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PHOSPHINIMINES AS POTENTIAL TECHNETIUM
ENVIRONMENTAL SENSORS

Leah M. Arrigo

Dr. Silvia S. Jurisson, Dissertation Supervisor

ABSTRACT

Phosphinimines, R3P=NSiMes, undergo hydrolysis to form the phosphiniminium
cation, RsP=NH,", which forms the ion pair [RsP=NH;"][X7] in the presence of an anion.
Preliminary studies show that in the presence of TcO,, PhsP=NSiMe; forms
[PhsP=NH,"][TcOs] and [PhsP=NH,"] is selective for TcO, over other anions.
Technetium-99 is present as environmental contamination in the form of *TcO4’, which
is extremely mobile. Currently available methods to measure this contamination are time
consuming and tedious. A method to preconcentrate and measure **Tc environmental
contamination in a quick and efficient manner is needed. The selectivity of the
phosphiniminium cation for TcO, may make phosphinimines suitable for such
preconcentration and possibly for measurement. Several phosphinimines were
synthesized and characterized for their stability and selectivity with *TcO,’, including
Ph3P=NSiMej3, (9-anthracenyl)Ph,P=NSiMes, (1-napthyl)Ph,P=NSiMes, and
(p-COOMe)CeH4Ph,P=NSiMe;s. (9-anthracenyl)Ph,P=NSiMe; and
(1-napthyl)Ph,P=NSiMe; include possible reporter groups and
(p-COOMe)CsH4Ph,P=NSiMe; contains a linking moiety for incorporating reporter
groups or attaching the phosphinimine to a polymer support. The use of internal and

external reporter groups to generate a signal in the presence of TcO, is also investigated.



CHAPTER 1: INTRODCUTION
1.1 Origin of environmental radioactive contamination
1.1.1 The History and use of radioactivity

The twentieth century was a time of technological leaps for the fields of nuclear
and radiochemistry. The first radioactive emissions were captured by Henri Becquerel in
1896 as he accidentally exposed photographic plates to uranium, which resulted in
Becquerel, Marie Curie, and Pierre Curie receiving the 1903 Nobel Prize for the
discovery of radioactivity. James Chadwick discovered neutrons in 1932 making
possible the discovery of fission in 1938 by Lise Meitner, Otto Hahn, and Fritz
Straussmann. By 1939, Germany had begun work on the military use of fission
technology. With the threat of a German victory in World War II, the United States and
Great Britain began work on the nuclear bomb. The Manhattan Project formally began in
1942 with the first reactor and reprocessing plant built and in operation at the Hanford
site in Washington State by 1944, less than two years after Enrico Fermi and his team at
the University of Chicago demonstrated that a controlled nuclear chain reaction was
possible. The urgent need for success due to World War II and the use of untested
technology led to radioactive contamination of the environment that continues today.'

Due to the necessity of secrecy for portions of the Manhattan Project and for the
protection of citizens, numerous nuclear sites were developed, each with its specific
function. Examples include Hanford, Washington (the production of plutonium for
nuclear bombs); Savannah River, South Carolina (the production of plutonium for
nuclear bombs); Rocky Flats, Colorado (manufacture of plutonium bomb-triggers); and

Fernald Feed Materials Production Center, Ohio (uranium processing). A total of 16
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major facilities across the United States researched, manufactured, assembled, and tested
nuclear materials and bombs.> All of these sites have some form of environmental
contamination, dependant on their specific function. The site located at Hanford,
Washington is one of the most well-known due to the pervasiveness of the contamination.
Ground was broken for the 640 square-mile Hanford site in March of 1943." This
site was chosen for its sparse population, location adjacent to a major water source for
cooling the nuclear reactors (Columbia River), and for the quality of the soil. By late
1944, billions of gallons of liquids and billions of cubic meters of gases were being
emitted from the plants." A total of eight single-pass / open-coolant reactors were built
over the life-span of the site. The first reactor, B-reactor, went critical in September
1944. Plutonium was produced and reprocessed in significant quantities by February
1945. The reactors contained mainly 381, which when bombarded with neutrons of the

239

correct energy, absorbed a neutron to generate “"U. This then beta decayed to produce

23%py, a fissionable material. The reactor fuel was then reprocessed to isolate the
plutonium for manufacturing the nuclear bombs. The byproducts of the process when
23577 238 239 - e » .

U, U, or “"Pu undergoes fission are called “fission products.” These fission
products include a wide variety of radionuclides with a variety of half-lives. The

radionuclides produced in larger quantities with sufficiently long half-lives to be of

. . 99 . 137 90
continual concern include ~"Tc, ~'Cs, and " Sr.

1.1.2 River Pollution
By 1955 there were eight single-pass / open-coolant reactors operating at

Hanford.! The coolant in these reactors was water from the Columbia River. River water

2



was pumped into the reactors to remove excess heat that would otherwise damage the
reactor. The hot water was then dumped back into the river after a single pass through
the reactor core. Coolant water must be very pure to avoid making the impurities
radioactive while it was inside the reactor; the engineers at Hanford thought the
Columbia River was a perfect source since it was already sufficiently pure. The reactors
were all experimental and the first of their kind; the fuel rods broke and cracked under the
high temperature and radiation. This exposed kilograms of uranium and fission products
in each fuel rod to river water, dissolving the radioactive and hazardous chemicals in the
fuel.> By December 1946, an estimated 40,000 Ci had been released in the reactor
coolant — a discharge rate of 1,500 Ci/month." This was a decrease from the peak of 900
Ci/day.1 Radionuclides of immediate concern were **P, "°As, Zn, *'Cr, and ** 9Np; all
were beta-emitters that affect the GI tract, bones, reproduction, and blood-formation.'
These radionuclides were found in shellfish at the mouth of the Columbia River, which is
a principal hatchery and fishery for salmon and steelhead trout.! The fish downstream of
the Hanford site contained 100,000-170,000 times the radioactivity of the fish upstream
that had not been exposed to water from the reactors." Most of the radioactivity was
contained in the liver, kidneys, and muscle tissue; the radionuclides included 3 2P, 76As,
7n, °'Cr, and **’Np. Studies done in 1975 found long-lived radionuclides in river
sediments, an estimated 1000 Ci of ®Zn, 4000 Ci of “’Co, 2000 Ci of *’Eu, 3000 Ci of
3H, 10,000 Ci of 99Tc, and <1000 Ci of other radionuclides.! As aquatic life, algae,
insects, and fowl drank the river water and ate plants that have incorporated river water,

the radionuclides traveled up the food chain and became more concentrated, up to



hundreds of thousands of times.! The eight single-pass reactors were shutdown between

1964 and 1971.!

1.1.3 Groundwater Pollution

When selecting the Hanford site, the scientists and engineers believed that the
sand and gravel soil was nearly ideal for disposal of radioactive wastes.' The soil at
Hanford contains sand and gravel, and sits on the Touchet Formation, glacial outwash
sands, gravels, and fine volcanic ash that average 100-250 ft. This then sits on the
Ringold Formation of silt, clay, and wind-deposited Palouse soils approximately 1,200 ft
thick. The deepest layer is a basalt plateau.' The groundwater is in a number of confined
and unconfined aquifers interspersed with basaltic ridges.! Water enters either the
Columbia River to the southeast or the Yakima River to the southwest. The groundwater
level varies from a few feet below the surface to 300 feet.'

Millions of curies of radioactivity were directly released into the Columbia River,
air, and soil of the Columbia Basin.! Disposal of the low-level (<5x10” pCi/mL) and
intermediate-level (5x107 to 100 uCi/mL) wastes involved pouring them on the ground
in trenches, pools, and cribs.! The releases totaled millions of gallons each day.'
Contrary to what the scientists believed, the radionuclides did not adsorb to the soil.
Rather, they passed through the top layer of sand and gravel, through the Touchet
Formation, and into the Ringold Formation. The radionuclides are still mobile in this
layer, but less so than in the layers above it. The groundwater, however, is either in this
layer or above it. Additionally, there are large differences in the types and coarseness of

the sand and gravel soil such that the radionuclides migrated differently in different
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locations thus complicating matters." Once the soil that contained the radioactive waste
dried, the wind carried the soil contaminated with dry radionuclides to the surrounding
areas.' To prevent the dry soil from being blown away by the wind, “reverse-wells” were
used. These were dry shafts for low-level liquid waste; however, this only allowed the
waste to get closer to the water table.! The radionuclides of particular concern for both
inhalation and groundwater contamination included P7T¢, °Sr, (s, 144Ce, 1291 9ly,
52gy, 154Eu, 239Pu, and 2*U." In 1945 , wells present on site were contaminated with
uranium and it had spread offsite to wells at Benton City by mid 1947." By 1956, “’Co
was found in the groundwater beneath Hanford." The total volume released to the soil is
estimated at 120 billion gallons, containing 3.2 million Ci of beta-emitters, 280,000 g of

plutonium, and 120,000 kg of uranium.’

Table 1: Radionuclides of concern for inhalation and groundwater contamination®

Radionuclide | Half-life (t;,) | Decay Mode | Energy (MeV) | Potential Hazard
PTe 2.13x10°y B 0.294 Ingestion
St 28.78 y B 0.546 Mimics Ca
PCs 30.1y B 0.514 Mimics K

v 0.662 (*"™Ba)
e 284.6d B 0.318 Mimics Ca
v 0.1335
2 1.7x10" y B 0.194 Goes to thyroid
oy 58.5d B 1.544 Mimics Ca
v 1.205
2By 13.54y EC 0.727 Mimics Ca
B 0.699
v 0.344
“*Eu 8.6y B 0.58 Mimics Ca
v 0.123, 1.274
“py 2.41x10%y o 5.156 Mimics Ca
=8y 4.47x10°y a 4.197 Mimics Ca




1.1.4 Underground tanks

Due to the urgency to produce sufficient plutonium for the war needs, the Hanford
site did not initially reprocess fuel or treat radioactive or hazardous waste. Several tank
farms were built from 1943 to 1985. There are a total of 177 cylindrical underground
storage tanks ranging in capacity from 55,000 to 1.1 million gallons.”> The tanks
contained 54 million gallons of hazardous and radioactive waste as of 1998.% The first
tanks built were single-shell; there was a single carbon steel wall and floor covered by a
dome and outer shell of concrete.” Beginning in 1968, double-shell tanks were
constructed; these contained two carbon steel liners and a single steel dome liner with the
entire tank encased in reinforced concrete.” A total of 149 single-shell tanks and 28
double-shell tanks were constructed at the site” out of carbon steel rather than stainless
steel, and the pipes were caste-iron' due to cost considerations. The waste was made
alkaline by the addition of large volumes of sodium hydroxide in an attempt to prevent
corrosion of the tanks. This was not successful, and 68 tanks are known or suspected of
leaking at least 1 million gallons of waste into the soil and groundwater.! The
groundwater below the tank farms eventually flows into the Columbia River.”

The first leak was suspected in 1956 and confirmed in 1961 from tank 104-U.?
Cleaning up the tanks is made more difficult by the fact that the contents of the tanks are
heterogeneous, and that across tanks the contents are different.* The tank contents
include a sludge at the bottom comprised of insoluble residues, solid excess salt, and
precipitated residues; next is a residual liquid saturated with salt and suspended salt
crystals; and on the top is a floating crust of low-density salts.* Each tank also contains

different radionuclides and different chemicals depending on when the waste was
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generated (several different processes were used), what was added to the tank in an
attempt to stabilize it, and whether it was mixed with any other tank contents. Cleaning
up the tank waste is a process that has been ongoing with no end in sight. Thus waiting
to clean up the tanks before tackling the groundwater and soil contamination is not an
option. The groundwater and soil contamination continues to increase and to migrate.
Contamination to the environment came first from the known release of
radioactive coolant water and radioactive waste to the Columbia River, ground, and air. It

now continues to come from the aging and leaking underground tanks.

1.1.5 Evidence of contamination at other nuclear sites'

Each site developed during the Manhattan Project has environmental
contamination with radionuclides and/or hazardous chemicals related to its specific
function. Not all the sites possess * Tc contamination.

* Hanford, WA = Released millions of gallons of low-level radioactive waste to the
ground each day, released radioactive gases into the atmosphere.
Underground tank farms were leaking beginning in the 1950s. The
river, river sediment, soil, and groundwater surrounding the
Hanford site is thoroughly contaminated with radionuclides as well

as harmful chemicals.'

= Savannah * By the 1950s there were five weapons-production reactors and two
River Site, chemical reprocessing plants. The site and the reactors were
SC shutdown by the late 1980s due to safety concerns and violations —



» Rocky Flats,

CO

= Fernald Feed
Materials
Production

Center, OH

broken and disengaged radiation-monitors, disconnected
sprinklers, geological fault under the site. Savannah River Site
also contains a tank farm for storage of radioactive wastes.'
Plutonium and toxic chemicals were released to the air and soil
during the 35 years of operation. The DOE was forced to buy land
adjacent to the site as a buffer zone, and it went from the original
10 square-miles to thousands of acres. In 1988, employees and a
DOE inspector inhaled radioactive particles. Inspectors found
uncalibrated radiation-monitors, antiquated fire-alarm systems, and
toxic wastes leaching into the groundwater. The site is 16 miles
from Denver.'

The 1050 acre uranium-processing complex operated from 1952
until 1986. The site was shut down in December 1984 and it was
found that excessive amounts of uranium dust and oxides had been
released through ventilation systems. Approximately 230 tons of
radioactive material had leaked into the Greater Miami River
valley over 30 years; 337 tons of UF¢ could not be located;
thousands of kilograms of uranium dust vented to the atmosphere
and surface water; 5 million kilograms of radioactive and
hazardous substances were released to pits and swamps and then
into the groundwater; 200,000 canisters and barrels with mixed and

hazardous wastes could not be identified. The State of Ohio was



= Idaho
National
Engineering
Laboratory

= Oak Ridge
Reservation,

N

= Pantex, TX

awarded $1 million and oversight for the cleanup. The local
population was awarded $78 million for lost property values and
health needs.'

A total of $456 million was awarded for 5.5 years to cleanup

. 1
buried waste.

There was a discharge of 2.4 million pounds of mercury from the
Y-12 Nuclear Weapons Components Plant. The groundwater
contains polychlorinated biphenyls (PCBs), heavy metals, and
radioactive substances. Toxic and radioactive wastes were allowed
to drain into White Oak Creek, which feeds into the Clinch River —
traces of plutonium were found 40 miles downstream in 1990.'

The site released dimethylformamide and acetone into the soil and
Ogallala aquifer, a major water source for the State of Texas and

neighboring states.'

1.2 Production of technetium

Technetium-99 is produced from the thermal neutron fission of **°U and

239 -
Puin

6% yield. Technetium-99 emits a 0.292 MeV B~ with a half-life of 2.15x10° years. Most

radionuclides require approximately 10 half-lives before they can be considered to have

decayed to background levels. This means that *Tc requires approximately 2 million

years, before all the *’Tc that has been produced to date will be considered to have
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decayed. This long half-life makes *’Tc a concern for long-term storage and

environmental contamination.

1.3 Technetium in the environment

Under aerobic environmental conditions, technetium is present as TcO4™ and is
easily taken up in plants, algae, lichen, and some sea life, such as crustaceans and clams.’
TcO4 migrates easily through the environment due to its low negative charge, while
radionuclides such as "*’Cs and *’Sr do not. Soils contain negatively charged species
such as zeolites and humic acids to which cations such as *’Cs* and *’Sr*" readily sorb.
The anionic TcOy is repelled by these species and so migrates quickly and enters the
food chain. TcOy is not an ingestion hazard to humans since it is readily excreted from
the body in urine. Many plants, algae, lichen, and sea life take up and retain TcO,", and
then metabolize it to a more lipophilic form that does not excrete from the body, similar
to that observed with mercury uptake. Between 1956 and 1981, *Tc was measured in
lichen and then in the reindeer that feed on the lichen.” While people do not eat lichen,
they do eat reindeer as well as sea life such as lobsters, clams, and certain fish and thus
ingest and incorporate the **Tc. This could pose a serious health risk and potentially
cause cancer. In 1984, trees at Oak Ridge National Laboratory in Oak Ridge, TN tested
positive for **Tc. Burning this wood would release **Tc into the air, and animals that eat
wood and nuts would ingest **Tc. Technetium-99 does have a geochemical sink in
anaerobic soils because it forms TcO,, which is an insoluble colloid.’> As soon as these

soils are exposed to water or oxygen, TcO, forms TcO4 and it again becomes mobile.
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For safety and clean up purposes, there is great interest in monitoring the location and

movement of this ion.

1.4 Sensing: Anionic, fluorescent, scintillation

The process of sensing involves the production of a qualitative or quantitative
signal in the presence of a specific analyte.® The sensor generates the signal in
recognition of or binding by the analyte through characteristic and measurable properties
of the analyte.” The sensor itself generally has three components: (i) chemical receptor
for the analyte, (ii) signal transduction process where the binding event is converted into
a physical change, and (iii) a method of measuring the signal.® The first and third
distinguish different types of sensors: the type of analyte detected (i.e., cation, anion) and
the type of signal generated (i.e. fluorescence, luminescence).

Anion sensing is the qualitative detection or quantitative determination of a
negatively charged species by a device, which translates its presence into a physical
signal.® Anion sensing is less developed than cation sensing and is generally more
difficult.® Anion interactions are generally weaker than cation interactions with their
respective molecules.® Additional differences include: ionic size (anions are usually
larger than cations, Cl 0.167 nm, K" 0.133 nm about the same as F’), a number of
different geometries (spherical CI', linear CN, tetrahedral SO, trigonal planar NO;"),
and a narrower pH window with potentially variable ionization (carbonate vs
bicarbonate).® TcOy, the major environmental form of technetium, is a negatively
charged, tetrahedral anion.” The low charge of TcO,  that makes it mobile in the

environment, also makes it difficult to detect since it does not bind strongly to most
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reagents. A pertechnetate sensor would require strong and selective binding (i.e.,
minimal or no competition from environmental anions such as chloride, nitrate,
phosphate, sulfate, and humic acid) and a signal indicating its binding.

Fluorescent sensing involves the emission of light on binding by the analyte,” and
is popular due to its high sensitivity and selectivity.'"’ There are many advantages to
using a fluorescent or luminescent molecule for sensing: high sensitivity, high
selectivity, short response times (< 10™ s), sampling not needed, nondestructiveness, and
processes can be studied in real time."' Modifying functional groups on the fluor can
change the fluorescence spectrum observed. Electron-donating substituents cause a shift
in the absorption and fluorescence spectrum in addition to increasing the molar
absorption coefficient.'® The spectra of fluors with electron-donating substituents are
often broad and structureless in comparison with the parent aromatic hydrocarbon.'® The
ability to modify spectra with substituents can be advantageous when designing a specific
fluorescent sensor.

Since *Tc is a beta emitter, radiometric sensing via scintillation counting is one
method for generating a signal when TcOy is bound to the sensor. Each time a 8" particle
is emitted, the energy is transferred to a scintillator (or fluor), which then emits light.
Scintillation is a term applied to fluorescence emission when it is generated by a
radionuclide transferring energy to the fluor. In fluorescence detection, binding of the
anion will result in a modification of the original fluorescence signal (i.e., it will
fluoresce in the presence of the anion but not in its absence; the wavelength of the

fluorescence peak will shift; etc.). In scintillation detection, the presence of a 3~ emitting
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radionuclide excites the fluor to generate the signal of light, which is then collected and

used to count the radionuclide present in the sample.

1.5 Current methods of detection for technetium-99

Environmental samples often have small, although possibly toxic, quantities of
the element being measured. Samples must often be collected and sent to a laboratory for
any necessary separations, sample preparation, and finally analysis. Preconcentration is
often a required step, complicating and increasing the time required to analyze each
sample. Many conventional methods of detecting species such as heavy metals often
require expensive instrumentation such as atomic absorption, inductively coupled plasma,
and fluorimetry.'? Radionuclides can often be detected based on what is emitted from the
nucleus, however different instrumentation is required for each type of emission (y vs.
). Instrumentation is often expensive and usually requires a trained operator. Thus,
analyzing environmental samples from a large site or a large number of sites can be time
consuming, costly, and labor intensive. There is a need for portable, fast, and low-cost
analysis methods for a variety of different environmental contaminants including *Tc.

