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ABSTRACT

HTTP based online video streaming services have been temngysdominating
the online traffic for the past few years. Measuring and inmjprg the performance of
these services is an important challenge. Traditional iQual-Service (QoS) metrics
such as packet loss, jitter and delay which were used forarkea services are not easily
understood by the users. Instead, Quality-of-ExperieQué=) metrics which capture the
overall satisfaction are more suitable for measuring thaityuas perceived by the users.
However, these QoE metrics have not yet been standardizetham measurement and
improvement poses unique challenges. In this work we firssgmt a comprehensive
survey of the different set of QOE metrics and the measuremethodologies suitable
for HTTP based online video streaming services.

We then present our active QOE measurementRgtdmothat measures the QoE
of YouTube videos. A case study on the measurement of QoE wfoe videos when



accessed by residential users from three different Inte®eevice Providers (ISP) in a
metropolitan area is discussed. This is the first work thatdwlected QoE data from
actual residential users using active measurements foffmeivideos. Based on these
measurements we were able to study and compare the QoE oluewideos across
multiple ISPs. We also were able to correlate the QoE obdemith the server clusters
used for the different users. Based on this correlation we able to identify the server
clusters that were experiencing diminished QoE.

Dynamic Adaptive Streaming over HTTP (DASH) is an HTTP basgddo stream-
ing that enables the video players to adapt the video quadised on the network con-
ditions. We next present a rate adaptation algorithm thataves the QoE of DASH
video streaming services that selects the most optimunovigelity. With DASH the
video server hosts multiple representation of the sameovéshel each representation is
divided into small segments of constant playback durafidve DASH player downloads
the appropriate representation based on the network ¢onslithus, adapting the video
quality to match the conditions. Currently deployed AdepBitrate (ABR) algorithms
use throughput and buffer occupancy to predict segmertt tetees. These algorithms
assume that the segments are of equal size. However, due émtloding schemes em-
ployed this assumption does not hold. In order to overcomgdlimitations, we propose
a novel Segment Aware Rate Adaptation algorithm (SARA) ldnadrages the knowledge

of the segment size variations to improve the predictionegigent fetch times. Using



an emulated player in a geographically distributed virhegtivork setup, we compare the
performance of SARA with existing ABR algorithms. We deminate that SARA helps

to improve the QoE of the DASH video streaming with improvedwergence time, better
bitrate switching performance and better video quality. A¢® show that unlike the ex-
isting adaptation schemes, SARA provides a consistent @eEpective of the segment

size distributions.
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CHAPTER 1
INTRODUCTION

Online video streaming services have become the most pojputa of entertain-
ment in the recent years. With Video On Demand (VMoD) seryites users are able to
watch varied contents: user-generated videos, movieshdws, sports etc., from multi-
ple different platforms-laptop, PC, televisions, gamesabdes, mobile phones and tablets.
Over the last few years, the video streaming services hagated for most of the prime
time Internet download traffic. In North America alone, thp video streaming services,
Netflix and YouTube, accounted for 43% of the total peak doadltraffic in 2014. If
other VoD services such as Hulu and Amazon video servicesoarsdered, this percent-
age rises to as high as 63%. A similar trend could be foundergtbbal Internet traffic.
Globally, video streaming traffic is expected to accountdd?o of the consumer traffic
on the Internet by 2019, up from 64% in 2014 [24].

The increasing dominance of video traffic over other Intetredfic could soon
make it a prime online service for the average user. More amie msers are relying on
web-based services for their video entertainment needs. treimd of increasing cord-
cutters (users that cancel cable or satellite TV subsonpttould also be correlated to
these trends. The number of devices that are connected totdraet has also been in-
creasing. Most consumer devices are now connected to thiméttand have the capabil-

ities for media playback. These devices are not limited éontfobile phones, televisions,



game consoles, tablets, or watches. With the advent of HTAded video streaming
services, any device with a web browser can be used for vitdearsing.

In order to ensure the satisfaction of the existing usergthas been an increasing
interest from the video service providers, Internet SerAooviders (ISPs) and even wire-
less network providers to develop tools and techniquesdhiaidt measure and improve
the user’s satisfaction. Measurement of existing qualisesvices is an important factor
in understanding the current system’s capabilities armltais assists the engineers in the
network and system forecasting.

Traditionally, the Quality of Service (Qo0S) metrics haveebaised to study the
performance of online services and networked elementslitQoéService(QoS) as de-
fined by ITU [45] reflects the performance of the network as@@mponents. It measures
the network’s ability to satisfy the needs of the service iarilus, a network-centric met-
ric. The common QoS metrics used are throughput, bandwpidtbtket loss, delay, or
jitter. QoS metrics have been found to be more suitable tesareahe performance and
reliability of the network elements. However, QoS metricsmbt capture the quality of
service perceived by the user. The service perceived bysteisisubjective and is influ-
enced by not only the network components but also severaf otinfounding end-to-end
factors. These confounding factors include the effecthefdervice infrastructure, ter-
minal, client hardware and operating system, system load tlee user’s psychological
and environmental settings. In order to understand thésusatisfaction with a service
it, is necessary to consider the effects of these end-tazenfbunding factors on the end

user’s perception of quality.



1.1 Quality of Experience (QOE)

Quiality-of-Experience (QoE) as defined by [44, 85] is a wstric metric that
captures the overall acceptability of the service and ohesithe end-to-end factors. QoE
has also been defined as the degree of delight or annoyanegemnqed by a user of an
application or service [22]. QOoE, thus, measures the padoce as subjectively per-
ceived by the user. However, QoE and QoS are not mutuallysixd; rather, QoE could
be considered as an extension to QoS. QOE tries to captupetf@mance of a service
with metrics that could be directly communicated by the user

Typically, VoD streaming sessions last from several miautehours. If there
is a noticeable delay after a video link is clicked, or if #nés an interruption during
the playback or any perceivable drop in the visual qualityhef video, these can affect
the perceived quality of the user. The users of video stnegreervices usually have a
different set of expectations as compared to other typesbfservices.

The factors that affect the QoE for video steaming servicesat easy to predict
or measure. There has been significant work in identifyimgéhfactors and developing
tools to measure the metrics that could used to estimate ¢lie @We present a compre-
hensive survey of the various factors and the methods tedieging used to measure the

QOE in Chapter 2.

1.2 HTTP Based Video Streaming Techniques

Compared to an average HTML web-page, the size of a typidabviile is signif-

icantly larger. The average web page size is found to be 1.9riMBctober, 2014 [5]. In



2007, based on their measurements, the authors in [37] finatdhe average YouTube
video size was 10 MB. Since then, YouTube has increased tix@mae video file size
to 2 GB from 100 MB and also started hosting HD videos. The Hileus hosted by
YouTube have an average size of 32 MB per minute [60]. Usiegemumbers as ref-
erence, a user would need to wait for significantly longeatans if the users’ video
players were to download the entire file before starting thghack. This clearly would
affect the users’ QoE. Instead, online video streamingisesvare set up in such a way
that users can start viewing the content once the initial gfathe video is downloaded,
without having to wait for the video to be completely dowrded.

The use of Hyper Text Transfer Protocol (HTTP) for videoatnéng has become
very popular over the last few years. Unlike the traditiosiaéaming protocols, viz.,
Real-Time Streaming Protocol, Real-Time Media Streamirajdeol etc. [54], HTTP is
a stateless protocol. For HTTP based video services it isaptired to have dedicated
video servers. With HTTP the content providers are ableuse¢he existing web-servers,
caches and content-delivery architectures. The statefgssach of delivery also reduces
the load on the servers by avoiding persistent feedbaclksladfh the client and enables
the system to scale better. HTTP natively and easily suppairroring and edge caching,
thus enabling large-scale expansion if necessary. HTTIBasxadely enabled across Net-
work Address Translation (NAT) devices and firewalls. Thegutious nature of devices
compatible with HTTP makes it easier to port the video play@o multiple client plat-
forms. HTTP based video streaming techniques are of twostypegressive download

and Dynamic Adaptive Streaming over HTTP (DASH).



1.2.1 Progressive Download

The progressive download streaming technique refers todhenued download
of a video file, while the video player plays out the video emttreceived so far. In
Progressive Download Streamirtgchniques, the multimedia file is downloaded like a
regular file using HTTP over TCP from a web server hosting trgent. With progressive
download, there is no direct feedback loop between the tched the server. On the
client-side, the entire video file is being downloaded askjyias possible and stored
on the local disk. However, in order to reduce the amount td dalivered to the user
and to reduce the network resources utilized, the serderesiuld implement certain flow
control mechanisms. The video player (typically an embdddash player) starts playing
the video (for the data received so far) while it is still bpatownloaded.

Using HTTP over TCP for video transfers ensures reliabla dalivery, but in
the case of low bandwidth availability or excessive pacssés during the transmission,
the playback may be interrupted. By using HTTP, the compjexn the server-side is
reduced and the clients are not affected by a firewall or ayprelowever, downloading
the media as fast as fast as possible, could lead to wastedwiudth if the user decides
to quit before completely viewing the entire video.

With progressive download, an embeddddsh Playeris used to play the video
directly from any suitable web browser [92]. The player dtwaals the video as a regular
file and stores itin a temporary folder. The downloaded videas usually an interleaved
stream of audio and video blocks with tags to indicate the ttwhich they are supposed

to be played. These tags help the Flash Player to skip badkevaiorward within the



video file already downloaded. Since the entire video isstdwcally, the backward skip
is simply a local operation. In case of a forward skip to a fi@siin the video that has
not yet been downloaded, the Flash Player sends a new HTTBsigith the byte-range
indicating the new position to the server. Although the pesgive download technique
has been traditionally used for VoD, it could also be usediyercontent as well.

Since the server does not maintain any state, the playetdsaiine video playback
in two stages to ensure smooth playback. During the initedes, the player waits for a
certain period of time known as theitial Buffering period, during which the content that
can play the first 30 to 40 seconds of playback is downloadddsasas possible from
the server [36]. Once thiaitial buffer is filled, the video playback starts. By delaying
the start of the playback, the player avoids the effect okeadelay and jitter on the
playback. The content is continuously downloaded and bedfevhile it is played by
the Flash player. If the difference between the amount ofestrplayed and the content
downloaded falls below a certain threshold, the video phailis paused resulting in an
interruption. The video playback remains interruptedluhg threshold is crossed again
after which the playback resumes. The threshold valuesiftarent stages of buffer-
ing is not standardized and could vary across various im@htations of the progressive
download video player.

The servers tend to employ flow control mechanisms, to imgptiog initial buffer-
ing time and also reduce the amount of unnecessary datderatsin case the user de-

cides to quit before watching the entire video [15]. Progiresdownload servers tend to



send the video as fast as possible during the initial stagisd settling down to a con-
stant sending rate. The sending rate during this steadyepblasaintained at or slightly
above the playback speed to ensure smooth playback.

Since the video could be accessed by users from differediaae platforms, it
is necessary for the servers to be able to support varioosatsr Each of these different
formats are stored as separate files with a different URL§ [B&fore initializing the
video streaming, the default format and the resolution aterdhined by the player and
based on the hardware platform and screen resolution gettsuch as full-screen and
wide screen). The selected format is typically fixed for thiére duration of the playback.
However, the player supports the ability to automaticaligroge the format/resolution of
the playback depending on the network conditions. Thig shihitiated by the player
at the user-end and results in the new video format file beavgntbaded. The popular
progressive download video streaming services includelba, Dailymotion, Vimeo
etc. At the time of writing this paper, YouTube has startegpguting most of its videos
using MPEG-DASH (discussed in Section 1.2.2) in additioptogressive download

[63].

1.2.2 Dynamic Adaptive Streaming Over HTTP (DASH)

Progressive download has the advantages of HTTP-basednstigz however, it
does not have the capability to adapt the video streamirggdating playback. Any
perturbations in the network during playback leads to Wugtarvation which results in

playback interruptions. The Dynamic Adaptive Streaming@¥T TP (DASH) technique



was proposed to support adaptive streaming over HTTP [91DASH server does not
maintain any state information during the session. Thead#gptation is handled at the
client-end. By offloading the decision making process ohwdlient-end, the system
is able to scale well while still providing dynamic adaptsteeaming. It was observed
in [102] that the above advantages of DASH resulted in a b&td for the users when
compared to the progressive download techniques.

DASH considers a media file to be a collection of several campts: audio,
video, and subtitles that are stored separately on the DASY¥es These components
are delivered to the user independently but combined atiie of the playback [91].
Each of these components is further divided into smallenkbealledsegmentand each
segmentould be encoded into multiple versions. Eveegmentis identified by a unique
URL. The different versions of the same media file are calguiesentationsDifferent
representationsary in bit rate, resolution, format, language, and otherabteristics.

When the user starts playing a video, the client first rettsev Media Presentation
Description (MPD) file that is a manifest with the list of dlt availableepresentations
suggested bandwidth for eadkpresentationvideo dimensions, the digital rights man-
agement (DRM) information, the location of easegmenbn the network (URL) and
other attributes of the media file. A sample MPD file can be tbimAppendix A. In
order to play the video, not all representations need to ppated by the client device.

At the beginning of a session after downloading the MPD fite, Yideo player
sends an HTTP request for the fisggmenbdf the video using its URL. Typically, the

segmentvith the lowest resolution is requested first. While the fasgmenis being



downloaded, the player monitors factors such as throughleiday, and client-buffer sta-
tus. [18] reviews several tools that could be used by the DASEaming services to
estimate the bandwidth. Based on these factors, end-deajabilities, and the user’s
preferences, the DASH player employs adaptation algostttndetermine the most suit-
able representation for the next segment [67, 73]. The plélyes, decides to either stay
with the same representation or shift to a higher or lowerasgntation. The represen-
tation is selected to play the best possible quality of tldeeiwith the least number of
interruptions. Once the decision is made, a new HTTP redmiesht for the nexdegment
Thus, the DASH player is able to adapt the quality of the videthe boundary
of each segment in order to ensure uninterrupted playbdoke SDASH retains the ad-
vantages of HTTP services while providing adaptive stragntihas gained tremendous
popularity over the last few years. Currently the top vidgeamning services such as

Netflix, YouTube, and Hulu use DASH streaming [10].
1.3 Scope and Contribution of this Dissertation

In this dissertation, we focus on two aspects of QOE managefmeonline video
streaming services. First, is the measurement of QoE fan@rideos and the second is
the improvement of QoE for online video streaming servicBse contributions of this

dissertation are as follows:

e Although the importance of QOE as a measure has been ggnagadled upon, the
factors affecting QoE and the metrics used to capture tleetsfbf these factors has

not been standardized yet. There have been several toasethddologies used to



measure the QOE for online video services. As an effort té/uhese approaches
we have conducted an extensive survey of the existingtiteran measurement of
QoE. This work has been published in [54] and a part of thigesuis presented as

related work in Chapter 2

e We contributed to the development of a user-end active nneamnt tool Pytomo
to measure the QoOE of the popular video streaming servicalTiYoe. A paper

describing this tool was published in [51] and is briefly désed in Chapter 3.

e We usedPytomato study the QoE and the content delivery policies for usemnsss
different ISPs in a metropolitan area. We present this datecase study in Chapter

4. This work was published in [52].

e We propose the Segment Aware Rate Adaptation (SARA) alguaritor DASH
streaming services to improve the QOE in terms of bitrateching events, video
quality and convergence times. This algorithm and the miakry evaluations have

been published in [53,56]. The algorithm is presented inpB#res.

e We also present a study of the comparison of performance &/Swith existing
throughput based and buffer based rate adaptation algwrith published in [55]

and is is presented in Chapter 7.

1.4 Additional Contributions

In addition to our work on QOE as presented in this dissematie have collabo-

rated on a number of research projects that resulted in tlogviag publications:

10



A comparative study on the server delivery policies and teecgived QoE of

YouTube video in US and Europe was published in [79].

e Apart from the measurement and improvement of QoE at thears#rwe have
also proposed an in-network efficient caching frameworkegirat increasing the

cache-hits and reducing the cache-misses, which was padlis [50].

e An experimental study on dynamic network reconfiguratioawirtualized network
environment using autonomic management was performed Iiabooation with

Xuan Liu and was published in [70].

e In [19, 71], the Secure and Resilient Virtual Trust RoutiBgRVIiTR) framework
design, implementation, and and a testbed that enablesdesrtonstrate SeRVIiTR

was presented.
1.5 Organization

The rest of this dissertation is organized as follows: Céaftpresents an ex-
tensive literature survey of different categories of QoEriog and the various types of
measurement techniques proposed in literature. In Ch8ptee present our client-end
active measurement tool designed to measure the QoE of Y&mideos. A measure-
ment study that useBytomoto study the QoE and server policies across different ISPs
in the same metropolitan area is presented in Chapter 4r, lva¢epropose a novel Seg-
ment Aware Rate Adaptation (SARA) algorithm for DASH videeaming in Chapter 6

followed by an comparative evaluation of SARA in Chapter ha@ter 8 concludes this

11



dissertation.

