geq \mathrm{C}-\mathrm{SiMe}_{3} \geq \mathrm{C}-\mathrm{Br}$.

Finally, we turned to diimide reduction and hoped it would avoid the facile cleavage of $\mathrm{C}-\mathrm{SiMe}_{3}$ and $\mathrm{C}-\mathrm{Br}$ bond. Diimide was prepared in situ by refluxing tosylhydrazine with NaOAc in the mixture of THF and water. When $\mathbf{2 4 2}$ was treated with diimide for 3.5 h , desired product $\mathbf{2 6 2}$ was obtained for 33% yield and 68% of unreacted 242 (entry 6). No side product was detected. Prolonged reaction time did not significantly improve the yield (2.5 d , entry 7). We hypothesized that the reduction reaction might be competitive with the disproportionation reaction of diimide to produce nitrogen and hydrazine under the reaction conditions. ${ }^{108}$ To our pleasure, a higher loading of reagent afforded better quality of $\mathbf{2 6 2}$ (88% NMR pure), which was obtained in pure form after Kugelrohr distillation (entry 8).

Pure (2-(2-bromophenyl)propyl)trimethylsilane 262 was subjected to our standard coupling reaction condition. Surprisingly, benzosilole 267 was produced in 82% yield along with 18% of $\mathbf{2 6 8}$ (determined by GC-MS). No butylated product was observed in GC-MS. We concluded that the double bond played an important role in the coupling reaction. In the absence of double bond, the pentaorganosilicate intermediate
corresponding to $\mathbf{2 6 2}$ may have a lower ring strain to facilitate the release of the methyl anion to form the stable benzosilole 267 (Scheme 61).

Scheme 61 Lithium-halide Exchange of 262

In addition to structural modifications of $\mathbf{2 4 2}$ in the mechanistic studies, $\mathbf{2 4 2}$ was also subjected to a low temperature $\left(-78{ }^{\circ} \mathrm{C}\right.$, THF- $\left.\mathrm{d}_{8}\right){ }^{29}$ Si-NMR experiment employing the intensitive nuclei enhanced by polarization transfer (INEPT) technique to detect the existence of the proposed pentaorganosilicates intermediates. A few silicon peaks were observed at $-3.76,-3.81$ and -6.46 ppm . The absence of silicon peak at $-116.9 \mathrm{ppm}^{81}$ indicated that the pentavalent organosilicates $\mathbf{2 5 3}$ did not exist in an observable concentration in the equilibrium with phenyllithium intermediate $\mathbf{2 5 2}$, but it does not rule out its intermediacy in the reaction.

The relative intensity of silicon peaks changed significantly after the addition of 5 equiv. of HMPA. A new peak at -4.82 ppm appeared as the major peak, which may suggest the changes in the aggregation state of phenyllithium upon treatment with HMPA (Figure 9).

Figure $9{ }^{29} \mathrm{Si}$-NMR Experiment of $\mathbf{2 4 2}$ with t-BuLi and HMPA

Compound 262 was also subjected to low temperature ${ }^{29} \mathrm{Si}-\mathrm{NMR}$ studies (Figure 10). Interestingly, the peak at ca. 10.0 ppm showed up right after the treatment of $\mathbf{2 6 2}$ with t-BuLi. This peak prevailed in the mixture during the reaction and even after the quenching with n-BuBr. This peak was assigned as 267 with NMR and GC-MS data, which is consistent with our previous result.

Figure $10{ }^{29} \mathrm{Si}-\mathrm{NMR}$ Experiment of $\mathbf{2 6 2}$ with t-BuLi

2.3 Phenyldimethylsilane Derivative

We attributed the absence of pentaorganosilicate signal to the relative instability of 253. We designed the phenyl substrate 270 so as to stabilize the transient hypervalent intermediate. Following the procedure for 242, 270 was obtained in 50% yield by the sequential addition of the organocerate to ester 240 followed by Peterson olefination (Scheme 62).

Scheme 62 Preparation of Phenyldimethylsilane Derivative 270

Dimethylphenylsilane 270 was treated with 2.1 eqiuv. of $t-\mathrm{BuLi}$ and quenched by BuBr. Butylated product 271 was obtained in 64% yield, together with 11% protonation product 272. Interestingly, 2,3-dihydro-benzosilole 273 was formed in 6% yield (Table 7, entry 1). The yield of 273 increased to 38% when the reaction was left at $0{ }^{\circ} \mathrm{C}$ for 2.5 h (entry 2). After prolonged reaction time at room temperature, benzosilole 274 was formed in 44% yield with conjugation having occurred due to the presence of excess base (entry 3). The presence of 273 and 274 showed the evidence for the formation of pentaorganosilicate intermediate during the reaction.

Table 7 Halogen-lithium Exchange of $\mathbf{2 7 0}$ under Different Tempearatures

[^2]Low temperature ${ }^{29}$ Si-NMR experiments were also carried out with phenyldimethyl analogue 270 (Table 8). One major silicon peak (7.49 ppm) was observed together with several small peaks at $-78{ }^{\circ} \mathrm{C}$ in THF solvent (Figure 11). Butylated product 271 was obtained in 93% yield upon the quenching with BuBr (entry 1). When the reaction was warmed up slowly to room temperature, the peak at 7.49 ppm gradually converted to the new peak at -8.71 ppm . No hypervalent organosilicate peak was observed under these
conditions (entry 2). When t-BuLi was added to mixture of $\mathbf{2 7 0}$ and 5.0 equiv. of HMPA in THF, a pentaorganosilicate intermediate (-108.04 ppm) was found to dominate in the reaction mixture. It remained intact when the reaction temperature was elevated to -40 ${ }^{\circ} \mathrm{C}$. Coupling product 271 was obtained in 63% yield, together with 16% of protonated product $\mathbf{2 7 2}$ and trace amount of $\mathbf{2 7 3}$.

Table 8 Low Temperature ${ }^{29} \mathrm{Si}$-NMR Experiments

			Clic	 272 274		
entry	Conditions	Major Si peak (ppm)	$\begin{aligned} & 271 \\ & (\%) \end{aligned}$	272 (\%)	273 (\%)	274 (\%)
1	$\begin{aligned} & -78^{\circ} \mathrm{C}, 25 \mathrm{~m} \\ & n \text {-BuBr, } 10 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline 7.49 \\ -10.7 \end{gathered}$	93	7	-	-
2	$-78 \sim-20^{\circ} \mathrm{C}, 20 \mathrm{~m}$	7.76	-	-	-	-
	$0^{\circ} \mathrm{C}, 30 \mathrm{~m}$	7.44, -8.83	-	-	-	-
	rt, 1 h	-8.71	-	-	-	-
	$\mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 7.49,-0.01 \\ -4.75,-8.71 \end{gathered}$	-	28	7	13
3	$\begin{gathered} \mathrm{d}^{0}-\mathrm{THF}, \mathrm{HMPA} \\ -80 \sim-40^{\circ} \mathrm{C}, 20 \mathrm{~m} \end{gathered}$	-108.0	-	-	-	-
	$-78{ }^{\circ} \mathrm{C}, \mathrm{BuBr}, 5 \mathrm{~m}$	-	63	16	-	3

HMPA (5.0), THF
$-78 \mathrm{C}, 40 \mathrm{~min}$

Figure $11{ }^{29} \mathrm{Si}-\mathrm{NMR}$ Experiments of $\mathbf{2 7 0}$ with $t-\mathrm{BuLi}$ and HMPA

2.4 Attempts of Coupling Reaction on other Silane Substrates

Excited by the results of the novel coupling reaction of the bromosilane system, we started to explore the generality of this coupling reaction. Known bromosilane $\mathbf{1 6 4}$ was prepared. When 164 was treated with t - BuLi and subsequently treated with bromobutane, compounds 275 and 167 were obtained in 32% and 68% yields, respectively. No coupling product 276 was observed in the reaction mixture. Compound 277 was also subjected to the sequence of lithium-halide exchange and quenching with electrophiles
both in the absence and presence of HMPA. Compound 278 was obtained as the sole product in both cases.

$\frac{1 . t-\operatorname{BuLi}(2.1),-78^{\circ} \mathrm{C}, 15 \mathrm{~m}}{\text { 2. } \operatorname{HMPA}(5.0),-7{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}}$
Scheme 63 Attempts of Intramolecular Coupling Reaction on 164 and 277

The intermolecular coupling reaction was also explored on three different silane systems that were known to form the pentaorganosilicate intermediates upon treatment with an organolithium (Table 9). When 5,5-dimethyldibenzosilole 167 was treated with 1.0 equiv of phenyllithium followed by the quenching with 1 -bromobutane, no reaction was observed with or without 10 equiv. of HMPA (entry 1). Similarly, no reaction took place with the tetraphenylsilane $\mathbf{1 7 2}$ and phenyltrimethylsilane $\mathbf{2 7 9}$ (entries 2 and 3).

Table 9 Attempts of Intermolecular Coupling Reaction

| entry | R
 $\mathrm{R}-\mathrm{S}_{\mathrm{S}}$
 \mathbf{R} |
| :---: | :---: | :---: | :---: | :---: |

${ }^{\text {a }}$: Only clean starting material was recovered.

3 Summary

In short, we have made an unusual observation during a lithium-halide exchange reaction and discovered a novel coupling reaction of an organolithium with several primary bromides with the apparent assistance of silicon. The reaction shows generality with several primary bromides with trimethylsilane substrate 243 and phenyldimethylsilane substrate $\mathbf{2 7 0}$. We hypothesized that a pentaorganosilicate intermediate might be involved in this unusual coupling with alkyl bromides. Detailed mechanistic studies were carried out that support our hypothesis.

The following observations are of key importance:

1. The silicon atom is apparently necessary for the coupling reaction. Only small amounts of coupling products were obtained for $\mathbf{2 5 4}(\mathrm{R}=\mathrm{H})$ and $\mathbf{2 5 8}(\mathrm{R}=t-\mathrm{Bu})$.
2. The presence of alkene is needed to prevent ring closure. The alkene may increase the ring strain of pentaorganosilicate intermediate to facilitate coupling with primary bromides. In contrast, only the release of a methyl group was observed for 262.
3. A pentaorganosilicate for phenyldimethylsilane $\mathbf{2 7 0}$ was observed by ${ }^{29} \mathrm{Si}-\mathrm{NMR}$, while no pentavalent species was detected for trimethylsilane $\mathbf{2 4 3}$ due to its instablity.
4. Other attempts at coupling reactions with other silane systems turned out to be fruitless.

The experimental results implied that the silicon group plays a role in the process, but that a pentaorganosilicate need not be involved. Further studies might be needed to establish the detailed mechanism of this novel coupling reaction.

Chapter III

Total synthesis of 1-epi-seco-pseudopteroxazole

1 Introduction

Since the first isolation of seco-pseudopterosins and pseudopterosins by the Fenical group in the 1980s, ${ }^{109,110}$ over 100 marine natural products, bearing diterpenoid structure, have been isolated. The chemistry of diterpenoid marine natural products has gained a lot of attention due to the structural diversity, as well as the large spectrum of biological activities. ${ }^{111}$ In the following section, only the diterpenoid compounds bearing serrulatane carbon skeleton will be discussed, including the isolation, biological activities, and related synthesis.

1.1 Serrulatane Diterpenoids from Pseudopterogorgia Elisabethae

Serrulatane diterpenoids (as shown in Figure 12) have a backbone structure, which is comprised of a bicyclic ring and 20 total carbons.

Figure 12 Frame Structure of Serrulatane

Figure 13 shows nine serrulatane-based natural products that have been isolated from Pseudopterogorgia elisabethae up to date. One of the best-known members of this class, seco-pseudopterosin aglycone (280) was isolated as different glycoside forms. ${ }^{110,112}$ Seco-pseudopteroxazole (281), which bears an unusual benzoxazole moiety, was isolated in 1999. ${ }^{113}$ Another notable member, erogorgiaene (282), was isolated in 2001 together with its analogue hydroxyerogorgiaene (283) and dimer (288). ${ }^{114}$ Elisabethadione $(\mathbf{2 8 4})^{112}$ also has three closely related analogues: tert-hydroxyelisabethadione (285) ${ }^{115}$, sec-hydroxyelisabethadione (286) ${ }^{116}$ and elisabethamine (287) ${ }^{117}$. However, the structure of $\mathbf{2 8 7}$ with labile aminohydroquinone functionality was questioned by Davies group during the attempt of total synthesis of 287. ${ }^{118}$

[^3]
elisabethamine (287)

(288)

Figure 13 Serrulatane-based Marine Natural Products
Seco-pseudopterosin (280) and its glycosides showed promising anti-inflammatory and analgesic activity in a mouse ear anti-inflammatory assay. Moreover, the mechanism of action is distinct from those cyclooxygenase-inhibiting anti-inflammatory nonsteroidal drugs. ${ }^{119}$ Another family member, elisabethadione (284), also showed moderate antiinflammatory activity. ${ }^{112}$

Antituberculosis studies were carried out for seco-pseudopteroxazole (281), erogorgiaene (282) and related compounds. Compound 282 was found to have excellent inhibition (96\%) against M. tuberculosis H37Rv, while 281 and 283 induced 66% and 77% inhibition respectively at a concentration of $12.5 \mu \mathrm{~g} / \mathrm{mL} .{ }^{113,114}$ The results suggested that the hydroxy group and the benzoxazole moiety are not crucial for the activity.

Additionally, elisabethamine (287) exhibited moderate activity against lung cancer and prostate cancer cell lines with IC_{50} values of 10.35 and $20 \mu \mathrm{~g} / \mathrm{mL}$ respectively. ${ }^{117}$

1.2 Serrulatane Diterpenoids from Other Sources

Other than being isolated from the sea whip Pseudopterogorgia elisabethae, the serrulatane-type diterpenoids were also found in the blue coral Heliopora coerulea, the
far-eastern brown algae Dictyota dichotoma, and in the Australian herb Eremophila species (Figure 14).

Helioporin D (289) was isolated from blue coral Heliopora coerula by a Japanese research group. ${ }^{120}$ Compound 289 was originally assigned as C-1 epimer of secopseudopterosin, which was later revised by Schmalz's group. ${ }^{121}$

Ent-erogorgiaene (282) was found in the far-eastern algae, together with another complex tricyclic compound tetrahydroerogorgiaene (290). Both compounds showed moderate activity against human tumor cell lines. ${ }^{122}$

helioporin $\mathrm{D}(\mathbf{2 8 9})$

ent-erogorgiaene (282) tetrahydroerogorgiaene (290)

Figure 14 Natural Products Isolated from Heliopora Coerulea and Dictyota Dichotoma

Serrulatic acid (291) ${ }^{123}$, dihydroxyserrulatic acid $\left(\mathbf{2 9 2}^{123}, \mathbf{2 9 3}^{124}\right)$ and trihydroxyserrulatic acid $(\mathbf{2 9 4}, \mathbf{2 9 5})^{125}$ were isolated from the land plant Eremophila species in recent years (Figure 15). It is worth pointing out that the configurations of C-1 and C-4 position are opposite to what was observed in the previous marine natural products. Compound 291 and 292 were subjected to the antibacterial and antiflammatory tests. Of particular interest is that 291 showed strong bactericidal activity against S. aureus with the minimum bactericidal concentration of $15 \mu \mathrm{~g} / \mathrm{mL}$ and potent inhibitory against COX-1 $(27 \mu \mathrm{~g} / \mathrm{mL})$ and COX-2 $(73 \mu \mathrm{~g} / \mathrm{mL})$.

serrulatic acid (291)

3, 8-dihydroxyserrulatic acid (292) 3, 16-dihydroxyserrulatic acid (293)

3, 8, 20ß-trihydroxyserrulatic acid (294)

3, 8, 20 α-trihydroxyserrulatic acid (295)

Figure 15 Natural Products Isolated from Eremophila Species

1.3 Biosynthesis of Serrulatane Diterpenoids

Extensive biosynthetic studies of serrulatane diterpenes have been carried out using various techniques in the Kerr group. ${ }^{126-129}$ With the assistance of the enzyme diterpene cyclase, geranylgeranyl pyrophosphate (GGPP 296) was transformed into elisabethatriene (297), which undergoes aromatization to form erogorgiaene (282). Oxidation at C-7 position and C-8 position produces seco-pseudopterosin aglycone (280). 5, 8-dihydroxylation of $\mathbf{2 8 2}$ could deliver the intermediate $\mathbf{2 9 9}$, which could further transform into elisabethadione (284). Finally, serrulatane diterpene natural products are generally considered the biosynthetic precursors of other complex polycyclic members, which are also isolated from Pseudopterogorgia elisabethae (Scheme 64).

Scheme 64 Biosynthesis of Serrulatane Diterpenoids

1.4 Synthetic Efforts

Stimulated by the wide spectrum of biological activities and the potential biogenetic relationship to many other complex polycyclic diterpenoid natural products, serrulatane diterpenoids have been of particular synthetic interest in recent years. Several elegant routes have been published on the synthesis of the serrulatane and its closely related amphilectane diterpenes. However, due to the fact that I don't want to work too much on this chapter, only those synthetic approaches from starting materials carrying no stereocenter will be discussed. The strategies starting from terpene-derived units with established stereocenters will not be presented. ${ }^{130-136}$ Also the elegant syntheses of C-1 epimeric pseudopterosins and pseudopteroxazole from Kocienski ${ }^{137}$ and Corey ${ }^{138}$ will not be addressed.

1.4.1 seco-pseudopterosin Aglycone

McCombie reported the first total synthesis of the seco-pseudopterosin aglycone (280) utilizing a novel intramolecular ionic hydrogenation. ${ }^{139}$ Commercially available 5methoxytetralone ($\mathbf{3 0 0}$) was converted to alcohol $\mathbf{3 0 1}$. The relative stereochemistry of C4 and C-11 position was set up nicely by directed hydrogenation using Wilkinson's catalyst to minimize the 1,4 - allylic strain. Regioselctive benzylic oxidation and several steps of functionality transformation furnished olefin 303. Catalytic hydrogenation $\left(\mathrm{H}_{2}\right.$, Pd / C) exclusively gave $\mathrm{C}-1$ epimer, generated by the attack from the less hindered face (Re face) of benzylic alkene. Ionic reduction $\left(\mathrm{Et}_{3} \mathrm{SiH}, \mathrm{TFA}\right)$ gave 304 and its $\mathrm{C}-1$ epimer with a raio of 2:3. Finally, an intramolecular ionic reduction delivered 304 in 70% yield with $90 \% \mathrm{de}$. It presumably proceeded through the 9 -membered ring transition state intermediate 303a. The total synthesis of racemic $\mathbf{2 8 0}$ was completed in several steps (Scheme 65).

Scheme 65 McCombie's Total Synthesis of Racemic seco-pseudopterosin Aglycone

Two years later, the same group published an enantioselective route to the key intermediate dimethoxy derivative 311. ${ }^{140}$ Compound $\mathbf{3 0 7}$ was prepared from aldehyde

305 in 6 steps in 65% overall yield. $\mathrm{S}_{\mathrm{N}} 2$ displacement of a triflate set the $\mathrm{C}-11$ stereocenter with 90% de as indicated by chiral HPLC. The ester was reduced and then converted to dimethylsilyl ether 308, which was then treated with EtAlCl_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $70{ }^{\circ} \mathrm{C}$. The desired isomer $\mathbf{3 0 9}$ was generated in a $9: 1$ diastereomer ratio. Again, the stereochemical outcome could be explained by minimizing the 1,4 -allylic strain (as shown 308a and 308b). Several steps of operations delivered sulfone 310, which underwent the intramolecular ionic reduction to give key intermediate $\mathbf{3 1 1}$ (Scheme 66).

Scheme 66 McCombie's Enantioselective Synthesis of Key Intermediate 311

The second synthesis of $\mathbf{2 8 0}$ was accomplished in the Schmalz group. ${ }^{141}$ Enantiomerically pure η^{6}-arene chromium tricarbonyl complex $\mathbf{3 1 3}$ was prepared from tetralone $\mathbf{3 1 2}$ by a sequence of enantioselective reduction, diastereoselective complexation, and oxidation. Both the nucleophilic addition of ketone and the methylation at the benzylic position took place exclusively from the less hindered exo
face to provide 314 with high diastereoselectivity. Stereoselective hydroboration followed by deprotection and elimination delivered 315. Compound 315 was initially subjected to different reducing reagents. No conversion was observed under ionic reduction (TFA/SiHEt ${ }_{3}$) or catalytic hydrogenation (Pd / C or Raney-Ni). Only 65% conversion was observed when it was reduced by SmI_{2} in $\mathrm{THF} / \mathrm{HMPT} / \mathrm{H}_{2} \mathrm{O}$. However, methylated compound 316 afforded 317 in quantitative yield, which was further converted to 318 by oxidative decomplexation and then seco-pseudopterosin aglycone 280. This synthesis requires 17 steps with a 13.2% overall yield from commercial available veratrole (Scheme 67).

Scheme 67 Schmaltz's Enantioselective Total Synthesis of seco-Pseudopterosin Aglycone

1.4.2 Erogorgiaene

Erogorgiaene (282) is another popular target in the synthetic community due to its potent antituberculosis activity. So far, there have been three published total syntheses of 282 and one formal synthesis.

The first enantioselective total synthesis of $\mathbf{2 8 2}$ was published by Hoveyda group in 2004. ${ }^{142}$ Bromoketone $\mathbf{3 2 0}$ was prepared from the commercially available dihalide $\mathbf{3 1 9}$ through an intermolecular Heck coupling reaction. Cu-catalyzed asymmetric conjugate addition was carried out in the presence of chiral phosphine ligand $\mathbf{3 2 1}$ to deliver β methyl ketone 322 in 94% yield with $98 \% \mathrm{ee}$. Stille coupling followed by regioselective deprotonation gave the intermediate compound 323. The TMS enol ether was further converted to enyne $\mathbf{3 2 4}$ by a 3 -step sequence of triflation, reduction and deprotection. Intramolecular ring-closing metathesis and cross metathesis produced α, β-unsaturated ketone $\mathbf{3 2 6}$ in good yield. After screening various reaction conditions, chiral phosphine ligand $\mathbf{3 2 7}$ gave conjugate addition product $\mathbf{3 2 8}$ with excellent diastereoselectivity and high regioselectivity.

Diastereoselective reduction of $\mathbf{3 2 8}$ employing catalytic or ionic hydrogenation predominantly afforded the thermodynamically more stable cis product, reaction occurring from the less hindered face of benzylic alkene. Reduction of the ketone, dissolving metal reduction $\left(\mathrm{Li}, \mathrm{NH}_{3}\right)$ and Dess-Martin oxidation afforded 329 in 73\% overall yield with $85: 15$ diastereoselectivity. The desired diastereomer was isolated after chromatography. Compound $\mathbf{3 2 9}$ was converted to erogorgiaene after several functional group transformations. The first enantioselective total synthesis of
erogorgiaene was accomplished with a 4% overall yield in 18 steps from commercially available 2-bromo-1-iodo-4-methyl benzene (Scheme 68).

Scheme 68 Hoveyda's Enantioselective Total Synthesis of Erogorgiane 282

In 2005, Davies group ${ }^{143}$ reported an elegant total synthesis of erogorgiaene utilizing the strategy of the combined $\mathrm{C}-\mathrm{H}$ activation / Cope rearrangement. The synthesis started from readily available racemic dihydronaphthalene 330. Compound $\mathbf{3 3 3}$ was obtained in an enantiopure form together with cyclopropane $\mathbf{3 3 4}$ as a $1: 1$ mixture (Scheme 69).

Scheme 69 Davies's Synthesis of Key Intermediate 333

The key to the kinetic enantiodifferentiating step is to take advantage of the different reactivity of (R)-330 and (S)-330. C-H activation, followed by Cope rearrangement could deliver the 1,5 -diene 333 . The stereochemical outcome could be rationalized by the chair transition intermediate 333a. When (\pm)- $\mathbf{3 3 0}$ was reacted with 331 in the presence of R-dosp catalyst, (S)-330 fit into the catalyst to give the matched combined C-H activation/Cope rearrangement product 333. In contrast, mismatched (R) 330 delivered cyclopropane $\mathbf{3 3 4}$ (Scheme 70).

Scheme 70 Mechanism of C-H Activation/Cope Rearrangement

Compound $\mathbf{3 3 3}$ was further converted to $\mathbf{3 3 5}$ by catalytic hydrogenation and LAH reduction. PCC oxidation and Wittig olefination finished the total synthesis of erogorgiaene. This synthesis required 12 steps and gave a 6.3% overall yield from 4-oxo-4-tolylbutanoic acid (Scheme 71). The same C-H activation/Cope rearrangement strategy was also applied to the total synthesis of elisabethadione (284). ${ }^{144}$

Scheme 71 Davies's Enantioselective Total Synthesis of Erogorgiaene

Very recently, the Yadav group published another total synthesis of erogorgiaene, featuring an intramolecular Friedel-Crafts reaction of an oxetane. (Scheme 62). ${ }^{145}$ The synthesis began with the readily available p-tolylacetic acid, which was alkylated with the assistant of an Evans chiral auxiliary to afford $\mathbf{3 3 9}$ with excellent stereoselectivity. Functional group interconversions converted amide $\mathbf{3 3 8}$ to $\mathbf{3 3 9}$, which underwent syn aldol reaction in the presence of titanium chloride under Crimmins conditions. The amide functionality was converted to oxetane $\mathbf{3 4 2}$ in 5 steps. The key step, an intramolecular Friedel-Crafts reaction, was carried out in the presence of a Lewis acid. Cyclization occurred smoothly, resulting in 343 as a single diastereomer. The total synthesis of erogorgiaene was completed in 19 steps with an overall yield of 7\% (Scheme 72).

Scheme 72 Yadav's Total Synthesis of Erogorgiaene

1.4.3 Synthetic Efforts from Our Group

1.4.3.1 Formal Synthesis of Erogorgiaene

In 2005, our group published a novel approach to the synthesis of erogorgiaene featuring the highly stereoselective intramolecular Michael reaction. ${ }^{146} \alpha, \beta$-Unsaturated ester $\mathbf{3 2 0}$ was synthesized from readily available 2-bromo-4-methylbenzaldehyde. Compound 320 was coupled with (S)-sulfoximine 344 under the Buchwald-Hartwig condition to give 345 in 87% yield. Base-induced intramolecular Michael addition delivered $\mathbf{3 4 6}$ in 83% yield as a single stereoisomer (Scheme 73). ${ }^{147}$

Scheme 73 Harmata's Benzothiazine Chemistry

The stereochemical outcome of this reaction could be rationalized complying the following two transition state configurations (Figure 16). When subjected to LDA or LiHMDS, the methyl group attached to sulfur was deprotonated to give a carbanion. The unsaturated ester approached the carbanion from the back face to avoid interaction with the phenyl group. Transition state 345a is more favored than 345b because 345b exhibits the unfavorable gauche interaction of α-hydrogen with sulfoximine oxygen.

345a

345b

Figure 16 Configuration Analysis

With ester 346 in hand, reduction of the ester to the alcohol and reductive cleavage of sulfoximine auxiliary produced aniline $\mathbf{3 4 7}$ in 76% yield. Aryl iodide 348 was obtained by a sequence of triazene formation and iodination. Sonogarshira coupling with TMs-acetylene gave 349 in 90% yield. Finally, the primary alcohol was converted to the Hoveyda intermediate 324 in two more steps (Scheme 74).

Scheme 74 Harmata's Synthesis of Key Intermediate Benzothiazine Chemistry

1.4.3.2 Total Synthesis of Pseudopteroxazole

As a part of a program aimed at the synthesis of antitubercular active products, we became interested in the synthesis of pseudopteroxazole, ${ }^{148,149}$ a close relative to secopseudopteroxazole but with higher inhibitory activity against M. tuberculosis H37Rv.

Beginning with α, β-unsaturated ester 350, coupling product $\mathbf{3 5 1}$ was obtained in 81% yield. Compound $\mathbf{3 5 1}$ was converted to benzothiazine ester $\mathbf{3 5 2}$ with incorrect stereochemistry at the methyl-bearing center in 88% yield and 90% de. Reduction and aldehyde formation with concomitant epimerization gave the desired R stereochemistry in a ratio of 1.6: 1.0 d.r.. When the diastereomeric mixture $\mathbf{3 5 3}$ was subjected to Wittig reaction, the desired product 354 was isolated in 52% yield after column chromatography. Intramolecular Friedel-Crafts alkylation gave tricyclic compound $\mathbf{3 5 5}$ in
88% yield as a single diastereomer. Hydrogenation precursor 356 was generated in 43% yield in 6 steps. Asymmetric hydrogenation using Pfatlz's chiral catalyst $\mathbf{3 5 7}$ gave the desired isomer $\mathbf{3 5 8}$ with 158:1.0 d.r.. Installation of the oxazole ring led to the second total synthesis of pseudopteroxazole 359. This synthesis required 17 steps and proceeded in 4.1% overall yield (Scheme 75).

Pfaltz's catalyst $\mathbf{3 5 7}$

Scheme 75 Harmata's Total Synthesis of Pseudopteroxazole 359

2 The Studies Towards the Total Synthesis of seco-Pseudopteroxazole

Even though our group successfully accomplished the total synthesis of pseupteroxazole (359), we still wanted to solve the stereochemical problem faced in the synthesis of 352. Our idea was as follows (Scheme 76). An intramolecular Michael reaction could be carried out on the substrate $\mathbf{3 6 0}$ bearing an alkyl chain. The resulting enolate could be kinetically protonated to give 361. The ester group could be further converted to methyl group in a few steps. As a part of our synthetic program, we became interested in applying this idea to the total synthesis of seco-pseudopteroxazole 281.

Scheme 76 Proposed Synthesis of Key Intermediate 362

2.1 Synthetic Plan

Seco-pseudopteroxazole (281) could be synthesized from 363 by installation of oxazole ring and asymmetric reduction. Compound 363 could be obtained by intramolecular Heck coupling of aryl iodide 364. Cleavage of the sulfoximine auxiliary could convert $\mathbf{3 6 5}$ to $\mathbf{3 6 4}$. $\mathbf{3 6 5}$ could be produced from α, β-unsaturated ester $\mathbf{3 6 6}$ by our
benzothiazine chemistry. Roush-modified Horner-Wadsworth-Emmons reaction could access ester 366 with good stereoselectivity (Scheme 77).

Scheme 77 Synthetic Plan to seco-pseudopteroxazole 281

2.2 Results and Discussion

2.2.1 First Approach to Introduce the Stereochemistry at C-4 and C-11 Position

Starting from commercially available 3,5-dimethylanisole 369, benzylic alcohol 370 was synthesized in 59% yield by monobromination and hydrolysis. ${ }^{150}$ Ortho-directed bromination of $\mathbf{3 7 0}$, followed by Swern oxidation delivered bromoaldehyde $\mathbf{3 6 7}$ in 80% yield (Scheme 78).

Scheme 78 Synthesis of Bromoaldehyde 367

Another starting material, phosphonate 368, was synthesized from cyclopropyl methyl ketone 371. Addition of Grignard reagent gave tertiary alcohol, which further underwent acid-catalyzed carbonium rearrangement to give a 5-iodo-2-methylpent-2-ene 372. ${ }^{151}$ Compound 368 was generated in 83% yield together with 6% of dialkylated phosphonate (not shown) upon treatment of iodide 372 with phosphonoacetate anion (Scheme 79). ${ }^{152}$

Scheme 79 Synthesis of Phosphate 368

Several reaction conditions were investigated to achieve good E selectivity for olefination reaction (Table 10). Under standard conditions for the Horner-WadsworthEmmons reaction (n-BuLi, THF, $0^{\circ} \mathrm{C}$ to room temperature), ester $\mathbf{3 6 2}$ was obtained as a mixture of E and Z isomers ($E: Z 5.0: 1.0$) (entry 1). When the same reaction was conducted using the Roush's modified conditions ${ }^{153}$, the E / Z ratio increased to $10: 1.0$ and the E isomer was isolated in 83% yield (entry 2).

Table 10 Synthesis of E-trisubstituted α, β-unsaturated Ester 366

With ester 366 in hand, coupling with enantiomerically pure R-sulfoximine (344) in the presence of $5 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 7.5 \%$ racemic BINAP and 1.4 eq of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ afforded $\mathbf{3 6 0}$. The conversion of the starting material largely relied on the efficiency of the catalyst system. In our hands, the conversion varied from 30% to 80%. However, complete conversion was achieved when additional catalyst $\left(\mathrm{Pd}(\mathrm{OAc})_{2}\right.$ and BINAP) was added after 36 h (Scheme 80).

Scheme 80 Synthesis of Benzothiazine Ester 360

With 360 in hand, we started to explore the intramolecular Michael reaction, one of the key steps in this total synthesis (Table 11). Initial attempts using previously reported procedures afforded the desired product in good yield. But neither LDA nor LiHMDS produced acceptable diastereoselectivity (entries 1 and 2). This poor selectivity could result from the rapid epimerization at $\mathrm{C}-11$ position during the protonation of enolate. When using LDA as a base, cold HCl in methanol as a proton donor increased the diastereomeric ratio from 3.8: 1.0 to 5.8: 1.0 (entry 3). A diastereomeric ratio of 9.2: 1.0 was obtained when the reaction was quenched by cold 1 N HCl in methanol using LiHMDS as a base (entry 4). A weaker but sterically hindered proton donor (diisopropyl amine HCl salt) afforded a moderate diastereoselectivity (entries 5 and 6). Gerenally, LiHMDS gave better results compared with LDA, which might suggest the role of free amines (HMDS and DIPA) in the reaction mixture should not be overlooked.

Table 11 Optimization of Intramolecular Michael Reaction

The rationale for the stereochemical ourcome of the process is shown in Scheme 80. Deprotonation by LDA or LiHMDS gave carbanion 360a, which could undergo intramolecular Michael reaction to afford enolate intermediate 360b with high stereoselectivity aided by the sulfoximine auxiliary moiety (as shown in Figure 16). Dianion 360c might be formed in the presence of excess base. Based on the Kocienski's model ${ }^{137}$, an electrophile would prefer to come in from Re face of enolate $\mathbf{3 6 0 c}$ to avoid the interaction with the hydrogen atom on the benzene ring to give the kinetic products 361.

Scheme 81 Rationlization of Stereochemical Outcome

After the successful assembly of the stereocenters at the C-4 and C-11 positions, we set out to reduce the ester group to methyl group in a few steps. The strategy is quite straightforward. Reduction of ester would afford alcohol 369. The hydroxy group could be first converted to a good leaving group (sulfonate ester or iodide), and then further reduced to methyl group (Scheme 82).

Scheme 82 Proposed Route 358

However, real life was not as straightforward as we anticipated. The simple reduction of the ester turned out to cause a lot of problems (Table 12). LAH reduction of the ester gave only moderate yields of alcohol varying from 43 to 57% after silica gel column chromatography, despite the fact that relatively clean conversion was achieved up to a 200 mg scale. The low yield of this reaction might be attributed to the lability of alcohol 373. Compound $\mathbf{3 7 3}$ was prone to rearrangement to give significant mass amount of byproducts under the reaction conditions and during silica gel column chromatography. Two such byproducts were assigned as 374 and 375 based on the spectroscopic data, whose structures were further confirmed by the X-ray data of their analogs. The detailed mechanisms leading to $\mathbf{3 7 4}$ and $\mathbf{3 7 5}$ will be discussed in the following section (entry 1).

Red Al reacted sluggishly with $\mathbf{3 6 1}$ to give a complicated mixture and some starting material (entry 2). Stereo hindered reducing agent DIBAL-H afforded moderate yield of
alcohol 373 (entry 3). Ionic reduction of ester to methyl group using TES and PMHS was carried out in the presence of catalytic and stoichiometric amount of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (entry 4,5). ${ }^{154}$ Only clean starting material was recovered in both cases. Presumable the sulfoximine group bounded to Lewis acid and deactivated it. Finally, we found that $\mathrm{LiEt}_{3} \mathrm{BH}$ is the reagent of choice to give quantitative yield of alcohol 373, which was immediately used for further steps without any purification (entry 6).

Table 12 Reduction of Ester 361

BYPRODUCT

374

entry	Conditions	Yield (\%)
1	LAH (1.5), THF, $0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$	$43-57$
2	$\operatorname{Red~Al~(3.0),~} 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{rt}, 5 \mathrm{~h}$	decomposed
3	$\operatorname{DIBAL}(2.5), 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, \mathrm{rt}$	46
4	$\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} 5 \%$, TES or PMHS $(5.0), \mathrm{rt}, 12 \mathrm{~h}$	Clean SM
5	$\mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1.1)$, PMHS $(5.0), \mathrm{rt}, 12 \mathrm{~h}$	Clean SM
6	$\mathrm{LiEt}_{3} \mathrm{BH}(3.0), \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$	Quant.

To fully explore the reductive cleavage of $\mathrm{C}-\mathrm{X}$ bond, a series of substrates, including mesylate $\mathbf{3 7 6}$, tosylate $\mathbf{3 7 7}$ and isopropylsulfonate $\mathbf{3 7 8}$ were prepared from alcohol 373. Iodide $\mathbf{3 7 8}$ was also prepared from mesylate $\mathbf{3 7 6}$ and tosylate $\mathbf{3 7 7}$ in good yield (Table 13).

