
 

A STUDY OF PARAMETRIC EXCITATION APPLIED  

TO A MEMS TUNING FORK GYROSCOPE  

 

                                         
 

A Dissertation 

Presented to 

the Faculty of the Graduate School 

University of Missouri-Columbia 

 

                                         
 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

                                         
 

By 

YONGSIK LEE 

 

Dr. Frank Z. Feng, Dissertation Supervisor 

 

 

AUGUST 2007 



The undersigned, appointed by the Dean of the Graduate School, have examined the 

dissertation entitled 

 

 

 

A STUDY OF PARAMETRIC EXCITATION APPLIED  

TO A MEMS TUNING FORK GYROSCOPE 
 

 

 

presented by Yongsik Lee 

a candidate for the degree of Doctor of Philosophy 

and hereby certify that in their opinion it is worthy of acceptance 

 

 

                                                   
Professor Dr. Frank Z. Feng 
 
 
                                                   
Professor Dr. Craig A. Kluever 
 
 
                                                   
Professor Dr. Yuyi Lin 
 
 
                                                   
Professor Dr. P. Frank Pai 
 
 
                                                   
Professor Dr. Tushar Ghosh 



 ii

ACKNOWLEDGEMENTS 
 

I would like to sincerely and wholeheartedly thank my advisor Dr. Frank Z. Feng for 

his close guidance, kindness, encouragements, patience, and supervision throughout 

various stages of the dissertation. Without his help and encouragement, this dissertation 

would not be possible.  

I thank Dr. Craig A. Kluever, Dr. Yuyi Lin, Dr. P. Frank Pai, and Dr. Tushar Ghosh 

for making time in their busy schedules to serve on my dissertation committee, giving me 

advice, and examining my dissertation. Moreover, I would also like to thank Dr. P. Frank 

Pai for letting me use his experimental equipments and helping me to use them. 

I wish to express my sincere thanks to Korea Army Headquarters for selecting me 

for the overseas study and supporting me and my family. Thanks are also due to Duck-

bong, Su-han, Jung-woo, Mingxuan, and many others for their friendship and 

encouragement.  

Most importantly, I would like thank my parents, my wife, Soon-ok, and my lovely 

kids, Chan-hee and Ye-rim, for their unconditional support, love, and affection. Their 

encouragement and endless love made everything easier to achieve. I really appreciate 

Soon-ok’s patience and sacrifices that she made all this while. Also, my special thanks go 

to my mother who was really eager to see my homecoming but passed away last year. 

Even though she could not see me again, she will be memorized in my heart forever. 

This work is supported by the National Science Foundation under Grant 

CMS0115828. The support is gratefully acknowledged.  



 iii

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS................................................................................................ ii 

LIST OF FIGURES .......................................................................................................... vii 

LIST OF TABLES............................................................................................................. xi 

ABSTRACT...................................................................................................................... xii 

Chapter 1  Introduction................................................................................... 1 

1.1 MEMS Gyroscopes ............................................................................................ 1 

1.2 Operation Principles of Vibratory Micro Gyroscope......................................... 4 

1.3 Tuning Fork Micro Gyroscopes ......................................................................... 5 

1.4 Research Motivation .......................................................................................... 7 

1.5 Literature Review............................................................................................... 8 

1.6 Overview .......................................................................................................... 13 

Chapter 2  Parametric Excitation ................................................................... 15 

2.1 Introduction ...................................................................................................... 15 

2.2 Parametric Excitation ....................................................................................... 18 

2.3 Mathieu Equation ............................................................................................. 20 

2.4 Literature Review............................................................................................. 22 

2.5 Special Properties of the Parametric Excitation............................................... 24 

2.6 Nonlinearities ................................................................................................... 25 

Chapter 3 Feasibility Study of Parametric Excitation Using Pendulum Model...... 29 



 iv

3.1 Dynamic Configuration.................................................................................... 29 

3.2 Dimensionless Equations ................................................................................. 34 

3.3 Results of Simulation ....................................................................................... 35 

 3.3.1 Dependence on Initial Condition............................................................ 35 

 3.3.2 Effects of Imperfection........................................................................... 40 

3.4 Effect of Stiffness of The Coupling Support.................................................... 44 

3.5 Summary .......................................................................................................... 46 

Chapter 4 Calculation of Coefficients Using Finite Element Method.................... 47 

4.1 Introduction ...................................................................................................... 47 

4.2 Critical Buckling Load Analysis ...................................................................... 48 

4.3 Effectiveness of Parametric Excitation ............................................................ 50 

4.4 Derivation of the Nonlinear Term.................................................................... 53 

4.5 Boundary Condition Effect .............................................................................. 58 

4.6 Comparison of Averaging Method and Simulation ......................................... 60 

4.7 Summary .......................................................................................................... 66 

Chapter 5 Experiments with a Tuning Fork Beam............................................. 67 

5.1 Experimental Setup .......................................................................................... 67 

5.2 Natural Frequencies and Mode Shapes ............................................................ 68 

5.3 Experiment Method.......................................................................................... 70 

 5.3.1 The 3D Motion Analysis System ........................................................... 70 

 5.3.2 Eagle Digital Camera ............................................................................. 72 

 5.3.3 Eagle Hub............................................................................................... 74 



 v

 5.3.4 EVaRT.................................................................................................... 74 

 5.3.5 Ling Dynamics LDS V408 Shaker......................................................... 74 

5.4 Experiment Procedure ...................................................................................... 74 

5.5 Excitation Force Amplitude Scale.................................................................... 75 

5.6 Experimental Results........................................................................................ 76 

 5.6.1 Parametric Resonance Phenomenon ...................................................... 76 

 5.6.2 Swing in Symmetric Motion .................................................................. 79 

 5.6.3 Softening Nonlinearity ........................................................................... 81 

 5.6.4 Damping Effect to the Base Beam ......................................................... 83 

Chapter 6 Practical Problems.......................................................................... 85 

6.1 Limited Shaker Power...................................................................................... 85 

 6.1.1 Dependence on Parameter c ................................................................... 89 

 6.1.2 Dependence on Parameter h ................................................................ 90 

 6.1.3 Dependence on Parameter d ................................................................... 91 

 6.1.4 Comparison Between Experiment and Theory ...................................... 92 

6.2 Gravity Effect................................................................................................... 99 

 6.2.1 Downward Pendulum........................................................................... 100 

 6.2.2 Inverted Pendulum ............................................................................... 102 

6.3 Summary ........................................................................................................ 104 

Chapter 7 Conclusions and Recommendation for Future Work ........................ 105 

Appendix  Parametrically excited pednulum by prescribed force amplitude..... 107 

A.1 Equation of motion ............................................................................................ 107 



 vi

A.2 Steady state response ......................................................................................... 109 

A.3 Programs used in the simulation........................................................................ 116 

 A.3.1 Mathematica program for the analytic solution ................................... 116 

 A.3.2 MATLAB programs for the numerical solution .................................. 120 

References ................................................................................................... 123 

VITA .......................................................................................................... 128 



 vii

LIST OF FIGURES 

Figure                                                              Page 

1. 1 Bandwidth in analog signals ........................................................................................ 3 

1. 2 Operating principle of vibratory gyroscopes ............................................................... 5 

1. 3 A tuning fork gyroscope with comb drive for commercial application by Draper Lab
.................................................................................................................................... 6 

 

2. 1 The classes of external resonance .............................................................................. 17 

2. 2 The classes of internal resonance............................................................................... 17 

2. 3 Uniform rod pendulum oscillating as a result of giving the horizontal platform a 
harmonic vertical excitation..................................................................................... 21 

2. 4 Stable and unstable regions in the parameter plane for the Mathieu equation .......... 22 

 

3. 1 Schematic model of gyroscope motion...................................................................... 30 

3. 2 Response of the pendulum when 21 mm = and 21 ll =   ( * : swing in the same 
direction,  o : swing in the opposite direction,  x : decaying ) ............................. 36 

