
DYNAMIC VIRTUAL NETWORK RESTORATION WITH OPTIMAL STANDBY

VIRTUAL ROUTER SELECTION

A Dissertation
IN

Telecommunication & Computer Networking
and

Mathematics

Presented to the Faculty of the University
of Missouri–Kansas City in partial fulfillment of

the requirements for the degree

DOCTOR OF PHILOSOPHY

by
XUAN LIU

M.S., University of Missouri–Kansas City, USA, 2010
B.S., China University of Geosciences, Wuhan, Hubei, China, 2007

Kansas City, Missouri
2015

c© 2015

XUAN LIU

ALL RIGHTS RESERVED

DYNAMIC VIRTUAL NETWORK RESTORATION WITH OPTIMAL STANDBY

VIRTUAL ROUTER SELECTION

Xuan Liu, Candidate for the Doctor of Philosophy Degree

University of Missouri–Kansas City, 2015

ABSTRACT

Network virtualization technologies allow service providers to request partitioned,

QoS guaranteed and fault-tolerant virtual networks provisioned by the substrate network

provider (i.e., physical infrastructure provider). A virtualized networking environment

(VNE) has common features such as partition, flexibility, etc., but fault-tolerance requires

additional efforts to provide survivability against failures on either virtual networks or the

substrate network.

Two common survivability paradigms are protection (proactive) and restoration

(reactive). In the protection scheme, the substrate network provider (SNP) allocates re-

dundant resources (e.g., nodes, paths, bandwidths, etc) to protect against potential failures

in the VNE. In the restoration scheme, the SNP dynamically allocates resources to restore

the networks, and it usually occurs after the failure is detected.

iii

In this dissertation, we design a restoration scheme that can be dynamically imple-

mented in a centralized manner by an SNP to achieve survivability against node failures

in the VNE. The proposed restoration scheme is designed to be integrated with a pro-

tection scheme, where the SNP allocates spare virtual routers (VRs) as standbys for the

virtual networks (VN) and they are ready to serve in the restoration scheme after a node

failure has been identified. These standby virtual routers (S-VR) are reserved as a shared-

backup for any single node failure, and during the restoration procedure, one of the S-VR

will be selected to replace the failed VR. In this work, we present an optimal S-VR se-

lection approach to simultaneously restore multiple VNs affected by failed VRs, where

these VRs may be affected by failures within themselves or at their substrate host (i.e.,

power outage, hardware failures, maintenance, etc.). Furthermore, the restoration scheme

is embedded into a dynamic reconfiguration scheme (DRS), so that the affected VNs can

be dynamically restored by a centralized virtual network manager (VNM).

We first introduce a dynamic reconfiguration scheme (DRS) against node failures

in a VNE, and then present an experimental study by implementing this DRS over a

realistic VNE using GpENI testbed. For this experimental study, we ran the DRS to

restore one VN with a single-VR failure, and the results showed that with a proper S-VR

selection, the performance of the affected VN could be well restored. Next, we proposed

an Mixed-Integer Linear Programming (MILP) model with dual–goals to optimally select

S-VRs to restore all VNs affected by VR failures while load balancing. We also present a

iv

heuristic algorithm based on the model. By considering a number of factors, we present

numerical studies to show how the optimal selection is affected. The results show that

the proposed heuristic’s performance is close to the optimization model when there were

sufficient standby virtual routers for each virtual network and the substrate nodes have

the capability to support multiple standby virtual routers to be in service simultaneously.

Finally, we present the design of a software-defined resilient VNE with the optimal S-VR

selection model, and discuss a prototype implementation on the GENI testbed.

v

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Graduate Studies,

have examined a dissertation titled “Dynamic Virtual Network Restoration with Opti-

mal Standby Virtual Router Selection,” presented by Xuan Liu, candidate for the Doctor

of Philosophy degree, and certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deep Medhi, Ph.D., Committee Chair
Department of Computer Science & Electrical Engineering

Kamel Rekab, Ph.D.
Department of Mathematics and Statistics

Baek-Young Choi, Ph.D.
Department of Computer Science & Electrical Engineering

Ken Mitchell, Ph.D.
Department of Computer Science & Electrical Engineering

Praveen Rao, Ph.D.
Department of Computer Science & Electrical Engineering

James P.G. Sterbenz, Ph.D.
Information and Telecommunication Technology Center, The University of Kansas,

Lawrence, KS 66045, USA
School of Computing and Communications, Lancaster University,

Lancaster LA1 4WA, UK
Computing Department, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

vi

CONTENTS

ABSTRACT . iii

ILLUSTRATIONS . x

TABLES . xiii

ACRONYMS . xiv

ACKNOWLEDGEMENTS . xvii

Chapter

1 INTRODUCTION . 1

1.1 Network Virtualization: A Historical View 1

1.2 Virtualized Network Environment . 7

1.3 Failure Types and Fault-Tolerance Schemes 17

1.4 Problem Definition . 19

1.5 Contribution of the Dissertation . 22

1.6 Additional Collaboration and Projects 25

1.7 Outline of the Dissertation . 32

2 LITERATURE SURVEY . 33

2.1 Survivable Optical Networks . 34

2.2 Survivable Virtual Network Embedding 35

2.3 Autonomic Network Management . 38

2.4 Centralized Networking Management 40

vii

3 DYNAMIC RECONFIGURATION SCHEME IN A VNE 42

4 AN EXPERIMENTAL STUDY ON GPENI-VNI 47

4.1 A Detailed View of the DRS . 47

4.2 Experimental Platform: GpENI-VINI Testbed 50

4.3 Experimental Design . 55

4.4 Results Discussion . 61

4.5 Summary . 66

5 OPTIMAL STANDBY VIRTUAL ROUTER SELECTION MODEL 69

5.1 Problem Formulation . 69

5.2 Heuristic Algorithm . 80

5.3 Experimental Design . 84

5.4 Results Discussion . 88

5.5 Summary . 108

6 PROTOTYPE DESIGN AND IMPLEMENTATION ON GENI 110

6.1 Framework Design . 110

6.2 Proof of Concept . 115

6.3 Summary . 125

7 CONCLUSION AND FUTURE WORK . 126

7.1 Conslusion . 126

7.2 Future Work . 128

Appendix

A Resource Specification (RSpec) in GENI . 130

viii

A.1 Advertisement RSpec . 130

A.2 Request RSpec . 133

A.3 Manifest RSpec . 134

B Optimal S-VR Selection Model in AMPL . 135

REFERENCE LIST . 141

VITA . 157

ix

ILLUSTRATIONS

Figure Page

1 An Example of Virtual LANs . 3

2 An Example of Two VPNs over the Public Backbone Network 4

3 An Example of Overlay Network . 6

4 Virtual Network Management Business Roles 13

5 An Example of Virtual Network Environment 14

6 Path/Link Protection Scheme . 19

7 A System View of the Problem Definition 21

8 Time to Generate the XORP Configuration File within a Single Slice [79] 27

9 Time to Generate the XORP Configuration Files for Multiple Slices [79] . 28

10 Dynamic Reconfiguration Scheme for Virtual Networks 43

11 Sequence Diagram for the DRS . 48

12 GpENI Topology and Infrastructure in US, European and Asian Countries

[6, 79] . 52

13 GpENI-VINI Architecture Overview [29, 79] 53

14 Five-node and Nine-node Wide Area Virtual Topologies 56

15 Geolocation-Based Strategy on Topology-I(a) 62

16 Random Selection Method on Topology-I(a): TCP Session 63

17 Geolocation-Based Strategy on Topology-I(b) 65

x

18 Geolocation-Based Method on Topology-II 66

19 Two Scenarios on Virtual Interface Operations 78

20 Three Topologies . 85

21 Abilene: Independent VR Failures (Cost v.s. Failures) 89

22 Abilene: Regression Analysis on Cost v.s. Failures 89

23 Nobel-EU: Independent VR Failures (Cost v.s. Failures) 91

24 Germany50: Independent VR Failures (Cost v.s. Failures) 91

25 Impact of wa (Abilene Network): 4 S-VRs per VN 93

26 Impact of wb (Abilene Network): 4 S-VRs per VN (wa = 〈0.2, 0.8〉,

εji,k ∈ (0, 0.01) . 96

27 Impact of wb (Abilene Network): 4 S-VRs per VN (wa = 〈0.8, 0.2〉,

εji,k ∈ (0, 0.01) . 97

28 Abilene: Independent VR Failures (L-BW: Low Bandwidth Request; H-

BW: High Bandwidth Request) . 98

29 Nobel-EU: Independent VR Failures (L-BW: Low Bandwidth Request;

H-BW: High Bandwidth Request) . 99

30 Germany: Independent VR Failures with L-BW Requests (Composite Im-

pact of MNC and LB Objectives) . 103

31 Germany50: Independent VR Failures with L-BW Requests (Impact of

the size of S-VR pool and hi) . 104

32 A Life-Cycle for Autonomic Virtual Network Management 111

33 Dynamic Reconfiguration Scheme for Virtual Networks 112

xi

34 Structure of the Configuration File for ScaleUp Tool 118

35 Configuration for VRs and End-Host Nodes with the ScaleUp Tool . . . 119

36 Determine Virtual Link Type with the ScaleUp Tool: An Example . . . 120

37 Node and Link Segments in a Request RSpec 121

38 Preliminary Setup . 124

39 Node Section Schema of the A-RSpec 131

40 Link Section Schema of the A-RSpec 132

41 Node Section Schema of the R-RSpec 133

xii

TABLES

Tables Page

1 Comparison table of Testbed supporting VNE 15

2 GpENI-VINI Node Information . 57

3 End-to-End Round Trip Time . 59

4 Substrate Network Model Entities . 70

5 Virtual Network Model Entities . 71

6 Indicator & Cost Parameters . 71

7 Variables . 71

8 Weight Parameters . 72

9 Experimental Scenarios (10 VNs in a VNE) 87

10 wa Values (wθ = 〈0, 1〉, wb = 〈1, 0〉) . 92

11 wb Values (wθ = 〈0, 1〉, wa = 〈0.2, 0.8〉 and 〈0.8, 0.2〉) 95

12 Dependent VR Failures with Nobel-EU Topology (hi = 3) Worst Case:

One Substrate Node Failure Affected all 10 VNs 105

13 Computation Time: Nobel-EU with 50 VNs (8 S-VRs per VN; hi = 3) . . 106

14 VNE under GENI Context . 117

15 Selection Criteria for S-VR Selection . 125

xiii

ACRONYMS

ATM Asynchronous Transfer Mode

AL2S Advanced Layer-2 Service

CDN Content Delivery Network

DRS Dynamic Reconfiguration Scheme

EGRE Ethernet GRE

GENI Global Environment for Network Innovations

GpENI Great Plain Environment for Network Innovation

GRE Generic Routing Encapsulation

HTTP Hypertext Transfer Protocol

ICN Information Centric Networking

IIAS Internet in a Slice

ILP Integer Linear Programming

ISP Internet Service Provider

KVM Kernel-based Virtual Machine

LAN Local Area Network

LB Load Balancing

L2TP Layer 2 Tunneling Protocol

MILP Mixed Integer Linear Programming

MNC Minimum Network Cost

MPLS Multiprotocol Label Switching

MPM Multipath Measure

xiv

NAT Network Address Translation

OFELIA OpenFlow in Europe: Linking Infrastructure and Applications

OSPF Open Shortest Path First

OXC Optical ross-connect

PPTP Point-to-Point Tunneling Protocol

QoS Quality of Service

QoE Quality of Experience

ROADM Reconfigurable Optical Add-Drop Multiplexer

RSpec Resource Specification

RTT Round-Trip Time

SeRViTR Secure and Resilient Virtual Trust Routing

SDH Synchronous Digital Hierarchy

SDN Software-Defined Networking

SN Substrate Network

SNP Substrate Network Provider

SONET Synchronous Optical Networking

SSH Secure Shell

S-VR Standby Virtual Router

VINI Virtual Network Infrastructure

VLAN Virtual Local Area Network

VM Virtual Machine

VN Virtual Network

xv

VNE Virtualized Networking Environment

VNM Virtual Network Manager

VNO Virtual Network Operator

VNP Virtual Network Provider

VR Virtual Router

VPN Virtual Private Network

VTRouPD Virtual Trust Routing and Provisioning Domain

WDM Wavelength-Division Multiplexing

xvi

ACKNOWLEDGEMENTS

I would like to thank my research advisor Dr. Deep Medhi for his comprehensive

guidance, conscientious mentoring and great support throughout my doctoral research

and master thesis. Dr. Medhi encouraged me to participate in different projects to find

the topics that I was interested in, and then gave me suggestions on how to narrow down

the topic and find the entry point to my dissertation research. Dr. Medhi’s mentoring

explicitly covers every aspect and level of research and fosters critical thinking. I also

thank Dr. Medhi for supporting me to present my works at different conferences and

workshops. In addition, I very much appreciate the opportunities that Dr. Medhi offered

me to visit Nakao Lab at the University of Tokyo in Japan and LIP6 at University Pierre

et Marie Curie (UPMC) - Paris in France. I also would like to acknowledge all the advice

and help from the members of my advisory committee, Dr. Kamel Rekab, Dr. Baek-

Young Choi, Dr. Ken Mitchell, Dr. Praveen Rao, and Dr. James P.G. Sterbenz.

I would like to acknowledge the two major collaborative projects, GpENI and

SeRViTR, that I have participated in. From these two projects, I obtained both knowledge

and hands-on experiences in the network virtualization and software-defined networking

areas, which was a great stepping stone for my dissertation work. In particular, I would

like to thank Dr. James P.G. Sterbenz from the University of Kansas for his leadership on

the GpENI project. I also would like to thank Dr. Andy Bavier from Princeton University

for his tutoring on the VINI testbed and help on troubleshooting when I deployed and up-

graded the private VINI testbed on the GpENI network. For the SeRViTR project, I would

like to thank the opportunity to work with the teams led by Dr. Dijiang Huang and Dr.

Shingo Ata from Arizona State University and Osaka City University, respectively, where

I gained experiences in both system design and OpenFlow network implementation.

I would like to thank Dr. Aki Nakao of University of Tokyo for introducing his

research lab and ongoing research projects, which expanded my knowledge about new

network virtualization techniques.

I have completed several research internships during my PhD study, and these

experiences were important to my dissertation research. I would like to thank Dr. Ravi

Ravindran and Dr. G.Q Wang for their mentoring when I did the internships at Futurewei

Technologies. I would also like to thank my mentors Sarah Edwards, Dr. Niky Riga and

Dr. Vicraj Thomas for their help and suggestions during my internship at BBN Technolo-

gies. Their insights and experiences about the GENI testbed was a significant support

for me to design and implement the prototype of the dynamic reconfiguration scheme

presented in this dissertation on the GENI testbed.

I would like to thank my lab mates at the Network Research Lab (NeTReL) and

the discussion with them greatly assisted me to improve my work and skills in many ways.

Last and the most important, I’m very thankful to my grandparents, Shaofu Liu

and Daofang Zhang, for all their care and love since I was a child, and I sincerely appre-

ciate my parents, Ping Liu and Zhihong Lin, for their understanding and encouragement

during the entire period of my doctoral study.

This dissertation work was supported in part by NSF Grant Nos. 0916505 and

1217736, and the Graduate Assistance Fund fellowships from UMKC Women’s Council.

xviii

CHAPTER 1

INTRODUCTION

In the past two decades, virtualization technologies have been widely introduced

in the computer networks and the internet has been extensively evolved to be more con-

venient and secure for both personal and business purposes. For instance, in the earlier

time, after the virtual private network (VPN) was introduced, an enterprise private net-

work for a company or an academic institution can be extended over the public Internet

by establishing end-to-end secure tunnels, so that employees can access the business re-

sources even though they are out side of the office. Recently, the diverse and mature

virtualization technologies allow network virtualization to be a promising technology for

the next-generation networking architecture.

1.1 Network Virtualization: A Historical View

The core idea of virtualizing a network is to divide the physical network into mul-

tiple logical networks, and the goal is to provide a more private networking environment

with better QoS that can be dynamically updated. Network virtualization could be config-

ured in a flat manner or a hierarchical manner (i.e., overlay networks) or in both ways. In

this section, we first present the a variety of technologies used for network virtualization.

1

1.1.1 Virtual Local Area Network

A classical local area network (LAN) topology consists of ethernet switches that

connect hosts via different ports. When a host sends a data frame to a switch, once this

frame reaches a port, it will be broadcast to every device connected to this switch. This

broadcasting feature has the potential to cause the traffic congestion within the LAN. The

early solutions were to use routers to split a single LAN into multiple small LANs [107],

but the forwarding at a router is not as fast as it is in a switch when the data rate gets

faster, so the virtual local area network (VLAN) [37] was introduced, which not only

splits a large LAN into small LANs, but also allows multiple end systems belonging to

one or more physical LANs to be bridged into a single broadcasting logical LAN with a

specific identification (i.e., VLAN tag). Fig. 1 presents a typical example of three VLANs

across three physical domains, and these VLANs are differentiated by their VLAN tags

(i.e., vlan1, vlan2 and vlan3).

The benefits of VLAN are manifold. First, it enables flexible network manage-

ment. VLAN configuration is usually conducted by software, so it is easy to move a host

from one VLAN to another VLAN by updating the VLAN identifier (VLAN ID) of the

corresponding port that this host connects to. Second, we are able to virtually group de-

vices from different physical LANs into a single VLAN, and the data forwarding is done

at layer-2, rather going through a router, so that high data-rate traffic exchange can be

achieved. Third, by creating multiple VLANs at a single switch, data frames will not

be broadcasted to every the ports on the switch. In other words, traffic within different

VLANs are partitioned and secure.

2

Layer-­‐2	
 Switch-­‐1	

Layer-­‐2	
 Sw
itch-­‐2	
 La

ye
r-­‐
2	

Sw

itc
h-­‐
3	

Internet	

vlan1 vlan1

vlan1

vlan2

vla
n2

vlan2

vlan2

vla
n3

vlan3

Internet Traffic
Vlan1 Traffic
Vlan2 Traffic
Vlan3 Traffic

Figure 1: An Example of Virtual LANs

Creating VLANs over a network is like partitioning the network horizontally into

small logical domains. Although it does not involve either node or link virtualization

yet, it partitions the ports on the switches, where a logical domain with entities physi-

cally located in various domains is constructed, and traffic is segregated between logical

domains.

1.1.2 Virtual Private Network

A virtual private network (VPN) [43, 47, 97] is a logical private network that

shares some common resources on the public networking infrastructure, but usually re-

quires users to access with credentials. Compared with the public network, a private

network, which also refers to enterprise private network, where network entities (e.g.,

3

Public	
 Internet	

(Backbone	
 Network)	

A-­‐1	

A-­‐2	

B-­‐1	

B-­‐2	

B-­‐3	

Tunnel for VPN A

Tunnel for VPN B

A	
 VPN A

B	
 VPN B

R1

R2
R3

R4

Backbone Link

Figure 2: An Example of Two VPNs over the Public Backbone Network

routers, switches, etc.) usually are actually owned and managed by an business organiza-

tion (e.g., company, university, etc.) and only people with authorized permission within

the private network can access the resources. Without the VPN, if a business organization

is expanded to multiple sites where each site is physically in a different location and forms

a private network, although these private networks belong to the same community, users

from one site could not access resources in another site, because these sites are intercon-

nected by the public network. Thus, the VPN helps to construct a logical private network

that tunnels multiple private networks owned by a single administrative domain but geo-

graphically in different locations, and the tunnels are end-to-end virtual links constructed

over the common underlying public networking infrastructure.

With VPN service, an access point to a private network can be expanded to any-

where by creating encrypted tunnels over the public Internet. Fig. 2 shows an example

of two VPNs constructed over the public backbone network. In this example, VPN A

4

crosses two physical sites A-1 and A-2, and a tunnel connecting these two sites is estab-

lished between the backbone routers R1, and R3. For VPN B, there are three different

physical sites, and the tunnels for VPN B are among R1, R3, and R4.

In general, it is the VPN service provider who provides VPN services to customers

[43], and the VPN can be implemented at different layers of the TCP/IP protocol stack,

along with proper tunneling protocols, the layer-1 VPN was briefly discussed in [43],

and the most common types of VPNs are the layer-3 VPN and the layer-2 VPN. For the

Layer-3 VPNs (i.e., IP-based VPN), the packets sent from the VPN customer sites are

IP packets, and these packets then be wrapped by adding encapsulating headers (e.g.,

GRE [54], IPsec [64], MPLS [80, 97], PPTP [53], L2TP [108], etc.). As the encapsulated

packets arrive at the VPN customer networks, the actual IP packets from the sender will

be extracted and sent to the destination. On the other hand, a layer-2 VPN constructs

an end-to-end tunnel for delivering encapsulated Ethernet or ATM packets. Since MPLS

protocol has the advantage to carry any type of packets, it could be one of the approaches

to wrap the layer-2 frames [80, 97].

Although the VPN services also achieve traffic segregation by encapsulating the

packets and creating point-to-point tunnels between customer networks, the VPN traffic

is still competing with other Internet traffic, so VPN is a domain-level virtualization.

1.1.3 Overlay Networks

The overlay network [35] is another form of the network virtualization, and it

is a logical network over a shared underlying backbone network. The essential entities

5

Overlay Network

Underlying Network

Figure 3: An Example of Overlay Network

in an overlay network are nodes interconnected by tunneling mechanisms (e.g., GRE

tunnels, L2TP tunnels, etc.). The overlay network allows data to be transferred through

more secure logic links (e.g., tunnels) over the transport layer or IP layer on the physical

network. Fig. 3 shows a typical overlay network architecture, where the overlay topology

could be different from the actual underlying physical topology, and the nodes in the

overlay network are a subset of nodes from the underlying network.

The overlay network architecture enables data sharing and delivery to be more

flexible and resilient, and most of the overlay networks are implemented at the application

level. Peer-to-peer network [72,96] was designed for the file sharing purpose, and content

delivery network (CDN) [109] allows content data (e.g., multimedia data) to be cached

anywhere within the overlay network so that the latency and transport cost can be reduced.

Overlay technologies also support a fault-tolerant and resilient network design [14,36,98].

According to the fundamental concept of the overlay, a VPN could be categorized as

overlay network as well.

6

Considering the benefits of the overlay networks, the experimental testbed has

been deployed for researchers and students to test and evaluate innovative ideas. The

most popular world wide overlay network testbed that has been used for research since

2002 is PlanetLab [34, 87, 88], which consists of more than 1000 nodes (i.e., computers)

distributed crossing over 500 sites all over the world. For the first time, Planetlab testbed

used the term ”slice” to represent a container for virtual resources (i.e., virtual nodes

support by LinuxVserver [38]).

As virtualization technologies evolved, network virtualization has been pushed

down to lower levels (i.e., network layer or even data-link layer), and a deeply pro-

grammable virtualized networking environment can be well modeled.

1.2 Virtualized Network Environment

A virtual network inherits the generic characteristics of the overlay network, and

it potentially provides a partitioned, QoS guaranteed, trustworthy environment for service

providers. Thus, the network virtualization [32] is considered one of the promising tech-

nologies for Future Internet architectures, and it is also referred as virtualized networking

environment (VNE). In a virtualized networking environment, the underlying physical

networking infrastructure (i.e., backbone network) is defined as substrate network (SN),

relative to the virtual networks (VNs).

As the basic elements in a VN, virtual nodes can be created in various ways. With

the container-based virtualization [30], a substrate node is virtualized at the operation-

system (OS) level, where each virtual node runs a replica of the operating environment

7

that the substrate node runs and it is completely isolated from other virtual nodes. OS-

level virtualization has the least overhead in terms of maintenance and resource provi-

sioning. The nodes on PlanetLab testbed currently apply the OS-level virtualization (e.g.,

LXC [55]), where each sliver [88] is an container where applications can be indepen-

dently deployed. Although container-based virtualization results less overhead on the

implementation, it lacks flexibility in terms of creating heterogenous VNE (e.g., two vir-

tual nodes from a common substrate node run different operating systems). Thus, the full

virtualization (e.g., KVM [52]) and the paravirtualization (e.g., Xen [17]) techniques are

employed, and both are hardware-level virtualization as discussed in [30, 90].

1.2.1 Layers of Network Virtualization

Unlike the traditional overlay network, tenants of VNs have the opportunity to not

only deploy applications, but also test and deploy new protocols at a lower layer within

their dedicated VNs, such as new routing protocol or even a non-IP based clean-slate

networking architecture (e.g., Information-centric networking [13]). Thus, virtualization

techniques allow these tenants to have operational privileges on the virtual nodes with di-

verse control levels. Chowdhury et al. [32] lists a number of recent network virtualization

projects targeting at different layers. In the following sections, we briefly discuss current

network virtualization architectures and implementations using a top-down approach.

8

1.2.1.1 Application Layer

Planetlab [34, 61, 87, 88] is an example for application-layer virtualization archi-

tecture, where VNs are isolated from each other over an interconnected high-speed under-

lying research network called Global Research and Educational Network (GREN) [16].

Planetlab users can develop applications within the virtual nodes (i.e., sliver) on physical

Planetlab nodes without affecting other users’ experiments. To support distributed ser-

vices running on the Planetlab testbed, data planes (i.e. tunnels between virtual nodes)

is provided for users to run large scale experiments. However, PlanetLab does not offer

control-plane privileges, so it is a challenge for users to take control over the network

events, so a lower-layer virtualized network framework is desired.

1.2.1.2 Transport layer

CoreLab [83] inherits the node management framework (i.e. PlanetLab Central

management server) from PlanetLab testbed, and it has explored the flexibility of in-

stalling guest OSes to VMs on the physical nodes using KVM [52], where each VM can

obtain a private IPv4 address and a particular range of port number. In an early implemen-

tation of CoreLab, accessing slivers from external network used destination NAT (DNAT),

and the CoreLab node OS runs as the NAT server to map the incoming packets to a VM

with public IP address to the VM’s private IP address. However, the NAT translation re-

duces the throughput and it breaks the end-to-end communication. Hence, a port-space

isolation approach was proposed [41] to avoid using NAT at the CoreLab nodes.

With the port-space isolation, each VM share the same public IP and MAC address

9

with its host, and incoming packets only need to specify the host’s public IP address with

a specific port number that has been assigned to the VM, and the Open vSwitch [89]

redirects the flow to proper VMs.

1.2.1.3 Network Layer

VINI (virtual network infrastructure) [20] supports virtualization at the network

layer. By requesting resources, an experimenter is provisioned not only virtual nodes, but

also layer-2 virtual links (i.e., Ethernet GRE tunnels), so that a complete virtual topology

is presented to the experimenter. Moreover, users can install the Quagga [63] (i.e., a real

routing software support multiple routing protocols like OSPF, BGP, etc.) to make their

slivers as virtual routers. In this way, users has the capability to evaluate networking

performance by injecting failures at the virtual links or the virtual routers.

1.2.1.4 Link Layer

The VNET project [106] used a composite of virtual private network (VPN) and

virtual local area network (VLAN) technologies to construct a layer-2 overlay VNE. VMs

are connected through the layer-2 tunneling protocol (L2TP). Since VNET implements

a layer-2 virtualization, the upper layers (e.g., IP layer) is agnostic, so that there is an

opportunity to design and test a non-IP protocol over VNET. VNET also supports flexible

VM migration because the network layer configuration does not need to be changed.

10

1.2.1.5 Optical Layer

Nejabati et al. [84] presents the challenges and possible techniques for optical

network virtualization. Similar to a virtualized IP network, a virtualized optical network

comprises virtual optical nodes (e.g., optical network switches, etc) interconnected by

logical optical links shared on an administrative optical network. The major challenge

of implementing virtualization at the optical layer is due to the analogue nature of the

optical network resources (e.g., fiber, wavelength, etc.) whose switching granularities are

diverse.

Both optical node and optical link virtualization utilize the same concepts: Par-

titioning (1:N) and Aggregation (N:1). For virtualizing the optical nodes, partitioning

means dividing 1 OXC/ROADM into N small units, where each unit is assigned a range

of ports from the optical nodes; aggregation is to create a single optical super-node that

aggregates N physical nodes and presents one interface to the external world. For vir-

tualizing optical links, partitioning refers to creating sub-wavelength channels that carry

a portion of data rates of the original wavelength channel. For instance, a wavelength

channel of 40Gbps can be divided into two sub-wavelength channels with 30Gbps and

10Gbps, respectively. Aggregation is to create a super-wavelength channel by combining

a group of wavelength changes.