Table 13 Preparation of Sulfonate Esters and Iodide

Entry	R_{1}	R_{2}	Compound
2	H	$-\mathrm{OSO}_{2} \mathrm{Me}$	$\mathbf{3 7 6}$
3	$-\mathrm{OSO}_{2} \mathrm{Tol}$	$\mathbf{3 7 7}$	87
4	OTs	$-\mathrm{OSO}_{2} \mathrm{Pr}$	$\mathbf{3 7 8}$
5	OMs	-I	$\mathbf{3 7 9}$

Before we found the best reducing reagent $\left(\mathrm{LiEt}_{3} \mathrm{BH}\right)$ for our system, we also carried out the two-step sequence of LAH-reduction and sulfonation to avoid the rapid decomposition of alcohol $\mathbf{3 7 3}$ during the column chromatography. The results are shown in Table 14, together with $\mathrm{LiEt}_{3} \mathrm{BH}$-reduction and sulfonation.

Table 14 Preparation of Sulfonate Esters and Iodide from Ester $\mathbf{3 6 1}$ in One-pot

${ }^{\mathrm{a}} 170 \mathrm{mg}$ scale. ${ }^{\mathrm{b}} 400 \mathrm{mg}$ scale. ${ }^{\mathrm{c}} 25 \mathrm{mg}-4.0 \mathrm{~g}$ scale.

The crude reaction mixture from LAH reduction, obtained by simple workup with Glauber's salt $\left(\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ and filteration, was subjected to the sulfonation reaction conditions. The desired sulfonates $\mathbf{3 7 6}$ and 377 were obtained in frustrating yields. However, to our surprise, tetrahydrofuran byproducts $\mathbf{3 8 0}$ and $\mathbf{3 8 1}$ were formed in significant amounts (18% and 11% yield, respectively, Table 14, entries 1 and 2). These structures were assigned based on the extensive NMR studies. For example, The reduction of sulfoximine moiety to - SPh group in $\mathbf{3 8 1}$ was indicated by the higher field of phenyl group as comparison with 376. The incorporation of two -OTs groups was clearly shown in the proton NMR. The presence of a distinct siglet (: 5.59 ppm) and
unusual low field carbons at 94.9 ppm and 72.3 ppm suggested a tetrahydrofuran moiety in 381. Finally, the structure of $\mathbf{3 8 1}$ was confirmed by X-ray crystallography (Figure 17).

Figure 17 X-ray Structure of 381

A possible mechanism for the formation of $\mathbf{3 8 0}$ and $\mathbf{3 8 1}$ is proposed in Scheme 82 based on the mechanisms for the LAH reduction of sulfones and sulfoxides. Reduction of ester $\mathbf{3 6 1}$ could give alcohol 382. S-N bond might be cleaved to afford 384, which might undergo Pummer rearrangement to give sulfonium intermediate 386. Subsequent ring closure and Sulfonate ester formation could deliver tetrahydrofuran $\mathbf{3 8 0}$ and 381,

Scheme $\mathbf{8 3}$ Proposed Mechanism for the Formation of $\mathbf{3 8 0}$ and $\mathbf{3 8 1}$

The sequence of LAH-reduction and iodination was also carried out in both small and large scales. As shown before, iodide $\mathbf{3 7 9}$ was obtained in 86% yield for two steps on a scale of 170 mg , but only 53% yield on a 400 mg scale. The LAH reduction of ester didn't give us any consistent results for the different scale reactions. This might have been caused by the increasing heat produced when adding relatively large amounts of LAH (Table 14 , entry 3).

A switch to $\mathrm{LiEt}_{3} \mathrm{BH}$ did give us a clean conversion of ester to alcohol. The crude alcohol was treated with iodine in the presence of triphenyl phosphine to give iodide 379 in $80-89 \%$ yield on a reaction scales from 25 mg to 2.0 g (Table 14, entry 4).

With a reliable procedure to access alcohol derivatives in hand, we set out to explore the reductive cleavage of $\mathrm{C}-\mathrm{X}$ bond to access key intermediate $\mathbf{3 6 2}$.

Table 15 Reductive Cleavage Approach to 362

entry	SM	Conditions	$\begin{gathered} \hline \text { Yield (\%) } \\ \mathbf{3 6 2} \end{gathered}$	Yield (\%) Byproduct
1	376	LAH(3.0), $\mathrm{Et}_{2} \mathrm{O},-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$45\left(60^{\text {a }}\right.$)	15 (388)
2	376	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, $0^{\circ} \mathrm{C}, 12 \mathrm{~h}$	b	na
3	376	$\mathrm{LiAlH}(\mathrm{OMe})_{3}, \mathrm{CuI}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$	b	na
4	376	$\mathrm{LiH}_{3} \mathrm{BNMe}_{2}, \mathrm{Et}_{3} \mathrm{~B}, \mathrm{THF}, 65^{\circ} \mathrm{C}, 12 \mathrm{~h}$	c	na
5	376	$\mathrm{NaBH}_{4}, \mathrm{DMSO}, 50{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$71,<40^{\text {d }}$	na
6	377	$\mathrm{LAH}(3.0), \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{rt}, 1 \mathrm{~h}$	e	na
7	377	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, rt, 12 h	e	na
8	378	$\mathrm{LAH}(3.0), \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$	50	24 (388), 4 (389)
9	378	$\mathrm{LAH}(3.0), \mathrm{Et}_{2} \mathrm{O},-25^{\circ} \mathrm{C}, 12 \mathrm{~h}$	53	Na
10	378	LAH (1.2), $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 12 \mathrm{~h}$	$35\left(62^{\text {a }}\right.$)	5 (388), 2 (389)
11	378	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, rt, 24 h	$23^{\text {e }}$	na
12	379	$\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}(20 \%), \mathrm{EtOAc}, 12 \mathrm{~h}$	f	na
13	379	$\mathrm{NaBH}_{4}, \mathrm{DMSO}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h}$	e	na
14	379	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	80-91	5-12 (390)

${ }^{\text {a }}$: Yield was calculated based on recovered starting material. ${ }^{\text {b }}$: Clean starting material was recovered. ${ }^{\mathrm{c}}$ Complex mixture. ${ }^{\mathrm{d}}:$ Lage scale $(900 \mathrm{mg}) .{ }^{\mathrm{e}}$: Decomposition of starting material was observed. ${ }^{\text {f }}: \mathbf{3 7 9}: \mathbf{3 6 2}=1.6: 1.0$.

Figure 18 Byproducts in the Reductive Cleavage of C-X

Substrates 376-379 were subjected to the different conditions of reductive cleavage of C-X bond (Table 15). When 376 was first exposed to 3.0 equivalents of LAH at -25 ${ }^{\circ} \mathrm{C}$, the desired compound $\mathbf{3 6 2}$ was obtained in 45% yield (60% based on recovered starting material). A 15% yield of over-reduction product $\mathbf{3 8 8}$ was isolated (entry 1). Compound 376 reacted very slowly upon treatment with $\mathrm{LiEt}_{3} \mathrm{BH}$ or $\mathrm{LiAlH}(\mathrm{OMe})_{3}$ combined with CuI^{155} (entry 2 and 3). An unidentified complex mixture was obtained when 376 was exposed to a system using lithium aminoborohydride and $20 \% \mathrm{Et}_{3} \mathrm{~B}^{156}$ (entry 4). NaBH_{4} with enhanced reactivity (dissolved in DMSO solution) ${ }^{157}$ was also applied to the deoxygenation of $\mathbf{3 7 6}$. A 71% yield of $\mathbf{3 6 2}$ was harvested for the smallscale test reaction but failed on a relative large scale (900 mg).

The 2-propanesulfonate group ${ }^{158}$ was found to be unsuitable as a leaving group. Only decomposition of starting material was observed either with LAH or $\mathrm{LiEt}_{2} \mathrm{BH}$ (entry 6 and 7).

Tosylate $\mathbf{3 7 8}$ was also subjected to the reductive cleavage reaction. Over-reduction products $\mathbf{3 8 8}$ and $\mathbf{3 8 9}$ were separated when $\mathbf{3 7 8}$ was stirring with LAH at $0^{\circ} \mathrm{C}$ (entry 8). A lower temperature $\left(-25^{\circ} \mathrm{C}\right)$ and lower loading of LAH could suppress the side reaction
(entry 9, 10), but the yield of $\mathbf{3 6 2}$ was still not satisfied. Significant decomposition of $\mathbf{3 7 8}$ was observed when reacted with $\mathrm{LiEt}_{3} \mathrm{BH}$ (entry 11).

Alkyl iodide 379 was first subjected to catalytic hydrogenolysis. ${ }^{159}$ Only 38% conversion was observed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude reaction mixture (entry 12). Heating in the presence of NaBH_{4} in DMSO resulted in the decomposition of starting material (entry 13). Finally, using 3.0 equivalents of $\mathrm{LiEt}_{3} \mathrm{BH}$ at $0{ }^{\circ} \mathrm{C}$ for 2 hours was found to offer the best results so far. Compound $\mathbf{3 6 2}$ was obtained in up to 91% yield together with $5-12 \%$ of sulfinamide $\mathbf{3 9 0}$. This reaction was generally very clean and could be scaled up. Furthermore, to our surprise, byproduct $\mathbf{3 9 0}$ was formed as a single diastereomer with retention of all of the stereochemistry. The details of this side reaction will be discussed in the next chapter.

The structures of $\mathbf{3 8 8}$ and $\mathbf{3 8 9}$ were established by the spectroscopic data. The presence of $-\mathrm{NH}_{2}$ group was indicated by a doublet ($3444.2 \mathrm{~cm}^{-1}$ and $3366.6 \mathrm{~cm}^{-1}$) in IR. From ${ }^{1} \mathrm{H}-\mathrm{NMR}$, a distinct doublet peak at 1.03 ppm (Me group) with coupling constant of 6.5 Hz clearly indicated the tosylate group was cleaved. Furthermore, a lower chemical shift for the S-phenyl group ($7.15-7.32 \mathrm{ppm}$ in $\mathbf{3 8 8}$, as compared $7.52-8.12 \mathrm{ppm}$ in $\mathbf{3 6 2}$) suggested the more shielding from sulfur atom and low valent sulfur in the molecule, which was later confirmed to be thiophenyl ether by the high resolution mass spectrometry. Thus, the structure of $\mathbf{3 8 8}$ was assigned.

As for $\mathbf{3 8 9}$, the sulfoximine moiety was reduced as clearly indicated by the lower chemical shift of S-phenyl group. The absence of the tosylate group and a distinct doublet around 1.00 ppm (methyl group), together with evidence of a free NH group, suggested the presence of tetrahydroquinoline moiety in the molecule. Attempts to extract the
coupling constants of H_{7} in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ failed because signal for H_{7} overlapped with the for $\mathrm{H}_{10 \mathrm{a}}$ and the spectrum turned into second-order spectrum ($\Delta \delta / \mathrm{J}: 1.9$). Thus, the stereochemistry of H_{7} and H_{8} were assigned based on the stereoinformation in the starting material. The structural assignment was also supported by NOESY experiment, as shown in Figure 19 and Figure 20.

Figure 19 NOE Spectrum of $\mathbf{3 8 9}$

Figure 20 Key NOE correlation of $\mathbf{3 8 9}$

A possible mechanism was proposed for the formation of byproducts $\mathbf{3 8 8}$ and $\mathbf{3 8 9}$ (Scheme 84). LAH-assisted reductive cleavage of C-N bond could deliver 378 to 392. Sequential tosylate reduction and sulfoxide reduction could give 388. Alternatively, a competitive intramolecular cyclization followed by sulfoxide reduction might afford tetrahydroquinoline $\mathbf{3 8 9}$.

Scheme 84 Proposed Mechanism for the Formation of $\mathbf{3 8 8}$ and $\mathbf{3 8 9}$

With an established methodology to access methyl benzothiazine $\mathbf{3 6 2}$ in hand, allylation was studied and occurred smoothly to give allylic benzothiazine $\mathbf{3 6 5}$ in 97% yield. Reductive cleavage of the sulfoximine moiety produced aniline 394 in 90% yield. Fortunately, the desired diastereomer was obtained in a pure form after silica gel column chromatography (Scheme 84).

Scheme 85 Preparation of Aniline 394

2.2.2 Second Approach to Introduce the Stereochemistry at C-4 and C-11 Position

Another approach to access aniline 394 was also investigated based on the idea that sufoximine 395 would be constructed and undergo intramolecular Michael reaction to set up all stereocenters in one step. Functional group interconversions would then deliver the aniline 394 (Scheme 86).

Scheme 86 Second Approach to Aniline 394

The required building block, allyl sulfoximine 400 was prepared from $\mathbf{R - 3 4 4}$. Protection of the nitrogen with TMS or TBS group yielded 397a and 397b, which were respectively further allylated and deprotected to afford $\mathbf{4 0 0}{ }^{160}$ in 40% and 58% yield, accompanied by diallylated product 401 in 32% and 16% yield (Scheme 87).

Scheme 87 Preparation of Allylic Sulfoximine 400

A model study was first carried out to explore the effect of the allyl substituent in the intramolecular Michael reaction. Compound $\mathbf{4 0 2}$ was coupled with $R-\mathbf{4 0 0}$ to yield $\mathbf{4 0 3}$ in moderate yield. Intramolecular Michael reaction took place smoothly. Benzothiazine 404 was produced in 91% yield as a $2: 1$ mixture of diastereomers (Scheme 88). The major isomer was assigned as trans based on the axial-equatorial coupling ($\mathrm{C}_{4}-\mathrm{H}: J$ value of 9.5 Hz). This stereoselectivity might be explained by the gauche interaction of α hydrogen with allyl group (Figure 21).

Scheme 88 Model Studies to Access Allylic Benzothiazine 404

403a (Favored)

403b

Figure 21 Conformational Analysis of 403

Encouraged by the excellent yield of 404, we carried out the synthesis of allylic benzothiazine 396. Compound 366 was coupled with allyl sulfoximine $\mathbf{4 0 0}$ to give 395 under our standard conditions. Cyclization was carried out to deliver benzothiazine 396 in 82% yield. The major isomer was assigned as $\mathbf{3 9 6}$, which was proved at a later stage (Scheme 89). To our delight, only two diastereomers were formed in a moderate yield no matter how the reaction was quenched. The facts that both isomers possess a doublet of doublets with coupling constants of 10.9 and 4.3 Hz suggested that the C-3 allyl group and C-4 side chain are trans to each other in both isomers.

Scheme 89 Synthesis of Allylic Benzothiazine 396

The stereochemical outcome might be involved a transition state like 395a (less congested), which would result in trans configuration at the C-3 and C-4 positions in the Michael addition products (Figure 22). The stereochemistry at C-11 was established at the protonation stage. The C-11 stereocenter of major isomer was assigned as R based on the Koscienski's model, which suggests that the allyl group might block the incoming proton (Figure 23).

Figure 22 Conformational Analysis of $\mathbf{3 9 5}$

Figure 23 Model for Protonation

Reduction and tosylation of $\mathbf{3 9 6}$ yielded tosylate $\mathbf{3 9 7}$ in 52\% yield. Iodination and reduction using super hydride afforded 11-epi-365, which was later converted to aniline epi-394. After the comparison of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of epi- $\mathbf{3 6 5}$ and epi-394 with the previous compounds, we found that both are completely identical with the minor isomers $\mathbf{3 6 5}$ and 394 (Scheme 90).

Scheme 90 Another Approach to Aniline 394

2.2.3 Finish the Total Synthesis of 1-epi-seco-Pseudopteroxazole

Pure 394 was converted to triazine 406 in quantitative yield. This was subsequently converted to iodide 364 in 72% yield. ${ }^{149,161}$ Intramolecular Heck coupling utilizing the catalytic system of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{P}(o-\mathrm{Tol})_{3}$ and triethylamine yielded a mixture of alkene 363 and terminal alkene 407 in 79% yield (ratio: 1.0: 1.6). Pure 363 and 407 were obtained using preparative TLC (Scheme 91).

Scheme 91 Preparation of Heck Precursor 363

With $\mathbf{3 6 3}$ in hand, we set out to explore the reduction reaction to form C-1 stereocenter (Table 16). When $\mathbf{3 6 3}$ was exposed to $10 \% \mathrm{Pd} / \mathrm{C}$ under 40 psi of hydrogen, over-hydrogenated product R - $\mathbf{4 0 1}$ was found to predominate in the mixture. The stereoselectivity (S / R) was 1.0:9.7, which indicates the hydrogen primarily attacked from the less hindered $R e$ face of benzylic alkene, as expected based on substrate control of stereochemistry. Furthermore, the regioselectivity between selective hydrogenation and over hydrogenation was 1.0: 35 (entry 1).

Table 16 Asymmetric Reduction of $\mathbf{3 6 3}$

\#	Catalyst (mol\%) Solvent, $\mathrm{T}^{\circ} \mathrm{C}, \mathrm{t}$ min	$\begin{aligned} & S-408: R-408: \\ & S-409: R-409 \end{aligned}$	$S: R$	Regioselectivity 408: 409
1	Pd / C (10\%), 40 psi $\mathrm{H}_{2}, 3 \mathrm{hr}$	0: 1.0: 3.4: 32	1.0: 9.7	1.0: 35
2	Pfaltz's 357., $60 \mathrm{psi} \mathrm{H} \mathrm{H}_{2}, 1 \mathrm{hr}$	3.8: 1.3: 3.5: $1.0{ }^{\text {b }}$	3.2: 1.0	1.1: 1.0
3	$\mathrm{Li}, \mathrm{NH}_{3},-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$	1.0: 8.2:0: $0^{\text {c }}$	1.0: 8.2	100: 0

${ }^{\text {a }}:$ Stereochemistry assignment of $\mathbf{4 0 8}$ and $\mathbf{4 0 9}$ was based on the following research; the ratio was determined by GC-MS analysis of crude mixture. ${ }^{\mathrm{b}}:$ The ratio of S-408: $R-\mathbf{4 0 8}$: S-409: R-409: $\mathbf{3 6 3}$ is 3.8: 1.3:3.5: 1.0: 1.8 . $^{\mathrm{c}}:$ The crude NMR ratio is $1.0: 4.6$.

Not surprisingly, no selective hydrogenation was observed under the hydrogenation with Pd / C. We turned to Pfaltz's chiral catalyst 357, which was successfully applied to the total synthesis of pseudopteroxazole. ${ }^{149}$ The reaction turned out to produce all of possible hydrogenation products and the ratio of $S-408: R-408: S-409: R-409: 363$ is 3.8 : 1.3: $3.5: 1.0: 1.8$. It is noteworthy that the catalyst control prevailed in the process and the S / R selectivity for C-1 stereochemistry was $3.2: 1.0$ (entry 2). The S / R ratio of 409 (3.5:1.0) were consistent with that of 408 (2.9: 1.0). Thus, the configuration of major isomer of $\mathbf{4 0 9}$ was assigned as S.

Dissolving metal reduction was also applied to the substrate $\mathbf{3 6 3}$. When $\mathbf{3 6 3}$ was treated with 10 equivalents of lithium in the liquid ammonium, inherent substrate control gave a S / R ratio of 1.0: 8.2 at $\mathrm{C}-1$ position based on GC-MS analysis. A more accurate ratio (S/R: 1.0: 4.6) was measured by NMR analysis. Only the benzylic double bond was
reduced under these conditions. The configuration (C-1) of major isomer of 408 was assigned as R.

To confirm the stereochemistry at C-1 position and further explore the proposed route to seco-pseudopteroxazole, compound 408 (d. r.: 1.0: 4.6), obtained from dissolving metal reduction, was carried forward. LiSEt-mediated deprotection to the phenol was carried out to yield $\mathbf{4 1 0}$ in 89% yield.

Selective ortho nitration of phenol 410 turned out problematic (Table 17). Only 23% of the desired ortho nitrophenol 411 was isolated when $\mathbf{4 1 0}$ was treated with 70% HNO_{3} for 70 seconds (entry 1). Significant loss of mass was observed in the reaction. Neither acetyl nitrate ${ }^{162}$ nor cerium(IV) ammonium nitrate ${ }^{163}$ afforded 411. The total synthesis was accomplished utilizing the known two-step sequence of reduction and condensation (Scheme 92).

Table 17 ortho-Nitration of Phenol 410

Scheme 92 Completion of the Total Synthesis of 1-epi-seco-pseudopteroxazole 281

The comparison of proton NMR of natural product and synthetic product $\mathbf{2 8 1}$ is shown in Table 17.

Table $18{ }^{1} \mathrm{H}$-NMR Comparison of Natural Product and Synthetic Product 281

Atom	Natural product	Synthetic product
	δ_{H}, mult $(J$ in Hz)	$\delta_{\mathrm{H},}$ mult (J in Hz)
1	$3.22, \mathrm{~m}$	$3.31, \mathrm{~m}$
4	$2.87, \mathrm{~m}$	$2.89, \mathrm{~m}$
5	$7.03, \mathrm{~s}$	$7.06, \mathrm{~s}$
14	$5.16, \mathrm{~m}$	$5.17, \mathrm{~m}$
16	$1.72, \mathrm{~s}$	$1.72, \mathrm{~s}$
17	$1.64, \mathrm{~s}$	$1.64, \mathrm{~s}$
18	$0.68, \mathrm{~d}(6.9)$	$0,68, \mathrm{~d}(7.0)$
19	$2.57, \mathrm{~s}$	$2.57, \mathrm{~s}$
20	$1.38, \mathrm{~d}(6.9)$	Major:1.35, d (7.0)
21	$8.02, \mathrm{~s}$	$8.01, \mathrm{~s}$
2		

We found that all peaks match very well, except C-1H and C-20H. Moreover, the doublet peak at 1.38 ppm in the minor isomer was identical to that in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ reported for the natural product. So we concluded that we have accomplished the total synthesis of 1-epi-seco-pseudopteroxazole (281).

3 Summary

We have accomplished the total synthesis of 1-epi-seco-pseudopteroxazole $\mathbf{2 8 1}$ in 17 steps. Our synthesis featured the Buchwald-Hartwig coupling, stereoselective intramolecular Michael reaction, Heck coupling and asymmetric reduction. Total synthesis of "natural" seco-pseudopteroxazole is still in progress in our lab.

Chapter IV

A Novel Approach to Chiral Cyclic Sulfinamide

1 Introduction

1.1 Approaches to Acyclic Sulfinamides

Since the early 1920 s, ${ }^{164,165}$ the chemistry of sulfinamides has been of particular interest in modern organic chemistry. ${ }^{166-168}$ A number of methods have been developed for the synthesis of sulfinamides from sulfinic acids, ${ }^{169}$ sulfonyl chloride, ${ }^{1,170} \mathrm{~N}$ sulfinylamines, ${ }^{171}$ sulfinates, ${ }^{172}$ sulfenamides ${ }^{173}$ and thiosulfinates ${ }^{174}$. However, two or more steps are usually required. Very recently, our group developed a one-step process to prepare sulfinamides by reductive amidation of sulfonyl chlorides. ${ }^{175}$ For example, commercially available sulfonyl chloride $\mathbf{4 1 3}$ was coupled with benzylamine $\mathbf{4 1 4}$ under the reductive conditions and sulfinamide 415 was formed in 66% yield, accompanied with 13% of sulfonamide 416. The reaction presumably proceeded via the sulfinyl chloride intermediate, which is formed in situ (Scheme 93).

Scheme 93 Harmata's Synthesis of Sulfinamide 415

1.1.1 Chirality Transfer from Sulfinic Acid Derivatives

The synthesis of enantiopure substances is at the center of modern organic chemistry. One of the most popular methods to access chiral sulfinamides is chirality transfer from optically pure menthyl p-toluenesulfinate ${ }^{172,176}$ (Scheme 94).

Enantiomerically pure menthyl p-toluenesulfinate was treated with LiHMDS or other amides to afford sulfinamides $\mathbf{4 1 8}$ with complete inversion at configuration at the sulfur atom.

Scheme 94 Asymmetric Synthesis of Chiral Sulfinamides from Chiral Sulfinates

Ellman and coworkers ${ }^{174}$ reported a more inexpensive route to an enantiomerically pure sulfinamide (Scheme 95). The synthesis started from the readily available starting material t-butyl disulfide. Asymmetric oxidation of disulfide 419 was carried out in the presence of $0.5 \mathrm{~mol} \%$ of $\mathrm{VO}(\mathrm{acac})_{2}$ and chiral ligand $\mathbf{4 2 0}$. Addition of lithium amide delivered t-butyl sulfinamide R - $\mathbf{4 2 2}$ in 65% overall yield from disulfide.

Scheme 95 Ellman's Asymmetric Synthesis of 422

In 2002, Senanayake and coworkers ${ }^{177,178}$ developed a stereospecific double inversion nucleophilic displacement route to chiral sulfinamides (Scheme 96). The process started with readily available enantiopure N-sulfonyl aminoindanol 423.

Compound $\mathbf{4 2 3}$ was converted to $\mathbf{4 2 4}$ with excellent diastereoselectivity (endo: exo 97: 3) in the presence of 3,5 -lutidine. In contrast, stereohindered base (2,6-di-t-butyl pyridine) drove the reaction to high exo selectivity (endo: exo: 3: 97). Both isomers were highly crystalline and were isolated in 80% yield after recrystalization. Double $\mathrm{S}_{\mathrm{N}} 2$ reaction with t-butyl magnesium bromide and lithium amide produced both R and S isomers of t butylsulfinamide $\mathbf{4 2 2}$ in 90% yield with up to 99% ee. It is worth pointing out that this methodology has been applied to the synthesis of a number of tertiary alkyl sulfinamides and aryl sulfinamides using appropriate Grignard reagents.

Scheme 96 Senanayake's Synhesis of ent-422

1.1.2 Ene Approach to Access the Chiral Sulfinamides

Kresze ${ }^{179}$ has applied an ene approach to the synthesis of chiral sulfinamides. Compound 427 was formed as a single isomer when S - $\mathbf{4 2 5}$ was treated with N sulfinylamine in toluene solution at ambient temperature (Scheme 97). The stereochemistry was rationalized as shown in scheme 97 . A lone pair of electrons on the nitrogen atom could coordinate to the allylic hydrogen to form a "pseudopericyclic"
transition state. The reaction proceeded through a endo transition state to deliver the observed isomer $R, E-427$.

Scheme 97 Ene Approach to Chiral Sulfinamide 427

Whitesell and coworkers ${ }^{180}$ demonstrated a similar reaction but with the stereocontrol from chiral N-sulfinylamine 428. Starting from trans-2-butene a single diastereomer 433 was obtained, whereas with cis-2-butene the product was 434 . Cyclic alkenes $\mathbf{4 3 1}$ and $\mathbf{4 3 2}$ were also converted to sulfinamides with high stereoselectivity. The stereoselectivity of this intermolecular ene reaction might be rationalized by a 6membered chair transition state, in which the alkene approached from the bottom face of sulfinylamine (Table 19).

Table 19 Whitesell's synthesis of sulfinamides

1.1.3 Sulfinamides Generated from Sulfoximine Derivatives

Besides the above approaches to access the sulfinamides, sulfinamides have been reported as side products during the reduction of sulfoximine derivatives, for example the stereoselective epoxidation ${ }^{181}$ and cyclopropanation ${ }^{182}$ (Scheme 98).

Scheme 98 Epoxidation and Cyclopropanation Using Sulfoximine as Reagent

Harmata and coworkers ${ }^{183}$ reported the base-induced conversion of benzothiazine 442 into 444 , a precursor to 2 -alkenyl aniline. Dianion intermediate 443 would undergo elimination reaction to generate 444 (Scheme 99). The lack of stereoselectivity of the double bond might be attributed to the epimerization of C-3 position under the reaction conditions. Regardless of the low stereoselectivity, the reaction opened up a new general route to 2-alkenyl anilines with high regioselectivity. A similar approach was utilized to convert 446 from S-445. ${ }^{184}$

Scheme 99 Synthesis of Sulfinamide from Benzothiazine or Sulfoximine

Johnson and Schroeck ${ }^{185}$ reported a reductive approach to convert sulfoximine to sulfinamide. Compound 446 was obtained by the aluminum amalgam reduction of readily available enantiomerically pure N-methyl sulfoximine 447 (Scheme 100). The reaction generally proceeded with the retention of configuration at the stereogenic sulfur atom.

Scheme 100 Asymmetric Synthesis of Sulfinamide 446

1.2 Approach to Cyclic Sulfinamides

1.2.1 Access 4-Membered Cyclic Sulfinamides

Joullié and coworkers ${ }^{186,187}$ developed a [2+2] cycloaddition to access 4-membered cyclic sulfinamide $\mathbf{4 5 0} .450$ was generated by the treatment of ketene 448 and N sulfinylamine $\mathbf{4 4 9}$ at low temperature. Compound $\mathbf{4 5 0}$ was unstable and underwent facile cleavage with aniline to afford sulfinamide $\mathbf{4 5 1}$ in 71% yield over the two steps. In addition, electron- deficient N-sulfinylamine 426 can also react with enol ether 452 to provide the [2+2] adduct 454 in 82% yield (Scheme 101). ${ }^{188}$

Scheme 101 [2+2] Cycloaddition Spproach

1.2.2 Access 5-membered cyclic sulfinamides

Iron-propargyl complex $\mathbf{4 5 4}$ was documented to react via [3+2] cycloaddition with electron deficient sulfinamine 455. The reaction presumably involved allene intermediate 456, which was formed by the nucleophilic addition of metal complex to sulfinylamine (Scheme 102). ${ }^{189}$

Scheme 102 [3+2] Cycloaddition Approach

Doi and coworkers ${ }^{190}$ reported the synthesis of the simple 5 -membered cyclic sulfinamide 461 from disulfide 458 . This approach presumably proceeded via iodosulfonium intermediate $\mathbf{4 5 9}$ and isothiazolidine $\mathbf{4 6 0}$ (Scheme 103).

Scheme 103 Doi's synthesis of 5-membered Sulfinamides

Recently, Malacria and coworkers ${ }^{191}$ discovered a general approach to a series of cyclic sulfinamides featuring an intramolecular radical cyclization. This methodology has been applied to the synthesis of simple sulfinamide 463 and benzosulfinamide 465 and also extended to the synthesis of cyclic sulfinates (Scheme 104).

Scheme 104 Radical Cyclization

Intramolecular nucleophilic attack of the triple bond by the sulfinamide nitrogen atom to triple bond produced the desired product 467 in excellent yield (Scheme 105). ${ }^{192}$

Scheme 105 Nucleophilic Addition of Triple Bond

The asymmetric synthesis of 5 -membered sulfinamide $\mathbf{4 6 9}$ was explored by Wills and coworkers ${ }^{193}$. They found that the diastereoselective cyclization step turned out to be very sensitive to different bases. After some exploration, DMAP was found to give the best result. Pure cis-469 was obtained in 67% yield. In contrast, pyridine gave $\mathbf{4 6 9}$ as a mixture of cis/trans (60:40) (Scheme 106).

Scheme 106 Synthesis of N-carboxy Cyclic Sulfinamide 469

1.2.3 Access 6-membered cyclic sulfinamides

Hetero Diels-Alder reactions provided a unique way to access 6 -membered cyclic sulfinamide. ${ }^{194-196}$ Electron poor sulfinyl amines 471, which were freshly prepared by the condensation of amines with thionyl chloride, reacted with 2,4-hexadiene to yield cyclic sulfinamides 472. ${ }^{197}$ An intramolecular version of the Diels-Alder reaction also successfully afforded the unusual bicyclic sulfinamide $\mathbf{4 7 5}$ under extremely high pressure or Lewis acid-catalyzed conditions. ${ }^{198}$ In general, the reaction was highly regio- and stereoselective and occured at or below room temperature. The stereochemistry at the sulphur atom was variable (Scheme 107).

Scheme 107 Diels-Alder Approach to Cyclic Sulfinamides

An asymmetric version of hetero Diels-Alder reactions was also explored by Gautun and coworkers. ${ }^{199} \mathrm{Bis}$ (oxazoline) 478 -copper (II) triflate was found to give the desired endo cycloadduct 479 with excellent enantioselectivity (98% ee) (Scheme 108).

Scheme 108 Asymmetric Diels-Alder Reaction

Hogeveen and coworker ${ }^{200}$ found that tricyclic sulfinamide $\mathbf{4 8 2}$ was synthesized from the aluminum halide σ complex of cyclobutadiene $\mathbf{4 8 1}$. When freshly prepared 481 was treated with N-sulfinylaniline 449 at $-60{ }^{\circ} \mathrm{C}$, tricyclic sulfinamide 482 was isolated in 74% yield as a single diastereomer, whose structure was elucidated by X-ray analysis. A stepwise mechanism was proposed based on the mechanistic studies (scheme 109). Nucleophilic attack of sulfinylaniline would afford 483, followed by a subsequent ring closure of $\mathbf{4 8 3}$ to give bicyclic sulfinamide 484 . Heterolytic cleavage of the $\mathrm{C}-\mathrm{N}$ bond might yield the intermediate 485 , which could be further converted to 482 via an intramolecular Friedel-Crafts reaction and subsequent hydrogen shift (Scheme 110). ${ }^{201}$

Scheme 109 Synthesis of Rricyclic Sulfinamide 482

Scheme 110 Mechanism of Formation of $\mathbf{4 8 2}$

1.3 Applications in Organic Synthesis

1.3.1 Acyclic Sulfinamides in Organic Synthesis

Simple sulfinamides are valuable precursors to sulfinimines, with the latter being proven to be versatile building blocks in organic synthesis by independent studies from Davis ${ }^{202}$ and Ellman ${ }^{203}$. For example, sulfinamides were condensed with aldehydes or ketones to afford sulfinimines 487 using $\mathrm{Ti}(\mathrm{OEt})_{4}$ as a Lewis acid ${ }^{172,204}$. Diastereoselective nucleophilic additions converted the sulfinimines to amines $488,{ }^{205} \beta$ amino acids 489, ${ }^{206} \alpha$-amino acids 490, ${ }^{207}$ and aziridines $\mathbf{4 9 1}{ }^{208}$ (Scheme 111).

Scheme 111 Sulfinimine Chemistry

Furthermore, Whitesell and Carpenter ${ }^{180}$ demonstrated the synthesis of chiral alcohols from sulfinamides. Ethylation of sulfinamides, followed by treatment with Grignard reagent (PhMgBr) provided allylic sulfoxides that readily underwent sequential [2,3]-sigmatropic rearrangement with high retention of stereochemistry. Upon methanolysis, 492 and 493 were formed in 56% and 38% yields, respectively, with excellent stereoselectivity (Table 20).

Table 20 Synthesis of Chiral Alcohol

Harmata and coworkers ${ }^{209-211}$ have shown that sulfinamides are valuable precursors for the formation of benzothiazines. Compound 494 was converted to 496 in 87% yield as a single regioisomer. It was assumed that 494 was first oxidized to sulfonimidoyl chloride 495 by t-butylhypochlorite, followed by stepwise cyclization to yield 496 (Scheme 112).

Scheme 112 Harmata's Synthesis of Benzothiazine 496

Corey and coworkers ${ }^{212}$ found that when β-hydroxy sulfinamide 498 was refluxing in the benzene solution, 1,1-diphenyl propene $\mathbf{5 0 0}$ was formed in excellent yield, which would presumably proceed through a four-membered ring intermediate 499. It was also
found out that the ratio of E / Z isomers in 1-phenyl propene was moderate with 1.6:1.0 when benzaldehyde was engaged in the reaction. On the other hand, β-keto sulfinamide 502, prepared in situ, underwent facile decomposition to afford acetophenone $\mathbf{5 0 4}$ in 89% yield (Scheme 113).

Scheme 113 Synthesis of Olefin and Ketone

Propargyl and vinyl sulfinamides can also participate in sigmatropic rearrangements. For example, 506 underwent a retro-ene reaction in aprotic solvents to form allenes 507 and N-sulfinylamine under very mild conditions (quantitative conversion within 30 min at $\left.40^{\circ} \mathrm{C}\right) .{ }^{192}$ In addition, indole 509 was formed in 75% yield from N-phenyl-1-vinylsulfinamide 508 via a [3.3] sigmatropic rearrangement (Scheme 114). ${ }^{171}$

Scheme 114 Sigmatropic Rearrangement

Besides being valuable precursors to a variety of building blocks, sulfinamides have also been utilized as chiral auxiliary groups in asymmetric synthesis. In 2001, Chapuis and coworkers ${ }^{213}$ reported the asymmetric Diels-Alder reaction using a chiral cyclic sulfinamide as an auxiliary group. Diels-Alder adduct 512 was obtained in 95% yield with an endo/exo ratio of $79: 21$, the endo isomer (as shown) being formed with 97% de (Scheme 115).

Scheme 115 Sulfinamide as Chiral Auxiliary in Diels-Alder Reaction

Sulfinamides were also incorporated into N-phosphinosulfinamide (PNS=O) ligands in the early 1970s. ${ }^{214}$ Recently, the first application of this type of PNS=O ligands was reported by Verdaguer ${ }^{215}$. Several novel PNSO ligands were synthesized and applied in the intramolecular Pauson-Khand reaction. For example, heating the ligand 514 with dicobalthexacarbonyl complex 513 provided 515 in 78% yield with good diastereoselectivity. The major isomer was obtained by crystallization. A Pauson-Khand reaction was carried out with norbornadiene to give compound $\mathbf{5 1 6}$ in nearly quantitative yield with 97\% ee (Scheme 116).