3. 3 Anti-Symmetric (in phase) motion ( 85.1/ 1 =ωω ) ..................................................... 37 

3. 4 Symmetric (out of phase) motion ( 2/ 1 =ωω ) ........................................................... 37 

3. 5 Anti-symmetric motion with symmetric IC ( 05.021 =−= θθ 85.1/ 1 =ωω ).................... 38 

3. 6 Symmetric motion with asymmetric IC ( 05.021 == θθ , 2/ 1 =ωω )............................. 39 

3. 7 The responses when 21 mm = and 21 ll = : (a) Amplitudes of angular displace- ment 
of pendulums; (b) Displacement along the x-direction of the suspension mass; (c) 
Phase difference between the two pendulums ......................................................... 39 

3. 8 Response of the pendulum when 21 mm = and 2195.0 ll =  ( * : swing in the same 
direction,  o : swing in the opposite direction,  x : decaying ) ............................. 41 



 viii

3. 9 The responses when 21 mm = , 2195.0 ll = , 23.0,95.0 == pγ : (a) Amplitudes of 
angular displacement of pendulums; (b) Displacement along the x-direction of the 
suspension mass; (c) Phase difference between the two pendulums ....................... 42 

3. 10 The responses when 21 mm = , 2195.0 ll = , 15.0,95.0 == pγ : (a) Amplitudes of 
angular displacement of pendulums; (b) Displacement along the x-direction of the 
suspension mass; (c) Phase difference between the two pendulums ....................... 43 

3. 11 Response of the pendulum: 0=x , 95.0=γ , 05.01 =θ , 01.02 −=θ ..................... 45 

3. 12 Response of the pendulum: 0=x , 95.0=γ , 05.01 =θ , 01.02 =θ .......................... 45 

 

4. 1 Cantilever beam with lumped load ............................................................................ 49 

4. 2 Cantilever beam with distributed load ....................................................................... 49 

4. 3 Relationship between natural frequency and axial force for the 1st mode of the beam  
with the boundary condition clamped-free .............................................................. 52 

4. 4 Relationship between natural frequency and axial force for the 2nd mode of the beam  
with the boundary condition clamped-free .............................................................. 53 

4. 5 Cantilever beam with parametric excitation .............................................................. 54 

4. 6 Relationship between external load and displacement for the 1st mode of the 
cantilever beam ........................................................................................................ 56 

4. 7 Relationship between external load and displacement for the 2nd mode of the 
cantilever beam ........................................................................................................ 57 

4. 8 Relationship between natural frequency and axial force for the 1st mode of the beam 
with the boundary condition clamped-clamped....................................................... 59 

4. 9 Relationship between natural frequency and axial force for the 2nd mode of the beam 
with the boundary condition clamped-clamped....................................................... 59 

4. 10 Results of averaging method of the beam................................................................ 63 

4. 11 Pitchfork bifurcation at da = ............................................................................... 64 

4. 12 Displacement of the beam : Simulation result using Runge Kutta method ............. 64 



 ix

 

5. 1 Experimental model: (a) tuning fork type beam (b) reflection marks on the model . 67 

5. 2 Natural frequencies and the mode shapes.................................................................. 69 

5. 3 Experimental set up using EAGLE-500 digital real-time motion analysis system:  
(a) actual experimental set up (b) schematic set up of experiment.......................... 71 

5. 4 Response at node #13 in vertical direction when Ω =80.40 Hz and a =-3 dB (a) time 
trace  (b) FFT ......................................................................................................... 77 

5. 5 Response at node #13 in horizontal direction when Ω =80.40 Hz and a =-3 dB (a) 
time trace  (b) FFT ................................................................................................. 78 

5. 6 Time trace of the response at node #1 and # 25 when Ω =80.40 Hz and a =-3 dB.. 79 

5. 7 Response curves at node #1 and # 25 when a = 0 dB................................................ 80 

5. 8 The swing patterns captured by a digital camera when the parametric force  a = 0 
dB............................................................................................................................. 80 

5. 9 Experimental capture showing large displacement when 1 mm excitation is applied
.................................................................................................................................. 81 

5. 10 Response of the beam with different excitation amplitude at node #1 .................... 82 

5. 11 Displacement of the base of the beam with different force amplitudes................... 83 

 

6. 1 Results of averaging method of the beam : a = 0.05, d= 0.01, h = -0.25 ............... 87 

6. 2 Dependence of the beam response on parameter c : f =0.02 d=0.01 h =-0.35 ...... 89 

6. 3 Dependence of the beam response on parameter h  ( when h >0 ) :  f  = 0.02, d 
= 0.01, c = 0.02 ........................................................................................................ 90 

6. 4 Dependence of the beam response on parameter h  ( when h <0 ) :  f  = 0.02, d 
= 0.01, c = 0.005 ...................................................................................................... 91 

6. 5 Dependence of the beam response on parameter d : f =0.02 c =0.005 h =-0.35 ... 91 



 x

6. 6 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  
when experimental force -6.0 dB and f =0.0040................................................... 94 

6. 7 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  
when experimental force -4.5 dB and f =0.0048................................................... 95 

6. 8 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  
when experimental force -3.0 dB and f =0.0056................................................... 96 

6. 9 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  
when experimental force -1.5 dB and f =0.0068................................................... 97 

6. 10 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  
when experimental force 0 dB and f =0.0080 ....................................................... 98 

6. 11 Pendulum with spring ............................................................................................ 100 

6. 12 Inverted pendulum with spring .............................................................................. 103 

 

A. 1 Simplified pendulum model.................................................................................... 107 

A. 2 the response of the pendulum with a large pendulum mass:  ρ =1, ζ =0.05, 
c~ =0.1, k =0.01, force amplitude =0.40 and 0.41................................................. 112 

A. 3 the base acceleration amplitude when pendulums are swinging with a large 
pendulum mass: ρ =1, ζ =0.05, c~ =0.1, k =0.01, force amplitude =0.40........ 112 

A. 4 the base acceleration amplitude when pendulums are swinging with a large 
pendulum mass: ρ =1, ζ =0.05, c~ =0.1, k =0.01, force amplitude =0.41........ 113 

A. 5 the response of the pendulum with a small pendulum mass:  ρ =9, ζ =0.05, 
c~ =0.1, k =0.01, force amplitude =2.5.................................................................. 113 

A. 6 the base acceleration amplitude when pendulums are swinging with a small 
pendulum mass: ρ =9, ζ =0.05, c~ =0.1, k =0.01, force amplitude =2.5.......... 114 

A. 7 the MATLAB simulation results from the original equations used in Chapter 3;  (a) 
pendulum displacement (b) base acceleration: 09.0== βα , 05.0=ζ , 

25.0=A ................................................................................................................ 114 



 xi

LIST OF TABLES 

Table                                                               Page 

1. 1 Performance requirements for different classes of gyroscopes ................................... 1 

1. 2 Resolution requirement of gyroscope for typical high performance application ...... 9 

4. 1 Buckling load of the beam ......................................................................................... 50 

4. 2 Natural frequency with load stiffening for the 1st mode ............................................ 52 

4. 3 Natural frequency with load stiffening for the 2nd mode ........................................... 53 

4. 4 Displacement for several different horizontal forces using FEM.............................. 54 

4. 5 Displacement when lateral uniform load was applied ............................................... 56 

4. 6 Two regression parameters and nonlinear term......................................................... 57 

5. 1 Material property of Aluminum 6061-T651.............................................................. 68 

5. 2 Comparison of natural frequencies ............................................................................ 70 

5. 3 The ratio of the output voltage to the input voltage................................................... 76 

 



 xii

 A Study of Parametric Excitation Applied  

To A MEMS Tuning Fork Gyroscope 
 

Yongsik Lee 

Dr. Frank z. Feng, Dissertation Supervisor 

 

ABSTRACT 

 

The current MEMS (Micro-Electro-Mechanical System) gyroscopes which normally 

use the electro static force to excite the comb drive are faced with the limitations such as 

low precision, coupling problem, and poor robustness. They need an order of magnitude 

improvement in their performance, stability, and robustness. Our main idea is that if the 

comb drive can be driven to much larger vibrating amplitude than the current one so that 

the signal at the comb drive can be easily measured, then, consequently, the precision of 

the MEMS gyroscope shall be improved. We propose to use parametric forcing as 

excitation.  