1.2.2 Business Role Model and Virtual Network Management

In a VNE, the traditional Internet service provider (ISP) is divided into two busi-

ness roles [32]: substrate network provider (SNP) and service provider (SP). Schaffrath

11

et al. [99] presented a model for the VN management with four different business roles as

follows:

• A substrate network provider (SNP) owns the physical network infrastructure con-

sisting of physical nodes supporting virtualization and the high-speed backbone

connectivity (e.g., fiber connection). The SNP also leases the substrate resources

(e.g., computing and bandwidth or circuits) according to the demand from the cus-

tomer (e.g., service provider), so that the QoS of the leased VN can be guaranteed.

• A virtual network provider (VNP) communicates with one or more SNPs to orga-

nize the virtual resources and fits them into a virtual topology that might be re-

quested by the tenant or optimized by the VNP itself.

• A virtual network operator (VNO) mainly takes care of VN initialization such as

node installation and configuration. Moreover, the VNO has the permission to run

operation on the VN for not only maintenance, but also realizing VN restoration

from failure through some reconfiguration mechanism.

• A service provider (SP) is the tenant of the virtual network who rents resources

from the SNP and owns an dedicated VN to deliver services to its own customers.

It is possible for a company to fill more than one roles listed above [99]. As pre-

sented in Fig. 4, we assume the substrate network owner plays triple-roles of SNP along

with VNP and VNO, and the latter two roles are combined into a single logical role called

virtual network manager (VNM), which is in charge of VN initialization, maintenance

and reconfiguration.

12

Substrate	
 Network	
 Provider	

Virtual	
 Network	
 Manager	

Virtual	
 Network	
 Provider	

Virtual	
 Network	
 Operator	

	
 Service	
 Provider	

Figure 4: Virtual Network Management Business Roles

Fig. 5 shows a standard overlay virtualized network environment consisting of a

virtual network plane and underlying substrate network. Two VNs are presented in the

virtual network plane, and each VN has its own virtual topology consisting of virtual

nodes from a different subset of substrate nodes. By renting the resources from the SN,

an SP expects the VN to be well maintained and robust to failures. Therefore, an efficient

virtual network management mechanism and a resilient virtual network environment is

desired.

In the business role model presented in Fig. 4, the VNM conducts flexible VN

management through programmable interfaces towards the virtual network plane, and

such VN management includes two major tasks: VN initialization and VN reconfigura-

tion. VN initialization usually refers to the virtual network embedding problem [33, 44,

56], and this is one of the main research challenges in the network virtualization. Effi-

ciently VN embedding is to achieve optimal mapping between virtual nodes and virtual

links and the substrate network, so that the SNP can accommodate as many VN requests

as possible. The VN reconfiguration aims to enhance resiliency and survivability of the

13

R1	

R2	

R7	
 R6	
 R5	

R4	
 R3	

Substrate
Network

R	
 Substrate Node

Connected
Virtual Router 1

4

5

3

1 4

2

7

5
VN1

VN2

Virtual Network Plane

Figure 5: An Example of Virtual Network Environment

VNE under failures or other evens (e.g., network traffic engineering). Taking the advan-

tage of the programmable interfaces towards the virtual network plane, the SNP is able to

monitor the VNs, identify the abnormal behaviors or failures, and reconfigure the virtual

links (VLinks) or the virtual routers (VRs) to restore the affected VNs.

1.2.3 Virtualized Networking Testbed

Consider the programmability, partition and flexibility of a virtualized networking

environment, it is desired to build virtualized networking testbed to support innovative re-

search diversity, where researchers are able to request computing resources or networking

resources or both to conduct large scale experiments. There have been quite a few virtu-

alized networking testbeds deployed globally or locally in a country or continent. Table 1

compares a number of network testbeds that support virtualization.

PlanetLab is a globally distributed networking testbed that supports application-

layer virtualization. It uses the OS-based virtualization technique (i.e., LXC), so each

14

Table 1: Comparison table of Testbed supporting VNE

Testbed Coverage Major Virtualization Virtualization
Resources Technique Layer

Planetlab [11, 88] Global Containers LXC Layer-7
CoreLab [83] Japan VMs KVM, LXC Layer-4
VINI [20] US Containers Trellis Layer-3
GpENI [6, 79] US, Europe Containers Trellis, Linux vServer, VLAN Layer-2,3,&7
Emulab [1, 57] Global PCs and VMs OpenVZ, FreeBSD Jails, Xen Layer-2,3
OFELIA [9, 39] Europe OFS, VCtrler VeRTIGO Layer 2
FITS [2, 82] Brazil VMs, OFS Xen, FlowVisor Layer-2,3
GENI [3, 21] US VMs, OFS OpenVZ, Xen, KVM Layer 2,3
UCLP [12, 49] Canada Lightpaths Partitionting/Aggregation Optical Layer

OF: OpenFlow; OFS: OpenFlow Switch: Ctrler: Controller VMs

sliver is a container that runs the same OS as its host. PlanetLab users are able to test

novel application-level services (e.g., P2P, distributed storage system, etc.) within their

slices, but they are facing the challenges in creating arbitrary topologies and running

experiments for traffic engineering. On the other hand, OS-based virtualization limits the

flexibility of customizing the kernel of the OS within the slivers.

As we have mentioned in Section 1.2.1, there are two testbeds were deployed

based on the experience of building PlanetLab: VINI [20] in the United States and Core-

Lab [83] in Japan, and both are running the private instance of PlanetLab Central man-

agement server called MyPLC [62] to manage the nodes on the testbed. VINI nodes run

Trellis [22] that combines two OS-based virtualization techniques (i.e., Linux vServer

and NetNS [7]) to allow each virtual network has its own network namespace. Com-

pared with PlanetLab, the CoreLab has introduced the full virtualization technique (i.e.,

KVM) so that users can customize the guest OSes. Du et al. [41] have achieved port-space

isolation on the CoreLab nodes using Open vSwitch [89] in their recent work.

GpENI (Great Plain Environment for Network Innovation) [79] is an international

15

network testbed aiming to provide programmability across the entire protocol stack (i.e.,

application, transport, network, and data-link layer). The GpENI testbed was initially

created over the regional optical network between the four universities in the midwest of

the United States, which are the University of Kansas (KU), the University of Missouri

- Kansas City (UMKC), the University of Nebraska - Lincoln (UNL) and Kansas State

University (KSU). Currently, the GpENI testbed spans both the United States and Europe,

and it is expanding to Asia. GpENI supports virtualization at three layers. For the appli-

cation layer virtualization, it inherits the implementation of PlanetLab platform, where

MyPLC is in charge of node management; for the network layer virtualization, it runs a

customized instance of VINI software; and for the link layer virtualization, it utilized the

VLAN technique.

Emulab [57] is a distributed PC cluster testbed. Both Xen and container-based

virtualization (e.g., FreeBSD Jails [95] & OpenVZ [10]) are utilized to create virtual

nodes, and the virtual links are implemented at layer-2 or layer-3. OFELIA [9] is an

European OpenFlow (OF) [78] network testbed, and the main resources are OpenFlow

switches and VeRTIGO [39] is a FlowVisor [103]-based network virtualization tool to

slice the OpenFlow network at layer-2. FITS [2,82] is a virtual network testbed in Brazil,

and it supports virtualization in both IP networks and OpenFlow networks.

GENI [21] is a fast growing distributed large scale testbed providing virtualized

networking environment in three aspects. First, computing and storage resources are vir-

tualized using all three possible approaches (i.e., container-based, Xen and KVM). Sec-

ondly, a variety of tunneling mechanisms (i.e., GRE, EGRE) are available to create virtual

16

links between VMs, depending on the virtualization techniques used for slicing the nodes.

In particular, a tool called stitcher [85] is available on GENI to create isolated high speed

virtual links by establishing VLAN between VMs. Compared with the data-rate limit of

GRE/EGRE tunnels (i.e., 100Mbps), stitched links supports gigabits data rates, so ex-

periments requiring large data transferring (e.g., video streaming) can be well supported.

Thirdly, like OFELIA, GENI also supports virtualization in OpenFlow networks. More-

over, GENI testbed is still growing by federating with other testbed, so that GENI users

can run larger and more complex experiments using both resources from both GENI and

other testbeds.

User-Controlled LightPaths Project (UCLP) [12, 49] allows users to dynamic re-

configure optical networks, with the partitioning or aggregation scheme to divide or com-

bine lightpaths.

1.3 Failure Types and Fault-Tolerance Schemes

Cetinkaya et al. [25] presented a taxonomy of challenges in the networks, and

summarized events that may have impact to the network operations or cause failures in

the network. Markopoulou et al. [75] collected the data regarding the failures on the Sprint

backbone network and classified the failures into two top-level categories: maintenance

(20%) and unplanned failures (80%). Among the unplanned failures, about 70% were

identified as single-link failures, whereas 17% and 12% were identified as router-related

failures and optical-related failures, respectively. In particular, the authors claims that the

router-related failures may due to a router crash, a linecard failure, overload CPU, etc

17

[74]. For optical-related failures, since IP network can be considered an overlay network

on the optical network, so an optical link failure could affect multiple overlay IP links

concurrently.

Protection (proactive) and restoration (reactive) are the main fault-tolerant schemes

for survivability in both optical networks [93] and IP networks [75]. In general, a pro-

tection method refers that the primary network entities are provided alternative network

elements (i.e., paths, nodes, etc) in case of failures. For example (see Fig. 6), two paths

(a:1-2-3-4 and b:1-6-5-4) are precomputed between node-1 and node-4, and let path b be

reserved as protection path. If the link 2-3 fails, it affects the primary path a, and the traffic

forwarding between node-1 and node-4 will be protected by the backup path b. Fig. 6 also

showed a link protection in case of link 2-3 fails, where links 2-6, 6-5 and 3-5 are reserved

for protecting the link 2-3. With the protection scheme, two types of backup have been

widely discussed: dedicated and shared backup, respectively. For the dedicated backup,

it is a one-to-one relation, where a critical entity the network has been assigned a backup

entity for protection purpose. For the shared backup, the resources reserved for backup

purpose can be used to protect more than one failure. For the restoration, the backup

resources can be dynamically discovered in an on-demand manner. In other words, when

a failure occurs, the restoration scheme will dynamically find a backup path or node to

restore the network.

In a VNE, a fault-tolerant scheme should be able to provide protection against

failures in either VNs or the underlying SN. There have been many works done toward

18

1	

2	

6	

3	

5	

4	

Links Primary Path

Backup Path
(Path Protection)

Backup Links
(Link Protection)

Figure 6: Path/Link Protection Scheme

survivable virtual network embedding problem that considers to allocate redundant re-

sources while mapping VNs to the SN [56], and most of them focused on the link failure

recovery. However, a node failure is more common and it has more impact in a VNE

than it is in the physical network. First, a virtual node may fail due to the failure in the

corresponding functional software. For example, a crash in a routing software can fail

a virtual router. Second, although a physical node failure is less common than a physi-

cal link failure, it may affect multiple VNs that contain virtual nodes provisioned by this

failed physical node on the SN, and the the failed virtual nodes will in turn cause multiple

virtual link failures in these VNs. Therefore, it is important to design an efficient VN

restoration scheme for the node failures in the VNE.

1.4 Problem Definition

The primary goal of this dissertation is to design an optimal standby virtual router

(S-VR) selection model that can be adapted into a dynamic reconfiguration scheme for a

19

software-defined resilient virtual network environment, so that virtual networks with node

failures can be quickly restored with properly selected standby virtual routers.

Fig. 7 presents a system view of the overall problem definition. To design a

software-defined resilient VNE, we consider three pieces of techniques: network virtu-

alization, software-defined approach and autonomic computing [65]. For the network

virtualization, we make several underlying assumptions: (1) the VNE implements the

layer-3 virtualization, each virtual node in a VN is configured as a virtual router (VR)

running a particular routing protocol; (2) At the VN embedding phase, an SNP is able to

not only provision the basic resources based on the VN tenants’ requests, but also provide

additional VRs as standby virtual routers (S-VRs) for this VN to improve the resiliency;

(3) We consider recovery from a failure that occurs at core VRs, not edge VRs of the

VNs. A key feature of software-defined networking (SDN) [77] is that the control-plane

functionalities are decoupled from the data-plane and they are abstracted into a central-

ized control system. Thus, we incorporate this idea into virtual network management,

where a centralized virtual network manager (VNM) performing as both roles of VNP

and VNO. From the fault-tolerance perspective, the VNM implements the dynamic re-

configuration function to automatically restore VNs from node failures using S-VRs. The

concept of autonomic computing is applied into the dynamic reconfiguration process to

achieve self-healing in the VNE, so that node failures are transparent to the SPs.

We consider a primary-backup mechanism for the fault-tolerance in terms of node

failures recovery in the VN. Specifically, each VN is provisioned an extra group of VRs

as standby virtual routers (S-VRs) and each S-VR can be used to replace any failed VR

20

Network	

Virtualiza/on	

Autonomic	

Compu/ng	

So8ware-­‐defined	

Approach	

Design	
 of	
 a	
 Resilient	
 So8ware-­‐Defined	
 Virtual	
 Network	
 Environment	

Centralized	
 Virtual	

Network	
 Management	

Fault-­‐Tolerance	

(Node	
 Failure)	

Self	
 Configura/on	

&	
 Fast	
 Restora/on	

Primary-­‐Standby	
 Mechanism	
 Op/mal	
 Mul/-­‐Criteria	
 Selec/on	

Mul/-­‐Layer	
 Network	
 Modeling	
 with	
 Reconfigura/on	
 in	
 the	
 Overlay	

Networks	

Node	
 Localiza/on	
 Problem	
 Resource	
 Balancing	
 Problem	

Figure 7: A System View of the Problem Definition

in the existing VN. Our goal is to design an model to optimally pick an S-VR for the VN

restoration under multiple selecting criteria, and this model can be applied into an overlay

networking environment. More specifically, the proposed model addresses two major

problems, which are the resource balance (i.e., load balance on the substrate network)

and the node localization problem (i.e., which S-VR should be selected).

Therefore, in this dissertation, we address the problem of selecting optimal S-VRs

when VRs in the core virtual networks are affected due to a failure. End hosts may be

connected to multiple edge nodes, and the loss to end users is not the focus of this work.

The scope is to recover from a failure that occurs at core VRs, not edge VRs of the VNs.

21

1.5 Contribution of the Dissertation

In this section, we briefly summarize the major contribution of this dissertation.

1.5.1 Dynamic Reconfiguration Scheme for Node Failures in a VNE

Primary-backup mechanism is commonly used for resilient network design. For

example, for link failures, backup paths can be pre-computed to by detouring the traffic,

and for node failures, backup routers might be available to be quickly activated. In our

work, we consider to restore the VNs suffering a VR failure with a standby virtual router

(S-VR).

Unlike the dedicated primary-backup approach, for a set of S-VRs provided for a

VN, any of the S-VRs can be used to replace any failed VR in this VN. In other words,

these S-VRs are identical, in terms of configuration. In order to efficiently restore the

VNs with VR failures, a dynamic reconfiguration scheme is applied for this situation.

1.5.2 An Experimental Study on GpENI-VINI [67]

Before exploring the optimization model, we first designed an dynamic reconfigu-

ration system for the virtual network manager (VNM) to achieve dynamic reconfiguration

in a VN and deploy the DRS on the GpENI-VINI testbed. This is a joint work with Parik-

shit Juluri, who is also a PhD student in the Network Research Lab (NeTReL) at the

University of Missouri - Kansas City.

The dynamic reconfiguration system has two primary tasks: (1) selecting a proper

22

S-VR based on the geographical distance between an S-VR and the failed VR (2) dynam-

ically replacing the failed VR with the selected S-VR in the existing virtual topology, so

that the affected VN can be restored without involving manual operations. Our goal spans

to four aspects: (1) Conduct an experimental study on a wide-area virtualized networking

testbed to evaluate the dynamic reconfiguration scheme; (2) Understand the DRS’s im-

pact to the network dynamics because the realistic packet loss or bandwidth availability

are part of the environment. (3) Evaluate the impact on the routing convergence time un-

der existing routing protocol (i.e., OSPF) during the reconfiguration; (4) Test autonomic

management in a realistic VNE and learn the challenges of applying the dynamic recon-

figuration system in such an environment.

The experimental study of deploying the dynamic reconfiguration scheme in a

realistic virtualized networking testbed showed us a couple of lessons. First, dynamically

restoring a VN from a VR failure is practical in a real VNE and the restoration process

was fast, but the DRS cannot control the inherent properties of the network (e.g., routing

table convergence time). In addition to the geographical distance, more criteria should be

considered when making the selection. Second, multiple independent runs are important

for implementing an experimental study on a realistic network testbed.

1.5.3 Design of a Multi-Criteria Standby Virtual Router Selection Model [68]

Based on the lessons and the experience from the experimental study, we designed

an MILP model for a multi-criteria S-VR selection that can be applied into the dynamic

reconfiguration scheme for any node failure in a VNE.

23

We first modeled the basic entities (e.g., nodes, links, topology, VNs, interfaces,

etc.) within a VNE along with a number of constraints to the selection. We then defined

cost functions associated with the selection process, where each cost function is repre-

sented as an aggregated weighted factors. Moreover, the final goal is to minimize both of

the network cost and the maximum bandwidth utilization on the substrate nodes. Accord-

ing to the optimization model, we designed a heuristic algorithm as well. The proposed

model is able to find optimal S-VRs to restore multiple VNs suffering from concurrent

VR failures, where the VR failures could be caused by either a software failure at itself or

a substrate node failure.

To evaluate the results, we first study the weight parameters defined in the cost

functions and the objective function, and find out how to set the weights to each factors

under a certain circumstance. Second, we designed experimental scenarios to study the

impact of a variety of factors to the S-VR selection, these factors are dependent on the

network dynamics and the resources provisioning. The results showed that the proposed

heuristic’s performance was close to the optimization model when there were sufficient

standby virtual routers for each virtual network and the substrate nodes have the capability

to support multiple standby virtual routers to be in service, concurrently.

1.5.4 Design of a Software-Defined Resilient VNE on GENI [66]

For this phase, by collaborating with Sarah Edwards and Niky Riga from GENI

Project Office at Raytheon BBN Technologies, we designed a software-defined resilient

24

VNE on the GENI testbed. As we introduced in Section 1.2.3, GENI provides a large-

scale distributed heterogenous VNE, and we are able to create a layer-3 virtual networks

by creating tunnels and virtual routers.

Fig. 5 shows a logical view of the a VNE with a centralized VNM that implements

the dynamic reconfiguration scheme. Based on this abstraction, we designed functional

modules for the VNM, so that network initialization and reconfiguration can be automated

on the GENI networks. In particular, we developed a tool to automate arbitrary VN initial-

ization on the GENI testbed, and customized this tool to create VNs with a set of S-VRs.

For the S-VR selection, we simplified the objective function from the optimization model,

and only considered a weighted impact of the geographical distance and the VM load on

the GENI nodes, and we present a prototype implementation of the VNE using GENI as

the substrate network.

1.6 Additional Collaboration and Projects

I have been a collaborator on a number of projects during my PhD studies at

University of Missouri - Kansas City, and they resulted in the following publications

[15, 29, 42, 69, 70, 79, 94, 110, 111], and these contributions are described briefly in the

following subsections.

1.6.1 GpENI Project

As one of the collaborators in the GpENI project, our (i.e., UMKC team) primary

goal was to establish a layer-3 virtualization infrastructure testbed to support programma-

bility at the network layer on the GpENI testbed. Consider the VINI project has built

25

a programmable network-layer virtualization testbed, and there is a private VINI central

management server called MyVINI) available for us to create an instance of VINI envi-

ronment, we created a server running MyVINI at UMKC. Thus, the private VINI environ-

ment built on the GpENI network is named GpENI-VINI, and MyVINI server manages

the GpENI-VINI nodes distributed at different GpENI sites in the US and Europe.

We have made several customizations from the ordinary MyVINI environment

to support a more flexible resource provisioning and management as described in [29].

First, we successfully deployed XORP v1.7 on GpENI-VINI slivers. Second, we ex-

tended the features of the original IIAS tool deployed for the public VINI testbed, so

that the GpENI-VINI server allows users to create arbitrary virtual topologies with less

restrictions on manipulating virtual links. Third, we developed a tool to automated the

routing software installation process, and it allows users to efficiently install XORP or

Quagga to all slivers in a slice simultaneously.

By successfully deploying these three features into the standard VINI software, we

had insightful understanding about the underlying architecture of the Trellis software that

runs as a core software for VINI nodes. The experience of implementing XORP within

a sliver reveals that the mapping between virtual interfaces and physical interfaces shall

be considered when creating the XORP configuration files of routing protocols, and this

shows one of the differences between running a software router in a virtual node and a

physical node. On the other hand, automating the routing software installation process for

all slivers largely improves the efficiency of setting up an virtual IP network with active

virtual routers.

26

0 1 2 3 4 5 6 7 8 9 10
60

80

100

120

140

160

180

200

220

240

260

Time of Generating Xorp Configuration Time

Number of Virtual Interfaces

M
ic

ro
s
e

c
o
n

d
s

router−1.umkc
router−2.ethz
router−1.ksu

Figure 8: Time to Generate the XORP Configuration File within a Single Slice [79]

In this project, we also studied how the virtual router configuration would be

affected by the substrate GpENI-VINI nodes. Since GpENI-VINI testbed uses Linux-

vServer to create virtual nodes, the mechanisms of both CPU scheduling and I/O QoS

use fair share and reservation [105], so users have no control on reserving resources by

giving specific requests. Hence, the performance of the sliver depends on the hardware

configuration of its substrate host. Fig. 8 presents the time to generate the default XORP

configuration files at three different slivers within a single slice, respectively. We found

the distinction between the time of generating the routing configuration files in slivers on

different physical system. On the other hand, from a single host’s perspective, hosting

multiple containers does not have significant impact to the performance (see Fig. 9)

27

0 2 4 6 8 10 12 14 16 18 20 22
100

150

200

250

300

350

400

Number of Virtual Interfaces on Router−1.KSU

M
ic

ro
s
e

c
o
n

d
s

Time of Generating Xorp Configuration File at Router−1.KSU

1 sliver
3 slivers
5 slivers
11 slivers

Figure 9: Time to Generate the XORP Configuration Files for Multiple Slices [79]

1.6.2 SeRViTR Project

The Secure and Resilient Virtual Trust Routing (SeRViTR) project has been re-

sulted in a number of publications [15,70,110,111]. It was a joined collaboration between

Osaka City University (OCU) in Japan, Arizona State University (ASU) and University of

Missouri - Kansas City (UMKC) in the United States. The goal was to design a trustwor-

thy and resilient network architecture supporting multiple virtual routing domains, and

we built a testbed prototype implemented between the three universities.

Virtualized networking environment allows service providers to obtain a parti-

tioned and QoS guaranteed virtual network. In this project, in addition to constructing

virtual routing/switching domain, we further explored a fine-grained VNE design that

enables user-centric virtual routing domain to be created for services with different trust-

worthiness. In [70], we presented a comprehensive SeRViTR framework design to realize

28

a virtual trust routing and provisioning domain (VTRouPD) and a µVTRouPD, where

the latter one indicates a sub-domain comprising virtual routers/switches within a single

VTRouPD or spanning multiple VTRouPDs, determined by a particular routing policy.

For the SeRViTR framework, we designed the core components that are responsible for

trust management, creating virtual routing domains and controlling flows, respectively.

We validated our design using an OpenFlow-based implementation, and the virtual rout-

ing domain was distinguished by various VLAN IDs. In our validation testing, we consid-

ered two types of applications: SSH and HTTP, where the SSH flow was assigned a higher

trust level, and the corresponding µVTRouPD for the SSH flow was created; whereas the

HTTP flow was sent within a µVTRouPD with a lower trust level. Later on, we proposed

a behavior-based policy management for SeVRiTR framework [110], where the trust level

can be updated based on the judgement on the behavior of the flow registered at the rel-

evant database. Furthermore, the impact to the trust level within a single VTRouPD may

also affect the trust level negotiation between multiple VTRouPDs. Thus, this add-on fea-

ture to the SeRViTR framework potentially enables a trust level reconfiguration for virtual

routing domains.

The second goal of this project was to build a geographical distributed SeRViTR

testbed consisting of multiple VTRouPDs, where each VTRouPD belongs to an admin-

istrative domain. In [111], we presented a Geo-Distributed Programmable Layer-2 Net-

working Environment (G-PLaNE) as a substrate support for the SeRViTR testbed, which

provides networking, computing and storage capabilities. For the computing resources,

we use Xen to provision VMs for basic functional components (e.g., Policy Manager,

29

VTRouPD Manager, etc) of the SeRViTR framework presented in [70]. For network re-

sources, we used OpenFlow switches as Flow Controllers that redirect flows to different

µVTRouPDs based on the trust level assigned by the Policy Manager. To interconnect

the VTRouPDs constructed in the three universities (i.e., OCU, ASU and UMKC) from

the US and Japan, we create a layer-2 GRE tunnel between any two universities using

OpenFlow Switches. Thus, VLAN is supported over this layer-2 GRE tunnel.

1.6.3 Systematic Experimental Design on a Shared Testbed

By collaborating with the GENI Project Office and based on our experience on

using GENI testbed, we contributed a case study in [42]. In the presented case study, we

showed how to conduct experiments systematically on a publicly shared testbed. Table 1

shows that most testbeds today offer resources shared by all experimenters and they pro-

vide realistic networking environment for evaluating novel applications or protocols. To

efficiently use the resources on the testbed and avoid unnecessary time-consuming debug-

ging, we present two golden rules for systematic experimental design: (1) always starting

with the smallest setup for an experiment (2) always making one change at a time when

scaling up the experiment.

Another lesson we learned by running the experiments for the study case is that

it is important to always save the configuration for our experiments (e.g., RSpec [21]

for GENI testbed) before making any changes to the current experimental setup. This

procedure also helps us to quickly recreate the identical experiments on the testbed due

to various reasons. For example, if there is a planned long-term maintenance at a GENI

30

site where we have reserved resources from, it will impact a few virtual links and nodes

in our topology for a while. To bring up the same experimental environment, we can

create another slice and load the same RSpec we have saved and replace the nodes under

maintenance with the ones from other active sites.

1.6.4 Service-Centric Management in Information Centric Networking

The work presented in [94] was in collaboration with Ravindran et at. from Fu-

turewei R&D Center. In this work, we designed a push-based multi-tier management

framework for edge cloud service over the information centric network (ICN) [112]. ICN

is another popular field in the Future Internet research, and it proposes to design a clean-

slate networking architecture, where the identifier and locator of the information are de-

coupled and the information can be cached anywhere within the network. Relying the

name-based routing proposed for the ICN architecture, we designed an overlay service

access layer crossing from edge network to the core network, and simulated a conference

framework as an ICN-based edge-cloud service.

1.6.5 Understand the benefit of Multipath Routing

Our recent work on [69] studied the benefit of multi-path routing by introducing

a multipath measure (MPM). We first presented a theoretical MPM for each of the three

common traffic engineering objectives and then ran the linear programming to compute

the optimal MPM for topologies in diverse types and sizes. Consider a multi-commodity

scenario, for all node-pair demands under a certain traffic matrix, the numerical results

showed that the exact MPM value obtained from the ILP was zero or close to zero at

31

optimality. By comparing the objective value with the single-path routing, the multi-path

routing showed little gain, especially for the topology comprising more than 25 nodes.

1.7 Outline of the Dissertation

In this dissertation, we address the problem of dynamically selecting optimal

standby virtual routers for one or more virtual networks against node failures in a vir-

tualized networking environment, with consideration of various constrains and costs in

the virtual networks. In Chapter 2, we present a literature survey about the fault-tolerance

scheme used in survivable network design and recent works in autonomic network man-

agement and centralized network management, respectively. We then illustrate the design

of a dynamic reconfiguration scheme in a VNE in Chapter 3. In Chapter 4 we present the

experimental study of deploying the dynamic S-VR selection in regard of a VR failure

on the GpENI-VINI testbed. Chapter 5 presents the optimal S-VR selection model and

relavent numerical results. Chapter 6 presents the prototype design and implementation

on GENI testbed. Finally, we summarize our work and briefly discuss the future research

goals in Chapter 7.

32

CHAPTER 2

LITERATURE SURVEY

A recent survey [44] classified the virtual network embedding approaches into

three categories: concise/redundant, static/dynamic, centralize/distributed, where each

category has two options. Our work considers one of the eight combinations of these six

features, that is, {redundant, dynamic and centralized}. A virtual network embedding

with redundant resource provisioning is also referred as survivable virtual network em-

bedding [56]. Moreover, the centralized and dynamic approaches refer the management

mechanisms that can be used in either the embedding or the reconfiguration procedure.