Scheme 116 PNS=O Ligand in the Asymmetric Pauson-Khand Reaction

Chiral sulfinamides can serve as organocatalysts in organic synthesis. Sun and coworkers ${ }^{216}$ reported the first example of chiral sulfinamide $\mathbf{5 1 8}$ being employed as an enantioselective organocatalyst. Ketimine $\mathbf{5 1 7}$ was converted to amine $\mathbf{5 1 9}$ in 92% yield with 92% ee (scheme 117). The reaction was found to be applicable to a broad range of N-aryl ketimines giving amines in high yield and enantioselectivity.

Scheme 117 Enantioselective Reduction of Ketimine 517

1.3.2 Cyclic Sulfinamides in Organic Synthesis

Cyclic sulfinamides, particularly Diels-Alder adducts of N-substituted sulfinamine, have been widely applied in organic synthesis. ${ }^{167,196}$ For example, hydrolysis of $\mathbf{5 2 0}$ under basic and acidic conditions produced amine $\mathbf{5 2 2}$ in 81% yield, which apparently involved a retro-ene reaction (Scheme 118). ${ }^{217}$ Treatment of 523 with potassium hydroxide delivered pyrrole $\mathbf{5 2 4}$ with the loss of sulfur oxide (Scheme 119).

Scheme 118 Hydrolysis of $\mathbf{5 2 0}$ in the Basic Medium

Scheme 119 Ring Contraction of 523

More importantly, these Diels-Alder adducts have been applied to the diastereoselective synthesis of unsaturated vicinal amino alcohols. ${ }^{196}$ Employing the sequential treatment with phenylmagnesium bromide and trimethyl phosphite, $\mathbf{5 2 5}$ was converted to (E)-threo-hydroxy carbamate $\mathbf{5 2 6}$ in 85% yield as a single diastereomer. Two intermediates allylic sulfoxide $\mathbf{5 2 7}$ and sulfenate ester $\mathbf{5 2 8}$ were presumably in equilibrium. In the presence of phosphite, the reduction of $\mathbf{5 2 8}$ occurred to give sulfenate ester 526 (Scheme 120). ${ }^{218}$

Scheme 120 Synthesis of E-threo-hydroxy Carbamate 526

The Diels-Alder reaction/[2.3] rearrangement sequence has been beautifully applied in the total synthesis of agelastatin A (535) by the Weinreb group in 1999. A Diels-Alder reaction was carried out smoothly at $0{ }^{\circ} \mathrm{C}$ to provide adduct $\mathbf{5 3 1}$, which was immediately treated upon formation with Grignard reagent and furnished sulfoxide 532. HMPTinduced a [2,3]-sigmatropic rearrangement converted 532 to sulfenate ester 533. Subsequent ring closure afforded 534, a key intermediate in the total synthesis of agelastatin A (Scheme 121).

Scheme 121 Weinreb's Synthesis of Agelastatin A

Other than the extensive studies of Diels-Alder adducts of sulfinylamine, the chemistry of other cyclic sulfinamides remains less developed. For example, chiral cyclic sulfinamides are seldomly envisaged as chiral templates for organic molecules or as chiral ligands in asymmetric synthesis. This is probably due to the lack of a general approach to accessing chiral cyclic sulfinamides.

2 Results and Discussion

In the course of the total synthesis of seco-pseudopteroxazole 281, some synthetic efforts were made to convert $\mathbf{3 7 9}$ to $\mathbf{3 6 2}$, which was expected to be a key intermediate in the synthesis of 281. After extensive exploration, conditions utilizing 3.0 equivalents of lithium triethylborohydride were adopted to afford $80-91 \%$ yield of 362 (Scheme 122). Despite the excellent yield of $\mathbf{3 6 2}$, we did notice that a small amount of byproduct 390 was isolated in yields of 5-12\%. NMR spectra of byproduct $\mathbf{3 9 0}$ showed the absence of S phenyl group. The distinct deuterium exchangeable peak at 6.86 ppm , combined with IR data $\left(3252,1082,878,829 \mathrm{~cm}^{-1}\right)$ suggested the presence of the sulfinamide functional group in the molecule. Thus the structure was assigned as $\mathbf{3 9 0}$.

Scheme 122 Reductive Cleavage of C-I Bond

To confirm the intermediacy of $\mathbf{3 6 2}$ during the dephenylation reaction ${ }^{219}, \mathbf{3 6 2}$ was treated with 3.0 equivalents of $\mathrm{LiEt}_{3} \mathrm{BH}$. After being stirred for 12 hours at $0{ }^{\circ} \mathrm{C}$ and 6 hours at room temperature, sulfinamide $\mathbf{3 9 0}$ was isolated in 57\% yield, accompanied by 12% of recovered starting material (Scheme 123).

Scheme 123 Dephenylation of $\mathbf{3 6 2}$

Excited by these results, we set out to synthesize enantiomerically pure $\mathbf{5 3 8}$ and optimized the conditions of dephenylation reaction. Enantiomerically pure Harmata benzothiazine ester 536 was synthesized from methyl 2-bromocinnamate employing our benzothiazine chemistry. ${ }^{220}$ Compound $\mathbf{5 3 6}$ was reduced with lithium triethylborohydride, followed by iodination. Iodide 537 was formed in 90% yield. Reductive cleavage of C-I bond delivered 538 in 96\% yield (Scheme 122).

Scheme 124 Preparation of Benzothiazine 538

Various reaction conditions were explored and the results are summarized in Table 21. A mixture containing 538 and $\mathbf{5 3 9}$ (0.46:1.0) was obtained after 24 hours at room temperature when $\mathbf{5 3 8}$ was treated with 3.0 equivalents of lithium triethylborohydride (entry 1). When the reaction was refluxed for 6 hours, $\mathbf{5 3 9}$ was obtained in 71% yield as a single diastereomer, whose structure was securely confirmed by X-ray analysis (Figure 24). No reaction was observed in the presence of dry cerium chloride ${ }^{221}$. Compound 538
was found to slowly decompose to a complicated mixture when stired with lithium aluminohydride. In addition, $\mathbf{5 3 8}$ remained intact after prolonged treatment with 3.0 equivalents of diborane in THF solution.

Table 21 Optimization of Dephenylation of 538

entry	Conditions	Yield (\%)
1	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, rt, 24 h	a
2	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), THF, reflux, 6 h	71
2	$\mathrm{LiEt}_{3} \mathrm{BH}$ (3.0), CeCl_{3} (3.0), THF, reflux, overnight	$0{ }^{\text {b }}$
3	LiAlH_{4} (3.0), THF, rt, 60 h	$0^{\text {c }}$
4	BH_{3} (3.0), THF, rt, 60 h	$0^{\text {b }}$

${ }^{\text {a }}$ The ratio 538: 539 (0.46: 1.0) was determined by NMR analysis of crude mixture.
${ }^{\mathrm{b}}$ Only clean starting material was recovered. ${ }^{\mathrm{c}}$ Complicated mixture.

Figure 24 X-ray Structure of 539

To examine the generality of this dephenylation reaction, we applied the best conditions to a series of Harmata type benzothiazines (Table 22). When compound 540
was refluxed with 3.0 equivalents of lithium triethylborohydride, a nearly quantitative yield of $\mathbf{5 4 1}$ was obtained as a single diastereomer after column chromatography (entry 1). A similar result was obtained for t-butyl substrate (entry 2). The reaction worked well for n-propyl substrate (entry 3, 4). In general, the substituent at C-4 position plays little role in the dephenylation of benzothiazine.

To our surprise, the cyclobutane ring in $\mathbf{5 4 8}$ remained untouched in the presence of the strongly nucleophilic reducing reagent lithium triethylborohydride. The desired sulfinamide $\mathbf{5 4 9}$ was isolated in 59% yield in addition to $\mathbf{1 7 \%}$ recovered starting material (entry 5). Interestingly, benzothiazine $\mathbf{5 5 0}$ with an electron rich N-phenyl ring reacted surprisingly fast to afford $\mathbf{5 5 1}$ in excellent yield (entry 6). The labile diene moiety and allyl group stayed intact during the reaction (entry 7, 8). Steric hindrance at C-3 position was tolerated in the dephenylation and epimerization at C-3 was not observed (entry 8). The structure of $\mathbf{5 5 5}$ was firmly established by X-ray analysis (Figure 25). Alcohol 556 was also refluxed with 4.0 equivalents of lithium triethylborohydride, the desired sulfinamide $\mathbf{5 5 7}$ was isolated in 70% yield. A 14% yield of sulfinate $\mathbf{5 5 8}$ was also separated, due to the most likely $\mathrm{S}_{\mathrm{N}} 2$ substitution on sulfur atom (entry 9).

In conclusion, electron rich substituents on the S-phenyl ring tend to decrease the reactivity in the dephenylation reaction and result in longer reaction time. In contrast, an increase of electron density on the N-phenyl ring seems to accelerate the reaction. The reaction seems unaffected by the steric hindrance at $\mathrm{C}-3$ or $\mathrm{C}-4$ position.

Table 22 Dephenylation of a Series of Harmata Benzothiazines

entry

550

7

552

553 (84) ${ }^{\text {f }}$
554

555 (89) ${ }^{\mathrm{g}}$
9

557 (70) ${ }^{\text {d }}$
556

$558(14)^{\text {d }}$
${ }^{a}$ Compound 540, 542, 544 and 546 were racemic. ${ }^{\text {b }}$ Yields are for chromatographically purified materials. ${ }^{\mathrm{c}}$ Refluxed for 24 h . ${ }^{\mathrm{d}}$ Refluxed for 12 h . ${ }^{\mathrm{e}}$ Refluxed for 3 h . ${ }^{\mathrm{f}}$ Refluxed for $8 \mathrm{~h} .{ }^{\mathrm{g}} 12 \mathrm{~h}$ at rt . ${ }^{\mathrm{h}}$ Diastereomeric ratios determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of crude reaction mixtures: 544, 1.6:1.0; 545, 1.7:1.0; 546, 1.3:1.0; 547, 1.3:1.0; 554, 8.1:1.0; 555, 8.2:1.0. ${ }^{\text {i }} 4.0$ equivalents of lithium triethylborohydride was utilized.

Figure 25 X-ray Structure of 555

The readily available benzothiazine $\mathbf{5 5 9}$ was also treated with lithium triethylborohydride (Scheme 125). The double bond was easily reduced to give $\mathbf{5 6 0}$ in 76% yield. The reaction was found to undergo further reductive dephenylation when the reaction mixture was stirred for 24 hours at room temperature. The reaction proceeded smoothly to give simple cyclic sulfinamide $\mathbf{5 6 1}$ in ca. $\mathbf{5 0 \%}$ yield. The structure of $\mathbf{5 6 1}$ was also confirmed by X-ray analysis (Figure 26).

Scheme 125 Reduction of rac-559

Figure 26 X-ray Structure of 561

With excellent results obtained from Harmata benzothiazines, we turned our attention to acyclic sulfoximines. Rac-S-phenyl sulfoximine $\mathbf{5 6 2}$ was subjected to the standard dephenylation conditions, sulfinamide $\mathbf{5 6 4}$ was isolated in 57\% yield. Similarly, rac-S-tolyl sulfoximine $\mathbf{5 6 3}$ was converted to $\mathbf{5 6 5}$ in 60% yield. Apparently acyclic sulfoximines proceeded through a different mechanism to that of cyclic Harmata benzothiazines (Scheme 126).

Scheme 126 Reduction of Acyclic Sulfoximines

Some preliminary mechanistic studies were carried out on the substrate $\mathbf{5 2 9}$ to determine the existence of volatile products employing quantitative GC analysis with n decane as internal standard. The GC yield was calculated using the following equations. The response factor of compound A was calculated as the ratio of peak area of compound

A and a standard compound (n-decane) (Figure 27). The GC yield of compound A was calculated using the equation in Figure 28.

$$
R f_{A}=\frac{S_{A} / n_{A}}{S_{\text {std }} / n_{\text {std }}}=\frac{S_{A}}{S_{\text {std }}}
$$

Figure 27 Calculation of Responding Factor for Equimolar of Compound A Relative to Standard Compound

$$
A \%=\frac{n_{A}^{\prime}}{n_{s t d}^{\prime}} \times 100 \%=\frac{S_{A}^{\prime}}{S_{s t d}^{\prime}} \times \frac{1}{R f_{A}}
$$

Figure 28 Calculation of GC Yield of Compound A

Compound 538 was refluxed with 3.0 equivalents of lithium triethylborohydride in the presence of 1.0 equivalent of n-decane. The excess borohydride was quenched by the sequential addition of methanol, sodium hydroxide solution and hydrogen peroxide. Ethyl benzene was obtained in 44% yield, accompanied by 27% of benzene, which provided valuable information for this dephenylation reaction (Scheme 127).

Scheme 127 Quantitative GC Studies of Dephenylation of 538

The similar observation in the sulfone system was also made in 1983 by Brown and coworkers (Scheme 128). ${ }^{219}$ They shown that ditolylsulfone $\mathbf{5 6 8}$ was converted into p ethyltoluene 569 in 62% yield when refluxing with 2.0 equivalents of lithium
triethylborohydride. This reaction didn't work well for alkyl sulfone system such as $\mathbf{5 7 0}$. Only a 38% yield of ethyl benzene $\mathbf{5 6 6}$ was formed by GC (Scheme 128).

Scheme 128 Reaction of Sulfones with $\mathrm{LiEt}_{3} \mathrm{BH}$

Another $\mathrm{LiEt}_{3} \mathrm{BH}$-mediated desulfonation was first reported by Hutchins ${ }^{222}$ and was further developed into a synthetically useful methodology by Inomata ${ }^{223}$ in 1985. When allylic tolyl sulfone $\mathbf{5 7 1}$ was treated with 2.0 equivalents of lithium triethylborohydride in the presence of $5 \% \mathrm{PdCl}_{2}(\mathrm{dppp})$, an alkene was formed in 98% yield with high stereo retention of the E-alkene. Migration of the double bond was also observed in this reaction (Scheme 129).

Scheme 129 Pd-catalyzed Desulfonation Reaction

Based on our experimental results and literature information, we proposed a mechanism for the dephenylation reaction as shown in Scheme 130. Addition of $\mathrm{LiEt}_{3} \mathrm{BH}$ to the electron deficient phenyl ring could yield tetrahedron intermediate 573. Compound

573 could further undergo 1,2-migration of the ethyl group to another tetrahedron intermediate 574, and the sulfoximine moiety would be reduced to give sulfinamide 539. Aromatization of intermediate $\mathbf{5 7 4}$ might generate ethyl benzene 566 (path a). On the other hand, $\mathbf{5 7 3}$ might also eliminate lithium sulfinamide $\mathbf{5 7 5}$ to form intermediate $\mathbf{5 7 6}$, which was protonated to generate benzene 567.

Scheme 130 Proposed Mechanism for the Dephenylation 538

3 Summary

We have discovered the first approach towards chiral cyclic sulfinamides from readily available enantiomerically pure Harmata benzothiazines. This methodology features mild reaction conditions and complete stereocontrol. Preliminary mechanistic studies were carried out and a plausible mechanism was proposed based on our experimental results. Further application of this reaction is under way in our lab and results will be reported in due course.

Chapter V

Experiments

1 General information

All reactions were carried out under an atmosphere of nitrogen or argon in flameddried glassware. $\mathrm{Et}_{2} \mathrm{O}$, THF and toluene were distilled over sodium-benzophenone before use. Triethylamine, dichloromethane and acetonitrile were distilled over cacium hydride. Trifluoroethanol was distilled from CaSO_{4}. All commercial grade reagents and solvents were used, unless otherwise noted.

Chromatographic separations were carried out using Silicycle ultra pure silica gel (230-400 mesh). Analytical thin chromatography was performed on EM reagent 0.25 nm silica gel 60-F plates with F-254 indicator. Melting points were measured with a FisherJohns melting point apparatus. Infrared spectra were recorded on a Thermo Nicolet NEXUS 670 FT-IR spectrometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter with a sodium lamp and are reported as follows: $[\alpha]^{25}{ }_{\mathrm{D}}(c \mathrm{~g} / 100 \mathrm{~mL}$, solvent). HRMS was carried out using Bruker 12 Tesla FRICR-MS with an Apollo II ion source in Old Dominion University and Ohio State University. Elemental analysis were performed by the MHW laboratories, Phoenix, AZ.

GC-MS analysis was performed on an Agilent 5973N Massive Selective Detector interfaced to an Agilent 6890 GC System equipped with an HP capillary column (HP$624,27.8 \mathrm{~m} \mathrm{X} 0.25 \mathrm{~mm}$). n-Decane was utilized as internal standard. GC conditions were as followed: flow rate: $1 \mathrm{ml} / \mathrm{min} ; 70^{\circ} \mathrm{C}, 5 \mathrm{~min}, 10^{\circ} \mathrm{C} / \mathrm{min}, 200^{\circ} \mathrm{C}, 1 \mathrm{~min}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ were recorded on a Bruker ARX-250 (250 MHz), DRX-300 (300 MHz), DRX-500 (500 MHz) spectrometer and are reported in ppm (δ) from tetramethylsilane (TMS: $\delta 0.0 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of doublet of doublet), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker ARX-250 (62.5 MHz), DRX-300 (75 MHz), DRX-500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}\right)$.

2 Deantiaromatization as a Driving Force in an Electrocyclic Reaction

Typical procedure for synthesizing bromoalkenes

The methyltriphenylphosphonium iodide ($2.81 \mathrm{~g}, 6.96 \mathrm{mmol}$) in THF (25 mL) solution under nitrogen at room temperature was added n-BuLi (2.3 M in hexanes, 3.0 $\mathrm{ml}, 6.9 \mathrm{mmol}$) dropwise. Stiring was continued for another 1.0 hr . Bromoaldehyde (6.63 mmol) in THF (5 ml) solution was then added to the above mixture. The reaction was monitored with TLC. After all of the bromoaldehyde was consumed, the reaction mixture was poured into 200 ml ice water, extracted with 100 ml x 3 hexane and washed with saturated NaCl solution. The organic extract was dried over MgSO_{4} and the solvent was removed by rotavap. Column chromatography (pure hexane) provided the desired bromoalkene.

4-Benzyloxy-1-bromo-2-vinylbenzene: colorless liquid, 64\% yield; IR: v 1585.0, $1560.5,1462.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.32-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}$,
$J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=17.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=10.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.1,138.2,136.5,135.8,128.6,128.1,127.4$, 116.7, 116.0, 114.5, 113.0, 70.2; Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}: \mathrm{C}, 62.30, \mathrm{H}, 4.53$, found C , 62.21, H, 4.45.

3-Bromo-4-vinylthiophene: colorless liquid, 69% yield; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.15(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (ddd, $J=17.4,11.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 137.1, 130.5, 128.2, 124.0, 115.3, 110.4; HRMS caclcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BrS} \mathrm{M}^{+}$187.9289, found 187.9278.

Preparation of (Z)-1-bromo-(2-prop-1-enyl)benzene

A solution of nickelous acetate tetrahydrate ($67.8 \mathrm{mg}, 0.272 \mathrm{mmol}$) in EtOH (48 $\mathrm{ml})$ under H_{2} was treated with a 1 M solution of $\mathrm{NaBH}_{4}(272 \mu 1,0.272 \mathrm{mmol}$, EtOH). To this black solution was added a solution of 1-bromo-2-(prop-1-ynyl)benzene (208.5 mg , $1.06 \mathrm{mmol})$ and ethylenediamine $(18.2 \mu \mathrm{l}, 0.272 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$. The reaction was monitored by TLC (ca 1 hr). The reaction mixture was evaporated. The residue was dissolved in ether, sequentially washed with $0.5 \mathrm{~N} \mathrm{HCl}(\mathrm{x} 1)$, with $\mathrm{H}_{2} \mathrm{O}$ (x 2) and brine (x 1). The organic extract was dried over MgSO_{4} and the solvent was evaporated. Column chromatography (pentane) would give (Z)-1-bromo-(2-prop-1-enyl)benzene ($135.1 \mathrm{mg}, 66 \%$ yield).

(Z)-1-bromo-(2-prop-1-enyl)benzene: Colorless liquid, 66% yield; IR: v 3084.6, 1621.7, 1437.9, 1348.0, 972.0, 910.7, 869.9, 718.7, $677.8 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.14$ (m, $1 \mathrm{H}), 6.46-6.52(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{dt}, J=11.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=7.1,1.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.2,132.5,130.6,129.3,128.1,128.0,126.7,123.9,14.3$; HRMS caclcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br} \mathrm{M}^{+}$195.9882, found 195.9891.

Preparation of 2-bromo-3-ethoxy-5-methylcyclopent-2-enone

To a solution of diisopropylamine ($380 \mu \mathrm{~L}, 2.73 \mathrm{mmol}$) in THF (2.0 mL) at $-20^{\circ} \mathrm{C}$ under N_{2} atmosphere, was added n - $\operatorname{BuLi}(2.0 \mathrm{M}, 1.3 \mathrm{~mL}, 2.73 \mathrm{mmol})$ dropwise. The resulting mixture was stirred for 30 mins before it was brought to $0{ }^{\circ} \mathrm{C}$ for another 10 mins. The resulting mixture was cooled to $-78^{\circ} \mathrm{C}$ and was added a solution of 2-bromo-3-ethoxycyclopentenone ($400 \mathrm{mg}, 1.95 \mathrm{mmol}$) in THF (1.5 mL) solution. After 45 mins at $-78{ }^{\circ} \mathrm{C}$, a mixture of MeI ($180 \mu \mathrm{~L}, 2.93 \mathrm{mmol}$) and HMPA ($680 \mu \mathrm{~L}, 3.90 \mathrm{mmol}$) in THF (1.0 mL) solution was added dropwise. The stirring was continued for another 2.5 hrs before it was quenched by the addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Dilute with water, extract with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$ and sequentially wash with $\mathrm{H}_{2} \mathrm{O}$, brine. The organic extract was dried over MgSO_{4} and the solvent was evaporated. Column chromatography (30% EtOAc) gave the title compound 252 mg (59% yield).

Colorless oil, 59% yield; IR: v 2974.3, $1691.2,1593.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.37(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{dd}, J=17.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64(\mathrm{qdd}, J=7.4,7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=17.3,2.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 1.46(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 200.7, 182.5, 97.2, 66.7, 38.4, 34.8, 16.9, 15.1; HRMS caclcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{M}^{+}$ 217.9936, found 217.9945.

Typical procedure for synthesizing 2-bromo-3-styrenyl-cyclopentenones

CeCl_{3} was dried using Bunnelle's method ${ }^{71}$. A Schlenk flask was charged with $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(558 \mathrm{mg}, 1.5 \mathrm{mmol})$, which was immersed in oil bath under full vacuum. The flask was heated slowly to $150{ }^{\circ} \mathrm{C}$. After the flask was slowly stirred for 2 hrs at 150 ${ }^{\circ} \mathrm{C}$, it was cooled to RT and vented to dry N_{2}. THF (3.4 ml) was added with good stirring. The white suspension was stirred overnight at RT. The above slurry at $-78^{\circ} \mathrm{C}$ was treated dropwise with 2-lithio-styrene ${ }^{224}$, which was prepared in situ by dropwise addition of n $\operatorname{BuLi}(2.3 \mathrm{M}$ in hexanes, $650 \mu \mathrm{l}, 1.5 \mathrm{mmol})$ to 2-bromostyrene ($188 \mu \mathrm{l}, 1.5 \mathrm{mmol}$) in a mixture of THF (13 ml) and $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{ml})$ and stirring for 15 mins at this termperature. Stirring was continued for an additional 1.0 hr . At this stage, 2-bromo-3-ethoxy-cyclopent-2-en-1-one ($205 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (2.0 ml) solution was added slowly. The resulting slurry mixture was stirred for 24 hrs at $-78^{\circ} \mathrm{C}$ before it was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Extract the mixture with $\mathrm{Et}_{2} \mathrm{O}$ and dry over MgSO_{4}. Column chromatography (20% EtOAc in hexane) provided 2-bromo-3-(2-vinylphenyl) cyclopent-2-en-1-one (71% yield based on recovered starting material).

2-Bromo-3-(2-vinylphenyl) cyclopent-2-en-1-one (125): pale yellow solid 61% yield (71% yield b.r.s.m.), m.p.: $101-{ }^{\circ}{ }^{\circ} \mathrm{C}$; IR: v 1707.6, 1613.6 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74(\mathrm{dd}, J=17.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=11.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.71-$ 2.74 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 201.1,172.6,134.4,134.3,133.8,129.3$, 127.7, 126.6, 125.8, 125.0, 116.7, 33.3, 33.1; HRMS caclcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{BrO} \mathrm{M}^{+}$261.9987, found 261.9977 .

3-(4-(benzyloxy)-2-vinylphenyl)2-bromocyclopent-2-enone (130): pale
 brown solid, 51% yield; m.p.: $127-8{ }^{\circ} \mathrm{C}$; IR: v 2921.2, $1707.6,1621.8$, 1593.2, $1486.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 7.34-7.49(\mathrm{~m}, 5 \mathrm{H})$, $7.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=17.3,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.73(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 201.3,172.5,159.6,136.5,136.4,134.1,128.6,128.3$, 128.1, 127.5, 127.1, 125.0, 116.9, 114.3, 112.1, 70.1, 33.4, 33.3; HRMS caclcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$391.0304, found 391.0322.

2-Bromo-3-(4-methoxy-2-vinylphenyl)cyclopent-2-enone(131): Brown solid, 46% yield; m.p.: $112-3{ }^{\circ} \mathrm{C}$; IR: v 1723.9, 1691.2 , $1556.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.12-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.91$ (dd, $J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J$
$=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.71(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.3,172.5,160.3,136.2,134.1,128.2,126.8$, $124.8,116.7,113.6,110.9,55.2,33.3,33.2 ; \mathrm{HRMS}$ caclcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 314.9991 , found 314.9993 .

2-Bromo-3-(3-methoxy-5-methyl-2-vinylphenyl)cyclopent-2-enone

 (132): Yellow solid, 71% yield (b.r.s.m.); m.p.: $67-8{ }^{\circ} \mathrm{C}$; IR $v 1715.7$, 1617.7, 1593.1 cm ${ }^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.69$ $(\mathrm{dd}, J=17.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=17.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{dd}, J=11.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.67(\mathrm{~m}, 2 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.4,174.3,157.6,138.7,135.6,130.7$, $124.5,121.6,119.5,119.1,112.1,55.5,33.4,32.4,21.5 ;$ HRMS caclcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$329.0147, found 329.0141.

133

2-Bromo-3-(6-vinylbenzo[d][1,3]dioxol-5-yl)cyclopent-2-enone (133):
Pale brown solid, 56% yield; m.p.: $145-6{ }^{\circ} \mathrm{C}$; IR v 1707.6, 1589.1, $1486.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$, $6.47(\mathrm{dd}, J=17.3,10.9 \mathrm{~Hz}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 5.60(\mathrm{~d}, J=17 . \mathrm{Hz}, 1 \mathrm{H}), 5.22$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.0 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 201.2,172.2,148.9,147.5,133.4,129.1,128.1,125.4,114.9$, 106.5, 105.5, 101.6, 33.4, 33.3; HRMS caclcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{3} \mathrm{M}^{+} 305.9886$, found 305.9900 .

2-Bromo-3-(2-(prop-1-en-2-yl)phenyl)cyclopent-2-enone (134): Pale yellow solid, 32% yield; m.p.: $58-9{ }^{\circ} \mathrm{C}$; IR $v 1715.7,1613.6,1433.8 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.12$ $(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.67$ (m, 2H), $2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.4,174.3,143.7,141.5,133.5$, $129.2,128.2,127.7,127.1,124.2,116.5,33.4,32.1,23.6 ; H R M S$ caclcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO}$ $\mathrm{M}^{+} 197.0960$, found 197.0969.

(E)-2-bromo-3-(2-(prop-1-enyl)phenyl)cyclopent -2-enone (135):

Pale yellow solid, 85% yield, m.p.: $92-3{ }^{\circ} \mathrm{C}$; IR: v 2908.9, 1707.6, 1613.6, $1433.8,1184.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}$, $J=7.5 \mathrm{HZ}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.27(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.73(\mathrm{~m}$, $2 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.2,174.0,135.6,134.4$, $130.1,129.7,128.8,127.6,127.4,126.8,125.7,34.2,33.9,19.5$; HRMS caclcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO} \mathrm{M}{ }^{+}$276.0144, found 276.0137.

(Z)-2-bromo-3-(2-(prop-1-enyl)phenyl)cyclopent -2-enone (136): pale brown solid, 16% yield (78% b.r.s.m.). m.p.: $64-5^{\circ} \mathrm{C}$; IR: v 3015.2 , $1715.8,1613.6 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24-7.45(\mathrm{~m}, 4 \mathrm{H})$, $6.33(\mathrm{~d}, J=11.4,1 \mathrm{H}), 5.83(\mathrm{dt}, J=11.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.96(\mathrm{~m}, 2 \mathrm{H})$,
2.67-2.70 (m, 2H), $1.75(\mathrm{dd}, J=7.0,1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.5$, 173.3, 134.9, 134.6, 129.8, 129.0, 128.8, 127.5, 126.8, 126.7, 124.3, 33.2, 32.3, 14.4; HRMS cacled for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO} \mathrm{M}^{+}$276.0144, found 276.0137.

2-Bromo-4-methyl-3-(2-vinylphenyl)cyclopent-2-enone (137): Semisolid, 33% yield; IR v 2958.0, 1719.8, $1605.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.67$ (dd, $\left.J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39(\mathrm{tdd}, J=7.4,7.4,1.5 \mathrm{~Hz}$, 2H), 7.09-7.13 (m, 1H), $6.60(\mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dd}, J=$ 17.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{qdd}, J=7.2,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96 (dd, $J=18.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=18.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS caclcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO} \mathrm{M}^{+}$276.0144, found 276.0186.

138

2-Bromo-3-(2-vinylthiophen-3-yl)cyclopent-2-enone (138): Yellow solid, 57% yield; m.p.: $93-4{ }^{\circ} \mathrm{C}$; IR v 1711.6, $1601.3 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=$ $17.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97-2.99 (m, 2H), 2.68-2.70 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 202.0,167.5$, $142.1,133.6,129.7,127.9,125.3,124.8,116.8,33.9,33.3$; HRMS cacled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrOSNa}[\mathrm{M}+\mathrm{Na}]^{+}$290.9449, found 290.9445 .

139

2-Bromo-3-(4-vinylthiophen-3-yl)cyclopent-2-enone 139: Yellow solid, 34% yield; m.p.: $88-89{ }^{\circ} \mathrm{C}$; IR v 1703.5, $1609.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=$
$17.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{dd}, J=17.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=10.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-$ $3.00(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.1,167.0,138.5$, 134.7, 130.1, 126.3, 123.8, 122.7, 116.3, 33.1, 32.5; HRMS cacled for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrOS} \mathrm{M}^{+}$ 267.9551, found 267.9490 .

140 2-Bromo-3-(2-cyclohexenylphenyl)cyclopent-2-enone (140): Pale yellow solid, 12% yield (48% yield b.r.s.m.); m.p.: $76-7{ }^{\circ} \mathrm{C}$; IR: v 2921.2, $1711.7 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{t}, J=7.46$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H})$, 2.92-2.94 (m, 2H), 2.65-2.67 (m, 2H), 2.30-2.31 (m, 2H), 2.08-2.11 (m, 2H), 1.72-1.77 (m, 2H), 1.62-1.67 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 201.6,174.7,142.5,137.0$, $133.5,129.2,128.3,127.8,126.5,123.8,33.3,32.0,29.4,25.6,23.0,21.7$; HRMS cacled for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrONa}[\mathrm{M}+\mathrm{Na}]^{+} 339.0354$, found 339.0349 .

Preparation of 2-bromo-5-methyl-3-(o-vinylphenyl)cyclopent-2-en-1-one

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(558 \mathrm{mg}, 1.5 \mathrm{mmol})$ was dried as before. To the dry CeCl_{3} under dry N_{2} was added THF (3.4 ml) with good stirring. The white suspension was stirred overnight at room temperature. To the above slurry at $-78^{\circ} \mathrm{C}$, was treated dropwise with 2-lithio-styrene, which was prepared in situ by dropwise addition of n - $\operatorname{BuLi}(2.3 \mathrm{M}$ in hexanes, $650 \mu \mathrm{l}, 1.5 \mathrm{mmol}$) to 2-bromostyrene ($188 \mu \mathrm{l}, 1.5 \mathrm{mmol}$) in a mixture of THF
$(13 \mathrm{ml})$ and $\mathrm{Et}_{2} \mathrm{O}(3.0 \mathrm{ml})$ and stirring for 15 mins at this termperature. The slurry was stirred for additional 1.0 hr . At this stage, 4-methyl-2-bromocyclopent-2-en-1-one ${ }^{6}$ (175 $\mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (2.0 ml) solution was added slowly. The resulting slurry mixture was stirred for 24 hrs at $-78^{\circ} \mathrm{C}$ before it was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Extract the mixture with $\mathrm{Et}_{2} \mathrm{O}$, and dry over MgSO_{4}. Column chromatography (4\% EtOAc in hexane) gave 2-bromo-4-methyl-1-(2-vinylphenyl) cyclopent-2-en-1-ol 96.2 mg as white solid (35% yield, 60% based on recovered starting material) and starting material 74.4 mg (43\%).

2-Bromo-4-methyl-1-(2-vinylphenyl) cyclopent-2-en-1-ol: (35\% yield, 60% b.r.s.m.). m.p.: $42-3{ }^{\circ} \mathrm{C}$; IR: v $3305.4,2985.1 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=17.3,10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=17.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=12.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (75.0 MHz, CDCl_{3}): $\delta 140.3,139.8,137.1,136.6,128.2,127.9,127.9,127.1,126.1$, 115.1, 87.6, 48.2, 37.4, 20.3; HRMS cacled for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO} \mathrm{M}^{+}$278.0300, found 278.0299.

To 2-bromo-4-methyl-1-(2-vinylphenyl) cyclopent-2-enol ($90.3 \mathrm{mg}, 0.323 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ solution, was added pyridinium chlorochromate ($105 \mathrm{mg}, 0.485 \mathrm{mmol}$). The reaction mixture was stirred overnight at room temperature. Filter through a pad of celite, remove solvent using rotavap. The crude product was purified by column
chromatography ($10 \% \mathrm{EtOAc}$) to give 2-bromo-5-methyl-3-(2-vinylphenyl)cyclopent-2-en-1-one $63.7 \mathrm{mg} .71 \%$ yield, white solid.

2-Bromo-5-methyl-3-(2-vinylphenyl)cyclopent-2-en-1-one

(142):
71% yield; m.p.: $103-4{ }^{\circ} \mathrm{C}$; IR: v 2966.1, 2917.1, 1711.6, 1613.6, $1417.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42$ (td, $J=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.36$ (td, $J=7.4,1.5 \mathrm{~Hz}$), $7.15-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=17.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}$, $J=10.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=18.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{qdd}, J=7.4,6.6,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54 (dd, $J=18.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.33 (d, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 203.9, 171.1, 134.5, 134.3, 133.8, 129.3, 127.7, 126.6, 125.9, 124.0, 116.7, 41.9, 39.2, 16.5; HRMS cacled for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrO} \mathrm{M}^{+}$: 276.0144 , found 276.0159.

Typical procedure for electrocyclization

To a trifluoroethanol solution of 2-bromo-3-(2-vinylphenyl)cyclopent-2-enone was added triethylamine (3.0 eq). The resulting mixture was heated under certain conditions (method A: $50{ }^{\circ} \mathrm{C}, 7$ days; method B: $70{ }^{\circ} \mathrm{C}, 2$ days). The reaction was monitored by TLC. After the completion of reaction, trifluoroethanol was removed and the residue was dissolve in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 N HCl , saturated $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine. The extract was dried over MgSO_{4} and the solvent was removed by rotavap. Column chromatography ($30 \% \mathrm{EtOAc}$) would give the desired product.
(3aS, 5R)-5-(2, 2, 2- Trifluoro-ethoxy)- 3, 3a, 4, 5-
 tetrahydrocyclopenta[a] naphthalene-2-one (128): method A: 56\% yield; method B: 69\% yield.

Purple solid, m.p.: 73-4 ${ }^{\circ} \mathrm{C}$; IR: v 2925.3, 1695.3, 1601.3, 1282.6, 1172.3, $1098.7 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72-7.75(\mathrm{~m}$, $1 \mathrm{H}), 7.39-7.52(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-4.06(\mathrm{~m}$, $2 \mathrm{H}), 3.54-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=18.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=13.7,3.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23(\mathrm{dd}, J=18.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dt}, J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75.0 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 207.3,73.4,134.9,131.2,130.9,130.0,129.4,127.1,125.7,124.8,122.0,76.5$, $66.1\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 42.0,34.2,33.9$; HRMS caclcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 305.0759 , found 305.0761 .

1H-cyclopenta[a]naphthalene-2(3H)-one 129: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were consistent with literature reported ${ }^{225}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.59 (m, 2H), $7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}-$ NMR (75.0MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 214.7,134.9,133.8,132.6,129.9,128.7,127.8,126.7,125.6$, 124.1, 122.7, 45.0, 42.5; HRMS caclcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O} \mathrm{M}^{+}$182.0726, found 182.0738.

(3aS, 5R)-7-Benzyloxy-5-(2, 2, 2-trifluoro-ethoxy)-3, 3a, 4, 5tetrahydrocyclopenta[a] naphthalene-2-one 143: method A : 64\% yield; method B: 61\% yield.