12



CHAPTER 2

MEASUREMENT OF QOE FOR ONLINE VIDEO STREAMING SERVICES: A
LITERATURE SURVEY

In traditional video broadcast services QoE metrics werasueed by comparing
the reference with the outcome at the user-end. Referefieetsethe undistorted content
in its original form at the server end. The outcome receivettha client-end could be
potentially distorted or delayed. Based on the amount ajrinfition available about
the reference the QoE metrics for video services have beesified into the following

categories [33]:

e Full reference(FR) metrics: Complete copies of the reference and outcome are
available to evaluate the quality of the video received auer in comparison with
the original content. This enables detailed subjectiveadctive comparisons of
the videos. These metrics are best suited for traditioradizasting and television
systems which have dedicated delivery networks. A few exesnpf FR metrics
are Peak Signal to Noise Ratio (PSNR) [86], Structural Sintyf (SSIM) [99], and

Video Quality Metric (VQM) [86].

e Noreference(NR) metrics: Only the outcome is available and the quality is to be
estimated without the reference stream. These types ofamane more applicable
to online services, where the delivery network is sharedthgreservices. In video

streaming services, it is hard to determine if the discrepamthe quality is due to

13



Table 1: Classification of QoE Metrics for Online Videos

Objective Metrics Subjective Metrics
Playback Start Time
Number of Interruptions
Duration of Interruptions Mean Opinion Score (MOS)
Quality of Video File
Bitrate Switching Events
User Engagement

the quality of the reference or due to the intermediate ehdgne

e Reduced reference(RR) metrics: The same set of parameters are derived from
both the reference and the outcome. These parameters aalithe application

layer: bit-rate, frame-rate or at the network layer: padkss.

The Full reference and Reduced Reference metrics are riabkufor online me-
dia streaming services. This is due to the distance betweealient and the server and
also due to lack of separate feedback channels. Hence, NwaRek metrics are most

suitable online streaming services.

2.1 Typesof QoE Metricsfor Online Video Streaming Services

Depending on the type of measurement mechanisms emplde@dE metrics

could also be classified into objective and subjective roe{85](Table 1).

2.1.1 Objective QOE Metrics

Objective QOE metrics are metrics that can be quantified antautomated mea-

surement tool. The following are the common objective QoHricsethat capture the
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factors that influence the user’s QoE.

1. Playback Start Time Theplayback start timer theinitial delay is the time taken
from the moment a user clicks the video link until the videaylack begins. The
playback start timeypically includes the time taken to download the HTML page
and the related objects, download and load the embedded pldger plugin, and
buffer the initial part of the video. In the case of streamirtdgos, the player starts
playing the video only after a part of the file is downloadeall@dInitial Buffering).
By doing so, the player overcomes the effect of the delay diea jncurred during
the data transfer on the video playback. Ttayback start timas an important
factor that affects the QoE, and hence, certain VoD servisesh as YouTube)
usually tend to push data at higher rates initially and settlwn for a lower rate
later [83]. It was observed in [59] that playback start tina€ la significant influence
on user retainment. If the playback start time extends byentloan 2 seconds it
could result in the viewer abandoning the video completBBj.[ Playback start

time can be used to quantify the QoE in any type of video stiegum

2. Number of Interruptions An interruption occurs when the playback of the video
is temporarily stalled. A streaming player downloads thgahparts of the multi-
media content into a playout buffer before the video hagexdgslaying. As long
as the rate at which the buffer is being filled is greater thaaqual to the rate at
which the video is played, the playback is not interruptéthe download rate falls

below the playback rate, the buffer gets depleted and thepiaaits for the buffer
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to be partially filled before resuming the playback; thistwemne results in an in-
terruption of the playback. The interruption is thus a dimansequence of video
player’s buffer starvation The interruptions are also referred to (as)buffering
eventsaand the frequency with which the buffering events occur iedahebuffer-
ing frequency The re-buffering could also be a consequence of user tttera
When a user skips to a different part of the video or changequhlity of the video
during the playback, the player needs to fetch the requestetgnt from the server
and then continue the playback from the desired positiorthigicase, the player

again waits for a certain buffering period before resumimgglayback.

In case of DASH, if the player observes any drop in the rengiviate, it may
automatically switch to a lower bitrate so that the videg/pleck is not interrupted.
However, if the network condition becomes significantly blaat even the lowest
bitrate content cannot be downloaded in time, then the usatdixsee interruptions.
The interruption lasts until the playout buffer is pariydilled with the content of
the desired bitrate. These interruptions or stall eventsnduhe playback lead to
a poor user experience [39]. It is found that the number @drimptions have a
significant impact on the QoE [33]. Users who experiencedenaterruptions in
the video tend to watch the video for shorter durations [58] are likely to be

dissatisfied in the case of four or more interruptions foewis [40].

. Duration of Interruptions Apart from the number of times the playback is inter-
rupted, the duration of each interruption (“buffering dion”) could also effect

the perceived QOE. If the interruption duration is one sé¢dhe users are less
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dissatisfied when compared to 3 seconds of interruptionewkdtching YouTube
videos [39, 40]. In [81], it was concluded that the viewersfer a single but long
stall event instead of several short stall events. Heneeeffiect of the duration of

the interruptions and the number of interruptions on the Quidd vary.

. Quality of the Video File The quality of a video stream is based on the encoding
rate. The encoding rate is the average data required to playsecond of the
video. The encoding rate of the video does affect the QoE efusers [64]. A
higher quality video (HD) would usually require a larger ambof data for each
frame and hence, results in a higher encoding rate. Progeedswnload streams
typically stick to the same encoding rate throughout thatilom of the playback
irrespective of the change in the network quality. Adapstreaming techniques,
like Real-Time video streaming and DASH, vary the encodetg depending on

the network parameters.

There are other video characteristics that have been usegptesent the quality
of the video such as the contrast, blurring [77], and bloeg:[32, 65, 100, 103].
Blockiness manifests as a block appearing in the video. daised by the block-
based coding schemes such as H.261, H.263, MPEG-1. Thesevatbo charac-

teristics have been mainly used in the traditional vide@btoasting.

. Bitrate Switching Events The Bitrate switching events are related to the Dynamic
Adaptive Streaming over HTTP technique (DASH). For DASHead, the player

tends to pick a lower initial startup and gradually keepsaasing the quality before
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settling at a suitable bitrate. The bitrate could later iced when the rate of
the playback exceeds the buffering rate due to degradedorietonditions. By
lowering the quality of the video streaming, the player mmizies the interruptions
during the playback. On the other hand, when the networkitiond improve, the
bitrate is increased. Thus bitrate switching events coaldftpositive or negative
polarity. A bitrate switching event where the level of bigras increased is called
Positive switchwhereas a decrease in the existing bitrate is cilleghtive switch
However, frequent switching in bitrates can degrade thesu@eE [102]. Hence, it
Is necessary to ensure that the number of bitrate switchegts are reduced. The
startup bitrate, number of bitrate switching events, ardabverage bitrate affect
the QOE [64,102]. Different polarities of bitrate switchiavents can have varying
effects on the QOE. Users were found to be more critical tdsregative switching

events when compared Rositive switchevents [26].

6. Convergence Time is another objective metric related to DASH video streaming
services. As discussed in Chapter 1.2.2, the DASH playesdtee playback with
lowest video quality and then gradually changes to the agptimuality (preferably
highest quality). The bitrate switching occurs at the bamdf each segment.
Depending on the rate adaptation scheme used and the netaratkions, the time
taken for the player from starting playback to reaching tlghést quality could
vary and this duration is considered as @@vergence Timé& he QoE of the users

can be improved by minimizing th@onvergence Timir DASH videos.

7. User Engagement User Engagement reflects the user involvement and interacti
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with the video. User engagement is measured in terms of thmbauof views and
the play time of the video. However, the play time might ndkee the amount of
time the user actually spends watching the video withouirgetlistracted. It is
hard to quantify the user’s focus which is a subjective metfihe users who are
satisfied with the content and the QoE of the streaming se$sim to spend more

time watching the video [31].

2.1.2 Subjective QoE Metrics

Subjective metrics are the QoE metrics based on collectutg directly from the
users based on their experience with the service. A limiegdbs human subjects are
exposed to the video service in a controlled environmentaardasked to rate them on
a linear scale. Due to the use of actual human subjects, tingsacould be affected by
several physical and psychological confounding factor le@nce, subject to user-bias.
The confounding factors can be broadly classified as (1)deeendent: user interest,
purpose (educational, entertainment) (2) content-bagedre, age of the content and
popularity; or (3) device-dependent: quality of the Inttrononnection, screen size, and
the capabilities of the device. Such subjective metricssaseeptible to bias and hence,
can vary from one subject to another. The best way to measeffects of these factors
is to collect direct feedback from multiple users using sitsampling methodologies and

to use statistical analysis techniques to avoid any bias.

1. Mean Opinion Score(MOS) TheMean Opinion ScoréMOS) is the most popular

subjective metric measurement scale that is often useddatify these factors.
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Users watch videos and rate them on a five-point discrete:sdabad, 2-poor,
3-fair, 4-good, and 5-excellent. The use of the MOS as a stibjgemetric has
become the de facto standard for subjective assessmerst. hibwever, not easy
to automate the MOS measurement since the influence of tharhpsychological
factors and the user bias needs to be considered. In ordeedicpthe MOS, a
good understanding about the psychology of the users tagbtbe MOS ratings

IS necessary.
2.2 Measurement of QoE Using Client-Side I nstrumentation

To precisely capture the QOE as experienced by the user ntadigs have pro-
posed using tools closer to the client-end to measure tleetlg metrics. These metrics
are collected by using measurement tools that run on thedeseces. Depending on
how the data is collected by the tool, the user-end measunestiedies can be further

classified into two categories: measurement based on acti/@assive analysis

2.2.1 Measurements Based on Passive Analysis:

Passive analysis tools collect QoE metrics for the videasdhe being watched
by the users. These tools run in the background and the QoEcmate obtained in
real-time by analyzing the video streams being played. imxdase, the videos for which
the QOE is measured is purely dependent on the interest afsttireand the tool has no
control over the selection or the playback duration of tlteus.

In [92], the authors developed a client side passive meammetool, YOMO that

collects the QoE metrics for progressive download videpsci§ically YouTube videos.
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YOMO estimated the number of interruptions occurring whibdching a YouTube video
by tracking the status of the playout buffer that reflectsttital time, saygs, that the
playback can continue in case of an interruption in the doaal Here/s is the differ-
ence between the time in which the content could be played fhe playout buffer,l”
and the current play time of the videb, In caseg is smaller than a thresholg,, the
playback is interrupted. In case of YouTube, they found thatAPI waited for a certain
duration from the time the first byte of the video is downloddefore the playback is
started. However, this duration was observed to be incohstad it did not have any
correlation with the video characteristics. The accurady which the duration of the
interruption is estimated depended on the accuracy in ashgt, which is also the time
since the playback started. The authors proposed two metbastimate. In Method 1
it was assumed that the video playback began as soon as tHédsh Video (FLV) tag
was downloaded. The accuracy of this method was found to rieettyi related to the
bandwidth. In this method, the error was sufficiently low booadband connections. In
Method 2 YOMO uses a Firefox plugin that retrievédrom the YouTube player. This
method resulted in an estimation independent of the bartdwidhe maximal error in this
method was 0.5 seconds whereas it was 20 seconds in the cslsev@onnections with
Method 1

In [30], the application layer metrics are used to estimage@QoE ofWindows
Media Playerusers. They developed a wrapper for the player to collecagpdication
layer metrics such as the number of packets lost, recovanelyeceived, the current data

rate of the stream, and buffer starvation, if any. The datected from the player was
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sent to a centralized location to analyze and report on #iéssts. The current work
used a distributed architecture that consisted of assesssaevers, media clients, data
collection points, and report servers. The data colleatias scheduled and collected by
the central assessment servers. The playback metricsteallfom the application were
transferred to the data collection points and sent to thesassent servers, where the data
was analyzed. The analyzed results were sent to the repgersavhere the analyzed
data was made available to the customers. They demonsthatethe application layer
metric, player buffer starvation, could be used as an itdic predict the playback
interruptions. A similar approach is taken in [28] where thetrics such as the number
of packets lost and retransmitted at the application layernaeasured and compared
against similar metrics for a reference stream to predetuer-perceived quality. The
authors in [28] concluded that the re-buffering frequenay mitial buffering time are the
main factors affecting the QoE. In [29], the authors extehidheir earlier study by also
collecting theinitial buffering period which is equal to thé’layback Start Timelong
with other application layer metrics to predict the MOSngs for the videos.

In [74,75], the authors used client-side instrumentat@rHTTP based progres-
sive download video streaming. The instrument kept tracthefuser initiated actions
such as pausing, resuming playback, jumping within a vided, screen switching, etc.
The QoE metrics such as initial buffering time, mean buffgiduration, re-buffering fre-
guency, and bitrate switching were measured for the videasting sessions. Apart from
these objective metrics, the users were also asked to mtedéos using the MOS scale.

The objective QoE metrics and the subjective feedback flrenusers thus collected were
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used to correlate the objective metrics with the MOS. Sintddahe previous studies, they
concluded that the re-buffering frequency is the main fiaati@cting the QoE in terms of
the MOS.

In [69], client-side instrumentation was used to collededeom 50 million view-
ers for 200 million views of both VoD and live streaming sees that were served by 91
different content providers. They used the QoE metrics sigri-buffering frequency,
playback start time, average bitrate, and failure to stadeo. Using these metrics, three
issues that could result in poor video quality were iderdifi€l) client-side bandwidth
variations during the playback, (2) variation in the CDNfpemnance across the time and
geographic regions, and (3) heavily loaded ISPs. In ordewvéncome these issues, they
proposed a video control plane that utilized measuremewefeedback on the perfor-
mance. The feedback enabled the control plane to dynamaxdgipt the video parameters
such as the CDN that was used and the bitrate to improve tHigyqua

In [31], client-side instrumentation was used to measusénitial playback time,
buffering ratio (defined as the ratio between buffering teme play time), buffering fre-
quency, and average bitrafer different types of videos: long, short, and live. These
videos were accessed from multiple different content plens, that used varied stream-
ing techniques. A quantitative analysis was done on theetaion between the three
different factors: QOE metrics, content type, and user gegeent. Based on the mea-
surements, it was concluded that the buffering ratio imgthie user-engagement for all
content types whereas the bitrate mainly affected the eisgagement for live streaming

videos. They also determined that timitial buffering periodwas critical for the user
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engagement.

In the client-side passive measurement tools presentecatiee authors devel-
oped wrappers around the players for different streamimgcss to capture different
metrics. They either polled the video player or observedtifeer status of the player to
estimate the status of the video playback. The data calledati such tools requires the

active involvement of the users.

2.2.2 Measurements Based on Active Analysis:

In measurements based on active analysis, the requestsefoideos are gener-
ated artificially and the QOE metrics for these videos arkectdd. Active measurements
circumvent the need for a user to sit and watch the entiref sed@os that need to be eval-
uated. Active measurement approaches typically use aswtebots that crawl through
the video streaming websites and collect the QOE metrica targe number of videos.
The advantage of using such tools is that they can be easiytosnmeasure the QoE for
a large number of videos and do not require any user participahus eliminating any
subjective bias.

In [83], the latency of three video services, YouTube, Daibtion, and Metacafe,
was measured and compared using active measurements. @atbscripts were run
on several PlanetLab nodes to fetch 1 MB of each video in 50 ideiments. They
computed the mean service delay for a video by averagingahece delays of three
consecutive 1 MB chunks to eliminate the effect of the sizhefiiles. This service delay,

referred to as thencremental service delayas independent of the client-side application
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as it did not account for the flow control or the buffering stigeused. By comparing the
incremental service delay for the three services, it wagmesl that YouTube delivered
1 MB of video content nearly 6 times slower than Dailymotionl d/etacafe. However,
the incremental service delay is not a direct quantifier efQoE.

Similar to the studies based on passive analysis, the autaasurements are also
done as close to the user as possible. These tools alsoe#ptaffect of the performance
of the user device and the last hop connectivity on the QoiceSactive analysis uses

crawlers, it requires minimal involvement of the users.

2.3 Measuring QoE Using Direct User Feedback

The QoE of users is a subjective metric and one popular methexhluating it is
to obtain the rating directly form the users. Typically, acfeusers (friends, colleagues, or
volunteers) are requested to watch a set if videos in a déedrenvironment and provide
their rating on an MOS scale. These studies are found to be @azapturing the effect of
confounding factors on the QOE. In such subjective evaluatit is necessary to maintain
a consistent viewing conditions for the different userse $tandard in [46] specifies the
conditions that are needed to be considered to conductiexgeas that describe the view-
ing distance, room lighting conditions, selection of thejsats, video content selection,
and assessment and data analysis methods.

In [74], the authors created a platform that played HTTPastieg videos by
varying the objective QOE metrics and collected the MOSigdftiom 10 different subjects

who were non-experts in the estimation of video quality. @abthors determined that the
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interruptions in playback was the main factors affectirggMOS rating.