As discussed in Chapter 1, a VNE is presented as an overlay architecture, and

it is conceptually similar to the traditional IP-over-optical network architecture, where

the underlying network is the optical ring/mesh topology and the IP-layer links shares

the fiber links. Thus, the traditional survivable design for the optical-layer could be still

extendable for designing a survivable VNE. For example, the survivable virtual network

embedding aims to provide spare resources to protect link/node failures in a VNE, and this

approach inherits the protection scheme used in the survivable optical network design.

In this chapter, we first present a literature survey on survivable design for optical

networks and virtual network embedding, and then we briefly discuss about dynamic

virtual network reconfiguration and centralized management that are also popular research

areas for virtual network management.

33

2.1 Survivable Optical Networks

In the optical networks, link failures are more common than the node failures.

Sivakumar et al. [104] presents a survey on the survivability optical networks in two

common topologies: the SONET/SDH ring topology and the WDM mesh topology.

For the SONET/SDH ring topology, there are three standard protection schemes

[104]: (1) autonomic protection switching (APS) (2) dual homing (3) self-healing rings.

The APS is used to provide link protection in either dedicated or shared backup manner.

Dual-homing mainly handles the single-node failure in the ring topology, where a backup

node is provided for a critical node (e.g., a major hub in the network). The self-healing

ring is used to protect both link and node failures.

In a WDM mesh networks, connection between two nodes are called lightpath,

and a lightpath usually spans a series of fiber links, or a fiber link may be shared by

multiple lightpaths. Thus, a failure at a fiber link may affect multiple lightpaths that share

the failed link in the optical network. Most of the works [40,73,93,118] addressed the link

failures in the WDM mesh network by considering the protection or restoration scheme,

and the specific survivability designs for link failures are at the path-level or the link-level.

For the protection scheme, backup resources are preplanned before the failure occurs. In

the dedicated-backup paradigm, the common ways are 1+1 and 1:1 [104, 118]. In the

shared-backup paradigm, the backup wavelength could be shared by multiple paths that

do not fail simultaneously, and the paths can be either the primary paths or the backup

paths. For the restoration scheme, the backup paths to restore a link or an end-to-end path

are computed dynamically after the failures. Although the restoration scheme may not

34

guarantee that backup resources can always be determined after the failure, it efficiently

saves the spare resources. Doshi et al. [40] proposed a 1+1 protection against a single-

failure scenario, where the backup path between a source and destination is preplanned

with links and nodes that are disjoined with the primary path. Chan et al. [26] proposed a

self-protected architecture using 1:1 protection in the WDM networks. Mohan et al. [81]

proposed a hybrid method that combines the shared-backup protection and a restoration,

where a primary path shares a channel with multiple backup paths.

Proactive or reactive mechanisms for node failures in a WDM network are more

complex and challenge. Usually a node failure may cause multiple failures in the links

that are attached to this node, and to recover these links requires multiple node disjoint

backup paths to reroute the traffic traversing these links [104]. Liu et al. [71] proposed a

spare capacity allocation model with successive survivable routing for node failures in a

mesh topology, where each traffic flow was preplanned a node-level disjoint path so any

single node failure along the path can be protected.

2.2 Survivable Virtual Network Embedding

Virtual network embedding problems have been wildly studied in the past decades,

and most of them were published in the past five years. The primary goal of virtual net-

work embedding is to accommodate each virtual network request to the substrate network,

where a virtual node usually is mapped to a substrate node and a virtual link is mapped

to a substrate paths (i.e., a set of substrate links). Fischer et al. [44] presents a detailed

taxonomy of the virtual network embedding approaches, where about 50% of the works

35

used the redundant approach. Thus, survivability has become an significant element for

creating a resilient virtualized networking environment.

As listed in the survey [44], out of the 40 papers that considered redundancy for

the virtual network embedding, 34 (about 85%) used a centralized and static approach.

A centralized approach is still the most common for virtual network embedding, and the

main advantage is that it has the global view of the whole VNE. With static allocation, the

resources are preplanned for a virtual network request and cannot be reallocated for an-

other virtual network request that comes later, and it lacks flexibility to adapt the changes

in the VNE, such as the resource distribution on the substrate network. According to the

survey, there have been only five papers combines both dynamic and redundancy in the

embedding paradigms.

Survivable virtual network embedding against link failures was addressed in many

works [31, 33, 51, 76, 91, 92, 101, 102, 115–117]. In particular, Shamsi et al. [101, 102]

present QoS-aware resource allocation from the application’s perspective. The overlay

links requiring high quality were mapped to the direct paths on the substrate networks,

and alternative paths were provisioned by indirect paths going through intermediate nodes

on the substrate network. Zhang et al. [116,117] also considered a QoS-based allocation,

where disjoint backup paths on the substrate network were provisioned against link fail-

ures and the latency for the requested virtual network was minimized. While allocating the

backup paths, the proposed model aimed to minimize the number of the substrate nodes

that were selected to support backup paths. Allocating virtual links that share multi-path

splited on the substrate network is another way to improve the survivability against link

36

failures [31,33,115]. Guo et al. [51] considered link restoration by providing a number of

precomputed bypass substrate paths, and the path restoration was achieved by providing

backup end-to-end paths. In their work, bandwidth are considered as shared resources for

the proposed on-demand or pre-allocation schemes. Rahman et al. [91, 92] presented a

policy based link embedding to provide fast link restoration and path restoration.

As presented in [75], node failures took 16.5% of the total amount of failures

based on the study on the Sprint network. In a VNE, virtual node failures will cause

multiple virtual link failures, and substrate node failures may affect multiple virtual node

failures. Thus, survivable virtual network embedding against node failures in a VNE is

desirable and emerging. As presented in a recent survey about the survivable virtual net-

work embedding studies [56], most of the works [50,60,113,114] focused on single-node

failure on the substrate network. The authors in [50] discussed a two-step survivable

virtual network embedding procedure to provide protection against single substrate node

failure. In particular, they first enhanced the virtual network request by proactively adding

a backup node with and associated links, and then applied the embedding procedure. The

paper [119] proposed a two-stage virtual node mapping scheme that is able to map a vir-

tual node to multiple nodes on the substrate network, and this idea is similar to the aggre-

gation approach we have discussed for the optical layer virtualization. Yeow et al. [113]

presents a shared-backup scheme, called Opportunistic Redundancy Pooling mechanism

in the paper, to protect a single-node failure on the substrate network. In this work, the

redundant nodes can be shared by multiple virtual networks. Yu et al. [114] enhanced the

virtual topology by adding the redundant nodes with associated links, and then mapped

37

the new virtual topology with the backup nodes and links onto the substrate network. The

works we have discussed so far are all proactive approaches (i.e., before failures). Houidi

et al. [59] presents a dynamic reactive restoration scheme for either virtual node failures

or substrate node failures conducted by distributed agents on the SN. For virtual node

failures, the agent who supports the failed virtual node will initialize an alternative virtual

node to replace the failed virtual node from the same host or a different host on the SN,

and the agent will also reallocate resources for virtual links associated with the new vir-

tual node. For a substrate node failure, an agent will select a different host and migrate

the affected virtual nodes and links to the new selected host.

2.3 Autonomic Network Management

Autonomic computing [65] has been a practical solution to manage complex dis-

tributed computer system, and it enables efficient self-management for computer net-

works, especially for a resilient network design [27]. To provide an ideal fault-tolerant

network environment, besides applying a good protection or restoration scheme, fast re-

covery is also important to avoid the the customers’ awareness of failures. In a virtualized

networking environment, there are two-tier provider-customer relationship. At the first

tier, regular end system users are customers of a service (e.g., video streaming, P2P, etc)

provided by an SP, and at the second tier, the SP now is a tenant who rents network re-

sources from an SNP. Thus, service customers are expecting services with good a quality

of experience (QoE), and the service providers expect a good quality of service (QoS)

with the VNs that the substrate network provider leases to them. Hence, an efficient

38

survivable virtual network management framework is desired from the substrate network

provider’s perspective.

There are several works [23,28,99,115] using dynamic or autonomic management

to create a survivable VNE with efficient resource utilization. Butt et al. [23] proposed a

reactive approach to dynamically detect substrate nodes and links with bottleneck residual

resources and then reallocate pre-mapped VNs onto the SN, so that a previously rejected

VN request can be mapped to the SN, which in turn increases the acceptance ratio of

virtual network embedding and achieve better load balancing on the SN. Yu et al. [115]

proposed a flexible path-splitting mechanism for link mapping problem, and use spliting

ratio to denote the division of the traffic on the SN. This work presents a link mapping

algorithm with dynamically remapping a virtual node from the original substrate node

with bottleneck link to another one that has maximum residual resource. Moreover, if

there is a substrate link failure, the splitting ratio can be adjusted so that the affected

traffic can be switched to another path. Chen et al. [28] presents a dynamic virtual node

reconfiguration to balance the resource utilization on the substrate nodes.

Dynamic reconfiguration can also be applied to overcome router failures and link

failures, as self-healing defined in [65]. Recent works mainly concentrated on optimiz-

ing the routing algorithms to provide better support for dynamic reconfiguration. These

algorithms were studied by either using mathematical models, simulations [24,46,48], or

by testing them on networks using local lab machines [100]. In order to implement such

approaches on a wide-area core network, hardware and software would need to be mod-

ified on every router. Secondly, with simulation or mathematical models, it is necessary

39

to make certain assumptions that may not be applicable in real networks. While a testbed

can be set up in a research lab in a confined space, it is not capable of emulating the real

world network dynamics of a geographically distributed wide-area network. In our case,

we study the effect of router replacement in a virtualized network testbed employing soft-

ware based routers. To the best of our knowledge, there’s very little work in this direction

evaluated on a wide-area network testbed.

2.4 Centralized Networking Management

Centralized control is not new from the network management point of view. For

the optical networks, centralized approaches have been widely used for the restoration

[40, 104], because a central controller has a global view of the whole optical network

and can quickly calculate the restoration paths for the primary path, and then conduct the

restoration procedure.

Software-defined networking (SDN) has been a hot research topic in recent years.

In SDN, network management (control plane) and packet forwarding (data plane) are de-

coupled, where the control functions are deployed and implemented at a centralized server

or controller to support flexible flow or routing management. For example, for the Open-

Flow network [78], a controller is responsible to compute and distribute flow tables to the

OpenFlow switches, and the switches only need to forward the traffic based on the flow

table received from the controller. In this work, we discuss a software-defined resilient

virtualized networking environment, where a centralized system provides the software-

based virtual network management, including VN reconfiguration to restore connections

40

in the VNE.

One of the disadvantage with the centralized management is referred as single-

point failure. For a resilient SDN design, the primary-backup idea has been applied to the

controller placement problem in recent literatures. In [45], the core component CPRecov-

ery is designed to support communication between the primary and backup controllers.

Bari et al. [18] proposed a dynamic controller provisioning mechanism. Hock et al. [58]

discussed a resilient controller placement in the core SDN network, and the proposed opti-

mal controller placement considered various failure events such as node failures including

the controller failure.

41

CHAPTER 3

DYNAMIC RECONFIGURATION SCHEME IN A VNE

In Chapter 2, we have discussed two general approaches to achieve survivability in

a VNE. The first is a proactive scheme called protection, which pre-plans spare resources

for potential failures in the networks (i.e., mostly for a substrate network). The other

approach called restoration is a reactive scheme, which dynamically reallocate resources

(e.g., alternative paths or nodes) to restore the affected networks. For a VNE, failures

are expected to be transparent to both service providers and service customers. Hence,

a substrate network provider must provide efficient protection or restoration mechanisms

so that any failures can be handled quickly in order to minimize the impact.

For a VNE, protection against link failures have been explored extensively, but

node failures haven’t been addressed much, especially with a restoration scheme. In this

dissertation, we design a dynamic reconfiguration scheme for virtual network restoration

against either virtual router failures or a single substrate node failure.

Unlike a regular restoration scheme where the alternative resources are discovered

and allocated dynamically after the failure, we considered a restoration on basis of a

protection manner. In the traditional protection scheme, alternative resources are reserved

for particular primary entities in the network. For example, for critical links or paths in a

network, backup paths have been precomputed in case the primary links or paths fail. In

our design, we assume that the substrate network provider (SNP) is able to allocate spare

42

R1	

R2	

R7	
 R6	
 R5	

R4	
 R3	

Substrate	

Network	

R	
 Substrate Node Connected
Virtual Router

Pre-configured Standby
Virtual Router

1
6

2

4

5

3
7

1
6

4

2

7

5
3

VN1

VN2

Virtual Network Plane

Virtual Network
Manager

Figure 10: Dynamic Reconfiguration Scheme for Virtual Networks

virtual routers (VRs) as standby virtual routers (S-VRs) for a VN, and these S-VRs are

not reserved as dedicated backups for a particular set of VRs, but for any VR failed in this

VN. In other words, any of the reserved S-VR can be selected to replace any failed VR in a

VN, and this shared-S-VR provisioning helps to reduce resilient cost in a dedicated S-VR

provisioning. Note that the S-VR provisioning is out of the scope of this dissertation.

Our objective is to design a dynamic reconfiguration scheme (DRS) by optimally

selecting a S-VR for each affected VN. The reconfiguration process will automatically

replace the failed VR with a properly selected S-VR and the original virtual topology is

sustained after the replacement. Fig. 10 presents the proposed DRS applied for the VNE

shown in Fig. 5 that we illustrated earlier in Chapter 1.2

As shown in Fig. 10, the SNP employes a logical centralized virtual network man-

ager (VNM) that is responsible for VN initialization, configuration, monitoring and recon-

figuration in a dynamic manner. There are two VNs actively in operation on the virtual

43

network plane, and both VNs have been provisioned a set of S-VRs, respectively. Since

these S-VRs are shared-backups for any VR in the existing VN, they are functionally

identical to other active VRs but in the sleep mode. When the VNM detects a VR failure

for a VN, it starts the dynamic reconfiguration process, which automatically selects one

of the provisioned S-VRs to replace the failed VR. The replacement procedure requires

the selected S-VR to be connected to every original neighbor of the failed VR, so that

the original topology could be restored. Since all the reserved S-VRs for a VN are in the

sleep mode, any S-VR can be quickly activated in case of any VR failure, and the affected

VN can be restored back to its original topology immediately. In this case, the restored

VN does not need to make many changes to the routing tables and can minimize transient

issues. For example, consider a VN that has deployed the OSPF (open shortest path first)

routing protocol. OSPF can recognize a single link failure well; however, OSPF does not

support a node failure function well as it has to learn from correlating the non-functioning

of links associated with the failed node to eventually recognize the node failure—this may

result in an extended transient window when traffic flow may suffer for the SPs. Thus,

having S-VRs preconfigured can allow quick restoration from a VR failure for each VN.

On the other hand, because both the traffic load and the hardware capacity are changing

at the substrate nodes where these S-VRs reside, selecting an S-VR that has minimum

impact to both the existing VNs and the SN and minimizing operations cost are impor-

tant during the dynamic reconfiguration process, and we will discuss the optimal S-VR

selection by considering different factors in Chapter 5.

44

We consider two conservation requirements while dynamically conducting the re-

placement. First, each VN should be restored to its original topology as we just discussed

above. Secondly, if an S-VR is selected, the bandwidth between this S-VR and each

neighbor of the failed VR should also be restored to what it was before the failure, so that

the QoS of the VN will not be degraded.

In a VNE, a VR may fail because of two reasons, and we classify the VR failures

into two categories based on the characteristics of the failure. The first type is referred as

an independent VR failure, where the failure at a VR is caused by some software issues or

overload within the VR and it does not affect other VRs or other VNs. The second type

is referred as a dependent VR failure, where a VR failure is mainly caused by a failure

or maintenance at the corresponding substrate node and this substrate node failure might

also affect other VNs if these VNs contain VRs hosted by this failed substrate node.

The proposed DRS aims to restore VNs, in case of either independent or depen-

dent failures. For example, if a power outage occurs at the substrate node R5 in Fig. 10,

it will immediately affect VN1 and VN2, where both contain a VR hosted on R5, re-

spectively. Once the centralized management system VNM identifies the failures, it will

trigger the DRS and select one S-VR forVN1 and VN2 from each one’s shared-S-VR pool,

respectively. Suppose for VN1, the S-VR hosted on R6 is selected, it will be activated to

connect VR-1,7,2, which originally were the neighbors to the failed VR-5, and the orig-

inal topology for VN1 could be restored. Meanwhile, the VNM also select VR-2 from

the shared-S-VR pool and reconfigure the topology for VN2 so that VR-2 connects to

VR-1,3,4.

45

For the illustration in the rest of chapters, we make following assumptions:

• Within each VN, any two VRs, including the S-VRs, are not hosted on the same

substrate node.

• For each VN, at most one independent VR failure at a time.

• One substrate node fails at a time.

The first assumption reflects that it is not common to create two VRs within a

VN from the same substrate node. Intuitively, for a VN, reserving two VRs from the

same substrate node is for redundancy purpose, where one is activated while the other

is reserved as an S-VR. Hence, in the case of a failure of the working VR, it can be

automatically switched to the S-VR by the hosting substrate node, while preserving the

VN topology or bandwidth. However, this kind of dedicated-backup mechanism will not

work for the dependent VR failure scenario. In our approach, we focus on the non-trivial

problem with a shared-backup mechanism, where the S-VR resides in a different substrate

node from the failed VR, and it is not reserved for replacing a dedicated VR with a failure.

Secondly, we assume there is at most one VR failure within a single VN at a time, so it

ensure sufficient S-VR candidate for each failed VR. On the other hand, based on the

first assumption, for the same VN, the chance of concurrent VR failures is reduced. Even

with a substrate node failure, at most one VR within a VN could fail. In regard to the

third assumption, it does not rule out the possibility that a substrate node failure may

simultaneously affect multiple virtual networks.

46

CHAPTER 4

AN EXPERIMENTAL STUDY ON GPENI-VNI

Virtualization at the network layer is achieved by creating partitioned network

namespaces at virtual nodes, where manipulating both routing tables and virtual inter-

faces is allowed. Critical aspects of network virtualization are resource allocation and

re-allocation, especially in the case of router failures or re-allocation of routers due to

maintenance. In this chapter, we present an experimental study on the DRS used in a

realistic virtualized network environment — GpENI-VINI testbed [29] in which the VRs

are geographically distributed across the United States and Europe. Our study consid-

ered not only end-to-end metrics (latency, bandwidth, loss-rate) but also the routing table

convergence time to understand the transient behavior in this autonomic management en-

vironment.

4.1 A Detailed View of the DRS

We have introduced the generic dynamic reconfiguration scheme (DRS) in Chap-

ter 3, and the basic idea is to automatically replace a failed VR with the most suitable

S-VR. In this section, we present a detailed view of the DRS from the operation perspec-

tive.

The sequence diagram Fig. 11 presents the break-down processes of dynamic re-

configuration that overcomes a VR failure in a VN. Note that our goal is to design a DRS

47

Virtual	
 Network	

Manager	
 (VNM)	

Virtual	

Router	
 (VR)	

Standby	
 Virtual	

Routers	
 (S-­‐VRs)	

Failure	

Select a S-VR from the
Shared S-VR pool

DRS Starts

Monitoring

Enable the interfaces on the selected S-VR

Update the virtual topology by
replacing the failed VR with an S-VR

ACK: S-VR is activated

Failed	
 VR’s	

Neighbors	

Enable the virtual interface to connect to the selected S-VR

ACK: Connected to the S-VR

Figure 11: Sequence Diagram for the DRS

that minimizes the effect on the network performance and does not consider the detec-

tion of failures. During this replacement process, any active sessions that are running on

the current topology could be affected. If there is no alternative path for the data, then

existing sessions would be interrupted until the recovery takes place. On the other hand,

with existing dynamic routing protocol (e.g., OSPF), if there is an alternate path for the

data, we can expect that the communication would continue over that path until recovery

is complete.

The DRS plays an important role when the network needs to be updated, or re-

covered seamlessly, and the whole process is transparent to the customers and service

providers as well. Hence, an optimal selection strategy will largely reduce the impact

on the end-to-end network performance due to the network reconfiguration. In general,

48

to select a proper S-VR candidate to replace failed VR, we may consider a few options

such as access latency, a VR’s capabilities, a VR’s geographical location (i.e., latitude &

longitude), etc. In our study, we consider the third strategy based on the following:

• S-VRs are not connected to any other active routers; so the latency between an

S-VR and other active VRs cannot be used as a priori information for selection.

Even though S-VR can be accessed from the VNM, we can only measure the in-

stantaneous access delay from the VNM, and we cannot presume that the access

performance is as good as that from other VRs.

• Our experiment testbed is a VNE with layer-3 virtualization, and our measurement

shows that the latency of a virtual link between two VRs was not the same as the

latency between the corresponding substrate nodes (i.e., the latency of the substrate

path between these two nodes). For instance, for two VRs are directly connected

through an EGRE tunnel; the ping test between the virtual interfaces showed the

round trip delay to be around 0.0017ms, whereas between their two physical in-

terfaces it was around 200ms. Therefore, although the virtual router’s physical

interfaces were active, the access delay to them cannot be used as a reference.

• Since the VRs are software routers instead of commercial routers, we do not have

enough information on the router’s capability as a reference to make a selection.

Therefore, we consider two strategies. The first is a geographical distance based

selection, where the DRS selects an S-VR candidate geographically closest to the failed

VR. This is reasonable because the closest S-VR usually has a similar physical connection

49

Algorithm 1: Geographical Distance based S-VR Selection for a VN
Input: f : the failed VR in a particular VN

S: set of S-VRs reserved for the VN
R: set of substrate nodes

Output: s: the ID of the selected S-VR candidate for the VN, s ∈ Sj

// Search the geographical location of the failed VR f
1 (flat, flon)← GetLocation (R, f)

//Initialize the minimal distance as infinity
2 dmin←∞

//Initialize the selected standby router’s ID
3 s← NULL
4 for i in S do

// Search lat-long information of standby routers
5 (ilat, ilon)← GetLocation (R, i)

// Get the distance between the f and the S-VR i ∈ S
6 d← GetDistance(ilat, ilon, flat, flon)
7 if d < dmin then
8 s← i

9 return s

on the substrate, so it is least likely to affect the original network performance. For a

VN that has a set of S-VRs (denoted as S) reserved, if an active VR f fails, the VNM

runs Algorithm 1 to selects a S-VR with minimum distance to f . The second way is to

randomly select an S-VR candidate from the shared pool. Once the VNM has determined

the S-VR for the affected VN, it runs Algorithm 2 to replace the failed VR f with the

selected S-VR s to restore the VN and update the virtual topology information.

4.2 Experimental Platform: GpENI-VINI Testbed

We have deployed our experiment on GpENI-VINI, a layer-3 programmable vir-

tual routing testbed that is geographically distributed on the GpENI testbed. We have

50

Algorithm 2: Virtual Topology Update Algorithm
Input: G = (V,E): A VN (G) consists of the VRs (V) and the virtual links (E)

f : the failed VR, f ∈ V
s: the selected S-VR candidate for the affected VN

Output: An updated topology G′ with new node set V ′ and new link set E ′

1 for u ∈ V do
2 if u == f then
3 for each v ∈ adj (u) do
4 LinkDown (u, v)
5 LinkUp (s, v)
6 E′← (E− {(u, v)})

⋃
{s, v)}

7 V′← (V− {u})
⋃
{s}

8 G′ ← (V′,E′)
9 return G′

briefly introduced GpENI testbed and GpENI-VINI in Section 1.2.3, now we present

more technique details on virtualization and the virtual routing capability supported by

the GpENI-VINI testbed.

4.2.1 Overview

GpENI (Great Plains Environment for Network Innovation) [79] is an interna-

tional experimental testbed for future Internet research. It was originally built in col-

laboration between four universities in the Midwest region of the United States (i.e., the

University of Kansas, the University of Missouri–Kansas City, the Kansas State Univer-

sity and the University of Nebraska-Lincoln). Currently the GpENI testbed includes sites

in both the United States and Europe and it’s expanding to Asia. Fig. 12 displays the

topology and infrastructure of GpENI testbed in these three continents.

The GpENI testbed provides programmable capabilities on multiple layers of the

51

(a) Midwest Topology21 January 2009 KU EECS 780 –Comm Nets – Administrivia NET-AE-12

© James P.G. SterbenzITTC

GpENI
European Expansion – latest with Russia

Wien

Warszawa

ISCTE

Bern

ETH

U-Zürich

KTH Stockholm
SICS

Simula

Bilkent

Internet2

GÉANT2
DANTE

NORDUnet

SWITCH

Passau

München

JANET

Cambridge

Lancaster

UPC Barcelona

Uppsala

Konstanz

Karlsruhe

Kansas
City

Tampere UT

Moscow

Skt. Peterburg
IIRAS

TKK Helsinki

UC Dublin
HEAnet

Karlstads

(b) European Topology

(c) Asian Topology

Figure 12: GpENI Topology and Infrastructure in US, European and Asian Countries [6, 79]

network. In particular, we described layer-3 programmability and network resource provi-

sioning in [29]. With GpENI-VINI testbed, users can request a number of virtual routers

and create a customized virtual topology using those VRs. At the time of evaluation,

there were 18 active GpENI-VINI nodes that are distributed across the United States and

Europe. This gave us an opportunity to evaluate the DRS in a wide-area VNE.

52

IIAS Tools

GpENI-VINI

Central Server

Database Server

(PostgreSQL)

API Server

Web Server Boot Server

MyPLC

Node

Manager
IIAS Tools

GpENI-VINI

Node

Sliver-1 Sliver-2 Sliver-3 …...

Researcher
…...

Quagga

Configuration

Files

Quagga

Configuration

Files

XORP and

Quagga

Installation

Files

XORP and

Quagga

Installation

Files

XORP

Configuration

Files

XORP

Configuration

Files

Sliver-1 Sliver-2

GpENI-VINI

Node

Node

Manager

IIAS

Tools

Figure 13: GpENI-VINI Architecture Overview [29, 79]

4.2.2 GpENI-VINI Architecture

GpENI-VINI is a customized instance of the public VINI testbed deployed by

Princeton University by adding additional features. Fig. 13 shows the architecture of

GpENI-VINI architecture. In particular, the Internet in a Slice (IIAS) is a client-server

tool allowing users to create layer-3 virtual topology in their slices. We have extended

the features of the IIAS tool on both the server side and the client side to enable flexible

creation of virtual networks. GpENI-VINI nodes are distributed across the sites in US and

Europe, and they are physical systems provisioning slivers running as software virtual

routers. On the other hand, to support both host and network virtualization (i.e., Linux

vServer and NetNS), each GpENI-VINI node runs an instance of ordinary Trellis

software that also runs on the public VINI nodes. Moreover, we developed an tool to

automate the routing software installation process.

The benefits of GpENI-VINI testbed is summarized as follows:

53

• First, GpENI-VINI allows users to create an arbitrary topology in a slice by just

entering the virtual topology information through a web-based GUI.

• Second, virtual interfaces are pre-created on each VR. Once the user entered the vir-

tual topology information that he wants to create, the IIAS [20] running at MyPLC

(i.e., GpENI-VINI central server) will automatically configure private IP addresses

for each sliver to be created from corresponding substrate. By communicating with

the MyPLC server, the Trellis [22] software running at each node create and

configure virtual interfaces within the requested slivers dynamically. Thus, we do

not have to configure interfaces for every router in our experiment, which improves

the efficiency of building the experimental environment.

• Third, once the sliver is up, a default configuration file for specific routing protocol

has been created and a routing software (i.e., Quagga or XORP) has been installed

at the sliver. In other words, each sliver automatically runs as a pre-configured

software router based on the user’s preference. As a result, users may use this

default configuration file while running routing software without any extra work.

• Fourth, a routing automation tool is provided for users to install and start routing

software to all slivers at one time. Thus, it enables high efficiency for a large-scale

experiment pre-setup.

54

4.3 Experimental Design

Considering the flexibility and efficiency of running a layer-3 virtual network on

the GpENI-VINI testbed, we can enforce the DRS to a virtual network in a GpENI-VINI

slice.

From the SNP perspective, we created the initial VN including both the requested

virtual topology and the S-VRs in the sleep mode. In order to quickly bring up the S-VR

and add it to the existing VN, we also created the virtual links between each S-VRs to

the VRs in the requested VN and disable these virtual links when the corresponding S-

VR was deactivated. Moreover, both regular VRs and S-VRs are all configured with the

OSPF protocol.