However, since the two proof masses must be driven into motion in opposite 

directions, this imposes restrictions on the external forcing. A feasibility study of the 

parametric excitation using a two-pendulum model is presented. Governing equations are 

derived by Lagrange equation, and the results are simulated using MATLAB program. 

Two swing patterns, symmetric and anti-symmetric motion, are illustrated and 

investigated with different initial conditions. 

To predict the beam response with the parametric excitation, a novel approach is 



 xiii

presented, which allows calculating the coefficients in the governing equation of a 

cantilever beam using FEM (Finite Element Method). The results are compared with the 

analytical result obtained by method of averaging. 

An experimental study of a tuning fork beam is presented. For non-contact motion 

analysis, an Eagle 3-D motion analysis digital camera system is employed. We discuss 

the practical problems such as limited shaker power, which is caused by open-loop 

excitation method. A governing equation including the damping effect by the lateral 

vibration of the tines is presented, and its analytical solution is compared with the 

experimental results. A good qualitative agreement is obtained. Moreover, a sensitivity 

study of the parameters in the governing equation is also presented. To clarify the 

softening nonlinearity of the tuning fork beam, the gravity effect is described for both 

vertical and inverted pendulum cases.  
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Chapter 1  
Introduction 

1.1 MEMS Gyroscopes  

MEMS (Micro-Electro-Mechanical System) gyroscopes have many advantages such 

as low cost, small size, and negligible weight compared to the conventional mechanical 

gyroscopes. Furthermore, they have a wide range of applications including navigation 

and guidance systems, automobiles, and consumer electronics, so that many researchers 

have focused on them for the last decades. However, some drawbacks of the MEMS 

gyroscopes, such as low precision due to very small vibrating amplitude, very narrow 

bandwidth, and imperfection problem in fabrication are remaining challenges to be 

solved.  

Yazdi, Ayazi, and Najafi [1] have given a review of the research on micro-machined 

vibratory gyroscopes. In general, gyroscopes can be classified into three categories based 

on their performance: inertial grade, tactical grade, and rate grade [2,3]. Table 1.1 

summarizes the requirements for each of these categories. 

Table 1. 1 Performance Requirements for Different Classes of Gyroscopes 

Parameter Rate Grade Tactical Grade Inertial Grade 
Angle Random Walk ( hr/° ) >0.5 0.5-0.05 <0.001 

Bias Drift ( hr/° ) 10-1000 0.1-10 <0.01 
Scale Factor Accuracy (%) 0.1-1 0.01-0.1 <0.001 

Full scale range( s/° ) 50-1000 >500 >400 
Max. Shock in 1ms (g’s) 103 103-104 103 

Bandwidth (Hz) >70 ~100 ~100 
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For the past decade, much of the effort in developing micro-machined gyroscopes 

has concentrated on rate grade devices, primarily because of their use in automobile 

applications. This application requires a full scale range of at least 50 °/s and bias drift of 

10-1000 °/hr in a bandwidth of 70 Hz. However, gyroscopes for the tactical grades or the 

inertial grades require improved performance such as a full scale range of 500 °/s and a 

bandwidth of 100 Hz. Bias drift for the inertial grades is even less than 0.01 °/hr. 

In order to ensure the appropriateness of a gyroscope for a specific application, the 

application’s performance requirements have to be fulfilled. This can be achieved in turn 

by quantifying the parameters or characteristics describing the performance of each 

particular inertial sensor through a series of lab tests. The most important among those 

characteristics are resolution, bias, scale factor, and bandwidth. [4] 

Resolution  

In the absence of rotation, the output signal of a gyroscope is a random function 

which is the sum of white noise and a slowly varying function. The white noise defines 

the resolution of the sensor and is expressed in Hzs //°  or Hzhr //° , which means 

the standard deviation of equivalent rotation rate per square root of bandwidth of 

detection. The so-called “angle random walk” in hr/°  may be used instead. 

Bias  

A sensor bias is always defined by two components: A deterministic component 

called bias offset which refers to the offset of the measurement provided by the sensor 

from the true input; and a stochastic component called bias drift which refers to the rate 

at which the error in an inertial sensor accumulates with time. The bias offset is 

deterministic and can be quantified by calibration while the bias drift is random in nature 
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and should be treated as a stochastic process. Bias drift is the short or long term drift of 

the gyroscope and is usually expressed in s/°  or hr/° . 

Scale factor  

The scale factor is the relationship between the output signal and the true physical 

quantity being measured. It is defined as the amount of change in the output voltage per 

unit change of rotation rate and is expressed in sV // ° . The scale factor is deterministic 

in nature and can be quantified or determined through lab calibration.  

Bandwidth 

For analog signals, which can be mathematically viewed as a function of time, 

bandwidth f∆  is the width, measured in hertz, of the frequency range in which the 

signal’s Fourier transform is nonzero. As shown in Fig. 1.1, since this range of non-zero 

amplitude may be very broad, this definition is often relaxed so that the bandwidth is 

defined as the range of frequencies where the signal’s Fourier transform has a power 

above a certain amplitude threshold, commonly half the maximum value (half power ≈ -

3 dB, since 3)2/1(log10 10 −≈ ). 

 

Figure 1. 1 Bandwidth in analog signals 
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As a result of active research in the past few years, “rate grade” gyroscopes have 

been developed successfully and applied in many commercial applications, such as 

automobiles and some consumer electronics. However, there are also several other 

applications that require improved performance, including inertial navigation systems, 

guidance weapon systems, and some precise robotics. 

1.2 Operation Principles of Vibratory Micro Gyroscope 

Vibratory micro-gyroscopes are non-rotating devices and use the Coriolis 

acceleration effect to detect inertial angular rotation. The Coriolis acceleration that arises 

in rotation reference frames to sense angular rotation is one of the accelerations that are 

used to describe motion in a rotating reference frame and accounts for radial motion. Its 

effects are found in many phenomena where rotation is involved and can even account 

for the air flow over the earth’s surface in the northern and southern hemispheres.  

To understand the Coriolis effect, imagine a particle traveling in space with a 

velocity vector vr  as illustrated in Fig. 1.2 (a). There is an observer who is sitting on the 

x-axis of the xyz coordinate system. If the coordinate system starts to rotate around the z-

axis with an angular velocity, Ω
r

, the observer thinks that the particle is changing its 

trajectory toward the x-axis with an acceleration equal to vr
r
×Ω2 . Although no real force 

has been applied on the particle, to an observer, attached to the rotating reference frame 

an apparent force has resulted that is directly proportional to the rate of rotation. This 

effect is the basic operating principle underlying all vibratory structure gyroscopes. 
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(a) The Coriolis effect               (b) A tuning-fork gyroscope 

Figure 1. 2 Operating principle of vibratory gyroscopes 

Many researchers have designed vibratory micro gyroscopes which use Coriolis 

acceleration in the past decade. The vibratory micro gyroscopes normally fall into three 

categories: tuning fork micro gyroscope [5,6,7,8], vibrating prismatic beam gyroscope 

[9], and vibrating shell or ring gyroscope[10]. In this dissertation, the scope is limited to 

the tuning fork micro-gyroscope and we devote more space in the next section for better 

understanding. 