Technetium-99 is very mobile in the environment, is present as TcO4', and is
present with a wide variety of other anions. Technetium-99 is a pure ° emitter with a
long half-life. For detection, **Tc must be separated from other interferences (both

radioactive and anionic), preconcentrated, and detected. Current methods for measuring

3- 6

®Tc include sequential injection analysis'>™"?, spectroelectrochemical detection'®,

17,18

inductively coupled plasma mass spectrometry (ICP-MS) ™ °, absorptive stripping

voltammetry'®, and liquid scintillation counting (LSC)* following preconcentration.
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The technique of sequential injection analysis was applied by Egorov et. al to

preconcentrate and measure #Tc. 3

This method uses an anion-exchange extractant
coated onto a polymeric resin to selectively bind TcO, in order to preconcentrate it prior
to measurement. The *’TcOy” is measured in situ by scintillation detection through a
primary fluor (usually PPO - 2,5-diphenyloxazole) and a secondary fluor (usually bis-
MSB - 1,4-bis(2-methylstyryl)benzene) that were also coated onto the polymeric resin.
Using Aliquat-336 (tricaprylylmethylammonium chloride),"* a long-chain quaternary
ammonium ion extractant, and solutions of dilute acid (0.01-0.02 M HNOs), the sensor
was able to selectively measure PTcOy4 in the presence of gy, mU, 239Pu, and *'Am.
The detection efficiency for *TcOy4 (B particle) was reported to be 44-47 + 3 %
(depending on the calibration method used) with a detection limit of 3 dpm/mL in a 30-
minute count time. The sensor developed preconcentrated and measured the amount of
PTcO, present, however the samples had to be acidic (which most environmental and
tank wastes are not, thus requiring pretreatment). There was no analysis of the selectivity
for TcO4 over other common anions such as chloride, nitrate, phosphate, etc., present in
both the environment and nuclear wastes in high concentrations, and chemoluminescence
problems with the fluor were reported. Using AG-4x4, a dimethylaminomethyl
ammonium functional weakly basic anion exchange resin, Egorov et al."” were able to
sufficiently preconcentrate TcO4 under slightly acidic or slightly basic conditions. The
AG-4x4 resin has a low selectivity for TcO4™ and was not compared to other
environmentally relevant anions. The detection efficiency for *TcO4 (B particle) was
reported as 22 + 2 % with a detection limit of 6.85 Bg/L in a 10 minute count time.

Sequential injection analysis has the benefit of reducing the exposure to workers and
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reducing secondary wastes such as gloves, vials, etc. Both Aliquat-336 and AG-4x4 can
be regenerated for continued use.

In spectroelectrochemical sensing,'® the analyte is taken up selectively,
electrolyzed selectively, and partitioned into a film where it is then selectively monitored
spectroscopically. This process has been shown to work with [Re'(DMPE);]",'° a non-
radioactive analogue to [*""Tc'(DMPE);]", where DMPE = 1,2-
bis(dimethylphosphino)ethane. The goal was to develop technetium myocardial
perfusion imaging agents.

[Re'(DMPE);]" — [Re(DMPE); > + ¢
In order to sense [Re"(DMPE);]*", the complex must partition into the coating, undergo a
one-electron electrochemical oxidation, and absorb visible light. This discriminates
against most, if not all, possible interferents.

17.18 .an measure *T¢

Inductively coupled plasma mass spectrometry (ICP-MS)
with high sensitivity from soil and plant samples. This method has the benefit that
common environmental anions do not interfere with the measurement. The only
intereferences of concern would be at mass 99; Tagami et. al'’ found that **MoH was not
an interferent in their samples. However, due to the low concentration of *Tc in the
environment, all the samples must undergo significant preconcentration, resulting in
additional waste. Following preconcentration, the sample must have < 300 ppm of total
element concentration for the operation of the instrument.'” A major drawback to this
method is the high cost of the instrument itself.

Adsorption stripping voltammetry can be used to measure TcO4 and Tc(IV) with

a detection limit of 5 x 10" g Tc / mL." This process relies on optimum amounts of
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thiocyanate, and the sensitivity was reduced considerably in the presence of larger
quantities of anions like chloride and sulfate. This makes it unsuitable for analysis of
large quantities of environmental samples.

Liquid scintillation is a radiometric method that can be used as a very accurate
measurement of *°Tc. However, in order to avoid very long count times, the sample must
be significantly preconcentrated by some other method. The addition of water and some
organic solvents such as chloroform and acetonitrile result in quenching. LSC has been
reported using solvent extraction to preconcentrate the * Tc¢ activity, with cyclohexanone
as the extractant.”’ This method uses 1 M H,SO4 with 100% cyclohexanone and shows
> 98% separation from 90Sr, 137Cs, U, Np, Pu, Am, Ru, I, and rare earth elements. This
method has the drawback that the samples must be significantly acidified and large
amounts of mixed wastes are generated. The selectivity in the presence of other anions
such as chloride, nitrate, etc. was not reported.

Ion-exchange chromatography is a separation method that can be applied to
anions or cations. It has been used for the separation of TcOj in lab scale separations or
as part of methods like sequential injection analysis, discussed above. Resins, often
polystyrene or ethylvinylbenzene, are coated with or co-polymerized with ion-exchange
groups.”’ For anions, quaternary ammonium groups provide the positive charge required;
and for cations, sulfonate, carboxyl, or phosphonate groups provide the negative charge
required. A mobile phase containing multiple ions to be separated is introduced to the
column; ion-exchange processes occur between the mobile phase and the ion-exchange
functional groups bonded to the support material. The ion-exchange resins carry

functional groups with a fixed charge and counter ions that are located in the vicinity of
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the functional groups to achieve electrical neutrality.”' A solute ion replaces the counter
ion and is temporarily retained by the fixed charge. Separation of multiple ions is
determined by the different affinities toward the stationary phase. If a solution of TcO4
and NOj" are introduced to a quaternary ammonium resin, two competing equilibria
result.”!

Resin-NR3 'Cl"+ TcO4” < Resin-NR3" TcO4 + CI

Resin-NR; 'Cl" + NO;™ <> Resin-NR;" NO; + CI’

Small and/or highly charged anions have large hydration energies which increases their
effective size/charge ratio. This increase in size/charge makes it more difficult for these
anions to approach the positively charged ammonium groups as the number of alkyl
groups in the chain increases. The larger the alkyl chain, the more selective the anion-
exchanger will be for low hydration energy anions like TcO4 and I'.

Several key problems exist with using anion-exchangers, such as Aliquat-336 and
AG-4x4. The anion-exchanger does not preconcentrate the anions present. The sample
must be sufficiently preconcentrated before separation. Using large elution volumes or
large sample volumes will cause loss of separation as bleeding of bands of anions occurs.
Ion-exchange columns also do not have a sensing method; conductivity and UV-Vis
detection are the two most common methods of determining when, how much, and which
anion has eluted.?’ UV-Vis cannot be used to detect TcO4 and conductivity
measurements when other anions are present in significantly higher concentration makes

analysis difficult. Anion-exchange can be used to separate TcO4 from other anions but
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does not provide a solution to the preconcentration and analysis problems seen in other
methods to quantify TcOy'.
1.6 Phosphinimines

Phosphinimines of the type R;P=NSiMes (sometimes referred to as
azaphosphanes) have been shown to form kinetically inert compounds with early
transition metals.”>** Metal halides react with RsP=NSiMejs to eliminate Me;SiX (where
X = halide), while metal oxides react through migration of Me;Si onto the oxygen of the
metal center.” Ph;P=NSiMe; has been shown to form Ph;P=N-ReO; or
[PhsP=NH, ][ReO4] depending on the reaction conditions.”® The corresponding
Ph3;P=N-TcOs and [PhsP=NH, " ][TcOy4 ] have also been produced.22 The neutral Ph;P=N-
MO; (M = Re, Tc) can be formed on reaction of PhsP=NSiMe; and NH4sMOy in the

22,23
absence of water.””

This neutral compound is of interest for nuclear medicine
applications, since *""™Tc and '**Re are used for imaging the body and cancer therapy,
respectively. The ion pair [Ph;P=NH, ][MO,] can be generated by reaction of
Ph;P=NSiMe; dissolved in an organic solvent mixed with an aqueous solution of
NH4sMO4 or NaMOy (Scheme 1).22’ 23 Formation of the ion pair may allow for selective
separation of TcO, in the presence of other anions,” and preliminary studies on the
selectivity of PhsP=NSiMe; for TcO4 have been reported.”* The phosphinimine
undergoes a hydrolysis reaction in the presence of water to form the phosphiniminium
cation, which forms an ion pair in the presence of an anion (Scheme 1). The
phosphiniminium cation is not stable on its own, and if not stabilized by an anion will
undergo further hydrolysis to form the phosphine oxide (Scheme 2). The

[PhsP=NH, " ][TcO,] ion pair appears to have considerable stability since Eble et. al **
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did not observe degradation of the ion pair to free pertechnetate in aqueous solution. The
ability to extract TcO4  in the presence of other anions could make phosphinimines useful
for monitoring or cleanup of environmental contamination and/or nuclear waste

separations.

Scheme 1. Hydrolysis of phosphinimine and formation of ion pair
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Scheme 2. Hydrolysis of phosphiniminium cation to phosphine oxide
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1.7 Objective

The overall goal of this project is to develop a sensor using phosphinimines that
can preconcentrate and measure ° Tc environmental contamination in a fast and efficient
manner. Cleanup of nuclear waste for reprocessing and/or cleanup of tank waste may
also be possible using phosphinimines. The purpose of this portion of the project is to
synthesize several phosphinimines and characterize their stability and selectivity with
99TcO4'. The phosphinimine analogs evaluated include Ph;P=NSiMes,
(9-anthracenyl)Ph,P=NSiMej3, (1-napthyl)Ph,P=NSiMes, and

(p-COOMe)CgH4Ph,P=NSiMes. Preliminary studies with Ph;P=NSiMe; showed the
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phosphiniminium cation to be selective for **"TcO, over other anions.**
(9-anthracenyl)Ph,P=NSiMej3, (1-napthyl)Ph,P=NSiMe;, and
(p-COOMe)CsH4Ph,P=NSiMe; are previously unreported phosphinimines.
(9-anthracenyl)Ph,P=NSiMe; and (1-napthyl)Ph,P=NSiMe; include possible reporter
groups and (p-COOMe)CcH4Ph,P=NSiMe; contains a linking moiety for attaching
reporter groups or attaching the phosphinimine to a polymer support. The
phosphiniminium cations of Ph;P=NSiMes and (9-anthracenyl)Ph,P=NSiMe; showed
selectivity for TcO4 over other anions and form stable complexes. The use of internal
and external reporter groups to generate a signal was investigated with these two
phosphinimines. The phosphiniminium cations of (1-napthyl)Ph,P=NSiMes; and
(p-COOMe)CcH4Ph,P=NSiMe; show selectivity but the phosphiniminium perrhenate

complexes show instability in solution.
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CHAPTER 2: SYNTHESIS OF COMPOUNDS
2.1 Introduction

The goal of this project is to use phosphinimines, R;P=N-SiMej;, as extractants to
preconcentrate TcO, (the major form of technetium in the environment)® in the presence
of other anions for analysis, separation, or cleanup of environmental samples and/or
nuclear waste samples. Phosphinimines hydrolyze under acidic and neutral conditions to
form the phosphiniminium ion, R3P=NH,". This cation then forms an ion pair with
anions to stabilize the charge (Scheme 1). To produce a sensor using phosphinimine
extractants, the extractant must bind TcOj4 selectively and a reporter must generate a
measurable signal. The phosphinimines synthesized include PhsP=NSiMes,
(9-anthracenyl)Ph,P=NSiMes, (1-napthyl)Ph,P=NSiMes, and
(p-COOMe)CcH4Ph,P=NSiMe;. The synthesis of the new phosphinimines of the type
R,R’P=NSiMejs, where R = Ph, R’ = 9-anthracenyl, 1-napthyl, (p-COOMe)CsH, along
with their characterization are described.

The crystal structures of [Ph;P=NH, ][ReOy] # and [PhsP=NH, ][ TcO4] *
have been reported and are isostructural. Preliminary studies for extraction of the
[Ph;P=NH, " ][TcO,7] ion pair have been reported and show the phosphinimine to be
selective for *™TcOy4 over other anions.** While the phosphiniminium cation of
Ph;P=NSiMe; (1) shows selectivity for TcOy, this phosphinimine does not contain a
reporter group; an external reporter would be necessary.

(9-anthracenyl)Ph,P=NSiMe; (2) was synthesized to incorporate the anthracene
moiety for use as a fluorescent or scintillation reporter. Anthracene is a fluorescent

molecule that is also a known scintillator.?
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(1-napthyl)Ph,P=NSiMe; (6) was synthesized to incorporate the napthyl moiety.
Napthyl also fluoresces and is a known alpha scintillator.”> This molecule was also
synthesized for comparison with Ph;P=NSiMes (1) and (9-anthracenyl)Ph,P=NSiMej; (2).

(p-COOMe)CsH4Ph,P=NSiMej; (8) was synthesized as a precursor molecule. The
COOMe is present as a protecting group for COOH. The protecting group can be
removed chemically and then reacted further to attach another group to this site. Possible
attachment options include a polymer support or a reporting group. Reporting groups
could include fluorescent molecules like fluorescein or groups that change color,
oxidation state, etc.

The attempted synthesis of (anthracen-9-ylmethyl)diphenylphosphine (10) was
performed to produce a phosphinimine that would allow further investigation of the
fluorescent and scintillation properties of the phosphinyl anthracene moiety.

The selectivity and extraction behavior of the phosphinimines for TcOj is
reported in Chapter 3: Radiochemistry. The fluorescence and scintillation properties of
(9-anthracenyl)Ph,P=NSiMe; (2) as a possible method of signal generation in the
presence of **TcOy is reported in Chapter 4: Fluorescence / Scintillation Sensor Design.
The extraction of TcO4 using PhsP=NSiMejs (1) or (9-anthracenyl)Ph,P=NSiMes (2) in
the presence of external scintillators as a method of signal generation is reported in

Chapter 4: Fluorescence / Scintillation Sensor Design.
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2.2 Experimental

General Considerations. Caution! **Tc emits a 0.292 MeV 8~ with a half-life of
2.15x10° years. Although common laboratory glassware provides adequate shielding for
%Tc , standard radiation safety procedures must be used at all times.

Materials. **Tc was obtained from Oak Ridge National Laboratory as
ammonium pertechnetate. Ammonium perrhenate was purchased from Strem.
Azidotrimethylsilane was purchased from either Aldrich or Acros.
(9-anthracenyl)diphenylphosphane?® (PPh,anthracenyl), naphthalen-1-yl-
diphenylphosphane®’ (PPhynaphthyl), and methyl 4-(diphenylphosphino)benzoate®®
(PPh,CsH4(p-COOMe)) were prepared according to literature procedures. Silica gel was
obtained from J. T. Baker, heated to 110 °C overnight in an oven and used without further
purification. Only doubly distilled water was used.

Unless noted, all common laboratory chemicals were of reagent grade or better.
Solvents used for nonaqueous syntheses were purchased as anhydrous Sure Seal solvents
from Aldrich. Solvents included tetrahydrofuran (THF), toluene and dimethylsulfoxide
(DMSO). 'H-, *'P- and *Tc- NMR spectra were recorded on a Bruker 250 or 500 MHz
instrument at 25°C in deuterated solvents purchased from Cambridge Isotope
Laboratories. 'H chemical shifts are reported in ppm relative to the 'H impurity in that
solvent and *'P chemical shifts are reported in ppm relative to an external 85% H3;PO,
standard. *’Tc chemical shifts were reported relative to NH,®TcOy, set to zero in water;
NH,”°TcO, in acetonitrile was observed at 13.61 ppm. ESI and APCI mass spectra were
recorded on a Finnigan TSQ7000 in acetonitrile. Elemental analysis of

[(9-anthracenyl)Ph,P=NH, ][ReOy4] (3) was performed by Quantitative Technologies
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Inc. (QTI, Whitehouse, NJ). Elemental analysis of [(9-anthracenyl)Ph,P=NH,"][TcO,]
(4) was performed by Atlantic Microlab, Inc. (Norcross, GA). Thin layer
chromatography (TLC) on [(9-anthracenyl)Ph,P=NH, ][TcO4] (4) was performed on a
BioScan System 200 Imaging Scanner. The reactions to synthesize Ph;P=NSiMes (1),
(9-anthracenyl)Ph,P=NSiMejs (2), (1-napthyl)Ph,P=NSiMe; (6),
(p-COOMe)CsH4Ph,P=NSiMejs (8) and ((9-anthracenyl)-CH,)Ph,P (10) were carried out
on a Schlenk-line under N, using general airfree techniques.

PhsP=NSiMe; (1). Ph;P=NSiMe; was prepared according to a modification of

2% Triphenylphosphine (Acros) was heated to 125 °C under N,

the literature procedure.
with three to six equivalents N3SiMes; (Acros or Aldrich) in a dry and N;, filled round-
bottom flask for 5 hours using standard airfree Schlenk-line techniques. The excess azide
was removed by vacuum distillation and the remaining solid was crystallized from
acetonitrile at -20°C to yield pure PhsP=NSiMe; which was then stored in a desiccator.

(9-anthracenyl)Ph,P=NSiMe; (2). Azidotrimethylsilane (11.1 mL, 80.8 mmol)
was added to PPhyanthracenyl (9.8 g, 27.0 mmol) dissolved in 200 mL of toluene in a dry
and N filled round-bottom flask. The solution was refluxed under N, at 110°C for 8
days yielding (2). An additional 5 mL of azidotrimethylsilane was added each day. The
excess azide was removed by vacuum distillation to yield pure (2) which was then stored
in a desiccator. Yield: 10.2 g (83.9%) isolated. 'H NMR (C¢Ds, 25°C): & ppm 6.84-8.46
(m, 20H, Ar), 0.26 (s, 9H, SiMe3). >'P NMR (C¢Ds, 25°C): & ppm -6.86. MS APCI (m/z)
450.23, calc’d 449.17 C,9HsNPSi.

[(9-anthracenyl)Ph,P=NH,"][ReO,4] (3). Method 1. NH4ReO4 (0.240 g, 0.896

mmol) dissolved in the minimum volume water (4 mL) was added dropwise to a solution
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of (2) (0.400 g, 0.890 mmol) dissolved in the minimum volume of acetonitrile (35 mL),
under Ny, while stirring for 5-10 minutes. The reaction mixture was stirred for 2-4 hours.
The solvent was removed and the solid was washed with toluene to remove unreacted (2)
and phosphine oxide. X-ray quality crystals were obtained from acetonitrile/water (89/11
% ratio) at -20°C and then melting the ice leaving the crystals. Crystals for all other
analyses were obtained from the slow evaporation of acetonitrile. Yield 0.45 g (80%)
isolated. '"H NMR (CDsCN, 25°C): & ppm 7.28-9.16 (m, 20H, Ar), 2.20 (s, 2H, NH),).
3P NMR (CDsCN, 25°C): & ppm 34.55. Anal. for CosH2 NO4Re Found (Caled): C,
50.05 (49.68)%; H, 3.05 (3.37)%; N, 2.41 (2.23)%. MS +ESI (m/z) 378.12, calc’d
378.14 (CaHa NP"); -ESI (m/z) 248.89, calc’d 248.93 (**’Re0y), 250.88, calc’d 250.94
(""ReOy).

Method 2 — Optimization of yield for (3). NH4ReO4 (0.1230 g, 0.4590 mmol)
dissolved in 5 mL of 0.15 M HCI was added dropwise to a solution of (2) (0.2000 g,
0.4453 mmol) dissolved in 30 mL of acetonitrile in a round-bottom flask, under N,, while
stirring for 5-10 minutes. The reaction mixture was stirred for 1 hour. The solvent was
removed by vacuum. The product was not isolated since this was an optimization of the
previous procedure. The yield was quantitative by *'P NMR. *'P NMR (CDsCN, 25°C):
S ppm 33.55. MS +ESI (m/z) 378.02, calc’d 378.14 (Co¢Hy NPY); -ESI (m/z) 248.77,
calc’d 248.93 (®Re0y), 250.77, calc’d 250.94 ("*’ReOy).

[(9-anthracenyl)Ph,P=NH,*][TcO4] (4). NH4”TcO4 (0.030 g, 0.166 mmol)
dissolved in 0.83 mL of water was added dropwise to a solution of (2) (0.0740 g, 0.165
mmol ) dissolved in 10-15 mL of acetonitrile, while stirring under air. The reaction was

stirred for approximately 1 hour. X-ray quality crystals were obtained from slow
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evaporation of acetonitrile. The yield was determined using aluminum backed silica gel
developed in saline and counted on the BioScan 200 Imaging instrument. The product
remained at the origin (R¢y= 0) while the **TcOy traveled with the solvent front (R¢= 1).
Yield: 48.2 (%). 'HNMR (CD;CN, 25°C): & ppm 7.36-9.14 (m, 20H, Ar), 2.13 (s, 2H,
NH,). *'P NMR (CDsCN, 25°C): & ppm 34.68. Tc NMR (CDsCN, 25°C): & ppm
14.66. Anal. for C,6H2NO4Tc Found (Caled): C, 57.55 (57.69)%; H, 4.07 (3.91)%; N,
2.78 (2.59)%.

