INVESTIGATING 99mTECHNETIUM/RHENIUM(V)-CYCLIZED OCTREOTIDE ANALOGUES USING EXPERIMENTAL AND COMPUTATIONAL METHODS

Yawen Li

Dr. Silvia S. Jurisson, Dissertation Supervisor
Dr. Carol A. Deakyne, Dissertation Co-Supervisor
Dr. Michael R. Lewis, Dissertation Co-Supervisor

ABSTRACT

Radiolabeled proteolytic degradation-resistant somatostatin analogues have been of long-standing interest as cancer imaging and radiotherapy agents for targeting somatostatin receptor-positive tumors. Our interest in developing 186Re- and 188Re-based therapeutic radiopharmaceuticals led to investigation of a new Re(V)-cyclized octreotide analogue, Re(V)-cyclized SDPhe1-Tyr3-octreotate [thiolated-DPhe1-Cys2-Tyr3-DTlp4-Lys5-Thr6-Cys7-Thr(OH)8] (Re-SDPhe-TATE). The four isolated/semi-isolated Re-SDPhe-TATE isomers exhibited different receptor binding affinities in vitro. Two-dimensional NMR experiments and electronic structure calculations were employed to elucidate the structural differences among the isomers. The Re-cyclization reaction was translated to the 99mTc radiotracer level. About 85% total 99mTc labeling yield was achieved; the chemical stability of 99mTc-SDPhe-TATE was examined in PBS solution and 1 mM cysteine solution under physiological conditions.

A reliable computational method for modeling Re-peptide complexes may facilitate the design of 99mTc/Re(V)-cyclized octreotide analogues for targeting somatostatin receptor-positive tumors. Therefore, a relaxed PES scan approach was assessed for various Re(V) model complexes to calculate bond dissociation energies for different Re–N/S bonds. The conformational equilibrium of Tyr3-octreotate in the presence of explicit water was studied using molecular dynamics simulations, and different partitioning schemes were explored for modeling Re-SDPhe-TATE using the ONIOM method.