Collecting a sufficient number of unbiased users to proweaeback on the videos
is a non-trivial task. This becomes even more difficult if gtedy targets different geo-
graphic areas. Some studies have used a crowd-sourcing toadercome these limita-
tions. In a crowd-sourcing platform, users are providedhwitentives to perform small
tasks. Example of such platforms are Mechanical Turk [16]Microworkers [72]. How-
ever, such studies need to ensure the reliability of thdtseasithe users are not monitored
or provided with any controlled environments. In order tthga the data that is more re-
liable, the tasks assigned need to be interleaved with gafdtiard data tests, consistency
tests, usage monitoring, and content questions as sugdes$td)]

In [39], a subjective study was performed using both volargén a laboratory and
crowd-sourcing. This study compared the sensitivity tbahdelay and the interruptions
while watching YouTube videos. Apart from YouTube vided®yt also studied the effect
of the authentication time for the social networks and VEsel3G Internet connection
setup time on the QoE. Based on the MOS data collected, ttmrmgutound that the
users in both the experiments preferred some delay befayb@tk started instead of an
interruption. It was also observed that the results fromvdrgourcing were similar to the
results from the laboratory tests and the length of the vadipadid not have any influence
on the MOS.

In [102] the authors developed a framework to obtain theestibje ratings from

the volunteers to measure the QOE for an adaptive videastngeservice and compare it
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with fixed bitrate video streaming (progressive downloaghnhique. They used 141 vol-
unteers to rate artificially spliced variable bitrate saesghat emulated a DASH session.
The volunteers were asked to rate the overall video viewkpgrence using a MOS rat-
ing and also rate their satisfaction with objective metsash as video-definition (video
quality), fluency (interruptions), response speed (ihdielay). Based on these studies,
they found that for the DASH streams the number of interansiaffects the QoE more
than the video quality, the startup bitrate and slow big-raimp-up also affects the QoE,
and the users are sensitive to frequent bit-rate switchifigey also concluded that in
general the QoE of DASH videos was better than the progresisiwnload videos.
The MOS feedback collected from the users either in a cdattéhb or crowd-

sourcing environment can be used to understand the effiexcdsious metrics on the QoE.
However, it is difficult and time consuming for the users tdeteand provide feedback

on every video. This process of collecting data is also esperand not easily repeatable.

2.4 Other Measurement Techniques

The client-end QOE measurement techniques are good atricepthe QoE at a
point closest to the user and can capture the end-to-enttstia the video performance.
However, it is necessary to gain access to the user machorelén to perform the mea-
surement. For the network operators and service provitssapproach might not be
the most suitable. They however have the advantage of unaptage points that have
access to the complete data passing through the networke @heedifferent set of studies

that collect data from places other than the user-end tmattithe QOE.
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2.4.1 Estimating QoE from measurements within the network

While the measurements at the user-end estimate the uséacibn, they cannot
be implemented easily by the network providers. A netwodwjater can collect metrics
within the network in a faster and easier manner. There has betensive research on
measuring the QoS metrics such as throughput, loss ratay,déter, and packet re-
ordering and it was demonstrated that these network-leralpeters affect the perceived
quality [57], [25], [93]. If the network-level metrics calibe used to predict the QoE of
the user, it would help the network providers to extend thsteg measurement tools to
evaluate the QoE.

The authors of [82] used Deep Packet Inspection (DPI) in gte/ork to develop
a preliminary model to estimate the QoE in the case of pregresiownload services.
From the TCP headers of the packet traces collected, thesttumgs of the TCP ac-
knowledgments at the client were monitored. By tracking TP segments and the
corresponding acknowledgments (ACKSs), they were able timate the playout buffer
level at the client and predict the QoE metrics such as Irbtiffering time, number of
interruptions, and total duration of the interruptions wéwer, this requires the complete
packet trace and is an offline analysis approach.

In [34], the authors used Tstat [95], a DPI tool that impletsentraffic classifier
from the flow-level statistics. YouTube traffic was analyZesin vantage points within
the ISPs and university campuses across Europe and the.Ut StAs observed that all
YouTube video requests contained TP vi deopl ayback tags in their HTTP head-

ers. By observing the time difference betweentfi@P vi deopl ayback request and
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the reception of the video data in the payload, the start igmé&y of the video was pre-
dicted (the initial buffering period at the user was igngrékhe user behavior during the
playback was observed from the user-initiated bitratecdwiig, screen mode (full-screen)
switching, and the portion of the video actually watcheddoelate with the system per-
formance. It was observed that although progressive dawntoaintains the quality of
streaming with aggressive download, the amount of unustwias significantly high
as the users typically watched only a part of the video. Thebier of the users across
different devices (such as mobiles and PCs) was also stadigd was observed that the
device, location, and infrastructure had no effect on tlaglphck quality of the YouTube
videos.

An on-line QoE estimation algorithm for progressive dovadorideos was pre-
sented in [62]. The packet-level metrics were obtained ftbenTCP headers and the
meta data information of the video. The network layer infation was collected using
the Access Network TCP Monitoring Algorithm (ANTMA) [98] taredict the number of
interruptions and the duration of the interruptions in {tdale. However, the algorithm is
designed only for an MP4 video format and makes two assumgptmwork in real-time.
First, the node should see all the TCP packets in both dimestiSecond, no re-ordering
of packets takes place between the monitoring node and tRer@¢ziver. Based on their
analysis, the authors were able to predict the QoE metrids @asithe number of interrup-
tions, and the playback start time in real-time by restgtihe tool to run in the node in

the access network of the user.
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The QoE of services using DASH was estimated by using theaseksys col-
lected from a node within the network and a server in [42]. Fhesion logs were
generated using a packet capture method. These logs @hsisthe complete MPD
file, and three timestamps for each video segment downloadesception time of the
HTTP- GET request from the client (including the URL), the intercepttime of the first
packet with the video payload (this gives the segment sa®),theOK time stamp that
indicates the end of the last segment. The session log dé¢ated was used to recon-
struct the DASH session that reflected the adaptation of ithaté and the evolution of
the buffer-filling (in seconds) over the duration of the s@ssBased on the reconstructed
sessions, the authors were able to estimate the QoE maticbsas the number of in-
terruptions, initial buffering duration, average duratiof each interruption, number of
bitrate switching events, and average re-buffering timetdwser interaction.

In-network methods to measure the QoE of YouTube videos wesepted in [84]
by estimating the number of interruptions during the playbbased on arrival time of
TCP ACK messages.

The use of the in-network QoE estimation techniques elitesmthe need to mod-
ify the existing video players or deploy additional softeyan the client or the server.
These tools can be deployed easily by network providers veve lyreater control over
the network compared to the user devices and are also pratfmtependent. However,
due to the limited processing capabilities of the nodesemitwork and large packet pro-
cessing times involved in Deep Packet Inspection (DPIgsdhechniques are best suited

for off-line processing. Packet loss and caching betweem#twork monitoring node
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and the client can pose significant challenges to the estimaf the playout buffer state

using these tools.

2.4.2 Estimating QoE using Predictive methods

Assessing QoE based on the feedback of users is good atiogphe effect of the
confounding factors but it is a time consuming and expengiveess. It is also difficult
to be replicated or scaled. In order to retain the advantafjeabjective studies while
enabling replication and scalability some studies hav@gsed predictive models that
estimate the subjective MOS rating based on objective osetri

The main challenge with such predictive models is to idgrditelationship be-
tween the objective QoE or QoS metrics and the subjective k&&g. This relationship
was found to be non-linear. A generic expression that capttive exponential relation
between the QOE and QoS parameters was proposed in [33] aatldd the IQX hy-
pothesis. Here, the QOE for streaming services is congldereerms of the MOS and is
expressed as a function of loss and reordering ratio (caugéitter). According to the
IQX hypothesis, the change of the QoE depends on the cugesitdf the QoE given the
same amount of change in the QoS value but with a differemt, sig shown in (2.1). If
the QOE is already very high, then even a small disturbanceffact the QoE; however,

if the QOE was already low to begin with, then a further disaunrce will not be perceived.

0QoFE
0QoS

~ —(QoE — 7). (2.1)
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It was demonstrated that the proposed relationship prdvdeetter approxima-
tion when compared to the original logarithmic approxirmas presented in [58]. A
similar pattern was seen in [59] where users watching theodgdvith better conditions
would have less patience with the initial startup delay andlerabandon sooner.

The authors in [58] presented a simple model that definedetlationships be-
tween one of the QoS parameters: bandwidth, response tmdethea QoE. In [87], this
model was extended to capture the effect of multiple QoSrpatars such as throughput
and delay on the QoE. A new discrete scale called the OpinoameS(OS) that ranges
from O to 5 was introduced to eliminate the constarftom (2.1). Using the Opinion
Score values and applying the Multiple Linear Regressiod®@®ILR) from [17], a lin-

ear relationship between the QoE and multiple QoS paramei®s defined as:

log(QOE) = a¢ + a1Q0S§ + a2Q0S, + ... + a,Q0S, (2.2)

where constants; were estimated by the least squares method. On applyingeamer-

tial transformation on (2.2), the QOE/QoS exponential@ation is modeled as

QOE: e + ealQOS""a?QO%"'“""'anQOSn (23)

The modelsin (2.1) and (2.3) were defined for web-pages axl flowever, based on the
following studies, it was found that the aforementioned pisdvere applicable for video
streaming services. In [14], the authors presented a similia-linear model (2.4) using

a psychometric moddb estimate the MOS from the QoS parameters for HTTP-DASH

streaming systems using any N parameters.

N-1

QOE= ) a;,Qog" (2.4)

=0
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whereq; are the constants arigd are the exponents fag¥ metrics.

ThePerceived Qoinodel [88] defines a non-linear relationship between the MOS
and objective QOE/QoS metrics. This no-reference modehets parameters such as the
bitrateb, frame ratef, packet loss ratg video jerkinesg, and quantization parametgr
to approximately map the MOS. These parameters are combinétke following non-

linear formula (2.5):
MOS=B x bW+ Fx f//+ Lx"+Jxj7 4+ 4+Qxq¥.. (2.5)

The above formula uses specific weights (capital letterd)exponents that can be esti-
mated according to the service and the device being stu@iled.composite metric helps
capture the effect of multiple parameters on the MOS rating.

A preliminary model with limited scope that predicts the QonEerms of MOS for
progressive download videos has been presented in the [P201 standard [43]. This
model considers sequences between 30 to 60 seconds andersrtike interruptions, and
playback start time.

A cross-layer monitoring architecture was proposed in {89honitor the packets
at the node and the network level to measure the QoS metackdploss ratio) and to
build a physical and network level view. A mapping tool esttes the Decodable Frame
Rate () at the user for the streaming service based on the QoS nemasaots. The tool
then predicts the degradation in the QoE in terms of the MOM the Decodable Frame
Rate (Q).

Pseudo Subjective Quality Assessment (PSQA) is a hybridoapp that com-

bines subjective and objective evaluation [96]. It is usedredict the subjective ratings
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of videos using automation. In this approach, an initialdetference videos are evalu-
ated subjectively by users. These reference videos areleswidistorted videos whose
objective metrics are known. The result of the initial ewdlon is used to train a self-
learning tool to predict the subjective rating in real time.

In [96] a framework for measuring the QoE of MPEG videos waspnted. The
framework consisted of a streaming server, monitoring s¢dalled probes), a data col-
lector server, a PSQA learning tool and a web-based regaapplication calledebstat
The streaming server was used to deliver video content (MREBEG audio content (MP3)
using several protocols, HTTP, RTP, and UDP. The probesaeld frame level metrics
such as the loss rate (LR) of video frames, and the mean silms®tursts (MLBS)),
defined to be the average length of a consecutive sequencanoég lost but not part
of a longer such sequence. The probes transferred the tealletetrics to the data col-
lector server using the Simple Network Transfer ProtocbIN®). The perceptual QoE
was calculated by the PSQA tool, and the computed QoE metacs presented using
thewebstatapplication. Before the framework was used for real-timasueements, the
PSQA tool was passed through a pre-processing stage duhiict) W learned the effect
of LR on the QoE. During this stage, a fixed set of videos wiffedent LR and MLBS
values were evaluated by a group of five human experts. Thefiperts provided the
MOS values for each of the initial sequences. These MOS saligge used as input to
train a Random Neural Network (RNN) on the two variables, bd ®ILBS, and mapped
them into a perceived quality on@ 1] range. Once the pre-processing was complete, the

framework was ready to predict the MOS for the videos. Duamgal-time evaluation
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of the QOE, the probes collected the frame level informatibthe video streams and
transferred the LR and MLBS metrics to the data collectorexetdsing the trained RNN
model, the PSQA tool used the LR and MLBS metrics as input teegee the MOS in
real-time.

The authors in [28], used the PSQA tool to predict the peeckiyuality of the
videos streamed using\@indows Media Playethat uses UDP to transfer the data. Ob-
jective metrics, such a&pplication Layer Packets Lostnd Application Layer Packets
Retransmittedvere used to predict the MOS rating. Before applying thishoeétin real-
time, the MOS ratings of certain sets of videos (called theremce streams) with known
objective metrics were evaluated by a group of participaitese volunteers were asked
to rate the reference video streams twice, once withoutlndonce with loss. The MOS
and the objective metrics for each stream were fed Byaamic Time WarpingDTW)
predictor during its training stage. On completion of therting stage, the DTW pre-
dictor was ready to rate the streams in real-time. During-tieee measurements, the
application layer metrics were obtained by polling iMndows Media Playeperiodi-
cally. It was found that the DTW predictor matched the patesf the metrics of the
active streams with the reference streams to predict the M@&al-time.

In [27], [35] the authors extended the PSQA to predict the Qgkising some
parts of the videos rather than the complete videos. Thetewware used in both training
as well as in real-time prediction. With a set of preliminagperiments, it was demon-
strated that the MOS could be predicted with 70-80% accuracy

A_PSQA proposed in[23] is areduced-reference model base8QAPneasures.
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This model used the packet loss rate but can be extendeddo rhwork metrics such
as the packet loss rate, mean loss burst size, end-to-emy dal jitter. It was observed
that the results of the #SQA model correlate very well with the subjective scoresmvh
compared to the full-reference models and no-referencestaod

In [90], the authors used a no-reference PSQA model basedNdhtR estimate
the QoE for Adaptive HTTP over TCP video streaming. The patens considered were
the interruptions, average interruption duration, andnti@imum interruption duration.
Another QoE metric unique to Adaptive HTTP streami@Qgantization ParametgiQP),
which controls the degree of video compression was alsaderesl. The MOS collected
from the users viewing an initial set of distorted referemmieos was used to train the
PSQA-RNN tool that was later used to predict the MOS for oth@éeos.

In [20], the authors proposed a predictive model for the -epgragement as a
function of the QoE metrics. The user-engagement is defiseth@ amount of time
spent by the user in watching the video before quitting. bleotto capture the effect of
the QOE metrics they use a machine learning algorithm. ThE @etrics, such as the
average bitrate, join time (playback start time), rate dfdying events, buffering ratio
(ratio between buffering and play time), and frequency dfdsing were collected using
client-side instrumentation for both VoD and live sessidrfisey concluded that the main
confounding factors are the type of video, device, and cotinity.

In [97], the authors presented an online learning QOE managetool that uses
machine learning to understand the effects of the objeatietics and application layer

metrics on the MOS ratings. The effect of objective metrigshsas the video bitrate,
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audio bitrate, and frame rate on the perceived subjectie Was studied. In the current
model, continuous feedback from the users (MOS) was celllbatd served as a datapoint
for the online learning algorithm. As the number of feedbanstances increased so did
the accuracy of the model. By using online learning alganghithey avoided the need
for complex and expensive a priori subjective tests thatref@ence streams. They also
demonstrated that the learning algorithms can retain ttigracy in estimation of the QoE
without the use of a priori subjective studies.

In [12], the authors developed a framework that uses priedichodels to realize
a QoE-aware QoS management strategy. The framework woettigpthe MOS rating
from the QoS parameters by using a statistical predictiodehbased on Discriminant
Analysis. The QoS parameters considered were the encotiiatetand the frame rates of
the videos. A set of subjective measurements, where save&zed are presented with ref-
erence videos with degrading levels of QoS, were condu€adng these measurements
the feedback from the subjects was recorded in the form oharpiresponse (“accept-
able” or “unacceptable”). The main aim of these tests waseterchine at what level
of the QoS metrics and the perceived quality becomes untadaep The data collected
from these measurements was then used as the input for thed thaticorrelates the QoS
parameters with the QoE perception. Using this model, tlygeedeof influence of those
QoS metrics had on the QoE was determined. The predictiorehtesdeloped was used
to realize a management strategy to control the QoS paresmét@ could guarantee a
satisfactory QoE level.

A content-adaptive packet layer model to assess the QoEws tef the frame rate
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quality for video services using RTP/UDP was presented idl]1The bit-rate, packet
loss rate, temporal complexity (the acuteness of temphiahges of a video sequence),
and the frame type information of the transported video wletermined from the packet
headers. Using all these factors, a model to predict the M@sSdeveloped.

All the studies done so far attempted to build models to capttue relationship
between the QoS metrics, the objective QOE metrics, and th8 NDue to the non-linear
relationship between these metrics, it is not easy to coctsérsimple model. Considering
the work done in the literature to date, it can be concludedlitie relation between the
QoS metrics and the QoE score follows a non-linear expoalenedationship. The use of
supervised learning techniques and neural network-baseelsicould be used to predict
the QOE in real time. The effect of confounding factors ondihigjective QoE metrics also
needs deeper investigation and the inter-dependence ohéfrécs needs to be studied

further.