[(9-anthracenyl)Ph,P=NH,"][benzoate] (5). Sodium benzoate (0.06 g, 0.49
mmol) dissolved in 5 mL of water (pH = 6) was added dropwise to a solution of (2) (0.20
g, 0.45 mmol) dissolved in 30 mL of acetonitrile in a round-bottom flask, under N, while
stirring. The reaction was stirred for 3.5 hours. Solvent was removed, the solid was
washed with toluene to remove any phosphine oxide, and the final product was taken up
in acetonitrile. X-ray quality crystals were grown from CH,Cl, but were found to be
anthraquinone. >'P NMR of reaction (CH3CN, 25°C): & ppm 28.39. MS +ESI (m/z)
377.94, calc’d 378.14 (Ca6Ha NPT). *'P NMR of mother liquor (CH,Cl,, 25°C): 8 ppm
31.47, 23.59, many signals between 16.31 - 41.98.

(1-napthyl)Ph,P=NSiMejs (6). Azidotrimethylsilane (8 mL, 18.0 mmol) was
added to PPhynapthyl (5.63 g, 58.2 mmol) dissolved in 60 mL of toluene in a dry and N,
filled round-bottom flask. The solution was refluxed under N, at 110°C for 2 days
yielding (6). An additional 2 mL of azidotrimethylsilane was added on the second day.
The excess azide was removed by vacuum distillation to yield pure (6) which was then

stored in a dessicator. Yield: 4.50 g (62.4%) isolated. 'H NMR (CD,Cl,, 25°C): & ppm
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7.34-8.45 (m, 17H, Ar), -0.092 (s, 9H, SiMe;). *'P NMR (CD,Cl,, 25°C): & ppm 0.025.
MS APCI (m/z) 400.01, calc’d 399.16 C,sH, NPSi.

[(1-napthyl)Ph,P=NH,"][ReO4] (7). NH4ReO, (0.3961g, 1.48 mmol) dissolved
in 9 mL of water was added dropwise to a solution of (6) (0.59 g, 1.48 mmol) dissolved
in 15 mL of dichloromethane in a round-bottom flask, under N,, while stirring. The
reaction mixture was stirred for 30 minutes. The solvent was removed and the solid was
washed with toluene to remove unreacted (6) and phosphine oxide. 'H NMR (CD,Cl,,
25°C): & ppm 7.18-7.84 (m, 17H, Ar), 2.34 (s, 2H, NH,). *'P NMR (CD,Cl,, 25°C): &
ppm 37.47. MS +ESI (m/z) 327.95, calc’d 328.12 (Co,HoNP"); -ESI (m/z) 248.77, calc’d
248.93 ("®Re0y), 250.75, calc’d 250.94 ("*'Re0y).

(p-COOMe)CsH4Ph,P=NSiMe; (8). Azidotrimethylsilane (2 mL, 14.6 mmol)
was added to PPh,C¢Hs(p-COOMe) (0.23 g, 0.718 mmol) in a dry and N filled round-
bottom flask. The solution was refluxed under N; at 110°C overnight yielding (8). The
excess azide was removed by vacuum distillation to yield pure (8) which was then stored
in a dessicator. '"H NMR (CD;CN, 25°C): 6 ppm 7.53-8.12 (m, 26H, Ar), -0.064 (s, 9H,
SiMes), 3.95 (s, 3H, CH3). *'P NMR (CDsCN, 25°C): & ppm 0.22. MS APCI (m/z)
408.04, calc’d 407.15 Cy3H26NO,PSi.

[(p-COOMe)CgH4PhP =NH,[ReO,] (9). NH4ReO, (0.0940 g, 0.3504
mmol) dissolved in 4 mL of water was added dropwise to a solution of (8) (0.1510 g,
0.3705 mmol) dissolved in 4 mL of dichloromethane in a round-bottom flask, under Ny,
while stirring. The reaction was stirred vigorously for 30 minutes. The reaction was

centrifuged for 10 minutes. The dichloromethane was removed by vacuum distillation
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yielding (9). MS +ESI (m/z) 335.93, calc’d 336.11 (C2HoNO,P"); -ESI (m/z) 248.76,
calc’d 248.93 ('®Re0y), 250.74, calc’d 250.94 ("*"ReOy).

Attempted synthesis of ((9-anthracenyl)-CH,)Ph,P (10). Method 1. Lithium
diphenylphosphide (0.5 M in THF, 5 mL, 2.5 mmol) was cooled to -70°C under N, in a
dry ice/ethanol bath. 9-(chloromethyl)anthracene (0.56 g, 2.47mmol) in 10 mL of
anhydrous THF was added dropwise while stirring. The reaction was stirred at -70°C for
1 hour, allowed to warm to room temperature over 1 hour, and finally heated to 80°C
overnight. Heat was then removed and as the reaction cooled a precipitate formed.
Reaction at 30 minutes: >'P NMR (THF, 25°C): & ppm -9.41, -15.49, -39.99. Reaction at
1 hour: no change. Reaction at room temperature: °'P NMR (THF, 25°C): 8 ppm -9.24,
-15.44. Reaction after heating 2 hours: >'P NMR (THF, 25°C): & ppm -9.43, -15.42, -
51.61. Reaction after heating overnight: *'P NMR (THF, 25°C): & ppm 36.11, -9.41, -
15.49. Solution above precipitate: 3P NMR (THF, 25°C): 6 ppm 34.58, 33.32, 32.83,
32.50, 32.35, 31.81, 29.96, 28.77, 27.18, -10.94, -16.99. Precipitate: *'P NMR (THF,
25°C): 8 ppm 31.75, -11.88, -17.09.

Method 2. Lithium diphenylphosphide (0.5 M in THF, 5 mL, 2.5 mmol) was
cooled to -70°C under N, in a dry ice/ethanol bath. 9-(chloromethyl)anthracene (0.56 g,
2.47 mmol) in 5 mL of anhydrous THF was added dropwise while stirring. The reaction
was stirred at -70°C for 30 minutes and then refluxed for 21 hours. The color of the
reaction was blood red for 9 hours after beginning of reflux. At 9 hours the solution
became brown red with a brown flocculent precipitate and after 21 hours the solution was

a yellow brown with a brown flocculent precipitate. *'P NMR (CH;CN, 25°C): 8 ppm
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35.68,-9.37, -15.34, -51.43 (reaction mixture). MS +ESI (m/z) no peaks of possible
product, oxide, or starting materials.

Method 3. n-BuLi (1.4 mL of 1.6 M in hexanes, 2.24 mmol) was cooled to -70°C
under N in a dry ice/ethanol bath and diluted with 5 mL of anhydrous THF. 9-
(chloromethyl)anthracene (0.5005 g, 2.21 mmol) in 10 mL of anhydrous THF was added
dropwise while stirring. The reaction was allowed to stir for 30 minutes.
Chlorodiphenylphosphide (0.4 mL, 2.23 mmol) in 6 mL of anhydrous THF was added
dropwise while stirring. The reaction was allowed to stir for 1 hour and then the *'P
NMR spectrum was acquired. >'P NMR (CH;CN, 25°C): & ppm 112.39, 83.06, 8 peaks
between 42.17-13.63, -21.98, -22.82.

Method 4. Diphenylphosphine (0.45 mL, 2.59 mmol) was added, under N, to 10
mL of stirring anhydrous DMSO. Potassium hydroxide (0.163 g, 2.9 mmol) in 1.43 mL
of water was added dropwise while stirring. The color changed from clear colorless to a
clear orange. After 15 minutes of stirring, 9-(chloromethyl)anthracene (0.5607 g, 2.47
mmol) in 10 mL of DMSO was added dropwise. The color changed to bright yellow.
The reaction was heated to 135°C over 1 hr and heated at 135°C for an additional hour.
The oil bath was removed and 50 mL of distilled water was added to the reaction. A
precipitate immediately formed. This was stirred in an ice bath for 1 hour. An additional
20 mL of distilled water was added and the reaction was stirred for 1 hour. The solution
was filtered and a yellow solid collected. After heating: *'P NMR (DMSO, 25°C): &
ppm 28.78, 24.86, 20.72, -8.29, -39.68. Final solid: *'P NMR (DMSO, 25°C): & ppm
28.03 24.87. MS +ESI (m/z) 415.01, calc’d 463.19 C3oH3oNPSi, calc’d 415.12

C27H21NaOP.
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X-ray Structure Determinations and Refinements for (3) and (4). Intensity
data were obtained at -100°C on a Bruker SMART CCD Area Detector system using the
o scan technique with Mo Ko radiation from a graphite monochromator. Intensities
were corrected for Lorentz and polarization effects. Equivalent reflections were merged,
and absorption corrections were made using the multi-scan method. The structure was
solved by direct methods with full-matrix least-squares refinement, using the SHELX
package.”™ " All non-hydrogen atoms were refined with anisotropic thermal parameters.
The hydrogen atoms were placed at calculated positions and included in the refinement
using a riding model, with fixed isotropic U. The final difference map contained no
features of chemical significance. Selected bond distances and bond angles of
[(9-anthracenyl)Ph,P=NH, " ][ReOy4] (3) and [(9-anthracenyl)Ph,P=NH, " ][TcO4] (4) are
given in Table 4. Space group, lattice parameters and other relevant information for
[(9-anthracenyl)Ph,P=NH, " ][ReOy4] (3) and [(9-anthracenyl)Ph,P=NH, ][TcO4] (4)

along with the data are given in Appendix 1.

2.3 Results and Discussion

Phosphinimines, R;P=N-SiMe;, were synthesized as potential extractants for
preconcentrating TcOy in the presence of other anions for analysis, separation, or
cleanup. (9-anthracenyl)Ph,P=NSiMes (2) contains the anthracene moiety, which is a
known scintillator,” while (1-napthyl)Ph,P=NSiMe; (6) incorporates the napthyl moiety,
which has been reported as an alpha scintillator.”> (p-COOMe)CsH4Ph,P=NSiMe; (8)
contains a protected linker arm to potentially append reporter groups or attach the

phosphinimine to a polymer.

30



Synthesis. To produce (9-anthracenyl)Ph,P=NSiMes (2) or
(1-napthyl)Ph,P=NSiMe; (6), PPhyanthracenyl or PPhynapthyl were refluxed in toluene
with N3SiMes (Schemes 3, 4, 5 and Table 2). To produce
(p-COOMe)CsH4Ph,P=NSiMejs (8), PPh,CsHa(p-COOMe) and N3SiMes were refluxed
under N; (Scheme 6). The reactions were monitored by 3P NMR to determine the
completion time as the starting material peak decreased and then disappeared and the
product peak appeared. (9-anthracenyl)Ph,P=NSiMejs (2) is a dark red-brown solid,
(1-napthyl)Ph,P=NSiMe; (6) is a light tan or off white solid, and

(p-COOMe)CsH4Ph,P=NSiMe;s (8) is a dark brown oil.

Scheme 3: General synthesis of phosphinimines

R . R
| N3SiMes, solvent |
R'—P L R'—P=N—SiMe; + Ny
| reflux |“
RII R

R, R', R" = alkyl, aryl

Scheme 4. Synthesis of (9-anthracenyl)Ph,P=NSiMe; (2)

P reflux under N, 3-8

Br [ P ;
N3SiMejs, toluene
1. n-BuLi, ether, -30°C e P=N—éi/
' > \
OOO e s
3. reflux 5hr OOO
2
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Scheme 5. Synthesis of (1-napthyl)Ph,P=NSiMe; (6)

|
Cs,COg3, Cul @ . @
Ph,PH @—P N3SiMes @_
e e P=N-SiMe3
‘ reflux overnight

Br

COOMe

toluene ll il

(6)

Scheme 6. Synthesis of (p-COOMe)C¢H4Ph,P=NSiMe;s (8)

Cs,COg3, Cul

Ph,PH | N3SiMes |
p P=N—SiMe3
N,N dimethylethylene-

reflux overnight
diamine

toluene

COOMe COOMe
®
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Table 2: Phosphinimines synthesized

Compound | R, R’ R’ Solvent Product Color/
Form
1 Phenyl None Colorless
/ Solid
@—P:N—SiMe3
2 Phenyl Toluene Red-
brown /
e
@—PzN—SiMe3
6 Phenyl Toluene Tan or
off-white
go @_ / Solid
P=N—SiMe3
8 Phenyl None Dark
brown /
P=N=SiMe3
COOMe
COOMe
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Table 3: Phosphiniminium permetallates synthesized

Compound | Phosphinimine |  Anion Product Color of
Crystal
3 2 ReOy Yellow
Heeonnnnua o) 0
/ \7
P=N® © L%
4 2 TcOy4 Yellow-
brown
Herernnaus o 0
4 W\ //
PEN® © X
5 2 Sodium N/A
benzoate o)
,H ....... o
H
7 6 ReOy4 @ N/A
Heevnnus o) 0
— \ &
PEN® O Ne
9 8 ReOy4 N/A

COOMe
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Reaction of (9-anthracenyl)Ph,P=NSiMe; (2) with NH4ReO4 and NH,*TcO,
yielded [(9-anthracenyl)Ph,P=NH, ][ReO,] (3) and
[(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4), respectively (Scheme 1, Table 3). Crystals for
[(9-anthracenyl)Ph,P=NH, " ][ReO4] (3) and [(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4)
were grown by slow evaporation from acetonitrile. Unreacted NH4TcO,4 co-crystallized
as colorless crystals. While (9-anthracenyl)Ph,P=NSiMe; (2) is mildly moisture sensitive
(i.e., hydrolyzes to the phosphine oxide upon exposure to water over time) and should be
stored in a desiccator, [(9-anthracenyl)Ph,P=NH,][ReOy4] (3) and
[(9-anthracenyl)Ph,P=NH,"][**TcO4] (4) do not degrade as solids or in solution.
Reaction of (9-anthracenyl)Ph,P=NSiMe; (2) with sodium benzoate yielded
[(9-anthracenyl)Ph,P=NH, ][benzoate] (5). Over a week in CH,Cl,, X-ray quality
crystals were grown of anthraquinone. The crystals showed no 3'p NMR signal while the
mother liquor showed a variety of products from the rearrangement.

Reaction of (1-napthyl)Ph,P=NSiMes (6) with NH4ReO, yielded
[(1-napthyl)Ph,P=NH, ][ReO4] (7) (Scheme 1, Table 3). Crystals of
[(1-napthyl)Ph,P=NH, ][ReO4] (7) where not grown since (7) degrades in solution.
Solutions of [(1-napthyl)Ph,P=NH,]J[ReO,] (7) in solvents such as acetonitrile,
dichloromethane, or the reaction mixture of dichloromethane/water led to decomposition
after 1-3 hours.

Reaction of (p-COOMe)CsH4Ph,P=NSiMe; (8) with NH4ReO, yielded
[(p-COOMe)CsH,Ph,P=NH,][ReO4] (9) (Scheme 1, Table 3). The yield for
(p-COOMe)CsH4Ph,P=NSiMej; (8) was not determined since the product is a thick oil
that hydrolyzed quickly in air. [(p-COOMe)CsH4Ph,P=NH, ][ReO4] (9) is not stable in
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solution, decomposing in minutes, so no crystals were grown or NMR spectrum recorded.
The product was identified by mass spectrometry.

NMR Characterization. The NMR spectrum for (9-anthracenyl)Ph,P=NSiMe;
(2) was taken in benzene, while [(9-anthracenyl)Ph,P=NH, ][ReO,] (3) and
[(9-anthracenyl)Ph,P=NH,][TcO,] (4) were run in acetonitrile. From the NMR spectra,
it is seen that [(9-anthracenyl)Ph,P=NH, ][ReO,] (3) and
[(9-anthracenyl)Ph,P=NH,][TcO,] (4) have almost the same effect on both the 'H and
3'P nuclei, however this chemical environment is significantly different from
(9-anthracenyl)Ph,P=NSiMe; (2). The *'P peak shifted from -6.86 ppm for
(9-anthracenyl)Ph,P=NSiMe; (2) to 34.55 ppm for [(9-anthracenyl)Ph,P=NH, ][ReOy]
(3) and 34.68 ppm for [(9-anthracenyl)Ph,P=NH, "] [”TcO4] (4). The same effect is
observed in the '"H NMR spectra for the aromatic resonances, which shift from 6.84-8.46
for (9-anthracenyl)Ph,P=NSiMe; (2) to 7.38-9.17 for
[(9-anthracenyl)Ph,P=NH,][ReO4] (3) and 7.36-9.14 for
[(9-anthracenyl)Ph,P=NH, "] [*TcO4] (4). The formation of the ion pair does not
significantly change the *’Tc NMR chemical shift for
[(9-anthracenyl)Ph,P=NH, "] [®TcO4] (4) since the technetium coordination sphere has
not significantly changed; 14.66 ppm for [(9-anthracenyl)Ph,P=NH, "] [TcO4] (4) and
13.61 ppm for NH499TCO4 in acetonitrile. The same trends are observed in the 'H and
3P NMR spectra for (1-napthyl)Ph,P=NSiMe; (6) and [(1-napthyl)Ph,P=NH,][ReO4]
(0.

X-ray Crystallography. Yellow crystals of [(9-anthracenyl)Ph,P=NH, ][ReOy]
(3) and yellow-brown crystals of [(9-anthracenyl)Ph,P=NH, ] [®TcO4] (4) were obtained
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as described and were stable to air and water during the analysis and for months
afterward. Details of the X-ray structure experiments are given in Appendix 1 and the
bond lengths and angles of interest are listed in Table 4. Figures 1 and 2 show the
ORTEP*"*! diagrams of [(9-anthracenyl)Ph,P=NH, ][ReO,] (3) and
[(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4), respectively. The two structures are
isostructural and show a strong hydrogen bond between an iminium proton and an
oxygen on MOy in each unit cell. The extended lattice shows that
[(9-anthracenyl)Ph,P=NH, ][ReO4] (3) and [(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4)
form dimers, with each MO4™ bound to two phosphiniminium ligands and each
phosphiniminium hydrogen bonded to two MO4” moieties. The structure is symmetrical,
with each unit cell containing only one half of each dimer. The hydrogen bond
distances between the iminium proton and the M-O oxygen for perrhenate (1.95 A) was
slightly shorter than for pertechnetate (2.06 A). The M-O bond distances observed for
both the perrhenate (1.703-1.728(2) A) and pertechnetate (1.6907-1.7126(16) A) are
typical for these species.32 The structures for [PhsP=NH, ][TcO4]* and

[Ph;sP=NH, ][ReO4 > were previously reported and also showed a strong hydrogen bond
between the iminium protons and an oxygen on two different MO4™ moieties. Both were
reported as dimers with two oxygen groups on each MO, bound to two iminium protons,
one each on two different phosphiniminium cations. [PhsP=NH, ][ReO,] was shown to
have oxygen-nitrogen bond distances of 2.871 and 2.951 A, M-O distances of 1.690-
1.727(7) A, and the hydrogen bond distances were not reported.23 [PhsP=NH, ][TcO4]
was shown to have oxygen-nitrogen bond distances of 2.855 and 2.973 A, M-O distances
of 1.690-1.708(4) A, and hydrogen bond distances of 1.89(6) and 2.23(6) A%
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Figure 1. ORTEP representation of [(9-anthracenyl)Ph,P=NH,"][ReO4] (3),
with 50% thermal ellipsoids

Figure 2. ORTEP representation of [(9-anthracenyl)Ph,P=NH,"][*’Tc04] (4),
with 50 % thermal ellipsoids
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Table 4. Selected Bond Distances (A) and Bond Angles (deg) of
[(9-anthracenyl)Ph,P=NH,"[**ReO,] (3) and of
[(9-anthracenyl)Ph,P=NH,1[**TcO,] (4)

2 3

(M =Re) (M =Tc)
M1-01 1.724(2) 1.7091(15)
M1-02 1.716(2) 1.7041(16)
M1-03 1.703(3) 1.6907(18)
M1-04 1.728(2) 1.7126(16)

N1-H2N* 0.71(4) 0.80(3)

N1-H1N* 0.85(4) 0.76(3)

O4-H1N* 1.95 2.06

P1-N1 1.616(2) 1.6207(17)
P1-C1 1.788(2) 1.7890(17)
P1-C15 1.808(2) 1.8053(18)
P1-C21 1.803(2) 1.8037(19)
01-M1-04 108.05(11) 107.80(8)
02-M1-01 109.34(11) 109.15(8)
02-M1-0O4 109.43(13) 109.59(9)
03-M1-01 112.04(13) 112.25(9)
03-M1-02 109.16(15) 109.29(11)
03-M1-04 108.78(16) 108.73(12)
N1-P1-C1 108.35(13) 108.32(9)
N1-P1-C15 113.91(12) 114.16(9)
N1-P1-C21 108.46(13) 108.51(9)
Ci1-P1-C21 112.09(12) 111.96(8)

H2N-N1-H1N* 114(4) 119(3)

* Denotes hydrogen atoms located on the nitrogen
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Attempted Synthesis of ((9-anthracenyl)-CH,) Ph,P (10). This phosphine was
of interest as a comparator to (9-anthracenyl)Ph,P=NSiMejs (2) since it would allow
further investigation of the fluorescence and scintillation properties of the anthracene
moiety. All reactions were followed by *'P NMR. The *'P NMR chemical shift for
Ph,PLi is & ppm -15.890 and for Ph,PCl is 84.24.