Once the initial virtual topology has been created for the slice, the VNM will

disable all virtual links between the S-VRs and other VRs by turning down the their

corresponding virtual interfaces, respectively. When a S-VR is selected, the VNM then

turns on its virtual interfaces that are associated with the failed VR’s neighbors to activate

the virtual links, and wait for the OSPF routing table to get convergence on every other

VR in the virtual topology. In the following subsections, we show our study on OSPF

convergence time and network performance during the reconfiguration.

4.3.1 Experimental Scenarios

We considered three wide-area virtualized topologies of two different sizes (Fig. 14)

on the GpENI-VINI testbed for our experiment, where the node information is provided

in Table 2.

55

R2- TUT-FI

R2-SIMULA-NO R2-CAM-UK

R1-KU

R2-UMKC

R1-SIMULA-NOR2-KUR2-KAU-SE

Host-TUT-FI
Host- UMKC

(a) Topology-I(a): Five VRs across US-Europe

R2- TUT-FI

R2-SIMULA-NO R2-CAM-UK

R1-KAU-SE

R2-Vienna

R1-SIMULA-NOR2-KAU-SER2-UPC-SE

Host-TUT-FI
Host- Vienna

(b) Topology-I(b): Five VRs in Europe Only

R2- TUT-FI

R1-SIMULA-NO R2-CAM-UK

R1-KU

R2-UMKC

R2-KUR2-KAU-SER2-UPC-SE

Host-TUT-FI
Host- UMKC

R2-Vienna

R2-SIMULA-NO R1-KAU-SE

R1-Vienna

(c) Topology-II: Nine VRs across US - Europe

Figure 14: Five-node and Nine-node Wide Area Virtual Topologies

56

Table 2: GpENI-VINI Node Information

Node Names Site Name City Country

Host-UMKC University of Missouri - Kansas City Kansas City, MO US

R2-UMKC University of Missouri - Kansas City Kansas City, MO US

R1-KU The University of Kansas Lawrence, KS US

R2-KU The University of Kansas Lawrence, KS US

R2-CAM-UK University of Cambridge Computer Laboratory Cambridge UK

R1-SIMULA-NO Simula Research Laboratory Lysaker Norway

R2-SIMULA-NO Simula Research Laboratory Lysaker Norway

R1-KAU-SE Karlstad University Karlstad Sweden

R2-KAU-SE Karlstad University Karlstad Sweden

Host-TUT-FI Tampere University of Technology Tampere Finland

R2-TUT-FI Tampere University of Technology Tampere Finland

R2-UPC-SE UPC CCABA Barcelona Barcelona Spain

Host(R1)-Vienna University of Vienna Vienna Austria

R2-Vienna University of Vienna Vienna Austria

Topology-I has two variations as shown in Fig. 14(a) and Fig. 14(b), respectively,

depending on the geographical locations of the selected substrate nodes that provide the

VRs. Topology-I(a) consists of five VRs spreading across both Europe and the United

States. Fig. 14(b) shows the same topology as Topology-I(a), but it is composed of VRs

speaded in the Europe countries only, so it is denoted as Topology-I(b). Because of the

underlying star-like topology of the GpENI network, the virtual link speeds available to

each VN and the end-to-end delay on the GpENI substrate network are different between

these two topologies. Hence, they represent two different sub-scenarios of Topology-I.

Topology-II, as shown in Fig. 14(c), is a nine-node virtual topology spanning both

Europe and the United States. On the US side, we used nodes located at the University

57

of Missouri–Kansas City and the University of Kansas, and on the European side, we

selected nodes from six institutions from different countries (Norway, Sweden, Austria,

Finland, UK, and Spain).

For all three VNs, two slivers from the testbed were assigned as end hosts to gen-

erate traffic flows. We also assigned one node from the GpENI-VINI testbed running as

VNM. In Table 3, we list the round-trip time measured between the two end hosts for

all three topologies to illustrate how the topologies, while appearing to be similar, are

different as imposed by bandwidth available from the GpENI substrate. An interesting

observation was found for two VNs created for Topology-I. For Topology-I (a), although

the geographical distance between the two end hosts (i.e., transatlantic distance) is greater

than it is for Topology-I (b) (i.e., within European continent), the latency measured be-

tween the two end hosts for Topology-I(a) was less. This contradiction is because of the

start-topology on the GpENI backbone network [6], where the center of the star is located

at the University of Kansas (KU) in the United States. Thus, the traffic sent between two

VRs in Europe was actually sent along the paths Europe-US-Europe, which increased the

presented latency in the virtual links. This indicates a fact of substrate network topology’s

impact to the overlay VNs.

We are interested in three possible factors to the network performance during the

reconfiguration: (1) the number of VRs in the virtual topology, (2) the geographical loca-

tion of the VRs, (3) the S-VR selection strategy.

The end hosts exchange traffic data during a live session with the DRS involved.

In particular, we considered both a UDP-based and a TCP based end-to-end session, and

58

Table 3: End-to-End Round Trip Time

Topology Min-RTT (ms) Avg-RTT (ms) Max-RTT (ms)

I(a) 170.223 171.681 182.732

I(b) 342.879 343.155 343.453

II 465.159 465.343 465.553

they are invoked by iperf [8]. We measured the instantaneous bandwidth over the end-

to-end TCP session, as well as the instantaneous datagram loss rate and throughput over

the end-to-end UDP session. For each TCP test with iperf running, we set MTU as 1000

Bytes and the window size as 250 KBytes. For each UDP test with iperf running, we

set the default bandwidth as 2 Mbps, and buffer size as 250 Kbytes.

4.3.2 Metrics and Logs Collected

We collected two types of metrics and logs for evaluating the network performance

during the dynamic reconfiguration. The end-to-end measurements were observed by

running iperf, and the network performance were evaluated by recovery time and OSPF

convergence time.

4.3.2.1 End to End Metrics and Logs

• Instantaneous Throughput and Loss Rate: The iperf UDP test allows us to obtain

the instantaneous datagram loss rate, network throughput as well as latency variance

(i.e., jitter) to evaluate the quality of network during the communication. By col-

lecting the real-time UDP session logs, we got the best estimate of the throughput

measured for every second, especially when the reconfiguration happened.

59

• Instantaneous Bandwidth: The iperf TCP test helped us to estimate the actual

bandwidth between end hosts that ensured packets were correctly received by the

client side. Thus, by running the iperf TCP test, we estimated how reliable the

network behaved during the reconfiguration process.

4.3.2.2 Network Metrics and Logs

• Recovery Time: As soon as a VR failure was identified, the VNM invoked the DRS

to restore the VN. The DRS first disabled links from the failed VR to its neighbors

and then the failed VR was replaced with the selected S-VR whose virtual interfaces

were properly enabled to connect the original neighbors of the failed VR. Recovery

time indicates the duration between the occurrence of identifying a failure and the

time when a standby router is successfully added to the existing VN.

• OSPF Routing Table Convergence Time: We continually monitored the OSPF rout-

ing table at all nodes for any changes during each run. We collected snapshots of

the routing table every time it was updated. These snapshots were timestamped

and logged on for each individual router. These snapshots helped us determine the

time taken for the routing table to converge at each router, once the recovery had

finished.

• OSPF Logs: We collected the neighboring information from the OSPF table for

each of the VR to log any updates about its neighbors.

60

4.4 Results Discussion

For all three topologies described in the previous section, we conducted ten inde-

pendent runs to avoid any artifacts.

4.4.1 Topology-I(a): A Five-VR Virtual Network across US-Europe

We first discuss Topology-I(a), where we utilized two different S-VR selection

strategies: geolocation-based selection and random selection.

4.4.1.1 Geolocation-based Selection

As observed from the topology shown in Fig. 14(a), Fig. 15(a) - Fig. 15(c) present

the instantaneous bandwidth, datagram loss rate and throughput, respectively. Note that

the red dotted line indicates the time when a VR (i.e., R1-KU) was failed, and the green

dotted line indicates the time when a S-VR (R2-KU) was added to replace R1-KU. The

gap between these two dotted lines indicates the recovery time, which was about 1.5

seconds, and it means that the entire process of dynamic reconfiguration was pretty fast

compared to manual operations on the virtual interfaces. Recall that there is an alterna-

tive path to the destination in the topology. Hence, when the R1-KU failed (red dotted

line), although there was an immediate packet loss and bandwidth drop due to the failure,

the traffic was then redirected to the alternative longer path, and the performance of the

network was improved slowly afterward.

We also interested in the time it takes to get the OSPF routing table to be consistent

for all VRs in the VN. Fig. 15(d) presents the next hop to the destination HOST-UMKC

61

−20 0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

B
a
n
d
w

id
th

 (
K

b
it
s
/s

e
c
)

ENDSTART

R
E

M
O

V
E

A
D

D

End−to−End bw

(a) TCP Session Bandwidth

−20 0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

Experimental Time (sec)

L
o
s
s
 R

a
te

 (
%

)

ENDSTART

R
E

M
O

V
E

A
D

D

End−to−End lossrate

(b) UDP Session Loss

−20 −10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

ENDSTART

R
E

M
O

V
E

A
D

D

End−to−End Throughput

(c) UDP Session Throughput

−20 0 20 40 60 80 100 120 140

r2−ku

r2−simula−no

OSPF Update Time (sec)

N
e
x
t
H

o
p
 R

o
u
te

r

(d) Next-Hop Information Over 10 Runs

Figure 15: Geolocation-Based Strategy on Topology-I(a)

from the VR R2-TUT-FI’s perspective. By parsing the OSPF routing table and the neigh-

boring information, we tracked the next hop router information to the destination. In

Fig. 15(d) we use dotted lines in different colors to indicate the OSPF update time during

each single run (out of 10 runs), and the dot clusters point out two major OSPF update

time periods: one was between 3 - 5 seconds (R1-KU fails), and the other was between 23

- 28 seconds. The rest of the dots in the figure may be treated as exceptions. Therefore,

the routing convergence time for the OSPF routing table is between 20 - 23 seconds on

average, which matches the duration time between two major troughs in the bandwidth

pattern shown in Fig. 15(a). Since we use the S-VR to restore the VN back to its original

topology, when the routing table converges, the traffic is again redirected to its original

path with respect to the shortest path.

62

−20 0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

B
a
n

d
w

id
th

 (
K

b
it
s
/s

e
c
)

ENDSTART
R

E
M

O
V

E

A
D

D

End−to−End bw

Figure 16: Random Selection Method on Topology-I(a): TCP Session

4.4.1.2 Random Selection

In order to study whether the geolocation-based selection is worthwhile, we com-

pared it to a random S-VR selection. In this random selection case, we still failed the

R1-KU physically located in the US, instead of picking a closer S-VR candidate at KU,

we randomly picked a node R2-KAU-SE, which is physically located in Sweden.

Fig. 16 shows the end-to-end instantaneous bandwidth due to the reconfiguration

process. Compared with Fig. 15(a), we observed that the two major bandwidth drops hap-

pened within a similar time interval as we observed for the geolocation-based method, in-

dicating that the OSPF convergence time was not affected by the S-VR selection strategy.

However, with the random selection strategy, the instantaneous bandwidth after OSPF

routing table has converged was below the original value before the failure, whereas the

end-to-end performance under a geolocation-based selection was recovered as before the

failure. Thus, a geolocation-based S-VR selection showed less influence to the VN after

the reconfiguration than the random selection did.

63

4.4.2 Topology-I(b): A Five-VR Virtual Network in Europe

Fig. 14(b) is the same virtual topology as Topology-I(a), but with nodes from Eu-

ropean sites only. When the VR (R1-KAU-SE) failure was identified, during the recon-

figuration process, the S-VR candidate R2-KAU-SE was selected because it was closest

to the failed VR. Fig. 17(a) plots the instantaneous bandwidth during and after the dy-

namic reconfiguration process. As we mentioned at the beginning of Section 4.3, the link

speed on the GpENI substrate for Topology-I(a) and Topology-I(b) are different; thus, the

effective bandwidth throughput observed in Fig. 17(a) is different from Fig. 15(a).

Fig. 17(b) presents the next-hop VR to the destination for about 3 - 5 seconds

and 23 - 25 seconds, which point to the two major bandwidth troughs in Fig. 17(a). The

routing convergence time we obtained is similar to Fig. 15(d). Hence, we infer that the

location of virtual routers in the topology did not show significant impact on the routing

table convergence time.

4.4.3 Topology-II

We enforce the geolocation-based selection strategy in a larger network as shown

in Fig. 14(c), and present the relevant results in Fig. 18. In this scenario, we failed VR

R1-KU, and VR R2-KU was selected from the standby router pool. Fig. 18(a) shows that

the measured end-to-end bandwidth is not as large as the one we obtained for Topology-

I(a). However, since the number of neighbors to the failed router (R1-KU) is still three,

the recovery time was still around 1.5 seconds. The bandwidth pattern was similar to

Fig. 15(a), where two main troughs can be easily observed.

64

−20 0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

B
a
n

d
w

id
th

 (
K

b
it
s
/s

e
c
)

ENDSTART
R

E
M

O
V

E

A
D

D

End−to−End bw

(a) TCP Session Bandwidth

−20 0 20 40 60 80 100 120 140

r1−kau−se

r2−simula−no

r2−kau−se

OSPF Update Time (sec)

N
e
x
t
H

o
p
 R

o
u
te

r

(b) Nexthop Information from Routing Table Over 10 Runs

Figure 17: Geolocation-Based Strategy on Topology-I(b)

Fig. 18(d) presents the next-hop VR to the destination node HOST-UMKC for

each individual run observing from the source node R2-TUT-FI, when the OSPF routing

table updated. Because the network between the two end hosts was larger, and we added

another crossing link (R1-Vienna to R1-SIMULA-NO), the OSPF routing table might

change even though there was no failure in the network at a random time. This is why

there were a few dots presenting R1-SIMULA-NO after 70 seconds, where R1-SIMULA-

NO indicates the traffic was not routed via the shortest path. However, if we consider the

majority dots displayed as clusters, there were two major OSPF updating time periods: 2

65

−20 0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

B
a
n
d
w

id
th

 (
K

b
it
s
/s

e
c
)

ENDSTART

R
E

M
O

V
E

A
D

D

End−to−End bw

(a) TCP Session Bandwidth

−20 0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

Experimental Time (sec)

L
o
s
s
 R

a
te

 (
%

)

ENDSTART

R
E

M
O

V
E

A
D

D

End−to−End lossrate

(b) UDP Session Loss

−20 0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

Experimental Time (sec)

T
h
ro

u
g
h
p
u
t
(K

b
p
s
)

END
START

R
E

M
O

V
E

A
D

D

End−to−End Throughput

(c) UDP Session Throughput

−20 0 20 40 60 80 100 120 140 160

r1−simula−no

r1−vienna

OSPF Update Time (sec)

N
e
x
t
H

o
p
 R

o
u
te

r

(d) Next-Hop Information Over 10 Runs

Figure 18: Geolocation-Based Method on Topology-II

- 7 seconds (i.e., the failure was identified), and 24 - 32 seconds (i.e., routing table con-

vergenced). The average of the OSPF convergence time was around 22 - 25 seconds. By

comparing the five-node and nine-node topologies, we find that although the network size

increased, the OSPF convergence time did not increase as much as we anticipated, and the

network performance was only affected when there was a traffic redirection. This was due

to either a failure or OSPF routing table convergence after the network reconfiguration.

4.5 Summary

In this chapter, we presented an experimental study on applying a dynamic recon-

figuration scheme that automatically replacing the failed VR with a S-VR in a VN, and

the S-VR was selected by considering the distance between itself to the failed VR. We

66

have presented a geolocation-based algorithm to select a candidate from a shared S-VR

pool, and the selection algorithm was implemented an dynamic reconfiguration module

on the VNM.

The impact of the DRS on the end-to-end traffic and routing metrics was studied

on a wide-area VN on the GpENI testbed. First, the geolocation replacing scheme less

likely reduces the network performance after the replacement than a randomly replacing

scheme. Secondly, the reconfiguration process was fast (about 1.5 second) and a S-VR

could be easily added to the existing topology. Third, constructing a VN in the same

topology but with a different set of virtual routers affect neither the network recovery

time nor the OSPF routing convergence time. This enables a flexible way to allocate

virtual routers for the users. Finally, we note that the OSPF routing convergence time was

not affected greatly by the size of the network during the reconfiguration, so our method

is scalable.

There are two important lessons we learned from this experimental study:

• An autonomic network management function helps to improve the overall perfor-

mance of the network in case of a failure by using standby routers in a VN. The

original optimal path can be quickly restored with the S-VR. However, DRS cannot

control the inherent properties of the network. In our case, the OSPF convergence

time is independent on the VNM.

• In an experimental study on a realistic network testbed that supports network virtu-

alization, it is important to consider multiple independent runs to see how the net-

work substrate (in our case GpENI) can influence results. While it is well known to

67

do multiple independent runs in simulation studies, the need for multiple indepen-

dent runs in an experimental testbed is also important to keep in mind.

68

CHAPTER 5

OPTIMAL STANDBY VIRTUAL ROUTER SELECTION MODEL

From the experimental study on the implementation of dynamic reconfiguration

scheme on a realistic VNE, we understood the practicalness and how the network dynam-

ics reacted to the reconfiguration process. The GpENI testbed has limitations for us to

explore more criteria for the S-VR selection. For instance, we did not have proper tools

to measure or predict the latency between the S-VR candidates to other VRs in a VN;

secondly, we did not have enough monitoring data about the GpENI backbone network,

although this is considered one of the important factors to the selection. Therefore, we de-

sign an optimal S-VR selection model that considers all possible selection criteria, and the

selected S-VR has minimum cost during the DRS and minimum impact to the substrate

network performance as well.

In this chapter, we present an optimization formulation and a heuristic that can be

employed by the DRS to restore multiple VNs from either independent or dependent VR

failures.

5.1 Problem Formulation

Recall the DRS presented in Chapter 3, the S-VR selection model is expected

to simultaneously choose an optimal S-VR for each VN that has a VR failure, and the

VR failure could be either independent failure or dependent failure. In other words, by

69

Table 4: Substrate Network Model Entities

Symbols Description

R the set of substrate nodes
G the set of VNs
L the set of substrate links
Qik the set of paths from i to k, i, k ∈ R
Pi the set of physical interfaces on i, i ∈ R
hi the limit of S-VRs that can be concurrently selected from i ∈ R
Vj the subset of R providing activated VRs in VN j, j ∈ G
Sj the subset of R providing S-VRs for VN j, j ∈ G
Fj the set of failed VRs in the VN j, j ∈ G
nj the number of failed VRs in VN j, nj = |Fj|
Bip the capacity of the interface p on i ∈ R;
bip the residual capacity of the interface p on i ∈ R, bip ≤ Bip

bl the residual capacity of the substrate link l ∈ L
T the threshold for maximum bandwidth utilization

applying the optimal S-VR selection model, the dynamic reconfiguration module of the

VNM is able to restore multiple VNs simultaneously.

5.1.1 Notations

We first briefly highlight a few key notations used in the optimization model; all

are listed in Tables 4 – Table 8.

There are two main sets of components in the VNE: substrate nodes (R) and VNs

(G). A VR that belongs to the VN j and is hosted by the substrate node i is denoted by

rji . For any substrate node i (i ∈ R), its physical interfaces are denoted by the set Pi,

where each physical interface p (p ∈ Pi) has the capacity Bip, and it’s residual capacity

is denoted by bip(bip ≤ Bip). For any VR rji , we define its virtual interfaces as a set Mj
i .

70

Table 5: Virtual Network Model Entities

Symbols Description

rji the VR hosted by the substrate node i for VN j

Mj
i the set of virtual interfaces on a VR rji

ejik 1 if a virtual link between rji and rjk is up, 0 otherwise

εjik the bandwidth of the virtual link between VR rji and rjk .

cjfimk the bandwidth required for interface m of a candidate S-VR
rji to connect the VR rjk, in case VR rjf fails

Table 6: Indicator & Cost Parameters

Symbols Description

δji 1 if rji is reserved as an S-VR, 0 otherwise

αji 1 if rji is connected in VN j, 0 otherwise

βji 1 if a VR rji fails, 0 otherwise

γjfimk 1 if a virtual interface m on rji is to connect rjk
∆

(jfik)
ql link-path indicator; for a bandwidth demand between VRs

rji and rjk, ∆
(jfik)
ql = 1 if a substrate path q ∈ Qik between

nodes i and k uses the substrate link l ∈ L, 0 otherwise.
ηjfimk the cost of configuring a virtual interface m of a S-VR rji to

connect to the VR rjk, in case VR rjf fails.
σjfimk the cost of connecting an S-VR to a VR rjk in a VN j via the

S-VR’s virtual interface m, in case VR rjf fails.

Table 7: Variables

Variable Description
ujfi binary variable; 1 if an S-VR rji is selected to replace a failed VR rjf
vjfimk binary variable; 1 if an S-VR rji is connected to the failed VR rjf ’s

neighbor rjk via virtual interface m
t maximum bandwidth utilization on substrate nodes
x
(jfik)
q flow variable on a substrate path q ∈ Qik; under a failure of rjf (f ∈

Fj), q is the substrate path between a S-VR vji and the failed VR rjf ’s
neighbor rjk

71

Table 8: Weight Parameters

Symbols Description (all non-negative)
λ, π Indicates the proportion of different objectives, λ+ π = 1

wθ Primary weight used in (5.12): wθ = 〈wθ1, wθ2〉, wθ1 + wθ2 = 1

wb Secondary weights in (5.15): wb = 〈wb1, wb2〉, wb1 + wb2 = 1

wa Third level weights in (5.15): wa = 〈wa1, wa2〉, wa1 + wa2 = 1

ρ Threshold for the ratio of π over λ (π
λ

)

For each VN j (j ∈ G), we denote Fj as failed VRs in the VN j.

For any VN j (j ∈ G) that has already been created and is in service, the substrate

nodes hosting the VRs that have been connected are pre-established, is denoted by set

Vj(⊂ R); thus, the following parameters are set: αji = 1, eji,k = 1, βji = 0 for i, k ∈ Vj .

We also denote the substrate nodes hosting the S-VRs pre-reserved for a VN j as Sj(⊂ R),

so δji = 1 for S-VRs, i ∈ Sj . In other words, δji = 0 for i ∈ R\Sj . When a VR rji fails, we

set βji = 1, where i ∈ Vj ∪Sj(⊆ R). The parameter hi indicates the maximum number of

S-VRs associated with a substrate node i ∈ R that may be concurrently activated during

the reconfiguration process, and the value of hi can be decided based on the real-time

resource utilization on the substrate nodes. For example, if hi is associated with the CPU

status at a substrate node i, a lower CPU usage indicates a higher hi value that can be set.

Residual resource on a substrate node is an important factor for the S-VR selection

with respective to the load balancing on the substrate network. In this work, we define

the residual capacity of an interface p at a substrate node i as bip (p ∈ Pi). If we consider

the substrate link l (l ∈ L), bip is equivalent to the residual capacity of l whose one end is

substrate node i. Assuming for an interface p on i, it’s capacity is Bip, then it’s residual

capacity can be represented in (5.1). From a substrate node i’s perspective, a binary

72

indicator µjikp indicates whether the traffic between two VRs rji and rjk is going through

the interface p on i.

bip = Bip −
∑
j∈G

∑
k∈R

µjikp ε
j
ik e

j
i,k,

i 6= k,∀p ∈ Pi,∀i ∈ R (5.1)

The solution to the reconfiguration problem is determined by two sets of binary

variables u and v. In addition, the variable t represents the maximum bandwidth utiliza-

tion of the substrate nodes after the S-VRs have been decided, while x represents the

flow from the selected S-VR to the failed VR’s neighbors (hereafter in this paper, we

use neighbors to represent the failed VR’s neighbors). Thus, our formulation lands in an

MILP formulation.

5.1.2 Constraints

There are ten sets of constraints associated with the optimal S-VR selection.

• A VR rji can be selected to replace a failed VR rjf only if it is identified as an S-VR

and it is not failed.

ujfi ≤ δji (1− β
j
i),

∀i ∈ R,∀f ∈ Fj,∀j ∈ G, i 6= f (5.2)

• For any VR failure in a VN, only one identified S-VR can be selected.

∑
i∈R

δji u
jf
i = 1,∀f ∈ Fj,∀j ∈ G (5.3)

73

• One reserved S-VR can replace at most one failed VR at a time:∑
f∈Fj

δji u
jf
i ≤ 1,∀i ∈ R,∀j ∈ G (5.4)

• The allocation must satisfy the upper bound on the maximum number of S-VRs that

can be selected from the same substrate node at a time, based on the substrate node

resource utilization at the moment (e.g., CPU utilization).∑
f∈Fj

∑
j∈G

δjiu
jf
i ≤ hi,∀i ∈ R (5.5)

• A virtual interface m on an S-VR rji can be enabled to connect rjk (a neighbor of

the failed VR rjf), only when rji is selected to replace rjf .

γjfimk v
jf
imk ≤ ujfi ,

∀f ∈ Fj,∀i, k ∈ R,∀j ∈ G, ∀m ∈Mj
i , i 6= k 6= f (5.6)

• For topology integrity from before failure to after failure, conservation of links

during the reconfiguration process must be satisfied.∑
m∈Mj

i

∑
k∈R

ejfk δ
j
i γ

jf
imk v

jf
imk =

∑
k∈R

δji u
jf
i βjf e

j
fk

∀j ∈ G,∀f ∈ Fj,∀i ∈ R, i 6= k 6= f (5.7)

Here, the left side of (5.7) indicates that a candidate S-VR (rji) for a failed VR (rjf)

should be able to establish connectivities to every failed VR’s neighbor (rjk, where

i 6= k), via specific virtual interface m (m ∈ Mj
i)—this must be equal to the right

side of (5.7) that represents the total number of virtual links that should be created

from rji in order to replace rjf .

74

• If an S-VR rji is to be selected in case the VR rjf fails, the aggregated bandwidth re-

quested from its virtual interfaces to be connected should not exceed the aggregated

residual interface capacity on the corresponding substrate node:

∑
m∈Mj

i

∑
k∈R

δji γ
jf
imk c

jf
imk v

jf
imk ≤

∑
p∈Pi

δji bip u
jf
i ,

∀j ∈ G,∀f ∈ Fj, ∀i ∈ R, i 6= k 6= f, (5.8)

• The capacity utilization on a substrate node does not exceed the maximum band-

width utilization t, due to the extra bandwidth demand by the one or more selected

S-VRs hosted by this substrate node. Note that µjikp equals to 1 if the traffic between

substrate nodes i and k goes through the interface p on i, 0 otherwise.

∑
j∈G

∑
f∈F

δji u
jf
i (

∑
k∈R

∑
m∈Mj

i

γjfimk c
jf
imk) +

∑
p∈Pi

∑
j∈G

∑
k∈R

µjikp ε
j
ik e

j
ik

≤
∑
p∈Pi

Bip t, ∀i ∈ R, i 6= k 6= f (5.9)

• When selecting an S-VR rji , we must guarantee that the links on the path from

the substrate node i hosting rji to the substrate node k hosting the failed VR rjf ’s

neighbor rjk has sufficient residual bandwidth on the substrate network, and that

the bandwidth demand on the new virtual link are the same as before. This can be

represented through the following demand flow and capacity constraints:

75

∑
q∈Q(ik)

x(jfik)q =
∑
m∈Mj

i

γjfimk c
jf
imk δ

j
i u

jf
i ,

∀j ∈ G,∀f ∈ Fj,∀i, k ∈ R, i 6= k 6= f (5.10)

∑
(jfik)

∑
q∈Qik

∆
(jfik)
ql x(jfik)q ≤ bl,

∀l ∈ L, i 6= k 6= f (5.11)

5.1.3 Objective Function

Our goal is to achieve the network cost minimization and load balancing while

selecting S-VRs for multiple VNs for restoration against node failures in a VNE. Thus, the

proposed MILP formulation is a dual–objective problem: minimum network cost (MNC)

and load balancing (LB).

We consider two different cost components associated with the MNC objective.

The first is the operation cost of manipulating virtual interfaces (Type-I: ηjfimk), i.e, config-

uring, activating and deactivating virtual interfaces. The second type is the connectivity

cost of adding an S-VRs (Type-II: σjfimk) to the existing VN in case of a VR failure, i.e., the

geographical distance or the RTT between two VRs. To select a proper S-VR, we address

the relative importance of the operation cost and connectivity cost. As a result, we assign

a pair of weight parameters wθ = 〈wθ1, wθ2〉 to indicate the importance of the relevant

cost types, where wθ1 is for Type-I cost (ηi,ji,m,k), and wθ2 is for the Type-II cost (σj,fi,m,k).