25 Summary

There has been a significant interest in developing toolsd¢asure the QoE of
online video streaming services. Measuring QoE metriceatiser-end is most suitable
for capturing the effects of the end-to-end factors on th& (@btaining direct feedback
from users could be expensive and difficult to automate. Asfeomt automate the mea-
surement of QOE, we developed an an active measurementRgtbmo (see Chapter 3),
that measure the QoE of YouTube videos by crawling the YoeTutbsite and emulating

an embedded video player to collect the QoE for each of theledavideos.
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Table 2: QoE Measurement Studies: A Comprehensive View

Ref. Collection Data Collection Method VDT QoOE Metrics
U N Passive Active | DUF | PS| CL IBT | | | RF| AL | MOS Other
[92] v v PD v
[75] v v v PD vV [ V|V v User-Viewing Activities
[29] v v RTSP | v |V |V | V
[28] [27][35] | v v v RTSP v v
[90] v v v DASH V|V
[31] v v Multiple | v | v | V AverageBitrate,
Rendering Quality
Average Bitrate,
[69] v v Multiple | v v FailureRate,
& Failure to Start video
[51] [80][52] | v v PD vV VIV
[83] v v PD v
[74] v v v PD vV |V |V v
[40] v v PD V|V v
[39] v v PD v |V v
[96] v v v Multiple v LR, MLBS
[34] v v PD v Bitrate Ratio
[82] v v PD vV | VIV
[62] v v PD vV | VIV
[84] v v PD vV |V |V v
[42] v v DASH vV |V |V Bitrate switching,
Rebuffering (User initiated)
[102] v v DASH v |V Startup and average bitrate,
bitrate switching events
U=User,N=Network,VDT = Video Delivery Technique, PD = Pregsive Download, DUF = Direct User Feedback,

CL = Controlled Lab, PM = Passive Measurements, AM = Activeable@ements, PS = Pseudo Subjective Quality
Assessment (PSQA), IBT = Initial Buffering Time, | = Inteption, RF = Rebuffering Frequency, AL = Application
Layer Metrics (Packet Loss)



CHAPTER 3
PYTOMO: A TOOL FOR MEASURING QOE OF YOUTUBE VIDEOS

Measurement of QoE at the client end provides the advanfacgpturing the ef-
fects of the end-to-end factors. In order to capture thesusgoerience from a point clos-
est to the user, we developed a client-end active measutéo@nPytomo, that crawls

the YouTube website and measures the QoE for YouTube’s ggsiye download videos.

3.1 YouTube'sVideo Delivery Framework

YouTube is a video-sharing website that was founded in 200%aas acquired by
Google in 2006. As of 2015, YouTube is one of the most popular generated content
streaming service with more than 1 billion users [104].

Each YouTube video is associated with a base HTML page withR& that
is usually in the formaht t p: / / www. yout ube. conf wat ch?v=vi deo_i d. The
base HTML page consists of multiple parts: the video desonpembedded flash video
player, user comments and a list of related videos. The eddskddeo player retrieves
the URL of the video file from the base HTML page. The video saled on a different
set of servers from the HTML pages and are referred to as \sdegers. A high-level
overview of YouTube’s video delivery framework and the \aodequest pattern is pre-
sented in Fig. 1.

YouTube video streaming mostly employs a progressive daahtechnique and
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HTTP GET videoplayback/

Video File

Figure 1: YouTube Video Delivery Framework

recently has upgraded most of its videos to support DASHhAtgerver end, the video
files are delivered as regular HTTP objects. The servers dmamtain any state. The
VCR like functionality provided to the user is handled by #rebedded video player. In
order to minimize the effect of jitter on the playback, thebemded player waits until
certain amount of the buffem{tial _buffer) is filled before beginning the playback. Once
the buffer level reacheiitial _buffer, the playback is initiated. The data received from
the HTTP connection is placed into the buffer, and the plagads the buffered video.
As long as the amount of buffered data is more thmnmimalplayoutbufferthe playback
is maintained. Due to any perturbations in the network, & Huffer falls below the
minimalplayoutbuffer, the playback is interrupted. The playback is resumed when t
buffer crosses thinimalrestartbufferlevel.

The values for the various buffer levels employed by YouTat@not published.

Hence, we used reverse engineering technigques and cedtelbluations to determine
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Table 3: YouTube Buffer Parameters

Buffer Level Value

initial _buffer 2 seconds
minimalplayoutbuffer | 0.1 seconds
minimalrestartbuffer | 1 second

the different buffer levels. For our evaluation setup wedube base HTML page and the
embedded player provided by YouTube to create a test webgaigéhe client machine
we used a web proxy application [3] to force the client toies® the video file from a
test sever instead of YouTube’s video server. Under thieasioe, we played the video
multiple times and each time we modified the initial delivesye, average delivery rate
and the duration of interruptions during playback to untderd the pattern of response
from the embedded video player. Based on our evaluationgletermined the various

buffer lengths of the YouTube player to be as listed in thedd&b

3.2 Pytomo: Description

The current tool, Pytomo [51], is a Python based open-saoadahat measures
QoE as well as QoS of YouTube videos. Pytomo, is a platfornosiir easily portable
tool that emulates a user’s video streaming session.

Pytomo is initialized with a bootstrapping phase where wesater an initial set of
video URL's. These URLs by default are the most popular védieam the previous week
based on YouTube’s worldwide rankings. The aim of Pytoma isdllect the QoS met-
rics, QOE metrics and also information related to the Canberlivery Network (CDN)

used by YouTube to serve each of these videos. For each ofdbes/being considered,
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Pytomo performs the following steps [51, 79]:

1. Get video URL: Pytomo downloads the base HTML page of the video and parses
it. In order to support different access platforms, YouTubsts multiple formats
for each video. The URL for each of these is listed in the HTMe. fiPytomo
parses the HTML file to retrieve: video metadata (video damatlist of video
formats, default quality etc.), the list of URLs associatéth each video format.
The default video format for the current platform is consedeby Pytomo for the
emulated video playback. The meta-data related to the vislémgged for each

video crawled.

2. Domain Name Server (DNS) Resolution: The hostname from the URL of the
video file is resolved to the video server’s IP address. Ireotd study the ef-
fect of the DNS resolver’s IP resolution on the QoE of the eslewe use three
different DNS resolvers: the ISP’s default local resol¥eoogle Public DNS [4],
and Open DNS [7]. Each of these IP addresses are logged. IR tresolved with
the three DNS resolvers is found to be different, the videoigildownloaded from

each distinct IP address.

3. Collect QoS statistics: Pytomo starts its video performance analysis by collecting
QoS metrics based on Ping statistics (minimum, maximum aachge delay) be-
tween the client and the video server. By default we use 1Rgtacfor the ping If
the IP addresses returned by the DNS resolved in Step 2 esethiff, then the QoS

is collected for each of the IP addresses.

1The number of packets is a configurable parameter and can tiiedoif necessary.
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4. Collect QoE statistics: Pytomo emulates the YouTube player based on the buffer
parameters listed in Table. 3. The video playback sessiemidated with the help

of two different time scales associated with the playbadkebu

e D(t): Amount of video (playback duration) content downloaded the buffer
up to timet, i.e., the amount of video that is downloaded in terms of ipdenk
duration (obtained through the timestamps of video tdgf).reflects the rate
at which the buffer is filled is dependent on the TCP connedtietween the

client and the server.

e P(t): Amount of the video (playback duration) already played apirne t.
P(t) reflects the rate at which the buffer is being drained. In otdeensure
that this time-scale is consistent with an actual videograye parse the flags
in the video file to determine which block of video is to playsdeach time

unit.

Initially, the player waits untilD(t) reachesinitial _buffer level, after which the
playback is initiated. The duration for which the player tsdiefore starting the
playback is considered as thatial _bufferingperiod Once the playback begins,
the player is considered to enter thkayback stage During theplayback stage
if amount of unplayed vide0D(t) — P(t)) falls below theminimalplayoutbuffer
the playback is interrupted D (t) — P(t)) < minimal_playout_buffer). The play-
back resumes when the amount of video that has been buffergceater than

minimalLrestartbuffer (D (t) — P(t) > minimal — restart — buffer). By keeping
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track of the state of the playback, we are able to measure tte r@etrics: the
playback start time, the number of interruptions duringeaighlayback, duration of
the interruptions. By default, we limit the duration of thideo session to the first

30 seconds of playback.

It was observed that YouTube uses HTTP redirection on theéaovservers (possi-
bly for load balancing). In case of HTTP redirections, theveeserving the video
could be different from the IP resolved in the Step 2. In suwmEnNarios, Pytomo
re-collects the QoS parameters from the previous step WeHR address of the

redirected server.

5. Logging thedata: The QoS and QoE metrics collected from the previous steps are

logged into a text-based log file and local SQLite [9] datalfds.

6. Continue Crawl with Related Videos. Pytomocontinues the crawl by collecting
the QoS and QoE metrics for related videos. Once the videgbatk is com-
pletedPytomoparse the related video list to retrieve a subset of theaghatleos.
These videos are added to the Videos related to the curme yobtained through

YouTube API) are then added to the list of videos to be crawled

For each video and the subset of related videos, the 6 satpd lkbove are ex-
ecuted. Pytomo thus continues crawling YouTube websitéewdallecting the QoS and
QOE metrics for each of them. This process is repeated Un&ihtaximum number of
videos as configured by the user are crawled.

Pytomo is an active QoE and QOS measurement tool that isntlyrdesigned
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for YouTube progressive download videos. Pytomo enablés astomate the QoE mea-
surement without the need for a user to watch a video. The ugatomation ensures
higher accuracy, repeatability and better scalabilitye Tross-platform design of Pytomo
allows the researchers, network engineers and servicedersvto deploy the tool onto

any client machine to study the user perceived video quality
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CHAPTER 4

CASE STUDY: QOE ACROSS THREE INTERNET SERVICE PROVIDERS IN A
METROPOLITAN AREA

In Chapter 3, we presented the desigriPgtomqg an active client-end QoE mea-
surement tool for the YouTube video streaming service. imdhapter, we present a case
study that investigates the QoE of the users connectedéde thifferent Internet Service

Providers (ISPs), located in the Kansas City, USA metrogolarea.
4.1 Data Collection

In this study, we identified volunteers located across KsaurGidy metro area.
Kansas City is a metropolitan area that spans the borderkeatthe U.S states of Mis-
souri and Kansas. With a population of 2.75 million, Kanséy €nks as the second
largest metropolitan area in Missouri (after Greater Stuikpand is the largest with
territory in Kansas.

Based on our preliminary assessment, we found that the tiocalbetween 8:00
PM and 10:00 PM, is the most common prime time for home Intesaevices. In con-
sistent with this trend, we asked the volunteers to rurPytemotool during this specific
time window. The tool was run on their personal machines eotad to their respective
residential ISPs.

The first set of collection was performed by 19 users durimg@time on Decem-

ber 8, 2011. A total of 1,260 videos were downloaded from 4i4firett video servers.
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The second collection was performed on the evenings of Madcand 15, 2012 by 32
different users. This collection consisted of a total oBB,8ideos from 988 distinct video
servers. For both sets of data collection, the video dovddaeere limited to 30 sec for
each video.Pytomostarted each crawl by initializing the playlist with 10 m@stpular
videos of the week, followed by selecting 2 random videosaduhe related videos for
each video crawled. With this setting, we ensured that &t [8#@ videos were crawled
from each volunteers’s comput@&ytomocrawled on average 60 videos from each volun-
teer’'s computer. At the beginning of each crawl sessionu#iez was prompted to enter
the ISP that they subscribe to. The volunteers were conhéxtaree different ISPs, with
5,9, 4 users in the December crawl and 8, 19, 5 users in then\aagvl who were con-
nected to ISP-1, ISP-2, and ISP-3, respectively. Of thasettsPs, two of them (ISP-1
and ISP-3) were cable-based providers while ISP-2 was a lSked provider. Based
on preliminary tests, we determined that a small time gapreefoving from down-
loading one video to the next was necessary, so that You3seerers did not think that
it was a bot crawling their servers and therefore, did notlblaccess for any requests
from each user’s computer. This delay between consecwiugests is even more critical
when crawling a large number of videos as YouTube was founidmpt a Captcha [2]

message if the delay was not introduced.

4.2 Resultsand Analysis

In this section, we present our analysis and observatiorte@QOoE of the resi-

dential users and how the variation in the video server 8eledynamics in relation to
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the ISPs. We determine the relation between the variatidhérQoE and video server
selection patterns across the two different data colleqigriods for the individual ISPs.
Before we present our analysis, we present our observabioise naming con-
vention used by YouTube at the time of our study. The actuwgwifile URL was found
to be typically of the form:ht t p: // o- 0. pref err ed. SERVER_CODE. v[ 1- 24]
. I scache[ 1- 8] . c. yout ube. com which identifies the domain name of the actual
server to be in the forma- o. pr ef erred. SERVER_CODE. v[ 1- 24] . | scache][ 1- 8]
. C.yout ube. com Here, SERVER CODE identifies a server ID, behind which, is
likely, a cluster of video servers in a data center envirammé&he naming convention
of SERVER_CODE seems to indicate the geographic location of video serusteits, that
are commonly named by including IATA's 3-letter airport escdusually at the beginning;
for example, the IATA airport coddf wrefers to Dallas-Forth Worth-Texasad refers
to Washington, DCor d refers to Chicago-lllinois, and so on (see Table 4); this alas
noted in [11]. While these are certainly logical domain najrte naming convention
seems to indicate that they are located in the geographicrrédentified via the IATA
airport code. TheSERVER_CCDE also gives us an indication of where or how far the

video servers are from the users.
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Table 4: Access Patterns for The Video-Server from 3 ISPls QGE Metrics f+ denotes 95% confidence interval)

December 2011 March 2012

Server No. of Playback % Videos RTT | Download No. of Playback % Videos RTT | Download
code Samples | Start Time | Interrupted (ms) Rate || Samples | Start Time | Interrupted (ms) Rate
(se) (Mbps) (se) (Mbps)

1SP-1
all (ISP-1) 654 1.18+0.09 10.24 160.39+9.05 | 1.35£0.08 1468 | 0.49+£0.05 1.90 68.89+:5.61 | 2.60+0.20
df w06g01 41 1.45+0.71 9.75 | 100.63t19.67 | 1.30+1.16 - - - - -
i ad09g05 613 | 1.15t+0.09 10.29 | 164.43t9.48 | 1.35+0.08 213 | 0.65t+0.09 2.81 | 104.92+22.40 | 1.82£0.22
xo0-ordl - - - - - 1213 | 0.44t£0.05 0.99 62.83-4.68 | 2.82£0.24
| ax04s12 - - - - - 20 | 0.97+0.16 0.00 80.44+1.52 | 1.69+-0.46
ordl2so5 - - - - - 22 1.44+0.55 45.45 43.84+1.10 | 0.55+0.13

1SP-2
all (ISP-2) 347 | 0.7740.07 1.80 85.33-2.64 | 1.50+0.08 602 1.23+0.07 16.28 65.24+2.52 | 1.78£0.24
df w06g01 175 | 0.89+£0.09 2.85 90.59+6.26 | 1.35+0.08 - - - - -
i ad09s12 6 | 1.50+0.31 0.00 | 77.15+20.78 | 1.14+-0.21 - - - - -
| gal5s20 36 0.62+0.45 5.56 72.58+9.46 | 1.76+0.54 - - - - -
df w06s10 3 | 0.85+0.74 0.00 35.33t5.74 | 1.58+2.37 - - - - -
df w06s08 - - - - - 46 1.42+0.20 4.34 63.46+6.13 | 0.96+0.06
m a05s05 65 0.42+0.06 0.00 79.0415.48 | 1.78£0.23 93 0.67+0.67 1.07 69.6143.41 | 2.52£0.55
sj c07s11 62 | 0.83:0.10 0.00 87.65£6.90 | 1.504+-0.18 6 | 2.71+2.63 33.33 | 122.15+34.63 | 1.06+0.56
sj c07s15 - - - - - 147 2.91+0.54 43.54 99.29+-7.08 | 0.67+£0.07
atl 14s01 - - - - - 88 | 0.34+0.05 0.00 57.65+2.39 | 2.70.64
at | 05s01 - - - - - 28 0.34+0.05 0.00 57.84+1.25 | 2.42£1.06
ord12s05 - - - - - 44 1.30+0.34 54.54 44.46+1.06 | 0.50+0.04
ord12s06 - - - - - 109 | 0.52t£0.12 4.35 45.18+1.57 | 1.82+-0.26
x0-ordil - - - - - 41 | 0.34+0.05 0.00 | 66.54+16.37 | 3.86+-1.36