Method 1 is shown in Scheme 7. A solution of Ph,PLi was cooled during the
addition of 9-chloromethylanthracene. The major *'P NMR peak after the addition and
stirring was the Ph,PLi starting material. Heating overnight did not produce the desired
product as the major product, if at all. Starting material, a variety of oxides, and

unidentified materials were generated.

Scheme 7. Attempted Synthesis of ((9-anthracenyl)-CH;) Ph,P (10)
by Method 1 and 2

0 o OF
9e®

T
I
=
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Method 2 was a modification of Method 1, except the reaction was cooled at
-70°C for 30 minutes and then heated to reflux for 21 hours. The reaction was heated to a
higher temperature in an attempt to induce the reaction to proceed without producing as
many side products as Method 1. The major species at the end of reaction was the
starting material of Ph,PLi as determined by the -15.493 ppm peak in the >'P NMR. This
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method was abandoned after determining by mass spectrometry that none of the peaks in
the NMR spectrum belonged to the product.

Method 3 was an attempt to lithiate the methyl on the anthracene group instead of
using a lithiated phosphine as shown in Scheme 8. This method produced a large number

of products as determined by *>'P NMR spectroscopy and was abandoned.

Scheme 8. Attempted Synthesis of ((9-anthracenyl)-CH;) Ph,P (10) by Method 3

C. >
1. n-BuLi, THF, -70°C @—P
OOO 2 Ph,PClI
3. reflux OOO

Method 4 was a modification of a literature procedure to produce tripodal
CH3CC(CH,PPhy); ** (Scheme 9). The product solution contained several products. The

solid product contained mainly the sodiated oxide as determined by mass spectrometry.

Scheme 9. Attempted Synthesis of ((9-anthracenyl)-CH;) Ph,P (10) by Method 4

1. DMSO @_ |
2. KOH, H,0
@—PH 3. 9-(chloromethyl)anthracene

LI
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2.4 Conclusion

Three previously unreported phosphinimines, ((9-anthracenyl)Ph,P=NSiMe; (2),
(1-napthyl)Ph,P=NSiMe; (6), and (p-COOMe)CcH4Ph,P=NSiMes (8), were synthesized
from the respective phosphines and are moisture sensitive. (9-anthracenyl)Ph,P=NSiMe;
(2) reacts with NH4;ReO4 and NH,°TcOy to produce [(9-anthracenyl)Ph,P=NH, ][ReOy]
(3) and [(9-anthracenyl)Ph,P=NH,][TcO4] (4), respectively.
[(9-anthracenyl)Ph,P=NH, ][ReO4] (3) and [(9-anthracenyl)Ph,P=NH, ][TcO4] (4) are
stable to moisture and oxygen both as solids and in solution. The crystal structures of
both are reported and they are isostructural. (9-anthracenyl)Ph,P=NSiMes (2) was
reacted with sodium benzoate to produce [(9-anthracenyl)Ph,P=NH, "][benzoate] (5).
[(9-anthracenyl)Ph,P=NH, "][benzoate] (5) was not stable and reacted further to form
anthraquinone crystals and a variety of products containing phosphorous.
(1-napthyl)Ph,P=NSiMe; (6) and (p-COOMe)CsH4Ph,P=NSiMej; (8) were reacted with
NH,ReO, to produce [(1-napthyl)Ph,P=NH, " ][ReO,] (7) and
[(p-COOMe)CsH4Ph,P=NH, J[ReO4] (9), respectively. [(1-napthyl)Ph,P=NH, ][ReOy]
(7) and [(p-COOMe)CsH4Ph,P=NH, ][ReO,] (9) were not stable in solution. The
instability of [(1-napthyl)Ph,P=NH, ][ReO4] (7) reduces the usefulness of
(1-napthyl)Ph,P=NSiMe; (6) as an extractant and eliminates the use of the napthyl group
as a reporter moiety. In addition to the instability of
[(p-COOMe)C¢HsPh,P=NH, " ][ReO4] (9), (p-COOMe)C¢H4Ph,P=NSiMe; (8) also
hydrolyzes quickly in air, eliminating it as a useful extractant. Attempted synthesis of
((9-anthracenyl)-CH;)Ph,P (10) by four different methods did not produce ((9-
anthracenyl)-CH,)Ph,P (10). While the synthesis of ((9-anthracenyl)-CH;)Ph,P (10) is
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probably not impossible, it is not straight forward by common methods to produce

derivatized phosphines.
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CHAPTER 3: RADIOCHEMISTRY
3.1 Introduction

Phosphinimines hydrolyze to form the phosphiniminium cation, RsP=NH,",
which can form an ion pair with an anion to stabilize the charge (Scheme 1).
[Ph;P=NH, J[ReO4]% and [PhsP=NH,][TcO,] * are known and the crystal structures
have been reported. Preliminary studies on the selectivity of PhsP=NSiMes for TcOy4
through the formation of [PhsP=NH,"][TcO,] have been reported.”* This study
suggested that the selectivity of the phosphiniminium cation of Ph;P=NSiMes (1) for
TcOy in the presence of other anions was excellent and further investigations were
warranted. In studies performed here, the selectivity of phosphiniminium cations of
Ph;P=NSiMe; (1), (9-anthracenyl)Ph,P=NSiMejs (2), (1-napthyl)Ph,P=NSiMe;s (6), and
(p-COOMe)CsH4Ph,P=NSiMej; (8) for TcO4 was challenged with a variety of anions
including CI', NOs5’, I, acetate, and benzoate. In addition to selectivity studies, studies
were undertaken to investigate the optimal conditions for the formation of the
[R3P=NH,][TcOy4] ion pair including solvent and solid phase extraction studies, column
capacity through concentration and volume changes, and competition with macroscopic

quantities of 99TCO4'.

3.2 Experimental

General Considerations. Caution! **Tc emits a 0.292 MeV 3~ with a half-life of
2.15x10° years, *“™Tc emits a 140 keV yray with a half-life of 6.0 h ,and **Re emits a
137 keV jy-ray and a 1.07 MeV g~ with a half-life of 90 h. Although common laboratory

glassware provides adequate shielding for **Tc , standard radiation safety procedures
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must be used at all times. **™Tc and *®°Re should be handled only in a controlled
environment by qualified personnel trained in radiation safety.

Materials. *™

Tc was eluted with normal saline as sodium pertechnetate from a
*Mo/**™T¢ generator (Bristol Myers Squibb or Mallinckrodt Medical, Inc.). '*°Re was
produced at the University of Missouri Research Reactor (MURR) from a 96.4%
enriched '*°Re target. *’Tc was obtained from Oak Ridge National Laboratory as
ammonium pertechnetate and used as a macroscopic carrier in experiments where noted.
Ammonium perrhenate was purchased from Strem and used as a macroscopic carrier in
experiments where noted. Dichloromethane, chloroform, hydrochloric acid, sulfuric acid,
nitric acid, phosphoric acid, sodium fumerate, lactic acid, benzoic acid, acetic acid,
sodium iodide, sodium chloride, sodium fumerate, and sodium hydroxide were all used as
purchased. Hydriodic acid was used as purchased, in the absence of stabilizers. Silica
gel was obtained from J. T. Baker, heated to 110 °C overnight in an oven and used
without further purification. Only doubly distilled water was used. Unless noted, all
common laboratory chemicals were of reagent grade or better.

All samples containing both 99mTcO4' and 186ReO4' were counted with a HPGe
semiconductor detector with Canberra electronics and Maestro multichannel analysis
software (EG&G Ortec, Inc.). Energy calibrations were based on a TCo, 137Cs, OCo
mixed source. Samples containing **"TcO, were counted on a Nal(TI) well detector
with Canberra electronics and a SCA with a Counter/Timer setup. Liquid scintillation
analysis was used to verify any concentrations for *TcOy". Liquid scintillation counting
(LSC) was performed on a Tracor Analytic Delta 300 Liquid Scintillation System. Thin
layer chromatography (TLC) to verify **Tc was present as **TcO4 was performed on a
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BioScan System 200 Imaging Scanner. Paper TLC (purchased from Whatman, 1 Chr
chromatography paper) was performed for each sample in saline and in diethyl ether.
TcO; is a colloid and stays at the origin (R¢= 0) regardless of solvent. TcO4 moves with
the solvent front in saline (R¢= 1) and remains at the origin in ether (R¢= 0).

General Solvent Extraction Competition Procedure. The aqueous phase
consisted of the desired anion (0.15 M) containing approximately 1 uCi of *"TcO4 and
5 uCi of '"®*Re0y,". The organic phase consisted of 5 mg/mL of PhsP=NSiMes. The
organic phase (5 mL) and the aqueous phase (1 mL) were mixed by vortexing in a test
tube for 2 minutes and then separated by centrifugation for 10 minutes. Aliquots (75-220
pL) of each phase were taken and counted. The solution acidity (1 mM, 0.1 M, 0.15 M,
0.2M, 0.5M, 1 M, 2 M), phosphinimine concentration (0.34 mg/mL, 1 mg/mL, 3
mg/mL, 4 mg/mL, 5 mg/mL, 10 mg/mL), vortex time (30 s, 1 min, 2 min), centrifugation
time (5 min, 10 min), and aqueous/organic phase volumes (100 pL /5 mL, 500 uL /5
mL, I mL/5mL,2.5mL/5mL,5mL/5 mL) were all optimized (data contained in
Appendix 2). Solutions where prepared fresh daily. All data points were performed in
triplicate.

General Solid Phase Extraction Competition Procedure. Silica was pre-dried
overnight at 110 °C in an oven. Phosphinimine (Ph;P=NSiMe; (1),
(9-anthracenyl)Ph,P=NSiMejs (2), (1-napthyl)Ph,P=NSiMe; (6), or
(p-COOMe)CsH4Ph,P=NSiMej; (8)) (0.5 g) was then sorbed onto 5 g of dried silica gel
from a chloroform or dichloromethane slurry. This was allowed to slowly dry over 3 or
more days in a desiccator (to prevent hydrolysis). Columns were prepared from plastic

disposable columns (Fisher) containing small plastic frits, which were each filled with 0.5
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g of the coated silica. One mL of the aqueous phase of the desired anion and containing
approximately 1 pCi *™TcO4 and 3 uCi "**ReO,” was added to the top of the dry
column. This was allowed to elute through the column and the effluent was collected
until no more aqueous phase eluted. This was then washed with four 1 mL aliquots of the
desired aqueous phase without radioactivity, with each fraction collected separately. All
5 column fractions and the column were then counted. The first fraction did not contain a
full 1 mL as much of this went to wetting the column. All data points were performed in
triplicate.

General Solid Extraction 1:1 Competition Procedure. The general solid phase
extraction competition procedure was followed using Ph;P=NSiMe; (1) with the addition
of 1 mM 99TCO4' or 10 mM ReQOy carrier added to the first mL of aqueous phase
containing the desired anion with approximately 1 pCi of **™TcO, and 3 pCi of '**ReOy".
The permetallate (*°TcOy4 or 185/187R ¢04") was added as the ammonium salt. The
concentration of NH4TcO4 was verified by liquid scintillation analysis. The ionic
strength was kept constant by varying the concentration of NaCl. When no other anions
were present, 0.15 M NaCl was used. Sodium acetate or sodium iodide, 10 mM, was
then added to 0.14 M NacCl to make up the aqueous phase. All experiments were
performed in triplicate.

General Concentration Column Capacity Procedure. The general solid phase
extraction competition procedure using Ph;P=NSiMe; (1) was followed with 99TCO4'
carrier added to the first mL of aqueous phase containing 0.15 M NaCl with
approximately 1 pCi of *™TcO, and 3 uCi of "**ReOy4”. Pertechnetate was added as

NH,°TcO4 in 0.11 mM, 0.52 mM, 1 mM, and 5.2 mM concentrations as noted. The
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concentration was verified by liquid scintillation analysis. All experiments were
performed in triplicate.

General Volume Column Capacity Procedure. Columns of phosphinimine
coated silica were prepared using Ph;P=NSiMe; (1) as in the general solid phase
extraction competition procedure. The aqueous phase of 0.15 M NacCl, 1.3 mM

f*™TcO, was added to the top of the dry column

NH,”TcO,, and approximately 1 pCi o
in 1 mL aliquots. Each aliquot was allowed to elute and the eluent and column were
counted. This was repeated until the eluent fraction began to show counts above

background, which occurred at 6 mL total volume. Then each column was washed with

1 mL of 0.15 M NaCl.

48



3.3 Results and Discussion

The goal of this project is to use phosphinimines, R;P=N-SiMe;, as extractants to
preconcentrate TcOy4 in the presence of other anions for analysis or cleanup of
environmental samples or cleanup of nuclear waste samples. The selectivity of the
phosphiniminium cation of Ph;P=NSiMes (1) for TcO4 and ReO4 was investigated by
challenge with a variety of anions in large excess, with anions that were equimolar, under
different pH conditions, and under both solvent extraction and solid phase extraction
conditions. The selectivity the phosphiniminium cation of (9-anthracenyl)Ph,P=NSiMe;
(2), (1-napthyl)Ph,P=NSiMe;s (6), and (p-COOMe)Ph;P=NSiMe; (8) for TcO4 and ReO4
was investigated by challenge with a variety of anions in large excess. HReO4 and
HTcO, are both strong acids in aqueous solution with pK, < 0.** In solution both are
dissociated to form ReO4  and TcOy'.

Solvent Extraction. Ph;P=NSiMe; (1) was dissolved in chloroform and
contacted with an aqueous solution containing 99mT(:O4', 186ReO4', and 0.15 M of either
HCI1, HNOs3, H3;PO4, H,SO4, HI, NaCl, or NaOH. TcO4 and ReOy4 are not soluble in
chloroform so that any radioactivity extracted into the organic phase is the result of ion
pair formation. The results are shown in Figure 3 and Table 5. Greater than 95% of the
#MTe0, and > 92% of the '*°ReQ,” radioactivity was extracted into the organic phase
under acidic conditions in the presence of CI, NO;3", H;PO4/H,PO4, and HSO,/ SO42'.
Under neutral conditions using NaCl, the percent of the ion pair formed was significantly
lower due to partial secondary hydrolysis to the phosphine oxide (Scheme 2). Under
basic conditions (pH = 12.5) < 7% of the radioactivity was extracted for either **"TcO,

or '**Re0y” due to secondary hydrolysis to the phosphine oxide. Under acidic conditions
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the positively charged Ph;P=NH," is stabilized, whereas under neutral and basic
conditions the secondary hydrolysis to the phosphine oxide is promoted. Ph;P=0 is not
charged and cannot form the ion pair, thereby reducing the amount of anion that can be
extracted.

Todide was used as a positive control because it does compete with **"™TcOy4 to
some extent. Injection of Na’""TcQ, intravenously results in **"TcO4 uptake in the
thyroid, salivary glands, gastic mucosa, and the choroid plexus of the brain.*> These are

1311-‘ 99m

the same organs that take up TcOy4 can be used to image the thyroid for its

36,37 37,38

structure and to test thyroid function. Iodide and TcO4 behave similarly in the

333739 However, while they are taken up

body due to a similarity in size and charge.
similarly in the body based on electrostatics, the pertechnetate is not metabolized in the
same way and the thyroid does not incorporate it to produce iodine containing
hormones.* Figure 3 also shows that *™TcOy is retained better than '**ReQ4 which will

be discussed later. The phosphinimine is not stable in solution and hydrolyzes to the

phosphine oxide overnight in chloroform when exposed to air.
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Figure 3. Solvent Extraction — Percentage of *"TcO, and **Re0O,
in the Organic Phase for (1)
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Table 5. Solvent Extraction — Percentage of *™TcO, and *Re0O,
in the Organic Phase for (1)

Competing Anion ®MTcO, 18Re0,
0.15 M HCI 994 +0.1 99.30 £ 0.06
0.15 M HNO; 95.6 +0.9 92+1
0.15 M H3PO, 99.1+05 99.72 + 0.07
0.15 M H,SO, 95.0+0.9 92 +2
0.15 M HI 75+ 3 63+4
0.15 M NacCl 37+5 26 +4
0.15 M NaOH 73 5+£2

Solid Phase Extraction Competition Studies. Columns were prepared from
phosphinimine coated silica. An aqueous solution containing *"TcOy’, "**ReOy’, and

0.15 M of either HCI, HNOs, H;PO4, H,SO4, HI, NaCl, Nal, NaOH, sodium fumerate,
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sodium benzoate, sodium lactate, or sodium acetate was added to the column and allowed
to elute. The column was then washed with the same solution without *"TcOj” or
186Re0y,". There was no difference in results for PhsP=NSiMes (1) if the column was
prewashed with the desired anion. A solution of *™TcQ, in 0.15 M HCI was added to a
column of pure silica, and no TcO4 adhered to the silica indicating that the
phosphinimine was responsible for TcO4” binding. The activity extracted onto the
column is present as the ion pair.

The phosphiniminium cation of Ph;P=NSiMes (1) extracted 99% of the
radioactivity onto the column under acidic conditions and in competition with HCI,
HNO;, H;PO4, H,SO4, and NaCl. Under neutral conditions this was also seen for sodium
fumerate with ™ TcO,". HI, Nal, sodium acetate, sodium lactate, and sodium benzoate
competed with both **™TcO, and "**ReOy, and sodium fumerate competed with '**ReO,
. This is seen in Figure 4 from the large reduction in the amount of activity bound to the
column. NaOH also prevents binding of TcO4 and ReO4” due to secondary hydrolysis of
the phosphinimine to the phosphine oxide. Figure 4 shows that *™TcOy is retained
better than 186ReO4', which will be discussed later. When sorbed onto the silica, the
phosphinimine is stable for weeks or longer. Coating onto the silica stabilizes the
phosphinimine to some degree, as suggested from the overall improvement in extraction
ability over the solvent extraction method. During solvent extraction, dissolved
phosphinimine comes into contact with water, which can result in hydrolysis to the
phosphiniminium cation and further hydrolysis to the phosphine oxide. During solid

phase extraction, the phosphinimine is not dissolved and is not soluble in water. This

52



O Tc-99m
Re-186

NSiMes (1)

Remaining on Column for PhsP

%ﬁ {Emm

P III T

AL A A,

PSS LS LSS LS LSS LSS

AL A A

HOEN N ST0

91e18dV N GT°0

aleozusg N ST'0

alee T N ST°0

alelawnd N ST'0

leN N ST0

IHW GT°0

[OEN N ST°0

YOS‘HIN ST'0

YOd®H N GT'0

®ONH N ST'0

IODHINSTO

Aue|q IDHIN ST'0

Figure 4. Solid Phase Extraction — Percentage of " TcO, and '**Re0O,

120

insolubility limits the exposure of the phosphinimine or phosphiniminium cation to water

and further hydrolysis.

o
o
i

o
[¢)

o
©

o
I

o
N

o

uwn|od uo AlAnoBoIpel %

53




Table 6. Solid Phase Extraction — Percentage of *"TcO, and '**Re0O,
Remaining on Column for PhsP=NSiMe; (1)

Competing Anion P®MTcO, 1%ReO,
0.15 M HCI blank 0.26 0.26
0.15 M HCI 99.7+0.2 99.6 0.3
0.15 M HNO; 99.7+0.2 99.4+0.1
0.15 M H3PO, 99.6+0.1 99.6 + 0.04
0.15 M H,SO, 99.6+0.1 99.6+0.1
0.15 M NacCl 99.0+0.3 92+2
0.15 M HI 85+5 38+11
0.15 M Nal 83+4 23+4
0.15 M Fumerate 98.4+04 94+4
0.15 M Lactate 38+8 215
0.15 M Benzoate 152 61
0.15 M Acetate 11+3 62
0.15 M NaOH 18+3 6.5+0.4
1mM ReO, 05+0.1 0.30 £ 0.07

Using the phosphiniminium cation of (9-anthracenyl)Ph,P=NSiMejs (2) or
(1-napthyl)Ph,P=NSiMe; (6), under acidic and neutral conditions and in competition with
HCI, HNOs, HI, NaCl, Nal, sodium acetate, and sodium benzoate, >98% of the PmTcO,
was bound to the column. Under acidic and neutral conditions and in competition with
HCI, HNOs;, NaCl, sodium acetate, and sodium benzoate >98% of the 186Re04 was
bound to the column. HI and Nal competed somewhat with '**ReOy”, showing a small
reduction in activity bound to the column as seen in Figures 5 and 6. This is in direct
contrast to the phosphiniminium cation of Ph;P=NSiMes (1) where HI, Nal, acetate,

benzoate, and lactate (Figure 4) all competed significantly, with only 10-85% of **™TcOy4

54



extracted, depending on the challenging anion. Figures 5 and 6 also show that **™TcOj4

1s retained better than 186ReO4', which will be discussed below.