For the LB objective, we aim to minimize the maximum utilization of the aggregated

interface capacity (i.e., t) on the substrate nodes.

76

Due to the dual–goal, we use two weight parameters λ and π, respectively, where

λ + π = 1. The dual–problem goal can be written in a combined manner as follows:

min{λ [
∑
j∈G

∑
f∈Fj

∑
i∈R

∑
m∈Mj

i

∑
k∈R

(wθ1 η
jf
imk + wθ2 σ

jf
imk) δ

j
i γ

jf
imk v

jf
imk] + π t},

i 6= k 6= f (5.12)

A summary of all weight parameters is presented in Table 8, and we will discuss

the weight parameters associated with different cost components next.

5.1.4 Cost Components

We now elaborate on various cost components.

5.1.4.1 Type-I: Virtual Interface Operations Cost ηjfimk

In the substrate network, when adding or removing a substrate node from the net-

work, the basic operations are to enable or disable the interfaces if the router has already

been connected. If the router has not been connected yet, then plugging cables is an extra

operation. Furthermore, if an interface has not been configured, then configuration (e.g.,

IP address assignment) is the extra operations cost. Analogously, the operations cost on

the virtual interfaces also needs to consider these three parts: creation of virtual link on

a virtual interface, (similar to a plugin cable to a substrate router), virtual interface con-

figuration, and enabling/disabling the virtual interfaces. Here, we combine the first two

into one operations cost. This is because creating virtual links and assigning IP addresses

can be done by the programmable operation in a VNE. For example, in [79], when a user

77

Router 1 (Connected)

Router 2 (Failed)

To other VR To other VR

Router 1 (Connected)

Router 6 (Standby)

To other VR To other VR

(a) With Extra Virtual Interfaces

Router 1 (Connected)

Router 2 (Failed)

To other VRs To other VRs

Router 1 (Connected)

Router 6 (Standby)

To other VRs To other VRs

(b) No Free Virtual Interfaces

Figure 19: Two Scenarios on Virtual Interface Operations

specified a topology, the virtual link between two VRs was created automatically, and the

corresponding virtual interfaces were assigned virtual IP addresses at the same time. The

other operation cost in a VNE is due to enabling necessary virtual interfaces on the virtual

interfaces. It is intuitive that not all virtual interfaces need to be enabled, and the number

of active virtual interfaces on an S-VR depends on the number of VRs that it needs to be

connected to. Meanwhile, the interfaces of other VRs connected to the failed VR have to

be disabled as well.

To construct the Type-I cost function for the virtual interface operation, we con-

sider two potential scenarios. First, as presented in Fig. 19(a), each VR has enough virtual

interfaces with preconfigured virtual IP addresses, and all of the S-VRs’ virtual interfaces

are disabled. When an S-VR is selected, we just need to enable and disable its corre-

sponding virtual interfaces. In other words, the first scenario considers only one part of

78

the Type-I cost. Secondly, as shown in Fig. 19(b), a connected VR has a limited number

of virtual interfaces and all of them are active, so if it needs to connect to the selected S-

VR, the specific virtual interface must be re-initialized with a new IP address to connect

the selected S-VR. Thus, this scenario needs to include both parts of the Type-I cost. Note

that s− and s+ represent the cost of disabling a virtual interface on a neighboring VR rji

and enabling the virtual interface m on the S-VR rji , respectively. The indicator parame-

ter τ jfi is a binary value that indicates whether re-initialization of the virtual IP addresses

for virtual interfaces is needed, and ξ is the cost of configuring virtual IP addresses. To

summarize, the Type-I cost can be presented as follows:

ηj,fi,m,k = 2 (s− + s+) + τ jfi ξ

∀m ∈Mj
i ,∀k ∈ R, i 6= k 6= f (5.13)

5.1.4.2 Type-II: Virtual Router Connectivity Cost σjfimk

For the Type-II cost of connecting two VRs, we consider two factors: geographical

distance (i.e., great-circle distance) and round trip time (RTT).

First, the geographical distance between two substrate nodes i and k, represented

as dik (i, k ∈ R), is calculated as the great-circle distance between the latitude-longitude

coordinates of these two nodes. We consider two types of distance associated with an

S-VR, which is the distance between an S-VR and the failed VR (dif), or the failed VR’s

neighbor (dik). We use a pair of weight parameterswa = 〈wa1, wa2〉, wherewa1+wa2 = 1,

to indicate the portion of each type of distance’s influence.

Secondly, In a VN j, a direct virtual link eji,k can be embedded onto a multi-hop

79

path between substrate nodes i and k. Thus, the propagation delay between i and k (rttik)

is not always driven by the direct geographical distance dik. If there is a direct virtual link

created between substrate nodes i and k, then Qi,k represents the paths from i to k on the

substrate network. We define a substrate link to be l : (y, z), l ∈ L on the shortest path

q ∈ Qik, where y and z are intermediate substrate nodes.

rttik =
∑
(yz)∈q

rttyz, q ∈ Qik (5.14)

σjfimk = wb1 (wa1 dif + wa2 dik) + wb2 rttik,

∀j ∈ G,∀m ∈Mj
i , i 6= k 6= f (5.15)

By considering both impact of geographical distance and RTT factors, the Type-II

cost can be constructed as (5.15), wherewa = 〈wa1, wa2〉 emphasizes the weights between

distance types and wb = 〈wb1, wb2〉 emphasizes the weights for distance and RTT factors,

where wb1 + wb2 = 1.

5.2 Heuristic Algorithm

Taking a cue from the MILP formulation, we now introduce a heuristic algorithm

that selects S-VRs to restore multiple VNs from VR failures.

5.2.1 Algorithm Description

Algorithm 3 takes the following parameters as the inputs.

80

Algorithm 3: Heuristic Multi-Criteria S-VR Selection

Input: G′,L,R, d̃, b̃, r̃tt, wa, wb, wθ, λ, π, T, ρ
Output: selected

1 selected← φ ;
//Sort the G′ by the bandwidth used by f ∈ Fj, j ∈ G

2 Ĝ′← sort(G, option = ”bandwidth”) ;
3 for j in Ĝ do

//Step 1: Selection Cost Calculation (Algorithm 4)
4 j.svrH ← SCC(j, d̃, r̃tt, wa, wb, wθ) ;

//Step 2: Final Selection with MNC or LB Decision
5 j.svrH ′← sort(j.svrH) ;
6 for i in j.svrH ′ do
7 t′ ← i.UpdateUtil(j.fbw) ;
8 if ∀k ∈ j.fnbrs PathExsits (i, k,L) then
9 if Count (selected, i) ≤ i.h then

10 if t′ ≤ T && π > ρ λ then
11 imin= FindMinUtil(j, R, j.fbw) ;
12 if imin == i then
13 UpdateUtil(i, j.fbw) ;
14 selected.insert(i) ;
15 break;

16 else if t′ ≤ T then
17 selected.insert(i) ;
18 UpdateUtil(i, j.fbw) ;
19 else
20 Exceed the utilization threshold!

21 else
22 Can not allocate Path!

23 return selected

81

Algorithm 4: S-VR Selection Cost Calculation (SCC)

Input: j ∈ G′, d̃, r̃tt, wa, wb, wθ
Output: j.svrH
/* The hash table j.svrH = 〈id, cost〉 stores the cost of selecting an S-VR in j */

1 j.svrH ← φ ;
2 for i in j.svr list do

/* Compute Type-I, Type-II and total selecting cost using (5.13), (5.15), (5.12)
*/

3 i.η← GetTypeI(i, j) ;
4 i.σ← GetTypeII(i, j, wa, wb, d, rtt) ;
5 i.cost← GetCost(i.η, i.σ, wθ) ;
6 j.svrH .Insert(i, i.cost) ;

7 return j.svrH

• Basic elements of the VNE: the VNs with failures G′ (⊆ G), the substrate links L,

and substrate nodes R;

• Geographical distance matrix d̃ of substrate nodes (d̃ = {(i, k)|dik, i, k ∈ R, i 6=

k});

• The most recent monitored residual bandwidth matrix b̃ on the SN (b̃ = {(i, p)|bip, i ∈

R, p ∈ Pi});

• The most recent monitored the RTT matrix (r̃tt) of the VRs (r̃tt = {(i, k)|rttik, i, k ∈

R, i 6= k});

• Weights, wθ, wa, wb, on each factor (refer to (5.15) and (5.12)) to understand the

influence on the selection and the weights λ and π associated with MNC and LB

objectives, respectively.

• A threshold T for the maximum residual bandwidth utilization of substrate nodes

82

to guarantee that the substrate nodes are not congested.

• A pre-determined ratio of π over λ, indicates the switch to determine whether to

apply the MNC or LB objective.

In the proposed multi-criteria S-VR selection heuristic, we first sort the affected

VNs (G′) based on the aggregated bandwidth allocated to the failed VR within each VN,

and starts to select the S-VR from the VN whose failed VR allocated with highest band-

width.

We consider two major steps to determine the proper S-VR for each affected VN in

the VNE, successively. Algorithm 4 presents the Step One: calculating the network cost of

each candidate S-VR within a VN j and storing it into a hash table j.svrH . For Step Two,

we sort j.svrH obtained from Step One by the computed cost. Starting from the candidate

S-VR with the least cost, we compute the potential bandwidth utilization (i.e., t′) on the

corresponding substrate node. The ideal S-VR should satisfy three conditions: (i) There

should be at least one path existed between the S-VR and each of its potential neighbors;

(ii) a substrate node i can only have at most i.h (i.e., hi as defined in Table 4) S-VRs to

be activated concurrently; (iii) once the S-VR is activated, the bandwidth utilization on

its host should not exceed the threshold T . Since the MILP formulation is a composite of

two objectives, the heuristic also needs to consider the LB problem during the selection.

We define an inequality relation between π and ρ λ to determine whether the heuristic

is to apply MNC or LB based selection, where ρ is a pre-assigned value indicating the

decision. When π > ρ λ, the heuristic makes decision based on the LB objective, where

it picks the S-VR that resides on the substrate node with the least bandwidth utilization

83

and also has the minimum selecting cost in the rest of j.svrH . When π ≤ ρ λ, the

heuristic considers the purely minimum cost selection objective.

5.2.2 Computational Complexity

According to the model entities summarized in Table 4, a VNE has |G| VNs, |R|

substrate nodes, and |L| substrate links. We define the average number of paths between

any pair of substrate nodes as a constant Q̄, and the average number of S-VRs for each

VN is S̄ = (
∑

j∈G |Sj|)/|G|.

Consider the worst case, where every VN fails, G′ = G. Thus, Line 2 in Algo-

rithm 3 has the complexity asO(|G| log |G|). Step One has the complexity ofO(S̄ log S̄).

In Step Two, the functions PathExists and FindMinUtil have the complexity of

O(|R| Q̄) andO(S̄), respectively. Thus, the time complexity for Step Two isO(S̄ log S̄+

S̄ (|R| Q̄+ S̄)) = O(S̄2 + S̄|R|). In summary, in the worst case, the computational com-

plexity of the proposed heuristic algorithm isO(|G| log |G|+|G| (S̄ log S̄+S̄2+S̄|R|)) =

O(|G| log |G|+ |G| (S̄2 + S̄|R|).

5.3 Experimental Design

We chose three topologies (i.e., Abilene, Nobel-EU and Germany50) obtained

from the SNDlib (Survivable Network Design Library) [86] as substrate networks in

our study, and they are shown in Fig. 20.

Consider the origin of a VR failure, which could be either a software failure at the

VR itself, or a failure at its host (i.e., substrate node failure). For a software failure at a

VR in a VN, it will not affect other VNs, so we denote this as an independent VR failure.

84

(a) Abilene Topology (b) Nobel-EU Topology

(c) Germany50 Topology

Figure 20: Three Topologies

For a VR failure caused by a failure at the associated substrate node, other VNs may also

be affected if these VNs contain the VRs on the failed substrate node—this is referred to

as a dependent VR failure.

Table 9 summarizes the experimental scenarios in this paper. We assume each SN

provisions 10 VNs, and each VN is generated randomly. Hence, the VNs are independent

from each other in terms of the S-VR availability. For each SN, the distance between

substrate nodes is normalized between 0 and 1. For each physical interface of a substrate

85

node i, we set the Bi = 1, so 0 ≤ bip ≤ 1, and the aggregated residual capacity at i is

represented as
∑

p∈Pi
bip (∀i ∈ R).

We consider a number of factors to the S-VRs selection for all VNs with VR

failures: (1) the number of S-VRs provided for a VN, (2) The number of VNs to be

restored (i.e., VNs affected by the failed VR), (3) the restriction on the amount of S-VRs

can be selected from a substrate node (refer to hi) for restoring multiple VNs, and (4)

Bandwidth allocated to virtual links of a VN. In particular, the number of VR failures can

be equal up to the total number of VNs. This is possible when there is a substrate node

failure that affects every VN, and we also simulate up to 10 concurrent independent VR

failures. On the other hand, if the virtual links between a candidate S-VR and its potential

neighbors (i.e., neighbors of the failed VR) request a high bandwidth, the corresponding

substrate paths might not have enough capacity to carry traffic for these virtual links.

Hence, under this circumstance, an S-VR with more aggregated residual capacity turns

out to be a better candidate. In this work, we set the T = 0.9 for all scenarios; in other

words, the maximum bandwidth utilization on any substrate node cannot exceed 90% of

its aggregated interface capacity.

The MILP formulation consists of two objectives: MNC and LB (see (5.12)). For

the network cost part, we defined weight parameters wθ = 〈wθ1, wθ2〉 associated with

the two types of cost functions. In this study, we assumed there are sufficient virtual

interfaces on each VR, and all the virtual interfaces are homogeneous, so we set τ jfi = 0,

and set ηjfjmk as a constant η for Type-I cost function (5.13). Our previous study [67]

showed that disabling/enabling virtual interfaces were fast. Hence, although Type-I cost

86

Table 9: Experimental Scenarios (10 VNs in a VNE)

Substrate Network Abilene Nobel-EU Germany50
nodes / links 12 / 15 28 / 41 50 / 88

average node degree 2.50 2.92 3.52
VN size (# of VRs) 3− 6 3− 16 3− 26

of reserved S-VRs per VN 2 - 6 8 - 12 4 - 24
of independent VR failures 1 - 10 1 - 10 1 - 10
of dependent VR failures 10 10 10
hi (max # of S-VRs on i) 1 - 10 1 - 10 1 - 10
virtual link demand (low) (0− 1)% (0− 1)% (0− 0.5)%
virtual link demand (high) (0− 8)% (0− 4)% (0− 2)%

(i.e. interface operation cost) depends on the number of virtual interfaces to be disabled

or enabled, given the homogeneous property of the virtual interfaces, its impact is less

significant than Type-II cost (i.e. connectivity cost). Hence, we set wθ = 〈0, 1〉, so that

the connectivity cost is considered as the major cost. In the next section, we present the

impact of the third and secondary weight parameters (wa and wb in (5.15)), respectively.

We modeled the MILP problem using AMPL (Student Version: Darwin 10.8.0

x86 32) and solved it using CPLEX (version 12.5.1.0) – this solution is referred to as the

optimal solution, and the overall cost returned by CPLEX is referred as optimal cost. The

complete AMPL model file can be found in Appendix B. The heuristic algorithm was im-

plemented in Python 2.7.8, and the corresponding total cost calculated is referred as

heuristic cost. We use normalized cost overhead (i.e., cost overhead) to evaluate the gain

of optimal solution, and it is represented by (heuristic cost)−(optimal cost)
(optimal cost) . Since the VNs were

randomly created initially, so were the failed VR and S-VRs availability for each VN,

we repeated 30 independent runs for each case study, and computed the 95% confidence

interval (95% CI) for the average cost overhead.

87

5.4 Results Discussion

In this section, we discuss the numeric results from the MILP formulation and

the heuristic algorithm. We aim to answer four questions: (1) How does the the network

cost grow when the number of VN failures increase? (2) What is the influence of weight

parameters to the MILP solution and the heuristic solution, or the cost overhead? (3) How

much is the gain of the MILP solution for different scenarios, compared to the heuristic

solution? (4) What is the computational time of solving the MILP problem, compared to

running the heuristic algorithm?

5.4.1 Growth Pattern of the Cost

We first use Abilene topology to discuss how optimal and heuristic cost grows as

the number of failed VNs increases, respectively. Note that in the rest of the paper, we

refer a VN with single-VR failure as a failed VN or a VN failure. We consider two extreme

cases: MNC based selection only (i.e. λ = 1, π = 0) and LB based selection only (i.e.,

λ = 0, π = 1). Fig. 21 shows the growth patterns of network cost for two extreme cases,

when each virtual link requested less than 1% of substrate link’s capacity (i.e., low-level

bandwidth request). Since each VN was assigned 4 S-VRs randomly, there might be the

possibility that more than one S-VRs provisioned for different VNs are from a common

substrate node. Due to the resource availability on the substrate node, we varied the value

of hi from 1 to 9 and report the results for hi = 1, 3, 5, respectively.

Fig. 21(a) shows an MNC-oriented selection (i.e., λ = 1, π = 0). When hi = 1

(i.e., no more than one VN can have the S-VR selected from a common substrate node),

88

0 2 4 6 8 10
0

5

10

15

20

25
Abilene:Number of S−VRs in Each VN: 4

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

ik
 ∈ (0,0.01)

(a) λ = 1, π = 0

0 2 4 6 8 10

0.05

0.06

0.07

0.08

0.09

0.1
Abilene:Number of S−VRs in Each VN: 4

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

ik
 ∈ (0,0.01)

(b) λ = 0, π = 1

Figure 21: Abilene: Independent VR Failures (Cost v.s. Failures)

0 2 4 6 8 10
0

5

10

15

20

of VNs with Single−VR faiures

C
o
s
t

y = 1.8*x − 0.33

H: h
i
 = 3, λ = 1, π = 0

linear

(a) λ = 1, π = 0 : hi = 3

0 2 4 6 8 10
0.055

0.06

0.065

0.07

0.075

0.08

0.085

of VNs with Signle−VR Faiulres

C
o
s
t

Original Data

power law fit: y = 0.056*x
0.0622

(b) λ = 0, π = 1 : hi = 3

Figure 22: Abilene: Regression Analysis on Cost v.s. Failures

if more VNs failed concurrently, the heuristic cost was higher than the optimal cost (i.e.,

3 - 6 VN failures) or the heuristic did not find feasible solutions (i.e., more than 6 VN

failures). Note that feasible solution means all affected VNs can be restored with proper

selected S-VRs, if we cannot find a proper S-VR to restore even one VN, then the solution

to the whole problem is considered as infeasible. When we increased hi, for the cases

with the same amount of failures, both optimal cost and heuristic cost decreased, and the

89

heuristic algorithm found feasible solution for the case when all 10 VNs suffered single-

VR failure concurrently. This implies that substrate nodes with more physical resources

improved the heuristic solutions. In order to understand the relation between the cost

and the number of failures, we did a regression analysis for the average heuristic cost v.s.

failures when hi = 3 (see H:hi = 3 plot in Fig. 21(a)). From Fig. 22(a), we found that the

cost grew linearly as the failed VNs increased, and the fitted model for this particular case

was y = 1.8x − 0.33. Thus, for the MNC-oriented problem, we expect the cost grows

linearly as the number of failure increases for both heuristic and optimal solution.

Fig. 21(b) shows an LB-oriented selection (i.e., λ = 0, π = 1). By increasing

hi values, the optimal cost was not reduced. In other words, when hi = 1, the optimal

solution largely distributed S-VRs on the substrate network to balance the load on the

substrate node, if more than S-VRs are allowed to be activated on the same substrate

node (hi > 1), the aggregated bandwidth utilization may be greater than it is for hi = 1.

However, the heuristic algorithm found feasible solutions for more than 6 VN failures

when hi value was increased from 1 to 3 or 5, although the difference between heuristic

cost and optimal cost increased. To understand how cost grows, we also did the regression

analysis. Fig. 22(b) shows the fitness model the average heuristic cost (i.e., H: hi = 3 in

Fig. 21(b)), and we found that a power law model, y = 0.056x0.0622, fit well to the original

plot. Thus, for the LB-oriented problem, we expect both optimal and heuristic cost grew

sub-linearly.

In addition, similar growth patterns were observed for Nobel-EU and Germany50

topology, as presented in Fig. 23 and Fig. 24, respectively.

90

To learn how much gain obtained by applying the proposed optimization model,

we next use the metric cost overhead to illustrate results for all scenarios we have sum-

marized in Table 9.

0 2 4 6 8 10
0

5

10

15

20

25

30
Nobeleu:Number of S−VRs in Each VN: 8

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

ik
 ∈ (0,0.01); λ = 1, π = 0

(a) λ = 1, π = 0

0 2 4 6 8 10
0.1

0.15

0.2

0.25

0.3
Nobeleu:Number of S−VRs in Each VN: 8

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

ik
 ∈ (0,0.01); λ = 0, π = 1

(b) λ = 0, π = 1

Figure 23: Nobel-EU: Independent VR Failures (Cost v.s. Failures)

0 2 4 6 8 10
0

5

10

15

20

25
Germany:Number of S−VRs in Each VN: 4

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

i,k
 ∈ (0,0.005)

(a) λ = 1, π = 0

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3
Germany:Number of S−VRs in Each VN: 4

The Number of Failed VNs

C
o

s
t

H: h
i
=1

O: h
i
=1

H: h
i
=3

O: h
i
=3

H: h
i
=5

O: h
i
=5

ε
j

i,k
 ∈ (0,0.005)

(b) λ = 0, π = 1

Figure 24: Germany50: Independent VR Failures (Cost v.s. Failures)

91

5.4.2 Weight Parameters

We now discuss the impact of the weight parameters related to the connectivity

cost function (5.15). To avoid interference with the LB objective, we set λ = 1, π = 0

for this discussion. Recall that the connectivity cost function has two tuples of weight

parameters. wa = 〈wa1, wa2〉 is associated with geographical distance to the failed VR

and to the failed VR’s original neighbors, respectively. wb = 〈wb1, wb2〉 is associated with

distance-relevant cost and RTT-relevant cost, respectively.

5.4.2.1 Impact of wa

To study the impact of geographical location (wa), we first set wb = 〈1,0〉 (i.e.,

the RTT’s impact was set to be zero.) Table 10 presents five different combinations of

〈wa1, wa2〉. For extreme cases, when a VR failure occurs, we may select an S-VR closest

to the failed VR (wa = 〈1,0〉); or select an S-VR that has a minimum average distance to

the failed VR’s neighbors in the VN (wa = 〈0,1〉). The rest of the sets of wa considered a

joint impact of the two intuitive cases, as shown in Table 10.

Table 10: wa Values
(wθ = 〈0, 1〉, wb = 〈1, 0〉)

1 2 3 4 5
wa1 0 0.2 0.5 0.8 1
wa2 1 0.8 0.5 0.2 0

We used the Abilene network with 10 overlaid VNs to illustrate the impact of wa

to the normalized overhead (as shown in Fig. 25). In order to study whether the wa value

will make different influences under various constraints on the substrate resource usage,

92

0 2 4 6 8 10
0

5

10

15
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
a
 = <0,1>

w
a
 = <0.2,0.8>

w
a
 = <0.5,0.5>

w
a
 = <0.8,0.2>

w
a
 = <1,0>

h
i
 = 1, ε

j

i,k
 ∈ (0,0.01)

(a) Abilene: hi = 1

0 2 4 6 8 10
0

5

10

15
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
a
 = <0,1>

w
a
 = <0.2,0.8>

w
a
 = <0.5,0.5>

w
a
 = <0.8,0.2>

w
a
 = <1,0>

h
i
 = 3, ε

j

i,k
 ∈ (0,0.01)

(b) Abilene: hi = 3

Figure 25: Impact of wa (Abilene Network): 4 S-VRs per VN

we set hi = 1 and 3, and the maximum virtual link bandwidth demand was set to 0.01

and 0.08 (i.e., εjik ∈ (0, 0.01) and εjik ∈ (0, 0.08)), respectively.

When hi = 1 and ε ∈ (0, 0.01), the S-VRs for restoring any two VNs are not

allowed to be from the same substrate node. In general, given a specific amount of S-VRs

reserved for each VN, when the number of affected VNs was increased, the normalized

overhead of the heuristic over the optimal cost grew as the number of failures increased;

in such a situation, there may not be feasible solutions for the heuristic (e.g., six or more

failures as shown in Fig. 25(a)). By looking at the 95% CI of the average cost overhead

for each wa pair, under a feasible solution, we noticed a number of behaviors of the

increment of the normalized cost overhead. When wa = 〈0.5, 0.5〉, the geographical

distance between an S-VR and the failed VR or the neighboring VRs are considered

equally important. In this case, the 95% CI shows a higher average normalized overhead

with bigger swings. For example, to restore 4 VNs, the cost overhead was 6.1939±3.8162,

whereas it was 3.5491 ± 3.5314 for wa = 〈0.2, 0.8〉. On the other hand, compared with

93

the extreme cases (wa = 〈1, 0〉 and wa = 〈0, 1〉), slightly increasing one value (i.e., wa1

or wa2) from 0 reduced the incremental rate of the normalized overhead.

When hi = 3 and ε ∈ (0, 0.01), each substrate node has the capability to support

more S-VRs to be activated at the same time. As shown in Fig. 25(b), the normalized

overhead has been reduced to be lower than 2.5%. For wa = 〈0.5, 0.5〉, the normalized

overhead was still higher than other wa tuples. On the other hand, the extreme cases

showed zero average normalized overhead, and the associated 95% CI showed zero swing.

This indicates that if substrate nodes have sufficient resources to support multiple S-VRs

to be activated concurrently, assigning wa1 = 0 or wa2 = 0, the heuristics performs as

well as the optimization model.

We also increased the bandwidth demand range for each VN (εji,k ∈ (0, 0.08)), and

the results did not showed much difference if we compared the patterns between different

wa combinations.

From the discussion above, we found that the selection of the S-VR relying on

one type of distance (i.e. either to the failed VR or to the neighboring VRs) resulted in a

lower normalized overhead.

5.4.2.2 Impact of wb

Given the values we have discussed about the wa tuple, we now discuss the com-

posite impact of geographical location and the RTT associated with an S-VR using a

variety of combinations of wb tuples (see Table 11). Fig. 26 and Fig. 27 present the im-

pact of wb when wa = 〈0.2, 0.8〉 and wa = 〈0.8, 0.2〉, respectively. In addition, we set

94

Table 11: wb Values
(wθ = 〈0, 1〉, wa = 〈0.2, 0.8〉 and 〈0.8, 0.2〉)

1 2 3 4 5
wb1 0 0.2 0.5 0.8 1
wb2 1 0.8 0.5 0.2 0

εji,k ∈ (0, 0.01).

When hi = 1, compared with wb = 〈1, 0〉, if the S-VR selection relied more on

the RTT than the geographical distance factor (i.e. 0 ≤ wb1 < 1), feasible solutions

were obtained for restoring more VNs. For example, for the blue line for wb = 〈1, 0〉

in Fig. 26, if we tuned wb2 from 0 to 1, we noticed that the number of VNs that can be

restored increased (from 5 to 7 VNs). However, the normalized overhead was increased

from 5.16±2.94 to 15.66±6.95. Thus, there was a trade off between getting more feasible

solutions and reducing normalized cost overhead. For wa = 〈0.8, 0.2〉, Fig. 27 shows the

trade off in the same pattern.

When hi = 3, the normalized overhead was reduced as wb2 was increased from

0 to 1. For example, at 10 VNs in Fig. 26(b), the 95% CI of the average normalized

overhead was 0.522 ± 0.367 for wb = 〈1, 0〉, whereas it was 0.018 ± 0.025 for wb =

〈0.2, 0.8〉. Compared with Fig. 27(b) with wa = 〈0.8, 0.2〉, for all wb tuples given that the

wa = 〈0.2, 0.8〉, Fig. 26(b) shows that the average normalized overhead was less than 1%

at 10 VNs failures.