Pale brown solid, m.p.: $165-6^{\circ} \mathrm{C}$; IR: v 1683.0, 1589.1, 1495.1,
$1282.6 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.46(\mathrm{~m}, 5 \mathrm{H})$, $7.06(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}$, $2 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=18.2,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=18.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{td}, J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 207.3,173.3,160.9,136.8 .136 .0,129.1,128.7,128.3$, 127.4, 123.2, 123.0, 121.7, 116.7, 116.4, 76.8, 70.2, $66.2\left(\mathrm{q}, J_{C-F}=34.2 \mathrm{~Hz}\right), 42.0,34.2$, 34.0; HRMS caclcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 411.1178$ found 411.1173 .

(3aS, 5R)-7-Methoxy-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5tetrahydrocyclopenta $[a]$ naphthalene-2-one 144: method A : 54\% yield (72\% yield b.r.s.m.); method B: 64\% yield.

Brown crystal, m.p.: $124-5{ }^{\circ} \mathrm{C}$; IR: v 2917.1, 1691.2, 1593.1, 1486.9, $1274.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=$ 8.6, 2.6 Hz, 1H), $6.88(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=18.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=18.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{td}, J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (62.5 MHz, CDCl_{3}): $\delta 207.3,173,4,161.9,136.9,129.1,123.0,122.9,115.8,115.4,76.9$, $66.3\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 55.5,41.9,34.1,34.0$; HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}: 335.0865$, found 335.0851 .

(3aS, 5R)-6-methoxy-8-methyl-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5-tetrahydrocyclo- penta[a]naphthalene-2-one 145: method A: 39% yield (58\% yield b.r.s.m.); method B: 61% yield
(72\% yield b.r.s.m.).
Pale purple solid, m.p.: $124-5^{\circ} \mathrm{C}$; IR: v 2949.8, 1699.4, 1601.3, $1568.6,1266.2 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.82$ $(\mathrm{dd}, J=18.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=18.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{td}, J=13.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.6,175.1,158.7$, $141.1,131.6,125.9,123,7,122.7,120.1,115.2,114.9,71.6,68.2\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right)$, $56.4,43.0,35.6,34.7,22.4$; HRMS cacled for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1021$, found 349.1008.

(3aS, 5R)-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5tetrahydrocyclopenta $[a]$ naphthalene-[1, 3]dioxol-2-one 146: method A: 71% yield; method B: 78% yield.

Pale purple solid, m.p.: $139-40{ }^{\circ} \mathrm{C}$; IR: v $1691.2,1478.7 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.04-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.88-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, \mathrm{J}=18.2,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=18.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{td}, J=13.5,2.9 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 207.0, 173.2, 150.3, 148.6, 130.6, 124.5, 123.4, 110.3, 105.9, 101.8, 76.8, $66.2\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 41.8,33.8,33.6$; HRMS cacled for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 349.0658$, found 349.0657 .

(3aS, 5R)-5-methyl-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5tetrahydrocyclopenta[a] naphthalene-2-one 147: method A: 27\% yield (48\% yield b.r.s.m.); method B: 50\% yield (71\% yield b.r.s.m.). m.p.: $91-2{ }^{\circ} \mathrm{C}$; IR: v 2917.1, 1703.5, 1593.1, 1274.4, $1155.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-$ $3.86(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=18.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.6,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=18.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{t}, J=13.5 \mathrm{~Hz}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (125.0MHz, CDCl_{3}): δ 208.4, 175.2, 138.3, 132.0, 130.9, 129.9, 128.4, 128.3, 125.6, 123.6, 76.1, $62.1\left(\mathrm{q}, J_{C-F}=34.4 \mathrm{~Hz}\right), 43.6,42.9,35.8,25.7$; HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 319.0916$, found 319.0909 .

(4R, 5aS)-4-(2, 2, 2-trifluoroethoxy)-4, 5, 5a, 6tetrahydroindeno[5, 4-b]thiophen-7-one 148: method A: 84% yield (d.r.: 10: 1); method B: 86% yield (d.r.: 5.4: 1).

Light brown solid, m.p.: $122-3{ }^{\circ} \mathrm{C}$; IR: v 1691.2, $1609.5,1278.5$, $1151.8 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.20(\mathrm{dd}, \mathrm{J}=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.59$ (m, 1H), 2.78 (dd, $J=8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=18.1,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89(\mathrm{td}, J=13.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.2,169.1,141.4$, 134.5, 128.1, 127.9, 125.7, 125.6, 124.1, 123.4, 72.8, $67.2\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 42.0,36.6$, 34.7; HRMS caclcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SNa}\left[\mathrm{M}+\mathrm{Na}+\mathrm{O}_{2}\right]^{+}: 343.0222$, found 343.0224.

(3S, 3aS, 5R)-3-methyl-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5tetrahydrocyclopenta [a]naphthalene-2-one 149: method A: 24\% yield (44\% yield b.r.s.m., d. r.: 5.5: 1); method B: 33\% yield (67\% yield b.r.s.m., d.r.: 4.5: 1).

Pale yellow solid, m.p.: 79-80 ${ }^{\circ} \mathrm{C}$; IR: v $1695.3,1597.2 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.73-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-4.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.10-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{qd}, J=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{td}, J=$ $13.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75.0 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 211.6,209.6,172.3,170.6,135.0,131.3,131.2,131.0,130.9,130.0,129.8$, $129.5,127.3,127.1,125.7,123.6,123.0,122.0,77.1,76.5,66.0\left(\mathrm{q}, J_{C-F}=34.2 \mathrm{~Hz}\right), 48.2$, $43.5,42.1,37.1,33.1,29.5,13.4,12.8 ; \mathrm{HRMS}$ caclcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 319.0916 , found 319.0935 .

150 150: method A: 23% yield.

Solid, m.p.: $99-100^{\circ} \mathrm{C}$; IR: v 2921.2, $1695.3,1593.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.9(\mathrm{~m}, 1 \mathrm{H})$, 1.51-1.56 (m, 1H), 1.39-1.44(m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.8,174.4$, $137.0,134.5,131.4,128.2,127.3,127.0,126.4,124.5,123.5,45.9,41.3,41.2,29.6,26.7$, 20.9; HRMS caclcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O} \mathrm{M}^{+}: 236.1195$, found 236.1188 .

3,5-Bis(4-vinylthiophenyl)-3a $R^{*}, ~ 4 S^{*}, ~ 7 a S^{*}, ~ 7 a S^{*}$-tetrahydro-4,7-methano-1H-indene-1, 8-dione 151: method A: 79\% yield (single regioisomer).

Semi solid; IR: v 1768.9, 1679.0, $1581.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.65(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=3.1,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=3.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{ddd}, J=17.3,10.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.43(\mathrm{~m}$, $1 \mathrm{H}), 6.38(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=17.2,10.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{dd}, J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, \mathrm{J}=10.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=10.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.8-362(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=$ 6.4, 4.9 Hz, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.9,198.3,165.4,140.3,139.0$, $136.0,135.0,134.4,133.5,131.1,130.2,127.4,124.2,123.5,122.8,122.5,117.5,116.6$, 53.1, 50.3, 45.3, 42.8; HRMS caclcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 399.0484$, found 399.0496.

152

4-Methylene-3-(2-vinylphenyl)cyclopent-2-enone 152: Semisolid; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, J=7.2,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ $(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (75.0MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 204.3,170.3,144.5,135.6,135.2,134.2,131.8,129.1,128.4$, 127.4, 125.4, 115.8, 114.1, 40.2; HRMS caclcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O} \mathrm{M}^{+}$196.0882, found 196.0884.
(4R, 5R)-4-methyl-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5-

158 tetrahydrocyclopenta [a]naphthalene-2-one (158): method A : 43% yield (64\%, b.r.s.m.); method B: 39 \% yield (53\%, b.r.s.m.). Colorless crystal, m.p.: $132-3{ }^{\circ} \mathrm{C}$; IR: v 2917.1, 1687.1, 1670.8 , 1593.1, $1270.3,1151.8,1115.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.78-7.81 (m, 1H), 7.44-7.51 (m, 2H), 7.29-7.33 (m, 1H), $6.44(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{dd}, J=18.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.3,173.6,135.8,131.0,130.3,130.0,129.7,127.8,125.1$, $123.6,81.8,66.2\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 41.1,40.5,40.4,29.7,15.6$; HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.0916$, found 319.0902.

(4S, 5R)-4-methyl-5-(2, 2, 2-trifluoroethoxy)-3, 3a, 4, 5tetrahydrocyclopenta $[a]$ naphthalene-2-one (160): method A : 56% yield (77\% , b.r.s.m.).

Purple solid, m.p.: 55-6 ${ }^{\circ} \mathrm{C}$; IR: v 2966.1, 2925.3, 1699.4, 1597.2, 1278.5, 1151.8, $1102.8 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.37-$ $7.53(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.06(\mathrm{~m}, 3 \mathrm{H}), 2.67$ $(\mathrm{dd}, J=18.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=18.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.73(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.0,171.6,133.2,131.9,131.6,129.9$, $129.4,127.1,126.4,125.8,122.1,82.6,66.2\left(\mathrm{q}, J_{C-F}=34.1 \mathrm{~Hz}\right), 38.4,37.9,34.8,10.3 ;$ HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.0916$, found 319.0923 .

3 An Unusual Observation During a Lithium-bromine Exchange Reaction

Preparation of (2-(2-bromophenyl)allyl)alkylsilane

(2-(2-Bromophenyl)allyl)trimethylsilane 242 was prepared using Bunnelle's protocol. ${ }^{104}$ A round bottom flask charged with $\mathrm{CeCl}_{3} 7 \mathrm{H}_{2} \mathrm{O}(6.3 \mathrm{~g}, 16.9 \mathrm{mmol}, 2.4 \mathrm{eq})$ was immersed into an oil bath under full pump. The solid was agitated by stirring as the flask was heated to $150^{\circ} \mathrm{C}$ for 2 hr , cool to RT and vent to dry N_{2} for 2 min . THF (36 ml) was introduced with good stirring. The white suspension was stirred for overnight at room termperature. This resulting suspension was cooled to $-65^{\circ} \mathrm{C}$ before it was added trimethylsilyl methyl magnesium chloride ($1.0 \mathrm{M}, \mathrm{Et}_{2} \mathrm{O}, 16.9 \mathrm{ml}, 16.9 \mathrm{mmol}, 2.4 \mathrm{eq}$) dropwise. After 15 min , methyl bromobenzoate ($1.0 \mathrm{ml}, 6.98 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added dropwise and stirring was continued, as the flask is allowed to warm slowly to room temperature and stirred for 24 hr . The reaction was quenched by the portionwise addition of 1 N HCl . Extract with Ethyl ether and dry over MgSO_{4} to give crude compound 2.89 g , which is 2-(2-bromo-phenyl)-1,3-bis(trimethylsilanyl)-propan-2-ol.

To the mixture of crude alcohol in THF (25 ml) solution at $0{ }^{\circ} \mathrm{C}$, was added 2.4 N HCl (THF solution, $16.2 \mathrm{ml}, 39 \mathrm{mmol}$) or $p-\mathrm{TsOH}$ (5.0 eq , THF solution) dropwise. Stirring was continued for 2 hr at $0{ }^{\circ} \mathrm{C}$. Extract with ethyl ether and dry over MgSO_{4}. Evaporate the solvent to give crude product. Purification was carried out by Kugelrohr distillation (full pump, $60^{\circ} \mathrm{C}$) to give desired product 74% ($>96 \%$ GC pure).
(2-(2-Bromophenyl)allyl)trimethylsilane 242: colorless liquid,

242 distilled at full pump, $60^{\circ} \mathrm{C}, 74 \%$ yield; IR: v 3080.6, 2953.9, 2892.6, $1621.7,1462.4,1421.5,130.0,1245.8,1164.1,1021.1,845.4,759.6$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.07-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.5,145.0,132.8,130.2,128.1,126.9,121.6,113.7,28.0,-$ 1.4.

270 (2-(2-Bromophenyl)allyl)dimethyl(phenyl)silane 270: colorless liquid, distilled at full pump, $120{ }^{\circ} \mathrm{C}, 50 \%$ yield; IR: v 3068.3, $2949.8,1621.7,1585.0,1466.5,1421.5,1249.9,1115.1,1021.1$, $833.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.02-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H})$, $0.21(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.9,144.8,138.6,133.5,132.8,130.3$, $128.8,128.2,127.6,126.9,121.6,114.6,26.9,-2.8$.

Typical procedure coupling reaction

A flame-dried 25 ml round bottom flask, was charged with bromoalkene 243 (400 mg , 1.48 mmol) in 7.5 ml THF . The solution was brought to $-78{ }^{\circ} \mathrm{C}$ before it was added t BuLi (1.06M, $2.9 \mathrm{ml}, 2.1 \mathrm{eq})$ dropwise. After this organge clean solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched by slow addition of $n-\mathrm{BuBr}(190 \mu \mathrm{~L}, 1.2$
eq). The reaction was monitored by GC-MS. After being stirred for 30 min , it was diluted with diethyl ether, washed with water and dried over MgSO_{4}. Remove the solvent by rotavap to give crude product 342 mg . GC-MS analysis of crude product showed that coupling product $\mathbf{2 4 4}$ was more than 98% pure. NMR analysis of crude product showed clean product. For some other cases, analytical sample was obtained by careful column chromatography using silica gel.

244
(2-(2-Butylphenyl)allyl)trimethylsilane 244: colorless liquid, 94% NMR yiled; IR: v 2953.9, 2925.3, 1462.4, 1245.8, 1115.1, 898.5, 837.2, $726.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58$, (dd, $J=7.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.26-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}), 5.16(\mathrm{q}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (m, 1H), $2.34(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.96(\mathrm{~m}, 3$ H), 0.31 (s, 9H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 152.1,150.8,137.1,134.8,128.3$, $127.9,125.8,113.3,38.7,31.7,27.0,22.5,14.0$. 0.9.

(2-(2-Propylphenyl)allyl)trimethylsilane 245: colorless liquid, 83\%
NMR yield; IR: v 3051.9, 2958.0, 1634.0, 1466.5, 1241.7, 1119.1, $833.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ (dd, $J=7.75,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 4.89-4.90(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=7.5 \mathrm{~Hz}), 1.49-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.39$ (dq, $J=15.1,7.25 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 152.1,150.8,137.1,134.8,128.3,127.9,12.58,113.3,38.4,29.5,22.6,14.0$, 0.92 .
(2-(2-Ethylphenyl)allyl)trimethylsilane 246: colorless liquid, 89%
 NMR yield; IR: v 3047.9,2953.9, 1638.1, 1458.3, 1245.8, 1115.1, $829.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{dd}, J=7.30,1.26$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=7.57,1.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.57,1.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=$ $7.57,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{q}, J=1.89 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.29(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $151.9,150.6,137.1,134.7,128.2,127.8,125.8,113.4,40.8,20.5,13.9,0.85$.
(2-(2-Chloropropylphenyl)allyl)trimethylsilane 247: colorless

liquid, 58% NMR yield; IR: v 3047.9, 2953.9, 1634.0, 1466.5, $1421.5,1245.8,1106.9,837.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.54-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-$ $4.95(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=7.7,2 \mathrm{H}), 1.81-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.74$ $(\mathrm{m}, 2 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.2,150.2,137.1,134.8,128.3$, $127.8,125.9,113.8,44.7,37.8,32.3,24.6,0.86 ;$ HRMS cacled for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClSi}^{+} \mathrm{M}^{+}$ 266.12520 , found 266.12579 .

(2-(2-Allylphenyl)allyl)trimethylsilane 248: colorless liquid, 74\% NMR yield; IR: v 3068.3, 2945.7, 1634.0, 1425.6, 1249.9, $837.2 \mathrm{~cm}^{-}$
${ }^{1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=$ $17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=10.0,0.75 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.43(\mathrm{~m}$,

2H), 2.27-2.28 (m, 2H), 0.28 (s, 9H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 151.2,150.3$, $138.1,137.2,134.8,128.3,127.9,126.0,114.7,113.9,37.8,31.5,0.92$.

(2-(2-Benzylphenyl)allyl)trimethylsilane 249: colorless liquid, 94\% NMR yield; IR: v 30.23.3, 2945.7, 2888.5, 1454.2, 1241.7, 833.1, $726.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ 7.34 (m, 8H), 5.25 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 2.85-2.91(\mathrm{~m}$, $2 \mathrm{H}), 2.63-2.70(\mathrm{~m}, 2 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.4,150.2$, $141.8,137.2,134.8,128.3,128.3,128.2,127.8,126.0,125.8,113.8,40.4,33.8,0.93$; HRMS caclcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{SiNa} \mathrm{M}^{+} 303.153948$, found 303.15425.

Phenyl(2-(3-(trimethylsilyl)prop-1-en-2-yl)phenyl)methanol 250:

colorless liquid, 68% yield; column chromatography ($10 \% \mathrm{EtOAc}$); IR: v 3399.3, 3047.9, 2953.9, 2892.6, 1629.9, 1450.1, 1249.9, 833.1 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.39 (m, 7H), 7.18 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.84(\mathrm{td}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=2.4,1 \mathrm{H}), 0.31(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 148.9,148.7,143.9,137.3,135.0,128.5,128.4,128.3$, $127.5,126.3,125.8,117.5,71.3,49.4,0.91$; HRMS cacled for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{OSiNa} \mathrm{M}^{+}$ 319.148863, found 319.148142.

A 25 mL round bottomed flask was charged 1-chloro-2,2-dimethylpropane ($540 \mu \mathrm{~L}, 4.38$ mmol) and $\mathrm{Et}_{2} \mathrm{O}(5.4 \mathrm{~mL})$. Mg turnings ($233 \mathrm{mg}, 8.76 \mathrm{mmol}$) and 1,2-dibromoethane ($377 \mu \mathrm{~L}, 4.38 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added sequentially. The resulting mixture was refluxed for 28 hours before it was cooled to $0^{\circ} \mathrm{C}$ and neat bromobenzaldehyde ($256 \mu \mathrm{~L}$, 2.19 mmol) was added dropwise. The resulting mixture was stirred for 4.0 hours at $0{ }^{\circ} \mathrm{C}$ before it was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}$. Extract with $\mathrm{Et}_{2} \mathrm{O}$ and dry over MgSO_{4}. The solvent was removed in vacuo. Column chromatography (5\% EtOAc) gave the alcohol 478 mg (85% yield). IR: v $3325.7,2945.7,1462.4,1074.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.05(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.2,132.5$, 128.5, 127.6, 127.4, 121.3, 71.1, 51.3, 30.8, 30.2.

To alcohol ($434 \mathrm{mg}, 1.68 \mathrm{mmol}$) in 17 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, was added PCC (545 mg , 2.53 mmol) slowly. The resulting mixture was stirred for 3 hours at room temperature before it was filtered through a pad of celite. Column chromatography ($5 \% \mathrm{EtOAc}$) gave the ketone ($413 \mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.59(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.25-7.36(m, 3H), $2.85(\mathrm{~s}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.1$, 143.1, 133.6, 131.1, 128.2, 127.2, 118.5, 54.8, 31.7, 29.8.

To a 10 mL round bottomed flask, was charged with bromoketone ($100 \mathrm{mg}, 0.39 \mathrm{mmol}$), $\mathrm{Cp}_{2} \mathrm{TiMe}_{2}(20 \mathrm{wt} \%$ in toluene, $1.2 \mathrm{~g}, 1.17 \mathrm{mmol})$ and titanocene dichloride $(5.8 \mathrm{mg}, 0.023$ $\mathrm{mmol})$. The orange mixture was heated to $80^{\circ} \mathrm{C}$ and was aged in the dark for 8 hours. After the reaction mixture was then cooled to room temperature, $\mathrm{NaHCO}_{3}(51 \mathrm{mg})$, $\mathrm{MeOH}(0.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.03 \mathrm{~mL})$ was added and the mixture was heated to $40{ }^{\circ} \mathrm{C}$ for 14 hour. Cool to room temperature and filter through a pad of celite. Solvent was removed by rotavap. Purification was carried out using chromatron (pentane) to give 45 mg a mixture of 258 and the debrominated product 259 (1.9:1.0) with 68% GC pure (29\% yield).). 258: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.40(\mathrm{~m}$, $3 \mathrm{H}), 5.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$.

(4,4-Dimethylpent-1-en-2-yl)benzene 259

258 was subjected to the standard coupling reaction condition. $\mathbf{2 5 9}$ was obtained with 90\% NMR pure (76% GC pure).). 259: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.18-7.43 (m, 5 H), $5.28(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$.

Preparation of (2-(2-bromophenyl)propyl)trimethylsilane 262

To a $50-\mathrm{mL}$ round bottomed flask, was added $241(500 \mathrm{mg}, 1.86 \mathrm{mmol})$, THF (18 mL), and $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$. NaOAc ($3.05 \mathrm{~g}, 37.2 \mathrm{mmol}$) and tosyl hydrazine ($3.46 \mathrm{~g}, 18.6 \mathrm{mmol}$) was added successively. The resulting mixture was heated to reflux for 7 days and
monitored by GC-MS. The reaction mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}$. Extract with $\mathrm{Et}_{2} \mathrm{O}(\mathrm{X} 3)$ and the organic extract was dried over MgSO_{4} and concentrated in vacuo to afford crude product (241: 262 7.86: 1.00) in ca. 500 mg .
(2-(2-Bromophenyl)propyl)trimethylsilane (262): Colorless liquid,

262 89% NMR yield, pure sample was obtained by careful distillation at full pump and $60^{\circ} \mathrm{C}$; IR: v 2962.0, $1466.5,1249.9,1025.2,837.2 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}$, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{qt}, J=$ $7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{dd}, J=$ 14.5, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.3,132.6,127.4$, 127.3, 127.0, 123.7, 34.4, 25.9, 24.7, -0.94.

Lithium-bromo exchange reaction with (2-(2-Bromophenyl)allyl)dimethyl(phenyl)

 silane 270A flame-dried 10 mL round bottom flask, was charged with bromoalkene 270 (50 $\mathrm{mg}, 0.15 \mathrm{mmol}$) in 3.0 mL THF. The solution was brought to $-78^{\circ} \mathrm{C}$ before it was added t-BuLi (1.4 M, $230 \mu \mathrm{~L}, 0.315 \mathrm{mmol}$) dropwise. After this organge clean solution was stirred for 15 min at $-78^{\circ} \mathrm{C}$, the reaction was warmed up to room temperature and stirred at ambient temperature for 20 hours. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before it was quenched by slow addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Dilute with diethyl ether and water and extract with $\mathrm{Et}_{2} \mathrm{O}$ (X 3). The organic extract was washed with water, brine and dried over MgSO_{4}. Remove the solvent by rotavap to give crude product. GC-MS analysis of crude product showed that $\mathbf{1 5 \%}$ of $\mathbf{2 7 2}, \mathbf{1 0 \%}$ of $\mathbf{2 7 3}$, and 44% of $\mathbf{2 7 4}$.

1,1-Dimethyl-3-methylene-2,3-dihydro-1H-benzo[b]silole 273: colorless liquid, analytical sample was obtained by the careful column chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexanes $)$; IR: v 3060.1, 2945.7, 1617.7, 1433.8, 273 1241.7, 1131.4, 845.4, 812.7, $731.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=1.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5,148.5,141.5,132.0,129.5,127.4,121.8,107.7$, 21.7, -2.1.

274

1,1,3-trimethyl-1H-benzo[b]silole 274: colorless liquid, obtained as a mixture (2.85: 1.00) with $\mathbf{2 7 3} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, \mathrm{~J}=$ 6.6 Hz, 1H), 7.25-7.38(m, 3H), $5.94(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.30$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.2,149.9,139.8,131.2,129.4,127.8,126.5$, $121.2,19.5,-3.7$.

Preparation of ((2-bromophenoxy)methyl)trimethylsilane 277

After sodium hydride $(60 \%, 462 \mathrm{mg}, 11.5 \mathrm{mmol})$ was washed with $\mathrm{Et}_{2} \mathrm{O}$, dry DMSO (12 mL) was added. To the sodium hydride in DMSO solution was added bromophenol $(2.0 \mathrm{~g}, 11.5 \mathrm{mmol})$ in dry DMSO (12 mL) dropwise. The mixture was stirred at rt for 8 hours before chloromethyl trimethylsilane $(1.42 \mathrm{~g}, 11.5 \mathrm{mmol})$ was introduced. The stirring was continued for additional 8 hours. At the end of reaction, DI water was added to quench the reaction. Extract with $\mathrm{Et}_{2} \mathrm{O}$, dry with MgSO_{4} and concentrate in vacuo. Distillation (full pump, $120-140{ }^{\circ} \mathrm{C}$) afforded the
title compound 1.95 g (66% yield). IR: v 2958.0, 2892.6, 1580.9, 1474.6, 1245.8, 861.7 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 0.21$ $(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.6,133.0,128.2,121.2,112.3,112.2,62.0,-$ 3.90.

Trimethyl(phenoxymethyl)silane: IR: v 2953.9, 2880.3, 1597.2, 1495.1, 1249.9, 865.8, $755.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 7.25-7.32 (m, 2H), 6.92-6.99 (m, 3H), 3.59 (s, 2H), $0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 161.5,129.1,120.1,114.0,60.8,-3.20$.

4 Total synthesis of 1-epi-seco-pseudopteroxazole

Preparation of bromoester 366

To a stirred suspension of LiCl in dry acetonitrile under N_{2} atmosphere at room temperature, was added phosphonate 368, DBU and finally aldehyde 367. The resulting mixture was stirred for overnight (12 hrs) before it was diluted with diethyl ether. Wash with water and dried over MgSO_{4}. Removal of solvent gave the crude product. NMR analysis of crude reaction mixture showed the ratio of $E: Z$ isomer is $10: 1.0$. Silica gel column chromatography (5\% EtOAc) gave $83 \% E$ and $\sim 10 \% E / Z$ mixture.

366

366: Yellow liquid; IR: v 2945.7, 2851.7, 1715.7, 1572.7, 1425.6, $1323.5,1258.1,1090.5,1029.2,833.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.32-$ $2.39(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.15$
$(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,155.7,139.0,137.7,137.5,134.0,132.1$, $123.4,122.4,112.0,109.6,56.1,51.8,27.7,27.4,25.5,21.3,17.4 ;$ HRMS caclcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$389.07227, found 389.07160.

Procedure for Buchwald-Hartwig coupling reaction

To a 500 mL round bottomed flask equipped with a reflux condenser was sequentially added bromoester $366(10 \mathrm{~g}, 27.2 \mathrm{mmol}), R$-sulfoximine ($5.0 \mathrm{~g}, 32.6 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{OAc})_{2}(312 \mathrm{mg}, 1.36 \mathrm{mmol}), r a c-\operatorname{BINAP}(1.31 \mathrm{~g}, 2.04 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(12.4 \mathrm{~g}, 38.0$ mmol) and then 270 mL toluene. The reaction mixture was heated in an oil bath at 110 $115{ }^{\circ} \mathrm{C}$ for 36 hr . Additional $\mathrm{Pd}(\mathrm{OAc})_{2}(312 \mathrm{mg}, 1.36 \mathrm{mmol})$, rac-BINAP $(1.31 \mathrm{~g}, 2.04$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(12.4 \mathrm{~g}, 38.0 \mathrm{mmol})$ were refilled. And the resulting mixture was refluxed for additional 12 hours. The solution was cooled to room temperature and diluted with dichloromethane, filtered through a pad of Celite and concentranted in vacuo, to give brown oil. Purification of the product was carried out by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane) afforded a pale yellow semisolid $12.0 \mathrm{~g}(100 \%)$.

360

360: Pale yellow semisolid (foam); IR: v 2929.4, 1703.5, 1462.4, 1335.7, $1258.1,1204.9,1160.0,1090.5,739.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.00-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.57$ $(\mathrm{m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{tt}, J=7.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.52(\mathrm{~m}$, $2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 169.0,151.9,142.6,139.1,132.3,131.9,131.8,131.5,130.0,128.8,127.4$, $123.8,122.0,112.9,55.4,51.6,46.0,28.0,27.8,25.6,21.2,17.6$; HRMS caclcd for $\mathrm{C} 25 \mathrm{H} 31 \mathrm{NO}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$464.18498, found 464.18498; $[\alpha]_{\mathrm{D}}^{25}=+15.66$ (c 1.66, acetone).

Procedure for the intramolecular Michale reaction

To a 1 L round bottom flask was discharged $360(9.6 \mathrm{~g}, 21.7 \mathrm{mmol})$ and 430 mL THF. The mixture was cooled to $-78^{\circ} \mathrm{C}$ before it was added dropwise LiHMDS (1.0 M in THF, 43.4 mmol). The stirring was continued for 1 hr . The mixture was vigorously stirring with rapid addition of a cold 1 N HCl in methanol solution $\left(-78{ }^{\circ} \mathrm{C}\right)$. The resulting mixture was warmed to room temperature, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$, extracted with EtOAc, washed with brine and dried over MgSO_{4}. The solvent was removed by rotavap. NMR analysis of the crude mixture showed a ratio of 9.2: 1.0 of diastereomeric ratio. Purification was carried out using column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexane}$) to afford 9.5 g of $\mathbf{3 6 1}$ (> 99\%).

361

361: Yellow foam; IR: v 2929.4, 1732.1, 1458.3, 1254.0, 1155.9, 1012.9, $747.3 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta$ $8.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.65(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}$, $1 \mathrm{H}), 4.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 2 \mathrm{H})$, 3.37 (s, 3H), 3.29-3.37 (m, 1H), 3.11-3.20 (m, 1H), $2.30(\mathrm{~s}, 3 \mathrm{H})$, $1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9,152.7,139.5,133.3,132.6,131.4,130.2,129.1$, 129.0, 125.3, 122.7, 120.1, 111.9, 55.9, 52.4, 51.2, 44.3, 38.5, 31.4, 25.6, 21.3, 17.5; HRMS caclcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 464.18660$, found 464.18531.

373

373: In a $300-\mathrm{mL}$ flask was placed $361(3.6 \mathrm{~g}, 8.15 \mathrm{mmol})$ in 160 mL of THF. The flask was cooled to $-20^{\circ} \mathrm{C}$ before $\mathrm{LiEt}_{3} \mathrm{BH}(1.0$ M in THF, 24.4. $\mathrm{mL}, 24.4 \mathrm{mmol}$) was added using syringe pump in 50 mins with vigorous stirring. The stirring was continued for an additional 30 mins. The reaction was quenched by sequential addition of $\mathrm{MeOH}, 1 \mathrm{~N} \mathrm{NaOH}$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. Extract the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, wash with $\mathrm{H}_{2} \mathrm{O}$ and brine. Dry over MgSO_{4} and evaporate by rotavap to afford crude 373 (> 99% yield), whose spectrum was good enough to carry out further reaction. 373: Yellow semi-solid; IR: v $3440.1,2925.3,1470.6,1249.9 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.59(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H})$, $5.03(\mathrm{t}, J=7.1 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.21(\mathrm{~m}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.24-$
$1.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.3,139.1,133.4,132.1,131.9,129.6$, $129.0,129.0,126.1,123.8,118.9,111.1,61.4,55.8,49.9,38.4,29.3,25.6,21.4,17.6 ;$ HRMS cacled for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}^{+} \mathrm{M}^{+}$414.20974, found 414.20978.
 374: Yellow oil; IR: v 3342.1, 2921.2, 2847.6, 1585.0, 1474.6, 1450.1, 1290.8, 1135.5, 1066.0, 735.0, $680.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{tt}, J=$ $7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}$, 374 $1 \mathrm{H}), 5.00(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.34(\mathrm{~m}$, $1 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.48(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9$, 140.7, 136.7, 133.9, 132.7, 131.4, 128.9, 128.4 $(\mathrm{CH}), 126.3(\mathrm{CH}), 124.2(\mathrm{CH}), 120.3(\mathrm{CH}), 109.0(\mathrm{CH}), 75.6\left(\mathrm{CH}_{2}\right), 74.2\left(\mathrm{CH}_{2}\right), 55.5$ $\left(\mathrm{CH}_{3}\right), 47.7(\mathrm{CH}), 45.2(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right), 17.5$ $\left(\mathrm{CH}_{3}\right)$.

$2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.45(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.7,132.3,131.0,125.4,123.8,122.6,118.7,109.4,63.0,55.6,45.6$, 40.1, 29.3, 27.9, 25.8, 25.7, 21.5.

Procedure for the preparation of sulfonate ester

To the dichloromethane solution (17 mL) of alcohol 373 ($360 \mathrm{mg}, 0.87 \mathrm{mmol}$), was successively added sulfonyl chloride (1.30 mmol), DMAP ($10.6 \mathrm{mg}, 0.09 \mathrm{mmol}$) and TEA ($365 \mu \mathrm{~L}, 2.60 \mathrm{mmol}$). The resulting mixture was stirred at room temperature for a few hours before it was diluted with water. The organic layer was washed with brine and dried over MgSO_{4}. Flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane) provided the desired sulfonate ester.

376: Yellow oil, 87% yield; IR: v 2929.4, 1462.4, 1254.0, 1168.2 cm^{-1}; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.69(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $3 \mathrm{H}), 3.42-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=13.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}$, $3 \mathrm{H}), 2.65-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.10(2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.7,138.8,133.8,132.8,132.0,130.1$, 129.3, 129.1, 124.7, 122.8, 118.7, 111.5, 68.7, 55.9, 49.4, 37.0, 36.4, 36.1, 29.1, 25.6, 25.2, 21.4, 17.7; HRMS caclcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$514.1692, found 514.1695.

377: Yellow foam, 87% yield. IR: v 2913.0, 1450.1, 1168.2, $1086.4 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.02$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.65(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 6.65$ $(\mathrm{s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=10.3$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=10.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-$ $3.38(\mathrm{~m}, 2 \mathrm{H}), 2.99-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 152.6, 144.9, 138.9, 133.7, 132.5, 132.2, 131.8, 130.1, 129.8, 129.2, 129.0, 127.6, 124.9, $122.9,119.0,111.5,69.0,55.9,49.8,36.5,36.0,28.9,25.6,25.1,21.5,21.3,17.6$.
 378: Yellow solid, 95% yield, m.p. $103-4{ }^{\circ} \mathrm{C}$; IR: v 2929.4, 1462.4 1331.6, 1254.0, $1151.8 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 3 \mathrm{H})$, $6.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{td}, J=7.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, 3.41-3.47 (m, 2H), 3.12-3.21 (m, 2H), 2.60-2.70 (m, 1H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.15(\mathrm{~m}, 2 \mathrm{H})$, ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.7,138.9,133.8,132.8,132.0,130.1,129.3,129.0$, 124.9, 122.9, 118.8, 111.5, 67.7, 56.0, 52.0, 49.5, 36.4, 36.2, 29.3, 25.7, 25.3, 21.4, 17.7, 16.5, 16.4; HRMS caclcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 542.2005$, found 524.2004 .

379: To a stirred, cooled $\left(0^{\circ} \mathrm{C}\right)$ acetonitrile (30 mL) and ether (30 $\mathrm{mL})$ mixture was successively added 373 ($3.30 \mathrm{~g}, 8.15 \mathrm{mmol}$), triphenyl phosphine $(4.27 \mathrm{~g}, 16.3 \mathrm{mmol})$ and imidazole $(1.11 \mathrm{~g}, 16.3$ 379
mmol). Iodine ($4.10 \mathrm{~g}, 16.3 \mathrm{mmol}$) was slowly added. After the resulting pale yellow suspension was stirred for 5 hr (monitored by TLC), the reaction mixture was diluted with ether and sequentially washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aqueous CuSO_{4} and water. The organic layer was dried over MgSO_{4} and concentrated to afford crude iodide. Flash chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) gave desired iodide 3.79 g (89\% over the two steps). Yellow seimi-solid; IR: v 2921.2, 1462.4, 1254.0, 1151.8, 1017.0, $747.3 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), 7.51-7.67 (m, 3H), $6.70(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, 3.42 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.80-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 152.9,139.4,133.7,132.4,131.6,130.5,129.3,129.0,125.7,123.0,120.3$, 111.7, 56.0, 50.7, 40.6, 36.5, 31.8, 25.7, 25.1, 21.3, 17.7, 11.1; HRMS cacled for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NNO}_{2} \mathrm{~S}^{+} \mathrm{M}^{+}$524.11146, found 524.11092.

362

362: In a $300-\mathrm{mL}$ flask was placed $\mathbf{3 7 9}(4.62 \mathrm{~g}, 8.82 \mathrm{mmol})$ in 175 mL of THF. The flask was immersed into an ice bath. $\mathrm{LiEt}_{3} \mathrm{BH}$ (1.0 M in THF, $26.3 \mathrm{~mL}, 26.3 \mathrm{mmol}$) was added dropwise using syringe pump ($0.49 \mathrm{~mL} / \mathrm{min}$) with vigorous stirring. The stirring was continued for an additional 1 hour. The reaction was quenched by sequential addition of $\mathrm{MeOH}, 1 \mathrm{~N} \mathrm{NaOH}$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. Extract the mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, wash with $\mathrm{H}_{2} \mathrm{O}$ and brine. The combined organic layer was dried over MgSO_{4} and the solvents were removed by rotavap to afford crude 362. Flash chromatography
($30 \% \mathrm{EtOAc} /$ Hexane) afforded 3.19 g of $\mathbf{3 6 2}$ (91% yield) and 260 mg of the mixture of 362 and 390 (ca. 10\% yield).