Figure 5. Solid Phase Extraction — Percentage of " TcO, and **°*Re0O,
Remaining on Column for (9-anthracenyl)Ph,P=NSiMe; (2)
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Table 7. Solid Phase Extraction — Percentage of *"TcO, and '**ReO,
Remaining on Column for (9-anthracenyl)Ph,P=NSiMe; (2)

Competing Anion ¥MTcO, 1%°ReO,
0.15 M HCI 98.99 + 0.07 98.5+0.1
0.15 M HNO; 98.91 + 0.03 98.2+0.2
0.15MHI 98.8+0.1 92+4
0.15 M Nal 98.73 +0.06 87.0+£0.6
0.15 M Na Acetate 98.6 +£0.2 98.3+0.2

0.15 M Na Benzoate 98.95 £ 0.09 98.4+0.2
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Figure 6. Solid Phase Extraction — Percentage of " TcO, and ***Re0O,
Remaining on Column for (1-napthyl)Ph,P=NSiMe;s (6)
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Table 8. Solid Phase Extraction — Percentage of *"TcO, and '**ReO,
Remaining on Column for (1-napthyl)Ph,P=NSiMe; (6)

Competing Anion 9MTcO, 1%Re0,
0.15 M HCI 98.9+0.1 98.3+0.2
0.15 M HNO3 98.9+0.2 98.4+0.3
0.15 M HI 98.8+0.2 97.4+0.2
0.15 M Nal 98.8+0.1 83+4
0.15 M Na Acetate 98.85 + 0.08 98.5+0.1

0.15 M Na Benzoate 99.20 £ 0.09 98.1 £+ 0.8

Using the phosphiniminium cation of (p-COOMe)CsH4Ph,P=NSiMe; (8), under
acidic conditions with HCI, >98% of the M0, or **Re0,” was bound to the column.
HI, Nal, sodium acetate, and sodium benzoate showed varying degrees of competition

with both ™ TcO4 or '*ReOy, as seen in Figure 7 and Table 9.
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Figure 7. Solid Phase Extraction — Percentage of " TcO, and ***ReO,
Remaining on Column for (p-COOMe)C¢H4Ph,P=NSiMe;s (8)
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Table 9. Solid Phase Extraction — Percentage of *"TcO, and '**ReO,
Remaining on Column for (p-COOMe)CsH4Ph,P=NSiMe;s (8)

Competing Anion PMTcO, 1%ReO,
0.15 M HCI 99.0+£0.2 98.0+£0.8
0.15 M HI 54+4 6+3
0.15 M Nal 24+0.5 0.46 + 0.06
0.15 M Na Acetate 8l+1 26+2
0.15 M Na Benzoate 13+6 3.4+£0.6

Solid Phase Extraction 1:1 Competition Studies. Columns were prepared from
phosphinimine coated silica. An aqueous solution containing **"TcOy’, "**ReOy, and 1
mM NH499TCO4 or 10 mM NH4ReO4 and the competing anion was added to the column
and allowed to elute. The competing anion was either none (just NaCl), 10 mM sodium
acetate, or 10 mM Nal. The column was washed with the same solution without any
carrier, 99mTcO4' or 186ReO4'. In the previous studies (solvent extraction and solid phase
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extraction), the tracer concentration was approximately 10> M whereas the competing
anions were all present at 0.15 M. In order to see if the competition effect was real or
due to the large excess of competitor, the most effective organic competitor (acetate) and
the most effective inorganic competitor (iodide) were added in equimolar concentration
to either the *’TcO4” or ReOy” carrier. NaCl was also tested as a comparison since NaCl
did not affect the TcO4 or ReO4 and was used to keep the ionic strengths constant with
the acetate and iodide binding studies. As seen in Figure 8, within error, the acetate and
iodide do not compete with TcO4™ or ReO4. The phosphiniminium cation is specific for

TcO4 or ReOy4” over acetate and iodide. The results are shown in Figure 8 and Table 10.

Figure 8. 1:1 Competition experiment using PhsP=NSiMe;s (1)
with 1 mM NH,*TcO,4 or 10 mM NH,ReO,
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All data points contain 1 mM NH499TCO4 or 10 mM NH4ReOy. lonic strength was kept
constant in all samples at 0.16 M.
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Table 10. 1:1 Competition experiment using PhsP=NSiMe; (1) with 1 mM
NH,*TcO,or 10 mM NH,;ReO, -
Percentage of " TcO, and **ReO,” Remaining on Column

Competing Anion [carrier] ®MTcO, 1%°ReO,
0.15 M NaCl oM 99.0+0.3 92+2
0.15 M NaCl 1 mM NH,*TcO, 51+6 8+2
0.14 M NaCl / 10 mM acetate 1 mM NH,*TcO, 59+5 11+2
0.14 M NaCl / 10 mM Nal 1 mM NH,*TcO, 53+6 10+3
0.15 M NaCl 10 mM NH,ReO, 27+3 5.7 +0.6
0.14 M NaCl / 10 mM acetate 10 mM NH,ReO, 235 5+1
0.14 M NaCl / 10 mM Nal 10 mM NH,ReO, 28+ 1 5.1+0.5

Column Capacity. The column capacity was tested under two different sets of
conditions: (1) the concentration of **TcO4 was increased keeping the volume constant
at 1 mL, and (2) the concentration of *’TcO, in 1 mL remained constant and successive 1
mL aliquots of 99TCO4' solution were added to the column. The concentration
determination showed that approximately 0.1 mM **TcO, could be added to the column
before breakthrough occurred. As the concentration of **TcOy, increased breakthrough
became more severe. The volume determination showed that approximately 5 to 6 mL of
0.1 mM 99TCO4' could be added to the column before breakthrough occurred. Each
column contained a theoretical maximum of 0.1 mmol Ph;P=NSiMes (1) (0.5 g/ column,
10% loading phosphinimine) if the coating was complete (no coating of glassware) and
no phosphinimine degraded to the phosphine oxide. In case (1), 1 mL of 0.1 mM TcO4
has 1x10™ mmol of TcOy4 while 6 mL of 0.1 mM TcOy4 has 6x10™ mmol of TcOy4 (case
(2)). The phosphinimine is present in large excess in both cases. Using a larger volume

of dilute 99TcO4' allowed more 99Tc04' to be taken up on the column. This would be a
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situation similar to an environmental water sample where the PTcO4 concentration is
very small. A small volume of increasing concentrations of **TcOj” resulted in increasing
breakthrough. This situation would be similar to a nuclear waste sample where the
*TcOy4 concentration could be quite high. The breakthrough problem could then be
solved by increasing the column size or the amount of phosphinimine on the column.

The difference in elution profiles for dilute and concentrated samples is not unexpected.
Ion-exchange resins often show similar elution profiles. The ion is in equilibrium
between the mobile and stationary phases. Dilute samples have access to many exchange
sites and travel slowly down the column increasing the separation capability of the
column. Concentrated samples quickly fill and block exchange sites so the ions travel
quickly and reduce separa‘[ion.41 While the phosphinimine coated silica is not an ion-
exchange resin, the phosphinimine is forming ion pairs that associate and dissociate at a
certain rate in a very similar process to ion-exchange. The results for the concentration
determination are shown in Figure 9 and Table 11. The results for the volume

determination are shown in Figures 10 and 11.
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Figure 9. Concentrated column capacity experiment for
Ph3P:NSiMe3 (1) with NH4TcO,
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Table 11. Concentrated column capacity experiment for PhsP=NSiMe; (1) with
NH4TcO4 — Percentage of *™TcO, and **Re0O, Remaining on Column

[carrier]

99mTCo4- 186Reo4-

0.1 mM NH4TcO4
0.52 mM NH,TcO,
1 mM NH4TcO4
5.2 mM NH4TcO4
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Figure 10. Dilute column capacity experiment for PhsP=NSiMe; (1)
with 0.13 mM NH;TcO,4 — CPS in Fractions
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*Note: All samples in triplicate shown. No standard deviation calculated.

Figure 11. Dilute column capacity experiment for PhsP=NSiMe; (1)
with 0.13 mM NH;TcO4 - CPS on Column
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*Note: All samples in triplicate shown. No standard deviation calculated.
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TcO4 vs. ReOy4. In each data set tested, the phosphinimine demonstrated a
preference for TcO4 over ReO4". Both anions have the same charge and almost the same
size. The ionic radii are 0.37 A and 0.38 A for Tc(VII) and Re(VII), respectively.’> The
M=0 distance is 1.69 A for both TcO, and ReO,.*** ReOy is often used as a surrogate
for TcOy4” since it is not radioactive and often assumed to have the same chemistry due to
the similarity in size and charge.* If the formation of the ion pair is an electrostatic
interaction and if it is the size to charge ratio that makes it specific for TcOy', then it
should have an equal specificity for ReO4". The bowl shaped cyclotriveratrylene (CTV)
molecules have also been reported to be more selective for TcO4” than ReO4~.*** For the
same size and charge, both TcO4 and ReO, should fit into the bowl in the same manner,
but this was not found experimentally. TcO, was always extracted into nitromethane
inside the CTV better than ReOy’, 84% vs. 71%, respectively. In the literature there are
occasional reports where Tc and Re are not identical.** An example of this is Tc,0 45
and Re,O7(OH;), % In the crystal structure of Tc,0O7 all the Tc atoms are tetrahedral
TcO4 with one oxo group bridging the two Tc centers. Re,O7(OH,); is an extended
lattice of alternating [ReO4] and octahedral [ReOgH] bound through bridging oxo groups
(Scheme 10), with the coordination sphere expanded to include two water molecules. In
this instance only 50% of all the Re is tetrahedral. Neither of the extraction results with
the phosphinimine or CTV can be explained by ReO4” having a tetrahedral shape alone.
Both sets of results can be explained by some fraction of the Re present having an
octahedral coordination sphere. An octahedral coordination sphere would distort the size
to charge ratio and result in the preference for TcO4. Since not every Re would be

octahedral and it is in a transient equilibrium, only a slight preference is observed for
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TcOy4 . The tetrahedral shape is shown in the crystal structures since the most stable form

crystallizes. This structure is not always representative of solution behavior.

Scheme 10. Tc,0O; and Re;O7(OHy);
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Note: two of the oxygens around the octahedral Re are water groups.

3.4 Conclusions

Under solvent extraction conditions, the phosphiniminium cation of
Ph;P=NSiMes (1) is selective for TcO4 over other inorganic anions that are common in
the environment and over ReO4". The iodide ion competes well due to its size and
charge, but is not an environmentally common ion. Basic and neutral conditions promote
a secondary hydrolysis so that solvent extraction experiments must be done under acidic
conditions. Solvent extraction is not desirable since it must be done under acidic
conditions, the phosphinimine is not stable in solution, and would generate mixed waste
if *TcO4 was used. Under solid phase extraction conditions, the phosphiniminium
cation of Ph3P=NSiMe; (1) shows an even better selectivity for TcO4 than under the

solvent extraction conditions. The solid phase extraction experiments also show that the
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pH window has been expanded to include neutral conditions. Basic conditions still
promote a secondary hydrolysis reaction. The solid phase extraction experiments with
Ph;P=NSiMe; (1) also showed that a variety of organic anions compete well with TcOy,
which would be a serious drawback for many environmental samples. Phosphinimines
(9-anthracenyl)Ph,P=NSiMejs (2) and (1-napthyl)Ph,P=NSiMes (6) overcome this
drawback and show that for TcO4’, none of the anions tested were able to compete and
the phosphiniminium cations are selective for TcO4". The phosphiniminium cation of
(p-COOMe)CsH4Ph,P=NSiMejs (8) has selectivity problems similar or more severe than
Ph;P=NSiMe; (1), and would not make a suitable extractant in its present form. The 1:1
competition experiments with Ph;P=NSiMes (1) showed that for organic and inorganic
anions that do compete with TcO4 when in large excess, they do not compete with TcO4
when in equal concentrations. The column capacity studies show that the phosphinimine
columns are able to hold significantly larger amounts of TcO4 when it is added in a dilute
solution versus a concentrated solution. Based on high selectivities of the
phosphiniminium cations of Ph;P=NSiMej; (1), (9-anthracenyl)Ph,P=NSiMe; (2), and
(1-napthyl)Ph,P=NSiMe; (6) for TcO4 even in the presence of many other anions,
phosphinimines may be useful for the removal of TcO4 from both environmental samples

and nuclear waste samples.
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CHAPTER 4: FLUORESCENCE / SCINTILLATION SENSOR DESIGN
4.1 Introduction

Sensors produce a qualitative or quantitative signal that can be measured in
recognition of or binding by a specific analyte.*’ Different types of sensors can be
distinguished by the type of analyte detected (i.e., cation, anion) and the type of signal
generated (i.e., fluorescence, luminescence).® In Chapter 3: Radiochemistry, the ability
of several phosphinimines to extract TcO4 in the presence of other anions was
demonstrated. Phosphinimines are capable of forming anion sensors based on this
selectivity. However, a functioning sensor requires a signal to be generated in the
presence of the correct anion.

Fluorescence and scintillation sensing involve the emission of light by a fluor. In
fluorescence, once the anion of choice is bound to the phosphinimine the fluorescent
signal would be generated, quenched, or shifted in wavelength. The result would be a
difference between the original fluorescent signal without the anion and the signal with
the anion bound.

Scintillation is fluorescent emission by a fluor that has been excited by an energy
transfer from a radionuclide. All the energy from each nuclear emission, in this case 3°
emission, is transferred to the fluor, which then emits light, or scintillates. Technetium-
99 is a B~ emitting radionuclide and scintillation can be a method of signal generation
when **TcO,  is in the presence of a fluor. Since TcO, should be the only B~ emitting
anion present, the influence of other anions on the fluor itself is unimportant as long as

the sensor is selective for TcOy'.
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Phosphinimines, R3P=N-SiMejs, hydrolyze in the presence of water to the
phosphiniminium cation, R;P=NH,", that can be used as extractants for the separation
and preconcentration of TcO4 in the presence of other anions. The fluorescence and
scintillation properties of (9-anthracenyl)Ph,P=NSiMe; (2) were investigated as a
possible method of signal generation in the presence of **TcO4". In addition to a reporter
group attached to the phosphinimine, PhsP=NSiMejs (1) or (9-anthracenyl)Ph,P=NSiMes

(2) were each investigated in the presence of an external scintillator.

4.2 Experimental

General Considerations. Caution! **Tc emits a 0.292 MeV 8~ with a half-life of
2.15x10° years and **™Tc emits a 140 keV jray with a half-life of 6.0 h. Although
common laboratory glassware provides adequate shielding for *Tc , standard radiation
safety procedures must be used at all times. **™Tc should be handled only in a controlled
environment by qualified personnel trained in radiation safety.

Materials. Technetium-99m was eluted with normal saline as sodium
pertechnetate from a *’Mo/””™Tc¢ generator (Bristol Myers Squibb or Mallinckrodt
Medical, Inc.). Technetium-99 was obtained from Oak Ridge National Laboratory as
ammonium pertechnetate and used as a macroscopic carrier in experiments where noted.
HPLC grade dichloromethane and toluene, and sodium chloride were purchased from
Fisher Scientific. Scintillation grade anthracene was purchased from Fluka. Scintillation
grade 2,5-diphenyloxazole (PPO), bis-MSB, and 1,4-bis(5-phenyloxazol-2-yl)benzene
(POPOP) were purchased from Acros. Silica gel was obtained from J. T. Baker, heated

to 110 °C overnight in an oven and used without further purification. Only doubly
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distilled water was used. Unless noted, all common laboratory chemicals were of reagent
grade or better.

Absorbance and fluorescence emission measurements were recorded on an HP
8453 Diode-Array UV/VIS spectrometer (Santa Clara, CA) and Varian Cary Eclipse
Fluorometer (Palo Alto, CA), respectively. All spectra were collected in 1 cm” Suprasil
quartz cuvettes at room temperature. Liquid scintillation counting (LSC) was performed
on a PerkinElmer Tri-Carb 2900 TR Liquid Scintillation Analyzer. Samples containing
#™mTc0, were counted in a Nal(T1) well detector with Canberra electronics and a SCA
with a Counter/Timer setup.

UV/Vis Absorbance and Fluorescence Measurements. A 15 W Xenon arc
lamp excitation source (pulsed at 80 Hz) was used for the fluorescence measurements.
Samples were excited at 341 nm, and the emission was collected from 355-700 nm in 2
nm increments, using excitation and emission slit widths of 5 nm, a scan rate of 120
nm/min, and an averaging time of 0.5 seconds. All emission spectra were blank and
absorbance corrected.

Sample preparation. Stock solutions (~10~ M) of (9-anthracenyl)Ph,P=NSiMe;
(2), [(9-anthracenyl)Ph,P=NH, ][ReO4] (3), [(9-anthracenyl)Ph,P=NH, ][ TcO4] (4),
anthracene, anthracene + NH4ReQOy, anthracene + NH499TCO4, and NH499TCO4 were
prepared in acetonitrile (ACN), while PPhy(anthr) was prepared in dichloromethane
(CH,Cl,) because it is not soluble in ACN. Samples (~10~ M) were prepared by
quantitatively transferring known aliquots of the stock solutions into volumetric flasks
and diluting to volume with toluene or liquid scintillation (LSC) cocktail (Ecosafe

cocktail). All toluene samples were analyzed by UV-Vis absorbance and fluorescence
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spectroscopy and liquid scintillation counting. Ecosafe cocktail samples were anlyazed
by liquid scintillation counting only. All samples were prepared the day of analysis, and
for liquid scintillation counting purposes, samples were allowed to sit in the dark for 30
minutes prior to analysis.

General Solid Phase Extraction Competition Procedure. Silica gel was pre-
dried overnight at 110 °C in an oven. Phosphinimine (Ph;P=NSiMej; (1) or (9-
anthracenyl)Ph,P=NSiMes (2) ) (0.5 g) was then sorbed onto 5 g of dried silica gel from a
dichloromethane slurry. This slurry was allowed to slowly dry over 3 or more days in a
desiccator (to minimize absorption of water). Columns were prepared from plastic
disposable columns (Fisher) containing small plastic frits and were each filled with 0.5 g
of the coated silica. One mL of 0.15 M NaCl containing approximately 0.1 mM **TcOy4
and 1 pCi *™TcO, was then added to the top of the dry column, and allowed to elute
through the column. The effluent was collected until no more aqueous phase eluted.
Then 1 mL of the particular aqueous phase containing the competitor anion but without
radioactivity was added to the top of the column, and this was collected until no more
aqueous phase eluted. This was repeated 3 additional times. All 5 column fractions and
the column were then counted. The first fraction did not contain a full 1 mL, as most of
this went to wetting the column. All data points were performed in triplicate.

General Solid Phase Extraction Scintillation Procedure. The general solid
phase extraction procedure was followed. When coating the phosphinimine onto silica
gel from a dichloromethane slurry, the primary scintillator (PPO) and the secondary
scintillator (bis-MSB or POPOP) were added to the slurry in addition to the

phosphinimine. The following weight percents compared to the silica were followed:
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10% phosphinimine, 10% primiary scintillator, 3% secondary scintillator. The weight
percents were optimized and this data is presented in Appendix 3. Columns were
prepared and run according to the same method as the general solid phase extraction

procedure.

4.3 Results and Discussion

No group in the molecule PhsP=N-SiMes (1) is capable of generating or altering a
signal in the presence of TcOy, thus requiring external groups such as PPO or anthracene
to produce a scintillation signal. (9-anthracenyl)Ph,P=NSiMe; (2) incorporates the
anthracene molecule, which is a known scintillator,” directly into the phosphinimine
moiety. The fluorescence and scintillation properties of (9-anthracenyl)Ph,P=NSiMe; (2)
are reported. While (1-napthyl)Ph,P=NSiMejs (6) incorporates the alpha scintillating
napthyl moiety,” the fluorescence and scintillation properties of
(1-napthyl)Ph,P=NSiMe; (6) are not reported due to the instability of
[(1-napthyl)Ph,P=NH, ][ReO4] (7), which degrades in solution on the order of minutes
to hours.

For the fluorescence and scintillation studies of (9-anthracenyl)Ph,P=NSiMe; (2)
and its derivatives, samples (10 M) were prepared by diluting stock solutions (10 M)
in toluene. These samples where analyzed by UV-Vis absorption and fluorescence
spectroscopy and liquid scintillation counting (LSC). By LSC, samples (10~ M) were
counted in toluene alone and also in LSC cocktail, with a total sample volume of 10 mL.

Toluene was selected since less polar solvents do not disrupt charge transfer in samples.*’
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Anthracene and PPhy(9anthracenyl) both show three distinct peaks in their
spectra. The spectra of (9-anthracenyl)Ph,P=NSiMejs (2),

[(9-anthracenyl)Ph,P=NH, ][ReO4] (3), and [(9-anthracenyl)Ph,P=NH, ][TcO4] (4) do
not show these structural features. Rather, the features include a small peak representing
the anthracene moiety and an intense broad band typically seen in charge transfer
situations, see Figure 12. The phosphinimine functional group may donate electrons into
the anthracene system through a conjugated network, resulting in a broad and often
structureless spectrum when compared to the original fluorophore.'