In summary, if all VRs (including S-VRs) have sufficient virtual interfaces and all

virtual interfaces are homogeneous, the MNC goal depends on the Type-II cost. When

95

0 2 4 6 8 10
0

5

10

15

20

25
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
b
 = <0,1>

w
b
 = <0.2,0.8>

w
b
 = <0.5,0.5>

w
b
 = <0.8,0.2>

w
b
 = <1,0>

w
a
 = <0.2,0.8>,

h
i
 = 1, ε

j

i,k
 ∈ (0,0.01)

(a) Abilene: hi = 1

0 2 4 6 8 10
0

2

4

6

8

10
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
b
 = <0,1>

w
b
 = <0.2,0.8>

w
b
 = <0.5,0.5>

w
b
 = <0.8,0.2>

w
b
 = <1,0>

w
a
 = <0.2,0.8>,

h
i
 = 3, ε

j

i,k
 ∈ (0,0.01)

(b) Abilene: hi = 3

Figure 26: Impact of wb (Abilene Network): 4 S-VRs per VN
(wa = 〈0.2, 0.8〉, εji,k ∈ (0, 0.01)

considering the geographical location of a candidate S-VR, in order to reduce the normal-

ized overhead of the heuristic over the optimization model, choosing the S-VR as close as

to the failed VR’s neighbors could be a good strategy. If a real-time RTT is available from

the SNP, with few VNs affected, distance can be considered as a main selection criterion.

However, if a large number of VNs are affected, although the normalized overhead will

increase, the heuristic approach can restore more VNs.

5.4.3 Independent Virtual Router Failures

Although an independent VR failure does not affect other VNs, there is a possi-

bility that multiple VNs concurrently have independent VR failures. As listed in Table 9,

we are interested in how the normalized overhead is influenced by a variety of factors.

Consider one or more VNs with independent VR failures, we next present the normal-

ized overhead of the heuristic cost over the optimal cost, when the substrate networks

were Abilene, Nobel-EU, and Germany50 topologies (Fig. 20), respectively. In the rest of

96

0 2 4 6 8 10
0

5

10

15

20

25
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
b
 = <0,1>

w
b
 = <0.2,0.8>

w
b
 = <0.5,0.5>

w
b
 = <0.8,0.2>

w
b
 = <1,0>

w
a
 = <0.8,0.2>,

h
i
 = 1, ε

j

i,k
 ∈ (0,0.01)

(a) Abilene: hi = 1

0 2 4 6 8 10
0

5

10

15

20

25
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

w
b
 =<0,1>

w
b
 = <0.2,0.8>

w
b
 = <0.5,0.5>

w
b
 = <0.8,0.2>

w
b
 = <1,0>

w
a
 = <0.8,0.2>,

h
i
 = 3, ε

j

i,k
 ∈ (0,0.01)

(b) Abilene: hi = 3

Figure 27: Impact of wb (Abilene Network): 4 S-VRs per VN
(wa = 〈0.8, 0.2〉, εji,k ∈ (0, 0.01)

discussion, we assigned wa = 〈0.2, 0.8〉 and wb = 〈0.2, 0.8〉.

5.4.3.1 Abilene Topology

Abilene Topology has only 12 nodes. According to the first assumption we made

in Chapter 3: any two VRs in a VN are not provisioned by a common substrate node, the

maximum VN we created over the Abilene network consisted of 6 VRs, so that each VN

may have at most 6 S-VRs.

Recall the inequality relation between π and ρ λwe introduced in the heuristic, we

set ρ = 10, so that the impact of t ∈ (0, 1) will not be eliminated. Given that λ + π = 1,

so if 0.1 ≤ λ ≤ 1 or 0 ≤ π ≤ 0.9, the overall goal is to minimize the network cost,

otherwise the LB should be considered along with the MNC objective.

To find proper combinations of λ and π, we increased λ in three different steps

(1) λ ∈ {0, 0.005} (2) from 0.02 to 0.08 with step 0.02; (3) from 0.1 to 1 with step

0.1, and we can compute the corresponding value for π. The first two ranges indicate

97

0 2 4 6 8 10
0

5

10

15

20
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d
 (

%
)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 0.08, π = 0.02

1 ≥ λ ≥ 0.1, 0 ≤ π ≤ 0.9

ε
j

ik
 ∈ (0,0.01), h

i
 = 1

(a) hi = 1, 4 S-VRs/VN and L-BW

0 2 4 6 8 10
0

10

20

30

40
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d
 (

%
)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 0.08, π = 0.92

1 ≥ λ ≥ 0.1, 0 ≤ π ≤ 0.9

ε
j

ik
 ∈ (0,0.01),h

i
 = 3

(b) hi = 3, 4 S-VRs/VN and L-BW

0 2 4 6 8 10
0

10

20

30

40
Abilene:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 0.08, π = 0.92

λ = 0.1, π = 0.9

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.08), h

i
 = 3

(c) hi = 3, 4 S-VRs/VN and H-BW

0 2 4 6 8 10
0

10

20

30

40
Abilene:Number of S−VRs in Each VN: 6

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 0.08, π = 0.92

λ = 0.1, π = 0.9

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.08), h

i
 = 3

(d) hi = 3, 6 S-VRs/VN and H-BW

Figure 28: Abilene: Independent VR Failures (L-BW: Low Bandwidth Request; H-BW: High
Bandwidth Request)

an LB-based selection, and the third one indicates an MNC dominated selection. As we

discussed earlier in the scenario design, for each substrate network, four different factors

might affect the S-VR selection by the heuristic and the optimization model, and they

are the number of VR failures, the maximum number of S-VRs can be activated from a

common substrate node (hi), the bandwidth demand by the virtual links and the size of

S-VR pool reserved for each VN. We next use Fig. 28 to illustrate the impacts under these

factors.

Two general observations can be identified by comparing Fig. 28(b) – Fig. 28(d)

98

0 2 4 6 8 10
0

2

4

6

8

10
Nobeleu:Number of S−VRs in Each VN: 8

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.01), h

i
 = 1

(a) hi = 1, 8 S-VRs/VN and L-BW

0 2 4 6 8 10
0

2

4

6

8

10
Nobeleu:Number of S−VRs in Each VN: 8

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.01), h

i
 = 3

(b) hi = 3, 8 S-VRs/VN and L-BW

0 2 4 6 8 10
0

2

4

6

8

10
Nobeleu:Number of S−VRs in Each VN: 8

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.04), h

i
 = 3

(c) hi = 3, 8 S-VRs/VN and H-BW

0 2 4 6 8 10
0

2

4

6

8

10
Nobeleu:Number of S−VRs in Each VN: 12

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 1

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.04), h

i
 = 3

(d) hi = 3, 12 S-VRs/VN and H-BW

Figure 29: Nobel-EU: Independent VR Failures (L-BW: Low Bandwidth Request; H-BW: High
Bandwidth Request)

with Fig. 28(a). First, when the substrate nodes had limited resources to support multiple

collocated S-VR candidates to be activated concurrently (e.g., hi = 1), the heuristic could

not find feasible solutions when more VNs fails, no matter whether the overall goal was

MNC or LB. As presented in Fig. 28(a), the heuristic did not find feasible solutions for

more than 6 failures. Consider the feasible solutions, the 95% CI of the average normal-

ized overhead under various weight tuples mostly overlapped with each other; they were

overall less than 5%. Thus, the impact of λ & π is less significant. However, if the ca-

pability of activating multiple collocated S-VRs is increased (e.g., hi = 3), to restore the

99

same number of VNs, the normalized overhead did not change much when the dominant

objective was MNC (i.e., λ ∈ [0.1, 1]); whereas the overhead increased as λwas increased

from 0 to 0.08. On the other hand, under the LB dominant selection (i.e., λ < 0.1), as

more VNs suffered failures, the incremental ratio of normalized overhead was getting

bigger when λ increased from 0 to 0.08. For example, as the number of failure grew

from 1 to 10, the 95% CI of the average overhead was increased from (1.43 ± 1.27)%

to (5.92 ± 1.41)% for λ = 0, and it was from (0.97 ± 0.80)% to (18.90 ± 2.71)% for

λ = 0.005.

For hi = 3, we next discuss the cases where the VNs had higher bandwidth de-

mand (i.e., εjik ∈ (0, 0.08)). Compared with Fig. 28(b), Fig. 28(c) shows that when the

selection was purely dependent on the LB (i.e., λ = 0), the heuristic did not find feasible

solution for more than five failures (see the red plot). If we raised λ from 0 to 0.005, the

feasible solutions were not improved much, and the overhead was increased. However, if

we further increased λ to 0.02, although the overhead grew more, the heuristic algorithm

obtain feasible solutions for up to 9 failures. When λ = 0.08, the number of feasible

solutions was not improved, but the cost overhead increased. Hence, by tuning the value

of λ, the heuristic approach was able to restore more VNs, with the trade off by increasing

the cost overhead. On the other hand, when the selection was purely dependent on the

MNC, the heuristic performed as well as the optimization model, and the average cost

overhead was less than 0.5% at 10 failures. Compared to Fig. 28(c), Fig. 28(d), Under

the same bandwidth request, provisioning more S-VRs helped the heuristic algorithm to

restore more VNs. For example, for a purely LB dependent selection (λ = 0, π = 1), the

100

maximum number of failed VNs can be restored was increased from 5 to 8. Therefore,

if virtual links have relative high bandwidth demand, to run the heuristic algorithm, the

SNP can consider either allocating more S-VRs to each VN without bringing up the cost

overhead much, or assigning a proper value to λ instead of 0.

5.4.3.2 Nobel-EU Topology

For Nobel-EU topology, we varied the number of S-VRs for each scenario from 8

to 12, and we present the result for 8 and 12 S-VRs reserved per VN, respectively, which

not only allowed customers to request VNs with a maximum 16 VRs, but also provided

a proper amount of S-VR candidates for each VN. This way, based on our discussion on

the feasibility of a heuristic algorithm, we can always find both a feasible heuristic and an

optimal S-VR selection.

Fig. 29 presents the results in the same way as we did for Abilene topology. When

hi = 1 with low bandwidth requests (see Fig. 29(a)), for the same amount of failures, we

do not see significant difference on the average normalized overhead, and the maximum

overhead was about than 2%. As we expected, the normalized overhead went up as more

failed VNs were to be restored. For example, for λ = 0, π = 1, the normalized overhead

was about 0% for 1 failure, and it was (1.99 ± 0.68)% for 10 failures. If the substrate

nodes had more resources (i.e., hi = 3), we found that the heuristic algorithm showed

better performance when the goal was pure MNC (λ = 1, π = 0) or LB (λ = 0, π = 1)

than the other composited objectives, and the cost overhead for λ = 1 was about 0.01%

even at 10 failures. If the VN bandwidth demand was higher, the maximum bandwidth

101

utilization on the substrate network increased from (15±1)% to (57±5)% for restoring 10

VNs, but the pattern that the normalized overhead grows did not change. If we increased

the reserved S-VRs for each VN from 8 to 12, cost overhead for the cases with λ = 0.005

and λ = 0.02 was reduced. Hence, for the Nobel-EU substrate network, if the VN size is

not bigger than 16 VRs, reserving 8 S-VRs for each VN is sufficient to restore at least 10

VNs.

5.4.3.3 Germany50 Topology

For the Germany50 topology, the number of S-VRs for each VN was varied from

4 to 22. In particular, we report the 95% CI of the normalized overhead in Fig. 30 and

Fig. 31, where the virtual link bandwidth request was (0 − 0.5)%. In particular, Fig. 30

presents the composite impact of MNC and LB objectives, and we observed the same

pattern as we discussed for Abilene topology and Nobel-EU topology.

Fig. 31 showed the impact of the number of S-VRs reserved for each VN and

hi, respectively. Specifically, we notice that reserving more S-VRs improved the heuris-

tic’s performance for the LB based selection (see Fig. 31(a)), and the improvement was

not obvious for the MNC based selection. On the other hand, we found the heuristic

algorithm’s performance was improved by increasing hi values (see Fig. 31(b)). This is

reasonable, as MNC objective is based on computing minimum distance or RTT. Hence,

if multiple failed VRs are in the same area, then a substrate node who has the capability

to support more than one S-VR to be activated concurrently will produce less aggregated

network cost, rather than selecting S-VRs from other substrate node with longer distance

102

0 2 4 6 8 10
0

2

4

6

8

10
Germany:Number of S−VRs in Each VN: 16

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.005), h

i
 = 1

(a) hi = 1, 16 S-VRs/VN

0 2 4 6 8 10
0

2

4

6

8

10
Germany:Number of S−VRs in Each VN: 16

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

λ = 0, π = 1

λ = 0.005, π = 0.995

λ = 0.02, π = 0.98

λ = 1, π = 0

ε
j

ik
 ∈ (0,0.005), h

i
 = 3

(b) hi = 3, 16 S-VRs/VN

Figure 30: Germany50: Independent VR Failures with L-BW Requests (Composite Impact of
MNC and LB Objectives)

or latency. However, we also notice that increasing hi would not help much to reduce the

overhead for the LB based selection.

5.4.4 Dependent Virtual Router Failure

In a VNE, a substrate node failure may have critical impacts to the VNs. In partic-

ular, if a substrate node that hosts VRs belonging to n VNs fails, this failure immediately

affects these n VNs at the same time. In the worst case, one substrate node failure will

cause all overlaid VNs to fail. Hence, it is important to restore those VNs by quickly

selecting proper S-VRs. We use the term dependent VR failure to denote the VRs failures

caused by the substrate node failure. In this section, we use the Nobel-EU topology to

discuss the S-VR selection for restoring VNs from dependent VR failures in the worst

case (i.e., all 10 VNs failed).

Given the condition that hi = 3 and εjik ∈ (0, 0.04) (i.e., high bandwidth request),

Table 12 presents the 95% CI of the average network cost calculated by the MILP model

103

0 2 4 6 8 10
0

1

2

3

4

5

Germany Topology: λ = 0, π = 1

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

4 S−VRs per VN
8 S−VRs per VN
16 S−VRs per VN

ε
j

ik
 ∈ (0,0.005), h

i
 = 1

(a) hi = 3

0 2 4 6 8 10
0

1

2

3

4

5
Germany:Number of S−VRs in Each VN: 4

of VNs with Single−VR Failures

N
o

rm
a

liz
e

d
 O

v
e

rh
e

a
d

 (
%

)

h
i
=1

h
i
=3

h
i
=5

ε
j

ik
 ∈ (0,0.005), λ = 1, π = 0

(b) 4 S-VRs/VN

Figure 31: Germany50: Independent VR Failures with L-BW Requests (Impact of the size of
S-VR pool and hi)

and the heuristic algorithm, respectively; as well as the 95% CI of the average normalized

overhead for various scenarios where we varied the size of S-VR set and the 〈λ, π〉 values.

When λ = 0 or 0.02, the S-VR selection was impacted more by the LB objective.

Specifically, λ = 0, as more S-VRs are provided to the VNs, the maximum bandwidth

utilization on the substrate nodes slightly increased.

When λ = 1, the S-VR selection was purely dependent on the MNC objective.

Thus, as more S-VRs were reserved, the cost was reduced. However, with MNC as the

dominant criterion, the maximum bandwidth utilization of the substrate nodes could be

higher than the LB as the dominant criterion. For instance, we found that t = 0.854 for

λ = 1, whereas t = 0.810 for λ = 0 and t = 0.812 for λ = 0.02. For the independent VR

failure scenario with 10 VN failures, we only notice about 1% increment on the maximum

bandwidth utilization t.

For the Germany50 topology, we observed similar pattern for the network cost

and corresponding normalized overhead.

104

Table 12: Dependent VR Failures with Nobel-EU Topology (hi = 3)
Worst Case: One Substrate Node Failure Affected all 10 VNs

Size of the 〈λ, π〉
High vlink Bandwidth Request

S-VR Set
95% CI of Average Network Cost 95% CI of Average

MILP Heuristic Normalized Overhead

8
〈0.00, 1.00〉 0.570± 0.047 0.570± 0.047 0
〈0.02, 0.98〉 0.929± 0.065 0.961± 0.068 (3.390± 0.501)%
〈1.00, 0.00〉 18.271± 1.519 18.278± 1.518 (0.037± 0.033)%

10
〈0.00, 1.00〉 0.577± 0.046 0.577± 0.046 (0.028± 0.056)%
〈0.02, 0.98〉 0.919± 0.065 0.949± 0.067 (3.324± 0.713)%
〈1.00, 0.00〉 17.478± 1.460 17.486± 1.461 (0.046± 0.040)%

12
〈0.00, 1.00〉 0.579± 0.048 0.579± 0.047 (0.028± 0.056)%
〈0.02, 0.98〉 0.913± 0.067 0.943± 0.069 (3.261± 0.533)%
〈1.00, 0.00〉 17.178± 1.451 17.208± 1.474 (0.125± 0.149)%

5.4.5 Computational Time

In the above case studies, the computational time for solving the MILP problem

and the heuristic was extremely fast (less than 0.01 second in general). In order to study a

more complicated case and compare the computation time of the heuristic and the optimal

selection, we provisioned 50 VNs over the Nobel-EU topology, and allocated 8 S-VRs for

each VN as a more strict S-VR provisioning, compared with the scenarios where 12 S-

VRs provided for each VN over Nobel-EU.

Table 13 presented the computational time of running the MILP and the heuristic,

along with the corresponding cost. When the dominant objective was LB (i.e., λ = 0),

we see that both MILP and the heuristic produced very close network cost, and the com-

putational time for both the heuristic and optimal solution was in the order of hundred

milliseconds. Recall the computational complexity, when the heuristic considers the LB

objective, the computational time increases as the number of affected VNs grows, as well

105

as the number of substrate nodes is larger. On the other hand, when the MNC was dom-

inant objective, we found that it only took 0.03 second to solve the problem, which was

15.7% of the computation time for running MILP model, and the heuristic only produced

2.5% cost overhead.

Table 13: Computation Time: Nobel-EU with 50 VNs
(8 S-VRs per VN; hi = 3)

Dominant Objective
Computational Time (sec) Network Cost
MILP Heuristic MILP Heuristic

Load Balancing 0.13 0.23 0.600 0.602
Minimize the Cost 0.19 0.03 144.07 147.62

5.4.6 Observations

We summarize below the key observations:

1. In regard to the impact of the weight parameters associated with the subcomponents

in the connectivity cost function (i.e., (5.15)):

• If we consider the S-VR’s geographical location as the only factor to the se-

lection, the heuristic presented better performance when the selection mainly

relied on one type of distance;

• If we consider a composite impact of both the geographical distance and the

RTT from an S-VR, there is a tradeoff between obtaining more feasible solu-

tions and reducing the overhead of applying the heuristic algorithm.

2. For a LB dominant goal, the network cost increased sub-linearly, whereas it in-

creased linearly for the MNC as the dominant goal.

106

3. Given the assumption that any two VRs within a VN do not share resources from

the same substrate node, a smaller substrate network has limitations on provisioning

proper amount of S-VRs for each VN, and this restriction may cause high overhead

for the heuristic, or may not even get feasible solution to restore every affected VN,

especially in cases of a large number of concurrent VR failures occur in the VNE.

However, it is not necessary to provide more than sufficient S-VRs for each VN.

Based on our experiments, we found that reserving VRs from about one third of the

substrate nodes for each VN was sufficient.

4. Two types of VR failures were discussed. For independent VR failures, the failed

VRs are more likely from different locations. With low bandwidth request, the

heuristic algorithm showed good performance with purely LB oriented or MNC ori-

ented selection (i.e., the overhead was small). If the bandwidth demand by the VNs

was high, slightly tuning up the value of λ improved the heuristic’s performance,

where we observed more feasible solutions, with a trade off on the increment of

the cost overhead; furthermore, if the SNP provided more S-VRs for the VNs, then

more feasible solutions can be obtained by the heuristic and the cost overhead can

be further reduced. With dependent VR failures, an LB-oriented selection helped

to reduce the maximum bandwidth utilization on the substrate nodes.

5. The resource utilization on a substrate node is another important factor to the S-VR

selection, and it is represented by the hi value in our proposed model. To restore

the same amount of VNs, if substrate nodes have more resources (e.g., less CPU

usage or hi is higher), the network cost can be reduced, and the heuristic showed

107

better performance, especially for the MNC based selection.

5.5 Summary

Dynamic network management becomes flexible and efficient in a virtualized net-

work environment, especially with a centralized control system that has the capability

to allocate substrate resources during the VN creation or reconfiguration. In this paper,

we presented an optimization model and a heuristic to select optimal S-VRs by consid-

ering a variety of criteria to restore multiple VNs from VR failures that could be either

independent or dependent failures.

The proposed optimization model considers both minimum network cost (MNC)

and balancing of bandwidth utilization on substrate nodes, and the MNC consists of two

cost functions from the operation and connectivity aspects, respectively. Thus, the model

itself can be easily extended with more weighted criteria if needed. In this work, we

considered the virtual interfaces to be homogenous, and studied the impact to the S-VR

selection under a number of factors on three substrate topologies, such as the number

of concurrent virtual router failures, the capability of activating multiple collocated S-

VRs from a substrate node (hi), the number of S-VRs provided for each VN and the

bandwidth request from S-VRs. Our results showed that substrate nodes hosting S-VRs

with sufficient resources or VNs with sufficient S-VRs helped to reduce the network cost

as well as the overhead of the heuristic. For the dependent VR failures, a LB based

selection shows a better load balance on the substrate network. On the other hand, the

computation time of running both the optimization model and the heuristic was shown to

108

be in the order of millisecond or seconds, and the heuristic algorithm was efficient for the

MNC-oriented selection. Thus, our proposed model can be applied in a real-time manner.

109

CHAPTER 6

PROTOTYPE DESIGN AND IMPLEMENTATION ON GENI

GENI testbed is a wide area distributed testbed that support heterogeneous re-

source provisioning, and it allows experimenters to deploy and evaluate novel applications

or protocols with arbitrary types of topologies. From the network virtualization perspec-

tive, it supports both layer-2 and layer-3 virtualization, so we design and implement a

prototype of DRS to achieve survivable virtual network restoration against node failures.

6.1 Framework Design

Virtual network management can be automated as a life-cycle with autonomic

computing. Fig. 32 shows the conceptual design for the autonomic virtual network man-

agement that automates three phases: resource provisioning, monitoring and reconfigura-

tion. In particular, the resource provisioning mainly runs the virtual network embedding

algorithm to allocate substrate resources and create virtual networks. For the monitoring

phase, it is responsible for failure detection in both virtual networks and the underlying

substrate network, and also report real-time performance of the networks and the resource

utilization on the substrate network. The reconfiguration phase is triggered by two con-

ditions. The first is a failure is detected, then network is dynamically restored by recon-

figuration. The second case is for load balancing purpose, where the substrate network

resources are to be reallocated when a new virtual network request comes.

110

Reconfigura+on	

Resource	

Provisioning	

	
 Monitoring	

Network	
 Restora+on	

Load	
 Balancing

VN	
 Embedding	

Resource	
 Realloca+on	

Failure	
 Detec+on	

Real-­‐+me	
 Report	

Autonomic
Virtual Network

Management
(A life cycle)

Figure 32: A Life-Cycle for Autonomic Virtual Network Management

In this section, we present the holistic design of a software-defined resilient VNE

with the dynamic reconfiguration scheme against node failures.

6.1.1 Resilient Virtualized Networking Environment

Fig. 33 presents the architectural design of a resilient VNE, comprising the sub-

strate network, the virtual network plane and the virtual network manager (VNM). Specif-

ically, an SNP owns the core physical network infrastructure (i.e., the substrate network)

and it also implements the VNM. According to the virtual network requests by the SPs,

the SNP creates and configures the core VNs on the virtual network plane. Note that the

core substrate network does not contain the edge routers connecting to the end host’s do-

main. To support resiliency for each VN, in addition to the ordinary virtual topology, the

SNP also reserves a set of S-VRs and logical links via VNM. These S-VRs are identical

with other active VRs in terms of system configuration and software. For each VN that

111

R1
R2

R3

R4

R5

R6 Core Substrate Network
(Single Domain)

VN1

r1
r2

r5

r3 r6
r1

 VN2

r6

r2

r5

 VN3

r2

r3

r4

r1 r3

r4
Virtual Network Plain
Overlay the substrate core network

Service Delivered via VN2

Enabled Link

Disabled Link
S-VRs

VN
Embedding

VN Initialization VN Reconfiguration *VN
Monitoring

Get Static Information
(Configuration, Node

Location)

Get Dynamic Information
(Resources Utilization, i.e.,

CPU, BW, etc.)

Virtual
Network
Manager

User Servers

Substrate
Nodes

VRs

Northbound Interfaces

Southbound Interfaces

Figure 33: Dynamic Reconfiguration Scheme for Virtual Networks

is ready for delivering services, the S-VRs should be potentially capable to connect every

other active VR easily. For instance, as presented with dotted lines in Fig. 33, logical

links can be reserved between an S-VR and other VRs, so that if a VR fails, the selected

S-VR can be easily added into the existing topology. On the other hand, logical links may

be created between any pair of S-VRs, in case a secondary S-VR needs to be brought in

and connected to the S-VR that is already connected.

We design a middleware called the Virtual Network Manager (VNM) operated by

the SNP, and it logically resides between the SN and the virtual network plane. Hence, the

VNM has both northbound interfaces and southbound interfaces. The northbound inter-

faces communicate with the VN plane to perform virtual network management including

112

creation, configuration, reconfiguration, and monitoring. The southbound interfaces com-

municate with the substrate network to monitor and collect both static information and

the real-time statistics about the substrate resources.

6.1.2 Virtual Network Manager

The VNM abstracts the virtual network control plane into a logically centralized

system with a software-defined mechanism and it is designed with functional modules

for autonomic management. In other words, to avoid the single-point failure, the SNP

can implement a dual-VNM control, where the two VNM are synchronized with each

other about the information collected from both the SN and the VN plane. Here, we

introduce the modules communicating with the VN plane and the SN through the VNM’s

northbound interfaces and southbound interfaces, respectively.

6.1.2.1 Southbound Interfaces

There are three modules to communicate with the substrate network.

• Get static information: The static information of the SN is about the basic con-

figuration on the physical network resources (e.g., the substrate node’s location,

hardware configuration, link capacity, topology, etc.), and such configuration can

be used for virtual network embedding with regional considertaiton. The VNM pe-

riodically obtain these stationary information from the SN (e.g., every one month),

or the SNP can notify the VNM with any specific updates.

113

• Get dynamic information: The dynamic information refers the real-time residual re-

source (e.g., CPU, bandwidth or interface statistics, etc) utilization on the substrate

network, and they are significant factors to the embedding and restoration processes.

For the DRS with the optical S-VR selection mode, the residual resource utilization

is one of the constraints. The VNM periodically collects dynamics on the substrate

network resources.

• VN Embedding: Having once learned about substrate network resources, the VNM

runs a proper virtual network embedding algorithm to map a new VN to the sub-

strate network, and stores the embedded result as a profile for this new VN. To

support our proposed DRS, the VNM should run a survivable virtual network em-

bedding algorithm such as [114] that allocate redundant nodes for each VN.

6.1.2.2 Northbound Interfaces

Towards the northbound interfaces, three modules are running in an autonomic

manner, respectively.

• VN Initialization: Once the VN Embedding module generates a profile for each

VN that has been allocated resources, the VNM will initialize a new VN based on

its profile. The initialization includes booting up the virtual nodes with interfaces

configured and setting up the virtual links.

• VN Reconfiguration: This module supports self-healing for the VNs and load bal-

ancing on the substrate network. Our goal is to achieve dynamic VN restoration

114

after a VR failure is detected by the VN Monitor, and the optimal S-VR selection

algorithm proposed in Chapter 5 will be triggered to select an optimal S-VR to

replace the failed VR for each affected VN.

• VN Monitor: This module monitors the VN status, such as network congestions,

virtual link failures, or virtual node failures. Note that monitoring is out of the scope

of this dissertation.

6.2 Proof of Concept

We choose to use the GENI testbed [21] to implement a proof of concept for our

proposed software-defined resilient VNE.

6.2.1 An Overview about GENI

GENI is a distributed experimental testbed for networking innovation research,

and it provides computing and networking resources for experimenters to built isolated

experiments. For example, InstaGENI [19] is a flavor of a standard GENI rack (i.e., ag-

gregate) containing a consistent set of software and hardware including reservable com-

puters, an OpenFlow data plane switch, and virtual machines (VMs). For the network

resources, GENI supports tunneling mechanisms and VLAN techniques to create virtual

links carry isolated traffic, and it also supports high-speed data plane virtual links using

AL2S (Advanced Layer-2 Service) provided by Internet2.