362: Yellow semi-solid; IR: v 2913.0, 1458.3, 1241.7, $1012.9 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.67(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{tt}$, $J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.56$ $(\mathrm{m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.51(\mathrm{~m}, 2 \mathrm{H})$, $0.80(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.2,139.2,133.5,132.3$, 131.9, 129.4, 129.1, 125.7, 123.8, 118.3, 110.9, 55.9, 47.9, 40.2, 38.0, 35.2, 31.4, 25.8, 25.6, 21.4, 17.6, 14.7; HRMS caclcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 420.19677$, found 420.19584.

380

380: Yellow semi-solid; IR: v 2921.2, 1605.4, 1589.1, 1343.9, 1160.0, 1066.0, $963.9,878.0,739.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.47(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, $6.71(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}$, $3 \mathrm{H}), 3.43(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 156.4,148.0,142.6,134.8,131.8,131.5,128.8,127.2,123.7,120.7,118.5$, 111.2, $95.2,72.4,56.0,53.4,48.6,43.9,43.2,34.2,27.0,25.6,22.0,17.6 ;$ HRMS caclcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{~S}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 576.1518$, found 576.1520.

381

381: Colorless crystal; m.p. $142-3{ }^{\circ} \mathrm{C}$; IR: v 2970.2, 2925.3, 1597.2, 1589.0, 1372.5, $1180.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.17-$ $7.31(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ ($\mathrm{s}, 1 \mathrm{H}$), $5.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 1.89-2.05 (m, 3H), 1.67-1.72 (m, 1H), $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 155.8,149.8,144.4,144.3,142.3,136.8,136.5,136.0,132.0,131.3,129.8$, 129.3, 128.8, 128.7, 128.6, 126.6, 124.1, 120.5, 118.3, 109.9, 94.9, 72.3, 54.0, 53.2, 48.4, 34.7, 27.2, 25.6, 22.0, 21.5, 17.6; HRMS caclcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{~S}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 728.2144$, found 728.2161.

388

388: Red liquid; d.r.: 3.3: 1.0; IR: v 3444.2, 3366.6, 2913.0, $1585.0,1486.9,1290.8,1160.0,735.0 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.43(\mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=12.5,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.85-2.0(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$, 1.38-1.40(m, 1H), 1.13-1.17 (m, 1H), $1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 147.4,137.4,132.0,131.4,128.8,128.7,127.9,127.0,125.5,124.5,119.6$, $109.0,55.3,43.5,36.5,36.4,34.3,25.6,25.4,21.3,17.5,16.8$; HRMS caclcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 406.2175$, found 406.2165 .

389

389: Red liquid; single diastereomer; IR: 3423.8, 2908.9, $1585.0,1507.3,1262.2,1102.8,833.1,735.0,690.1 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.13-7.37(\mathrm{~m}, 5 \mathrm{H})$, $6.55(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{td}, J=7.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.23(\mathrm{~m}, 2 \mathrm{H})$, 2.96-3.08 (m, 2H), 2.25 (s, 3H), 2.02-2.10 (m, 3H), 1.67 (s, 3H), 1.60 (s, 3H), 1.25-1.55 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.9,137.3,131.8,130.6,129.0,128.7,125.6$, 124.2, 124.0, 123.2, 121.6, 109.1, 55.3, 42.9, 39.4, 35.3, 34.9, 29.5, 25.7, 25.6, 20.9, 17.6; HRMS caclcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$404.2018, found 404.2014.

365

365: To a 500 mL round-bottomed flask was charged 362 (4.53 $\mathrm{g}, 11.4 \mathrm{mmol}$) and 215 mL THF. After the mixture was stirring at $-45^{\circ} \mathrm{C}$ for 10 mins , lithium triethylborohydride $(1.0 \mathrm{M}, 34.2$ $\mathrm{mL}, 34.2 \mathrm{mmol}$) was added dropwise. After a hour, then allyl bromide ($2.96 \mathrm{~mL}, 34.2 \mathrm{mmol}$) was added dropwise to the reaction mixture at $-45^{\circ} \mathrm{C}$. The stirring was continued for another 1.0 hour, before it was quenched by addition of methanol. The reaction was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over MgSO_{4} and the solvent was removed by rotovap. The crude product was purified by flash chromatography (30% EtOAc/Hexanes) to afford 4.80 g of $\mathbf{3 6 5}$ (97% yield). Yellow semisolid; IR: v 2917.1, 1572.7, 1482.8, 1254.0, 1151.8, 1017.0, $743.2 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.12-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.65(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H})$, 5.62-5.79 (m, 1H), $5.13(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=16.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=$
$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{ddd}, \mathrm{J}=10.6,4.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 2.11-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.37(\mathrm{~m}$, $1 \mathrm{H}), 0.83-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.49(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.1$, $141.1,134.3,133.0,131.1,130.4,128.9,128.9,125.9,124.3,123.9,118.6,111.5,60.8$, $55.9,49.8,34.8,33.1,25.6,25.1,21.2,17.5,16.6$; HRMS caclcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SNa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 460.22807$, found 460.22823 .

Preparation of N-protected sulfoximines

397a: Following the literature reported procedure, ${ }^{226} 397$ a was obtained as colorless liquid in 80% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.60(\mathrm{~m}$, 3 H), 3.03 ($\mathrm{s}, 3 \mathrm{H}$), $0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.8,132.2,128.8$, 126.9, 49.2, 2.26; $[\alpha]^{25}{ }_{D}=-90.9$ (c 1.10, acetone).

397b: Following the literature reported procedure, ${ }^{227}$ 397b was obtained as colorless liquid in 91% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.96(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51$7.55(\mathrm{~m}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $145.0,132.1,128.8,126.9,49.5,25.9,17.9,-2.51 ;[\alpha]^{25}=-0.82(c 1.04$, acetone $)$.

Preparation of N -allylsulfoximine 392

To a flame dried 50 mL round bottomed flask, was charged with $\mathbf{3 9 7 a}(2.87 \mathrm{~g}, 12.6$ mmol) and THF (12 mL). The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and was added dropwise n-BuLi ($2.2 \mathrm{M}, 6.5 \mathrm{~mL}, 13.9 \mathrm{mmol}$). After the addition was complete, the reaction mixture was warmed up to $-20^{\circ} \mathrm{C}$ for 10 mins and $0^{\circ} \mathrm{C}$ for additional 20 mins . The resulting mixture was cooled to $-78^{\circ} \mathrm{C}$ before it was added dropwise allylic bromide $(1.20 \mathrm{~mL}, 13.9 \mathrm{mmol})$. After 2.0 hours at $-78^{\circ} \mathrm{C}$, the reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Dilute with water, extract with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4} and concentrated to afforded crude product (398a: 399a 3:2), which was subjected to deprotection without further purification.

To the crude product in the solution of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10: 1,6.0 \mathrm{~mL})$ was added CsF $(136 \mathrm{mg}, 0.1 \mathrm{eq})$. The resulting mixture was stirred for 1 hour at room temperature and 10 mins at $50{ }^{\circ} \mathrm{C}$. After the reaction was cooled to room temperature, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic extract was dried over MgSO_{4} and concentrated in vacuo to afford crude product. Flash column chromatography (20\% EtOAc, then 50\% EtOAc) afforded 955 mg of 400 (32\%) and 971 mg of 401 (40\%).

$7.98(\mathrm{dt}, J=6.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.63(\mathrm{~m}, 3 \mathrm{H}), 5.72(\mathrm{ddt}, J=17.2,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.00-5.08 (m, 2H), 3.18-3.25 (m, 2H), 2.52 (s, 1H), 2.45-2.51 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.8,133.9,133.0,129.1,128.3,116.9,56.5,27.2$.

401

Colorless liquid, 32%. IR: v 3268.5, 3072.4, 1646.3, 1442.0, 1229.5, 996.5, $914.8 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), 7.51-7.65 (m, 3H), 5.65-5.82 (m, 2H), 5.00-5.09 (m, 4H), 3.06$3.14(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 140.3, 133.7, 133.6, 133.0, 129.1, 129.0, 118.1, 64.6, 32.3, 32.2; HRMS caclcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$258.0927, found 258.0923.

403: Following the procedure for preparing 361, the reaction was complete after 18 hours at $110-115{ }^{\circ} \mathrm{C} .403$ was obtained in 73% yield after flash chromatography ($25 \% \mathrm{EtOAc} /$ hexanes). Yellow foam; IR: v 2945.7, 1711.6, 1621.7, 1478.7, 1315.3, 1274.4, 1164.1 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.42(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.60(\mathrm{~m}, 4 \mathrm{H}), 7.01-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=16.2, \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{ddt}$, $J=17.0,10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=11.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, 3 H), 3.38-3.49 (m, 2H), 2.52-2.61 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 168.0,144.9$, $142.5,137.5,133.5,133.3,130.7,129.5,129.0,128.0,127.4,122.3,121.4,117.3,116.7$, 57.0, 51.4, 27.0; HRMS cacled for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$378.1134, found 378.1132; $[\alpha]^{25}{ }_{D}=+330.0$ (c 1.42, acetone).

404: To a 10 mL round bottomed flask was discharged 403 ($48.7 \mathrm{mg}, 0.13 \mathrm{mmol}$) and 2.7 mL THF. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before it was added dropwise LiHMDS (1.0 M
in THF, $270 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$). The stirring was continued for 2 hr . The reaction was quenched by the addition of MeOH . The resulting mixture was warmed to room temperature, diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$, extracted with EtOAc, washed with brine and dried over MgSO_{4}. The solvent was removed by rotavap. NMR analysis of the crude mixture showed a ratio of 2.0: 1.0 of diastereomeric ratio. Purification was carried out using column chromatography ($30 \% \mathrm{EtOAc} /$ hexane) to afford 44.3 mg of 404 (91%, d.r. 2.0: 1.0) as yellow liquid. Major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{td}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{dd}, J=16.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dt}, J=9.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, 3H). 2.90-3.00 (m, 1H), 2.49-2.60 (m, 2H), $2.27(\mathrm{dt}, J=9.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 171.4, 144.2, 140.4, 133.5, 133.2, 130.6, 129.4, 129.1, 128.4, 128.3, 124.3, 121.4, 119.0, 59.0, 51.5, 37.7, 37.2, 32.0.Minor isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, CDCl_{3}): $\delta 8.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.20(\mathrm{~m}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.90-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 171.6, 144.3, 135.2, 134.0, 132.8, 128.7, 128.6, 123.7, 123.2, 121.0, 118.0, 51.9, 33.9; HRMS cacled for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SH}^{+}[\mathrm{M}+\mathrm{H}]^{+} 356.1314$, found 356.1313 .

395

395: Following the procedure for preparing 361, the reaction was complete after 41 hours at $110-115^{\circ} \mathrm{C} .395$ was obtained in 71% yield after flash chromatography (20% EtOAc/hexanes). Yellow foam; IR: v 2917.1, 1703.5, 1454.2, 1335.7, 1241.7, 1090.5, $1012.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.11(\mathrm{~s}$, $1 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.55(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddt, $J=17.0,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{tt}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.07(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.29(\mathrm{~m}, 2 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.0,151.4,141.7,139.2$, $134.3,132.1,131.8,131.5,131.3,131.0,130.0,128.7,127.7,123.9,121.9,116.6,112.8$, 57.7, 55.1, 51.6, 28.0, 27.9, 27.4, 25.6, 21.1, 17.6; HRMS caclcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SNa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 504.2179$, found $504.2165 ;[\alpha]^{25}{ }_{\mathrm{D}}=+27.3(\mathrm{c} 2.00$, acetone $)$.

396: Following the procedure for preparing 363, 396 was obtained in 82% (d.r. 2.7: 1.0) as yellow semisolid. IR: v 2937.5, 1732.1, 1462.4, $722.8 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.68(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dd}, J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.12$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{td}, J=11.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $2.13-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.73(\mathrm{~m}, 2 \mathrm{H}), 0.81-0.89(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}-$

NMR (75 MHz, CDCl_{3}): 174.6, 152.8, 141.3, 133.6, 133.0, 132.2, 131.0, 129.2, 129.0, 128.7, 123.7, 122.7, 122.3, 119.3, 112.1, 59.1, 55.9, 51.1, 47.6, 45.6, 32.5, 29.6, 25.6, 21.1, 17.5; minor isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 8.13-8.17 (m, 2H), 7.54-7.68 (m, $3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.67-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ $(\mathrm{s}, 3 \mathrm{H}), 3.10-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.73(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $175.2,153.3,133.8,133.0,131.1,130.1,129.0,128.9,123.9,123.2,118.7,112.2,62.7$, $55.9,51.1,46.1,45.3,32.9,31.8,25.6,21.3,17.5$; HRMS caclcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SNa}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 504.2179$, found 504.2161.
 $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, $3 \mathrm{H}), 0.88-1.14(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 153.3,141.1,134.0,133.2,131.7$, $131.3,130.3,129.2,128.8,125.4,123.7,122.8,119.0,111.9,62.0,60.8,55.9,44.9,40.5$, 33.1, 28.3, 25.6, 24.9, 21.3, 17.6; minor isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.05-8.17$ (m, 2H), 7.51-7.64 (m, 3H), $6.66(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.66-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.29(\mathrm{~m}$, $2 \mathrm{H}), 4.85(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 1 \mathrm{H})$, 2.39-2.45 (m, 1H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$153.2,141.0,134.2,133.2,131.6,130.8,130.7,130.3,129.9,129.7,129.0,128.9,125.6$, 124.1, 123.8, 118.5, 111.7, 61.6, 61.1, 55.9, 44.7, 40.0, 33.4, 29.3, 25.6, 25.5; HRMS caclcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 476.2229$, found 476.2210.

Yellow semi-solid; major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.13-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.69(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}$, $1 \mathrm{H}), 5.68-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=$ $17.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.80$ (dd, $J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-$ $3.00(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.90(\mathrm{~m}, 2 \mathrm{H})$.
 $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 0.97-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.77(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2-((5R,6S)-6,10-dimethylundeca-1,9-dien-5-yl)-6-methoxy-4-methylaniline (386)

To a 200 mL round-bottomed flask under N_{2} atmosphere was sequentially added with 5% sodium amalgam ($17.1 \mathrm{~g}, 37.2 \mathrm{mmol}$), dry methanol (60 mL) and solid
$\mathrm{Na}_{2} \mathrm{HPO}_{4}(5.28 \mathrm{~g}, 37.2 \mathrm{mmol})$. The mixture was stirred at room temperature for 10 minutes. A 15 mL THF solution of $\mathbf{3 6 5}(1.63 \mathrm{~g}, 3.72 \mathrm{mmol})$ was added into the wellstirred dispersion of buffered sodium amalgam. The reaction mixture was stirred at room temperature overnight. The mixture was filtered through a pad of Celite and concentrated in vacuo, to afford crude product. Purification of the product was made by flash column chromatography ($5 \% \mathrm{EtOAc}$) to give 1.05 g of a diastereomerically mixture of aniline 394 (90% yield). Enantiomerically pure 394 was obtained by careful chromatography using chromatron or long column ($1 \% \mathrm{EtOAc}$).

394

Colorless liquid; IR: v 3464.7, 3378.8, 2925.3, 1585.0, 1486.9, $1458.3,1290.8,1155.9,1061.9,906.7,829.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.77-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.04$ $(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=15.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.52-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, $3 H), 1.90-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.38(\mathrm{~m}, 1 \mathrm{H})$, 1.13-1.16 (m, 1 H$) ; 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.3$, $139.2,131.8,131.2,129.0,126.6,124.8,119.8,114.2,108.4,55.3,42.8,36.5,34.8,31.6$, 29.2, 25.7, 25.6, 21.3, 17.5, 16.5; HRMS caclcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 338.2454$, found $338.2445 ;[\alpha]^{25}=-0.55\left(c 1.46, \mathrm{CHCl}_{3}\right)$.

11 -epi-394 ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.3,139.2,132.0,131.0,129.2$, $126.8,124.8,119.9,114.2,108.3,55.3,37.6,34.2,31.7,31.3,25.6,25.5,21.2,17.6$, 17.3; HRMS cacled for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 338.2454$, found 338.2449; $[\alpha]^{25}{ }_{\mathrm{D}}=3.87$ (c $2.58, \mathrm{MeOH})$.

(E)-1-(2-((5R,6S)-6,10-dimethylundeca-1,9-dien-5-yl)-6-methoxy-4-methylphenyl)-

3,3-diethyltriaz-1-ene (406)

To 100 mL round-bottomed flask was charged with enantiomerically pure aniline 394 ($682 \mathrm{mg}, 2.16 \mathrm{mmol}$), 4.5 M aq. $\mathrm{HCl}(2.2 \mathrm{~mL})$ and a mixture of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF} / \mathrm{CH}_{3} \mathrm{CN}(7: 6: 1,30$ mL). The reaction mixture was immersed into the ice bath. A solution of $\mathrm{NaNO}_{2}(507 \mathrm{mg}, 7.35 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(2: 3,15 \mathrm{~mL})$ was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . A second 100 mL round bottomed flask was charged with diethyl amine ($1.2 \mathrm{~mL}, 10.8$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.49 \mathrm{~g}, 10.8 \mathrm{mmol})$, and a mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(2: 1,30 \mathrm{~mL})$. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and was introduced the solution of diazonium solution over 15 minutes and stirred for additional 1 hour at $0{ }^{\circ} \mathrm{C}$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to
afford brown oil. Flash chromatography (basic aluminum oxide, $5 \% \mathrm{Et}_{2} \mathrm{O} /$ Pentanes) provided a colorless oil $837 \mathrm{mg}(97 \%)$ and was immediately carried out further step.

406: Colorless liquid; IR: v 2925.3, 1580.9, 1462.4, 1082.4, $906.7 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.74-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{dd}, J=18.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=12.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.61-2.02(\mathrm{~m}, 7 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.26-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.99-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(72.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.2,139.6,138.5,138.3,134.1,130.5,125.2$, $120.0,113.6,110.3,55.9,37.3,35.1,31.8,30.5,25.8,25.6,21.7,17.5,16.3,13.0 ;[\alpha]^{25}{ }_{D}$ $=-20.28\left(\mathrm{c} 2.12, \mathrm{CHCl}_{3}\right)$.

1-((5R,6S)-6,10-dimethylundeca-1,9-dien-5-yl)-2-iodo-3-methoxy -5-methylbenzene

364 A 75 mL sealed tube under Argon atmosphere was charged with triazene $406(837 \mathrm{mg})$ in diiodomethane $(38 \mathrm{~mL})$. The solution was degassed with Argon for several times and stirred at $80-1{ }^{\circ} \mathrm{C}$ for 20 hours. The diiodomethane was distilled under reduced pressure and the red residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(180 \mathrm{~mL})$ and washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, water and dried over MgSO_{4}. The solvent was removed by in vacuo to give crude product, which was purified by flash chromatography (2% $\mathrm{Et}_{2} \mathrm{O} /$ Pentanes) afforded 654 mg of a colorless liquid 364 (71\% yield).

364: Colorless liquid; IR: v 2921.2, 1572.7, 1450.1, 1298.9, $1004.7 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.73-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{dd}, J=16.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.07-$
$3.11(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.98-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65$ $(\mathrm{s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-$ NMR (125 MHz, CDCl_{3}): $\delta 157.6,148.6,139.1,138.5,131.1,124.8,121.0,114.1,109.6$, $93.0,56.3,53.2,37.7,34.9,31.3,30.8,25.8,25.6,21.5,17.6,15.9$; HRMS caclcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{IONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 449.1311$, found 449.1307; $[\alpha]^{25}{ }_{\mathrm{D}}=1.43$ (c 5.30, acetone).
(R)-5-methoxy-4,7-dimethyl-1-((S)-6-methylhept-5-en-2-yl)-1,2-dihydronaphthalene (363)

To a 75 mL sealed tube under argon atmosphere was sequentially added iodide $\mathbf{3 6 0}$ (190 $\mathrm{mg}, 0.44 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{mg}, 0.022 \mathrm{mmol})$, tri-o-tolylphosphine ($13.4 \mathrm{mg}, 0.044$ mmol) and triethylamine (13 mL). The reaction mixture was degassed by argon several times before it was heated at $120{ }^{\circ} \mathrm{C}$ for 45 hours. The reaction mixture was cooled to room temperature and diluted with 12 mL of 6 N sodium hydroxide and 12 mL of ether. The etherate layer was separated and the aqueous layer was extracted with ether twice. The combined etherate extracts was washed with water, brine, dried over MgSO_{4} and concentrated to give crude product (d.r. 1.0:1.6 363:407). Tri-o-tolylphosphine was removed as following method: To a 10 mL dichloromethane of crude product at $0{ }^{\circ} \mathrm{C}$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution dropwise. The stirring was continued for 2 hours and then was diluted with $\mathrm{H}_{2} \mathrm{O}$. Extract with dichloromethane, dry over MgSO_{4} and concentrate in vacuo. The crude product was purified using flash chromatography (hexanes) to afforded 86.2 mg of a mixture of $\mathbf{3 6 3 : 4 0 7}$ (7.4:1.0, 65% yield).

363

363: Colorless oil; IR: v 2921.2, 1605.4, 1462.4, $1098.7 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.60(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{tt}, J=$ $7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, J=\mathrm{s}$, $3 \mathrm{H}), 2.19-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.87$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.5,142.4,136.5,132.2,130.9$, $124.9,124.0,122.2,121.9,111.0,55.4,43.6,35.1,34.1,25.9,25.6,24.5,23.0,21.5,17.6$, 17.1; HRMS caclcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{ONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$321.2188, found 321.2183.

407: Colorless oil; IR: v 2921.2, 1506.4, 1458.3, $1098.7 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{td}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{q}, ~ J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.33$ 407 $(\mathrm{s}, 3 \mathrm{H}), 1.93-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}$, $3 \mathrm{H}), 1.36-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.0,143.2,140.0,137.0,131.1,124.8,122.8,121.3,113.0,109.3$, 55.3, 43.3, 35.9, 35.1, 32.9, 26.0, 25.7, 23.7, 21.6, 17.6, 15.1; HRMS caclcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 321.2118$, found 321.2187 .
(1R,4R)-5-methoxy-4,7-dimethyl-1-((S)-6-methylhept-5-en-2-yl)-1,2,3,4-tetrahydro naphthalene (400)
NH_{3} (1) (ca. 20 mL) was condensed in 50 mL round-bottomed flask at $-78^{\circ} \mathrm{C}$, was added lithium $(98 \%, 6.3 \mathrm{mg}, 0.88 \mathrm{mmol})$ wire in small pieces. The solution was stirred
vigorously (5 mins) until the solution turned into deep blue solution. A solution of $\mathbf{3 6 3}$ ($26.5 \mathrm{mg}, 0.088 \mathrm{mmol}$) in THF (2.0 mL) was added dropwise. The resulting reaction mixture was stirred for additional 15 mins before it was quenched by the slow addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was slowly warm up to room temperature with the evaporation of ammonium. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ether (3 times). The combined organic layer was dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give crude product, which was further purified by column chromatography (hexanes) to afford 24.6 mg of $\mathbf{4 0 8}$ (d.r. 4.6: 1.0, 93% yield).

408

Pale yellow oil; major isomer 1-R-408: IR: v 2925.3, 1585.0, 1454.2, 1270.3, 1094.6, $833.1 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.72$ (s, $1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.13-$ $3.16(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.28(\mathrm{~m}, 4 \mathrm{H})$, $1.32-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.65(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.8,140.5,135.3$, 131.1, 129.3, 124.8, 119.8, 107.7, 55.0, 41.0, 35.7, 35.1, 30.2, 29.6, 28.9, 26.2, 25.6, 21.5, 20.2, 17.6, 16.5, 14.1.

410

To a 10 mL round-bottomed flask was chaged EtSH ($200 \mu \mathrm{~L}, 2.66$ mmol) and 3 mL THF. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before it was added n-BuLi ($2.3 \mathrm{M}, 580 \mu \mathrm{~L}, 1.33 \mathrm{mmol}$) dropwise. After the stirring was continued for 15 mins , all volatile solvents was slowly
removed in vacuo to leave solid powder, which was dissolved in DMF (2.0 mL). A solution of $408(20 \mathrm{mg}, 0.067 \mathrm{mmol})$ in 1.0 mL DMF solution was added to the LiSEt DMF solution. After the resulting mixture was refluxed for overnight, it was brought to room temperature and diluted with water, neutralized with concentrated HCl , extracted with $\mathrm{Et}_{2} \mathrm{O}$ (four times). The combined organic layer was dried over MgSO_{4} and concentrated in vacuo to give crude product. Flash chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes) afforded 12.1 mg of $\mathbf{4 1 0}$ (89\% yield, d.r. 5.3: 1.0). Colorless oil; IR: v 3489.2, 2921.2, 1576.8, 1450.1, $1372.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H})$, $5.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.28$ ($\mathrm{s}, 3 \mathrm{H}$), 2.05-2.11 (m, 2H), 1.73 (s, 3H), 1.65 ($\mathrm{s}, 3 \mathrm{H}), 1.12-1.73$ (m, 4H), 1.21 (d, $J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.20 (minor, d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 0.84-0.89 (m, 3H), 0.73 (minor, d, $J=6.9 \mathrm{~Hz}$, 3H), $0.66(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.7,141.0,135.7,131.2$, $126.9,124.7,120.3,112.5,41.0,35.7,35.1,28.9,26.3,26.2,25.7,21.1,20.1,17.6,16.5$.
(5R)-3,8-dimethyl-5-((S)-6-methylhept-5-en-2-yl)-2-nitro-5,6,7,8-tetrahydronaph-thalen-1-ol (411)

To a stirred solution of phenol 410 ($13.5 \mathrm{mg}, 0.024 \mathrm{mmol}$) in hexanes $(1.8 \mathrm{~mL})$ at room temperature was added $70 \% \mathrm{HNO}_{3}(18$ drops). The reaction was stirred for 1 mins 10 secs and then quenched by saturated NaHCO_{3}. The reaction mixture was extracted with ether (4 times). The combined organic layer was dried over MgSO_{4} and concentrated in vacuo to give crude product. Preparative TLC (5\% $\mathrm{Et}_{2} \mathrm{O} /$ Hexanes) afforded a yellow oil 1.8 mg of 411 (23\% yield, d.r. 5.1: 1.0). ${ }^{1} \mathrm{H}-\mathrm{NMR}$
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.2(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.27(\mathrm{~m}$, $1 \mathrm{H}), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.77(\mathrm{~m}$, $4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ (minor, d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.71$ (minor, d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $0.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,149.2,132.8,132.2,132.1,131.6,124.4,122.6,41.5,35.5$, 34.9, 28.5, 26.6, 26.1, 25.7, 22.9, 19.3, 17.7, 16.1, 14.2.

1-epi-seco-pseudopteroxazole (281)

To a stirred solution of $411(1.8 \mathrm{mg}, 0.005 \mathrm{mmol})$ in $90 \% \mathrm{MeOH}(0.8$ mL) at room temperature, was added solid ammonium chloride (1.0 $\mathrm{mg}, 0.015 \mathrm{mmol}$), followed by zinc dust ($3.6 \mathrm{mg}, 0.05 \mathrm{mmol}$). The resulting mixture was stirred for 1 hour at room temperature. The mixture was filtered through Celite, rinsing with MeOH . The solution was concentrated in vacuo. The residue was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 times). The combined organic extract was dried over MgSO_{4} and concentrated in vacuo to yield the crude amine, which was used in the next step without any further purification.

The crude amine was dissolved in trimethyl orthoformate (0.3 mL) and cat. TsOH. The resulting mixture was stirred at room temperature for 1 hour. The volatile solvents were removed in vacuo and trace water was removed by azeotropeic distillation with the addition benzene. The crude product was subjected to preparative TLC (15% EtOAc/Hexanes) to afford 281 ($0.4 \mathrm{mg}, 29 \%$ yield, 48% b.r.s.m.) and 411 ($0.7 \mathrm{mg}, 39 \%$ r.s.m.). Major isomer: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~m}$,
$1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

5 A Novel Approach to Chiral Cyclic Sulfinamide

Preparation of 4-ethyl-2,1-benzothiazine 538

$526(1.2 \mathrm{~g}, 4.0 \mathrm{mmol})$ was dissolved in 70 mL THF. The solution was cooled to $0^{\circ} \mathrm{C}$ before it was dropwisely added lithium triethylborohydride (1.0 M in THF solution, 12 $\mathrm{ml}, 12 \mathrm{mmol})$. After the addition, the stirring was continued for another 1 hour. The reaction was quenched by sequential addition of methanol, 1 N NaOH solution and hydrogen peroxide solution. Extract the reaction mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and dry over MgSO_{4}. After the removal of solvent by rotary evaporization, crude product was obtained in 1.17 g , which was used for next step without further purification.

To a cold solution of crude alcohol (662 mg), triphenylphospine ($1.2 \mathrm{~g}, 4.6 \mathrm{mmol}$) and imidazole ($312 \mathrm{mg}, 4.6 \mathrm{mmol}$) in acetonitrile $(5.0 \mathrm{~mL})$ and ether $(20 \mathrm{~mL})$, was slowly added iodine ($1.16 \mathrm{~g}, 4.6 \mathrm{mmol}$) resulting in a pale yellow suspension. After being stirred for overnight, the reaction mixture was diluted with ether and sequentially washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated CuSO_{4} and water. The organic layer was dried briefly over MgSO_{4}, filtered and concentrated to give crude product. Silica gel column chromatography ($30 \% \mathrm{EtOAc} /$ Hexanes) gave 820 mg of pure iodide 537 (90% yield).

537: Pale yellow solid, mp: $103-4^{\circ} \mathrm{C}$; IR: v 2929.4, $1482.8,1442.0$,

528 1017.0, $747.3 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.27$ (m, 1H), 7.17 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=8.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=5.0,13.5$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.03-3.14 (m, 2H), 2.47-2.54 (m, 1H), 2.08-2.14 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 144.7,139.3,133.8,129.5,128.7,126.2,124.5,124.1,121.1,52.5,36.0,35.7$, 1.96; HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{16}$ INOSNa ${ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 419.9889$, found 419.9886; $[\alpha]^{25}{ }_{\mathrm{D}}=-$ 7.83 (c 2.92, CHCl_{3}).

To the THF (40 mL) solution of iodide $537(820 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$, was dropwisely added lithium triethylborohydride (1.0M in THF solution, $6.2 \mathrm{~mL}, 6.2 \mathrm{mmol}$). The stirring was continued for another 2.0 h before it was quenched by the sequential addition of methanol, 1 N NaOH and hydrogen peroxide solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and dry over MgSO_{4}. After the removal of solvent by rotary evaporation, crude product was subjected to silica gel column chromatography (30% EtOAc in hexanes). Compound 538 was isolated in 540 mg (96% yield).
 $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{td}, J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$-NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.2,139.1,133.7,129.3,128.8,128.1,125.6,125.4$, 123.7, 120.5, 51.3, 34.6, 24.2, 10.5; HRMS caclcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 294.0923, found 294.0919; $[\alpha]^{25}{ }_{\mathrm{D}}=+3.13\left(c 0.83, \mathrm{CHCl}_{3}\right)$.

Typical Procedure of Dephenylation Reaction

To the THF (6.0 mL) solution of $4(0.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, was dropwisely added lithium triethylborohydride (1.0 M in THF solution, $0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}$). The resulting mixture was refluxed for certain hours. The reaction was monitored by TLC analysis. When the reaction was complete, the mixture was cooled to room temperature and quenched by the sequential addition of methanol, 1 N NaOH and hydrogen peroxide solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and dry over MgSO_{4}. After the removal of solvent by rotary evaporation, crude product was subjected to purify by silica gel column chromatography.

390

390: yellow liquid, 57% yield (65% yield based on recovered starting material), silica gel column chromatography (30\% EtOAc/Hexanes); IR: v 3252.2, 2917.1, 1585..0, 1482.8, 1458.3, 1082.4, 878.0, $829.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.86$ (s , $1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.56,(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{td}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.63(\mathrm{dt}, J=13.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=12.8,4.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}$, $3 \mathrm{H}), 1.36-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.4$,
$131.9,130.8,125.4,123.9,122.6,118.8,109.1,55.6,44.2,35.0,32.5,29.7,26.0,25.7$, 21.5, 17.7, 14.6; HRMS cacled for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 344.1654$, found 344.1647.
 539: Colorless crystal (recrystallized from Hexane-EtOAc), 71\% yield, silica gel column chromatography (50% EtOAc/Hexanes); mp: 112-3 ${ }^{\circ}$ C; IR: v 3170.4, 1470.6, 1037.4, 898.5, $747.3 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=$ 13.0, 4.0, 2.0 Hz, 1H), $2.64(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{td}, J=15.0$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.4,127.4$, 126.6, 125.3, 121.9, 117.4, 48.5, 26.4, 24.2, 10.0; HRMS caclcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NOSNa}^{+}[\mathrm{M}+$ $\mathrm{Na}]^{+} 218.0610$, found 218.0606; $[\alpha]^{25}{ }_{\mathrm{D}}=-61.2\left(c 0.84, \mathrm{CHCl}_{3}\right)$.

541: Off-white solid, 99% yield, silica gel column chromatography (50\% EtOAc/Hexanes); mp: 153-4 ${ }^{\circ} \mathrm{C}$; IR: v 3190.9, 1462.4, 1049.7, $743.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=$ $7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=12.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=12.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=13.7 .3 .4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dd, $J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.5,134.6,129.6,129.3$, $128.5,127.9,126.3,125.7,122.1,118.2,46.5,41.5,35.9$ HRMS cacled for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 280.0766$, found 280.0760 .

543

543: White solid, 96% yield, silica gel column chromatography (50\% EtOAc/Hexanes); mp: 179-80 ${ }^{\circ} \mathrm{C}$; IR: v 3182.7, 2958.0, 1474.6, 1061.9, 890.3, $751.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{td}, J=7.5,1,0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=14.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{t}, J=5.8 \mathrm{~Hz}$, 1 H), 1.19 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.5,129.5,127.6,126.3,121.9$, 118.2, 51.8, 45.7, 34.1, 28.7; HRMS caclcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$246.0923, found 246.0916 .

545: 90% yield, a mixture of cis and trans isomers (d.r.: 1.7: 1.0), which were partially separated by silica gel column chromatography ($50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$).

cis-545
$1^{\text {st }}$ fraction, major isomer cis-545: off-white solid, mp: $159-60^{\circ} \mathrm{C}$; IR: v 3166.4, 2958.0, 1462.4, 1041.5, $902.6,739.1 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ $(\mathrm{td}, J=7.4,1,2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-3.16(\mathrm{~m}, 3 \mathrm{H})$, 2.11-2.18 (m, 1H), 1.91-1.98(m, 1H), 1.42-1.62 (m, 2H), $0.99(t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.8,128.3,127.7,127.6,122.3,118.2,50.3,36.4,33.8$, 20.9, 13.8; HRMS cacled for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$232.0766, found 232.0764.

trans-545 $2^{\text {nd }}$ fraction, minor isomer trans-545: white solid, mp: $105-6{ }^{\circ} \mathrm{C}$; IR: v 3154.1, 2945.7, 1470.6, 1041.5, 910.7, $747.3 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=13.0$,
4.0, 2.0 Hz, 1H), $2.61(\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 135.4,127.3,126.5,125.8,121.9,117.4,48.9,33.8,25.3,19.1,14.2$; HRMS cacled for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$232.0766, found 232.0764.

547: 70\%\% yield, a mixture of cis and trans isomers (d.r. 1.3: 1.0), which were partially separated by silica gel column chromatography ($50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$).

$1^{\text {st }}$ fraction, major isomer cis-547: pale yellow solid, mp: 170-1 ${ }^{\circ} \mathrm{C}$; IR: v 3154.1, 2949.8, 1033.3, $808.6 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=13.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.94(\mathrm{~m}$, $1 \mathrm{H}), 2.77$ (ddd, $J=14.0,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.59-$ $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 155.5,130.3,128.3,119.7,113.6,112.5,52.5,52.6,35.5,33.9,20.7,13.9$; HRMS caclcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$262.0872, found 262.0868.

$2^{\text {nd }}$ fraction, minor isomer trans-547: white solid, mp:110-1 ${ }^{\circ} \mathrm{C}$; IR: v 3170.4, 2837.5, 1466.5, 1217.2, 1045.6, $816.8 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=$ $8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.62(\mathrm{~m}, 1 \mathrm{H})$, 3.02 (ddd, $J=12.5,4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
(125 MHz, CDCl_{3}): $\delta 154.9,128.7,127.4,118.4,112.9,112.5,55.6,49.4,34.1,26.2$, 19.1, 14.2; HRMS cacled for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 262.0872$, found 262.0868 .

549: white solid, 59% yield (73% yield based on recovered starting material), silica gel column chromatography ($50 \% \mathrm{EtOAc} /$ Hexanes); $\mathrm{mp}: 220{ }^{\circ} \mathrm{C}$ (decomposed); IR: v 3252.2, 1462.4, 1049.7, $747.3 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.13-7.19 (m, 1H), 6.99-7.08 (m, 2H), $6.79(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 4.00-4.09(\mathrm{~m}, 1 \mathrm{H})$, 3.86-3.97 (m, 1H), 2.59-2.74 (m, 1H), 2.33-2.48 $(\mathrm{m}, 1 \mathrm{H}), 2.10-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 132.8$, 129.7, 128.6, 127.8, 123.8, 120.6, 57.7, 34.2, 28.8, 20.2; HRMS cacled for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 216.0453$, found 216.0450; $[\alpha]^{25}{ }_{\mathrm{D}}=-262.1(c 0.47, \mathrm{MeOH})$.