1SP-3
all (ISP-3) 259 | 0.78+0.07 0.77 78.2H2.64 | 1.68£0.17 320 | 0.63+0.05 0.63 109.657.05| 1.84+0.20
| SP3-df wl 259 | 0.78t0.06 0.77 | 78.27+2.65 | 1.68+0.17 - - - - -
| SP3-m al - - - - 132 | 0.54t£0.05 1.53 95.0411.72 | 2.02£0.35
| SP3-sjcl - - - - 188 | 0.68+0.07 0.00 | 119.96t8.67 | 1.73+0.25
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Figure 2: StartTime : December 2011 Figure 3: StartTime: March 2012
4.2.1 Analysis of User's QoE

The factors that we considered to compare the QoE of the wases Encodin-
gRate StartTimeInitialRate, DownloadInterruptionsandDownloadRateSince YouTube
supports multiple formats for the same video, the formatdet can also influence the

QOE of the user.

e EncodingRate: The encoding rate represents the quality of the video artkeis
average amount of data required to playback one second oidbe. We found
that the default quality of videos downloaded by users ded#int ISPs were sim-
ilar. Since the video format selection is dependent on tphe tf the machine and
YouTube’s estimation of the data rate to the user, we canhsdytie machines and
the networks used by the users are homogenous as perceivéalbybe. This
confirms that any variation in the QoE dependent on the nétworideo server

performance and not on the video quality.
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e StartTime and InitialRate: Table 4 shows the average start time (with 95% con-
fidence interval) observed for users accessing YouTube &ifierent IPSs when
video servers are located in different geographic areasgmn server locations
will be discussed in. The CDF @tartTime(Fig. 2 & 3) reflects the overall distri-
butions for the two time periods. While in most cases, theaye start time was
less than 1 sec., we found that for ISP-2, there were at Mastérver locations that
were experiencing an average start time of 2 sec or more iM#reh 2012 crawl.
Although the averag&tartTimefor all servers for ISP-1 and ISP-3 had reduced
from December 2011 to March 2012, for ISP-2 it had increaBedthe most pop-
ular servers out of these three ISPs, servers used for |1SfF3ignificantly faster

StartTimes

e Interruptions and DownloadRate: From the data collected, we also calculated the
percentage of video interruptions experienced, which egsvshin Table 4. During
the March 2012 crawl, videos served for ISP-3 customers lhadetist number of
interruptions, while at the same time, the number of infgions was relatively
higher for ISP-2 customers. From the table, we can also vbdsow each of
the video servers contributed to the interruptions. Fongda, the new server ID
sj c07s15 (i.e., San Jose, California) that served most videos in thech2012
crawl for ISP-2 had an unusually high number of interrupgiah43.54%. Not sur-
prisingly, this affected the average download rate frors g&rver ID, which was
among the lowest. Also, there was a strong correlation betvtlee percentage of

interruptions and the download rate.
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While we do not have additional data to correlate whetherahomaly is due to the
network or servers, we can make a preliminary inferenceearcttse when multiple
server IDs are located in the same city. We note two serveld&ased in Chicago:
ord12s05 andor d12s06; the former one is used by both ISP-1 and ISP-2,
while the latter one is used only by ISP-2. Since accessirdfl2s05 shows high
interruptions (and a low download rate) for both providérd,low interruptions in
case ofor d12s06, it is very likely thator d12s05 is experiencing high load or
some anomaly. Thus, we were able to isolate the set of sethagrsvere the cause

for reduced QoE.

In Figs. 4 and 5, we present severity of interruptions bygateing the number of
interruptions (shown in percentage) into three groups:2.(tbow”), 3 to 4 (“mod-

erate”), and more than 4 (“high”). We observe that the séyefiinterruptions was
often low, while for a notable number of cases, severity wadenate for ISP-1 in

the December crawl and for ISP-2 in the March crawl.
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4.2.2 Two-Sample-test

In order to determine if the difference in the QoE betweenddduer 2011 and
March 2012 crawls was significant, we performed the two-damfest between the two
datasets to determine thpevalues (see Table 5). For thdest the most commonly used
significance levels are 0.1, 0.05 and 0.01. We select thé&isimce level as 0.01 because
it is the most conservative one. We found that for ISP-1 arfet2Sp-value < 0.01
for StartTime. Thus, we can say that StartTime in the March22€rawl was highly,
statistically significantly different than in the DecemI2&11 crawl. While for ISP-1,
StartTime was less in March 2012, it was higher for ISP-2. réhgas no statistical

difference for ISP-3. These results are consistent witk3Fig

Table 5:p-value for two-sample-test

p-value ISP-1 | SP-2 | SP-3

StartTime 22x1071 | 1.18 x 1078 0.44
DownloadRate| 2.2 x 10~ 1° 0.52 0.22
Average. RTT| 2.2 x 10710 | 1.35 x 10798 | 4.19 x 10713

Hy: KDec = WMar VS. Hyy: HDec 7é KMar

In regards to the download rate for ISP-1, the March 2012 lonas highly statis-
tically significantly different (actually higher) than ihe December 2011 crawl. However,
there was no statistical difference for the download ratetie other two providers. In
regard to the Average RTT, the March 2012 crawl was highltistieally significantly

different (actually higher) than in the December 2011 criawhll the providers.
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4.2.3 Video Server Selection Dynamics

Besides determining QoE at the provider level as discudsavkawe also studied
how different video server selections impact QoE for défdrproviders. In addition, we
studied the change in the server dynamics observed betweetwb crawls by users
connected to the same ISP. We first briefly comment on whomitte®\servers belong
to. We analyzed the mapping from the IP addresses of therseame the autonomous
systems (AS) that they were associated with. We found thidahtBoDecember 2011 data
set, there were three ASes 15169, 36040, 43515 — all are dwynéauTube or its parent
company, Google. For the March 2012 data set, the same ti8es showed up, except
that we found a non-YouTube autonomous system (AS 2828 sfmwrel to about 2% of
the requests. This verifies that CDN is largely owned by Yda€Tas reported in [94],
except that YouTube still seems to have some partnershipsothiers for some content

distribution for serving the Kansas City metropolitan area

4231 Video Server Selection based on | SP

ISP 1 ———— iad09g05
——— dfw06g01
ISP 2 N .
= sjc07s11
mia05s05
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Figure 6: Server access pattern for top ten videos: Decegildelr
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Figure 7: Server access pattern for top ten videos: March 2012

We dbserved that video servers that were accessed varied significantly between
users of different ISPs located in the same geographical location. We next discuss our
results by dividing the set of videos into two different groups: the top ten most popular
videos for the week and the rest. The top ten videos were accesaldibgrs irrespective
of the ISP provider they are associated with.

Fig. 6 shows the access patterns for the ten most popular videos of the week from
the December 2011 crawl. The nodes on the left indicate the ISPs from where users are
gaining access while each small dot on the right indicates a server cluster that is organized
by server IDs. Here we see that except for the servetfl@B069g01 that was accessed by

users in ISP-1 and ISP-2, no other video servers were accessed by users of more than one
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ISP. The observations for the March 2012 crawl are showngnFi We noted a similar
pattern while the common set of server IDs was found to bedifft and the access spread
out to a larger number of video servers.

Based on these observations, we can infer that even whessatttom the same
geographic area, the selection of the video servers for tie pppular videos was depen-
dent on the ISP and not on the geographic location of the udeve consider the access
patterns for the top ten videos in March 2012, ISP-1 and IS served from two
common video serverx¢- or d1, ord12s05) for some videos while users in ISP-3
did not access any common video servers. Furthermore, lyrésence of ISP-3’'s name
in the SERVER_CCDE of the ISP (not shown here to maintain anonymity) and distiac
addresses for these servers, which were not observed tebaated with other ISPs, we
inferred that these video servers are dedicated to servestxjfrom users located in this
ISP; this could possibly be due to a business partnershipdeet this ISP and YouTube.

When all videos were considered, we found that the servecation patterns
were similar to the ones found for the top ten videos. Fronerdl{March 2012 crawl),
we see that out of all video servers that were accessed by o8E8P-1 and ISP-2, only
two are commonxo- or d1, or d12s05) (similarly, for the December 2011 crawl).
Users of ISP-3 are served by a dedicated set of video servers.

From the above observations, it is safe to conclude thabwéevers at YouTube
are divided into cluster groups with each cluster dedictaadifferent ISPs, or shared in
some cases between a group of ISPs. While we can come to tlukismn, the question

remains on how providers and YouTube worked together tckieyweferred video server
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selection. We believe that this was done using DNS. For el@nijind version 9 of
DNS introduced a feature calldd ews [66]. This can be used to channelize a request
from a source IP address or a group of IP prefixes (that regndagparticular ISP) to
resolve to a particular domain name and IP address. In otbetsythere seems to be
an agreement between YouTube and large ISPs so that refpregtieos from end users
from a particular ISP can be directed to a particular servex set of specific servers.
While [94] discussed that selections are based on DNS, Wk does not identify that
there are potential business agreements in place betwagiulfe and ISPs to make this
happen. To our knowledge, we are the first to point out that sigteements may be in
place between YouTube and large ISPs to ensure that ceetiaiars are preferred based

on the source IP addresses of an ISP.

42.3.2 RTT and the Location of Video Servers

We observed that the value of the average RTT does not plagndisant role in
the selection of the video server. For the three differes|Servers that were serving
the most number of videos are not necessarily the ones tdahbdowest RTT. For ISP-1
and ISP-2 in the December crawl, we see that the most poprzrclusters ad09s12
anddf w06g01 had the highest average RTT values. Also, servers that leakbwest
average RTT did not have the best average data rates.

In Fig. 8, we show the scatter plot of RTT and the downloadsrébe all the
videos downloaded from the most popular sedem06g01, and other servers by all

users in the December 2012 crawl for ISP-2. From this plotseethat the RTT to the
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most popular server was not always the lowest. In the MaraWlca similar observation

was made for ISP-1, ISP-2, and ISP-3 where the popular ctustere the ones with a
relatively higher RTT. Based on this observation, we infetttusers were predominantly
directed to a specific server cluster depending on the a@tigig provider, which was not

necessarily based on the average RTT.

Our observation contradicts the observation in [94], whbheeauthors observed
that the server with the lowest RTT values was the preferrezl dr'he previous work
considered RTT from the edge of the netwankt from the end users’ computers. Our
measurement was conducted from the end users’ perspeativecafirms the findings
in [51]. Thus, itis possible that the network segment fromehd users to the edge of the
network contributed to the overall RTT. Secondly, the edhe network to the video

server is not a good indicator for how end users would peedeiVTs.

4.2.3.3 Changein Video Server Dynamics

Since the two crawls were performed with a gap of three momtbavere able to
study the change in the YouTube distribution architectwes this time span for all three
ISPs considered (see Table 4).

For ISP-1, there were two video server clusters in the Deeer2b11 crawl; of
these two, only one of them was found in the March 2012 crawm@lwith three new
ones. Similarly, for ISP-2, there were six video server t@isin the December 2011
crawl; three of them were found in the March 2012 crawl aloriidp wix new ones. This

suggests that video servers allocated to the same ISP asgelover a short period of
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Figure 8: RTT (msec) and Download Rates (Mbps) Comparison tobécember 2012
Crawls for ISP-2
time (three months).

Note further that users of ISP-3 were always served by dedicated servers. Servers
observed in March 2012 were found to be different compared to the ones in December
2011. Based on the locati@ERVER_CODE, we can also infer that the locations of these
servers were different. From this, we infer that YouTube has a dedicated set of servers in
multiple locations for ISP-3 customers. These servers, at any given time, were exclusive
to this provider irrespective of the popularity of the videos. This substantiates the obser-
vation we made in the previous section on policies being in place between YouTube and

its providers.
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4.2.4 Limitation of the Study

Recall that our study is limited to a particular geographeaavith users access-
ing from residential providers in an evening time frame, #rat this is an observational
study and the data collected is a voluntary and convenienpka Clearly, observations
may differ for different geographic areas. Secondly, watkchour data collection to first
30 sec of each video; observations may differ when the ewitiieo is considered. Our
crawl mechanism limits the number of videos crawled, altaywis to observe only a rep-
resentative set of server locations — it is not meant to caghe entire CDN architecture
of YouTube.

The purpose of this case study is to demonstrate that ouropenpapproach
can effectively measure end-users’ QoE and can analyzegx@ample, the impact of
provider distribution policies on end-users’ QoE. In ortteobjectively evaluate the im-
pacts of ISPs distribution policies, we recognize that emifigg randomization, such as

how Nielsen conducts TV show ratings, is necessitated.

4.2.5 Summary

Using Pytomowe are able to objectively evaluate the QoE of users acapssin
YouTube videos in an automated web-crawl. We can also medkarQoS metrics and
retrieve the CDN related information. We were able to stuayvariation in the QoE of
YouTube videos when accessed from the same ISP in the samegla location across
different time periods. Based on our analysis, we were ablsdiate the video servers

that were causing degraded QoE and identify the locatiohexfd video servers. We also
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would like to point out that this was the first study that saetihe QoE of YouTube videos
and their distribution policies with data collected usiragivae analysis from actual user

computers in residential areas.
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CHAPTER 5
ADAPTIVE BITRATE ALGORITHMS FOR DASH

With HTTP basedrogressive downloadtreaming, the video file is treated as a
large web object with the video player playing the file whilagltaneously downloading
it [52]. The video player provides functions such as playgga and seek. As long as the
rate at which the video is being downloaded is marginalhiyhbighan the playback rate,
the user experiences seamless playback. However, anytiadurcthe throughput results
in buffer underflow leading to an interruption in the playka€hese interruptions, termed
asbuffering eventscould result in significant degradation of the users’ Qualf Experi-
ence (QoE) [39]. Although thprogressive downloatkechnique provides all the benefits
of HTTP, it does not support dynamic adaptation of the plaklzpuality according to the
network conditions, thus, resulting in playback interfaps due to perturbations in the
network.

Dynamic Adaptive Streaming over HTTP (DASH) allows the vdgayer to
adapt the bitrate based on the current network conditiodsuaar preferences. Adobe’s
HTTP Dynamic Streaming (HDS), Microsoft's HTTP Smooth &tréeng (HSS), and Ap-
ple’s HTTP Live streaming are the most popular commerciglémentations of DASH.
The open standard for HTTP based adaptive streaming, MPES-}78] was released
by MPEG in 2011. In the last few years, more and more videdseproviders are shift-

ing to DASH. Netflix, YouTube and Hulu are some of the leadiidgw service providers
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that currently use DASH.

The components of a typical DASH-server are depicted in #igAs discussed
briefly in Section 1.2.2, a DASH server encodes each videonrmiltiple representations
that vary in bitrates (encoding rates), display resolyti@deo dimensions etc. Each
representation is split into multiple smaller video chunkiedsegmentsEach segment
is of a fixed playback duration (1, 2, 4, or 10 seconds). Theesalso creates a Media
Presentation Description (MPD) file for each DASH video. TMED file is an XML
representation of the metadata of the video that includesnration about the playback
duration, available representations, minimum bandwietjuired for each representation,
segment duration, codec, etc. The MPD file also contains fRe fdr the individual
segments.

On the client-side, the DASH player determines the set abigmtations that can
be used for its specific platform and depending on the netwlakacteristics, the player
downloads the appropriate bitrate for the next DASH segnefe downloaded. The
choice of the segment to be downloaded plays a critical rotae QOE management by
the DASH player. DASH clients employ adaptive bit rate (ABR)orithms to determine
the appropriate representation for each segment to be daded. Consider a simple
case where two clientgl{entl and client? are accessing the same video from different
access networks as shown in Fig. 9. In this case the webrdsivesting a DASH video
with three different representations (1Mbps, 2Mbps, andps). The server also hosts
an MPD file with the metadata of the DASH video. Both clien&rtsby playing the

video with the lowest representation to ensure the lowesglyack start time. While
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downloading each segment, the clients measure the netlwooskighput based on the
segment fetch times. If the network path fidientlis capable of supporting the highest
video quality, the player will soon shift to the highest ate. Whereas fatlient2, if the
ABR algorithm determines that the network can only suppMbgs it switches to the
appropriate representation (lower than the highest gialithe ABR algorithm used by
each client continuously measure the network throughpdétermine the bitrate suitable
for each segment. Thus, the client can shift the bitrateeabtundary of each segment.

The aim of an ABR algorithm is to manage the users’ QoE by dyacaliy adapt-
ing the bitrate of the video. The users’ QoE is typically det@ed by metrics such
as initial delay (time taken to begin playback), frequentyebuffering events, average
playback quality, number of bitrate switching events, amavergence time (time taken to
reach the optimal quality) [54]. The bitrate switching etgeare either positive (switching
to higher bitrate) or negative polarity (switching to lowstrate). Since the three differ-
ent QoE metrics could be competing with each other, a tygM&R algorithm tries to
maximize the average quality of playback while minimizihg bther metrics: playback
start time, duration and number of buffering events, anchtimaber of bitrate switching
events.