If the band is indeed due to charge transfer, two mechanisms are possible. First,
(9-anthracenyl)Ph,P=NSiMe; (2) is fully conjugated, and charge transfer may occur
through the bonds present in the phosphinimine. Second, as seen in other systems,
photoexcited anthracene may form intramolecular excited complexes, exciplexes, with

47,48

tertiary amines. This exciplex would be the result of direct interaction of the

anthracene moiety with the imine nitrogen through space.*®

The intensity of this broad band is attenuated for
[(9-anthracenyl)Ph,P=NH, "] [®TcO4] (4) compared to
[(9-anthracenyl)Ph,P=NH, ][ReO4] (3), and both show a significant intensity reduction
compared to (9-anthracenyl)Ph,P=NSiMes (2). Due to the lanthanide contraction, Re and
Tc have almost identical sizes and thus ReO4 and TcOy4 also have identical sizes. The
ionic radii are 0.37 A and 0.38 A for Tc(VII) and Re(VII), respectively.32 The volt-
equivalents for ReOy4’ (2.588)™ and TcO4 (3.300)** show that they are very similar in

their oxidation-reduction potential and in their electron-withdrawing character. This

similarity is seen in the small difference between the fluorescence intensity of
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[(9-anthracenyl)Ph,P=NH, " ][ReO4] (3) and [(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4)
when compared to the significant quenching that [(9-anthracenyl)Ph,P=NH, ][ReO,] (3)
and [(9-anthracenyl)Ph,P=NH, " ][*’TcO4] (4) show over (9-anthracenyl)Ph,P=NSiMe;
(2).

The fluorescence peak shift does not change for (9-anthracenyl)Ph,P=NSiMe; (2),
[(9-anthracenyl)Ph,P=NH, ][ReO4] (3), or [(9-anthracenyl)Ph,P=NH,][**TcO4] (4).
The only noticeable difference in the spectra is the reduction in the fluorescent signal
with the electron-withdrawing substituents. Using this intensity attenuation or quenching
of fluorescence as a sensing process can be done but is difficult. The number of
attenuated fluors in the presence of **TcO,” will be small compared to the number of
unattenuated fluors since the concentration of **TcOy4 will be low in environmental
samples. Quenching can also be caused by other factors in addition to the presence of the
target analyte,'' such as chemical degredation. The attenuation or quenching of the
fluorescent intensity makes (9-anthracenyl)Ph,P=NSiMej; (2) a poor candidate for a

99TCO4' sensor. The fluorescence data is shown in Figures 12 and 13.
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Figure 12: Fluorescence Spectra for Anthracene, PPhy(anthracenyl), (9-
anthracenyl)Ph,P=NSiMe; (2), [(9-anthracenyl)Ph,P=NH,"][ReO,] (3), and [(9-
anthracenyl)Ph,P=NH,"][TcO4] (4)
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The samples measured for fluorescence were also measured for activity by LSC in
both toluene and LSC cocktail. The counting data is shown in Table 12. As expected,
the samples that contain no **Tc¢ (radioactivity) do not generate any counts above
background. These samples (A-G) include a blank containing no solute (A), only
anthracene (B), PPh,(9anthracenyl) (C), (9-anthracenyl)Ph,P=NSiMe; (2) (D),
(9-anthracenyl)Ph,P=NSiMejs (2) with HCI to ensure hydrolysis to
(9-anthracenyl)Ph,P=NH," (E), [(9-anthracenyl)Ph,P=NH, " ][ReO,] (3) (F), and
anthracene + NH4ReO4 (G). Sample (H) contains 10 M anthracene and NH4”TcO,, and
sample (J) contains 10~ M [(9-anthracenyl)Ph,P=NH, ][**TcO4] (4). Although the total
anthracene and **TcOj concentrations are equal in both (H) and (J), 10° M anthracene
and NH,”’TcO,4 (H) and 10™ M [(9-anthracenyl)Ph,P=NH, ][**TcO47] (4) (J), the count
rate increased in sample (J) where the ion pair was present. This is due to the proximity
of the anthracene to ~*TcO4 in sample (J), whereas in sample (H) both anthracene and
*TcO,” would be distributed evenly in solution. Sample (I) contains 10~ M anthracene
and 10° M NH,°TcO,. The count rate increased in sample (I) compared to both samples
(H) and (J) due to an increase in fluor concentration, which increases the likelihood of a
beta particle interaction with the fluor. Sample (K) contains [9-
anthracenyl)Ph,P=NH, ][ReO4] (3) plus NH4”TcO,. The count rate is lower in [9-
anthracenyl)Ph,P=NH, ][ReO4] (3) plus NH4”TcO,4 (K) than in 10 M anthracene and
NH,*TcO, (H) and 10° M [(9-anthracenyl)Ph,P=NH,"] [TcO4] (4) (J) since the
anthracene is in close proximity to the nonradioactive NH4ReO,4. Counts are still seen
since NH, *TcOy, is present in solution with the anthracene moiety. Sample (L) contains
NH,”’TcO4 alone. The count rate for this sample (in LSC cocktail only) is significantly
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higher than in sample (J) (in toluene), which contains

[(9-anthracenyl)Ph,P=NH, ][ TcO4] (4), 116300 + 117 versus 7900 + 126. The same
amount of NH,”*TcOy is present in both samples but the count rate where anthracene is
the only scintillator is significantly lower. In addition, the count rate for 10° M
NH,”TcOy (in LSC cocktail only) is higher than for 10° M
[(9-anthracenyl)Ph,P=NH,"][**TcO4] (4) (in LSC cocktail). Both samples contain the
same amount of *’TcOy” and their count rates should be comparable or possibly higher in
sample (J) (in LSC cocktail) with the additional anthracene fluor. As seen in the solid
scintillation studies below, [(9-anthracenyl)Ph,P=NH, ] [PTcO4] (4) may cause
quenching, which would prevent light emission and lower the count rate. The trends
observed with the toluene samples are also seen with the LSC cocktail samples, only with
higher count rate observed as a result of the large amount of fluor present in LSC

cocktail.
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Table 12. Fluorescence samples prepared in toluene and
LSC cocktail measured for activity

Sample cpm in Toluene cpm in LSC
cocktail
A | Blank 415 130+ 12
B | Anthracene 47+ 4 140 £ 10
C | Phy(9anthracenyl)P 35+£5 100+ 10
D | Phy(9anthracenyl)P=NSiMes (2) 47+ 6 110+9
E | [Phy(9anthracenyl)P=NH, " ][CI] control 49+3 240 + 20
F | [Phy(9anthracenyl)P=NH, ][ReO4] (3) 47+ 4 120+ 9
G | Anthracene + NH4sReOy4 50+3 96+ 8
H | Anthracene (10° M) + NH,'TcO,4 (10 M) 2450 + 29 28000 + 125
I | Anthracene (107 M) + NH, " TcO4 (10° M) 14200 + 619 N/A
J | [(9-anthracenyl)Ph,P=NH, ][ TcO4] (4) 7900 + 126 85000 + 297
K | [Phy(9anthracenyl)P=NH, J[ReO,] (3) + 1900 + 49 N/A
NH,”TcOq4
L | NH,”TcO4 N/A 116300 + 117

*Note: All sample contain 10~ M unless otherwise noted. N/A = Not Applicable

In addition to using a reporter unit attached to the phosphinimines (as with (9-
anthracenyl)Ph,P=NSiMejs (2)), external reporters can also be used. The method reported
here is similar to that of Egorov et. al at Pacific Northwest National Laboratory."*

Columns were prepared with either Ph;P=NSiMes (1) or (9-anthracenyl)Ph,P=NSiMe;
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(2) alone and with either Ph;P=NSiMe; (1) or (9-anthracenyl)Ph,P=NSiMej; (2) in the
presence of external scintillators (PPO and bis-MSB). It is necessary to use bis-MSB or
POPOP as wavelength shifters for PPO since PPO does not emit light in the most
sensitive wavelength region (i.e., 363 nm vs. ~ 450 nm)® for the photomultiplier tubes.
The secondary fluors bis-MSB and POPOP absorb light emitted by PPO in the presence
of radioactivity and reemit it in the sensitive wavelength region. Solubility problems
were encountered with POPOP (crystallized out of solution without coating the silica)
and so it was not used in the preparation of the columns. Anthracene emits light in the
sensitive wavelength region and does not require a secondary fluor. It could potentially
be used to replace both PPO and bis-MSB.

Solutions containing *’TcOy in 0.15 M NaCl were run through the columns to
generate the phosphiniminium permetallate. The presence of *”"TcOy4 allowed detection
using a Nal(Tl) detector to ensure the column was run properly and the data matched the
extraction behavior observed in Chapter 3: Radiochemistry. The data for **™TcO,  tracer
is present in Appendix 3. The columns were placed in 20 mL LSC vials and then placed
in the LSC instrument, where the scintillation properties of each column were measured
over time. The scintillation data is shown in Figures 14 and 15. Silica coated with only
Ph;P=NSiMe; (1) showed a count rate of 900 = 10 cpm while silica coated with
(9-anthracenyl)Ph,P=NSiMes (2) showed a count rate of 200 + 31 cpm. The samples
using (9-anthracenyl)Ph,P=NSiMej; (2), however, showed an increase in scintillation over
time to approximately the same count rate as samples using Ph;P=NSiMes (1). This
suggests that (9-anthracenyl)Ph,P=NSiMe; (2) is quenching the count rate and this
quenching goes away over the course of approximately 1 month. Samples using
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Ph;P=NSiMe; (1) with PPO/bis-MSB showed a large count rate of 150,000 + 1319 cpm,
which then decreased over the course of 1 month. If the initial large count rate was not
the result of scintillation caused by *’TcO, it could have been the result of
chemoluminescence resulting in scintillation that was not the result of B~ particle
emission.”” The decrease of the signal over time could be the result of reduction of the
chemoluminescence or photobleaching of the fluor. Samples containing (9-
anthracenyl)Ph,P=NSiMej; (2) with PPO/bis-MSB showed a count rate of 3000 + 409
cpm, which increased over the course of 1 month. This was still significantly lower than
the samples containing Ph;P=NSiMe; (1) with PPO/bis-MSB, and could be due to
(9-anthracenyl)Ph,P=NSiMe; (2) quenching the scintillation. This result is similar to the
increase in the count rate with (9-anthracenyl)Ph,P=NSiMejs (2) alone. These results
were not anticipated. Since (2) contains a known scintillator (anthracene) and was
already observed to scintillate in toluene in the presence of **TcOy, it was expected that
samples containing (9-anthracenyl)Ph,P=NSiMe; (2) would result in increased
scintillation compared to Ph;P=NSiMes (1) and that samples containing
(9-anthracenyl)Ph,P=NSiMejs (2) with PPO/bis-MSB would show increased scintillation

compared to samples containing Ph;P=NSiMe; (1) and PPO/bis-MSB.
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Figure 14: Counts per minute (cpm) for solid phase extraction samples
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Figure 15: Counts per minute (cpm) for solid phase extraction samples
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4.4 Conclusion
The fluorescence properties of (9-anthracenyl)Ph,P=NSiMejs (2) show an intense
broad band typically seen in charge transfer that is not present in anthracene or the

corresponding phosphine. The intensity of this broad band is attenuated for
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[(9-anthracenyl)Ph,P=NH, " ][ReO4] (3) and [(9-anthracenyl)Ph,P=NH, ][’ TcO4] (4)
because of the electron-withdrawing nature of MOy4". The phosphiniminium cation of
(9-anthracenyl)Ph,P=NSiMe; (2) scintillates in the presence of the beta emitting **TcOy4
to produce a signal as demonstrated by the [(9-anthracenyl)Ph,P=NH, "] [*TcO4] (4).
Based on this result, silica was coated with Ph;P=NSiMejs (1) or
(9-anthracenyl)Ph,P=NSiMejs (2) alone or in the presence of PPO/bis-MSB. The results
showed that (9-anthracenyl)Ph,P=NSiMejs (2) alone or with PPO/bis-MSB had a very
low scintillation count rate that increased over the course of one month. Ph;P=NSiMe;
(1) alone produced a very low scintillation count rate, which remained constant over time
since no scintillator was present. Ph;P=NSiMe; (1) with PPO/bis-MSB produced a large
count rate initially that decreased over the course of one month. The solid scintillator
columns did not produce a steady signal over time so that (9-anthracenyl)Ph,P=NSiMes
(2) alone, and Ph;P=NSiMe; (1) or (9-anthracenyl)Ph,P=NSiMe; (2) with PPO/bis-MSB
cannot be used to generate a scintillation sensor. This could be resolved by two different
methods. First, the phosphinimine could be altered to prevent the chemoluminescence or
quenching problems observed. The altered phosphinimine may also have superior
selectivity for TcOy4". Altering the phosphinimine could include attaching different
fluors in the place of anthracene or changing substituent groups so that the signal
generated with external scintillators would be constant over time. Second, the external
scintillator could be changed. Other scintillators, such as anthracene, are known and

could be used to replace PPO or bis-MSB.
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CHAPTER 5: FUTURE GOALS

To complete the radiochemical characterization data set for Ph;P=NSiMes (1),
several additional studies should be performed. The results for PhsP=NSiMe; (1) show
that it is stable and the phosphiniminium cation extracts TcO4 under acidic and neutral
conditions but undergoes hydrolysis in strong base. While many environmental samples
have the potential to be basic, they will not usually be strongly basic. A pH study of the
stability of PhsP=NSiMes (1) from pH 7-12 using phosphate buffer solutions would show
at what pH significant hydrolysis of the phosphinimine to the phosphine oxide begins.
Expanding the pH window eliminates sample pretreatment, which would decrease waste
generation and expense. After establishing the pH window for PhsP=NSiMe;s (1), it
would be valuable to investigate the pH window for (9-anthracenyl)Ph,P=NSiMe; (2).
Since the phosphiniminium cation of (9-anthracenyl)Ph,P=NSiMej; (2) already shows
much better selectivity for TcO4™ over other anions, it would be useful to determine
whether it is stable over a wider pH window.

Two additional anions should also be investigated with Ph;P=NSiMes (1) and
possibly with (9-anthracenyl)Ph,P=NSiMejs (2), bicarbonate and uranyl nitrate. TcOy is

- 49,50
known to react and form complexes with carbonates™

and they could interfere with
TcOy4 extraction. Due to pH, HCO3™ would be the most readily available carbonate
species in the environment and the competition of this species with TcO4™ should be
investigated. Nuclear waste streams come from reprocessing of nuclear fuel and usually
begin by dissolving the fuel in nitric acid.”’ Depending on the specific process used, the

solution undergoes a series of chemical treatments. Once uranium, in the form of uranyl

nitrate, is purified, TcOy4" is a major contaminate and handling problem. If
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phosphinimines are selective for TcO4™ over uranyl nitrate they could be used as
extractants to purify nuclear waste or in reprocessing technology.

The phosphiniminium cations of phosphinimines Ph;P=NSiMejs (1) and
(9-anthracenyl)Ph,P=NSiMejs (2) have been shown to be selective for TcO4 under
laboratory conditions. Natural waters with a known quantity of TcO,4 added should be
tested to determine if the phosphinimines are selective under actual environmental
conditions. Waters from a variety of sources around the country that are or are known to
be similar to waters that are potentially contaminated should be tested.

Silica was used as a solid support in these studies due to its ready availability and
low cost. Several problems exist with using silica, including instability at high and low
pH, inconsistencies between manufacturers, batch numbers, and lot numbers, and severe
optical quenching when using a scintillator. Other supports should be investigated that
alleviate these problems. Scintillating organic fibers and beads were considered but
dissolve in organic solvents, eliminating the ability to coat the phosphinimine on the
surface. Porous microbeads and similar supports from companies like Eichrom may
provide suitable supports for further studies.

Of the phosphinimines reported here, PhsP=NSiMe; (1) and
(9-anthracenyl)Ph,P=NSiMe; (2) are mildly moisture sensitive but the phosphiniminium
cations form stable complexes with pertechnetate and perrhenate.
(1-napthyl)Ph,P=NSiMe; (6) is mildly moisture sensitive but the phosphiniminium cation
does not form a stable complex with perrhenate and (p-COOMe)CsH4Ph,P=NSiMejs (8)
is extremely moisture sensitive and the phosphiniminium cation does not form stable ion

pairs with perrhenate. This instabililty is shown in the degradation of the ion pair in
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solution over the course of minutes to hours. Additional phosphinimine derivatives
should be synthesized to test for their stability, stability of the ion pairs, and their
extraction abilities. These derivatives could include additional functionalization of
(p-COOMe)CsH4Ph,P=NSiMe; (8) to add a polymer or reporter group, possibly
increasing the stability of this phosphinimine. Derivatives could also include other types
of reporter groups, multiple phosphinimine groups in a linear chain or attached to a
tripodal ligand, alkyl phosphinimines to compare to the aryl phosphinimines reported
here.

In addition to synthesizing other phosphinimines, a method to generate a signal is
still required in order to generate a sensor. The internal anthracene reporter on
(9-anthracenyl)Ph,P=NSiMejs (2) did not function as a suitable scintillator. Using
PPO/bis-MSB as external reporters in the presence of PhsP=NSiMej; (1) or
(9-anthracenyl)Ph,P=NSiMe; (2) did not generate a reliable signal. Synthesizing
phosphinimines with other internal reporters such as fluorescein or utilizing other
external reporters such as anthracene are possible methods to produce a reliable signal.

Once a method of producing a reliable signal is developed, a functioning sensor
should be assembled or generated. It would require a sensor material that could be
introduced and removed (possibly in a column format), a measurement chamber,
photomultiplier tube(s), a method of processing the signal, etc. The efficiency and

sensitivity would need to be measured to compare to current methods.
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CHAPTER 6: CONCLUSION

Four phosphinimines were synthesized, fully characterized, and tested
radiometrically for the ability to extract TcO4 in the presence of a variety of other anions.
Both Ph;P=NSiMe;s (1) and (9-anthracenyl)Ph,P=NSiMe; (2) are mildly moisture
sensitive but the phosphiniminium cations form stable complexes with ReO4 and TcOy.
The crystal structures of [(9-anthracenyl)Ph,P=NH, ][ReO,] (3) and
[(9-anthracenyl)Ph,P=NH,][TcO,] (4) are reported and they are isostructural.
(1-napthyl)Ph,P=NSiMe; (6) and (p-COOMe)CsH4Ph,P=NSiMej; (8) are more moisture
sensitive than Ph;P=NSiMejs (1) or (9-anthracenyl)Ph,P=NSiMe; (2), but the greatest
difference is the instability of the complexes of the phosphiniminium cations with ReO,".
This instability makes both (1-napthyl)Ph,P=NSiMe; (6) and
(p-COOMe)CsH4Ph,P=NSiMej; (8) poor choices for use in a sensor.

All four phosphinimines were tested in the presence of a variety of inorganic and
organic anions. The phosphiniminium cation of Ph;P=NSiMejs (1) is more selective for
TcO4 than CI', NOs', H;PO4/H,PO,4", H,SO4/HSOy, and fumerate. lodide, acetate,
benzoate, and lactate all compete significantly with TcO4” when they are in large excess.
Iodide and acetate in equimolar concentration do not compete with TcOy, and it is
reasonable to assume that benzoate and lactate behave similarly. The phosphiniminium
cations of (9-anthracenyl)Ph,P=NSiMejs (2) and (1-napthyl)Ph,P=NSiMes (6) showed
significantly less competition of other anions with TcO,™ than the phosphiniminium
cation of Ph;P=NSiMe; (1). However, they are more expensive and time consuming to
produce, and the phosphiniminium perrhenate complexes with (1-napthyl)Ph,P=NSiMes
(6) are not stable. The phosphiniminium cation of (p-COOMe)CsH4Ph,P=NSiMe;s (8) is
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selective for TcO4 in the presence of some anions but the sensitivity of the
phosphinimine to moisture makes it to difficult to handle.

The fluorescent and scintillation properties of (9-anthracenyl)Ph,P=NSiMe; (2)
were investigated. The anthracene moiety does fluoresce, but the emission is
significantly altered in the presence of the imine group, going from a sharp, four peak
emission to a broad charge transfer band. The presence of ReO4 or TcOy4 affect the
emission even more significantly, reducing the intensity of emission drastically.
[(9-anthracenyl)Ph,P=NH,][TcO,] (4) also scintillates in toluene in the presence of
*TcOy4 but shows a quenching effect of the scintillation in LSC cocktail. This quenching
effect is also present in the solid phase extraction scintillation experiments. (9-
anthracenyl)Ph,P=NSiMe; (2) alone shows less scintillation in the presence of **TcOy,
than Ph;P=NSiMe; (1) when coated onto a solid support. (9-anthracenyl)Ph,P=NSiMe;
(2) in the presence of PPO/bis-MSB shows significantly less scintillation in the presence
of 99TCO4' than Ph;P=NSiMe; (1) in the presence of PPO/bis-MSB when coated onto a
solid support. The most significant problem with the solid extraction scintillation
experiments for either PhsP=NSiMejs (1) or (2), either alone or in the presence of
PPO/bis-MSB, is the lack of a reproducible signal over time. The count rate for all the
samples changed over the course of a month.