551
.551: pale yellow liquid, 90% yield, silica gel column chromatography (50\% EtOAc/Hexanes); IR: v 3264.4, 2929.4, $1437.9,1086.4,874.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 6.64 (s, $1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=9.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{ddd}, J=$ 13.5, $9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{ddd}, J=12.5,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{t}, J=13.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 147.5,146.6,136.2,127.1,123.7,120.2,118.4,110.6$, $60.5,56.2,48.5,25.9,25.8,18.1,9.5$; HRMS caclcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 318.1134, found 318.1129; $[\alpha]^{25}{ }_{\mathrm{D}}=+136.9\left(c \quad 1.83, \mathrm{CHCl}_{3}\right)$.

553

553: pale brown needle, 84% yield, silica gel column chromatography ($50 \% \mathrm{EtOAc} /$ Hexanes); mp: $118-9{ }^{\circ} \mathrm{C}$; IR: v 3244.0, 2966.1, 2913.0, 1593.1, 1482.8, 1454.2, $1074.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$, $6.26(\mathrm{ddd}, J=15.5,11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.43(\mathrm{dd}, J=15.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dt}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91$ (ddd, $J=13.0,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7$, 134.1, $131.6,130.9,127.4,125.2,124.9,122.4,119.5,109.4,55.6,46.5,35.9,32.7,25.8,21.5$, 18.2, 17.5; HRMS cacled for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 342.1498$, found $342.1497 ;[\alpha]^{25}{ }_{\mathrm{D}}$ $=+162.8\left(c 1.82, \mathrm{CHCl}_{3}\right)$.

555

555: off-white needle, 89% yield (d.r. 8.2: 1.0), silica gel column chromatography (40% EtOAc/Hexanes); mp: $85-6{ }^{\circ} \mathrm{C}$; IR: v 3231.7, 2913.0, 1597.2, 1486.9, 1450.1, 1074.2, 833.1, $726.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.88-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=17.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{dt}, J=9.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=6.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{td}, J=15.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.00-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 1.37-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.99-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.1,134.1,132.0,131.6,128.4,124.1,121.9,120.8,118.5,109.5$,
$60.7,55.5,44.3,38.8,35.3,33.6,25.9,25.6,21.4,17.6,16.7$; HRMS caclcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 384.1967$, found 384.1955.

557
$(\mathrm{dd}, J=7.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.61-3.75 (m, 3H), 3.30-3.31 (m, 1H), $3.13(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}\right): \delta$ $136.9,128.5,127.6,126.8,122.9,118.5,60.1,49.6,35.6,24.8$; HRMS caclcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 234.0559$, found 234.0559.

558
557: brown liquid, 70% yield, silica gel column chromatography (MeOH); IR: v 3317.5, 1560.5, 1462.4, 1405.2, 1045.6, 898.5, 751.4 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{d}_{4}-\mathrm{MeOD}\right): 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$

558: brown liquid, 14% yield, silica gel column chromatography (EtOAc); IR: v 3436.1, 1572.7, $1139.6 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{d}_{6}{ }^{-}\right.$ acetone): 7.36 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17-7.20 (m, 1H), 7.04 (td, $J=$ $7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=13.5,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=13.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 2.22-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.19(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{d}_{6}\right.$-acetone): $\delta 138.1,128.5,127.4,125.9,122.7,118.6,58.5$, 49.3, 36.5, 35.4; HRMS caclcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{SNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 234.0559$, found 234.0549.

Semi-solid, 76\% yield; IR: v 3060.1, 1597.2, 1478.7, 1446.0, 1266.2, 1111.0, 1012.9, $743.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.05-8.10(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89$
$(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.22(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 145.0,138.5,133.8,129.3,128.9,128.5,128.3,123.4,120.8,120.4,47.1$, 24.6; HRMS cacled for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NOSNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$266.0610, found 266.0604.

561

Colorless crystal; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~d}_{4}-\mathrm{MeOH}\right.$): 6.99-7.03 $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=$ $15.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=12.5,4.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dt}, J=$ $17.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (ddd, $J=15.0,13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.\mathrm{d}_{4}-\mathrm{MeOH}\right): \delta 135.0,129.3,127.6,121.4,120.9,116.7,42.7,16.6 ;$

Quantitative GC Experiment

To the THF solution of $\mathbf{5 3 8}$ and n-decane at $0{ }^{\circ} \mathrm{C}$, was dropwisely added lithium triethylborohydride (1.0M in THF solution). The resulting mixture was refluxed for 6.0 h . The reaction mixture was cooled to room temperature and quenched by the sequential addition of methanol, 1 N NaOH and hydrogen peroxide solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times) and dry over MgSO_{4}. The crude mixture was subjected to GC-MS analysis. GC conditions were as followed: flow rate: $1 \mathrm{ml} / \mathrm{min} ; 70$ ${ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 10{ }^{\circ} \mathrm{C} / \mathrm{min}, 200{ }^{\circ} \mathrm{C}, 1 \mathrm{~min}$. Ethyl benzene was obtained in 44% yield and benzene was obtained in 27% yield.

APPENDIX I

List of Abbreviations

ACN - Acetonitrile
Boc - t-butoxycarbonyl
BOM - Benzyloxymethyl
BSA - N, O-Bis(trimethylsilyl) acetamide
dba - Dibenzylideneacetone
DCM - Dichloromethane
DBU - 1,8-diazabicyclo-[5.4.0]undec-7-ene
DIPEA - diisopropylethyl amine
HFIP - Hexafluoroisopropanol
HMPP - 1, 3, 4, 6, 7, 8-hexahrdro-1-methyl-2H-pyrimido[1, 2-a]pyrimidine
Lawesson's reagent - 2,4-bis-(4-methoxyphenyl)-[1,2,3,4] dithiadiphosphetane 2,4dithion)

PMHS - Polymethylhydrosiloxane
$p-\mathrm{TsOH}-p$-Tolyl sulfonic acid
TEA - Triethylamine
TEEDA - tetraethylethylendiamine
TES - Triethylsilane
TFAA - Trifluoroacetic anhydride
TFE - 2,2,2-trifluoroethanol

APPENDIX II

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Spectra

PZ-III-149-A1

Current Data Parameters	
NAME	PZ－III－145－A1
EXPNO	1
PROCNO	1
F2－Acquisition Parameters	
Date＿	20041104
Time	15.30
INSTRUM	arx 250
PROBHD	5 mm QNP 1H
PULPROG	$2 g 30$
TD	32768
SOLVENT	COC13
NS	16
DS	2
SWH	5208.333 Hz
FIDRES	0.158946 Hz
AQ	3．1457779 sec
RG	1024
DW	96.000 use
DE	137.14 use
TE	300.0
D1	1.00000000 sec
P1	8.70 use
SFO1	250.1315321 MHz
NUCLEUS	1 H
F2－Proc	ocessing parameters
SI	16384
SF	250.1300049 MHz
WDW	EM
SSB	0
LB	0.20 Hz
68	0
PC	1.50
10 NMR plot parameters	
CX	20.00 cm
CY	8.00 cm
F1p	10.000 ppm
F1	2501.30 Hz
F2P	－1．000 ppm
F2	$-250.13 \mathrm{~Hz}$
PPMCM	0.55000 ppm
HZCM	$137.57150 \mathrm{~Hz} /$

\qquad

$\stackrel{4}{4}$

13C NMR
PZ-III-145-A1

1. 4eq LDA, $1.5 e q$ MeI, 2
1.4eq LDA, 1.5eq MeI, 2.0eq HMPA

[^4]

／ ZH	OGILG＇LE！	WJZH
wdd	000sc 0	WJWdd
7H	ع1．0G己－	2」
wdd	000＇ i －	dこ」
zH	0ع Loge	［」
wdd	000 O1	d！
шว	$00 \cdot \mathrm{G}$	13
แว	$00^{\circ} 02$	x
	suazawesed 7	UWN OI
	OG＇	Jd
	0	89
zH	$02 \cdot 0$	87
	0	9SS
	Wヨ	MIM
2HW	LS000EL 0GE	tS
	ค8¢9¢	IS
	วұวweued 6utss	－ $\mathrm{Jd}_{\text {－}}$
	H5	Sก3าวกn
ZHW	Lટ£GIE！0¢己	tos
эsก	0L＇8	Id
כวs	00000000 ${ }^{\text {「 }}$	10
	$0 \cdot 008$	$\exists 1$
asn	ロよ・くを	30
asn	000＇96	MO
	8 O 02	э¢
Jas	6LLLSDT E	OV
	9b58G1 0	S3ycid
zH		HMS
	2	So
	95	SN
	£โプכ	1N3＾70S
	89くटE	01
	0¢6z	904dำd
	H5 dNO שய ¢	aH80ud
	ogexje	Wnyiswi
	6¢ ટ！	aw！ 1
	9ヶんちb002	－azeo
	¢	OnJoud
	ᄃ	ONXX ${ }^{\text {a }}$
	2V－b0－AI－2d	JW＊
suafaweved eqeo quasung		

Current Data Parameters	
NAME	PZ-IV-04-A2
EXPNO	2
PROCNO	1
F2-Acquisition Parameters	
Date_	20041116
Time	12.52
Instrum	arx250
PROBHD	5 mm ONP 1H
PULPROG	zgdc 30
TD	36864
SOLVENT	COC13
NS	315
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
$A G$	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 k
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	13 C
D11	0.03000000 sec
F2-Proc	ssing parameters
SI	32768
SF	62.8952424 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMA plot parameters	
CX	20.00 cm
CY	8.00 cm
F1P	230.000 ppm
F1	14465.90 Hz
F2P	-10.000 ppm
F2	-628.95 Hz
PPMCM	12.00000 ppm
HZCM	$754.74292 \mathrm{~Hz} /$

 NㅡN

 $\underbrace{\sim}$
$1 H$ NMR $P Z-I V-55-A 1$

 suazamejed buṭssajoud - टj

Current Data Parameters	
NAME	PZ-IV-60-A1
EXPNO	1
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050122
Time	22.11
INSTRUM	arx 250
PROBHD	5 mm QNP 1H
PULPROG	$z 930$
TD	32768
SOLVENT	COC13
NS	16
DS	2
SWH	5208.333 Hz
FIDRES	0.158946 Hz
AQ	3.1457779 5ec
RG	715
DW	96.000 use
DE	137.14 use
TE	300.0
D1	1.00000000 sec
P1	8.70 use
SFO1	250.1315321 MHz
NUCLEUS	1H
F2-Proc	ssing parameters
SI	16384
SF	250.1300049 MHz
WOW	EM
SSB	0
LB	0.20 Hz
GB	0
PC	1.50
10 NMR plot parameters	
CX	20.00 cm
CY	7.00 cm
F1P	10.000 ppm
F1	2501.30 Hz
F2P	-1.000 ppm
F2	-250.13 Hz
PPMCM	0.55000 ppm
HZCM	137.57150 Hz

[^5]
suafowejed 6u!ssaวoud - ट」

 름른
 20041213
23.17 ime arx250 HI dN0 ww G ahgoud 0E6z 908d7nd 91
عโวO
$89 \angle ट \varepsilon$
$0 \varepsilon 6 z$ モEE．80己
ट
gi ZH 9768GI 0
ZH EEE $80 己 G$
 asn $\nabla t \cdot \angle \varepsilon \downarrow$
asn $000 \cdot 96$ Jas $00000000 \cdot 1$

$\times 0.00 \varepsilon$ $\begin{array}{ll} & H L \\ \text { ZHW teEGIEL OGE } \\ \text { asn } 0 L \cdot 8 \\ \text { Jas } 00000000 \cdot 1\end{array}$ HT
tटEGIEV OG己

 1 H NMR
$\mathrm{PZ}-\mathrm{IV}-25-\mathrm{A2}$
$6-8 \mathrm{th}$ tube

137

พว／2H	OGILO G ${ }^{\circ}$	WכZH
J／wdd	000gg＇0	WJWdd
z	Eし 00G－	2」
wdd	000 「－	dट」
	OE• LOOS	「」
wdd	$000 \cdot 01$	dIJ
шว	$09^{\circ} \mathrm{L}$	13
	$00 \cdot 02$	x
	sjazawejed ford	UWN－I
	00°	Jd
	0	89
zH	$02 \cdot 0$	87
	0	955
	W \ddagger	MOM
zHW	00000EI 009	JS
	89L2E	IS
5Ja	7әwesed 6uțssajo	Jd－टı
zHW	G880¢¢－ 009	20－45
	$00^{\circ} \mathrm{E}$	17d
วәธп	GL｀$¢$	Id
	HI	IJกn
＝＝＝＝		＝＝＝＝＝
Jas	00000000 1	10
Y	L＇962	$\exists 1$
วəรก	$00 \cdot 9$	$\exists 0$
วasn	007＊ 8	MO
	5．06	98
Jas	9667GLL＇己	OV
	ISI085．0	S3y01．
ZH	8LG 0ع¢0才	HMS
	己	SO
	91	SN
	ยโวロว	1NJ＾ 70 S
	$\checkmark \square E \angle g$	01
	0¢6z	$904 d 7 \mathrm{Cl}$
	［ mutzinw ww c	ОНя0̈d
	005xu0	WחHISNI
	LГ 91	วш！ 1
	0¢105002	－аұео
suafawesed uotficsinb		

138

แכ／ZH	6ट260．6095	WJZH
wכ／wdd	00000 「1	WJWdd
	85＇L925－	2」
wdd	000 01－	dट」
	L己 b ¢68ट	［1
wadd	000．0Eट	d5］
	00\％ 01	10
	00．02	X3
	ssałวшesed zo［d	UWN OL
	Ob 0°	38
	0	89
2 H	00\％ 5	87
	0	9SS
	Wヨ	MOM
ZHW	6269LGL＇S己「	± 5
	89L己E	IS
sjazawesed 6utssajosd－ट̇		
ZHW	S0002El 005	20ıS
8 p	00＇12	टโาd
8 p	00%	27d
jasn	00．88	20¢Jd
	H	己כnn
	9tz7［em	29HdOd3
＝＝＝＝＝＝＝ट \downarrow ר 7 NNVHJ $=======$		
$\begin{array}{r} \mathrm{ZHW} \\ \mathrm{gD} \end{array}$	801ELLL G d	10．S
	$00 \cdot \varepsilon$	เา
วasก	01．8	Id
	Јを	IJM
Jas	000000E0 0	しょ
jas	00000000 2	10
	0.862	31
Jasn	$00 \cdot 9$	30
วasn	009 ¢	MO
	จ8Eg！	9
jas	8818928．0	0
	96ヶ509 0	S3401」
	218 โ896E	HMS
	ロ	SO
08		SN
£โว03		INヨ＾ 70 S
9E559		01
0 E 306 z －		904 dind
OOSXEO		aH80日d
		Wก⿴囗
$02 \cdot 95$		әw！ 1
OETOS002		－a7e0
ssazawesed votutsin		
L		ONJOHd
2		ONdX3
	IV－L9－＾I－Zd	JW＊N
	sjazawesed eqea	ұuajun

13C－NMR
PZ－IV－67－A1

／ ZH		WJZH
wdd	000gs 0	WJWdd
	ع। OGe－	2J
udd 0	000 「－	d己」
	of．Lose	！
wdd 0	000 O1	dl
แว	OG ε	\wedge
	00．02	x
suazawesed ford tun		
	OG＇	Jd
	0	89
	$02 \cdot 0$	87
	0	QSS
	W3	Mam
2HW 6	6ヶ000Ef 092	tS
	ャ8\＆9¢	IS
	H	Sกכרכก
2 HW	นટ¢G1E！0g	10．s
2sก 0	$00^{\circ} 8$	$\mathrm{Id}^{\text {d }}$
כas 0	00000000 ${ }^{\text {I }}$	ז0
	0． 00 E	$\exists 1$
asn \downarrow	ロら・くら	30
әsก 0	000＇96	MO
	0عロゅ	98
ววล 6	6LLLG¢「 E	OV
	9068GI＊ 0	S3\％01
	£દะ в0टG	HMS
	己	So
	9	SN
	£โフロ）	INJ＾ 70 S
	89くこと	$0 \perp$
	0¢6z	904d7nd
	HL dNo w山 S	वH90ㅂd
	0gexue	WחHISNI
	SE＇$\angle 1$	aw！ 1
	90E0G002	－әдес
suazawesed vorf！s！nbov－ट̇		
	ᄃ	ON304d
	「	ONdXJ
	L－じ－86－＾1－Zd	JW＊N
suazawesed eqeo zuasung		

8986.0
-08260

โелбатит

[^6]
 เटを05002

Jas 00000000 I I
$========$ if $7 \exists \mathrm{NN} \forall H \mathrm{O}=======$
 sлafawesed 6utssajoud - ट」
 1.

 ======== it 7 TNNYH =======

 (

286「 $\cdot \varepsilon$

Current Data Parameters	
NAME	PZ-IV-34-A1
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20041224
Time	0.25
instrum	arx250
PROBHD	5 mm GNP 1H
PULPROG	zgdc30
TD	36864
SOLVENT	CDC13
NS	183
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
$A Q$	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SFO1	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2-Proc	ssing parameters
SI	32768
SF	62.8952440 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1p	230.000 ppm
F1	14465.91 Hz
F2P	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	12.00000 ppm
HZCM	754.74292 Hz/

шכ／2H	0Gt＜0．g9	WכZH
wכ／wdd	00099%	WJWdd
zH	ह丁＇00e－	2」
wdd	000＇1－	d2」
2 H	de．looe	！
wdd	$000 \cdot 1$	dr」
	$00 \cdot 2$	10
	00.02	x
suazawejed fotd thn 0		
	OE＇\downarrow	Jd
	0	89
2 H	$0 \varepsilon^{\circ} 0$	87
	0	日SS
	W ${ }^{\text {a }}$	MOM
zHW	己zoooer 00 ¢	IS
	89くटE	IS
suazaweded butssajoud－－s		
zHW		10．5
昍	00.0	เา
כวงก	$50 . \angle$	Id
HI		ION
כәร	$00000000 \cdot 0$	เย0
כәง	00000000 1	10
Y	0．00E	$\exists 1$
Јəธп	00.9	30
วəรก	$000 \cdot 18$	MO
	I＇99\％	94
כวs	0892¢59•己	O
	08E8870	S3H01－
	6e8．2く19	HMS
	己	so
91		SN
	EIJoj	INJ＾70S
89くてを		01
0¢6z		904d7nd
00Ex」D		वHgoud
		WnHISNI
己や・•		әш！ 1
	Iट20s002	－ә7¢0
suazaweued uotutsụnbコy－ट」		
1		Onjoyd
1		ONAX ${ }^{\text {a }}$
	EZ－IB－AI－Zd	${ }^{\text {FW\％}}$
	suazawesed efer	¥uว」ung

Current Data Parameters	
NAME	PZ-IV-05-A2-2
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20041123
Time	20.24
InSTRUM	arx250
PROBHD	5 mm QNP 1H
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC13
NS	3732
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
A ${ }^{\text {a }}$	1.0691060 sec
Rg	22800
DW	29.000 use
DE	41.43 use
TE	300.0
D12	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SFO1	62.9023694 MHz
NUCLEUS	13C
D11	0.03000000 sec
F2-Proc	cessing parameters
SI	32768
SF	62.8952408 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMP plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	230.000 ppm
F1	14465.91 Hz
F2P	0.000 ppm
F2	0.00 Hz
PPMCM	11.50000 ppm
HZCM	723.29529 Hz/

عट90ㄷ
$\begin{array}{r}-1010^{\circ} 1 \\ \hline-92 \angle 0^{\circ} 1 \\ \hline\end{array}$

0000

Current Data Parameters	
NAME	PZ-IV-28-A2
EXPNO	2
PROCNO	1
F2-Acquisition Parameters	
Date_	20041227
Time	11.46
INSTAUM	arx250
PROBHD	5 mm QNP 1H
PULPROG	zgdc30
TD	36864
SOLVENT	CDC13
NS	523
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
A 0	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
012	0.00002000 sec
DL5	23.00 dB
CPDPRG	waltz16
P31	103.00 use
D1	1.00000000 sec
P1	6.00 use
SF01	62.9023694 MHz
NUCLEUS	13C
D11	0.03000000 sec
F2-Pro	ssing parameters
SI	32768
SF	62.8952413 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
1 NMM plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	230.000 ppm
F1	14465.90 Hz
F2p	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	12.00000 ppm
HZCM	$754.74292 \mathrm{~Hz} /$

шว／2H	L $\angle 890$ ¢ c ट	WJZH
J／wdd	0006『 0	WJWde
zH	80．001	2」
wdd	002．0	d2」
zH	OE＇IOOS	「」
wdd	000 01	dป」
	$00^{\circ} \mathrm{LJ}$	10
шว	00．02	x
sjazəwesed 70［0 UWN $^{\text {al }}$		
00． 1 ，Jd		
	0	
2 H	02：0	87
	0	9SS
	Wヨ	MOM
zHW	00000E－005	± 5
	89L己E	IS
suafawesed 6uṭssajoud－		
$\begin{array}{r} \mathrm{zHW} \\ \mathrm{gp} \\ \text { כəsn } \end{array}$	G880EEL 00G	［0．5
	$00{ }^{\circ} \mathrm{E}$	¢
		id
	HL	IJกn
Јวร	00000000［	10
	＜ 962	$\exists 1$
วasก	00.9	$\exists 0$
วasn	008 ${ }^{\circ}$	MO
	825	98
วəง	96605LL＇ट	OV
zH	IGIO8IO	S3y0it
zH	8LG．0¢EOL	HMS
	己	SO
91		SN
とโวロว		IN A ＾ 70 S
จロ¢$0 ¢ 6 z$		01
		$904 d 7 n d$
ionutzinw wus ohgotd		
	009xu0	Wกyisni
6I＇GL		әш！ 1
	OELOG002	－aze0
\downarrow		OnJoyd
\checkmark		ONdX ${ }^{\text {a }}$
	2V－6G－＾I－Zd	JW＊N
	sjafamesed e7eo	e7eo fuajunj

	05120．991	WכZH							
	00099°	WOWdd							
$\begin{array}{r} \text { wo/wdd } 0 \\ \text { ZH } \\ \text { E } \end{array}$	E1－00e－	2」							
wadd	000．5－	d2J							
2 H	of．Looe	！							
wadd	$000 \cdot 01$	dIJ							
${ }_{\text {w }}{ }^{\text {w }}$	$00^{\circ} \mathrm{L}$	10							
	00.02	x 3							
	sjaz $\begin{gathered}\text { wesed } \\ \text { foid } \\ \text { d }\end{gathered}$	UWN OI							
OE．I		วd							
2 H	0	99							
	$0 E^{\circ} 0$	87							
	0	9SS							
	W \ddagger	MOM							
2 HW	己2000e：00E	± 5							
	89くてE	IS							
s」aławesed 6utssajoud－ट̧									
ZHW	ャ¢g8tel 00 ¢	10．3							
	$00 \cdot 0$	57							
כasก	$50 . L$	Id							
	HI	IJN							
335	$00000000 \cdot 0$	เย๐							
$\begin{array}{r} \text { Jas } \\ \times 1 \end{array}$	00000000 1	10							
	O． 00 E	키							
$\begin{aligned} & \text { כasn } \\ & \text { נas } \end{aligned}$	$00 \cdot 9$	30							
	$000 \cdot 18$	MO							
	$\dagger^{\circ} \mathrm{LBE}$	94							
כas	0892ヶ99｀己	O							
	08E88し0	S3H0I」							
2 H	6Е8．2く！9	HMS							
	己	So							
91		SN							
と100		IN $\$＾ 70 S \hline \multicolumn{2}{\|l	}{89くこを} & 01 \hline & & 904dרก \hline \multicolumn{2}{\|l	}{} & ОН®OHd \hline \multicolumn{2}{\|l	}{OOExup} & WחUISNI \hline \multicolumn{2}{\|l	}{ゆट｀¢ट} & อW！ 1 \hline & 60105002 & －27e0 \hline \multicolumn{3}{\|l	}{suazaweded uotzisin} \hline \multicolumn{2}{\|l	}{1} & ONJOHd \hline \multicolumn{2}{\|l	}{1} & ONXX ${ }^{\text {a }}$
	CZ－BE－AI－Zd	JW＊N							
	suafawesed eqeo	7uasunว							

Current Data Parameters	
Name	P2-IV-38-A2
EXPNO	2
PROCNO	1
F2-Acquisition Parameters	
Date _	20050109
Time	23.27
InSTRUM	dr $\times 300$
PROEHD	5 mm Multinuc 1
PULPROG	2gdc 30
T0	65536
SOLVENT	C0C13
NS	160
os	4
5WH	18932.393 Hz
FIDRES	0.287360 Hz
A0	1.7400308 sec
Ag	22528
OW	26.550 usec
DE	6.00 usec
TE	297.1 K
01	1.29999995 sec
${ }^{\text {d1 }} 1$	0.03000000 sec
031	0.00000000 sec
======= CHANNEL f1 ====s=s	
NUC1	130
P_{1}	8.50 usec
PL1	5.00 dB
SF01	75.4760107 MHz
======== CHANNEL $\ddagger 2$ ====s=-=	
CPIPAG2	waltzi6
NUC2	1 H
PCPO2	100.00 usec
PL2	120.00 dB
PL12	25.60 dB
SFO2	300.1312005 MHz
F2-Processing parameters	
SI	32768
SF	75.4677571 MHz
WDW	EM
SSE	0
L8	1.00 Hz
GB	0
PC	1.40
10 NMA plot parameters	
cx	20.00 cm
Cr	11.00 cm
F1P	230.000 ppm
F1	17357.58 Hz
F2P	-10.000 ppm
F2	$-754.68 \mathrm{~Hz}$
PFMCM	$12.00000 \mathrm{ppm} / \mathrm{cm}$
HZCM	$905.61310 \mathrm{~Hz} / \mathrm{cm}$

Current Data Parameters	
NamE	PZ-IV-63-A4
EXPNO	1
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050201
Time	15.29
INSTRUM	DRX500
PROBHD	5 mm Multinuc 1
PULPROG	zg30
TD	57344
SOLVENT	CDC13
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.180151 Hz
A 0	2.7754996 sec
AG	143.7
DW	48.400 usec
DE	6.00 usec
TE	296.7
01	1.00000000 sec
======== CHANNEL f1 =======	
NUC1	1 H
P1	13.25 usec
PL1	$-3.00 \mathrm{~dB}$
SFO1	500.1330885 MHz
F2 - Processing parameters	
SI	32768
SF	500.1300000 MHz
WDW	EM
SSB	0
LB	0.20 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	10.000 ppm
F1	5001.30 Hz
F2P	0.500 ppm
F2	250.07 Hz
PPMCM	$0.47500 \mathrm{ppm} / \mathrm{c}$
HZCM	$237.56175 \mathrm{~Hz} / \mathrm{cm}$

Current Data Parameters	
Name	PZ-IV-69-A1
EXPNO	1
PROCNO	1
F2-Acquisition Parameters	
Date_	20050208
Time	16.06
INSTRUM	DRX500
PROBHD	5 mm Multinucl
PULPROG	zg30
T0	57344
SOLVENT	COC13
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.180151 Hz
AQ	2.7754996 sec
RG	143.7
DW	48.400 usec
DE	6.00 usec
TE	296.7 K
01	1.00000000 sec
=====	CHANNEL f1 =======
NUC1	1H
P1	13.25 usec
PL1	$-3.00 \mathrm{~dB}$
SFO1	500.1330885 MHz
F2-Proc	cessing parameters
SI	32768
SF	500.1300000 MHz
WDW	EM
SSB	0
LB	0.20 Hz
GB	0
PC	1.40
1 NMM plot parameters	
CX	20.00 cm
CY	5.00 cm
F1P	10.000 ppm
F1	5001.30 Hz
F2P	-1.000 ppm
F2	$-500.13 \mathrm{~Hz}$
PPMCM	$0.55000 \mathrm{ppm} / \mathrm{cr}$
HZCM	$275.07150 \mathrm{~Hz} / \mathrm{cm}$

$$
I^{m}
$$

気的可菏

tenfałui

Current Data Parameters	
NAME	PZ-IV-35-A2-2
EXPNO	2
PROCNO	1
F2 - Acquisition Parameters	
Date_	20050104
Time	21.25
INSTAUM	dr $\times 300$
PROEHD	5 mm Multinucl
PULPROG	2gdc 30
TD	65536
SOLVENT	CDC13
NS	13972
DS	4
SWH	18832. 393 Hz
FIDRES	0.287360 Hz
AG	1.7400308 sec
AG	22528
OW	26.550 usec
DE	6.00 usec
TE	297.1 K
01	1.29999995 sec
d11	0.03000000 sec
031	0.00000000 sec

$\begin{array}{lr}\text { NUC1 } & 13 C \\ \text { P1 } & 8.50 \mathrm{usec} \\ \text { PL1 } & 5.00 \mathrm{~dB} \\ \text { SF01 } & 75.4760107 \mathrm{MHz}\end{array}$ ======== 2f 7ヨNN甘HJ ========

[^7]

13C-NMR

星 \square

Current Data Parameters	
NAME	PZ－IV－101－A2
EXPNO	2
PROCNO	1
F2－Acquisition Parameters	
Date	20050314
Time	11.00
INSTRUM	dr $\times 300$
PAOEHD	5 mm Multinucl
PULPAOG	zgdc 30
T0	65536
SOLVENT	COC13
NS	1049
IS	4
SWH	18832.393 Hz
FIDRES	0.287360 Hz
A 0	1.7400308 sec
96	22528
JW	26.550 usec
DE	6.00 usec
TE	297.1 K
$\square 1$	1.29999995 sec
111	0.03000000 sec
031	0.00000000 sec
＝＝＝＝＝＝＝CHANNEL f1	
NuC1	13C
P1	8.50 usec
Pl 1	5.00 dB
$5 F 01$	75．4760107 MHz
＝＝＝＝＝＝＝CHANNEL f2＝＝＝＝＝＝＝	
CPDPAG2	waltz16
NuC2	1H
PCPO2	100.00 usec
PL2	120.00 dB
PL12	25.60 d日
SFO2	300.1312005 MHz
F2－Processing parameters	
SI	32768
SF	75．4677502 MHz
WDW	EM
SSE	0
LB	1.00 Hz
G日	0
PC	1.40
10 NMA plot parameters	
CX	20.00 cm
Cr	30.00 cm
F1P	230.000 ppm
F1	17357.58 Hz
F2P	－10．000 ppm
F2	－754．6日 Hz
PFMCM	$12.00000 \mathrm{ppm} / \mathrm{cm}$
HZCM	$905.61298 \mathrm{~Hz} / \mathrm{cm}$

wכ／zH	226＜8＊ 98	WJZH
wכ／wdd	0000S＇ 11	WJWdd
zH	00.0	2f
wdd	$000 \cdot 0$	d己
	89＇$\angle 56<1$	上
wdd	000．0¢	did
ш	00＇02	10
	00＇02	x
Suapaweued zoid tin or		
	$0{ }^{\circ} \cdot 1$	ว
	0	日
zH	00.1	87
	0	日SS
	W 3	Mam
2 HW		15
	B9LZE	15
2 HW	coozlet 00e	20.15
时	09＇se	ट17
	00．021	टาd
วəsก	00．006	こ0．ad
	HI	己วก
	9ız7tem	29Hdado
zHW	coroget 56	［0．Js
	$00 \cdot 5$	าา
गas！	$05 \cdot 8$	Id
	כEI	โัก
jas	00000000°	IEO
jas	000000E0＇0	Iip
כas	5666666く＇ 5	10
	$1 \cdot<62$	э1
jasn	$00 \cdot 9$	30
วasп	OSG 98	мо
	2＇062	96
Jas	BOEOOL ＇$^{\text {I }}$	O
2 zH	09E $\angle 8 C^{\circ} 0$	53 HOIJ
	Е6E＇＇Ев8！	HMS
EEtr		so
		SN
ยเวロว		1N3＾705
96cc9		01
		90 ¢d7nd
โ כnutainw wis		वНво४
$006 \times 10$90.02		WMUISNI
		วw！
	\downarrow	ONJOHd
	2	Ondx ${ }^{\text {a }}$
	CH－6i－M－zd	IWUN
suazaweved ејео јuanuna		

$1 / \mathrm{H}$	OGILS $\angle E L$	WJZH
	000Gg 0	WJWdd
zH＊	EJ OG己	己」
udd	000 「－	d己」
ZH	0ع LOG己	「」
udd	000 OT	d｣
шว	$00^{\circ} \mathrm{L}$	10
шว	00．02	XJ
	suafawejed	$70[\mathrm{~d}$ UN Ot
	OG＇	Jd
	0	时
zH	O2＇0	87
	0	9SS
	Wヨ	MCM
ZHW	6ヤ000et 0g	tS
	万8¢9「	IS
	ว7awejed 6uts	ssajoud－ट」
	H5	Sกヨาวกn
ZHW	LટESIE！09己	10．35
asn	0L＇8	Id
כas	00000000°	に
Y	0.008	$\exists 1$
asn	ワV＇LEI	$\exists{ }^{3}$
asn	000＇96	MC
	0982	94
Jas	6LLLGワ「 ${ }^{\text {c }}$	OV
ZH	9b68G「0	SJYOIJ
zH	عモE 802c	HMS
	己	S0
	91	SN
	とโつ03	INヨA TOS
	89くこを	01
	0E6z	904d7nd
	HV dNO WUS	OHEOUd
	ogexue	WnUISNI
	Eb－O2	ลแ！1
	L2IOS002	－azed
suafowejed votfistnojv－ट」		
	b	ONJOUd
	ζ	ONdX 3
	I $\mathrm{V}-8 \mathrm{SG}-\mathrm{AI}-\mathrm{Zd}$	JWVN
sJafoweved eqed quajuny		

[^8] ？

шว／zH	DGGE6 6¢ヵち	wJzh		
พว／wdd	000St＇ 1	WJWdd		
	92＇sci	己j		
wdd	000 ！	d2f		
	く2・ロ2682	If		
wdd	000 0عट	dit		
	00.09	10		
sJazamesed 70¢d unn or				
	00：	3 d		
	0	я9		
	00 \％	87		
	0	8Ss		
	W 3	MOM		
2 HW	6269LSL S2t	s		
	99く己E	IS		
suafaweued 6uṭsajoud－己̧				
ZHW	50002E． 005	20.5		
8 p	00\％ 12	257d		
9 P	$00 \cdot 0$	27d		
วasn	$00 \cdot 88$	E0dJd		
	H5	己כกn		
	9127tem	こפもdOd		
ZHW		103s		
	00 E	ทาd		
วəsก 0	01／8	Id		
	Ј¢			
ววร	$0000000^{\circ} 0$	เп		
כวs	$00000000 \cdot$ 己	10		
	0＇86ट	ヨ1		
כasn 0	$00 \cdot 9$	$\ni 0$		
วasn	009 ¢	MO		
	D9E9！	94		
כวS	88tesca＇0	${ }^{\circ}$		
2H ${ }_{2}$	96bS09 0	S3moid		
	ег8 18968	HMS		
2H ${ }^{\text {r }}$	\checkmark	so		
			SN	
			Inja 70 S	
$9 \mathrm{Ccs9}$		01		
оєวр6z 		904 d 7 ¢		
		OHEOUd		
00Sxya		W\％HISNI		
	0r＊02	${ }^{\text {玉ш！}} 1$		
5		ONJOUd		
It－8S－AI－Zd		ONdX3		
		JW\％N		
sıajaweved ezeo		7ua ${ }^{\text {ana }}$		

2012H	0ctus iet	hoze
10／Lud	0005 0	月JWdd
	E1－0cz	門
waic	$000{ }^{\text { }}$ T	d2］
	0e tose	2
urda	$000^{\circ} \mathrm{CL}$	dis
	$0 ¢ \mathrm{CL}$	120
	00.02	X
sxazemeted＝cta din at		
	$0 \mathrm{C} \cdot \mathrm{T}$	3 J
	0	g 9
z^{2}	020	E］
	0	9S5
	相	Man
2 EF	67000et 058	dS
	晾近	
	HT	Snatonn
2 HK	TをEgTE－09を	TOSS
oesn	C． 6	Id
Des	60000000＇1	La
	0.008	［ ${ }_{\text {L }}$
vest	jt＇LEI	F0
vesn	000＇96	MI
	0eti	DE
O2S	6LLCET「8	0 b
2 H	Ef685：0	SExila
zH^{2}	¢ $¢ 8 \cdot 8085$	hus
2	，	SII
	1	SN
	L200	Whantos
	9してを	aI
	） 5 z	DoydTnd
	Tt diod can 5	（ वHgoyd
	graxe	WMELSNT
	0.81	әut．
	1609008	－27ed
$\underline{1}$		ONDOY
T		Ondx
	（1－8L－IIA－Ż	GWUN

anpTSOI $\partial T P T T-7 S T D$
$\varepsilon C-8 L-I I A-7 J$
GIN HT

$0000^{\circ} 7$

$48820^{\circ}-$

$088^{\circ} 2-\longrightarrow$
$800^{\circ}=\ldots$
$086 \cdot 92$

13 C VMR
$\mathrm{PZ}-\mathrm{V}-\mathrm{V}-78-\mathrm{D3}$
$960^{\circ} 9 \mathrm{LL} \longrightarrow$
$T T 5^{\circ} L L$