As long as the time taken to download the next segment is fessthe amount
of data buffered, the player does not face interruptiondaghmack. An ABR algorithm
could use the observed network throughput and buffer octypa estimating the bitrate
for the next segment so that the users’ QoE (determined) xsmfeed. In the following

sections, we present some of the related works in ABR algost We then study QoE
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management with popular ABR algorithms in the literaturd enChapter 6 present our
Segment-Aware Rate adaptation (SARA) algorithm that imesathe QoE of the user

especially in low bandwidth networks.
5.1 Related Work

In this section, we discuss existing literature related BRAalgorithms in DASH.
The DASH standard does not specify any mechanism for rajgtaiian, hence, the client
is allowed to use any adaptation scheme. Due to this fleiifaliny ABR algorithm can be
easily implemented in the player with minimum support or ifiodtion on the server end.
All the popular video service providers use proprietary ABIBorithms to enhance the
users’ QoE. Two of these proprietary players and an operesqayer (Adobe OSMF)
were compared in [13] in terms of their QOE management céipabi It was observed
that the players were either too slow to converge, leadinfgeluent bitrate switching
events or were too slow to start the playback. These obsengatiemanded a need to

develop ABR algorithms than can maintain better QoE undefing network conditions.
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Most ABR algorithms rely on the network throughput meastgtie application
layer. Since HTTP is an application layer protocol, thegedihms use the segment fetch
times to estimate the network bandwidth. Optimistic estiomeof the network bandwidth
could result in the ABR algorithm requesting a higher bérdtan what the network could
support resulting in playback interruptions. On the othendy pessimistic estimations
could result in lower video quality. In [68], the segmentfetimes are used to estimate
the network throughput that is in turn used as an input to ditiad increase and aggres-
sive decrease algorithm. Using the average value of the esgigroughput estimations
could result in the favoring the outliers. Hence, a throughp@ased approach with a har-
monic mean download rate to overcome the effect of outlienssed in [48]. In [76],
the authors proposed a QoE-aware version of the adaptagiontam used by OSMF [8]
called QDASH. The ABR used by OSMF is a throughput based &édditcrease and one-
step decrease algorithm. QDASH uses in-network througmaaisurements to estimate
the best bitrate.

Due to the high variability in network conditions and diffiguin accurate band-
width measurements, a pure buffer-based ABR algorithmedseprted in [41]. However,
due to the lack of enough buffer information during the adistages, this approach relies
on the network metrics during the starting phase. This apgraises a rate map struc-
ture that maps the current buffer occupancy to the optimunatkito estimate the next
segment’s bitrate.

Since the sizes of the individual segments (even for samatés) can vary sig-

nificantly [41, 56], the download times over HTTP for variogsgments can also vary
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significantly [38]. The variation in the segment downloadéds (used to indirectly de-
termine the available bandwidth) is more critical for ratljgtation in low bandwidth
environments.

In the following sections, we present two of the most popABR algorithms in
the literature. Later in Chapter 6, we discuss our novel ARRr@thm that improves the

QoE of DASH video streaming services.

5.2 Throughput Based Rate Adaptation (TBA)

The Throughput-Based rate Adaption (TBA) (Algorithm. 1ais ABR algorithm
that determines the next bitrate based on the measuredgtipatifor the most recent
segment downloaded. TBA is an additive up-shift and aggreskwn-shift algorithm
and is based on the algorithm presented in [68].

Before starting the video playback, the video player reéseand parses the stan-
dard MPD file from the server. From this MPD file the playeriestes the metadata of
the video: media playback duration, segment duration,ovitienensions, list of repre-
sentations and the URLSs for each of the segments. The repatisas and the suggested
bitrates for each representation are stored in th&se{r™", ... r¢ ..., rma},

Each segment that is downloaded is placed into a video budferThe size of this
buffer is limited. The current buffer occupancy, i.e., the humber of unplayed segments
is given by B..,»). With TBA algorithm, an initialization thresholdH,,;;) is defined.
Before downloading each segment, the video player invdke3 BA algorithm to deter-

mine the appropriate representation to be downloadedéaréikt segment. As long as the
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Algorithm 1: Throughput Based Rate Adaptation Algorithm [68]
Input:
Rate,,.,: The bitrate of most recent segment
B...~. Current buffer occupancy
T,.: Average Throughput of the most recensegments
Initialization:
if Beyrr < Binie then

man

‘ ln+1 =T
ese
if T,, > eRate,,., then
if Rprep = 7" then
L lyy1=rm*/] Bitrate already at maxi num

else
L ln+1 = Ryes T11 1ncrease by one |evel

elseif T,, > Ry, then
L lny1 = Rprev;
ese
if R,ye, = r™ then
| lLiya=r™"/] Bitrate already at nininmum
else
lnyr =maxX{r|r' < T,}// decrease to maxi mum possi bl e
L bitrate

Result:
l.+1: the bitrate of the next segment to be downloaded

current buffer occupancy®.,...) is below the initialization thresholds;,,;;), the lowest
bitrate is downloaded. The segment with the lowest bitratgpically the smallest and
by selecting it we ensure that the playback start time ismized. While downloading
each segment, the player measures the throughput obserddteaaverage throughput
calculated from the most recemisegments is saved d5. Before downloading any sub-

sequent segments, the player invokes the TBA algorithm heaowiith the following input
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parameters: current buffer occupand.(.,.), the bitrate used for the previous segment
(Rate,rey), and the average throughput observed for the most receegmentsq;,).

Once B.,,, increases beyond threshalt},,;;, the additive increase phase is ini-
tiated. In this phase, if the observed throughpi)f) (is greater than the current bitrate
by a predefined threshold)( the bitrate for the next segment is increased. If the otirre
bitrate is already at the highest"(**), the maximum bitrate is maintained, else, the next
higher bitrate is selected. Thus, the bitrate selectedcieased by one-level each time
the throughput is found to be higher than the current valaking the TBA algorithm an
additive increase algorithm.

If the average throughpuf}) is found to be close t®ate,,.,, the current bitrate
is maintained, else, if,, falls below the current rate then the bitrate is reduced. TBA
employs an aggressive down-shift approach. This is to ensunterrupted playback, at
the expense of video quality. If the current rate is alreadiz@lowest bitrate,,.;,,), the
lowest bitrate is retained. If not, it selects the highesale that can be supported By.
Typically, the buffer is limited B,,... = 60 segments) to limit the unused data in case the
user decides to quit before watching the entire video.

Thus, by using the TBA algorithm, the player is able to adaptwideo quality to

match the throughput observed in the network.

5.3 Buffer-Based Adaptation

A Buffer-based rate adaptation algorithm was presentedllih Since the network

throughput could vary significantly, the Buffer Based Adsijain (BBA) algorithm avoids
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using the throughput measurements and selects the neateitsased exclusively on the
current buffer occupancy. The BBA algorithm is presentedlgorithm. 2.

During the initial stages of buffering, when the informatiwom the buffer occu-
pancy is minimum, it does not reflect the network conditidtsnce, BBA uses a network
capacity estimate to ramp up the bitrate. During the in##&ion phase, the bitrate is in-
creased if the rate at which the buffer is filled is 0.875 tirgesater than the segment
playback durationl(;) i.e. AB > 0.875 % V).

According to the BBA approach, the buffer is divided into tregions based on
two threshold valueseservoir (r)andcushion (cuwherer < cu. As long as the current
buffer occupancyB®....,) is below the initialreservoir (r), the BBA algorithm is conser-
vative and selects the lowest bitrate,(,). Once the buffer occupancy is more than
the rate adaptation is initiated. If the current buffer qumcy (B...-) is higher than the
cushion ¢ + cu) then BBA selects the maximum bitrate.

Except for the initial stages where BBA considers the ratetdath the buffer is
being filled, BBA solely depends on the current level of théfdruoccupancy. After the
initial phase, the next bitrate is calculated usingi@map Theratemapis a continuous
function (f) of buffer occupancyB.,,. and is pinned at both endg(0) = R,.., and
f(Bmaz) = Rmaz) Of the current buffer occupandgy( B..;)-

If the B.,,, is betweenr andr + cu, the rate adaption scheme checks the value
returned by the rate map functiofi(B.....). If the value is greater than bitrate one level
higher than the?,,.,, denoted byR,,., 1, then the bitrate for the next segment will be

increased by one level. Whereas, if the value is less thahitrege one level lower than
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the R,,.,, denoted byR,,., |, then the bitrate for the next segment will be decreased to
the value that such that > f(Beyu)
The BBA algorithm tends to take an additive increase andesgiye decrease

approach based on the buffer ratemap, white B...,,. < cu.

Algorithm 2: Buffer Based Rate Adaptation Algorithm [41]

Data:

V, : Segment playback Duration

r : The size of reservoir

cu . The size of the cushion

AB: Rate of buffer increase
I nput:

Rate,,.,: The bitrate of most recent segment

B.... Current buffer occupancy

T,.: Average Throughput of the most recensegments
Initialization:
if Boyrr <rthen

if AB > 0.875 % V, then
| 41 = Rpes /1 increase by one |evel

ln+1 e rmzn

eseif B.,r > (r + cu) then
[y =1
elseif f(Beurr) > Rprev T then
| Lo =max{rir; < f(Bewr)}
eseif f(Beur) < Rpres | then
L lns1 = min{r*|r; > f(Bewrr) }
else
L ln-i—l = Rprev
Result:
l,.+1: the bitrate of the next segment to be downloaded
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CHAPTER 6
SEGMENT AWARE RATE ADAPTATION FOR DASH

The ABR algorithms proposed in previous literature tydicake parameters like
average segment download rate [68], available bandwidthdi7buffer occupancy [48].
The client typically starts with the lowest representatemd then based on one of the pa-
rameters measured during the download, estimates thedpssentation for each sub-
sequent segment. In most of these case the throughput reeemnis are based on the
segment fetch times. Although the segments of each DASH\ade of equal playback
duration, due to the encoding schemes and the compressiumdees used, the sizes of
the segment (even with same bitrates) are found to havefisemti variations. Our anal-
ysis of the Big Buck Bunny video [1, 6] for three different repentations (3.9 Mbps, 3.6
Mbps, and 2.9 Mbps) found that the segments vary in sizedtige&0. For the represen-
tation with a 3.9 Mbps rate, we note that the segment sizevémom 538 KB to 3.9 MB
with the average segment size being 1.8 MB. A similar trend feand in the segment
sizes for the other bitrates.

In this chapter, we present Segment Aware Rate AdaptatidiRA$, a novel
DASH rate adaptation algorithm that we developed to imptbheeQoE for DASH videos
by considering the variation in the segment sizes duringhteighput measurement and

rate adaptation phase. SARA was published in [56].
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SARA uses buffer occupancy, throughput measurements heniddividual seg-
ment sizes to estimate the optimum bitrate for the next satgr(@lgorithm. 3). Since
the segment download rates are affected by their sizes$3RA calculates the through-
put as the Weighted Harmonic Mean (WHM), where the weightspaoportional to the
sizes of the segments. The WHM throughput also reduces tbet &ff outliers in the
throughput measurements.

In this chapter, we provide a detailed description of theppsed SARA algorithm
and its associated components: an enhanced MPD file, a WHMdhput estimation

module and finally the SARA algorithm.
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6.1 Enhanced MPD

Each DASH video is associated with a Media Presentationtipgsn (MPD) is
an XML file that contains information related to the videolsas: the metadata related
to the video (playback duration, segment dotation, plalianescale), the adaptation
sets (video set, audio set, subtitles set), represensatopported for each adaptation
set. The video set representations could wary from eaclr othearious aspects such
as codec, video display parameters (height, width, fraaesrrecommended bandwidth.
The individual URLs for each segment of every representatiet is also listed in the
MPD file.

We propose to enhance the standard MPD file by listing thevidhalal segment
sizes along with the URLs. Using these segment sizes tha clgalld make an informed
decision during the rate adaptation phase. In our evalasup, we added the seg-
ment sizes to the standard MPD file during the pre-processiage at the DASH server.
These sizes are later used in the throughput estimatioti¢8éc2) and SARA algorithm

(Section 6.3).

6.2 Throughput Estimation with Weighted Harmonic M ean

In order for the rate adaptation algorithm to pick the appedp bitrate, most
ABR algorithms estimate the throughput based on the dowinlates of the individual

segments. When the average segment throughput is usedmatesthe overall network
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throughput, the measurements could be affected by thentasteous variations since av-
erage value tends to favor the outliers. The effect of inataous variations in the mea-
sured throughput can be avoided by using harmonic mean andsea in [48]. However,
the segments being downloaded for a DASH streaming sesasf different sizes, and
since the average download rate over HTTP depends on thé#lelistribution [38]. In
order to accurately predict the download rate for the negirent, we assigned weights
(wq, wo..w,) that were proportional to the segment sizes. These wedglttthe respective
segment download rateg,( d»..d,,) were used to calculate the Weighted Harmonic Mean
(WHM) download rate. The weighted harmonic mean downloael i@ » downloaded

segments is given by

i, = &= 6.1)
Zi:l d;

Based on thed,, computed for last: segments, the time to download the next

segmentis predicted hy,, .,/ H,. By using WHM download rate, we are able to estimate

the download rate of the segments irrespective of the vamiat the segment sizes.

6.3 Segment Aware Rate Adaptation Algorithm (SARA)

Our algorithm, SARA selects the most suitable represemtdtir the next segment
to be downloaded from the set of available representati®hsHrior to starting the video
playback the player downloads the enhanced MPD file from itheovserver. The MPD
file is parsed at the client-end to retrieve the video repragi®ons and the suggested

bandwidths for each representation. The list of bandwidthsstored as a set of bitrates,
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r={rmmo oo™, o, r™e 1 Also the list of individual segment URLs and their
respective sizes are also parsed and stored.

Each segment is downloaded and placed in a buffer of maxinmens,,.. The
buffer is associated with three thresholds:B,, and B; as illustrated in Fig. 11. These
thresholds are defined in terms of the number of segmentedRasthe buffer occupancy

at any given timep...., the rate adaptation goes through the following four stages

I
-
I
—
I
-
1
-
I
-
1
=
1
————
1
——
I—
I
I—
I

I

Desired operation range

Figure 11: SARA Streaming Buffer Thresholds

1. Fast Start (B..,, < I): When the buffer occupancy is beldwthe lowest bitrate is
selected. This ensures that the playback start time is lsdptvaas possible. It was
observed that minimizing playback start time is importanptevent the user from

abandoning the video session [59].

2. Additiveincrease (I < B..., < B,): Once the buffer occupancy goes beyand
the algorithm enters the additive increase stage. In thigestthe bitrate is incre-
mented in small (single) steps to avoid the buffer going baelow I and thus,

taking a conservative approach. The video quality is irsgdaonly if the amount
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of time required to download the next segment of the bitrate more than the
current level (<" 1) is less than the video left in the safe region of the buffer
(Wit /H,, < Be, — I). By using an additive increase approach, we ensure that
the video quality not increased to a very high value resgitiom over-estimating

the network capacity.

. Aggressive switching (B, < B, < Bg): The region betwee3, and B; is

the most preferred buffer occupancy. In this stage, basati@gurrent network
bandwidth and the buffer occupancy, the most suitabletbittzat is greater than

or equal to the current bitrate is selected. During thisest&f\RA determines the
maximum bitrate that can be downloaded before the videebgfies lower than
the safe region®.... — I). In order to determine this, it considers the next-segment
size for every representation. However, if it determinest the download time
required for the next-segment of the current bitrate is &ighanB..,,.,. — I, then it

switches to a lower bitrate value that is most suitable.

. Delayed Download (Bs < B.u.r < Bmas): When the buffer occupancy increases
beyondB;, the most suitable bitrate for the current network bandwislselected,;
however, the request for the segment is sent only when tHerbadcupancy falls
to Bs. The delay is denoted byand is given byB..., - Bs. The delayed download
limits the total number of segments in the video buffer, thusiding unnecessary

downloads in case the user prematurely quits watching theovi
The rate adaptation algorithm, SARA, is presented in Alponi 3. SARA is
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Algorithm 3: Segment Aware Rate Adaptation Algorithm

Data:

R : Set of available bitrate§-"", ...,r", ...,r™ }

I, B, Bg, B, Buffer constants (number of segments)
I nput:

n: Segment number of the most recent download

revr: Bitrate of the most recently downloaded segment

B.... Current buffer occupancy in seconds

r={rmn . r™, .., r" } Available bitrates

Wt = {wiin, why, .wrey, } sizes of thgn + 1) segment

H,: Weighted Harmonic mean download rate for the first n segsnent
I nitialization:
if Bewrr <1 /] Fast Start
then

‘ ln-‘,—l = ,r,min,
else
if ( ”“) > By — I then
oy = maX{rir' € R, ”“ < Bewrr — 1,1 < curr};
0=0;
dseif B.yr < By ; /] Additive |ncrease
then
curr+1

if “’”;171 < Bewrr — I then
|l =7 /1 increase by one |evel
else
L ln_l,_l — ,r,curr;
| 0=0;
elseif B.,» < Bs//l Aggressive Swi tching
then
L i1 = maxX{rir' € R, ”“ < Bewrr — 1,1 > curr};
0=0;
elseif B.,,» > Bz // Del ayed Downl oad
then
i1 = maxX{rir' € R, ”“ < Bewrr — Ba, i > curr};
| 0= Bcurr BB

ese

CUJTT
n+1 l

O

l
0

R_ewlt'
l.+1: the bitrate of the next segment to be downloaded
0: The wait time before downloadlﬁa the next segment




invoked after downloading each segment to determine thatéito be selected for the
next segment. The algorithm is initialized with the list bketavailable video bitrates
(representations)g and the thresholds for the buffédefault=2),5,,, Bs, Bnax. These
parameters remain constant during the entire playback.