The phosphiniminium cation of PhsP=NSiMe; (1), (9-anthracenyl)Ph,P=NSiMes
(2), (1-napthyl)Ph,P=NSiMe;s (6), and (p-COOMe)CsH4Ph,P=NSiMe; (8) are selective
for TcOy in the presence of other anions to varying degrees. The high stability and
selectivity in the presence of **TcO,” makes the phosphiniminium cations of
Ph;P=NSiMe; (1) and (9-anthracenyl)Ph,P=NSiMes (2) promising extractants for either
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use in a scintillation sensor or for pertechnetate separation. This separation method is an
improvement over other methods like anion-exchange chromatography in both the
selectivity for TcO4 and in the ability to sample large volumes. Large volumes of
contaminated water can be run through phosphinimine columns resulting in both
preconcentration of TcO4™ and remediation of the water. To date, preconcentration
involves tedious and time consuming chemistry by a trained technician. The
phosphinimines provide an easy to implement preconcentration method that could be
both time and cost effective. A variety of analysis methods could then be implemented if
the amount of TcO4 needs to be determined. Having a method that is fast and easy to
implement has the benefits of reduced worker exposure to hazardous chemicals and
radioactivity in addition to the reduction of chemical waste and secondary wastes like
gloves, vials, etc. With further development, the column material or phosphinimine
extractant could be equipped with reporter groups to determine the amount of TcOy4”
without further analysis. If other suitable derivatives could be synthesized, a library of
extractants could be formed showing which phosphinimine to use in which extraction

situation or water sample.
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APPENDIX 1: CRYSTAL DATA AND STRUCTURE REFINEMENT FOR
[(9anthracenyl)Ph,P=NH,"][ReO4] (3) and [(9anthracenyl)Ph,P=NH,"][TcO,] (4)

X-ray Crystal Data, Data Collection Parameters, and Refinement Parameters of (3)

and (4)
3 4
Formula C,sH21NO4Pre C,ysH21NO4PTC
Fw 628.61 540.41
cryst syst Monoclinic monoclinic
space group P2 P2
a(A) 11.3047(5) 11.2876(3)
b (A) 16.3983(8) 16.3619(4)
c(A) 12.2469(6) 12.2203(3)
o (deg) 90 90
B (deg) 92.3440(10) 92.16
v (deg) 90 90
V (A% 2268.40(19) 2255.32(10)
Z 4 4
Peatca (9/cM’) 1.841 1.592
T, K 173(2) 173(2)
4, mm* 5.461 0.743
Asource (A) 0.71073 0.71073
R(F)? 0.0193 0.0266
Ru(F)? 0.0489 0.0736
GOF 1.025 1.064

"R=| IFol - IFc| I/2]Fol ). Rw=[Ew(IFe?| - [F2 ) sm(| Fo? |2
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Crystal data and structure refinement for [(9anthracenyl)Ph,P=NH;"][ReO,] (3)
Table 1. Crystal data and structure refinement for laanthre.
Identification code

d:\xtals\jurisson\leah\laanthre\laanthre

Empirical formula C26 H21 N 04 P Re

Formula weight 628.61

Temperature 173(2) K

Wavelength 0.71073 A

Crystal system, space group ?, 7

Unit cell dimensions a = 11.3047(5) A alpha = 90 deg.

b = 16.3983(8) A beta = 92.3440(10)

deg.
c = 12.2469(6) A gamma = 90

deg.

Volume 2268.40(19) A"3

Z, Calculated density 4, 1.841 Mg/m™3

Absorption coefficient 5.461 mm™-1

F(000) 1224

Crystal size 0.50 x 0.30 x 0.15 mm

Theta range for data collection 2.08 to 27.11 deg.

Limiting indices -14<=h<=12, -21<=k<=20, -
15<=1<=15

Reflections collected / unique 15994 / 5001 [R(int) = 0.0220]

Completeness to theta = 27.11 99.5 %

Max. and min. transmission 0.4947 and 0.1710

Refinement method Full-matrix least-squares on
FA2

Data / restraints / parameters 5001 /7 0 / 306
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Goodness-of-fit on F2 1.025

Final R indices [I>2sigma(l)] R1 = 0.0193, wR2 = 0.0489
R indices (all data) R1 = 0.0217, wR2 = 0.0500
Largest diff. peak and hole 0.873 and -0.695 e.A™-3
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Table 2. Atomic coordinates ( x 10M4) and equivalent isotropic
displacement parameters (A™2 x 1073) for laanthre.
U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

X y z uCeq)
Re(1) 10357(1) 6014(1) 1805(1) 22(1)
P(1) 7426(1) 3418(1) 1298(1) 17(1)
o) 11882(2) 6011(1) 1909(2) 36(1)
N(1) 7931(2) 4156(1) 578(2) 24(1)
c(L) 6217(2) 2955(2) 541(2) 18(1)
0(2) 9888(2) 6737(2) 871(2) 45(1)
c(2) 5052(2) 3265(2) 629(2) 19(2)
0(3) 9748(3) 6212(2) 3026(2) 68(1)
c(3) 4796(2) 4061(2) 1040(2) 24(1)
0(4) 9894(2) 5062(2) 1361(2) 53(1)
C(4) 3655(2) 4338(2) 1069(2) 28(1)
c(5) 2688(3) 3846(2) 697(3) 30(1)
c(6) 2893(2) 3088(2) 287(2) 27(1)
c(7) 4072(2) 2783(2) 224(2) 20(1)
c(8) 4287(2) 2028(2) ~253(2) 21(1)
C(9) 5428(2) 1768(2) ~472(2) 20(1)
C(10) 5620(3) 1047(2) -1093(2) 25(1)
C(11) 6714(3) 852(2) -1424(2) 28(1)
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c(12)
C(13)
C(14)
C(15)
C(16)
c(17)
C(18)
C(19)
C(20)
c(21)
c(22)
C(23)
C(24)
C(25)

C(26)

7693(2)
7561(2)
6422(2)
8533(2)
9724(2)
10579(2)
10247(3)
9057(3)
8197(2)
6981(2)
7481(2)
7224(3)
6472(3)
5976(3)

6231(2)

1370(2)
2034(2)
2257(2)
2673(2)
2859(2)
2315(2)
1602(2)
1419(2)
1949(2)
3826(2)
4560(2)
4848(2)
4414(2)
3684(2)

3385(2)

-1141(2)
-489(2)
-109(2)
1717(2)
1630(2)
2040(2)
2532(2)
2630(2)
2220(2)
2585(2)
2961(2)
3987(2)
4641(2)
4265(2)

3241(2)
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Table 3. Bond lengths [A] and angles [deg] for laanthre.

Re(1)-0(3) 1.703(3)
Re(1)-0(2) 1.716(2)
Re(1)-0(1) 1.724(2)
Re(1)-0(4) 1.728(2)
P(1)-N(D) 1.616(2)
P(1)-C(1) 1.788(2)
P(1)-C(21) 1.803(3)
P(1)-C(15) 1.808(2)
C(1)-C(14) 1.419(3)
C(1)-C(2) 1.420(3)
C(2)-C(3) 1.433(4)
C(2)-C(7) 1.433(3)
C(3)-C(4) 1.369(4)
C(4)-C(5) 1.419(4)
C(5)-C(6) 1.363(4)
C(6)-C(7) 1.429(4)
C(7)-C(8) 1.395(4)
C(8)-C(9) 1.394(4)
C(9)-C(10) 1.428(4)
C(9)-C(14) 1.436(3)
C(10)-C(11) 1.355(4)
C(11)-C(12) 1.426(4)
C(12)-C(13) 1.362(4)
C(13)-C(14) 1.433(3)
C(15)-C(16) 1.389(3)
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C(15)-C(20)
C(16)-C(17)
C(17)-C(18)
C(18)-C(19)
C(19)-C(20)
C(21)-C(26)
C(21)-C(22)
C(22)-C(23)
C(23)-C(24)
C(24)-C(25)

C(25)-C(26)

0(3)-Re(1)-0(2)
0(3)-Re(1)-0(1)
0(2)-Re(1)-0(1)
0(3)-Re(1)-0(4)
0(2)-Re(1)-0(4)
0(1)-Re(1)-0(4)
N(1)-P(1)-C(1)
N(1)-P(1)-C(21)
C(1)-P(1)-C(21)
N(1)-P(1)-C(15)
C(1)-P(1)-C(15)
C(21)-P(1)-C(15)
C(14)-C(1)-C(2)
C(14)-C(1)-P(1)
C(2)-C(1)-P(D)
C(1)-C(2)-C(3)
C(D-C(2)-C(M)

109.

112.

109.

108.

109.

108.

108.

108.

112.

113.

111.

102.

120.

119.

120

123.

118.

.398(4)
.394(4)
.374(4)
.388(4)
.382(4)
.393(4)
.399(4)
.385(4)
.389(5)
.392(5)

.387(4)

16(15)
04(13)
34(11)
78(16)
43(13)
05(11)
35(13)
46(13)
09(12)
91(12)
46(11)
52(11)
3(2)

63(18)
.01(18)
7(2)

8(2)



C(3)-C(2-C(7)
C(H-C(3)-C(D
C(3)-C(H-C(B)
C(6)-C(5)-C(4)
C(5)-C(6)-C(7)
C(8)-C(7)-C(6)
C(8)-C(M-C(2)
C(6)-C(M-C(2)
C(9)-C(B)-C(7)
C(8)-C(9)-C(10)
C(8)-C(9)-C(14)
C(10)-C(9)-C(14)
C(11)-C(10)-C(9)
C(10)-C(11)-C(12)
C(13)-C(12)-C(11)
C(12)-C(13)-C(14)
C(1)-C(14)-C(13)
C(1)-C(14)-C(9)
C(13)-C(14)-C(9)
C(16)-C(15)-C(20)
C(16)-C(15)-P(1)
C(20)-C(15)-P(1)
C(15)-C(16)-C(17)
C(18)-C(17)-C(16)
C(17)-C(18)-C(19)
C(20)-C(19)-C(18)
C(19)-C(20)-C(15)
C(26)-C(21)-C(22)

C(26)-C(21)-P(1)
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117.

121.

121.

119.

120.

120.

119.

119.

122.

121.

119.

119.

121.

119.

121.

121.

123.

118.

117.

120.

119.

120.

119.

120.

120.

120.

119

120.

4(2)
0(2)
1(3)
7(3)
9(3)
9(2)
3(2)
8(2)
0(2)
1(2)
3(2)
5(2)
0(2)
7(2)
0(3)
0(2)
9(2)
7(2)
4(2)
1(2)
5(2)
12(19)
4(3)
3(3)
3(3)
1(3)

.6(3)
120.

2(2)
7(2)



C(22)-C(21)-P(1)

C(23)-C(22)-C(21)
C(22)-C(23)-C(24)
C(23)-C(24)-C(25)
C(26)-C(25)-C(24)

C(25)-C(26)-C(21)

118.

119.

120.

119.

120.

119.

9(2)
7(3)
3(3)
9(3)
4(3)
5(3)

Symmetry transformations used to
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generate equivalent atoms:



Table 4.

laanthre.

The anisotropic displacement factor exponent takes the form:

-2 pit2 [ h"2 a*™2 U1l + ...

+ 2 h k a* b* U12 ]

Anisotropic displacement parameters (A™2 x 107°3) for

u11 u22 u33 u23 u13 u12
Re(1)  18(1) 25(1) 23(1) ~2(1) 1(1) ~1(1)
P(1) 15(1) 16(1) 18(1) -1(1) -3(1) -1(1)
o(1) 20(1) 39(1) 49(1) 6(1) -3(1) ~4(1)
N(1) 25(1) 24(1) 21(1) 3(1) -2(1) -7(1)
c(1) 16(1) 19(1) 18(1) 2(1) -3(1) ~2(1)
0(2) 38(1) 44(1) 53(1) 16(1) -1(1) 11(1)
c() 19(1) 22(1) 18(1) 3(1) -2(1) 0(1)
0(3) 52(2) 121(3) 32(1) -15(2) 10(1) 11(2)
c(3) 22(1) 21(1) 27(1) 0(1) -6(1) 1(1)
0(4) 43(1) 35(1) 81(2) -9(1) -10(1) ~14(1)
C(4) 27(1) 26(1) 31(1) ~2(1) -3(1) 5(1)
c(5) 18(1) 35(2) 36(2) 1(1) -1(1) 5(1)
c(6) 17(1) 35(2) 29(1) 0(1) -1(1) ~4(1)
c(?) 16(1) 25(1) 20(1) 1(1) -1(1) -2(1)
c(8) 19(1) 25(1) 20(1) 1(1) ~4(1) -6(1)
C(9) 21(1) 22(1) 16(1) 1(1) -3(1) ~4(1)
C(10)  27(1) 25(1) 24(1) -5(1) -6(1) ~4(1)
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c(11)
c(12)
C(13)
C(14)
C(15)
C(16)
c@7)
C(18)
C(19)
C(20)
c(21)
C(22)
C(23)
C(24)
C(25)

C(26)

30(2)
21(1)
19(1)
18(1)
19(1)
19(1)
19(1)
31(2)
37(2)
22(1)
17(1)
27(1)
41(2)
39(2)
24(1)

21(1)

25(1)
30(1)
24(1)
19(1)
19(1)
29(1)
40(2)
30(2)
20(1)
22(1)
20(1)
21(1)
28(1)
41(2)
40(2)

26(1)

27(1)
24(1)
19(1)
16(1)
18(1)
23(1)
25(1)
31(2)
38(2)
33(1)
21(1)
26(1)
29(1)
24(1)
26(1)

26(1)

-8(1)
-3(D)
0(1)
3D
-3(1)
-1(1)
-3(D)
-5(1)
2D
-1(1)
o)
~2(1)
-8(1)
-7(1)
5(1)
2D

-5(1)

o)
-3(1)
-3(D)
-4(1)
~2(1)
-3(D)
~9(1)
-7(1)
-4(1)
-5(1)
-4(1)
-5(1)
-1(D)

3(1)
-3(D)

2(1)
3(D)
0(1)
-1(D)
0(1)
0(1)
4(1)
12(1)
3D
~2(1)
4(1)
1(1)
4(1)
13(1)
7(1)
o)
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Table 5. Hydrogen coordinates ( x 10”"4) and isotropic

displacement parameters (A™2 x 1073) for laanthre.

X y z uleq)
H(3) 5428 4402 1297 28
H(4) 3508 4869 1344 33
H(5) 1901 4044 732 36
H(6) 2244 2759 41 32
H(8) 3637 1680 -435 26
H(10) 4971 699 -1279 30
H(11) 6828 373 -1842 33
H(12) 8449 1249 -1411 30
H(13) 8233 2355 -284 25
H(16) 9954 3353 1293 28
H(17) 11395 2437 1979 34
H(18) 10834 1233 2807 37
H(19) 8833 929 2980 38
H(20) 7383 1821 2280 31
H(22) 7994 4859 2513 29
H(23) 7564 5346 4245 40
H(24) 6296 4614 5344 41
H(25) 5458 3388 4712 36
H(26) 5898 2885 2990 29
H(2N) 7830(30) 4140(20) 0(30) 27(10)
H(IN) 8540(30) 4440(20) 790(30) 43(10)
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Table 6. Torsion angles [deg] for laanthre.

N(1)-P(1)-C(1)-C(14) 95.1(2)

C(21)-P(1)-C(1)-C(14) -145.28(19)
C(15)-P(1)-C(1)-C(14) -31.0(2)
N(1)-P(1)-C(1)-C(2) -87.5(2)
C(21)-P(1)-C(1)-C(2) 32.1(2)
C(15)-P(1)-C(1)-C(2) 146.41(19)
C(14)-C(1)-C(2)-C(3) -164.5(2)
P(1)-C(1)-C(2)-C(3) 18.1(3)
C(14)-C(1)-C(2)-C(7) 11.5(3)
P(1)-C(1)-C(2)-C(7) -165.88(18)
C(1)-C(2)-C(3)-C(4) 177.7(2)
C(7)-C(2)-C(3)-C(4) 1.6(4)
C(2)-C(3)-C(4)-C(5) 0.2(4)
C(3)-C(4)-C(5)-C(6) -0.9(4)
C(4)-C(5)-C(6)-C(7) -0.3(4)
C(5)-C(6)-C(7)-C(8) -176.2(3)
C(5)-C(6)-C(7)-C(2) 2.1(4)
C(1)-C(2)-C(7)-C(8) -0.7(3)
C(3)-C(2)-C(7)-C(8) 175.6(2)
C(1)-C(2)-C(7)-C(6) -179.0(2)
C(3)-C(2)-C(7)-C(6) ~2.7(4)
C(6)-C(7)-C(8)-C(9) 170.4(2)
C(2)-C(7)-C(8)-C(9) -8.0(4)
C(7)-C(8)-C(9)-C(10) ~171.3(2)
C(7)-C(8)-C(9)-C(14) 5.7(4)
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C(8)-C(9)-C(10)-C(11) 171.5(3)

C(14)-C(9)-C(10)-C(11) -5.5(4)
C(9)-C(10)-C(11)-C(12) 0.5(4)
C(10)-C(11)-C(12)-C(13) 3.8(4)
C(11)-C(12)-C(13)-C(14) -3.0(4)
C(2)-C(1)-C(14)-C(13) 162.1(2)
P(1)-C(1)-C(14)-C(13) -20.5(3)
C(2)-C(1)-C(14)-C(9) -13.8(3)
P(1)-C(1)-C(14)-C(9) 163.63(18)
C(12)-C(13)-C(14)-C(1) -177.9(2)
C(12)-C(13)-C(14)-C(9) -2.0(4)
C(8)-C(9)-C(14)-C(1) 5.3(3)
C(10)-C(9)-C(14)-C(1) ~177.7(2)
C(8)-C(9)-C(14)-C(13) -170.9(2)
C(10)-C(9)-C(14)-C(13) 6.1(3)
N(1)-P(1)-C(15)-C(16) 14.4(2)
C(1)-P(1)-C(15)-C(16) 137.3(2)
C(21)-P(1)-C(15)-C(16) ~102.6(2)
N(1)-P(1)-C(15)-C(20) ~171.6(2)
C(1)-P(1)-C(15)-C(20) -48.7(2)
C(21)-P(1)-C(15)-C(20) 71.4(2)
C(20)-C(15)-C(16)-C(17) 0.5(4)
P(1)-C(15)-C(16)-C(17) 174.5(2)
C(15)-C(16)-C(17)-C(18) ~0.4(4)
C(16)-C(17)-C(18)-C(19) -0.3(4)
C(17)-C(18)-C(19)-C(20) 0.8(4)
C(18)-C(19)-C(20)-C(15) -0.7(4)
C(16)-C(15)-C(20)-C(19) 0.0(4)
P(1)-C(15)-C(20)-C(19) -173.9(2)
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N(1)-P(1)-C(21)-C(26)
C(1)-P(1)-C(21)-C(26)
C(15)-P(1)-C(21)-C(26)
N(1)-P(1)-C(21)-C(22)
C(1)-P(1)-C(21)-C(22)
C(15)-P(1)-C(21)-C(22)
C(26)-C(21)-C(22)-C(23)
P(1)-C(21)-C(22)-C(23)
C(21)-C(22)-C(23)-C(24)
C(22)-C(23)-C(24)-C(25)
C(23)-C(24)-C(25)-C(26)
C(24)-C(25)-C(26)-C(21)
C(22)-C(21)-C(26)-C(25)

P(1)-C(21)-C(26)-C(25)

162.

43.

-76.

-22.

-142.

97.

Hydrogen bonds with H..A < r(A) + 3.200 Angstroms and

deg.
D-H
N1-H2N

N1-HIN

6(2)
0(2)
7(2)
9(2)
4(2)
9(2)

_2(4)
_8(2)
_2(4)
_1(4)
.3(4)
_6(4)
_6(4)
1(2)

Symmetry transformations used to generate equivalent atoms:

Table 7.

d(D-H) d(H..A) <DHA
0.710  2.388 163.02
0.855  1.953 176.24
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Hydrogen bonds for laanthre.

d(D..A) A
3.074 01 [ -x+2, -y+1,
2.806 04

<DHA > 110

_Z]



Crystal data and structure refinement for [(9anthracenyl)Ph,P=NH,"][TcO4] (4)

deg.
92.16

deg.

Table 1.

Identification code
Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

deg.