1.3 Tuning Fork Micro Gyroscopes 

Tuning fork gyroscopes are a typical example of vibratory gyroscopes. As shown in 

Fig. 1.2 (b), the tuning fork gyroscope consists of two tines that are connected to a 

junction bar. In operation, the tines are differentially resonated to a fixed amplitude, and 

when rotated, Coriolis force causes a differential sinusoidal force to develop on the 

individual tines, orthogonal to the main vibration. This force is detected either as 

differential bending of the tuning fork tines or as a torsional vibration of the tuning fork 

stem. The actuation mechanisms used for driving the vibrating structure into resonance 

Coriolis acceleration 
response 

Ω
v

Input rotation rate 

Coriolis acceleration 
Response 
(sense mode) 

Tine vibration 
(drive mode) 

x 

y

va rrr
×Ω=2

Ω
r

 

vr

z



 6

are primarily electrostatic, electromagnetic, or piezoelectric. To sense the Coriolis force 

in the sensing mode, capacitive, piezoresistive, or piezoelectric detection mechanisms can 

be used.  

 

Figure 1. 3 A tuning fork gyroscope with comb drive for commercial application by Draper Lab 

 

Draper Lab [6] proposed the first silicon micro machined vibratory rate gyroscope in 

1991. In 1994, they developed micro gyroscope to the level of commercial applications 

[8]. As shown in Fig. 1.3, the two proof masses are driven into oscillations by the 

interdigitated fingers. Corresponding to an externally imposed angular rotation along the 

vertical axis, the Coriolis force on the two proof masses causes them to deflect in and out 

of the plane. The Coriolis force which is given by  

VmF
rrr

×Ω= 2  

where m denotes the proof mass, V
r

the velocity of the proof mass, and Ω
r

 the angular 

velocity to be measured. 

Proof mass Proof mass
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1.4 Research Motivation 

The common factor of vibratory gyroscopes is that they require resonant frequency 

tuning of the driving and sensing modes to achieve high sensitivity. A number of studies 

have been performed to optimize those two frequencies. Xie and Fedder [11] designed a 

CMOS(complementary metal oxide semiconductor)-MEMS lateral-axis gyroscope using 

the out-of-plane actuation. They integrated a poly silicon heater inside the spring beams 

and realized the resonant frequency matching between the drive and sense modes.  

These tuning conditions depend on each micro gyroscope fabricated, even though 

the micro gyroscopes are identically designed. Because of the small size of the structure 

and the limitation of the fabrication, the imperfection is unavoidable. Because of 

fabrication imperfections, significant errors can occur during the operation, which have to 

be compensated by advanced control techniques. Fabrication imperfections can also 

induce anisotropy, even though the imbalances in the gyroscope suspension are extremely 

small. This results in mechanical interference between the modes and undesired mode 

coupling are often much larger than the Coriolis motion. In order to reduce coupled 

oscillation and drift, various devices have been reported employing independent 

suspension beams for the drive and sense modes [12-16]. To increase the gyroscope’s 

performance many researchers have studied various designs with different fabrication 

methods.  

On the other hand, for the tuning fork gyroscope to work, the proof mass must be 

“energized,” that is, it must be driven into motion. Since the Coriolis force is proportional 

to the velocity, better sensitivity can be achieved by increasing the “driven” velocity of 
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the proof masses. However, electrostatic force through the interdigitated finger structure 

has a limitation to produce large velocity. Consequently, the current state of the micro 

machined gyroscopes requires an order of magnitude improvement in performance, 

stability, and robustness.  

Our main idea is that if the comb drive can have bigger vibrating amplitude than 

previous one so that the signal at the comb drive can be easily measured, then the 

precision of MEMS gyroscopes can be much higher than the current one. We propose to 

drive the proof masses into oscillation using external means. Since the two proof masses 

must be driven into motion in opposite directions, this imposes restrictions on the 

external forcing. We propose to use parametric forcing as excitation. Imagine that the 

whole structure in Fig. 1.2 (b) which resides in a package is subjected to vibration along 

the direction of Ω
r

. The direction of the forcing is perpendicular to the desired direction 

of motion of the proof masses. Based on the well-known parametric instability 

mechanism, the proof masses can be excited to vibrate in the desired direction 

(perpendicular to the forcing direction) when the forcing frequency is near twice of the 

natural frequency of the proof masses.  

1.5 Literature Review 

Inspired by the promising success of micro machined accelerometers in the same 

era, extensive research efforts towards commercial micro machined gyroscopes led to 

several innovative gyroscope topologies, fabrication and integration approaches, and 

detection techniques. Although there were extensive efforts from the researchers, the 

performance of the micro gyroscope is not enough to apply for some applications which 
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require high precision. Table 1.2 shows that there are some limitations with current 

technology in micro gyroscope for typical high performance applications.  

Table 1. 2 Resolution requirement of gyroscope for typical high performance application [17] 

Application Resolution required 
(deg/hr) 

Current capability of MEMS 
technology to provide this resolution

Inertial navigation 0.01 – 0.001 Impossible 
Tactical weapon 

guidance 0.1 – 1.0 Impossible 

Heading and altitude 
reference 0.1 - 10 Challenging 

 

As mentioned prior, Greiff et al. [6] from Draper Lab reported the first micro 

machined gyroscope in 1991, utilizing double gimbal single crystal silicon structure 

suspended by torsional flexures. The resolution was 4 Hzs //°  in a 60-Hz bandwidth. 

Since the first demonstration of micro machined gyroscope by the Draper Laboratory, a 

variety of micro-machined gyroscope designs fabricated in surface micromachining, bulk 

micromachining, hybrid surface bulk micromachining technologies or alternative 

fabrication techniques have been reported. 

In 1993, Bernstein et al. [7] from Draper Lab reported an improved silicon-on-glass 

tuning fork gyroscope. The glass substrate is aimed at low stray capacitance. This 

gyroscope was electrostatically vibrated in its plane using a set of interdigitated comb 

drives. They could get the amplitude of 10 µm, and the performance was 1000 hr/°  

resolution and 1.52 hr/°  angle random walk in a 60 Hz bandwidth.  

Weinberg et al. [8] from Draper Lab developed silicon-on-glass tuning fork 

gyroscope in 1994 for commercial application. A perforated mass was used to minimize 

damping. The in-plane motion of the structure is lightly damped by air, while out-of-
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plane motion is strongly damped due to squeeze film effects. Therefore, for out-of-plane 

modes, Q rises rapidly when pressure is reduced, in contrast to the in-plane Q, which 

shows a small increase when the pressure drops. They reported 470 hr/°  resolution in a 

60 Hz bandwidth.  

Clark et al. [18] used the integrated surface micromachining process to develop an 

integrated z axis gyroscope in 1996. In the paper, a resolution of 1 Hzs //°  was 

demonstrated. They employed single proof mass driven into resonance in plane, and 

sensitive to Coriolis force in the in-plane orthogonal direction. Drive and sense modes 

were electrostatically tuned to match, and the quadrature error due to structural 

imperfections were compensated electro statically.  

On the other hand, Juneau et al. [19] reported an xy dual axis gyroscope in 1997. 

The xy dual axis gyroscope with 2µ thick poly silicon rotor disc used torsional drive 

mode excitation and two orthogonal torsional sense modes to achieve resolution of 

0.24 Hzs //° .  

In 1997, Lutz et al. [20] reported z axis micro machined tuning fork gyroscope 

design that utilizes electro magnetic drive and capacitive sensing for automotive 

applications, with resolution of 0.4 Hzs //° . This device was fabricated using a 

combination of bulk and surface micro machining processes. Through the use of 

permanent magnet inside the sensor package, drive mode amplitudes in the order of 50 

µm were achieved. Although such a large amplitude of oscillation can increase the output 

signal level, it increases total power consumption and may cause fatigue problems over 

long term operation. 
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Voss et al. [21] reported an SOI (Silicon-on-Insulator) based bulk micro machined 

tuning fork gyroscope with piezoelectric drive and piezo resistive detection in 1997. 

Piezoelectric aluminum nitride was deposited on one of the tines as the actuator layer, 

and the rotation induced shear stress in the step of the tuning fork was piezo resistively 

detected.  

In 1998, Kourepenis et al. [22] from Draper Lab reported 10µm thick surface micro 

machined poly silicon gyroscope. The resolution was improved to 10 Hzhr //°  at 60 

Hz bandwidth in 1998, with temperature compensation and better control techniques.  