SARA is invoked with the following inputs: the segment numbéthe most re-
cent segment that was downloaded, the current bitrété& { default is»™"), current
buffer occupancy B.....), the sizes ofn + 1) segment across all the available repre-
sentationgw,",...w!", ... wr’), and the current weighted harmonic mean download
rate.

At the start of the video session (or after an interruptioa ttubuffer starvation),
the number of segments in the buffer is belband the playback begins in th@st Start
phase, during which the lowest bitrate is selected. Alsedislays is set to zero so that
the next segment is downloaded immediately. Once the bodf@rpancy increase beyond
I, the adaptation enters tiAalditive Increasetage.

The time required to download the next segment that correfspto the current
bitrate is given by(wg%{/H,). At any time during the playback, it is not feasible to
download the next segment of the current bitrate beforedfferdgoes below, i.e., if the
time taken to download the next segment is greater #hap. — I; the highest possible
bitrate that can be downloaded in the durati®n,, — I is selected based on the next
segment size and the current weighted harmonic mean dowvrdda (4,,). SARA tries

to maintain the buffer occupancy abaokeelse, it switches to the lowest bitrate™(").

In the Additive Increasestage, the algorithm starts the adaptation process during
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which the video bitrate is gradually increased. The in@edasthe quality is done in
single steps;<*™1 indicates the next level of the bitrate. By using single stepements
we ensure gradual quality changes, thus, avoiding the asalg effect of rapid bitrate
switches. However, the step size is a configurable parartieéican be based on the
desired aggressiveness. When the video session is in titevadiccrease stage, i.e., the
current buffer occupancy®.,») is belowB,,. If the amount of time needed to download
the next segment of the bitrate, which is one more than thectbitrate i.e.;““""1 is less
thanB.,., — I, then the next level is chosen. Otherwise, the currenttbitsamaintained.
Use of additive increase increases the number of bitrateclsing events compared to
aggressive switching however, since these switches aresitiye polarity, they are not
perceived negatively by the users [26].

WhenB..,. < B,, SARA takes a conservative approach of giving a higher fyior
to minimize the start time and interruptions over the videaldy. OnceB.,,.. goes
beyondB,, it starts to be more optimistic. WhilB, < B..,, < Bz the highest bitrate
whose segment could be downloaded before the current mdtes below (w).,/H,
< B...r — I) is selected. By utilizing the segment sizes in the decisiaking process,
we ensure that even when the segment sizes fluctuate, théadmixtime of the segment
can be predicted with better accuracy. In #ggressive switchingtage, the next segment
request is sent immediately. The algorithm selects thedsighossible video rate, while
making sure that the buffer is maintained at a steady level.

When the network conditions are favorable and the buffeapancy increases be-

yond Bg, the algorithm selects the best possible bitrate similéreé@ggressive switching
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stage, but instead of sending the request for the next segmarediately, it waits until
the buffer occupancy falls t&5. This limits an unnecessary data fetch in case the user
decides to prematurely quit watching the video. The alporiteturns the bitrate for the
next segment and the waiting time to issue the request fardhesegment.

The main objective of SARA is to be able to provide consis@oE to the users
irrespective of the segment size variations, and also twigeolower negative bitrate

switching events by better estimation of the segment doadhtomes.

6.4 Preliminary Evaluation of SARA

As a preliminary evaluation, we studied the performanceARRA under limited
bandwidth in comparison with a basic rate adaptation dlgari The basic rate adaptation
algorithm starts by downloading the segment with the lowésate. While downloading
the first two segments (same Asn SARA) with the lowest bitrate, the average down-
load rate of the segments is measured. When the buffer oecyps greater than two
segments, the bitrate is increased from the lowest bitBesed on the measured average
throughput and the current buffer occupancy, it selectdbitrate for the next segment,
which is one less than the the bitrate closest to the availaéhdwidth. The buffer size
for the basic adaptation was set to a maximum of 10 segmeditse@bnds) and uses an

optimistic switch-up and switch-down bitrate switching.
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For the preliminary evaluation we used a single client andesesetup over the
Global Environment for Networking Innovati¢8 ENI) [21] testbed. We used the popular
open-source videBig Buck BunnyThe open source version of this video is available in
20 different representations. The total length of the videwound 596 seconds, and each
representation is splitinto 150 segments, each with a 4nskglayback duration.

We first demonstrate the rate-adaptation mechanism of SAR&he bandwidth
between the server and the client was fixed at 1 Mbps as showigirl2. The variation
in segment sizes for different bitrates available for thg Buck Bunny video are plotted.
Since SARA uses aggressive up switching some of the biteaedld were skipped. In
the current figure we only plot the variation in segment sieesbitrates that were played
during playback. The figure also shows the actual bitratextszl by SARA algorithm
for each of the segments. As we can see, SARA initially staytplaying the lowest
bitrates as gradually increases to the highest bitrates.

We then studied the effect of the variation in the segmeessin the two adapta-
tion schemes. We did this by limiting the network bandwidétveen the client and the
server to 1 Mbps. The buffer size of the basic adaptationrdlgo was configured to be
10 segments and SARA was configured with = 5, Bz = 10, and By,.x = 12. The
video was played using both ABR algorithms, the experimeinidprepeated 10 times.
The results reported are based on the statistical mode bftthée values measured, since
video qualities are at discrete values. In Fig. 13, we shawdmiation in the video bitrate
selected by each ABR along with the segment sizes (in KB)nEwigh a steady band-

width we noticed that the variation in the segment sizextdtethe segment download
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Figure 13: Effect of Segment Sizes on Basic and SARA (Banthwidl Mbps)

times. Although the sudden changes in the segment sizegeagdf¢he bitrate selected
by both the schemes, the basic algorithm failed to antieifa decrease in the segment
sizes, forcing it to pick a lower bitrate. However, since 3ARad the segment infor-
mation it was able to predict the segment download times hng, tmaintained higher
bitrates for longer durations.

Next, we studied the bitrate adaptation for both the alporg with the network
bandwidth fixed at 4 Mbps and 8 Mbps. The results are showngn® and Fig. 15,
respectively. In both the cases, we observed that due tAdhdive Increasestage of

SARA, it takes a longer time to reach the highest bitrate cmeqg to the basic ABR
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algorithm. Particularly, withB, = 10, it takes about 20 seconds to reach the highest
bitrate. However, once SARA reaches the highest bitraseistains the higher bitrate for
longer durations. Even witB, = 5, we see that the bitrate picked by SARA was always
better than (or at least as good as) the basic adaptatioh Bji= 10, SARA converges to
the highest bitrate steadily, but at a slower rate than teelsg@heme. Subsequently, there
are no bitrate switches when the segment sizes vary. Havarger buffer gives a cushion

to SARA and avoids responding to sudden changes in the ségloenload rates. The
use of a buffer size of 10 segments translates to a video @tkybf 40 seconds, which
seems reasonable considering that a user may watch a mavimdly last 30 minutes or

longer as is the case with most videos on Netflix.
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Figure 14: Bitrate Variation when Bandwidth = 4 Mbps
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Based on our initial evaluations we find that = 10 provides better QoOE in terms
of bitrate switching events. Hence, for the extensive eatadn and comparative analysis

for SARA presented in Chapter 7, we uBg = 10.
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CHAPTER 7
PERFORMANCE EVALUATION OF SARA

In this section we present the results from an evaluationaf @ith SARA on
the GENI testbed under varying network conditions and campa performance with

the TBA and BBA algorithms.
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Figure 16: Experiment Layout
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7.1 Evaluation Platform

The ABR algorithms were evaluated in a controlled globaigributed networked
virtual testbedGlobal Environment for Networking Innovati¢GENI) [21]. With GENI
we were able to create a virtual network topology that is galgically distributed. We
created a topology consisting of a server cluster and nteltients connected through

by gateways on either end as depicted in Fig. 16. At the sawdr a cluster of four
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Table 6: DASH Video Datasets

Title Number of Bitrates Genre
Big Buck Bunny 20 Animation
Of Forest and Men 19 Documentary
The Swiss Account 17 Sport
Valkaama 20 Movie

HTTP web servers, each running Apache2 was used. The cl@mtsn Ubuntu 12.04.
The server cluster and clients were connected by gatewagsnal each side. We used
Traffic Control (tc)[61] on the gateway nodes to modify the network conditiortsveen
the clients and the server clusters to emulate a real netwivedfic Controlis an in-built
Linux module to configure the available bandwidth betweenstérvers and the clients.
The video players used by the commercial DASH video sendoeslosed-source
and proprietary, hence difficult to be modified. In order talaate SARA, we developed
our own open-source emulated DASH play&&tream the code for which can be ac-
cessed from GitHub [49].AStreamis an open-source Python based player that has a
buffer module that emulates a video playback buffer. Daimfthe buffer is played one-
second at a time, and the data can be to the buffer writtehitistfull. The DASH client
module inAStreamstarts by downloading and parsing the MPD file from the seriter
can be configured to select any one of the three ABR algoriti8ARRA, BBA or TBA.
The different buffer parameters for each algorithm can rdigared to study the perfor-
mance of the algorithm under different conditions and isg#ti Each of the clients in our

experiments were configured to run the emulated DASH plagtream
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In the current evaluation, we considered four differenteas, each from a dif-
ferent genre: animation, documentary, sport, and movie {@éle 6) obtained from [6].
The available video bitrates for each video were betweemii28. Each segment was of
4 seconds fixed playback duration. We limited the video ses$urations to a maximum
playback duration of 10 minutes. The variation in the segrsaes for the Big Bunny
Bunny was presented in Fig. 10 and the remaining three videsopresented in Fig. 17,
Fig. 18 and Fig. 19. Although each of these video have 17 teep@esentations, only
three representations are plotted for clarity and a sinpiddirern was found for the other
representations.

While DASH ensures that there are no interruptions in plaitey switching the

bitrate, frequent bitrate switching is shown to degradeldbg& of users [64]. On the other
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hand, a higher quality of the playback improves the QoE ofubers [102]. An ABR
algorithm starts by playing the lowest bitrate and rampsowatds higher bitrates. The
time taken to reach the highest possible bitrate for any ostwandwidth is called the
convergence timeTo study the QOE management capability of all the three ARfR-a
rithms we used three different QOE metrics to evalaute thaiformance. In addition to
the two objective metrics number of bitrate switching esesmid convergence time dis-
cussed in Section 2.1.1 we also introduce a new quality fa@tQ.;,. The relative video
guality measuré),..;, is the ratio of the total quality of the video played when camgal
to basic TBA algorithm. Letfrp4(x), fepa(x) and fsara(z) denote the bitrate selected
for a segment: by the TBA, BBA, and SARA algorithms respectively. The,;, for

BBA and SARA in comparison to the TBA algorithm is given by

_ f fBa(z)dx

Qratio(BBA) = W (7.1)
[ fsara(z) dx (7.2)

Qratio(SARA) - ffTBA(ZU) dr

7.2 Bandwidth Variation Scenarios

We evaluate the QoE metrics under varying bandwidth enwents and different
type of network interruptions. Four different bandwidtkesarios were enforced by con-
figuring theTraffic Controlmodule on the server gateway node and the scenarios were as

follows

1. Fixed Bandwidth: In this case, we limit the maximum bandwidth between the
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client and the servers to a fixed bandwidth of either 0.5, &r ,Mbps. These val-
ues were selected to cover the low bandwidth network enmeris; particularly
targeted in the design of SARA algorithm. With fixed bandWwjdie aim to eval-
uate the convergence time of the ABR algorithm under steatljirhited network

environments.

2. Short Interruptions: For the various bandwidths listed above, we considered mul-
tiple short interruptions in the network data transfer. €ach of the bandwidth sce-
narios (1, 4, or 6 Mbps), we introduced 10 second interrmgti®wandwidth falling

to 0.005Mbps) for every minute of segment download as showfig. 20(a).

3. Long Interruptions. For long interruptions, we considered 3 counts of 1 minute
interruptions (bandwidth falling to 0.005Mbps), for alluiobandwidths as shown

in Fig. 20(b).

4. Truncated Gaussian: When the bandwidth was around a few Mbps, it was ob-
served to follow a Gaussian distribution [47]; hence, to teua public network
with low bandwidth, we used a truncated Gaussian with a meadwidth of

3Mbps as depicted in Fig. 20(c).

7.3 Evaluation of QoE

For every scenario listed in Section 7.2, we evaluated thfeiqmeance of the three
ABR algorithms: TBA, BBA, and SARA. For each of the first threeenarios, we also

changed the maximum bandwidth to 0.5, 1, 4 and 6 Mbps, rapticatimes, for each of
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the four videos. For the Gaussian case, we used 10 trialsafdr eideo and algorithm
combination. We discuss the QoE at the client-end based ftaratit QOE metrics in
the following sections. The errors bars shown in the barspd@égcussed in the following

sections indicate variance.

7.3.1 Bitrate Switching Events

In Section 2.1.1, we discussed the bitrate switching eweitts DASH. For im-

proved QoE with DASH streaming it is necessary to minimize tumber of bitrate
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switching events. We evaluated the number of bitrate switcvents and their polarities
observed for each of the adaptation algorithms under vgnyatwork conditions.

In Fig. 21, we plotted the number of bitrate switching eveatiserved for all the
videos under the different bandwidth scenarios when theiimax bitrate was set to
4Mbps. The error bars indicate the variance of the numbeiti@lte switching events for
the respective scenarios. For the fixed and short inteomgtiase, we found that TBA and

BBA faced a similar number of bitrate switching events wasr8 ARA experienced 30%
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less bitrate switching events. In case of long interrugjdrBA performed significantly
worse with a very high variance. This high variance was oleskfo the Valkaama video
as seen from Fig. 23(b) and this is caused by the high flucisitn segment sizes similar
to the changes around the segment numbers 50 and 82 as shdvig.ih9. From this
result, we can also see that SARA not only reduces the nuniibérate switching events
but also provides consistent bitrate switching irrespeatif the bandwidth conditions.
Different polarity of the bitrate switching events is foutalaffect the users dif-
ferently. Users tend to be more tolerant towards positivieckimg events as compared to
negative switching events [26]. Users also tend to perqeps#tive switching events as a
favorable event. In Fig. 22, we present the polarity of theabe switches in the case of
long interruptions, where the maximum bandwidth was lichtel Mbps. Since the ABR
algorithms are additive increase and aggressive switeindwe observed that most of
the switching events are upward switches. With SARA, we nbt observed a reduction
in positive switches, we find the negative switches to beiogmtly lower. The variance
in the switching events with TBA is very high due to the highitsiving events observed
with one particular video (Valkaama). Since SARA explicitbnsiders the segment size
variations, it is able to better estimate the variation m$kgment fetch times and hence,
sustain a consistent QoE, irrespective of the video spesgficent size distributions.
When we considered the QoE with individual videos for shad bng interrup-
tions (Fig. 23), we found that the video selection affects @oE with TBA and BBA

algorithms. This can be attributed to the lack of expliciisioleration of the segment size
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variations. In Fig. 10, Fig. 17, Fig. 18 and Fig. 19 it was shalat even though the seg-
ments are of same playback duration, the sizes for the vichaosary significantly. These
variations, if not considered, can affect the ABR algorithperception of the network
bandwidth, thus affecting the QoE management. Since, SAdAIders these variations,

the QOE management with SARA is more consistent acrosseallitteo.

7.3.2 Video Quality

In Table 7 we present the video quality measure for BBA and SAtRcompar-
ison with TBA for all the scenarios. We see that overall, SAB&Xforms 4%-5% better
than TBA for fixed and short interruption scenarios, wherBB#\ is relatively worse.
Video playback with SARA experienced significantly higheatity (18%) when the net-
work experiences long interruptions, which is significaitter than TBA or BBA. Fur-
thermore, SARA was able to sustain this improved qualitynewethe low bandwidth
cases. We find that better estimation of segment fetch timestical in improving the

video quality in low bandwidth environments.

Table 7: Video Quality Measurement of BBA and SARA in Compan with TBA

Video Quality Measure (Q,qti0)

Bandwidth 0.5Mbps IMbps 4M bps 6M bps
Scenarios BBA | SARA | BBA | SARA | BBA | SARA | BBA | SARA
Fixed 084| 1.04 | 0.83| 1.04 | 0.83| 1.05 | 0.83| 1.04

Short Interruptiong 0.82 | 1.03 | 0.84| 1.04 | 0.84| 1.05 | 0.84| 1.04
Long Interruptions| 0.93 | 1.19 | 0.97| 1.17 | 0.91| 1.13 | 0.98| 1.18
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Figure 24: Convergence Time: Mean Bandwidth = 6Mbps
7.3.3 Convergence Time

One of the challenges of an ABR is to reduce the convergemee(fection 2.1.1).
For the BBA that depends on the buffer occupancy to deterthi@eppropriate bitrate,
the convergence time was found to be higher. In the curraaltiation, where the buffer
size was 240 seconds (as recommended by [41]), the BBA #igomvaited until 90%
(216 seconds) of the buffer was full before switching to tighbst bitrate. However, in
the case of SARA, the throughput measurements, along vétavlareness of the segment

sizes, enabled SARA to make better estimates of the dowmnétadf the next segments.
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This drove the player towards the highest bitrate much fabteFig. 24, we see that the
convergence times of SARA were significantly better thammd&®A and BBA. We found

similar trends when the maximum bandwidth was reduced t0lQ & 4 Mbps.