Volume

Z, Calculated density
Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Limiting indices

15<=1<=15

FA2

Reflections collected / unique
Completeness to theta = 27.12
Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters
Goodness-of-fit on F"2

Final R indices [I1>2sigma(l)]
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Crystal data and structure refinement for laanthtc.

laanthtc

C26 H21 N 04 P Tc

540.41

173(2) K

0.71073 A

Monoclinic, P 21/n

a = 11.2876(3) A alpha = 90
b = 16.3619(4) A beta =

c = 12.2203(3) A gamma = 90

2255.32(10) A3

4, 1.592 Mg/m~3
0.743 mm™-1

1096

0.55 x 0.50 x 0.50 mm
2.08 to 27.12 deg.-

-13<=h<=14, -20<=k<=20, -

15944 / 4979 [R(int) = 0.0179]
99.7 %

Semi-empirical from equivalents
0.71 and 0.58

Full-matrix least-squares on

4979 / 0 / 306
1.064

R1 = 0.0266, wR2 = 0.0736



R indices (all data) R1 = 0.0292, wR2 = 0.0754

Largest diff. peak and hole 1.026 and -0.425 e.A™-3
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Table 2. Atomic coordinates ( x 10M4) and equivalent
isotropic

displacement parameters (A™2 x 107"3) for laanthtc.

U(eq) is defined as one third of the trace of the
orthogonalized

Uij tensor.

X y z uleq)
Tc(1) 10349(1) 6015(1) 1817(1) 24D
P(1) 7443(1) 3417(1) 1288(1) 19(1)
o) 11863(1) 6031(1) 1920(2) 39(D)
N(D) 7950(2) 4159(1) 562(2) 26(1)
c(D) 6233(2) 2953(1) 534(1) 20D
0(2) 9872(2) 6730(1) 887(2) 47(D)
C(2) 5070(2) 3267(1) 621(1) 21D
o0(3) 9728(2) 6201(2) 3030(2) 67(1)
o ¢)) 4809(2) 4063(1) 1028(2) 26(1)
04 9923(2) 5063(1) 1373(2) 51(1)
o)) 3669(2) 4343(1) 1058(2) 30D
C() 2700(2) 3851(1) 685(2) 32D
Cc(6) 2905(2) 3092(1) 284(2) 29(1D)
c( 4086(2) 2779(D) 220(1) 23(D)
c(d) 4299(2) 2020(1) -256(1) 24D
o)) 5442(2) 1761(1) -477(1) 22D
c(10) 5636(2) 1038(1) -1099(2) 27(1)
C(11) 6733(2) 842(1) -1435(2) 30(2)
C(12) 7710(2) 1361(1) -1156(2) 28(1D)
c(13) 7577(2) 2028(1) -506(1) 24D
c(14) 6442(2) 2251(1) -118(1) 21D
c(15) 8547(2) 2672(1) 1712(1) 21D
c(16) 9747(2) 2859(1) 1620(2) 25(1)
c@n 10597(2) 2313(D) 2032(2) 30(D)
c(18) 10265(2) 1600(1) 2530(2) 34(D)
c(19) 9072(2) 1414(1) 2627(2) 34D
C(20) 8209(2) 1947(1) 2214(2) 29(1D)
c(21) 6994(2) 3827(1) 2579(1) 22D
C(22) 7496(2) 4562(1) 2952(2) 26(D)
C(23) 7233(2) 4850(1) 3985(2) 35D
Cc(24) 6478(2) 4416(1) 4636(2) 36(L)
C(25) 5982(2) 3686(1) 4265(2) 31(1)
C(26) 6239(2) 3386(1) 3235(2) 26(D)
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Table 3. Bond lengths [A] and angles [deg] for laanthtc.

Tc(1)-0(3)
Tc(1)-0(2)
Te(1)-0(1)
Tc(1)-0(4)
P(1)-N(1)
P(1)-C(1)
P(1)-C(21)
P(1)-C(15)
N(L)-H(2N)
N(L)-H(IN)
c(1)-C(2)
c(1)-Cc(14)
c(2)-C(3)
c(2)-C(7)
c(3)-C(4)
C(3)-HRB)
c(4)-c(5)
C(4)-H(4)
c(5)-C(6)
C(5)-H(5)
c(6)-C(7)
C(6)-H(6)
c(7)-C(8)
c(8)-C(9)
C(8)-H(8)
C(9)-C(10)
C(9)-C(14)
C(10)-C(11)
C(10)-H(10)
c(11)-Cc(12)
C(11)-H(11)
C(12)-C(13)
C(12)-H(12)
C(13)-C(14)
C(13)-H(13)
C(15)-C(20)
C(15)-C(16)
c(16)-C(17)
C(16)-H(16)
c(17)-C(18)
C(17)-H(17)
C(18)-C(19)
C(18)-H(18)
C(19)-C(20)
C(19)-H(19)
C(20)-H(20)
C(21)-C(26)
c(21)-C(22)
c(22)-C(23)
C(22)-H(22)
C(23)-C(24)
C(23)-H(23)
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.6907(18)
.7041(16)
.7091(15)
.7126(16)
.6207(17)
.7890(17)
.8037(19)
.8053(18)
.80(3)
.76(3)
.417(2)
.422(2)
.430(3)
.438(2)
.367(3)
.9500
.419(3)
9500
.359(3)
9500
.432(3)
9500
.396(3)
.394(3)
9500
.427(3)
.440(2)
.357(3)
.9500
.423(3)
.9500
.362(3)
.9500
.429(2)
.9500
.395(3)
.398(2)
.392(3)
9500
.374(3)
.9500
.389(3)
9500
.389(3)
.9500
9500
.393(3)
.399(3)
.390(3)
.9500
.384(3)
.9500



C(24)-C(25)
C(24)-H(24)
C(25)-C(26)
C(25)-H(25)
C(26)-H(26)

0(3)-Tc(1)-0(2)
0(3)-Tc(1)-0(1)
0(2)-Tc(1)-0(1)
0(3)-Tc(1)-0(4)
0(2)-Tc(1)-0(4)
0(1)-Tc(1)-0(4)
N(1)-P(1)-C(1)
N(1)-P(1)-C(21)
C(1)-P(1)-C(21)
N(1)-P(1)-C(15)
C(1)-P(1)-C(15)
C(21)-P(1)-C(15)
P(1)-N(1)-H(2N)
P(1)-N(1)-H(IN)
H(2N)-N(1)-H(IN)
C(2)-C(1)-C(14)
C(2)-C(1)-P(1)
C(14)-C(1)-P(1)
C(1)-C(2)-C(3)
C(1)-C(2)-C(7)
C(3)-C(2)-C(7)
C(4)-C(3)-C(2)
C(4)-C(3)-H(3)
C(2)-C(3)-H(3)
C(3)-C(4)-C(5)
C(3)-C(4)-H(4)
C(5)-C(4)-H(4)
C(6)-C(5)-C(4)
C(6)-C(5)-H(5)
C(4)-C(5)-H(5)
C(5)-C(6)-C(7)
C(5)-C(6)-H(6)
C(7)-C(6)-H(6)
C(8)-C(7)-C(6)
C(8)-C(7)-C(2)
C(6)-C(7)-C(2)
C(9)-C(8)-C(7)
C(9)-C(8)-H(8)
C(7)-C(8)-H(8)
C(8)-C(9)-C(10)
C(8)-C(9)-C(14)
C(10)-C(9)-C(14)
C(11)-C(10)-C(9)
C(11)-C(10)-H(10)
C(9)-C(10)-H(10)
C(10)-C(11)-C(12)
C(10)-C(11)-H(11)
C(12)-C(11)-H(11)
C(13)-C(12)-C(11)
C(13)-C(12)-H(12)
C(11)-C(12)-H(12)
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.388(3)
.9500
.391(3)
9500
9500

OOFrOoOPRr

109.29(11)
112.25(9)
109.15(8)
108.73(12)
109.59(9)
107.80(8)
108.32(9)
108.51(9)
111.96(8)
114.16(9)
111.45(8)
102.37(8)
114.2(19)
121.0(19)
119(3)
120.58(15)
119.92(13)
119.46(13)
124.08(16)
118.61(16)
117.22(16)
121.37(18)
119.3
119.3
121.11(19)
119.4
119.4
119.66(19)
120.2
120.2
121.15(18)
119.4
119.4
121.03(16)
119.48(16)
119.45(17)
121.79(16)
119.1
119.1
121.15(17)
119.48(17)
119.30(17)
121.15(18)
119.4
119.4
119.58(18)
120.2
120.2
121.09(18)
119.5
119.5



C(12)-C(13)-C(14) 121.17(17)

C(12)-C(13)-H(13) 119.4
C(14)-C(13)-H(13) 119.4
C(1)-C(14)-C(13) 124.13(16)
C(1)-C(14)-C(9) 118.39(16)
C(13)-C(14)-C(9) 117.34(16)
C(20)-C(15)-C(16) 120.22(17)
C(20)-C(15)-P(1) 120.24(14)
C(16)-C(15)-P(1) 119.29(14)
C(17)-C(16)-C(15) 119.19(18)
C(17)-C(16)-H(16) 120.4
C(15)-C(16)-H(16) 120.4
C(18)-C(17)-C(16) 120.60(19)
C(18)-C(17)-H(17) 119.7
C(16)-C(17)-H(17) 119.7
C(17)-C(18)-C(19) 120.34(18)
C(17)-C(18)-H(18) 119.8
C(19)-C(18)-H(18) 119.8
C(20)-C(19)-C(18) 120.04(19)
C(20)-C(19)-H(19) 120.0
C(18)-C(19)-H(19) 120.0
C(19)-C(20)-C(15) 119.61(18)
C(19)-C(20)-H(20) 120.2
C(15)-C(20)-H(20) 120.2
C(26)-C(21)-C(22) 120.38(17)
C(26)-C(21)-P(1) 120.63(14)
c(22)-C(21)-P(1) 118.77(15)
c(23)-C(22)-C(21) 119.40(19)
C(23)-C(22)-H(22) 120.3
C(21)-C(22)-H(22) 120.3
C(24)-C(23)-C(22) 120.31(19)
C(24)-C(23)-H(23) 119.8
C(22)-C(23)-H(23) 119.8
C(23)-C(24)-C(25) 120.25(19)
C(23)-C(24)-H(24) 119.9
C(25)-C(24)-H(24) 119.9
C(24)-C(25)-C(26) 120.22(19)
C(24)-C(25)-H(25) 119.9
C(26)-C(25)-H(25) 119.9
C(25)-C(26)-C(21) 119.44(19)
C(25)-C(26)-H(26) 120.3
C(21)-C(26)-H(26) 120.3

Symmetry transformations used to generate equivalent atoms:
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Table 4. Anisotropic displacement parameters (A"2 x 1073) for
laanthtc.
The anisotropic displacement factor exponent takes the form:

2 piM2 [ h™M2 a*2 Ull + ... + 2 h k a* b* Ul12 ]
Uil u22 U33 u23 u13 ui2
Tc(1) 20D 27D 25D -2(D) 1D -1(D)
P(1) 17(2) 19(2) 20D -1(D) -3(D) -2(D)
o) 23(1) 41(1) 51(1) 5(1) -4(1) -3(1)
N(1) 26(1) 25(1) 25(1) 2D -3(D) -7(D)
cC(D 18(1) 21D 21D 1D -4(1) -1(D)
02 41(D) 45(D) 54(D) 14(1) -2(D) 12(1)
C(2) 20(1) 24(1) 20(1) 2(1) -3(1) -1(1)
0(3) 54(1) 117(2) 32(1) -15(1) 11(1) 11(1)
C(3) 25(1) 24(1) 28(1) 1D -6(1) 1D
04 42(D) 35(D) 75(D) -8(1) -8(1) -12(1)
o)) 28(L) 27(D) 34(D) -1(D) -3(D) 6(1)
c() 20(1) 38(1) 38(1) 1) -1(1) 5(1)
C(6) 18(1) 36(1) 31(1) -1(D) -2(1) -3()
C() 19(1) 29(1) 21(1) 2(D) -2(D) -3(D)
C(8) 21(D) 28(L) 23D 0() -4(1) -6(1)
o)) 23D 24(D) 18(1) 1D -4(1) -2(D)
C(10) 29(1) 26(1) 26(1) -4(1) -6(1) -4(1)
c(11) 33(1) 29(1) 28(1) -8(1) -6(1) 3(D)
c(12) 25D 33D 25D -3(D) -1(D) 3(D)
c(13) 21(D) 28(L) 23D 0() -3(D) -2(D)
c(14) 22D 22D 17(1) 2D -2(D) -2(D)
C(15) 20(1) 22(1) 21(1) -4(1) -4(1) 2(1D)
C(16) 23(1D) 30(1) 23(1) -2(D) -2(D) -1(D)
c@an 20D 42(D) 28(L) -3(D) -3(D) 6(1)
Cc(18) 34(1) 33(1) 35(D) -6(1) -11(2) 12(1)
C(19) 38(1) 23D 40(D) 2D -8(1) 1D
C(20) 25(1) 24(1) 36(1) 1) -5(1) -2(1D)
C(21) 19(1) 23(D) 22(1) -1 -4() 3(D)
C(22) 28(L) 22D 28(L) -1(D) -3(D) 1D
C(23) 43(1) 29(1) 32(1) -7(1) -5(1) 4(1)
C(24) 41(1) 43(1) 25(1) -7(1) o(1) 13(1)
C(25) 25(1) 42(1) 27(1) 5(1) 2D 5(1)
C(26) 24(1) 28(1) 27(1) 1D -2(D) o)
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Table 5. Hydrogen coordinates ( x 10”4) and isotropic
displacement parameters (A™2 x 1073) for laanthtc.

X y z u(eq)
H(3) 5440 4405 1284 31
H(4) 3523 4875 1333 36
H(5) 1913 4052 715 39
H(6) 2254 2762 41 34
H(8) 3647 1671 -434 29
H(10) 4987 688 -1281 33
H(11) 6848 361 -1852 36
H(12) 8468 1241 -1429 33
H(13) 8250 2352 -306 29
H(16) 9980 3353 1281 30
H(17) 11415 2434 1969 37
H(18) 10853 1232 2809 41
H(19) 8848 922 2976 41
H(20) 7393 1819 2274 34
H(22) 8011 4861 2504 32
H(23) 7574 5348 4246 42
H(24) 6298 4619 5339 44
H(25) 5466 3389 4716 38
H(26) 5903 2885 2982 32
H(2N) 7840(20) 4103(15) -80(20) 38(7)
H(IN) 8470(20) 4422(16) 780(20) 33(7)
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Table 6.

Torsion angles [deg] for laanthtc.

N(1)-P(1)-C(1)-C(2)
C(21)-P(1)-C(1)-C(2)
C(15)-P(1)-C(1)-C(2)
N(1)-P(1)-C(1)-C(14)
C(21)-P(1)-C(1)-C(14)
C(15)-P(1)-C(1)-C(14)
C(14)-C(1)-C(2)-C(3)
P(1)-C(1)-C(2)-C(3)
C(14)-C(1)-C()-C(7)
P(1)-C(1)-C(2)-C(7)
C(1)-C(2)-C(3)-C(H)
C(7)-C(2)-C(3)-C(D)
C(2)-C(3)-C(4)-C(5)
C(3)-C(4)-C(5)-C(6)
C(4)-C(5)-C(6)-C(7)
C(5)-C(6)-C(7)-C(8)
C(5)-C(6)-C(7)-C(2)
C(1)-C(2)-C(7)-C(8)
C(3)-C(2)-C(7)-C(8)
C(1)-C(2)-C(7)-C(6)
C(3)-C(2)-C(7)-C(6)
C(6)-C(7)-C(8)-C(9)
C(2)-C(7)-C(8)-C(9)
C(7)-C(8)-C(9)-C(10)
C(7)-C(8)-C(9)-C(14)
C(8)-C(9)-C(10)-C(11)
C(14)-C(9)-C(10)-C(11)
C(9)-C(10)-C(11)-C(12)
C(10)-C(11)-C(12)-C(13)
C(11)-C(12)-C(13)-C(14)
C(2)-C(1)-C(14)-C(13)
P(1)-C(1)-C(14)-C(13)
C(2)-C(1)-C(14)-C(9)
P(1)-C(1)-C(14)-C(9)
C(12)-C(13)-C(14)-C(1)
C(12)-C(13)-C(14)-C(9)
C(8)-C(9)-C(14)-C(1)
C(10)-C(9)-C(14)-C(1)
C(8)-C(9)-C(14)-C(13)
C(10)-C(9)-C(14)-C(13)
N(1)-P(1)-C(15)-C(20)
C(1)-P(1)-C(15)-C(20)
C(21)-P(1)-C(15)-C(20)
N(1)-P(1)-C(15)-C(16)
C(1)-P(1)-C(15)-C(16)
C(21)-P(1)-C(15)-C(16)
C(20)-C(15)-C(16)-C(17)
P(1)-C(15)-C(16)-C(17)
C(15)-C(16)-C(17)-C(18)
C(16)-C(17)-C(18)-C(19)
C(17)-C(18)-C(19)-C(20)
C(18)-C(19)-C(20)-C(15)
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.18(16)
.43(17)
146.
.13(15)
.26(14)
.27(16)
.39(17)
.9(2)
.0(2)
.69(13)
.76(18)
.4(3)
.0(3)
.5(3)
.6(3)
.89(19)
.0(3)
.0(2)
.60(16)
.95(17)
.3(3)
.01(17)
.9(3)
_221(17)
.8(3)
.43(19)
.6(3)
.4(3)
.8(3)
.7(3)
L4417
.9(2)
.0(2)
.66(13)
.89(17)
e
2102
.81(16)
.63(16)
L4(2)
.46(15)
.33(17)
.50(16)
.23(17)
.35(14)
.81(15)
.3(3)
.59(14)
.4(3)
1103
.4(3)
.5(3)

42(14)



C(16)-C(15)-C(20)-C(19) 0.2(3)

P(1)-C(15)-C(20)-C(19) ~174.04(15)
N(1)-P(1)-C(21)-C(26) 162.31(15)
C(1)-P(1)-C(21)-C(26) 42.81(17)
C(15)-P(1)-C(21)-C(26) -76.67(16)
N(1)-P(1)-C(21)-C(22) -23.09(17)
C(1)-P(1)-C(21)-C(22) ~142.58(14)
C(15)-P(1)-C(21)-C(22) 97.93(15)
C(26)-C(21)-C(22)-C(23) -0.1(3)
P(1)-C(21)-C(22)-C(23) ~174.70(15)
C(21)-C(22)-C(23)-C(24) -0.3(3)
C(22)-C(23)-C(24)-C(25) 0.5(3)
C(23)-C(24)-C(25)-C(26) -0.2(3)
C(24)-C(25)-C(26)-C(21) -0.2(3)
C(22)-C(21)-C(26)-C(25) 0.4(3)
P(1)-C(21)-C(26)-C(25) 174.88(14)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for laanthtc.

Hydrogen bonds with H..A < r(A) + 3.200 Angstroms and <DHA > 110
deg.

D-H d(D-H) d(H..A) <DHA  d(D..A) A

N1-H2N 0.800  2.291 162.65  3.064  O1 [ -x+2, -y+l, -z
1

N1-H1N 0.764  2.058 176.32 2.821 04
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APPENDIX 2: RADIOCHEMICAL COUNTING DATA
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APPENDIX 3: RAW DATA FOR FLUORESCENCE AND SCINTILLATION

STUDIES

Table 1. Fluorescence Sample CPM using LSC with Toluene instead of Cocktail

cpml1l | cpm2 | cpm 3 | average cpm | stdev
blank toluene 37 47 40 41 5
Anthracene 44 51 46 47 4
Ph,(9-anthracenyl)P 36 39 29 35 5
Ph,(9-anthracenyl)P=NH," 53 45 42 47 6
[Ph,(9-anthracenyl)P=NH,"][CI] (w/ acid) 45 51 51 49 3
[Ph,(9-anthracenyl)P=NH,"][ReO,] 45 45 52 47 4
anthracene + ReO, 48 49 54 50 3
anthracene (10°M ) + TcO, (10° M) 2464 | 2419 | 2474 2452 29
anthracene (10° M) + TcO, (10° M) 14810 | 14174 | 13572 14185 619
[Ph,(9-anthracenyl)P=NH,"][TcO,] 8010 7895 7757 7887 127
[Ph,(9-anthracenyl)P=NH,"][ReO,] + TcO, | 1889 1946 1849 1895 49
Table 2: Fluorescence Sample CPM using LSC with Cocktail
cpm 1 cpm 2 cpm 3 | average cpm | stdev

blank LSC 113 129 136 126 12
Anthracene 134 135 151 140 10
Ph,(9-anthracenyl)P 86 101 105 97 10
Ph,(9-anthracenyl)P=NH," 117 100 109 109 9
[Ph,(9-anthracenyl)P=NH,"][CI (w/ acid) 220 258 228 235 20
[Ph,(9-anthracenyl)P=NH,"][ReO,] 128 115 111 118 9
anthracene + ReO, 88 103 96 96 8
anthracene (10°M ) + TcO, (10° M) 27992 | 28188 | 27956 28045 125
[Ph,(9-anthracenyl)P=NH,"][TcO,] 85315 | 84723 | 85052 85030 297
10° M TcO, 116430 | 116257 | 116207 116298 117
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