In 1999, Mochida et al. [23] developed DRIE based 50µ thick bulk micro machined 

single crystal silicon gyroscope with independent beams for drive and detection modes, 

which aimed to minimize undesired coupling between the drive and sense modes. 

Resolution of 0.07 Hzs //°  was demonstrated at 10 Hz bandwidth.  

Park et al. [24] from Samsung demonstrated wafer level vacuum packaged 40µ thick 

bulk micro machined single crystal silicon sensor with mode decoupling in 2000, and 

reported resolution of 0.013 Hzs //° .  

Lee et al. [25] from Seoul National University reported hybrid surface bulk 

micromachining process in 2000. The device with 40µm thick single crystal silicon 

demonstrated resolution of 9 Hzhr //°  at 100 Hz bandwidth.  

Geiger et al. [26] reported in 2002 gyroscope with excellent structural decoupling of 

drive and sense modes, fabricated in the standard Bosch fabrication process featuring 10 

µm thick poly silicon structural layer. Resolution of 25 Hzhr //°  with 100 Hz 

bandwidth was reported.  
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Geen et al. [27] developed dual resonator z axis gyroscope in 2002, fabricated in the 

iMEMS process with 4 µm thick poly silicon structural layer. The device utilized two 

identical proof masses driven into resonance in opposite directions to reject external 

linear accelerations, and the differential output of the two Coriolis signals was detected. 

On chip control and detection electronics provided self oscillation, phase control, 

demodulation and temperature compensation. This first commercial integrated micro 

machined gyroscope had measured noise floor of 0.05 Hzs //°  at 100 Hz bandwidth.  

In 2003, Xie and Fedder [28] demonstrated DRIE (deep reactive ion etching) CMOS 

(complementary metal oxide semiconductor) MEMS lateral axis gyroscope with 

measured noise floor of 0.02 Hzs //°  at 5 Hz, fabricated by post CMOS 

micromachining that uses interconnect metal layers to mask the structural etch steps. The 

device employs combination of 1.8µ thin film structures for springs with out of plane 

compliance and 60µm bulk silicon structures defined by DRIE for the proof mass and 

springs with out of plane stiffness, with on chip CMOS circuitry. Complete etch removal 

of selective silicon regions provides electrical isolation of bulk silicon to obtain 

individually controllable comb fingers. Excessive curling is eliminated in the device, 

which was problematic in prior thin film CMOS MEMS gyroscopes. 
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1.6 Overview 

In this dissertation, we study the parametric excitation which can be used to drive 

micro tuning fork gyroscope to increase the sensitivity. In Chapter 2, we briefly describe 

the categories of the resonance oscillations and the general information of the parametric 

excitation. Parametric excitation characteristics and nonlinearities are described as well 

as the history of the related research. 

Feasibility study is implemented using parametrically excited pendulum model in 

Chapter 3. The governing equations of model are derived using Lagrange equation and 

simulation is carried out using the Runge-Kutta integration method. Initial condition 

dependence and imperfection problem are discussed also. The emphasis in on whether 

the two masses swing in the opposite direction or not.    

In Chapter 4, we introduce a novel approach to get two unknown coefficients of the 

governing equation using ALGOR, a commercial program by which one can perform 

various structure analyses, and finite element method (FEM). In addition to the 

calculation of the coefficients, we obtain the analytical solutions using method of 

averaging and compare with numerical results.  

An experimental study of the response of the tuning fork beam to the parametric 

excitation is presented in Chapter 5. A non-contact motion analysis system, Eagle 3-D 

motion analysis camera system, is introduced. Using this method, it is shown that the 

parametric excitation is a very effective way to increase the amplitude of the vibration, 

which may increase the sensitivity of the tuning fork gyroscope.  

Practical problems are discussed in Chapter 6. We discuss the limited shaker power, 
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which led to open-loop control method for the shaker. An assumption is introduced, and 

the analytical solution based on the assumption is presented. We also investigate the 

sensitivities of the parameters in the governing equations. Moreover, gravity effect for the 

pendulum is studied both the normal and the inverted pendulums to explain discrepancies 

of nonlinear phenomenon shown in the experiments. 

As a conclusion, in Chapter 7, we restate our contribution to the nonlinear and 

sensor communities. Also, future work is addressed briefly.  
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Chapter 2  

Parametric Excitation 
 
 

2.1 Introduction 

In this chapter we briefly review the types of mechanical vibrations for a better 

understanding of parametric excitation. We classify the vibrations into several classes 

with respect to the relationship between the external forcing frequency and the natural 

frequencies of the structure. In fact, the dynamical analysis of the most real structures is 

based on multiple-degree-of-freedom models. Let us assume a general form of the 

equations of motion of a non-linear N-DOF structure. 

xtPtPxFxKxCxM rrrrr&r&&r )()()( 21 +=+++                   (2.1.1) 

where, M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and 

)(xF rr
 is the nonlinear vector embedded in the structure. The right side of the equation 

represents the external force acting on the structure. In Eq. (2.1.1), M, C, K, and P2(t) are 

(N×N) matrixes. On the other hand, the displacement vector )(txr , nonlinear term )(xF rr
, 

and direct force vector )(1 tP
r

 are all (N×1) vectors. Furthermore, the applied force vector 

)(1 tP
r

 and matrix P2(t) are periodic functions of time, f1cosΩ1t and f2cosΩ2t respectively.  

First of all, in Eq. (2.1.1), if we have zero values for )(1 tP
r

 and P2(t), the vibration 

is called free. For the case, all the terms in the equation include the displacement vector 

)(txr  or its derivatives, and the coefficients of the equation do not depend on time. Free 
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vibrations in a real system gradually decay because of the energy dissipation, and the 

system eventually comes to rest at an equilibrium position. 

On the other hand, the vibration is called forced when one or more external periodic 

forces are applied to the system. In this case, the equation of motion can be expressed by 

a given periodic function of time. When the frequency of external periodic force is at 

certain frequency, the system oscillates in maximum amplitude, which is referred to as 

resonance. As shown in Fig. 2.1, the external resonance can be classified into three 

classes; primary resonance, secondary resonance, and parametric resonance.  

In many mechanical systems, we focus on the primary resonance for which the 

frequency of the external force is close to one of the natural frequencies of the system. 

When one designs structures and mechanical systems, this phenomenon is either 

exploited or avoided. On the other hand, when a system has certain nonlinearities, the 

system may oscillate at a frequency different from the primary resonances, which is 

referred to as secondary resonance. It can be again divided into three categories 

depending on the relationship among the natural frequencies of the system; sub-harmonic 

resonance, super-harmonic resonance, and super-sub-harmonic resonance [29].  

Another resonance besides primary and secondary resonances is parametric 

resonance. It occurs either by an external force or a periodic variation of some parameters 

of the system to which the motion of the system is sensitive. When the external force is 

applied for the parametric resonance, while external forcing direction is the same as the 

direction of oscillation in the primary and the secondary resonances, the forcing direction 

should be orthogonal to the direction of oscillation. The parametric resonance can be 

divided into two classes; fundamental parametric resonance and principal parametric 
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resonance. There will be more detailed explanation about the parametric excitation in the 

next section. 

 

Figure 2. 1 The classes of external resonance 

 

 

Figure 2. 2 The classes of internal resonance 
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In addition to the external resonances, there exists another resonance called internal 

resonance. It is often referred to as auto-parametric resonance because the system tends 

to be resonant by some specific relationship among the natural frequencies of the system. 

As shown in Fig. 2.2, when the natural frequencies have a simple integer ratio 

relationship, the energy transfer occurs from the high-frequency mode to the low-

frequency mode [30]. 