Wכ／ZH	จट18G＊ Cl （1）	WJZH
נア／wdd	00gट9 0	WJWdd
zH	L0＇092－	こ」
wdd	00G ${ }^{\circ}$	dこ」
2 H	99•1009	「」
wdd	$000{ }^{\circ} \mathrm{L}$	dV」
	OG Cl	12
แว	00．02	XJ
	SJวาวwejed 70［d	UWN OL
	O6＇1	$3 d$
	0	日9
2H	020	97
	0	9S5
	Wヨ	MOM
ZHW	00000E［ 00G	JS
	89L己E	IS
suafoweved 6utssajoud－टj		
	S880EE－ 005	103S
	00 ${ }^{\circ}$－	Vาd
	¢ ${ }^{\circ}$ ¢	Id
	HI	เงก
＝＝＝＝＝＝＝＝โt $7 \mathrm{JNNVHJ}========$		
Jas	00000000 ${ }^{\circ}$	10
	L 962	ヨ1
วasก	00.9	30
วasn	008 ${ }^{\circ}$	MO
	$\square 9$	94
دas	966ヶGLL＇己	OV
$\begin{aligned} & \mathrm{ZH} \\ & \mathrm{ZH} \end{aligned}$	LGI08V 0	S3HOIJ
	8L9．OEEOL	HMS
	己	SO
	91	SN
	ยโวロJ	1N3＾70S
	$\checkmark \square \varepsilon \angle S$	01
	0¢бz	904d7nd
	［כnutatnw um G	OHgOYd
	009x40	WกษISNI
	い丁口	2w！ 1
	O1909002	－ате0
s」afoweved uotfussinboy－ટ」		
	ち	ONJOYd
	I	0 NdXJ
	LV－Z－E9－＾－Zd	JWYN
	ssazaweved efed	quajunj

\angle LILE 0
Eg \angle IE

Wכ／ZH	62260＊6051	WJZH
WT／udd	00000 21	WכWdd
	89 LS己下	己」
wdd	000 O1－	d2」
		51
wdd	000．0E2	dif
	00＇8	1J
13	00.02	x 3
	Ssazamesed 7010	UWN OL
	00＇2	Od
	0	89
zH	00．5	87
	0	9SS
	Wヨ	mam
ZHW		± 5
	89Lこを	IS
sjazawesed 6uţssajoud－ट̇		
ZHW G0002EV OOS		20.15
8 p	00 ， 2	217d
8 p	00.0	टาd
วasn	00.88	己0dJd
	H	己Jกn
	96z7tem	298d0dJ
＝＝＝＝＝＝＝टf ר］NNYHO＝＝＝＝＝＝＝		
$\begin{array}{r} \mathrm{zHW} \\ \mathrm{gp} \end{array}$	80TETLL S25	T0． 5
	$00 \cdot \varepsilon$	！าd
วasп	Of＇8	Id
	כe！	LTON
＝＝e＝＝＝＝it ר3NNYHO＝＝＝＝＝＝＝		
วas	000000E0 0	เ ！
jas	00000000 ${ }^{\text {C }}$	L0
	0.862	31
jasn	00．9	30
jasn	009 ट5	MO
	2＇862L	98
Jas	日858g28 0	OV
$\begin{aligned} & \mathrm{zH} \\ & \text { zH } \end{aligned}$	96ヶ509 0	S3b0id
	Cİ L896E	HMS
\checkmark		50
$\angle \square$		SN
عโวอ）		INJA ${ }^{\text {¢ }}$
9¢¢c9		$\square 1$
OEJP6z		90\％dากd
［Onutz［nw w山 G OHBOHd		
と！「ワ		2at 1
0190g002－ape0		
suafawesed uotutsṭnboy－ट」		
	「	ONJOHd
	Σ	ONdX3
	LV－ट－E9－＾－Zd	IWVN
		quajung

24

198． 0
\qquad

V09＇吔———
Gロモ．こと
टE8 $\angle E$ ——
98人吅————

ટEट・しS「

088 ' \qquad
SED OV ——_ 950

88.8

ppm
I
$620 \cdot 0 \longrightarrow$
$620 \cdot 0 \longrightarrow$
$60 \varepsilon \cdot 0 \longrightarrow$
$0[\varepsilon \cdot 0 \longrightarrow$
$60 \varepsilon \cdot 0 \longrightarrow$
$0[\varepsilon \cdot 0 \longrightarrow$
$\boldsymbol{\infty}$

		＂10	＂110 ${ }^{11}$	＋in
		士	世	尔m
品？		㽞 in	㽞	
9	－${ }^{\text {¢ }}$－Noo	$\frac{2}{4}$	号	
$\stackrel{\text { n }}{\text { ® }}$		4	䂞	\％
$\stackrel{\square}{\square}$				\％
芴 0°				足
				\％${ }^{1}$

NO
$\angle G \cdot 6 T$
$8 L \cdot \tau Z=$
$L L \cdot 6 Z=$
$\angle C \cdot 0 \varepsilon$

TR-86-IIn-Zむ
घN DET

[^9]

／2H	6ટ¢62 $£ 2 \angle$	WJZH
wdd	00009［1	WכWdd
	G6．829－	2」
wdd	000 01－	dट」
zH	G6．988E	［」
wdd	$000 \cdot 0$ 2	dı」
шว	$00 \cdot \mathrm{~S}$	13
	$00^{\circ} 02$	x 3
suazamejed 7oโd Uwn O¢		
	00^{\prime}	Jd
	0	89
	00．	87
	0	855
	Wヨ	MCM
zHW	0ヵロこ968＇ 29	\pm J
	89くてE	IS
sjazaweved 6utssajoud－ट̧		
כวs	000000E0 0	I\％
	Ј¢	Sก3าวกา
2HW	จ69¢ट06 29	IOJS
asn	$00 \cdot 8$	Id
วas	$00000000 \cdot 2$	LO
asn	$00 \cdot \mathrm{EOL}$	เعd
	91271em	э४d0dフ
日р	$00 \cdot \varepsilon 己$	970
כas	00020000 0	ごロ
\times	0．00E	31
asn	E＊＇LD	30
ast	$000 \cdot 62$	MO
	$008 ट 2$	эบ
วas	0901690－	O
	20LL90 0	S3P0id
2 H	6くを＇レロてL！	HMS
	จ	SO
	CL	SN
	ยเวอว	1NJ＾ 70 S
	ค9898	01
оєэрбz		904d7nd
$\begin{aligned} & \text { HI dNO ww } \\ & \text { Ogexue } \end{aligned}$		वНөO४d
		WMUISNI
O「ご		วw！ 1
	LOLIG002	－аұе
	！	ONJOUd
	己	ONAX ${ }^{\text {a }}$
	LV－b9－IN－Zd	JW＊N
	suafawesed e	quajun

$6 L V^{\circ} \angle t$ $\angle 9 E \cdot L C$
 $659 \cdot 92$ $750 \cdot \angle 己$
 IGL L

608° IG \qquad
GE「•9G \qquad

EIV $L L$

LLO टぃ～

29L SGL

Eじ・89！

Current Data Parameters	
NAME	PL－VI－76－A3
EXPNO	2
PROCNO	1
F2－Acquisition Parameters	
Date＿	20060206
Time	23.09
INSTRUM	arx 250
PROBHD	$5 \mathrm{~mm} \mathrm{QNP} \mathrm{1H}$
PULPROG	zgdc 30
T0	36864
SOLVENT	CDC13
NS	784
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
A	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0
012	0.00002000 sec
DL． 5	23.00 dB
CPDPAG	waltz16
P31	103.00 use
01	2.00000000 sec
P1	8.00 use
SF01	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2－Proc	ssing parameters
SI	32768
SF	62.8952440 MHz
WOW	EM
SSB	0
L．B	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	10.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2P	－10．000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppm
HZCM	$723.29529 \mathrm{~Hz} /$

$609 \circ \angle \square$
$6 E 2 \cdot I 2 \square$
$6 E 9 \cdot 9 己 \square$
$\angle \angle 8 \cdot \angle 己 \square$
$810 \cdot 82$
900＇97 \qquad
9 49 巩 \qquad

L60．69Г

1 H NMR
PZ-VIII-83-A1

	HT	Snatonn
zHN	TZ\＆STEI．052	IOAS
วəsn	$05 \cdot 6$	td
Јəs	00000000＇I	II
H	$0 \cdot 00 \varepsilon$	四
ขəsn	DT＊ $2 ¢ \tau$	H0
ขəsn	000．96	Ma
	2TS	9¢
गวS		OH
zH	9ヵ68ST＊0	Sataia
2 H	દદદ＇80て¢	HMS
	乙	Sa
	95	SN
	£TJaつ	LNGATOS
	89Lてを	OL
	$0 ¢$ ¢z	－0Ydフก
	Ht dNO unur G	वНяоу才
	0szxa	Wnyisni
	て¢．6I	әut ${ }^{\text {d }}$
	80 TT9002	－әzea
scafourexed uothtstinboz－ra		
	τ	ONDOYd
	I	ONAXE
	IV－̇ZT－IIA－Zd	dWYN
sıə7əurexed eqea quaxins		

론

 sxวzวurexed zota ywn -

378
,

	$601 . 亡$ $\angle 己 L ~$
	06E L L
	$998 \cdot$ 吹
	6GI G己
	20LGL
	LLL＇ $0 ¢$
	678＇LE
	くL己＇98
	965＇98
	109 0r
	เ60＇Lb
	OZL＇09
	920＇99

$\underline{\underline{O L T 0^{\circ} \tau}}$

$8968^{\circ} 0$
$-6605^{\circ} 0$

โexbaqui

วəs	$\begin{aligned} & 000000 \varepsilon 0^{\circ} 0 \\ & \partial \varepsilon \Sigma \end{aligned}$	$\begin{array}{r} \text { Iİ } \\ \text { SกITOnN } \end{array}$
2HW	7698206． 29	TOAS
2esn	$00 \cdot 8$	なd
こəS	$00000000^{\circ} \mathrm{Z}$	T］
วəsn	$00^{\circ} \mathrm{\varepsilon}$ T	โ\＆】
	9tzวtem	פบปadว
qp	$00^{\circ} \mathrm{\varepsilon}$ \％	¢Ta
دəs	$00020000^{\circ} 0$	2IJ
Σ	0.00 ¢	aL
วэลn	E゙功	$9]$
วəธ！	000.62	Ma
	00822	94
Јวs	0901690．1	χ_{t}
2 H	20LL9 ${ }^{\circ} 0$	Saydia
zH	6LE＇LもてLI	HMS
	\dagger	SU
	TSLTE	SN
	£TOCJ	UNEATOS
	¢989\％	¢
	сєарбz	poyd ${ }^{\text {a }}$ d
	HT dNO unle G	वНя0yd
	osexae	Wnyism
	形 6 ［	әut
	0 LZ0L002	－27ec
sдəzәurxed uotztstrnboz－za		
	I	ONDOYd
	τ	ONdXA
	LO甘－ 2 L－IIIA－Z	cWEN

	¢ 08888
	家 ${ }^{\circ}$
	HNTomon
	$\stackrel{\rightharpoonup}{\circ}$
	2
	䀾

Current Data Parameters	
NAME	PZ-VI-142-A1
EXPNO	2
PROCNO	1
F2-Acquisition Parameters	
Date_	20060522
Time	23.50
INSTRUM	arx250
PROBHD	$5 \mathrm{~mm} \mathrm{GNP} \mathrm{1H}$
PULPROG	zgdc 30
TD	36864
SOLVENT	CDC13
NS	278
DS	4
SWH	17241.379 Hz
FIDRES	0.467702 Hz
A Q	1.0691060 sec
RG	22800
DW	29.000 use
DE	41.43 use
TE	300.0 K
D12	0.00002000 sec
DL5	23.00 dB
CPOPRG	waltz16
P31	103.00 use
01	2.00000000 sec
P1	8.00 use
SF01	62.9023694 MHz
NUCLEUS	13 C
011	0.03000000 sec
F2-Proc	ssing parameters
SI	32768
SF	62.8952440 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40
10 NMR plot parameters	
CX	20.00 cm
CY	20.00 cm
F1P	220.000 ppm
F1	13836.95 Hz
F2p	-10.000 ppm
F2	$-628.95 \mathrm{~Hz}$
PPMCM	11.50000 ppn
HZCM	723.29529 Hz/

佂

Current Data Parameters	
NAME	PZ-VIII-56-A1
EXPNO	- 1
Procno	1
F2-Acq	uisition Parameters
Date_	20070121
Time	16.07
INSTRUM	DRX500
PROBHD	5 mm Multinucl
PULPROG	zg30pad
TD	65536
SOLVENT	CDC13
NS	16
DS	- 2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1719923 sec
RG	71.8
DW	48.400 usec
DE	6.00 usec
TE	300.0
D1	1.00000000 sec
D31	0.00000000 sec

$1 \mathrm{H}-\mathrm{NMR}$
$\mathrm{PZ}-\mathrm{VII}$

1H NMR
PZ-VIII-69-SM
aniline

$7]$ 7

sสəzวurexed 70 〔d 4WN
$00^{\circ} \mathrm{G}$
$\begin{aligned} & 000^{\circ} 0 \text { I－}^{\circ} \\ & 56^{\circ} 9 \varepsilon 8 \varepsilon \text { I } \\ & 0000^{\circ} 027\end{aligned}$
$56^{\circ} 829-$
$\begin{aligned} & \text { ur／ZH } 6256 Z^{\circ} \text { EZL } \\ & \text { un／urdd } 00005^{\circ} \text { IT }\end{aligned}$ （29\％

Current Data Parameters	
procno	1
F2 - Acquisition Parameters	
Date_	
Time	20.51
INSTRUM	DRX300
PROBHD	5 mm Multinucl
PULPROG	zgdc30pad
TD	65536
SOLVENT	CDC13
NS	55
DS	4
SWH	18832.393 Hz
FIDRES	0.287360 Hz
${ }^{\text {A }}$	1.7400308 sec
RG	2298.8
DW	26.550 usec
${ }^{\text {DE }}$	${ }_{30} 6.00 \mathrm{usec}$
TE	300.0
D1	2.00000000 sec
D11	0.03000000 sec
D31	0.00000000 sec
======= CHANNEL f1 ==	
NuC1	13 C
P1	9.00 usec
${ }_{\text {SFO1 }}^{\text {PL1 }}$	5.00 dB 75.4760107 MHz
======= CHANNEL $\mathrm{f}^{\text {2 }}======$	
CPDPRG2	waltz16
NUC2	1H
PCPD2	100.00 use
PL2	120.00 dB
PL12	25.60 dB
SFO2	300.1312005 MHz
SF \quad 75.4677525 MHz	
SSB	
$\begin{array}{lr}\text { LB } & 1.00 \\ \text { GB }\end{array}$	
PC	1.40

13 C NMR
$\mathrm{PZ}-\mathrm{VI}-27-1-\mathrm{Al}$

\checkmark	ONJOUd
\downarrow	ONdXJ
$0-I \forall-I E-I \Lambda-Z d$	$\exists \mathrm{W} V \mathrm{~N}$
suafameved efed	ұบว」Jnว

	Ht	SกヨาJกn
ZHW	TCEGIEJ OG己	LOJS
asn	09＇6	Id
วas	00000000°	10
\rangle	－00E	$\exists 1$
asn	จF＇$\angle \varepsilon \downarrow$	$\exists 0$
asn	000＇96	MO
	己IG	9H
วas	6LLLSワV＇	OV
ZH	9ヵ68Gす 0	S3H0I」
2 H	EEE 802G	HMS
	己	50
	95	SN
	ยโJ0J	1Nヨ＾70S
	892टを	01
	OE6z	904d7nd
	H5 dNO แw 9	OH80Hd
	OSExJe	WกHISNI
	ટ『＊\downarrow	อแโ1
	8LOSG002	－ 270
Sงazawejed uotfistnbov－ट」		

／ZH		WJZH
wdd	$000 \mathrm{SG}{ }^{\circ} 0$	WJWdd
	EL．0G2－	2」
wdd	000 「－	dट」
	OE．LOSC	「」
wdd	000 01	dよ」
	OG＇ Cl	10
	00.02	x
Suazamejed 70id UWN O¢		
	OS＇	3d
	0	89
2 H	O2＇0	87
	0	ESS
	W3	MIM
2HW	6ヶ000el Oge	JS
	D®\＆9\％	IS
suazawejed 6utssajoud－ट」		
	HL	Sก3าวกn
ZHW	Lट£GโEL OG己	10」S
asn	09＇6	Id
כəs	00000000［	10
	$0 \cdot 00 \varepsilon$	$\exists 1$
asn	ゆV＇くをら	30
asn	000＇96	MO
	2河	9
วas	6LLLSDI E	\bigcirc
	9768SI 0	S3E0I
2H	EE\＆${ }^{\text {bozs }}$	HMS
	己	SO
	91	SN
	£190〕	1Nヨ＾า0S
	89く2E	01
	0¢6z	90Hd7กd
	HI dNO WШ 5	ch80ㅂ
	Ogexue	WחHISNI
	¢E＇\downarrow	วแโ1
	IIIGO02	－адео
suafameved uotzisinnovy－ट̧		
	ᄃ	ONJOHd
	1	ONdX］
	EV－2S－IA－Zd	JW\％
suafawesed eqeo quasung		

วəs	00000080 0	IL
	Ј६โ	Sกコาวกn
ZHW	ロ69Eट06 ${ }^{\text {2 }}$	10．5
әsп	$00 \cdot 8$	โd
วəร	$00000000 \cdot$＇	0
әsп	$00 \cdot \mathrm{E}$ ¢	เع®
	9ız7tem	
日р	00 ¢ट	G70
วəร	$00020000 \cdot 0$	ट10
	$0 \cdot 008$	1
วsก	E＊\downarrow 吅	30
2sn	$000 \cdot 62$	MO
	$008 己 己$	H
วəs	0902690	OV
	20＜L9r＊0	Şu0I」
zH	6LE LDてくち	HMS
	\checkmark	SO
		SN
	£1วロว	INJ＾TOS
	－9898	01
	0¢วp6z	90udind
	HI dNO WW G	OH80४d
	ogexse	WกuISNI
	¢0 6ı	อ\％！
	LILIGOOZ	－azeo
suazamesed uorfisin		

 ZHW Oヵロट568•29 0
$\mathrm{~W} \exists$
 I

suazawesed 70โd 甘WN แコ 00.0 g
שכ 00.0 Z wod $000 \cdot \mathrm{OCz}$
 ／2H 62G62＇ELL
wdd $0000 \mathrm{~g} \cdot \mathrm{II}$