74 Summary

The ABR algorithms employed by DASH clients can improve tlo&Q@f the users
by selecting the best bitrate. However, the existing ABRatgms are found to be either
too slow in convergence, cause unnecessary bitrate smgtcbr deliver video quality
that is not optimal. The throughput and buffer-based adiaptéechniques are found to
be lacking in QOE management in low bandwidth networks. Grieeoreasons we found
this to be as it was, was the assumption that the video segraenbf the same size. The
variation in the segment sizes can significantly affect ktineughput and download times
observed for each segment. With the Segment-Aware Ratetétitap (SARA) algorithm
we limit the error in the download rate estimation. In thispter, we demonstrated the
SARA algorithm can improve the QoE of the users in DASH systehis improvement
was demonstrated by evaluating SARA under various netwamklitions and by compar-
ing its performance with the throughput-based (TBA) andéitthased adaptation (BBA)
algorithms. These evaluations showed that SARA perforgrafezantly better than TBA
and BBA with lower bitrate switching events, higher vide@atpty, and faster convergence
times. We believe that this algorithm can improve the QoEagament for DASH video

players in mobile networks and other bandwidth constraimetd/ork environments.
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CHAPTER 8
CONCLUSION AND FUTURE RESEARCH

Quality of Experience for online video streaming servicesn important factor in
understanding the user’s perception of the video servicethis theses we present solu-
tions for the measurement and improvement of QoE for onlideosstreaming services.

As a solution to measure the QoE of online video streaming&ess we designed
Pytomq an active QOE measurement tool that can used to emulateeais MeuTube
browsing session and collect the QoE metrics such as vidalitywplayback start time,
interruptions, and duration of interruptions in an autaedathanner. Using®ytomowe
were able to correlate the QoE ¥buTubevideos with the video selection strategies of
different ISPs. The platform independent nature and autetf@oE collection oPytomo
enables the users, network engineers and the service prevacollect the QOE metrics
from various end devices without having to make the usersiwiie videos.

In order to improve the QoE of DASH video streaming serviees studied the
limitations of the existing ABR algorithms. We found thaetkxisting algorithms as-
sume that the video segments are of same sizes, which affibet@stimation of segment
fetch times. We then presented an enhanced MPD file thathistsndividual segment
sizes along with the URLs and designed a novel rate SegmeateARate Adaptation
(SARA) algorithm. With SARA we are able to leverage the seghsezes in conjunction

with the throughput measurements and buffer occupancyaaqe better QOE even in
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low bandwidth environments. Using the GENI testbed we satma variable network
environments with short and long interruptions in playback also a truncated Gaussian
scenario that replicates real networks to study the pedaoa of SARA in compari-
son with the Throughput Based Adaptation (TBA) and Buffes@&hAdaptation (BBA)
schemes. Based on these evaluations, we demonstratedfRAtssipports a better video
quality in addition to lower bitrate switching events andteeconvergence times. Due to
the segment awareness employed by SARA, we observed thavitlps consistent QoE
irrespective of the video segment size distributions, Whwas not the case with TBA or
BBA algorithms.

The next step foPytomoit to extend it to perform QoE measurement for DASH
videos from different video service providers (YouTubejljpaotion etc). Secondly a
mobile friendly version would enable us to perform QoE measwents for hand-held
devices.

Ultimately, we plan to integrate SARA into an existing vidgayer, to evaluate
the QOE based on metrics collected during video playbaclaludcollect the MOS score

based on user feedback.
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APPENDIX A
SAMPLE MPD FILE

<?xm version="1.0" encodi ng="UTF-8"7?>
<I-- MPD file Generated with GPAC version 0.5.1-DEV-rev5379 on
2014-09- 10T13: 30: 18Z-->
<MPD xm ns="ur n: npeg: dash: schena: npd: 2011" m nBufferTi me="PT1
. 500000S" type="static" nedi aPresentati onDurati on="PTOHONb6
. 46S" profil es="urn: npeg: dash: profile:isoff-live:2011">
<Peri od duration="PTOHIMGG6. 46S" >
<Adapt ati onSet mi meType="vi deo/ np4" segment Al i gnnent="true"
group="1" nmaxW dt h="480" maxHei ght="360" naxFr anmeRat e="24"
par="4:3">
<Representation i d="320x240 45. Okbps" ni meType="vi deo/ np4"
codecs="avcl. 42c00d" w dt h="320" hei ght="240" franeRate
="24" sar="1:1" start WthSAP="1" bandwi dt h="45226" >
<Segnent Tenpl ate ti mescal e="96" nedi a="nedi a/
Bi gBuckBunny/ 4sec/ bunny_$Bandw dt h$bps/
Bi gBuckBunny_4s$Nunber $%6. mds" start Nunber="1"
duration="384" initialization="medi a/ Bi gBuckBunny
/ 4sec/ bunny_$Bandwi dt h$bps/ Bi gBuckBunny_4s_init.
mp4" [ >
<Segnent Si ze i d="Bi gBuckBunny_4s1. nds" si ze="168. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s2. mds" si ze="184. 0"
scal e="Kbi ts"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s3. nds" si ze="200. 0"

scal e="Kbits"/>
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<Segnent Si ze i d="Bi gBuckBunny_4s4. nids"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s5. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s6. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s7. nids"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s8. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s9. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s10. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s11.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s12

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s13

scal e="Kbits"/>

nﬂ-s”

n4s"

nﬂ-S"

<Segnent Si ze i d="Bi gBuckBunny_4s14. mis"

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s15

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s16

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s17

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s18

scal e="Kbits"/>
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n4s"

nﬂ-s”

nﬂ-s”

n4s"

On

On

Oll

On

On

Oll

On

On

si ze="168. 0"
si ze="176. 0"
si ze="168. 0"
si ze="176.0"
si ze="176. 0"
size="176.0"
size="192.
Si ze="168.
si ze="192.
size="192.
Size="176.
si ze="176.
Si ze="184.
Size="176.
si ze="168.

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s19

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s20.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s21.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s22

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s23

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s24

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s25

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s26

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s27

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s28

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s29

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s30.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s31.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s32

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s33

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Si

Si

Si

ze="160.
ze="184.
ze="192.
ze="168.
ze="160.
ze="168.
ze="184.
ze="168.
ze="184.
ze="184.
ze="184.
ze="184.
ze="184.
ze="168.
ze="168.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s34

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s35

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s36

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s37

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s38

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s39

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s40.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s41.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s42

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s43

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s44

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s45

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s46

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s47

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s48

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Si

Si

Si

ze="168.
ze="168.
ze="176.
ze="176.
ze="160.
ze="192.
ze="160.
ze="184.
ze="176.
ze="184.
ze="184.
ze="184.
ze="184.
ze="192.
ze="168.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s49

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s50.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s51.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s52

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s53

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s54

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s55

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s56

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s57

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s58

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s59

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s60.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s61.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s62

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s63

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Si

Si

Si

ze="200.
ze="168.
ze="184.
ze="184.
ze="192.
ze="184.
ze="192.
ze="176.
ze="168.
ze="168.
ze="168.
ze="152.
ze="176.
ze="184.
ze="184.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s64

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s65

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s66

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s67

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s68

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s69

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s70.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s71.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s72

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s73

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s74

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s75

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s76

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s77

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s78

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="184.
ze="184.
ze="184.
ze="176.
ze="184.
ze="200.
ze="184.
ze="176.
ze="168.
ze="176.
ze="184.
ze="168.
i ze="136.
ze="168.
ze="160.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s79

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s80.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s81.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s82

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s83

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s84

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s85

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s86

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s87

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s88

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s89

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s90.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s91.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s92

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s93

scal e="Kbits"/>

110

nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Si

Si

Si
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ze="176.
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ze="184.
ze="176.
ze="160.
ze="192.
ze="192.
ze="184.
ze="184.
ze="176.
ze="192.
ze="176.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On
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<Segnent Si ze i d="Bi gBuckBunny_4s94
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s95
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s96
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s97
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s98
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s99
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s100
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s101.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s102

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s103

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s104

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s105

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s106

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s107

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s108

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

. mis”

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

On

On

Oll

On

On

On

On

si ze="176. 0"
si ze="152. 0"
si ze="168. 0"
si ze="160. 0"
si ze="176. 0"
si ze="168. 0"
size="192.
Si ze="184.
si ze="144.
si ze="160.
si ze="168.
si ze="160.
si ze="168.
size="176.
si ze="176.

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s109

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s110

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s111.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s112

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s113

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s114

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s115

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny 4s116

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s117

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny 4s118

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s119

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s120

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s121.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s122

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s123

scal e="Kbits"/>
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rmsn

mds"

mds"

rmsn

mds"

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="184.
ze="176.
ze="200.
ze="152.
ze="160.
ze="176.
ze="184.
ze="136.
ze="176.
ze="192.
ze="160.
ze="160.
i ze="168.
ze="168.
ze="160.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s124

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s125

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s126

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s127

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s128

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s129

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s130

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s131.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s132

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s133

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s134

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s135

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s136

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s137

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s138

scal e="Kbits"/>

113

rmsn

mds"

mds"

rmsn

mds"

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Si

Si

Si

ze="144.
ze="184.
ze="192.
ze="200.
ze="192.
ze="192.
ze="184.
ze="200.
ze="168.
ze="184.
ze="192.
ze="184.
ze="176.
ze="184.
ze="184.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s139. mds" si ze="192.0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s140. mds" si ze="192. 0"
scal e="Kbi ts"/ >

ze="184.0"

<Segnent Si ze i d="Bi gBuckBunny_4s141. mis" s
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s142. mis" size="176.0"
scal e="Kbi ts"/ >

ze="192. 0"

<Segnent Si ze i d="Bi gBuckBunny_4s143. mis" s
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s144. mis" si ze="192. 0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s145. mds" si ze="192.0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s146. mds" size="112.0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s147. mis" si ze="184.0"
scal e="Kbits"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s148. mis" si ze="184. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s149. mis" size="176.0"
scal e="Kbi ts"/ >

ze="32.0"

<Segnent Si ze i d="Bi gBuckBunny_4s150. mis" s
scal e="Kbi ts"/ >
</ Represent ati on>
<Representation i d="320x240 89. Okbps" m nmeType="vi deo/ np4"
codecs="avcl. 42c00d" wi dt h="320" hei ght="240" franmeRate
="24" sar="1:1" startWthSAP="1" bandwi dt h="88783" >
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<Segnent Tenpl ate ti mescal e="96" nedi a="nedi a/
Bi gBuckBunny/ 4sec/ bunny_$Bandw dt h$bps/
Bi gBuckBunny_4s$Nunber $%6. mds" start Nunber="1"
duration="384" initialization="medi a/ Bi gBuckBunny
/ 4sec/ bunny_$Bandwi dt h$bps/ Bi gBuckBunny_4s_init.
np4" />
<Segnent Si ze i d="Bi gBuckBunny_4s1. nds" si ze="336. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s2. mis" si ze="360. 0"
scal e="Kbi ts"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s3. mis" si ze="400. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s4. mis" si ze="344. 0"
scal e="Kbits"/>
<Segnent Si ze i d="Bi gBuckBunny_4s5. nds" si ze="344. 0"
scal e="Kbi ts"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s6. nds" si ze="296. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s7. mis" si ze="336. 0"
scal e="Kbi ts"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s8. nds" si ze="368. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s9. mis" si ze="352. 0"
scal e="Kbi ts"/ >
<Segnent Si ze i d="Bi gBuckBunny_ 4s10. mds" si ze="392. 0"
scal e="Kbits"/>
<Segnent Si ze i d="Bi gBuckBunny_4s11. mis" si ze="368. 0"
scal e="Kbits"/ >
<Segnent Si ze i d="Bi gBuckBunny_4s12. mis" si ze="384. 0"
scal e="Kbits"/ >
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<Segnent Si ze i d="Bi gBuckBunny_4s13

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s14

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s15

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s16

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s17

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s18

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s19

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s20.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s21.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s22

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s23

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s24

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s25

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s26

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s27

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="384.

ze="352.

ze="312.

ze="352.

ze="336.

ze="344.

ze="320.

ze="368.

ze="384.

ze="352.

ze="304.

ze="336.

i ze="328.

ze="320.

ze="360.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s28

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s29

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s30.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s31.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s32

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s33

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s34

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s35

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s36

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s37

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s38

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s39

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s40.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s41.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s42

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="368.

ze="360.

ze="360.

ze="360.

ze="336.

ze="328.

ze="344.

ze="328.

ze="360.

ze="312.

ze="288.

ze="376.

i ze="304.

ze="352.

ze="328.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s43

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s44

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s45

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s46

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s47

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s48

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s49

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s50.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s51.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s52

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s53

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s54

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s55

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s56

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s57

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="360.

ze="360.

ze="368.

ze="368.

ze="384.

ze="272.

ze="384.

ze="328.

ze="360.

ze="344.

ze="376.

ze="376.

i ze="368.

ze="280.

ze="296.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s58

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s59

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s60.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s61.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s62

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s63

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s64

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s65

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s66

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s67

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s68

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s69

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s70.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s71.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s72

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="328.

ze=" 344,

ze="360.

ze="352.

ze="368.

ze="368.

ze="360.

ze="344.

ze=" 344,

ze="344.

ze="360.

ze="392.

i ze="352.

ze="360.

ze="320.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_4s73

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s74

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s75

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s76

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s77

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s78

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s79

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s80.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s81.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s82

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s83

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s84

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s85

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s86

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s87

scal e="Kbits"/>
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nﬂ-s”

n4s"

n4s"

nﬂ-S"

n4s"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

nﬂ-S"

nﬂ-S"

n4s"

nﬂ-s”

nﬂ-s”

n4s"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="320.

ze=" 344,

ze="328.

ze="256.

ze="336.

ze="312.

ze="376.

ze="360.

ze="384.

ze="352.

ze="360.

ze="376.

i ze="328.

ze="304.

ze="384.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_ 4s88. mis" si ze="376.0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s89. n4s" si ze="368. 0"
scal e="Kbi ts"/ >

ze="360. 0"

<Segnent Si ze i d="Bi gBuckBunny_4s90. n¥s" s
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_ 4s91. mis" si ze="328. 0"
scal e="Kbi ts"/ >

ze="384.0"

<Segnent Si ze i d="Bi gBuckBunny_4s92. n4s" s
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s93. n4s" si ze="352. 0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s94. mis" si ze="328.0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s95. mis" si ze="336. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s96. mis" si ze="336. 0"
scal e="Kbits"/ >

<Segnent Si ze i d="Bi gBuckBunny_ 4s97. mis" si ze="304. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_ 4s98. mis" si ze="328. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s99. n4s" si ze="304. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s100. mds" si ze="392. 0"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s101. mds" si ze="360. 0"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s102. mis" si ze="280. 0"
scal e="Kbi ts"/ >
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<Segnent Si ze i d="Bi gBuckBunny_ 4s103

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s104

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s105

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s106

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s107

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s108

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s109

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s110

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s111.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s112

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny 4s113

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s114

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s115

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny 4s116

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s117

scal e="Kbits"/>
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rmsn

mds"

mds"

rmsn

mds"

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="344.

ze="320.

ze="328.

ze="352.

ze="352.

ze="352.

ze="368.

ze="352.

ze="360.

ze="328.

ze="328.

ze="320.

i ze="368.

ze="280.

ze="360.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny 4s118

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s119

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s120

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s121.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s122

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s123

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s124

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s125

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s126

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s127

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s128

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s129

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s130

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s131.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s132

scal e="Kbits"/>

123

rmsn

mds"

mds"

rmsn

mds"

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="376.

ze="304.

ze="312.

ze="296.

ze="296.

ze="328.

ze="296.

ze="360.

ze="384.

ze="392.

ze="376.

ze="384.

i ze="376.

ze="392.

ze="352.

On

Oll

Oll

On

Oll

Oll

On

On

Oll

On

On

Oll

On

On

Oll



<Segnent Si ze i d="Bi gBuckBunny_ 4s133

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s134

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s135

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s136

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s137

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s138

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s139

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s140

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s141.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s142

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s143

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s144.

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s145

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_ 4s146

scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s147

scal e="Kbits"/>
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rmsn

mds"

mds"

rmsn

mds"

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

rmsn

rmsn

mds"

Si

Si

S

Si

S

Si

Si

Si

Si

Si

Si

S

Sl

Si

Si

ze="376.

ze="368.
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<Segnent Si ze i d="Bi gBuckBunny_ 4s148. nds"
scal e="Kbits"/>

<Segnent Si ze i d="Bi gBuckBunny_4s149. mis"
scal e="Kbi ts"/ >

<Segnent Si ze i d="Bi gBuckBunny_4s150. n4s"
scal e="Kbi ts"/ >

</ Represent ati on>

</ Adapt at i onSet >
</ Peri od>
</ MPD>
% end{ver bati n}
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