 

2.2 Parametric Excitation 

Nayfeh and Mook (1979) [29] and Butikov (2005) [42] gave detailed explanation 

about parametric excitation. Parametric excitation is quite different from normal direct 

force. All systems we are familiar with are modeled using equations in which the 

homogeneous part did not contain functions of time. Even if an excitation is introduced 

into the model, an external excitation is added to a system in a separate term. However, 

there are many systems for which this type of equation is not applicable. Let us assume a 

simple differential equation which contains time variable coefficients. 

)()()( 21 tfxtpxtpx =++ &&&                     (2.2.1) 

In Eq. (2.2.1), although the external excitation is set to zero, i.e., f(t) = 0, the time 

dependant terms in the equation can act as an excitation. Because this type of excitation 

acts from within the parameters of the system, as we already mentioned in section 2.1, it 

is usually referred to as parametric excitation. As shown in Eq. (2.2.1), parametric 

excitation can coexist with external excitation.  

Equation (2.2.1) is linear, even though its coefficients are not constant, and its 
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general solution can be obtained by adding a particular solution of the complete equation 

to the general solution of the homogeneous equation. If )(1 tx  and )(2 tx  are two 

independent solutions of the homogeneous equation, its general solution can be obtained 

by the linear combination )()()( 2211 txCtxCtx += . 

Consider a system modeled with a linear second-order differential equation of the 

type of Eq. (2.2.1) but without external excitation and with functions )(1 tp  and )(2 tp , 

which are periodic in time with period T. The study of equation of this type was 

published by Floquet in 1883, and, hence, is usually referred to as Floquet theory.  

0)()( 21 =++ xtpxtpx &&&                        (2.2.2) 

By introducing the transformation 

])(
2
1exp[~

1∫−= dttpxx  

Equation (2.2.2) can be rewritten as  

0~)(~ =+ xtpx&&                        (2.2.3) 

where  

1
2
12 2

1
4
1)( ppptp &−−=  

For this transformation to be valid )(1 tp  is differentiable with respect to time.  

This means that the free behavior of the damped system can be obtained from that of 

an undamped system by multiplying the time history of the latter by an appropriate 

decaying factor and slightly modifying the frequency by a change of the stiffness. It can 

be also applied for linear systems with constant parameter. Equation (2.2.3) is usually 

referred to as Hill’s equation, because it was first studied by Hill in 1886 in the 
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determination of the perigee of lunar orbit. Vibrations in a system described by Hill’s 

equation are called parametrically excited or simply parametric.  

As we mentioned before, the responses from the parametrically excited systems are 

different from both free vibrations, which occur when the coefficients in the 

homogeneous differential equation of motion are constant, and forced vibrations, which 

occur when an additional time dependent forcing term is added to the right side of the 

equation of motion with constant coefficients. More detailed explanation about the 

characteristics of the parametric excitation will be addressed in Section 2.5. 

The most common resonances in parametrically excited systems are the principal 

parametric resonance, which occurs when the excitation frequency is nearly equal to 

twice the natural frequency. We study the principal parametric resonance in this 

dissertation, in which we explore the governing equation using analytical and numerical 

method and prove by experiments. 

2.3 Mathieu Equation 

A particular form of Hill’s equation is the Mathieu equation, for which 

)2cos(2)( ttp εδ +=                          (2.2.4) 

Substituting Eq. (2.2.4) into Eq. (2.2.3)  leads to 

0)]2cos(2[ =++ xtx εδ&& .   (2.2.5) 

The Mathieu equation governs the response of many physical systems to a 

sinusoidal parametric excitation. An example is a pendulum consisting of a uniform rod 

pinned at a point on a platform that is made to oscillate sinusoidally in the vertical 

direction as shown in Fig. 2.3. 
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Figure 2. 3 Uniform rod pendulum oscillating as a result of giving the horizontal platform a 

harmonic vertical excitation [29] 

Even though the Mathieu equation is a linear differential equation, it cannot be 

solved analytically in terms of standard functions. The reason is that one of the 

coefficients isn’t constant but time-dependent. Fortunately, the coefficient is periodic in 

time. This allows applying the Floquet theorem. It says that in a linear differential 

equation there exists a set of fundamental solutions from which we can build all other 

solutions. Therefore, the solution of Eq. (2.2.5) can be written by 

)()exp()( tttx φγ= , 

where γ  is called a characteristic exponent and ).()( πφφ += tt  When the real part of 

one of the γ s is positive definite, x is unstable, which is unbounded with time, while 

when the real parts of all the γ s are zero or negative, x is stable, which is bounded with 

time. The vanishing of the real parts of the γ s separates stable from unstable motions. 

The loci of the corresponding values of ε  and δ  are called transition curves. They 

divide the δε −  plane into regions corresponding to unstable motions and stable motions 

as shown in Fig. 2.4.  

t2cosε  

θ
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There are a number of techniques for determining the characteristic exponents and 

the transition curves separating stable from unstable motions. One method combines 

Floquet theory with a numerical integration of Eq. (2.2.5). To determine the transition 

curves by this technique, one divides the δε −  plane into a grid and checks the solution 

at each grid point, which is quite a costly procedure. A second method involves the use of 

Hill’s infinite determinant. When ε  is small but finite, one can use perturbation 

methods such as the method of multiple scales and the method of averaging. 

 

Figure 2. 4 Stable and unstable regions in the parameter plane for the Mathieu equation [29] 

2.4 Literature Review  

The observation of the first parametric resonance phenomenon goes back to 1831 as 

mentioned before. Faraday [31] observed that surface waves in a fluid in a vertically 

oscillating cylinder have one-half the frequency of the excitation.  

Stephenson (1908) [32] pointed out that a column under the influence of a periodic 

load may be stable even though the steady value of the load is twice that of the Euler load. 
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Beliaev (1924) [33] analyzed the response of a straight elastic hinged-hinged column to 

an axial periodic load of the form tpptp Ω+= cos)( 10 . He obtained a Mathieu equation 

for the dynamic response of the column and determined the principal parametric 

resonance frequency of the column. The results show that a column can be made to 

oscillate with the frequency Ω
2
1  if it is close to one of the natural frequencies of the 

lateral motion even though the axial load may be below the static buckling load of the 

column. 

Even though the history of the problem of parametric excitations is not too long, 

there are a number of books devoted to the analysis and applications of this problem. 

McLachlan (1947) [34] discussed the theory and applications of the Mathieu functions, 

while Bondarenko (1936) [35] and Magnus and Winkler (1966) [36] discussed Hill’s 

equation and its applications in engineering vibration problems. Bolotin (1964) [37] 

discussed the influence of parametric resonances on the dynamic stability of elastic 

systems and Shtokalo (1961) [38] discussed linear differential equations with variable 

coefficients. Furthermore, a comprehensive review of the response of single and multi 

degree freedom systems to parametric excitations was discussed by Nayfeh and Mook 

[29] and Ibrahim [39].  

M. Gürgöze [40] analyzed parametric vibrations of a restrained beam with an end 

mass under a displacement excitation at the other end. Using a one-mode approximation, 

he reduced the governing partial differential equation to a Mathieu equation containing 

cubic nonlinearities. He obtained an approximate solution for the case of principal 

parametric resonance. 
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Although there have been some papers regarding parametric excitation problem, 

only a few studies were performed to use parametric excitation to the practical system. 

Vyas and Bajaj [41] proposed auto parametric vibration absorbers which use multiple 

pendulums in 2001. The vibration of each pendulum can reduce the displacement of the 

primary system mass.  

2.5 Special Properties of the Parametric Excitation 

 There are several important differences that distinguish parametric resonance from 

the ordinary resonance caused by external force acting directly on the system. Butikov 

(2005) [42] described the special characteristics of the parametric excitation in his paper.  

The growth of the amplitude of the vibrations during parametric excitation is 

provided by the force that periodically changes the parameter. Parametric resonance is 

possible when one of the following conditions for the frequency ω  (or for the period T) 

of modulation is fulfilled; 

n/2 0ωω = ,   T = nT0/2  (n = 1, 2, 3,…). 

In other words, parametric resonance occurs when the parameter changes twice 

during one period, once during one period, twice during three periods, and so on. 