GENI resources are specified in a standard XML document called Resource Spec-

ification (RSpec). There are three types of RSpec files: advertisement RSpec, request

115

RSpec, and manifest RSpec [21]. In specific, the advertisement RSpec of an aggregate

contains the information about its resources, and the experimenters can sent a request

to obtain this RSpec to check the detailed information about a GENI aggregate. A re-

quest RSpec contains the resource specification desired by an experimenter for a partic-

ular slice, such as aggregates that provide VMs, configuration information, etc. Once

a request RSpec is submitted, GENI aggregates allocate the requested resources to the

experimenter’s corresponding slice, and the experimenter has full control of the reserved

VMs to build experiments in his/her own slice. There is a command-line tool called omni

to assist experimenters to check GENI resources or reserve resources from GENI testbed.

More details about GENI RSpecs can be found in Appendix A.

Given the flexibility and the tools provided by GENI, we are able to implement

a prototype of the software-defined resilient VNE. Table 14 shows the relation between

the proposed VNE and the GENI context. In particular, when creating a VN is created,

the SP only sees the requested topology. However, from the VNM’s perspective, the

actual VN also includes the potential virtual links connecting S-VRs to active VRs and

the ones between the S-VRs. Since the virtual links from an S-VR are already created,

it is easy to add them to the existing active virtual topology by enabling the associated

virtual interfaces. Regarding the middleware VNM, by taking the advantage of the GENI

API, we can implement it as a third-party tool that is able to generate request RSpec and

send it to the GENI testbed to request resources on behalf of the SPs. In this way, virtual

network embedding and reconfiguration can be implemented within the VNM.

116

Table 14: VNE under GENI Context

GENI Context Proposed VNE
GENI testbed Substrate Networks
Slices Virtual Networks
VMs installed with routing software VRs or S-VRs
GRE/EGRE tunnels or stitched links or LANs Virtual Links

6.2.2 Autonomic Virtual Network Initilization

The initialization of a survivable VN with S-VRs includes two parts under GENI

context. First is to automate the generation of a request RSpec, and the second is to

automate the software router configuration process.

6.2.2.1 RSpec Generation

As RSpecs are important for VN creation and configuration, generating RSpecs

in an automated fashion is desirable. Since GENI aggregates automatically allocate re-

sources to the requested VN based on the request RSpec, to achieve autonomic VN cre-

ation, the first challenge is to generate the request RSpec for complex virtual topologies.

Fortunately, GENI provides geni-lib [4], a python library for building scripted tools.

We developed a scripted tool relying on geni-lib to create and configure ar-

bitrary virtual topologies and generate the request RSpec automatically for experiments,

to request resources from InstaGENI aggregates. This scripted tool is now distributed

with geni-lib as the ScaleUp tool, which aims to provide following flexibilities to

experimenters through a single configuration file, and its structure is presented in Fig. 34.

117

General	
 Sec*on	

Topo	
 Type	
 Node	
 Type	
 Single	
 Site?	
 output_rspec	
 S*tching	
 Links?	

topo_type

Star
Grid
Linear
Ring
Full-Mesh
Multi-Point LAN
Customized

node_type

node_prefix
disk_image
install_script
execute_cmd
node_list

Request VMs
from a single
aggregate or
multiple
aggregates.

Figure 34: Structure of the Configuration File for ScaleUp Tool

• Arbitrary topology creation: the ScaleUp tool allow users to create VN in arbi-

trary topologies in various size consisting of Xen-VMs on InstaGENI aggregates.

For standard topology types (i.e., ring, full-mash, star, grid and multi-point LAN),

users just needs to specify the parameters associated with a particular topology

class. For instance, to create an m × n grid topology, the dimension informa-

tion (i.e. m and n) should be provided. For customized topology, users will have

to provide the details about the topology, in the format of [(a,b), (b,c),

(b,d),...], where (a,b) represents a bidirectional virtual link between node

a and b.

• Flexible node configuration: According to the pattern of the segments defining

nodes in a request RSpec, we would like to provide an elastic configuration that al-

lows any combination of the features that the requested nodes are expected to have.

A requested VM can be differentiated from other VMs by a composite of charac-

teristics, such as node category, OS image, post-boot installation procedures (i.e.,

118

downloading scripts and executing commands) and the list of nodes that belong to

this category. In our case, we only need to configure nodes into two categories (i.e.

end hosts and VRs), where the end hosts require a standard Ubuntu OS with iperf

installed and the VRs require a customized image that has XORP installed already.

[router]
node_prefix=rt
disk_image=<URL to the customized OS image with XORP installed>
install_script=<URL to the scripts that creates OSPF configuration
and starts XORP>
execute_cmd=<the command to start XORP>
node_list=1,2,3

[host]
node_prefix=host
disk_image=<URL to the standard Ubuntu OS image>
install_script=<URL to the scripts to install iperf>
execute_cmd=<the command to install iperf>
node_list=4,5

Figure 35: Configuration for VRs and End-Host Nodes with the ScaleUp Tool

• Auto-IP Assignment: ScaleUp automatically assigns IP addresses to the inter-

faces for each Xen-VM once the topology is defined, and it provides efficiency for

configuring VMs in a large-scale complex topology.

• Link Types Auto-Detection: Under GENI context, the link types are determined by

the VM types and the source of the VMs. For example, if two VMs are requested

from different aggregates, then the virtual link between these two VMs should be

either the GRE/EGRE tunnel or the stitched link configured by VLAN techniques,

otherwise, the virtual link is just a regular LAN type within a single aggregate.

119

Hence, we use a combination of three sections defined in the configuration file for

the ScaleUp tool, which are am nodes and single am and use stitching.

For the node setup presented in Fig. 35, if we would like to have the nodes dis-

tributed across multiple aggregate, and create EGRE tunnels between them, then

we will specify these three sections as shown in Fig. 36.

single_am=no
use_stitching=no
[am_nodes]
ig-illinois:2,3,5
ig-wisconsin:1,4

Figure 36: Determine Virtual Link Type with the ScaleUp Tool: An Example

• RSpec Generation: Once a user has entered all the request to the configuration file

to run the ScaleUp tool, an RSpec file will be generated based on these speficialed

features for the user’s slice. Fig. 37 shows a sample request RSpec generated by

scaleup according to the configuration we presented above.

6.2.2.2 VR Configuration

The ScaleUp tool is designed to be a generalized tool for to create request RSpec

file for efficiently setting up experiments on the GENI testbed. Now, we present how to

automate the configuration procedure for VRs.

The VR configuration procedure consists of routing software installation and rout-

ing protocol configuration. We first tried to install XORP v1.8 on a standard Ubuntu

12.04 OS image, and it took us more than 40 minutes to complete the installation and

pass all the tests. Hence, it is not efficient to install XORP at the post-boot stage. GENI

120

<node client_id="rt-2" exclusive="false"
component_manager_id="urn:publicid:IDN+instageni.illinois.edu
+authority+cm">
 <sliver_type name="emulab-xen">
 <disk_image name="https://www.instageni.clemson.edu/
image_metadata.php?uuid=5417bcef-224e-11e4-aa5a-000000000000"/>
 <ns0:xen xmlns:ns0="http://www.protogeni.net/resources/rspec/
ext/emulab/1" cores="1" ram="256" disk="8"/>
 </sliver_type>
 <interface client_id="rt-2:if1">
 <ip address="192.168.1.2" netmask="255.255.255.0" type="ipv4"/>
 </interface>
 …………
 <services>
 <install url="http://www.gpolab.bbn.com/exp/sysexpr/
xorp_autostart.tar.gz" install_path="/local"/>
 …………
 <execute shell="sh" command="/bin/bash /local/xorp_autostart/
start-xorp.sh"/>
 …………
 </services>
</node>
…………
<link client_id="egre0">
 <interface_ref client_id="rt-2:if1"/>
 <interface_ref client_id="rt-1:if1"/>
 <link_type name="egre-tunnel"/>
</link>

Figure 37: Node and Link Segments in a Request RSpec

allows experimenters to create customized OS image and save it online to avoid such time-

consuming post-boot situation, and the image can be loaded from a given URL like other

standard OS image. Therefore, we created a customized Ubuntu 12.04 image with XORP

v1.8 pre-installed, and specified the URL to this customized image when generating the

request RSpec with the scaleup tool.

Secondly, we configured every VR as an OSPF VR, and the OSPF configuration

file is automatically generated based on the virtual interface information right after the

121

VR is up, including those interfaces configured for inactive virtual links. Since all S-VRs

are provisioned with inactive virtual links reserved to the active VRs, the OSPF protocol

will be configured automatically for each S-VR at the post-boot stage as well.

6.2.3 Collect Substrate Network Information

In Chapter 5, we proposed a heuristic multi-criteria selection algorithm to select

an S-VR to replace a failed VR in a VN, where one of the factors to the optimal selection

is the geographical location of the S-VRs we also consider the real-time traffic statistics

on the interfaces of the S-VR’s substrate host. For the geographical information about

an S-VR, we can run omni to periodically pull the advertisement RSpec from the corre-

sponding aggregate that provisioning resources for the S-VRs.

For the real-time monitoring, GENI provides two ways to view the performance of

GENI resources. The first is GENI Monitoring framework [5] that provides a web-based

interactive interface for experimenters to view the real-time monitoring for a specific slice

or for GENI hardware (i.e., nodes, links, traffic statistics on interfaces, etc). Currently,

this monitoring system does not provide a command-line API for us to pull the monitoring

data at this time, so we are not be able to integrate the real-time resource utilization and

traffic statistics monitoring module with the VNM, but we believe this will be a great en-

hancement for the VNM implementation in future. The second way is to use geni-lib,

which has a sample script to pull the VM availability from all GENI aggregates at real-

time. There, we modified this sample code to get the VM availability on each PC of the

InstaGENI aggregates that provisions resources for S-VRs, and use this information as

122

the resource utilization on the substrate nodes.

Thus, if we consider two criteria: the distance from a S-VR to the failed VR and

the VM load of the S-VR’s host, a simplified version of the objective function proposed

in Chapter 5 can be defined as:

min {λ · dist to fail + π · VM load} (6.1)

where λ and π are the weight parameters to determine the emphasis of selection criterion.

6.2.4 Results Discussion

Now we present an implementation of the prototype of VNM on GENI. Since our

work is on basis of the VN embedding procedure that has allocated resources to a VN

request, assuming that the VNM received a VN request of five VRs in the given topology,

and the VNM also provisioned three S-VRs (labeled as 8, 9, 10). Thus, overall the reg-

ular VRs and the S-VRs were distributed over seven different InstaGENI aggregates, as

presented in Fig. 38. In this VN request, there were three VRs (labeled as 2,3,5) perform-

ing as the core VRs. Based on this topology and S-VR mapping, we are able to create

the configuration file as the input for the ScaleUp to generate the request RSpec, and

then sent the RSpec to get the resources reserved from GENI testbed. In particular, the

request RSpec also included the links between the S-VRs and all other core VRs, so we

can quickly replace the failed VR with one of the S-VR by activating the proper virtual

interfaces. As a result, the VNM had to request at least 3 × 3 = 9 extra virtual links.

This indicating the tradeoff between quick restoration and the number of spare links, so

123

98

5
1 4

32

6 7

10

Wisconsin
(wisconsin-ig)

Illinois
(illinois-ig)

Maryland
(max –ig)

Missouri
(missouri –ig)

New York
(nysernet-ig)

Wisconsin
(wisconsin-ig)

California
Stanford-ig

Utah
UtahDDC-ig

Figure 38: Preliminary Setup

allocating a proper number of S-VRs is necessary to reduce unnecessary virtual link pro-

visioning.

To construct the function (6.1), we parsed the latitude & longitude value for each

S-VR from the associated advertisement RSpec, and pulled the real-time VM availability

information. Table 15 displays the geographic location information (i.e., latitude and

longitude value) and the VM load information for each S-VR’s host for the topology

presented in Fig. 38, which was collected in Oct. 2014. Consider VR-5 failed, the current

monitoring data available on GENI testbed allowed us to consider two extreme cases: if

the VNM considers to use the S-VR from the nearest site to the failed VR’s site, it may

assign λ = 1, π = 0, so S-VR from Wisconsin (ID = 8) will be selected based on Table

15. However, if the VNM considers to balance the VM load on the substrate network, it

may assign λ = 0, π = 1, so the S-VR from the UtahDDC aggregate will be selected, as

only 4% of the VMs have been reserved. In other words, this substrate node at UtahDDC

has more resources than the other two substrate nodes. Therefore, the S-VR selection

124

algorithm based on (6.1) will be triggered at the reconfiguration module of the VNM,

and once an S-VR is selected, it should connect VR-5’s neighbors (i.e., VR-1, VR-3, and

VR-4) for topology conservation. For each VR or S-VR, We have installed the scripts that

can quickly manipulate the virtual interfaces so that a S-VR can be added to the existing

topology immediately (i.e., less than 1 sec), depending on the selection strategy.

Table 15: Selection Criteria for S-VR Selection

S-VR InstaGENI latitude longitude Dist (mi.) VM Load
8 wisconsin-ig 43.075 -89.410 0.000 6%
9 stanford-ig 37.430 -122.170 1760.078 14%

10 UtahDDC-ig 40.751 -111.890 1164.032 4%

6.3 Summary

In this chapter, we presented the design of a software-defined resilient virtualized

networking environment, where the VNM is the core component to fulfill dynamic VN

restoration with the optimal S-VR selection scheme. We presented an proof of concept

implementation for our design on the GENI testbed, where we focused on two of the major

modules at the VNM: the VN initilizaiton and substrate network information collection,

and presented a simplified composite objective based on (5.12).

We next plan to focus on evaluating the impact of the software-defined autonomic

VN restoration from the VR failures, which implements the heuristic multi-criteria selec-

tion algorithm, on multiple VNs while focusing on the independent and dependent VR

failures.

125

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conslusion

This dissertation discussed a problem of survivability against node failures in a

virtualized networking environment using redundant nodes with dynamic restoration ap-

proach, where the redundant nodes are presented as standby virtual routers (S-VRs) re-

served for each virtual network (VN). The objective is to design a dynamic reconfiguration

scheme (DRS) with an optimal S-VR selection model for simultaneous VN restoration

from either independent or dependent VR failures.

To understand and solve this problem, we divided the work into three phases. The

first phase is to understand the types of cost and constraint to choose an S-VR and replace

a failed VR with this S-VR. We conducted an experimental study by employing the DRS

on a realistic distributed wide-area virtual network we previously built over the GpENI

network. In this experiment, we ran the DRS for a single VN with a shared-S-VR pool in

three different virtual topologies, and measured the recovery time and the instantaneous

network performance (e.g., bandwidth, packet loss, etc.) during and after the reconfig-

uration process. The S-VR selection in this experiment was based on the geographical

distance. The results showed that with a centralized management, the affected VN can be

quickly restored with the proposed DRS, and the geographical distance based selection

showed a better network performance after the restoration than a random S-VR selection.

126

Furthermore, we also notice the resource utilization on the substrate nodes that host the S-

VRs and the latency between the S-VR to other active VRs could also be possible factors

to the selection.

In the second phase we designed an optimal S-VR selection model that considers

all possible factors and costs types in a weighted manner, and the model is able to handle

selections for multiple VNs with VR failures. We also proposed a heuristic multi-criteria

selection algorithm. By considering a variety of factors (e.g., virtual link bandwidth re-

quest, the number of S-VRs per VN, resource utilization on the S-VR’s substrate host,

etc.), the numerical results showed that the heuristic cost showed very less overhead than

the optimal cost when the VNs were provisioned sufficient S-VRs or the substrate nodes

have sufficient sources. If the virtual link bandwidth request was higher, the optimization

model showed better performance in terms of the restoration ratio. On the other hand,

when there are large number of VNs with VR failures simultaneously, the heuristic al-

gorithm ran faster than solving the optimization model when the S-VR selection was to

minimize the selection cost. The proposed optimal S-VR selection model for dynamically

restore VNs from node failures in a VNE loosely couples multiple selection criteria. The

cost functions are general formulations containing a variety of cost components, and they

can be easily extended by adding other potential cost components with corresponding

weight values. The model is also can be simplified by dropping some components if these

components are not critical to the selection.

The third phase is to design a resilient VNE with a software-defined management,

127

where the proposed DRS and the S-VR selection model can be employed. The core com-

ponent we presented was called virtual network manager (VNM), which has the global

view of both the substrate network and the virtual network plane. The VNM is respon-

sible for automating VN initialization and configuration, and dynamic restoration against

VR failures by employing our proposed model in the second phase. We implemented a

prototype of VNM that implemented VN creation and the DRS on the GENI testbed. Due

to the limited monitoring data can be accessed from the GENI testbed by the time we im-

plemented the prototype, we simplified the S-VR model by considering only two factors:

geographical location of the S-VRs and the VM load on the substrate nodes. Our ulti-

mate goal is to fully implement the multi-criteria S-VR selection model and the heuristic

algorithm on the GENI testbed when more monitoring data are released in future, and

understand how this model performed for simultaneously restoring multiple VNs.

7.2 Future Work

There are several aspects we would like explore in the future research. First, we

would like to extend the prototype implementation to emulate simultaneous VN auto-

restorations from either independent or dependent VR failures. Second, current GENI

testbed has not released the public API for the monitoring system yet, so the challenge

for us is to access the real-time raw data about the testbed (i.e., CPU utilization, interface

statistics, etc.) that can be used in our proposed model. Once we have the access to the

real-time monitoring data, we can apply the multi-criteria heuristic selection, and compare

the results with the optimization model. Third, the model we proposed in this dissertation

128

was based on the IP-layer network virtualization environment, we believe it is possible

to adapt it to the software-defined networking environment (i.e., OpenFlow Networks),

where the backup resources could be ports and switches. Thus, we would like to study

the virtualization used in the OpenFlow network environment and explore the protection

and restoration model for node failures based on our experiences in the virtualized IP

networks.

129

APPENDIX A

RESOURCE SPECIFICATION (RSPEC) IN GENI

In the GENI context, there are three types of resource specification (RSpec) pre-

sented as standard XML documents: advertisement RSpec, request RSpec and manifest

RSpec.

A.1 Advertisement RSpec

An advertisement RSpec (A-RSpec) presents the resources information and sta-

tus of a GENI rack or a GENI aggregate, and its structure may vary depending on the

components of a particular type of GENI rack. We use the advertisement RSpec for two

kinds of standard GENI racks (i.e., InstaGENI rack and ExoGENI rack) to illustrate what

information we can obtained for this type of RSpec. In this section, we mainly introduce

the schemas for the node and link sections in an A-RSpec file.

A.1.1 Node Information

Usually a GENI rack consists of a number of nodes that support VM provision-

ing or network connectivity for an experimenter’s slice, and the A-RSpec reveals what

resources are available. The schema of the node segment in the A-RSpec can be decom-

posed as shown in Fig. 39, and we notice that there are slight differences between the

node schema of the A-RSpec for the InstaGENI and ExoGENI racks.

• hardware type tells diverse hardwares in the node. For example, if the node

130

<node>	

<hardware_type>	
 <sliver_type>	
 <loca5on>	
 <interface>	
 <available>	

<disk_image>	

<emulab:fd>	

(a) InstaGENI Rack

<node>	

<hardware_type>	
 <sliver_type>	
 <loca5on>	
 <interface>	
 <available>	

(b) ExoGENI Rack

Figure 39: Node Section Schema of the A-RSpec

is for computing resource provisioning, the hardware type may be ”pc” or ”vm”

related; if the node is for networking resource provisioning, the hardware type could

be ”lan” or other interconnectivity.

• sliver type tells the possible computing resources can be provisioned by a

computing node. For an InstaGENI rack, it could be raw PCs, OpenVZ or Xen-

VMs, according to the virtualization technologies. For an ExoGENI rack, there

are more options (e.g., ”EC2M1Small”, ”XOMedium”, etc.) depends on disk and

memory size of the VMs. For InstaGENI rack, there is a second level field disk image

shows the operating system image can be loaded to the slivers.

• location indicates the geographical information about the node (i.e., latitude and

longitude information).

131

<link>	

<component_manager>	
 <interface_ref>	
 <property>	
 <link_type>	

Figure 40: Link Section Schema of the A-RSpec

• interface defines the name of the interfaces on the node.

• available indicates whether the node is available or not.

• emulab:fd is defined for InstaGENI rack only, and it specifies the CPU and mem-

ory information of the node.

A.1.2 Link Information

Fig. 40 shows the schema used by the link section in an A-RSpec file. In par-

ticular, the component manager indicates the end of the link, i.e., the identifier of

the associate GENI rack to the link. Each property tag specifies the capacity, latency

and loss rate of an interface associated with the link, and the link type tag specifies

whether the link is Ethernet or other types.

Two complete examples for GPO-ExoGENI and UMKC-InstaGENI can be found

at:

https://docs.google.com/document/d/1544b8TfYICAsY1qACTNhQuE-

dGWVqVVFIdod_8FpQis/edit?usp=sharing

132

<node>	

<sliver_type>	
 <interface>	
 <service>	

<disk_image>	
 <install>	
 <ip>	
 <execute>	

Figure 41: Node Section Schema of the R-RSpec

A.2 Request RSpec

The request RSpec (R-RSpec) is used to request resources for a specific slice.

Here we briefly introduced the basic components of an R-RSpec file (i.e. node section

and link section) for InstaGENI racks. It is important to understand the schema of the

request RSpec to a particular type of GENI rack, so that we can automate the R-RSpec

generation relying on geni-lib.

Fig. 41 shows the basic schema of the node section in a R-RSpec. Usually we

need to specify the sliver type and interface information. For sliver type, we

should indicate the type of node resources to be reserved for a sliver, such as Xen VMs,

OpenVZ or raw PCs, and then indicate the disk image to be loaded to the sliver. In regard

to the interface information, when we are interested in creating a virtual network, we will

have to configure IP address for each interface of a sliver. Furthermore, if we would

like to install any software or packages to the sliver or execute particular command and

the post-boot stage, we will have to add service segment to the node section in the

R-RSpec.

For the link section in an R-RSpec, there are two basic tags: interface ref

133

and link type. The interface ref tags specify the identifiers of the sliver’s inter-

face and the associated interface on a remote sliver. The link type indicate whether

the link is a GRE/EGRE tunnel, LAN or stitching link. Sometimes we may also add the

property tag to specify the capacity and latency for the link. For a link connecting two

slivers from two different GENI racks, we have to include component manager to

indicate the identifier of the corresponding GENI racks.

A list of example R-RSpec used for GENI tutorials can be found at:

http://www.gpolab.bbn.com/experiment-support/

A.3 Manifest RSpec

Once we have resources reserved for our slice on the GENI testbed, GENI API

will return us a manifest RSpec (M-RSpec) file to indicate the actual GENI hardwares

that provisioning resources to our slice. For instance, if we do not specify particular

node ID on the GENI racks, or we do not specify which GENI rack we would like to

request resource from, once the resources are allocated and ready, the M-RSpec tells us

the identifiers of the nodes and particular GENI rack.

A list of M-RSpec along with the associated R-RSpec can be found at:

http://groups.geni.net/geni/wiki/GIMIv3/SampleManifests

134

APPENDIX B

OPTIMAL S-VR SELECTION MODEL IN AMPL

========= Index bound Declaration ======#

the number of physical routers on the substrate

param num_pr > 0 integer;

the number of virtual networks

param num_vn > 0 integer;

========== Set declaration =============

the set of phyiscal resources (CPU & RAM)

set RES;

the set of physical routers: R

set PRouter = 1 .. num_pr by 1;

the set of virtual networks overlay over the substrate: G

set VNet = 1 .. num_vn by 1;

the number of ports on a physical router

param num_p {i in PRouter} > 0 integer;

the set of physical ports on the physical rouer i:P_{i}

set Port{i in PRouter} = 1 .. num_p[i] by 1;

the number of virtual interfaces on a virtual router: r_{i,j}

param num_viface {i in PRouter, j in VNet} > 0 integer;

the set of virtual interfaces on a virtual router r_{i,j}: Mˆj_i

set VIface {i in PRouter, j in VNet} = 1 .. num_viface[i,j] by 1;

the set of failed virtual router r_{i,j}: Fˆj

set Fail {VNet};

========== Parameter Declaration =======

The available bw of port p on physical router i: b_{i,p}

135

param b {i in PRouter, p in Port[i]} >= 0;

Indecates whether a virtual router r_{i,j} is connected: alphaˆj_i

param alpha {i in PRouter, j in VNet} binary;

Indicating whether a virtual router r_{i,j} is failed: betaˆj_i

param beta {i in PRouter, j in VNet} binary;

Indicating mapping relation between virtual interface m and potential

connected remote virtual router r_{j,k}:(gammaˆ{j,f}_{i,m,k})

param gamma { j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j], k in PRouter}

= if m = k then 1 else 0;

the upper limit on how many S-VRs can be created on a substrate node: h_i

param limit {i in PRouter} >=0 integer;

Indicating whether a virtual router r_{i,j} is a standby: deltaˆj_i

param delta {i in PRouter, j in VNet} binary;

number of failed router in virtual network j: nˆj

param num_fail {j in VNet} = card {Fail[j]} >= 0;

indicating whether r_{i,j} and r_{k,j} is connected (equals to 1): eˆj_{i,k}

param e { j in VNet, i in PRouter, k in PRouter: i <> k} binary;

requested bw on the virtual interface m of

standby virtual router r_{i,j}: cˆ{j,f}_{i,m,k}

param c { j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j],

k in PRouter: i <> k} >= 0;

========== Start Link-Path Formulation =====

number of substrate links

param L > 0 integer;

the set of substrate links

set slink := 1 .. L by 1;

number of demands

param D > 0 integer;

the demand set in terms of index

136

set demand := 1 .. D by 1;

number of paths by demand d

param Pd{d in demand} > 0 integer;

Paths sets per demand tuple

set Q{d in demand} := 1 .. Pd[d] by 1;

slink parameters

param slink_src{l in slink} within PRouter;

param slink_dst{l in slink} within PRouter;

param slink_capacity{l in slink} >= 0;

demand parameters

param demand_src{d in demand} within PRouter;

param demand_dst{d in demand} within PRouter;

param demand_vn{d in demand} within VNet;

param demand_fnode{f in demand} within PRouter;

demand volumn: c[j,f,i,m,k]

param demand_c{d in demand} > 0;

Paths set

set paths{d in demand, q in Q[d]} within slink;

link-path indicator, set to 1 if path q for demand tuple d uses link l, otherwise is 0;

param Delta{d in demand, q in Q[d], l in slink} = if l in paths[d,q] then 1 else 0;

Flow amount on path q for demand d

var x{d in demand, q in Q[d]} >= 0;

========== END Link-Path formulation ==========

========== Cost Function Parameters ==========

virtual interface operation cost

the cost of enabling an interface: sˆ-

param enable >= 0;

the cost of disabling an interface: sˆ+

param disable >= 0;

the cost of configure IP addresses: l

param ipConfig >= 0;

the bool value that indicates whether IP configure is needed on a remote

137

virtual router rˆj_k (failed VR’s neighbor): tao_{j,k}

param tau{k in PRouter, j in VNet} binary;

Virtual router connection cost

distance between two routers: d_{i,k}

param dist{i in PRouter, k in PRouter: i <> k} >= 0;

round trip time between two routers: rtt_{i,k}

param rtt {i in PRouter, k in PRouter: i <> k} >= 0;

loss rate between two routers

param pktloss {i in PRouter, k in PRouter: i <> k} := 0;

weight parameters for type-II cost function

param a1 >= 0;

param a2 >= 0;

param b1 >= 0;

param b2 >= 0;

param b3 >= 0;

residual physical resource

residual hardware resources (i.e. CPU, Memory): res_{i,r}

param res {i in PRouter, r in RES} >=0;

the available resources on physical router i

param xi {i in PRouter} = sum {p in Port[i]} b[i,p];

the cost of connecting a virtual router r_{k,j} to standby r_{i,j}:

\sigmaˆ{j,f}_{i,m,k}

param sigma {j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j], k in PRouter:

i <> k && i <> f && k <> f}

= b1 * (a1 * dist[i,f] + a2 * dist[i,k]) + b2 * rtt[i,k] + b3 * pktloss[i,k];

the cost of enable virtual interface m: \etaˆ{j,f}_{i,m,f}

param eta {j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j],

k in PRouter: i <> k && i <> f}

= 2 * (disable + enable) + tau[k,j] * ipConfig;

check how many s-vr created on a substrate router

138

param sum_delta{i in PRouter} := sum{j in VNet, f in Fail[j]} delta[i,j];

objective function weight parameter

param m1 >= 0;

param m2 >= 0;

param m3 >= 0;

Varaibles Declaration

Indicate whether a virtual router r_{i,j} is selected to replace

failed router r_{f,j}: uˆ{j,f}_{i}

var u {j in VNet, f in Fail[j], i in PRouter} binary;

indicate whether connected virtual router r_{k,j} is connected to

standby virtual router r_{i,j}: vˆ{j,f}_{i,m,k}

var v {j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j],

k in PRouter: i <> k && i <> f} binary;

indicate resource utilization ------- r

var RR >= 0;

========== objective function =========

minimize Total_Cost:

sum { j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j], k in PRouter:

i <> k && i <> f && k <> f} (m1 * eta[j,f,i,m,k] +

m2 * sigma[j,f,i,m,k]) * delta[i,j] * gamma[j,f,i,m,k] * v[j,f,i,m,k] + m3 * RR;

Constraint (1)

subject to IsStandby {j in VNet, f in Fail[j], i in PRouter: delta[i,j] == 1}:

u[j,f,i] <= delta[i,j]*(1 - beta[i,j]);

Constraint (2)

subject to IsSelect {j in VNet, f in Fail[j], i in PRouter, m in VIface[i,j],

k in PRouter: i <> k && i <> f && f <> k && delta[i,j] == 1

&& e[j,f,k] == 1 && gamma[j,f,i,m,k] == 1}: v[j,f,i,m,k] <= u[j,f,i];

Constraint (3)

subject to OneSPerF {j in VNet, f in Fail[j]}:

sum{i in PRouter} delta[i,j] * u[j,f,i] = 1;

Constraint (4)

subject to OneFPerS {i in PRouter, j in VNet: delta[i,j]==1}:

139

sum{f in Fail[j]} delta[i,j] * u[j,f,i] <= 1;

Constraint (5)

subject to max_select {i in PRouter}:

sum{j in VNet, f in Fail[j]} delta[i,j] * u[j,f,i] <= limit[i];

Constraint (6)

subject to IsConnect {j in VNet, f in Fail[j], i in PRouter: delta[i,j] == 1

&& i <> f}:

sum{m in VIface[i,j], k in PRouter: k <> f && k <> i} e[j,f,k] *

gamma[j,f,i,m,k] * v[j,f,i,m,k]

- sum{k in PRouter: k <> i && k <> f} e[j,f,k] * beta[f,j] * u[j,f,i]= 0;

Constraint (7)

subject to bw {i in PRouter, j in VNet, f in Fail[j]: delta[i,j] == 1 && i <> f}:

sum {m in VIface[i,j], k in PRouter: i <> k && k <> f}

delta[i,j] * c[j,f,i,m,k] * gamma[j,f,i,m,k] * v[j,f,i,m,k]

<= sum {p in Port[i]} delta[i,j] * b[i,p] * u[j,f,i];

Constraint (8)

subject to res_util {i in PRouter: sum_delta[i] > 0}:

sum {j in VNet, f in Fail[j]: i <> f} delta[i,j] * u[j,f,i] *

sum {k in PRouter, m in VIface[i,j]: k <> i && k <> f} gamma[j,f,i,m,k]

* c[j,f,i,m,k] + sum {p in Port[i]} (1 - b[i,p])

<= sum{p in Port[i]} 1 * RR;

Constraint (9)

subject to d_pair{d in demand, j in VNet, f in Fail[j], i in PRouter:

i<>f && delta[i,j] == 1 && demand_fnode[d] == f && demand_vn[d] == j

&& demand_src[d] == i}:

sum{q in Q[d]} x[d,q] = demand_c[d] * u[j,f,i];

Constraint (10)

subject to cl{l in slink}: sum{d in demand, q in Q[d]} Delta[d,q,l] * x[d,q]

<= slink_capacity[l];

subject to upRRbd:

RR <= 0.9;

140

REFERENCE LIST

[1] Emulab. http://emulab.net/.