13 C NMR

1H NMR
PZ-VIII-24-A2

(

 (

REFERENCES

(1) Beaudry, C. M.; Malerich, J. P.; Trauner, D. Biosynthetic and Biomimetic Electrocyclizations. Chem. Rev. 2005, 105, 4757-4778.
(2) Pabuccuoglu, V.; Richomme, P.; Gozler, T.; Kivcak, B.; Freyer, A. J.; Shamma, M. Four New Crinine-Type Alkaloids from Sternbergia Species. J. Nat. Prod. 1989, 52, 785-791.
(3) Banwell, M. G.; Harvey, J. E.; Jolliffe, K. A. pi-Allyl cation cyclisations initiated by electrocyclic ring-opening of gem-dihalocyclopropanes: application to the first total syntheses of the crinine-type alkaloids maritinamine and epi-maritinamine. J. Chem. Soc., Perkin Trans. 2001, 2002-2005.
(4) Habermas, K. L.; Denmark, S. E.; Jones, T. K. The Nazarov cyclization. Org. React. 1994, 45, 1-158.
(5) Tius, M. A. Some new Nazarov chemistry. Eur. J. Org. Chem. 2005, 2193-2206.
(6) Frontier, A. J.; Collison, C. The Nazarov cyclization in organic synthesis. Recent advances. Tetrahedron 2005, 61, 7577-7606.
(7) Kita, T.; Takaya, Y.; Oshima, Y.; Ohta, T.; Aizawa, K.; Hirano, T.; Inakuma, T. Scabronines $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F , novel diterpenoids showing stimulating activity of nerve growth factor-synthesis, from the mushroom Sarcodon scabrosus. Tetrahedron 1998, 54, 11877-11886.
(8) Waters, S. P.; Tian, Y.; Li, Y.-M.; Danishefsky, S. J. Total synthesis of (-)-scabronine G, an inducer of neurotrophic factor production. J. Am. Chem. Soc. 2005, 127, 13514-13515.
(9) Srikrishna, A.; Dethe, D. H. Enantiospecific First Total Synthesis and Assignment of Absolute Configuration of the Sesquiterpene (-)-Cucumin H. Org. Lett. 2003, 5, 2295-2298.
(10) He, W.; Huang, J.; Sun, X.; Frontier, A. J. Total Synthesis of (+-)Merrilactone A via Catalytic Nazarov Cyclization. J. Am. Chem. Soc. 2007, 129, 498499.
(11) Tius, M. A.; Kwok, C.-K.; Gu, X.-q.; Zhao, C. Cyclopentannelation reaction for rapid assembly of multifunctional products. (d,l)-Desepoxymethylenomycin A methyl ester. Synth. Commun. 1994, 24, 871-85.
(12) Berger, G. O.; Tius, M. A. Total Synthesis of (+-)-Terpestacin and (+-)-11-epi-Terpestacin. J. Org. Chem. 2007, 72, 6473-6480.
(13) Hayakawa, Y.; Kawakami, K.; Seto, H.; Furihata, K. Structure of a new antibiotic, roseophilin. Tetrahedron Lett. 1992, 33, 2701-2704.
(14) Furstner, A. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem Int. Ed. 2003, 42, 3582-603.
(15) Harrington, P. E.; Tius, M. A. Synthesis and Absolute Stereochemistry of Roseophilin. J. Am. Chem. Soc. 2001, 123, 8509-8514.
(16) Li, W.-D. Z.; Wang, Y.-Q. A Novel and Efficient Total Synthesis of Cephalotaxine. Org. Lett. 2003, 5, 2931-2934.
(17) Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.; Kuwahara, S.; Harada, N.; Suzuki, K. Concise total synthesis and structure assignment of TAN-1085. Angew. Chem., Int. Ed. 2004, 43, 3167-3171.
(18) Hans Wolf Sinemann, A. d. M. Steroids and Steroid Analogues from Stille-Heck Coupling Sequences. Angew. Chem. Int. Ed. 2004, 43, 895-897.
(19) Huntley, R. J.; Funk, R. L. Total Syntheses of (+-)-cis-Trikentrin A and (+-)-cis-Trikentrin B via Electrocyclic Ring Closures of 2,3-Divinylpyrrolines. Org. Lett. 2006, 8, 3403-3406.
(20) Capon, R. J.; Macleod, J. K.; Scammells, P. J. The trikentrins : novel indoles from the sponge. Tetrahedron 1986, 42, 6545-6550.
(21) Nonaka, Y.; Kawasaki, T.; Sakamoto, M. Total synthesis of antioxidant alkaloid carazostatin via electrocyclic ring closure of 3-butadienyl-2-methoxyindole. Heterocycles 2000, 53, 1681-1684.
(22) Yasuhara, A.; Suzuki, N.; Sakamoto, T. A Concise Synthesis of Furostifoline by Tetrabutylammonium Fluoride-Promoted Indole Ring Formation. Chem. Pharm. Bull. 2002, 50, 143.
(23) Fuerstner, A.; Domostoj, M. M.; Scheiper, B. Total Synthesis of Dictyodendrin B. J. Am. Chem. Soc. 2005, 127, 11620-11621.
(24) Fuerstner, A.; Domostoj, M. M.; Scheiper, B. Total Syntheses of the Telomerase Inhibitors Dictyodendrin B, C, and E. J. Am. Chem. Soc. 2006, 128, 80878094.
(25) Greshock, T. J.; Funk, R. L. An Approach to the Total Synthesis of Welwistatin. Org. Lett. 2006, 8, 2643-2645.
(26) Hagiwara, H.; Choshi, T.; Nobuhiro, J.; Fujimoto, H.; Hibino, S. Novel syntheses of murrayaquinone A and furostifoline through 4-oxygenated carbazoles by
allene-mediated electrocyclic reactions starting from 2-chloroindole-3-carbaldehyde. Chem. Pharm. Bull. 2001, 49, 881-886.
(27) Tohyama, S.; Choshi, T.; Matsumoto, K.; Yamabuki, A.; Ikegata, K.; Nobuhiro, J.; Hibino, S. A new total synthesis of an indolo[3,2-j]phenanthridine alkaloid calothrixin B. Tetrahedron Lett. 2005, 46, 5263-5264.
(28) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. The endiandric acid cascade. Electrocyclizations in organic synthesis. 4. Biomimetic approach to endiandric acids AG. Total synthesis and thermal studies. J. Am. Chem. Soc. FIELD Full Journal Title:Journal of the American Chemical Society 1982, 104, 5560-2.
(29) Parker, K. A.; Lim, Y.-H. The Total Synthesis of (-)-SNF4435 C and (+)SNF4435 D. J. Am. Chem. Soc. 2004, 126, 15968-15969.
(30) Beaudry, C. M.; Trauner, D. Total Synthesis of (-)-SNF4435 C and (+)SNF4435 D. Org. Lett. 2005, 7, 4475-4477.
(31) Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. The biomimetic synthesis of SNF 4435C and SNF 4435D, and the total synthesis of the polyene metabolites aureothin, N -acetyl-aureothamine and spectinabilin. Tetrahedron 2006, 62, 1675-1689.
(32) Rodriguez, R.; Adlington, R. M.; Eade, S. J.; Walter, M. W.; Baldwin, J. E.; Moses, J. E. Total synthesis of cyercene A and the biomimetic synthesis of (+-)-9,10deoxytridachione and (+-)-ocellapyrone A. Tetrahedron 2007, 63, 4500-4509.
(33) Barbarow, J. E.; Miller, A. K.; Trauner, D. Biomimetic Synthesis of Elysiapyrones A and B. Org. Lett. 2005, 7, 2901-2903.
(34) He, Y.; Funk, R. L. Total Syntheses of (+-)-beta -Erythroidine and (+-)-8-oxo-beta -Erythroidine by an Intramolecular Diels-Alder Cycloaddition of a 2Amidoacrolein. Org. Lett. 2006, 8, 3689-3692.
(35) Tambar, U. K.; Kano, T.; Stoltz, B. M. Progress toward the Total Synthesis of Saudin: Development of a Tandem Stille-Oxa-Electrocyclization Reaction. Org. Lett. 2005, 7, 2413-2416.
(36) Li, C.; Johnson, R. P.; Porco, J. A., Jr. Total Synthesis of the Quinone Epoxide Dimer (+)-Torreyanic Acid: Application of a Biomimetic Oxidation/Electrocyclization/Diels-Alder Dimerization Cascade. J. Am. Chem. Soc. 2003, 125, 5095-5106.
(37) Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Total synthesis of (+)-epoxyquinols A and B. Angew. Chem., Int. Ed. 2002, 41, 3192-3194.
(38) Li, C.; Bardhan, S.; Pace, E. A.; Liang, M.-C.; Gilmore, T. D.; Porco, J. A., Jr. Angiogenesis Inhibitor Epoxyquinol A: Total Synthesis and Inhibition of Transcription Factor NF-kB. Org. Lett. 2002, 4, 3267-3270.
(39) Mehta, G.; Pan, S. C. Total Synthesis of the Novel, Biologically Active Epoxyquinone Dimer (+-)-Torreyanic Acid: A Biomimetic Approach. Org. Lett. 2004, 6, 3985-3988.
(40) Shoji, M.; Imai, H.; Mukaida, M.; Sakai, K.; Kakeya, H.; Osada, H.; Hayashi, Y. Total Synthesis of Epoxyquinols A, B, and C and Epoxytwinol A and the Reactivity of a 2 H -Pyran Derivative as the Diene Component in the Diels-Alder Reaction. J. Org. Chem. 2005, 70, 79-91.
(41) Malerich, J. P.; Maimone, T. J.; Elliott, G. I.; Trauner, D. Biomimetic synthesis of antimalarial naphthoquinones. J. Am. Chem. Soc. 2005, 127, 6276-6283.
(42) Lumb, J.-P.; Trauner, D. Pericyclic reactions of prenylated naphthoquinones, biomimetic syntheses of mollugin and microphyllaquinone. Org. Lett. 2005, 7, 5865-5868.
(43) Tisdale, E. J.; Slobodov, I.; Theodorakis, E. A. Biomimetic total synthesis of forbesione and desoxymorellin utilizing a tandem Claisen/Diels-Alder/Claisne rearrangement. Org. Biomol. Chem. 2003, 1, 4418-4422.
(44) Meketa, M. L.; Weinreb, S. M. A New Total Synthesis of the Zinc Matrixmetalloproteinase Inhibitor Ageladine A Featuring a Biogenetically Patterned 6pi-2-Azatriene Electrocyclization. Org. Lett. 2007, 9, 853-855.
(45) Fumiko Y. Miyake, K. Y. D. A. H. Biomimetic Synthesis of Grossularines-1. Angew. Chem Int. Ed. 2005, 44, 3280-3282.
(46) DePuy, C. H.; Isaks, M.; Eilers, K. L.; Morris, G. F. The formation of cyclopentadienones. J. Org. Chem. 1964, 29, 3503-7.
(47) DePuy, C. H.; Isaks, M.; Eilers, K. L. The formation of cyclopentadienone. Chem. Ind. 1961, 429-30.
(48) Hafner, K.; Goliasch, K. Cyclopentadienone. Chem. Ber. 1961, 94, 290921.
(49) Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chemistry of cyclopentadienones. Chem. Rev. 1965, 65, 261-367.
(50) Gavina, F.; Costero, A. M.; Gil, P.; Palazon, B.; Luis, S. V. Pericyclic reactions of free cyclopentadienone. J. Am. Chem. Soc. 1981, 103, 1797-1798.
(51) Gavina, F.; Costero, A. M.; Gil, P.; Luis, S. V. Reactivity of free cyclopentadienone in cycloaddition reactions. J. Am. Chem. Soc. 1984, 106, 2077-2080.
(52) G 鰧 ther Maier, H. W. L. H. P. R. Trimethylsilylated Cyclopentadienones. Angew. Chem. Int. Ed. 1981, 20, 976-977.
(53) Quadrelli, P.; Romano, S.; Toma, L.; Caramella, P. A Bispericyclic Transition Structure Allows for Efficient Relief of Antiaromaticity Enhancing Reactivity and Endo Stereoselectivity in the Dimerization of the Fleeting Cyclopentadienone. J. Org. Chem. 2003, 68, 6035-6038.
(54) Al-Busafi, S.; Drew, M. G. B.; Sanders, T.; Whitehead, R. C. Predisposition in synthesis: An approach to the manzamenones. Tetrahedron Lett. 1998, 39, 1647-1650.
(55) Nantz, M. H.; Fuchs, P. L. Bruceantin support studies. 13. Efficient generation and use of 3-carboalkoxycyclopentadienone as a Diels-Alder dienophile. J. Org. Chem. 1987, 52, 5298-5299.
(56) Xi, Z.; Song, Q. Efficient Synthesis of Cyclopentadienone Derivatives by the Reaction of Carbon Dioxide with 1,4-Dilithio-1,3-dienes. J. Org. Chem. 2000, 65, 9157-9159.
(57) Pearson, A. J.; Kim, J. B. Silicon-Tethered Cyclocarbonylation of Alkynes. Org. Lett. 2002, 4, 2837-2840.
(58) Wender, P. A.; Paxton, T. J.; Williams, T. J. Cyclopentadienone Synthesis by Rhodium(I)-Catalyzed [3+2] Cycloaddition Reactions of Cyclopropenones and Alkynes. J. Am. Chem. Soc. 2006, 128, 14814-14815.
(59) Rainier, J. D.; Imbriglio, J. E. The Synthesis and Chemoselective Reactivity of 3-Aminocyclopentadienones. J. Org. Chem. 2000, 65, 7272-7276.
(60) Shibata, T.; Yamashita, K.; Ishida, H.; Takagi, K. Iridium Complex Catalyzed Carbonylative Alkyne-Alkyne Coupling for the Synthesis of Cyclopentadienones. Org. Lett. 2001, 3, 1217-1219.
(61) Zora, M.; Asli Tumay, T.; Buyukgungor, O. Coupling of cyclopropylcarbene-chromium complex with ferrocenyl alkynes: synthesis of 5-ferrocenyl-5-hydroxy-2-cyclopentenones and 4-ferrocenyl-4-cyclopentene-1,3-diones. Tetrahedron 2007, 63, 4018-4026.
(62) Harmata, M.; Gomes, M. G. Intermolecular [4+2] cycloadditions of a reactive cyclopentadienone. Eur. J. Org. Chem. 2006, 2273-2277.
(63) Al-Busafi, S.; Whitehead, R. C. Predisposition in synthesis: efficient routes to (+/-)-untenone A and (+/-)-manzamenones A, C and F. Tetrahedron Letters 2000, 41, 3467-3470.
(64) Ishibashi, M.; Takeuchi, S.; Kobayashi, J. i. Untenone A, a new cyclopentenone from the Okinawan marine sponge Plakortis sp. corresponding to the dienophile in the biosynthesis of manzamenones. Tetrahedron Lett. 1993, 34, 3749-3750.
(65) Yoshitake, Y.; Yamaguchi, K.; Kai, C.; Akiyama, T.; Handa, C.; Jikyo, T.; Harano, K. Cyclization of Electron-Deficient Cyclopentadienone with 2-Alkenyl and 2Alkynylamines via Sequential Pericyclic Reaction Pathway. J. Org. Chem. 2001, 66, 8902-8911.
(66) Yamaguchi, K.; Utsumi, K.; Yoshitake, Y.; Harano, K. Cyclization reaction of cyclopentadienone with prop-2-yn-1-ol in priority to Diels-Alder reaction. Tetrahedron Lett. 2006, 47, 4235-4239.
(67) Harmata, M.; Zheng, P.; Schreiner, P. R.; Navarro-Vazquez, A. Deantiaromatization as a driving force in an electrocyclic reaction. Angew. Chem. Int. Ed. 2006, 45, 1966-1971.
(68) Harmata, M.; Zheng, P.; Schreiner, P. R.; Navarro-Vazquez, A. Diastereoselectivity in an electrocyclization reaction of cyclopentadienones. Tetrahedron lett. 2007, 48, 5919-5922.
(69) Harmata, M.; Barnes, C. L.; Brackley, J.; Bohnert, G.; Kirchhoefer, P.; Kuerti, L.; Rashatasakhon, P. Generation of Cyclopentadienones from 2Bromocyclopentenones. J. Org. Chem. 2001, 66, 5232-5236.
(70) Paquette, L. A. Encyclopedia of Reagents for Oganic Synthesis; Wiley: Chichester, 1995.
(71) Narayanan, B. A.; Bunnelle, W. H. The cerium-mediated conversion of esters to allylsilanes. Tetrahedron Lett. 1987, 28, 6261-4.
(72) De Fonseka, K. K.; McCullough, J. J.; Yarwood, A. J. Products and transients in the photolysis of methylated 2-indanones. Observation and kinetics of oxylylenes. J. Am. Chem. Soc. 1979, 101, 3277-82.
(73) David 燗. Conlon, D. K. C. M. M. H. G. H. L. S. Insights into the Cerium Chloride-Catalyzed Grignard Addition to Esters. Adv. Synth.Catal. 2004, 346, 13071315.
(74) Evans, W. J.; Feldman, J. D.; Ziller, J. W. The Presence of Water in the Common CeCl3/RLi Alkylation System. J. Am. Chem. Soc. 1996, 118, 4581-4584.
(75) Takeda, N.; Imamoto, T. Use of cerium(III) chloride in the reactions of carbonyl compounds with organolithiums or Grignard reagents for the suppression of abnormal reactions: 1-butyl-1,2,3,4-tetrahydro-1-naphthol. Org. Synth. 1999, 76, 228238.
(76) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. The relationship between proton-proton NMR coupling constants and substituent electronegativities--I : An empirical generalization of the karplus equation. Tetrahedron 1980, 36, 2783-2792.
(77) Wittenberg, D.; Gilman, H. An Intramolecular Cleavage-Cyclization Reaction of Silicon-containing Organolithium Compounds. J. Am. Chem. Soc. 1958, 80, 2677-2680.
(78) Gilman, H.; Gorsich, R. D. Cyclic Organosilicon Compounds. II. Reactions Involving Certain Functional and Related Dibenzosilole Compounds. J. Am. Chem. Soc. 1958, 80, 3243-3246.
(79) Gilman, H.; Gorsich, R. D. Cyclic Organosilicon Compounds. I. Synthesis of Compounds Containing the Dibenzosilole Nucleus. J. Am. Chem. Soc. 1958, 80, 18831886.
(80) Sullivan, S. A.; DePuy, C. H.; Damrauer, R. Gas-phase reactions of cyclic silanes. J. Am. Chem. Soc. 1981, 103, 480-481.
(81) de Keijzer, A. H. J. F.; de Kanter, F. J. J.; Schakel, M.; Schmitz, R. F.; Klumpp, G. W. Lithium 2,2'-biphenyldiyltrimethylsilicate; first observation of pentaorganosilicates. Angew. Chem., Int. Ed. Engl. 1996, 35, 1127-1128.
(82) De Keijzer, A. H. J. F.; De Kanter, F. J. J.; Schakel, M.; Osinga, V. P.; Klumpp, G. W. In search of stable lithium pentaorganylsilicates; special role of five phenyl ligands and of ligands containing the 1,4-(1,3-butadienediyl) unit. J. Organomet. Chem. 1997, 548, 29-32.
(83) Rot, N.; Nijbacker, T.; Kroon, R.; De Kanter, F. J. J.; Bickelhaupt, F.; Lutz, M.; Spek, A. L. Introduction of Bulky Substituents at the Bridgehead Position of a 9-Silatriptycene: Pentacoordinate Hydridoorganylsilicates as Intermediates. Organometallics 2000, 19, 1319-1324.
(84) Kolomeitsev, A.; Movchun, V.; Rusanov, E.; Bissky, G.; Lork, E.; Roschenthaler, G.-V.; Kirsch, P. Different fluoride anion sources and (trifluoromethyl)trimethylsilane: molecular structure of tris(dimethylamino)sulfonium bis(trifluoromethyl)trimethylsiliconate, the first isolated pentacoordinate silicon species with five Si-C bonds. Chem. Commun. 1999, 1017-1018.
(85) Deerenberg, S.; Schakel, M.; de Keijzer, A. H. J. F.; Kranenburg, M.; Lutz, M.; Spek, A. L.; Lammertsma, K. Tetraalkylammonium pentaorganosilicates: the
first highly stable silicates with five hydrocarbon ligands. Chem. Commun 2002, 348349.
(86) Couzijn, E. P. A.; Schakel, M.; de Kanter, F. J. J.; Ehlers, A. W.; Lutz, M.; Spek, A. L.; Lammertsma, K. Dynamic configurational isomerism of a stable pentaorganosilicate. Angew. Chem., Int. Ed. 2004, 43, 3440-3442.
(87) Ballweg, D.; Liu, Y.; Guzei, I. A.; West, R. Pentacoordinate spirosilicate anion, bis(2,2'-biphenyldiyl)methylsilicate, synthesized by the lithium cleavage of dimethoxyethane. Silicon Chem. 2002, 1, 57-60.
(88) Couzijn, E. P. A.; Ehlers, A. W.; Schakel, M.; Lammertsma, K. Electronic Structure and Stability of Pentaorganosilicates. J. Am. Chem. Soc. 2006, 128, 1363413639.
(89) Maercker, A.; Stoetzel, R. Carbanion rearrangement through 1,w-proton shift. 5. Carbanion rearrangements of w-phenyl-w-(trimethylsilyl)alkyllithium compounds: intramolecular reactions of benzyltrimethylsilanes with a carbon-lithium bond. Chem. Ber. 1987, 120, 1695-706.
(90) Ishikawa, M.; Tabohashi, T.; Sugisawa, H.; Nishimura, K.; Kumada, M. Chemistry of siloles. The reactions of siloles with organolithium reagents. J. Organomet. Chem. 1983, 250, 109-19.
(91) Ishikawa, M.; Nishimura, K.; Sugisawa, H.; Kumada, M. Unexpected behavior of siloles toward organolithium reagents. J. Organomet. Chem. 1981, 218, C21C24.
(92) Wang, Z.; Fang, H.; Xi, Z. Cleavage of C-Si bond by intramolecular nucleophilic attack: lithiation-promoted formation of siloles from 1-bromo-4trisubstituted silyl-1,3-butadiene derivatives. Tetrahedron Lett. 2005, 46, 499-501.
(93) Hudrlik, P. F.; Dai, D.; Hudrlik, A. M. Reactions of dilithiobutadienes with monochlorosilanes: Observation of facile loss of organic groups from silicon. J. Organomet. Chem. 2006, 691, 1257-1264.
(94) Gevorgyan, V.; Borisova, L.; Lukevics, E. Cleavage of silicon-carbon and germanium-carbon bonds in heterylsilanes and -germanes by organolithium reagents. J. Organomet. Chem 1992, 441, 381-7.
(95) Jutzi, P.; Karl, A. Synthesis and reactions of some 1 R, 1R',2,3,4,5-tetraphenyl-1-germacyclopentadienes. J. Organomet. Chem. 1981, 215, 19-25.
(96) Hudrlik, P. F.; Abdallah, Y. M.; Hudrlik, A. M. Rearrangements of alpha halosilanes induced by intramolecular nucleophilic attack at silicon. Tetrahedron Lett. 1992, 33, 6743-6.
(97) Tokitoh, N.; Matsumoto, T.; Suzuki, H.; Okazaki, R. Unusual 1,3rearrangement of trimethylsilyl group in the reaction of 2,4,6tris[bis(trimethylsilyl)methyl]phenyllithium. Tetrahedron Lett. 1991, 32, 2049-52.
(98) van Klink, G. P. M.; de Boer, H. J. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Spek, A. L. Carbanions as Intermediates in the Formation of Grignard Reagents. Organometallics 2002, 21, 2119-2135.
(99) De Boer, H. J. R.; Plugge, M.; Akkerman, O. S.; Bickelhaupt, F. Unexpected formation of the first doubly benzylic 1,1-di-grignard reagent. Main Group Met. Chem. 2001, 24, 93-98.
(100) Vedejs, E.; Daugulis, O.; Diver, S. T.; Powell, D. R. Generation of the 1,3Phosphasilolene Skeleton from Ortho-Silylated Biarylphosphonates. J. Org. Chem. 1998, 63, 2338-2341.
(101) Kirmse, W.; Konrad, W.; Ozkir, I. S. Reactivity of functionalized arylcarbenes. 2-Phenylethyl side chains and hetero analogs. Tetrahedron 1997, 53, 99359964.
(102) Wang, C.; Luo, Q.; Sun, H.; Guo, X.; Xi, Z. Lithio Siloles: Facile Synthesis and Applications. J. Am. Chem. Soc. 2007, 129, 3094-3095.
(103) Hosomi, A.; Sakurai, H. Syntheses of [gamma],[delta]-unsaturated alcohols from allylsilanes and carbonyl compounds in the presence of titanium tetrachloride. Tetrahedron Letters 1976, 17, 1295-1298.
(104) Narayanan, B. A.; Bunnelle, W. H. The cerium mediated conversion of esters to allylsilanes. Tetrahedron Letters 1987, 28, 6261-6264.
(105) Hojjatie, M.; Muralidharan, S.; Dietz, M. L.; Freiser, H. A Short and Convenient Synthesis of 5-Alkyl Substituted 8-Hydroxyquinolines. Synthetic Comm. 1989, 19, 2273-2282.
(106) Spencer, T. A.; Onofrey, T. J.; Cann, R. O.; Russel, J. S.; Lee, L. E.; Blanchard, D. E.; Castro, A.; Gu, P.; Jiang, G.; Shechter, I. Zwitterionic Sulfobetaine Inhibitors of Squalene Synthase. J. Org. Chem. 1999, 64, 807-818.
(107) Aitola, E.; Surakka, M.; Repo, T.; Linnolahti, M.; Lappalainen, K.; Kervinen, K.; Klinga, M.; Pakkanen, T.; Leskela, M. Polymerization of ethene with zirconocene catalysts: an experimental and quantum chemical study of the influence of para-substituent in benzyl in bis [eta]5-(1-benzyl)indenyl zirconium dichlorides. J. Organomet. Chem. 2005, 690, 773-783.
(108) Pasto, D. J. A theoretical study of the disproportionation reactions of diimide (N2H2) species. J. Am. Chem. Soc. 1979, 101, 6852-6857.
(109) Look, S. A.; Fenical, W.; Matsumoto, G. K.; Clardy, J. The pseudopterosins: a new class of antiinflammatory and analgesic diterpene pentosides from the marine sea whip Pseudopterogorgia elisabethae (Octocorallia). J. Org. Chem. 1986, 51, 5140-5.
(110) Look, S. A.; Fenical, W. The seco-pseudopterosins, new antiinflammatory diterpene-glycosides from a Caribbean gorgonian octocoral of the genus Pseudopterogorgia. Tetrahedron 1987, 43, 3363-70.
(111) Heckrodt, T. J.; Mulzer, J. Marine natural products from Pseudopterogorgia elisabethae: Structures, biosynthesis, pharmacology, and total synthesis. Top. Curr. Chem. 2005, 244, 1-41.
(112) Ata, A.; Kerr, R. G.; Moya, C. E.; Jacobs, R. S. Identification of antiinflammatory diterpenes from the marine gorgonian Pseudopterogorgia elisabethae. Tetrahedron 2003, 59, 4215-4222.
(113) Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Gonzalez, E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org. Lett. 1999, 1, 527-30.
(114) Rodriguez, A. D.; Ramirez, C. Serrulatane diterpenes with antimycobacterial activity isolated from the West Indian sea whip Pseudopterogorgia elisabethae. J. Nat. Prod. 2001, 64, 100-2.
(115) Rodriguez, A. D.; Shi, Y. P. Structurally diverse terpenoids from the sea whip Pseudopterogorgia elisabethae (Bayer). Tetrahedron 2000, 56, 9015-9023.
(116) Harvis, C. A.; Burch, M. T.; Fenical, W. New marine diterpenoids, including a unique hydroperoxide, from a Caribbean gorgonian coral of the genus Pseudopterogorgia. Tetrahedron Lett. 1988, 29, 4361-4.
(117) Ata, A.; Kerr, R. G. Elisabethamine: a new diterpene alkaloid from Pseudopterogorgia elisabethae. Tetrahedron Lett. 2000, 41, 5821-5825.
(118) Dai, X.; Wan, Z.; Kerr, R. G.; Davies, H. M. L. Synthetic and Isolation Studies Related to the Marine Natural Products (+)-Elisabethadione and (+)Elisabethamine. J. Org. Chem. 2007, 72, 1895-1900.
(119) Look, S. A.; Fenical, W.; Jacobs, R. S.; Clardy, J. The Pseudopterosins: Anti-Inflammatory and Analgesic Natural Products from the Sea Whip Pseudopterogorgia elisabethae. PNAS 1986, 83, 6238-6240.
(120) Tanaka, J.-i.; Ogawa, N.; Liang, J.; Higa, T.; Gravalos, D. G. Helioporins: bioactive diterpenes from the blue coral Heliopora coerulea. Tetrahedron 1993, 49, 811822.
(121) Geller, T.; Jakupovic, J.; Schmalz, H. G. Preparation of Helioporin D from the seco-Pseudopterosin Aglycone: Revision of the Stereostructure of Helioporin D. Tetrahedron Lett. 1998, 39, 1541-1544.
(122) Kolesnikova, S. A.; Kalinovsky, A. I.; Fedorov, S. N.; Shubina, L. K.; Stonik, V. A. Diterpenes from the Far-eastern brown alga Dictyota dichotoma. Phytochem. 2006, 67, 2115-2119.
(123) Liu, Q.; Harrington, D.; Kohen, J. L.; Vemulpad, S.; Jamie, J. F. Bactericidal and cyclooxygenase inhibitory diterpenes from Eremophila sturtii. Phytochem. 2006, 67, 1256-1261.
(124) Croft, K. D.; Ghisalberti, E. L.; Jefferies, P. R.; Raston, C. L.; White, A. H.; Hall, S. R. The chemistry of Eremophila SPP--VI* : Stereochemistry and crystal structure of dihydroxyserrulatic acid. Tetrahedron 1977, 33, 1475-1480.
(125) Syah, Y. M.; Ghisalberti, E. L. Serrulatane diterpenes from a new Eremophila species. Phytochem. 1997, 45, 1479-1482.
(126) Kohl, A. C.; Kerr, R. G. Pseudopterosin Biosynthesis: Aromatization of the Diterpene Cyclase Product, Elisabethatriene. Marine Drugs 2003, 1, 54-65.
(127) Kohl, A. C.; Ata, A.; Kerr, R. G. Pseudopterosin biosynthesis-pathway elucidation, enzymology, and a proposed production method for anti-inflammatory metabolites from Pseudopterogorgia elisabethae. J. Ind. Microbiol. Biotechnol. 2003, 30, 495-499.
(128) Ferns, T.; Kerr, R. G. Oxidations of erogorgiaene in pseudopterosin biosynthesis. Tetrahedron 2005, 61, 12358-12365.
(129) Ferns, T. A.; Kerr, R. G. Identification of Amphilectosins as Key Intermediates in Pseudopterosin Biosynthesis. J. Org. Chem. 2005, 70, 6152-6157.
(130) Broka, C. A.; Chan, S.; Peterson, B. Total synthesis of (-)-pseudopterosin A. J. Org. Chem. 1988, 53, 1584-6.
(131) Corey, E. J.; Carpino, P. Enantiospecific total synthesis of pseudopterosins A and E. J. Am. Chem. Soc. 1989, 111, 5472-4.
(132) Corey, E. J.; Carpino, P. A new enantiospecific route to the pseudopterosins. Tetrahedron Lett. 1990, 31, 3857-8.
(133) Buszek, K. R.; Bixby, D. L. Total synthesis of pseudopterosin A and E aglycon. Tetrahedron Lett. 1995, 36, 9129-32.
(134) Gill, S.; Kocienski, P.; Kohler, A.; Pontiroli, A.; Qun, L. A synthetic approach to the pseudopterosins. Chem. Commun. 1996, 1743-1744.
(135) Corey, E. J.; Lazerwith, S. E. A Direct and Efficient Stereocontrolled Synthetic Route to the Pseudopterosins, Potent Marine Antiinflammatory Agents. J. Am. Chem. Soc. 1998, 120, 12777-12782.
(136) Davidson, J. P.; Corey, E. J. First Enantiospecific Total Synthesis of the Antitubercular Marine Natural Product Pseudopteroxazole. Revision of Assigned Stereochemistry. J. Am. Chem. Soc. 2003, 125, 13486-13489.
(137) Chow, R.; Kocienski, P. J.; Kuhl, A.; LeBrazidec, J.-Y.; Muir, K.; Fish, P. Enantiospecific syntheses of pseudopterosin aglycones. Part 1. Synthesis of the putative aglycone of pseudopterosin G-J via an A[rightward arrow]AB[rightward arrow]ABC annulation strategy. J. Chem. Soc., Perkin Trans. 1 2001, 2344-2355.
(138) Johnson, T. W.; Corey, E. J. Enantiospecific Synthesis of the Proposed Structure of the Antitubercular Marine Diterpenoid Pseudopteroxazole: Revision of Stereochemistry. J. Am. Chem. Soc. 2001, 123, 4475-4479.
(139) McCombie, S. W.; Cox, B.; Lin, S.-I.; Ganguly, A. K.; McPhail, A. T. Controlling benzylic functionality and stereochemistry: 1. Synthesis of the secopseudopterosin aglycone. Tetrahedron Lett. 1991, 32, 2083-2086.
(140) McCombie, S. W.; Ortiz, C.; Cox, B.; Ganguly, A. K. Controlling benzylic and anomeric functionality and stereochemistry: methodology and syntheses utilizing intramolecular ionic hydrogenation. Synlett 1993, 541-7.
(141) Majdalani, A.; Schmalz, H. G. Enantioselective synthesis of the aglycones of pseudopterosin and seco-pseudopterosin via a common synthetic intermediate. Synlett 1997, 1303-1305.
(142) Cesati, R. R.; De Armas, J.; Hoveyda, A. H. Enantioselective Total Synthesis of Erogorgiaene: Applications of Asymmetric Cu-Catalyzed Conjugate Additions of Alkylzincs to Acyclic Enones. J. Am. Chem. Soc. 2004, 126, 96-101.
(143) Davies, H. M. L.; Walji, A. M. Direct synthesis of (+)-erogorgiaene through a kinetic enantiodifferentiating step. Angew. Chem. Int. Ed. 2005, 44, 1733-1735.
(144) Davies, H. M. L.; Dai, X. Application of the combined C-H activation/Cope rearrangement as a key step in the total syntheses of the assigned structure of $(+)$-elisabethadione and a (+)-p-benzoquinone natural product. Tetrahedron 2006, 62, 10477-10484.
(145) Yadav, J. S.; Basak, A. K.; Srihari, P. An aldol approach to the synthesis of the anti-tubercular agent erogorgiaene. Tetrahedron Letters 2007, 48, 2841-2843.
(146) Harmata, M.; Hong, X. Benzothiazines in synthesis. Formal synthesis of erogorgiaene. Tetrahedron Letters 2005, 46, 3847.
(147) Harmata, M.; Hong, X. The Intramolecular, Stereoselective Addition of Sulfoximine Carbanions to Unsaturated Esters. J. Am. Chem. Soc. 2003, 125, 5754-5756.
(148) Harmata, M.; Hong, X.; Barnes, C. L. Benzothiazines in Synthesis. Toward the Synthesis of Pseudopteroxazole. Org. Lett. 2004, 6, 2201-2203.
(149) Harmata, M.; Hong, X. Benzothiazines in Synthesis. A Total Synthesis of Pseudopteroxazole. Org. Lett. 2005, 7, 3581-3583.
(150) Qabaja, G.; Jones, G. B. Annulation Strategies for Benzo[b]fluorene Synthesis: Efficient Routes to the Kinafluorenone and WS-5995 Antibiotics. J. Org. Chem. 2000, 65, 7187-7194.
(151) Biernacki, W.; Gdula, A. Modification of the method of Julia for the preparation of homoallylic bromides and iodides. Synthesis 1979, 37-8.
(152) Liu, Z.; Li, W. Z.; Peng, L.; Li, Y.; Li, Y. First enantioselective total synthesis of (natural) (+)-11,12-epoxy-11,12-dihydrocembrene-C and (-)-7,8-epoxy-7,8-dihydrocembrene-C. Perkin 1 2000, 4250-4257.
(153) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Horner-wadsworth-emmons reaction: Use of lithium chloride and an amine for base-sensitive compounds. Tetrahedron Lett. 1984, 25, 2183-2186.
(154) Gevorgyan, V.; Rubin, M.; Liu, J. X.; Yamamoto, Y. A Direct Reduction of Aliphatic Aldehyde, Acyl Chloride, Ester, and Carboxylic Functions into a Methyl Group. J. Org. Chem. 2001, 66, 1672-1675.
(155) Masamune, S.; Rossy, P. A.; Bates, G. S. Reductive removal of halo and mesyloxy groups with a copper(I) complex. J. Am. Chem. Soc. 1973, 95, 6452-6454.
(156) Thomas, S.; Huynh, T.; Enriquez-Rios, V.; Singaram, B. Aminoborohydrides. 14. Lithium Aminoborohydrides in the Selective Reduction or Amination of Alkyl Methanesulfonate Esters. Org. Lett. 2001, 3, 3915-3918.
(157) Bell, H. M.; Vanderslice, C. W.; Spehar, A. Reduction of organic halogen compounds by sodium borohydride. J. Org. Chem. 1969, 34, 3923-3926.
(158) Hua, D. H.; Sinai-Zingde, G.; Venkataraman, S. Asymmetric synthesis via chiral sulfinylallyl anion. Total synthesis of (+)-hirsutene: facile ring closure involving enol thioether and enol acetate moieties. J. Am. Chem. Soc. 1985, 107, 4088-4090.
(159) Siebum, A. H. G.; Woo, W. S.; Lugtenburg, J. Preparation and Characterization of -Valine - Establishing Synthetic Schemes to Prepare Any SiteDirected Isotopomer of Leucine, Isoleucine and Valine. Eur. J. Org. Chem. 2003, 2003, 4664-4678.
(160) Bolm, C.; Villar, H. Ring-closing metathesis (RCM) for the synthesis of cyclic sulfoximines. Synthesis 2005, 1421-1424.
(161) Cary, J. M.; Moore, J. S. Hydrogen Bond-Stabilized Helix Formation of a $<\mathrm{i}>\mathrm{m}</ \mathrm{i}>-$ Phenylene Ethynylene Oligomer. Org. Lett. 2002, 4, 4663-4666.
(162) Rodrigues, J. A. R.; de Oliveira Filho, A. P.; Moran, P. J. S.; Custodio, R. Regioselectivity of the Nitration of Phenol by Acetyl Nitrate Absorbed on Silica Gel. Tetrahedron 1999, 55, 6733-6738.
(163) Sathunuru, R.; Rao, U. N.; Biehl, E. Facile, High-yield, Regioselective Synthesis of ortho-Nitrophenols Using Cerium (IV) Ammonium Nitrate. ARKIVOC 2003, 124-133.
(164) v. Braun, J.; Kaiser, W. Ber. Dtsch. Chem. Ges. B 1923, 56, 549.
(165) Sonn, A.; Schmidt, E. Ber. Dtsch. Chem. Ges. B 1924, 57, 1355.
(166) Tillett, J. G. Sulfinamides; Wiley: Chichester, 1990.
(167) Dittmer, D. C.; Hoey, M. D. Cyclic sulfinic acid derivatives (sultines and sulfinamides); Wiley: Chichester, 1990.
(168) Senanayake, C. H.; Krishnamurthy, D.; Lu, Z.-H.; Han, Z.; Gallou, I. Enantiopure sulfoxides and sulfinamides: recent developments in their stereoselective synthesis and applications to asymmetric synthesis. Aldrichimica Acta 2005, 38, 93-104.
(169) Furukawa, M.; Okawara, T. Convenient synthesis of sulfinamide derivatives. Synthesis 1976, 339-40.
(170) v. Braun, J.; Weissbach, K. The organic sulfonic and sulfinic acids. Ber. Dtsch. Chem. Ges. B 1930, 63B, 2836-47.
(171) Baudin, J.-B.; Julia, S. A. Synthesis of indoles from N-aryl-1alkenylsulphinamides. Tetrahedron Lett. 1986, 27, 837-840.
(172) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. Improved Synthesis of Enantiopure Sulfinimines (Thiooxime S-Oxides) from pToluenesulfinamide and Aldehydes and Ketones. J. Org. Chem. 1999, 64, 1403-1406.
(173) Sagramora, L.; Koch, P.; Garbesi, A.; Fava, A. Asymmetric Oxidation of Bivalent Organic Sulphur Compounds. Absolute Configuration of Thiolsulphinate and Sulphinate Esters Obtained by Stereoselective Oxidation of Disulphides and Sulphenate Esters. J. Chem. Soc., Chem. Commun. 1967, 985.
(174) Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A. Catalytic Asymmetric Oxidation of tert-Butyl Disulfide. Synthesis of tert-Butanesulfinamides, tertButyl Sulfoxides, and tert-Butanesulfinimines. J. Am. Chem. Soc. 1998, 120, 8011-8019.
(175) Harmata, M.; Zheng, P.; Huang, C.; Gomes, M. G.; Ying, W.; Ranyanil, K. O.; Balan, G.; Calkins, N. L. Expedient Synthesis of Sulfinamides from Sulfonyl Chlorides. J. Org. Chem. 2007, 72, 683-685.
(176) Okuma, K.; Minato, H.; Kobayashi, M. Syntheses and Reactions of Optically Active Alkoxyaminosulfonium Salts. Bull. Chem. Soc. Japan 1980, 53, 435437.
(177) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Su, X.; Wilkinson, H. S.; Lu, Z.-H.; Magiera, D.; Senanayake, C. H. Practical and highly stereoselective technology for preparation of enantiopure sulfoxides and sulfinamides utilizing activated and functionally differentiated N -sulfonyl-1,2,3-oxathiazolidine-2-oxide derivatives. Tetrahedron 2005, 61, 6386-6408.
(178) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Senanayake, C. H. Properly Designed Modular Asymmetric Synthesis for Enantiopure Sulfinamide Auxiliaries from $<\mathrm{i}>\mathrm{N}</ \mathrm{i}>$-Sulfonyl-1,2,3-oxathiazolidine-2-oxide Agents. J. Am. Chem. Soc. 2002, 124, 7880-7881.
(179) Bussas, R.; Muenster, H.; Kresze, G. Ene reaction mechanisms. 1. Chirality transfer to the enophile 4-methyl-N-sulfinylbenzenesulfonamide. J. Org. Chem. 1983, 48, 2828-2832.
(180) Whitesell, J. K.; Carpenter, J. F. Absolute stereochemical control in allylic oxidation via ene reactions of N-sulfinylcarbamates. J. Am. Chem. Soc. 1987, 109, 28392840.
(181) Johnson, C. R.; Kirchhoff, R. A.; Reischer, R. J.; Katekar, G. F. Chemistry of sulfoxides and related compounds. XLII. Nucleophilic alkylidene transfer reagents. Anions of N-(p-tolylsulfonyl)sulfoximines. J. Am. Chem. Soc. 1973, 95, 4287-4291.
(182) Pyne, S. G.; Dong, Z.; Skelton, B. W.; White, A. H. Cyclopropanation Reactions of Enones with Lithiated Sulfoximines: Application to the Asymmetric Synthesis of Chiral Cyclopropanes. J. Org. Chem. 1997, 62, 2337-2343.
(183) Harmata, M.; Herron, B. F. The conversion of benzothiazines to 2-alkenyl anilines. Tetrahedron 1991, 47, 8855-8862.
(184) Gaillard, S.; Papamicael, C.; Dupas, G.; Marsais, F.; Levacher, V. orthoLithiation of S-tert-butyl-S-phenylsulfoximines. New route to enantiopure sulfinamides via a de-tert-butylation reaction. Tetrahedron 2005, 61, 8138-8147.
(185) Schroeck, C. W.; Johnson, C. R. Chemistry of sulfoxides and related compounds. XXXI. Aluminum amalgam reduction of aryl sulfoximines and related compounds. J. Am. Chem. Soc. 1971, 93, 5305-5306.
(186) Bohen, J. M.; Joullie, M. M. Chemistry of a ketene-sulfur dioxide adduct. II. Reactions with heterocumulenes. J. Org. Chem. 1973, 38, 2652-2657.
(187) Semple, J. E.; Joullie, M. M. Synthesis and oxidation of substituted N-phenyl-2-[(phenylamino)sulfinyl]acetamides. J. Org. Chem. 1978, 43, 3066-3068.
(188) Maccagnani, G. Cyclic additions of N-sulfinyl sulfonamides. Boll. Sci. Fac. Chim. Ind. Bologna 1965, 23, 399-400.
(189) Leung, T. W.; Christoph, G. G.; Gallucci, J.; Wojcicki, A. Cycloaddition and insertion reactions of N -sulfinylmethanesulfonamide and sulfur bis(methanesulfonylimide) with transition-metal-propargyl, -.eta.1-allyl, and cyclopropylmethyl complexes. Novel [3 + 3] cycloaddition products. Organometallics 1986, 5, 846-853.
(190) Wagner, B. J.; Doi, J. T.; Musker, W. K. Synthesis and kinetics of the formation of N -substituted cyclic sulfinamides from secondary amine disulfides. J. Org. Chem. 1990, 55, 4156-62.
(191) Coulomb, J.; Certal, V.; Fensterbank, L.; Lacote, E.; Malacria, M. Formation of cyclic sulfinates and sulfinamides through homolytic substitution at the sulfur atom. Angew. Chem., Int. Ed. 2006, 45, 633-637.
(192) Ruitenberg, K.; Vermeer, P. Convenient synthesis of 2alkynylsulfinamides and 2,5-dihydroisothiazole S-oxide using allenylcopper(I) compounds. J. Organomet. Chem. 1983, 256, 175-180.
(193) Wills, M.; Butlin, R. J.; Linney, I. D.; Gibson, R. W. Dependence of ring closure stereoselectivity on the nature of the leaving group: application to the synthesis of a new class of chiral sulfoxides for the control of asymmetric aldol reactions. J. Chem. Soc., Perkin Trans. 1 1991, 3383-5.
(194) Wichterle, O.; Rocek, J. Collect. Czech., Chem. Commun. 1954, 19, 282.
(195) N-Sulfinyl compounds as dienophiles; Kresze, G., Ed.; Academic: New York, 1967.
(196) Weinreb, S. M. Synthetic methodology based upon N-sulfinyl dienophile [4+2]-cycloaddition reactions. Acc. Chem. Res. 1988, 21, 313-318.
(197) Mock, W. L.; Nugent, R. M. Geometry of the adducts of 2,4-hexadienes with N -sulfinylarylsulfonamides. Stereospecific but nonconcerted Diels-Alder reaction. J. Am. Chem. Soc. 1975, 97, 6521-6526.
(198) Bell, S. I.; Weinreb, S. M. Lewis acid and high pressure promoted DielsAlder cycloadditions of N -alkyl-N-sulfinyl dienophiles. Tetrahedron Lett. 1988, 29, 4233-4236.
(199) Molla Mellese Endeshaw, A. B., Lars K. Hansen, Odd R. Gautun Catalytic Asymmetric Hetero Diels-Alder Reactions of N-Sulfinyl Dienophiles with Chiral Bis(oxazoline)copper(II) and -zinc(II) Triflates. Eur. J. Org. Chem. 2006, 2006, 52495259.
(200) Hogeveen, H.; Kingma, R. F.; Kok, D. M. Synthesis of strained heterobicycles from alkynes and heterocumulenes. J. Org. Chem. 1982, 47, 1909-1915.
(201) Fongers, K. S.; Hogeveen, H.; Kingma, R. F. Benzvalene- and Dewar benzene-type sulfinamides. J. Org. Chem. 1983, 48, 4275-4280.
(202) Zhou, P.; Chen, B.-C.; Davis, F. A. Recent advances in asymmetric reactions using sulfinimines (N -sulfinyl imines). Tetrahedron 2004, 60, 8003-8030.
(203) Ellman, J. A. Applications of tert-butanesulfinamide in the asymmetric synthesis of amines. Pure Appl. Chem. 2003, 75, 39-46.
(204) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. Synthesis of Enantiomerically Pure N-tert-Butanesulfinyl Imines (tert-Butanesulfinimines) by the Direct Condensation of tert-Butanesulfinamide with Aldehydes and Ketones. J. Org. Chem. 1999, 64, 1278-1284.
(205) Cogan, D. A.; Ellman, J. A. Asymmetric Synthesis of α, α-Dibranched Amines by the Trimethylaluminum-Mediated 1,2-Addition of Organolithiums to tertButanesulfinyl Ketimines. J. Am. Chem. Soc. 1999, 121, 268-269.
(206) Tang, T. P.; Ellman, J. A. Asymmetric Synthesis of β-Amino Acid Derivatives Incorporating a Broad Range of Substitution Patterns by Enolate Additions to tert-Butanesulfinyl Imines. J. Org. Chem. 2002, 67, 7819-7832.
(207) Davis, F. A.; Lee, S.; Zhang, H.; Fanelli, D. L. Applications of the Sulfinimine-Mediated Asymmetric Strecker Synthesis to the Synthesis of Alkyl-Amino Acids. J. Org. Chem. 2000, 65, 8704-8708.
(208) Garcia Ruano, J.; Fernandez, I.; Prado Catalina, M. d.; Cruz, A. A. Asymmetric aziridination by reaction of chiral N -sulfinylimines with sulfur ylides: Stereoselectivity improvement by use of tert-butylsulfinyl group as chiral auxiliary. Tetrahedron: Asymmetry 1996, 7, 3407-3414.
(209) Harmata, M.; Schlemper, E. O. Lewis acid mediated reactions of N-phenyl-(4-methylphenyl)-sulfoximidoyl chloride with alkynes. A novel route to benzothiazines. Tetrahedron Lett. 1987, 28, 5997-6000.
(210) Harmata, M.; Claassen, R. J.; Barnes, C. L. Lewis acid mediated reaction of N-phenyl-S-(4-methylphenyl)sulfoximidoyl chloride with alkenes. J. Org. Chem. 1991, 56, 5059-5062.
(211) Harmata, M.; Kahraman, M.; Jones, D. E.; Pavri, N.; Weatherwax, S. E. The reaction of N-phenylsulfonimidoyl chloride with trimethylsilylethene. A new route to 2-alkenylanilines. Tetrahedron 1998, 54, 9995-10006.
(212) Corey, E. J.; Durst, T. Synthesis of olefins and ketones from carbonyl compounds and sulfinamides. J. Am. Chem. Soc. 1968, 90, 5548-5552.
(213) Chapuis, C.; Kawecki, R.; Urbanczyk-Lipkowska, Z. Stereoselectivity in the cycloaddition of cyclopentadiene to N -fumaroyl-[2R,S(R)]-bornane-10,2-sulfinamide monomethyl ester. Helv. Chim. Acta 2001, 84, 579-588.
(214) Wenschuh, E.; Fritzsche, B. Preparation and reactivity of lithium sulfinamides. Journal fuer Praktische Chemie (Leipzig) 1970, 312, 129.
(215) Jordi Sol? Marc Rev 閂, A. R. X. V. N-Phosphino Sulfinamide Ligands: An Efficient Manner To Combine Sulfur Chirality and Phosphorus Coordination Behavior. Angew. Chem. Int. Ed. 2007, 46, 5020-5023.
(216) Pei, D.; Wang, Z.; Wei, S.; Zhang, Y.; Sun, J. S-Chiral Sulfinamides as Highly Enantioselective Organocatalysts. Org. Lett. 2006, 8, 5913-5915.
(217) Mock, W. L.; Nugent, R. M. Stereochemical course of the fragmentation of allylsulfinic acids. J. Org. Chem. 1978, 43, 3433-3434.
(218) Garigipati, R. S.; Freyer, A. J.; Whittle, R. R.; Weinreb, S. M. Diastereoselective synthesis of unsaturated vicinal amino alcohols via Diels-Alder reactions of N-sulfinyl dienophiles. J. Am. Chem. Soc. 1984, 106, 7861-7867.
(219) Brown, H. C.; Kim, S. C.; Krishnamurthy, S. A novel regiospecific alkylation of the aromatic nucleus via lithium trialkylborohydrides and aryl sulfones. Organometallics 1983, 2, 779-780.
(220) Harmata, M.; Hong, X. The Intramolecular, Stereoselective Addition of Sulfoximine Carbanions to α, β-Unsaturated Esters. J. Am. Chem. Soc. 2003, 125, $5754-$ 5756.
(221) Marcantoni, E.; Cingolani, S.; Bartoli, G.; Bosco, M.; Sambri, L. Efficient Diastereoselective Syntheses of erythro- or threo- α-Alkyl- β-hydroxy Sulfones by Reductions of α-Alkyl- β-keto Sulfones with TiCl4/BH3 or LiEt3BH/CeCl3, Respectively. J. Org. Chem. 1998, 63, 3624-3630.
(222) Hutchins, R. O.; Learn, K. Regio- and stereoselective reductive replacement of allylic oxygen, sulfur, and selenium functional groups by hydride via catalytic activation by palladium(0) complexes. J. Org. Chem. 1982, 47, 4380-4382.
(223) Mohri, M.; Kinoshita, H.; Inomata, K.; Kotake, H. Palladium-catalyzed regio- and stereoselective desulfonylation of allylic sulfones with lithium triethylhydroborate. Application to the synthesis of squalene. Chem. Lett. 1985, 451-4.
(224) Young, W. B.; Masters, J. J.; Danishefsky, S. Stereocontrolled Syntheses of C-Aryl Taxanes By Intramolecular Heck Olefination. Novel Instances of Diastereofacial Guidance By Proximal Coordination. J. Am. Chem. Soc. 1995, 117, 52285234.
(225) De Fonseka, K. K.; McCullough, J. J.; Yarwood, A. J. Products and transients in the photolysis of methylated 2-indanones. Observation and kinetics of oxylylenes. J. Am. Chem. Soc. 1979, 101, 3277-3282.
(226) Hwang, K. J. N-(Trimethylsilyl)methylphenylsulfoximine: a convenient intermediate for the preparation of functionalized sulfoximines. J. Org. Chem. 1986, 51, 99-101.
(227) Pearson, A. J.; Blystone, S. L.; Nar, H.; Pinkerton, A. A.; Roden, B. A.; Yoon, J. A study of asymmetric induction during the addition of enolate nucleophiles, having sulfoximine chiral auxiliaries, to diene-molybdenum and dienyliron complexes. J. Am. Chem. Soc. 1989, 111, 134-144.
(228) Bolm, C.; Villar, H. Ring-closing metathesis (RCM) for the synthesis of cyclic sulfoximines. Synthesis 2005, 1421-1424.

VITA

Pinguan Zheng was born on November $28^{\text {th }}$, 1977 in Changle, China. He attended Changle No. 1 Middle School in 1992. He went to Yunnan University to study applied chemistry and reveived a B. S. degree in 1999. He was accepted in the graduate program and joined the professor Hongyou Zhu and professor Fuchu Liu in the same university. He received a M.S. in organic chemistry in 2002. He was accepted by the chemistry department at University of Missouri-Columbia. Since then, he had worked under the guidance of professor Michale Harmata and received a Ph. D. in organic chemistry in December 2008.

[^0]: ${ }^{\text {a }}$ Yields were calculated based on the mass of the mixture of alkylated product and 251 and molecular ratios that obtained from NMR integration and mass of the mixture. ${ }^{\text {b }}$ Isolated yield.

[^1]: ${ }^{a}$ GC percentage was determined by GC-MS analysis of crude reaction mixture.

[^2]: ${ }^{\text {a }}$ Percentage conversion was determined by GC-MS.

[^3]:
 seco-pseudopterosin aglycone (280)

 tert-hydroxyelisabethadione
 (285)

 erogorgiaene (282)

 hydroxyerogorgiaene (283)

 elisabethadione (284)

 seco-hydroxyelisabethadione
 (286)

[^4]:

[^5]: 1 H NMR
 $\mathrm{PZ}-\mathrm{IV}-60-\mathrm{A} 1$

[^6]: 13C NMR
 PZ-IV-98-A1

[^7]:

[^8]: $1 H \mathrm{NMR}$
 $\mathrm{PZ}-I V-58-\mathrm{A} 1$

[^9]: 튼 틈Nㅗㅁ도듬ָㅗ