However, the maximum energy transfer to the vibrating system occurs when the 

parameter is changed twice during one period of the natural frequency. In this dissertation, 

we are interested in the case, in which parametric force has the frequency of twice the 

natural frequency of the system.  

Another important distinction between parametric excitation and forced vibration is 

the dependence of the growth of energy on the energy already stored in the system. While 
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for forced excitation the increment of energy during one period is proportional to the 

amplitude of vibrations, i.e., to the square root of the energy, at parametric resonance the 

increment of energy is proportional to the energy stored in the system. Also, energy 

losses caused by damping are also proportional to the energy already stored.  

In the case of direct forced excitation energy losses restrict the growth of the 

amplitude because these losses grow with the energy faster than does the investment in 

energy arising from the work done by the external force. In the case of parametric 

resonance, both the investment in energy caused by the modulation of a parameter and 

the losses by damping are proportional to the energy stored, and so their ratio does not 

depend on the amplitude. Therefore, parametric resonance is possible only when a 

threshold is exceeded, that is, when the increment in energy during a period (caused by 

the parameter variation) is larger than the amount of energy dissipated during the same 

time. The critical (threshold) value of the modulation depth depends on damping. 

However, if the threshold is exceeded, the losses of energy by damping in a linear system 

cannot restrict the growth of the amplitude. 

 

2.6 Nonlinearities 

As mentioned earlier, parametrically excited linear, undamped systems have 

solutions that grow indefinitely with time. In other words, if the system is truly linear, the 

amplitude grows until the system is destroyed. Mandelstam and Papalexi (1934) [43] had 

proved this phenomenon by a specially designed linear oscillating circuit whose 

amplitude of oscillation grew until the insulation was destroyed by excessive voltage. 
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However, most systems have some degree of nonlinearity which comes into play as 

soon as the amplitude of the motion becomes appreciable, and it modifies the response. 

For instance, as the amplitude grows, the nonlinearity limits the growth, resulting in a 

limit cycle, as happened in the specially designed nonlinear oscillating circuit of 

Mandelstam and Papalexi (1934). Thus although the linear theory is useful in determining 

the initial growth or decay, it may be inadequate if the system possesses any nonlinearity. 

Hence, nonlinearity identification of the system is a very important problem.  

In theory, nonlinearity exists in a system whenever there are products of dependent 

variables and their derivatives in the equations of motion, boundary conditions, and/or 

constitutive laws, and whenever there are any sort of discontinuities or jumps in the 

system. Evan-Iwanowski (1976) [30], Nayfeh and Mook (1979) [29], and Moon (1987) 

[44] explain the various types of nonlinearities in detail along with examples. Also, 

Pramod Malatkar (2003) [45] has briefly explained a variety of nonlinearities in his 

dissertation. Here are some nonlinearities that need to be considered when we design 

mechanical systems.  

 

Damping dissipation is essentially a nonlinear phenomenon. Linear viscous damping 

is an idealization. Coulomb friction, aerodynamic drag, hysteretic damping, etc. are 

examples of nonlinear damping. 

 

Geometric nonlinearity exists in systems undergoing large deformations or 

deflections. This nonlinearity arises from the potential energy of the system. In structures, 

large deformations usually result in nonlinear strain- and curvature-displacement 
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relations. This type of nonlinearity is present, for example, in the equation governing the 

large-angle motion of a simple pendulum, in the nonlinear strain-displacement relations 

due to mid-plane stretching in strings, and due to nonlinear curvature in cantilever beams. 

 

Inertia nonlinearity derives from nonlinear terms containing velocities and/or 

accelerations in the equations of motion. It should be noted that nonlinear damping, 

which has similar terms, is different from nonlinear inertia. The kinetic energy of the 

system is the source of inertia nonlinearities. Examples include centripetal and Coriolis 

acceleration terms. It is also present in the equations describing the motion of an elastic 

pendulum (a mass attached to a spring) and those describing the transverse motion of an 

inextensional cantilever beam. 

 

When the constitutive law relating the stresses and strains is nonlinear, we have the 

so-called material nonlinearity. Rubber is the classic example. Also, for metals, the 

nonlinear Ramberg-Osgood material model is used at elevated temperatures. The 

nonlinearity between stress and strain described by Ramberg and Osgood is as follows. 

n

E
K

E
)(σσε +=  

where ε is strain, σ is stress, E is Young’s modulus, and K and n are constants that 

depend on the material being considered. 

Nonlinearities can also appear in the boundary conditions. For example, a nonlinear 

boundary condition exists in the case of a pinned-free rod attached to a nonlinear 

torsional spring at the pinned end. 
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Many other types of nonlinearities exist: like the ones in systems with impacts, with 

backlash or play in their joints, etc. It is interesting to note that the majority of physical 

systems belong to the class of weakly nonlinear (or quasi-linear) system. For certain 

phenomena, these systems exhibit a behavior only slightly different from that of their 

linear counterpart. In addition, they also exhibit phenomena which do not exist in the 

linear domain. Therefore, for weakly nonlinear structures, the usual starting point is still 

the identification of the linear natural frequencies and mode shapes. Then, in the analysis, 

the dynamic response is usually described in terms of its linear natural frequencies and 

mode shapes. The effect of the small nonlinearities is seen in the equations governing the 

amplitude and phase of the structure response. 
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Chapter 3 
Feasibility Study of Parametric Excitation 

Using Pendulum Model 
 

3.1 Dynamic Configuration 

Pendulum model is a good model to evaluate and simulate the dynamic responses of 

a tuning fork beam because it is simpler than a beam structure but has a good qualitative 

agreement with the beam dynamics.  

For the tuning fork micro gyroscope to work, the two proof masses must be driven 

into oscillations in the opposite directions. We use parametrically excited pendulums as a 

model of a tuning fork micro gyroscope to explore the feasibility of exciting the 

symmetric mode of two coupled oscillators.  

Our schematic model is shown in Fig. 3.1. Consider two pendulums hanging from a 

“suspension mass.” One particle having mass 1m  is connected to the massless rod 

whose length is 1l  and the other one is connected to 2l . The external forcing along the 

vertical direction, ),(tf  is on the suspension mass M . We define 1θ and 2θ  as an 

angle of each pendulum and x and y  as a displacement of the suspension mass along 

the horizontal and vertical direction, respectively. The suspension mass M  is 

constrained along the horizontal direction and the vertical direction by the springs with 

the total spring constant xk  and yk  for each direction as shown in Fig. 3.1.  
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Figure 3. 1 Schematic model of gyroscope motion 

The governing equations are derived by Lagrange equation that is 

i
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&

  i = 1, 2, 3…, n.                   (3.1.1) 

where tqq ii ∂∂= /&  is the generalized velocity, L is the difference between the kinetic 

and potential energies, L=(T-V), and iQ  represents all the non-conservative forces 

corresponding to iq . For conservative systems, 0=iQ  and equation (3.1.1) becomes 

0)( =
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∂

−
∂
∂

ii q
L

q
L

dt
d

&
 i = 1, 2, 3…, n.                   (3.1.2) 

Equations (3.1.1) and (3.1.2) represent one equation for each generalized coordinate. 

There expressions allow the equation of motion of complicated systems to be derived 

without using free-body diagrams and summing forces and moments. 

 We consider one part at a time for the calculation of kinetic energy and potential 

energy. To begin with, let us consider the suspension mass M . The kinetic energy MT  

yields 
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In addition, the potential energy becomes  
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The next part to be considered is a small particle having mass 1m . In the same way 

as the suspension mass, the kinetic energy for mass 1m  can be expressed as  

2
112

1
1

vmTm =                             (3.1.5) 

Because the particle is on the suspension mass, we need to consider the horizontal and 

vertical movement as well. We let rwvv
rrrr
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Substituting (3.1.6) into (3.1.5) leads to 

})sin()cos{(
2
1 2
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2
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On the other hand, the potential energy for the pendulum yields 

 1111 cos
1

θglmgymVm −= .                            (3.1.8) 

We get the equations for the other mass 2m  similarly 
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    2222 cos
2

θglmgymVm −=                                    (3.1.10) 

Combining equations (3.1.3), (3.1.7), and (3.1.9) leads to the total kinetic energy of 

the system given by 
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where 21 mmMM t ++= . Furthermore, the total potential energy V becomes 
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Lagrangian, L, from (3.1.1) becomes 
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From Eqs. (3.1.1) and (3.1.13), and if we let xq =1 ,  yq =2 ,  13 θ=q ,  24 θ=q , the 

governing equation for each variable can be obtained by simple algebraic steps. 

