PHOSPHINIMINES AS POTENTIAL TECHNETIUM ENVIRONMENTAL SENSORS ## Leah M. Arrigo Dr. Silvia S. Jurisson, Dissertation Supervisor ## **ABSTRACT** Phosphinimines, R₃P=NSiMe₃, undergo hydrolysis to form the phosphiniminium cation, $R_3P=NH_2^+$, which forms the ion pair $[R_3P=NH_2^+][X^-]$ in the presence of an anion. Preliminary studies show that in the presence of TcO₄, Ph₃P=NSiMe₃ forms $[Ph_3P=NH_2^+][TcO_4^-]$ and $[Ph_3P=NH_2^+]$ is selective for TcO_4^- over other anions. Technetium-99 is present as environmental contamination in the form of ⁹⁹TcO₄, which is extremely mobile. Currently available methods to measure this contamination are time consuming and tedious. A method to preconcentrate and measure ⁹⁹Tc environmental contamination in a quick and efficient manner is needed. The selectivity of the phosphiniminium cation for TcO₄ may make phosphinimines suitable for such preconcentration and possibly for measurement. Several phosphinimines were synthesized and characterized for their stability and selectivity with ⁹⁹TcO₄, including Ph₃P=NSiMe₃, (9-anthracenyl)Ph₂P=NSiMe₃, (1-napthyl)Ph₂P=NSiMe₃, and (p-COOMe)C₆H₄Ph₂P=NSiMe₃. (9-anthracenyl)Ph₂P=NSiMe₃ and (1-napthyl)Ph₂P=NSiMe₃ include possible reporter groups and (p-COOMe)C₆H₄Ph₂P=NSiMe₃ contains a linking moiety for incorporating reporter groups or attaching the phosphinimine to a polymer support. The use of internal and external reporter groups to generate a signal in the presence of TcO₄ is also investigated.