[2] FITS:Future Internet Testbed with Security. www.gta.urfj.br/fits.

[3] GENI. www.geni.net.

[4] geni-lib. https://bitbucket.org/barnstorm/geni-lib.

[5] GENI Monitoring Wiki. http://genimon.uky.edu/.

[6] GpENI. www.gpeni.net.

[7] Introducing Linux Network Namespaces. http://blog.scottlowe.org/

2013/09/04/introducing-linux-network-namespaces/.

[8] iperf. http://sourceforge.net/projects/iperf/.

[9] OFELIA. http://www.fp7-ofelia.eu/.

[10] OpenVZ. https://openvz.org/Main_Page.

[11] PlanetLab. www.planet-lab.org.

[12] User Controlled LightPaths Project (UCLP). http://uclp.uwaterloo.ca/

index.htm.

141

[13] Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., and Ohlman, B. A survey

of information-centric networking. Communications Magazine, IEEE 50, 7 (2012),

26–36.

[14] Andersen, D., Balakrishnan, H., Kaashoek, F., and Morris, R. Resilient Overlay

Networks. SIGOPS Oper. Syst. Rev. 35, 5 (Oct. 2001), 131–145.

[15] Ata, S., Huang, D., Liu, X., Wada, A., Xing, T., Juluri, P., Chung, C.-J., Sato,

Y., and Medhi, D. SeRViTR: A framework, implementation, and a testbed for a

trustworthy future Internet. Computer Networks 63 (2014), 128–146.

[16] Banerjee, S., Griffin, T. G., and Pias, M. The interdomain connectivity of PlanetLab

nodes. In Passive and active network measurement. Springer, 2004, pp. 73–82.

[17] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., and Warfield, A. Xen and the art of virtualization. ACM SIGOPS

Operating Systems Review 37, 5 (2003), 164–177.

[18] Bari, M. F., Roy, A. R., Chowdhury, S. R., Zhang, Q., Zhani, M. F., Ahmed, R.,

and Boutaba, R. Dynamic Controller Provisioning in Software Defined Networks.

In CNSM (2013), pp. 18–25.

[19] Bastin, N., Bavier, A., Blaine, J., Chen, J., Krishnan, N., Mambretti, J., McGeer, R.,

Ricci, R., and Watts, N. The InstaGENI Initiative: An Architecture for Distributed

Systems and Advanced Programmable Networks. Computer Networks 61 (2014),

24–38.

142

[20] Bavier, A., Feamster, N., Huang, M., Peterson, L., and Rexford, J. In VINI veritas:

realistic and controlled network experimentation. In ACM SIGCOMM Computer

Communication Review (2006), vol. 36, ACM, pp. 3–14.

[21] Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D.,

Ricci, R., and Seskar, I. GENI: A Federated Testbed for Innovative Network Ex-

periments. Comput. Netw. 61 (Mar. 2014), 5–23.

[22] Bhatia, S., Motiwala, M., Muhlbauer, W., Mundada, Y., Valancius, V., Bavier, A.,

Feamster, N., Peterson, L., and Rexford, J. Trellis: A platform for building flexible,

fast virtual networks on commodity hardware. In Proceedings of the 2008 ACM

CoNEXT Conference (2008), ACM, pp. 72:1–72:6.

[23] Butt, N. F., Chowdhury, M., and Boutaba, R. Topology-Awareness and Reopti-

mization Mechanism for Virtual Network Embedding. NETWORKING 2010 6091

(2010), 27–39.

[24] Casado, R., Bermudez, A., Quiles, F., Sanchez, J., and Duato, J. Performance

evaluation of dynamic reconfiguration in high-speed local area networks. In High-

Performance Computer Architecture, 2000. HPCA-6. Proceedings. Sixth Interna-

tional Symposium on (2000), pp. 85 –96.

[25] Cetinkaya, E. K., and Sterbenz, J. P. A taxonomy of network challenges. In Design

of Reliable Communication Networks (DRCN), 2013 9th International Conference

on the (2013), IEEE, pp. 322–330.

143

[26] Chan, T.-J., Chan, C.-K., Chen, L.-K., and Tong, F. A self-protected architec-

ture for wavelength-division-multiplexed passive optical networks. IEEE photonics

technology letters 15, 11 (2003), 1660–1662.

[27] Chaparadza, R., Wodczak, M., Ben Meriem, T., De Lutiis, P., Tcholtchev, N.,

and Ciavaglia, L. Standardization of resilience & survivability, and autonomic

fault-management, in evolving and future networks: an ongoing initiative recently

launched in ETSI. In Design of Reliable Communication Networks (DRCN), 2013

9th International Conference on the (2013), IEEE, pp. 331–341.

[28] Chen, D., Qiu, X., Qu, Z., Zhang, S., and Li, W. Algorithm for virtual nodes

reconfiguration on network virtualization. In 2011 International Conference on

Advanced Intelligence and Awareness Internet (AIAI 2011).

[29] Cherukuri, R., Liu, X., Bavier, A., Sterbenz, J., and Medhi, D. Network virtu-

alization in GpENI: Framework, implementation amp; integration experience. In

IFIP/IEEE IM Workshop on the Management of the Future Internet (may 2011),

pp. 1216 –1223.

[30] Chiueh, S. N. T.-c., and Brook, S. A survey on virtualization technologies. RPE

Report (2005), 1–42.

[31] Chowdhury, M., Rahman, M. R., and Boutaba, R. Vineyard: Virtual network em-

bedding algorithms with coordinated node and link mapping. IEEE/ACM Transac-

tions on Networking (TON) 20, 1 (2012), 206–219.

144

[32] Chowdhury, N. M. K., and Boutaba, R. A survey of network virtualization. Com-

puter Networks 54, 5 (2010), 862 – 876.

[33] Chowdhury, N. M. K., Rahman, M. R., and Boutaba, R. Virtual network embed-

ding with coordinated node and link mapping. In IEEE INFOCOM 2009 (2009),

pp. 783–791.

[34] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., and

Bowman, M. Planetlab: an overlay testbed for broad-coverage services. ACM

SIGCOMM Computer Communication Review 33, 3 (2003), 3–12.

[35] Clark, D., Lehr, B., Bauer, S., Faratin, P., Sami, R., and Wroclawski, J. Overlay

Networks and the Future of the Internet. Communications and Strategies 63, 3rd

quater (2006), 1–21.

[36] Collins, A. The Detour framework for packet rerouting. PhD thesis, Citeseer, 1998.

[37] Committee, L. S. IEEE Standard for Local and metropolitan area networks – Vir-

tual Bridged Local Area Networks. Tech. rep., IEEE, 2005.

[38] Des Ligneris, B. Virtualization of Linux based computers: the Linux-VServer

project. In High Performance Computing Systems and Applications, 2005. HPCS

2005. 19th International Symposium on (2005), IEEE, pp. 340–346.

[39] Doriguzzi Corin, R., Gerola, M., Riggio, R., De Pellegrini, F., and Salvadori, E.

Vertigo: Network virtualization and beyond. In Software Defined Networking

(EWSDN), 2012 European Workshop on (2012), IEEE, pp. 24–29.

145

[40] Doshi, B. T., Dravida, S., Harshavardhana, P., Hauser, O., and Wang, Y. Optical

network design and restoration. Bell Labs Technical Journal 4, 1 (1999), 58–84.

[41] Du, P., Chen, M., and Nakao, A. Port-space isolation for multiplexing a single IP

address through open vswitch. In Testbeds and Research Infrastructures. Develop-

ment of Networks and Communities. Springer, 2011, pp. 113–122.

[42] Edwards, S., Liu, X., and Riga, N. Creating Repeatable Computer Science and

Networking Experiments on Shared, Public Testbeds. ACM SIGOPS Operating

Systems Review 49, 1 (2015), 90–99.

[43] Ferguson, P., and Huston, G. What is a VPN?, 1998.

[44] Fischer, A., Botero, J. F., Till Beck, M., De Meer, H., and Hesselbach, X. Virtual

network embedding: A survey. Communications Surveys & Tutorials, IEEE 15, 4

(2013), 1888–1906.

[45] Fonseca, P., Bennesby, R., Mota, E., and Passito, A. A Replication Component for

Resilient OpenFlow-based Networking. In Network Operations and Management

Symposium (NOMS) (2012), pp. 933–939.

[46] Garcia, J., and Duato, J. An algorithm for dynamic reconfiguration of a multicom-

puter network. In Parallel and Distributed Processing, 1991. Proceedings of the

Third IEEE Symposium on (dec 1991), pp. 848 –855.

[47] Gleeson, B., Lin, A., Heinanen, J., Armitage, G., and Malis, A. A Framework for

IP based Virtual Private Networks, RFC 2764. Tech. rep., IETF, 2000.

146

[48] Gojmerac, I., Ziegler, T., Ricciato, F., and Reichl, P. Adaptive multipath routing

for dynamic traffic engineering. In In Proceedings of IEEE GLOBECOM (2003),

pp. 3058–3062.

[49] Golab, W., and Boutaba, R. Path Selection in User-controlled Circuit-switched

Optical Networks. Opt. Switch. Netw. 5, 2-3 (June 2008), 123–138.

[50] Guo, B., Qiao, C., Wang, J., Yu, H., Zuo, Y., Li, J., Chen, Z., and He, Y. Survivable

virtual network design and embedding to survive a facility node failure. Lightwave

Technology, Journal of 32, 3 (2014), 483–493.

[51] Guo, T., Wang, N., Moessner, K., and Tafazolli, R. Shared backup network pro-

vision for virtual network embedding. In Communications (ICC), 2011 IEEE

International Conference on (2011), IEEE, pp. 1–5.

[52] Habib, I. Virtualization with KVM. Linux J. 2008, 166 (Feb. 2008).

[53] Hamzeh, K., Pall, G., Verthein, W., Taarud, J., Little, W., and Zorn, G. RFC-2637:

Point-to-point tunneling protocol (PPTP). Network Working Group (1999).

[54] Hanks, S., Meyer, D., Farinacci, D., and Traina, P. Generic routing encapsulation

(GRE). Tech. rep., IETF, 2000.

[55] Helsley, M. LXC: Linux container tools. IBM devloperWorks Technical Library

(2009).

147

[56] Herker, S., Khan, A., and An, X. Survey on survivable virtual network embedding

problem and solutions. In ICNS 2013, The Ninth International Conference on

Networking and Services (2013), pp. 99–104.

[57] Hibler, M., Ricci, R., Stoller, L., Duerig, J., Guruprasad, S., Stack, T., Webb,

K., and Lepreau, J. Large-scale virtualization in the Emulab network testbed.

In USENIX 2008 Annual Technical Conference on Annual Technical Conference

(2008), pp. 113–128.

[58] Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., and Tran-Gia, P.

Pareto-optimal resilient controller placement in SDN-based core networks. In Tele-

traffic Congress (ITC), 2013 25th International (2013), IEEE, pp. 1–9.

[59] Houidi, I., Louati, W., Zeghlache, D., Papadimitriou, P., and Mathy, L. Adap-

tive virtual network provisioning. In Proceedings of the second ACM SIGCOMM

workshop on Virtualized infrastructure systems and architectures (2010), ACM,

pp. 41–48.

[60] Hu, Q., Wang, Y., and Cao, X. Location-constrained survivable network virtualiza-

tion. In Sarnoff Symposium (SARNOFF), 2012 35th IEEE (2012), IEEE, pp. 1–5.

[61] Huang, M. VNET: PlanetLab virtualized network access. Tech. rep., Tech. Rep.

PDN–05–029, PlanetLab Consortium, 2005.

[62] Huang, M., and Parmentelat, T. MyPLC User’s Guide. https://svn.

planet-lab.org/wiki/MyPLCUserGuide.

148

[63] Ishiguro, K., Takada, T., Ohara, Y., Zinin, A., Natapov, G., and Mizutani, A.

Quagga routing suite, 2007.

[64] Kent, S., and Seo, K. RFC 4301: Security Architecture for the In. temet Protocol,

2005.

[65] Kephart, J. O. An Architectural Blueprint for Autonomic Computing, 3rd Edition.

Tech. rep., IBM, June 2005.

[66] Liu, X., Edwards, S., Riga, N., and Medhi, D. Design of a software-defined re-

silient virtualized networking environment. In Design of Reliable Communica-

tion Networks (DRCN), 2015 11th International Conference on the (2015), IEEE,

pp. 111–114.

[67] Liu, X., Juluri, P., and Medhi, D. An experimental study on dynamic network

reconfiguration in a virtualized network environment using autonomic manage-

ment. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-

tional Symposium on (2013), IEEE, pp. 616–622.

[68] Liu, X., and Medhi, D. Optimal standby virtual routers selection for node failures

in a virtual network environment. In Network and Service Management (CNSM),

2014 10th International Conference on (2014), IEEE, pp. 28–36.

[69] Liu, X., Mohanraj, S., Pióro, M., and Medhi, D. Multipath Routing From a Traffic

Engineering Perspective: How Beneficial is It? In Network Protocols (ICNP),

2014 IEEE 22nd International Conference on (2014), IEEE, pp. 143–154.

149

[70] Liu, X., Wada, A., Xing, T., Juluri, P., Sato, Y., Ata, S., Huang, D., and Medhi, D.

SeRViTR: A framework for trust and policy management for a secure Internet and

its proof-of-concept implementation. In Network Operations and Management

Symposium (NOMS), 2012 IEEE (2012), IEEE, pp. 1159–1166.

[71] Liu, Y., and Tipper, D. Successive survivable routing for node failures. In Global

Telecommunications Conference, 2001. GLOBECOM’01. IEEE (2001), vol. 4,

IEEE, pp. 2093–2097.

[72] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. A survey and compar-

ison of peer-to-peer overlay network schemes. Communications Surveys & Tutori-

als, IEEE 7, 2 (2005), 72–93.

[73] Maier, G., Pattavina, A., De Patre, S., and Martinelli, M. Optical network surviv-

ability: protection techniques in the WDM layer. Photonic Network Communica-

tions 4, 3-4 (2002), 251–269.

[74] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.-N., and Diot, C.

Characterization of failures in an IP backbone. In INFOCOM 2004. Twenty-

third AnnualJoint Conference of the IEEE Computer and Communications Soci-

eties (2004), vol. 4, IEEE, pp. 2307–2317.

[75] Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C.-N., Ganjali, Y.,

and Diot, C. Characterization of failures in an operational IP backbone network.

IEEE/ACM Transactions on Networking (TON) 16, 4 (2008), 749–762.

150

[76] Masti, S. B., and Raghavan, S. V. Vna: An enhanced algorithm for virtual network

embedding. In Computer Communications and Networks (ICCCN), 2012 21st

International Conference on (2012), IEEE, pp. 1–9.

[77] McKeown, N. Software-defined networking. INFOCOM keynote talk 17, 2 (2009),

30–32.

[78] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., and Turner, J. OpenFlow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[79] Medhi, D., Ramamurthy, B., Scoglio, C., Rohrer, J. P., Çetinkaya, E. K., Cherukuri,

R., Liu, X., Angu, P., Bavier, A., Buffington, C., and Sterbenz, J. P. The GpENI

Testbed: Network Infrastructure, Implementation Experience, and Experimenta-

tion. Computer Networks 61 (2014), 51–74.

[80] Medhi, D., and Ramasamy, K. Network Routing. Morgan Kaufmann, 2007, ch. 18,

pp. 634–641.

[81] Mohan, G., Murthy, C., and Somani, A. K. Efficient algorithms for routing de-

pendable connections in WDM optical networks. IEEE/ACM Transactions on Net-

working (TON) 9, 5 (2001), 553–566.

[82] Moraes, I. M., Mattos, D. M., Ferraz, L. H. G., Campista, M. E. M., Rubinstein,

M. G., Costa, L. H. M., de Amorim, M. D., Velloso, P. B., Duarte, O. C. M.,

151

and Pujolle, G. FITS: A flexible virtual network testbed architecture. Computer

Networks 63 (2014), 221–237.

[83] Nakao, A., Ozaki, R., and Nishida, Y. CoreLab: an emerging network testbed

employing hosted virtual machine monitor. In Proceedings of the 2008 ACM

CoNEXT Conference (2008), ACM, pp. 73:1–73:6.

[84] Nejabati, R., Escalona, E., Peng, S., and Simeonidou, D. Optical network virtual-

ization. In Optical Network Design and Modeling (ONDM), 2011 15th Interna-

tional Conference on (2011), IEEE, pp. 1–5.

[85] Office., G. P. Stitcher. http://trac.gpolab.bbn.com/gcf/wiki/

Stitcher.

[86] Orlowski, S., Wessäly, R., Pióro, M., and Tomaszewski, A. SNDlib 1.0Ñsurvivable

network design library. Networks 55, 3 (2010), 276–286.

[87] Peterson, L., Bavier, A., Fiuczynski, M. E., and Muir, S. Experiences building

planetlab. In Proceedings of the 7th symposium on Operating systems design and

implementation (2006), USENIX Association, pp. 351–366.

[88] Peterson, L., and Roscoe, T. The design principles of PlanetLab. ACM SIGOPS

operating systems review 40, 1 (2006), 11–16.

[89] Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., and Shenker, S. Extend-

ing Networking into the Virtualization Layer. In Hotnets (2009), pp. 1–6.

152

[90] Quétier, B., Neri, V., and Cappello, F. Scalability comparison of four host virtual-

ization tools. Journal of Grid Computing 5, 1 (2007), 83–98.

[91] Rahman, M., and Boutaba, R. SVNE: Survivable Virtual Network Embedding Al-

gorithms for Network Virtualization. IEEE Transactions on Network and Service

Management 10 (June 2013), 105–118.

[92] Rahman, M. R., Aib, I., and Boutaba, R. Survivable virtual network embedding.

In NETWORKING 2010. Springer, 2010, pp. 40–52.

[93] Ramamurthy, S., Sahasrabuddhe, L., and Mukherjee, B. Survivable WDM mesh

networks. Lightwave Technology, Journal of 21, 4 (2003), 870–883.

[94] Ravindran, R., Liu, X., Chakraborti, A., Zhang, X., and Wang, G. Towards soft-

ware defined ICN based edge-cloud services. In Cloud Networking (CloudNet),

2013 IEEE 2nd International Conference on (2013), IEEE, pp. 227–235.

[95] Riondato, M. Jails. https://www.freebsd.org/doc/handbook/

jails.html.

[96] Ripeanu, M. Peer-to-peer architecture case study: Gnutella network. In Peer-

to-Peer Computing, 2001. Proceedings. First International Conference on (2001),

IEEE, pp. 99–100.

[97] Rosen, E., and Rekhter, Y. BGP/MPLS IP Virtual Private Networks (VPNs), RFC

4364. Tech. rep., IETF, February 2006.

153

[98] Savage, S., Anderson, T., Aggarwal, A., Becker, D., Cardwell, N., Collins, A.,

Hoffman, E., Snell, J., Vahdat, A., Voelker, G., and Zahorjan, J. Detour: Informed

Internet routing and transport. Micro, IEEE 19, 1 (1999), 50–59.

[99] Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh,

A., Wundsam, A., Kind, M., Maennel, O., and Mathy, L. Network virtualiza-

tion architecture: proposal and initial prototype. In Proceedings of the 1st ACM

workshop on Virtualized infrastructure systems and architectures (2009), ACM,

pp. 63–72.

[100] Schroeder, M., Birrell, A., Burrows, M., Murray, H., Needham, R., Rodeheffer, T.,

Satterthwaite, E., and Thacker, C. Autonet: a high-speed, self-configuring local

area network using point-to-point links. Selected Areas in Communications, IEEE

Journal on 9, 8 (oct 1991), 1318 –1335.

[101] Shamsi, J., and Brockmeyer, M. QoSMap: QoS aware mapping of virtual networks

for resiliency and efficiency. In Globecom Workshops, 2007 IEEE (2007), IEEE,

pp. 1–6.

[102] Shamsi, J., and Brockmeyer, M. QoSMap: achieving quality and resilience through

overlay construction. In Internet and Web Applications and Services, 2009.

ICIW’09. Fourth International Conference on (2009), IEEE, pp. 58–67.

[103] Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N.,

and Parulkar, G. Flowvisor: A network virtualization layer. OpenFlow Switch

Consortium, Tech. Rep (2009).

154

[104] Sivakumar, M., Shenai, R. K., and Sivalingam, K. M. A survey of survivability

techniques for optical WDM networks. In Emerging Optical Network Technolo-

gies. Springer, 2005, pp. 297–331.

[105] Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., and Peterson, L. Container-

based operating system virtualization: a scalable, high-performance alternative to

hypervisors. In ACM SIGOPS Operating Systems Review (2007), vol. 41, ACM,

pp. 275–287.

[106] Sundararaj, A. I., and Dinda, P. A. Towards Virtual Networks for Virtual Machine

Grid Computing. In Virtual machine research and technology symposium (2004),

pp. 177–190.

[107] Telesis, A. AlliedWare Plus OS Overview: VLANs (Virtual LANs).

http://www.alliedtelesis.com/userfiles/file/overview_

vlans.pdf.

[108] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G., and Palter, B. RFC

2661-Layer Two Tunneling Protocol(L2TP). IETF, August (1999).

[109] Vakali, A., and Pallis, G. Content delivery networks: Status and trends. Internet

Computing, IEEE 7, 6 (2003), 68–74.

[110] Wada, A., Sato, Y., Liu, X., Xing, T., Ata, S., Medhi, D., Huang, D., and Oka, I.

A behavior based policy management for adaptive trustworthiness assignment in

155

future network. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE

International Symposium on (2013), IEEE, pp. 784–787.

[111] Xing, T., Liu, X., Chung, C.-J., Wada, A., Ata, S., Huang, D., and Medhi, D.

Constructing a virtual networking environment in a geo-distributed programmable

layer-2 networking environment (G-PLaNE). In Communications (ICC), 2012

IEEE International Conference on (2012), IEEE, pp. 5879–5884.

[112] Xylomenos, G., Ververidis, C. N., Siris, V., Fotiou, N., Tsilopoulos, C., Vasilakos,

X., Katsaros, K. V., Polyzos, G. C., et al. A survey of information-centric network-

ing research. Communications Surveys & Tutorials, IEEE 16, 2 (2014), 1024–

1049.

[113] Yeow, W.-L., Westphal, C., and Kozat, U. Designing and Embedding Reliable Vir-

tual Infrastructures. In Proceedings of the Second ACM SIGCOMM Workshop on

Virtualized Infrastructure Systems and Architectures (New York, NY, USA, 2010),

VISA ’10, ACM, pp. 33–40.

[114] Yu, H., Anand, V., Qiao, C., and Sun, G. Cost efficient design of survivable virtual

infrastructure to recover from facility node failures. In Communications (ICC),

2011 IEEE International Conference on (2011), IEEE, pp. 1–6.

[115] Yu, M., Yi, Y., Rexford, J., and Chiang, M. Rethinking virtual network embedding:

substrate support for path splitting and migration. SIGCOMM Comput. Commun.

Rev. 38, 2 (Mar. 2008), 17–29.

156

[116] Zhang, X., Chen, X., and Phillips, C. Achieving effective resilience for qos-aware

application mapping. Computer Networks 56, 14 (2012), 3179–3191.

[117] Zhang, X., Phillips, C., and Chen, X. An overlay mapping model for achieving

enhanced QoS and resilience performance. In Ultra Modern Telecommunications

and Control Systems and Workshops (ICUMT), 2011 3rd International Congress

on (2011), IEEE, pp. 1–7.

[118] Zhou, D., and Subramaniam, S. Survivability in optical networks. IEEE network

14, 6 (2000), 16–23.

[119] Zhou, Y., Li, Y., Jin, D., Su, L., and Zeng, L. A virtual network embedding scheme

with two-stage node mapping based on physical resource migration. In Commu-

nication Systems (ICCS), 2010 IEEE International Conference on (2010), IEEE,

pp. 761–766.

VITA

Xuan Liu was born on June 29, 1985 in Wuhan, Hubei Province, China. She

was educated in local public schools and graduated from Hubei Shuiguohu Senior High

School in Wuhan, Hubei. After graduating from the public school, she attended China

University of Geosciences in Wuhan, Hubei and graduated in June 2003 with a Bachelor

degree in Communication Engineering.

After obtaining the undergraduate degree, Ms. Liu joined University of Missouri -

Kansas City to pursue Masters in Computer Science. She graduated with a Masters degree

in December, 2010. In August 2010, she joined the interdisciplinary PhD program in

University of Missouri - Kansas City with Telecommunication & Computer Networking

as her Coordinating discipline and Mathematics as her Co-discipline, respectively.

Ms. Liu was an ICN Architectural SW Intern at Futurewei Technologies from

August, 2012 to January, 2013, and from May to August, 2013. Ms. Liu was a Network

System Intern at Raytheon BBN Technologies from June to August, 2014.

Upon completion of her degree requirement, Ms. Liu will join AT&T Research

Labs in Bedminster, NJ.

158