 
For the case of xq =1 , 
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Substituting Eqs. (3.1.15) and (3.1.16) into Eq. (3.1.1) leads to the equation for x variable 

such as 
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Next consider the case of yq =2 . 
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Substituting Eqs. (3.1.19) through (3.1.20) into Eq. (3.1.1), we obtain the equation for y 

variable 
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If we let 13 θ=q , 
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Substituting the equation (3.1.23) through (3.1.24) into (3.1.1) leads to  

11111
2

11111111 sinsincos θθθθθ Qglmlmylmxlm =+++ &&&&&&                          (3.1.25) 

In the same way we obtain the equation for 2θ  variable such as 

22222
2
22222222 sinsincos θθθθθ Qglmlmylmxlm =+++ &&&&&&                       (3.1.26) 

We assume that the suspension mass is driven into sinusoidal oscillations along the 

y-direction. Thus we let 
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tay ωcos=&&                           (3.1.27) 

Substituting (3.1.27) into (3.1.17), (3.1.21), (3.1.25), and (3.1.26) leads to the equations 

of motion for the three remaining degrees-of-freedom. Moreover, if we assume 

generalized forces acting on the system in the form of viscous damping, we obtain 
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From the equations, each damping term can be described as  
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where ζ  denotes damping ratio and 
t
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3.2 Dimensionless Equations 

The equations obtained in the previous section can be written in dimensionless 

forms by letting 1l  be a characteristic length and 
1

1
ω

 be a characteristic time, 
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thus, the derivatives become xlx ′′= ~
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2

~
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td
d θθ =′′ , respectively. 

Substituting (3.2.1) and (3.2.2) into (3.1.27) through (3.1.29) leads to 
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Simplifying (3.2.3) through (3.2.5), we obtain the final equations in dimensionless 

form such as 
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3.3 Results of Simulation 

3.3.1 Dependence on Initial Condition 

In this section we explore the dynamic responses of a symmetric structure. The 

dimensionless parameters used are the following: 

09.0== βα , 1=γ , 15.2/75.1 1 << ωω , 25.006.0 << p  

where, α  and β  denote ratio of each pendulum mass to the base mass respectively, γ  

is the length ratio between the two pendulums, 1/ωω  is the ratio of the excitation 
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frequency to the natural frequency of the pendulum, and p is the ratio of y direction 

acceleration to the gravity force g. 

 
Figure 3. 2 Response of the pendulum when 21 mm = and 21 ll =   

( * : swing in the same direction,  o : swing in the opposite direction,  x : decaying )  

As shown in Fig. 3.2, the parametric resonance occurs when the forcing frequency is 

near twice the natural frequency of the pendulum. There exist three types of pendulum 

responses depending on the forcing frequency and amplitude. In the figure, ‘o’ marks 

represent the pendulum motions swinging in the opposite directions. The ‘*’ marks 

denote the pendulum motions which are swinging in the same direction, and the ‘x’ 

marks represent the pendulum motions which decay after some transient. We refer to the 

motion when the two pendulums move in the opposite direction with the same amplitude 

as symmetric or out-of-phase motion. On the other hand, we refer to the swing motion 

when the two pendulums swing in the same direction as anti-symmetric or in-phase 

motion. The border of the two types of swing motions experiences long transient time to 
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reach the steady state.  

The parametric resonance occurs when the amplitude of dimensionless excitation p 

is greater than 0.07. When it is smaller than 0.07, the response dies out after some 

transient time. 

 

Figure 3. 3 Anti-Symmetric (in phase) motion ( 85.1/ 1 =ωω ) 

 

Figure 3. 4 Symmetric (out of phase) motion ( 2/ 1 =ωω ) 
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Figures 3.3 and 3.4 show that the two types of pendulum motions in more detail. 

The two figures are obtained by applying the same forcing amplitude, 15.0=p , and the 

same initial conditions, rad05.01 −=θ , rad01.02 =θ . From the figures, it is clear that 

the steady-state pendulum response is dictated by the frequency ratio rather than by initial 

condition. This observation summarizes the outcomes of several simulations we have 

conducted.  

 

Figure 3. 5 Anti-symmetric motion with symmetric IC ( rad05.021 =−= θθ , 85.1/ 1 =ωω ) 

 

Most interestingly, we have used symmetric initial conditions to start the simulation 

which evolves into asymmetric steady-state. This is shown in Fig. 3.5, which is obtained 

for the forcing frequency ratio 85.1/ 1 =ωω  with the symmetric initial condition 

rad05.021 =−= θθ . The response becomes anti-symmetric (in- phase) motion after a 

long transient. A similar case with anti-symmetric initial conditions rad05.021 == θθ  

is seen to evolve into symmetric motions after a long transient in Fig. 3.6.  
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Figure 3. 6 Symmetric motion with asymmetric IC ( rad05.021 == θθ , 2/ 1 =ωω ) 

 

 

 

Figure 3. 7 The responses when 21 mm = and 21 ll = : (a) Amplitudes of angular displacement of 

pendulums; (b) Displacement along the x-direction of the suspension mass; (c) Phase difference 

between the two pendulums 

(a) 

(b) 

(c) 
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Figure 3.7(a) shows the amplitudes of the angular displacements of the two 

pendulums when they reach the steady state. The parameters used are as follows; 15.0=p , 

initial conditions are rad05.01 −=θ and rad01.02 =θ . The displacement along the x- 

direction of the suspension mass is shown in Fig. 3.7 (b). The phase angle difference 

between the two pendulums is shown in Fig. 3.7 (c). The curves for the amplitudes of the 

two pendulums exactly overlap in Fig. 3.7 (a). The displacement along the x-direction of 

the suspension mass is zero when the pendulum motions have a phase difference of 

radπ . That is, the suspension mass does not move in the x-direction when the motion is 

symmetric. The phase difference is zero when the motion is anti-symmetric. In this case, 

large displacement occurs in x-direction. 

3.3.2 Effects of Imperfection 

The study in Section 3.3 demonstrates the feasibility of using parametric excitation 

to generate symmetric oscillations of two identical pendulums. Our interest is to use 

similar parametric excitations in micro gyroscopes. One important aspect of micro 

gyroscope fabrication is the dimensional inaccuracy of the fabricated parts. The 

dimensional inaccuracy breaks the symmetry of the mechanical structure. In order to 

understand whether the above findings are still valid in the presence of imperfections of 

the mechanical structure, we study the response of the two pendulums whose lengths are 

slightly different. The dimensionless parameters used are the following: 

09.0== βα , 95.0=γ , 15.2/75.1 1 << ωω , 25.006.0 << p  

Because of the length difference, each pendulum shows different magnitude of 

swing angle. However, the swing patterns are the same as the previous simulation in 
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which the two pendulums have the same mass and the same length. The two different 

swing patterns, symmetric motion and anti-symmetric motion, are clearly noticed. In the 

same way, ‘*’ symbols in Fig. 3.8 represent the anti-symmetric motion and ‘o’ symbols 

represent the symmetric motion.  

 
Figure 3. 8 Response of the pendulum when 21 mm = and 2195.0 ll =  

( * : swing in the same direction,  o : swing in the opposite direction,  x : decaying ) 

 

Figure 3.9 was obtained with the parameters, 95.0=γ , 23.0=p , and the initial 

condition, rad05.01 −=θ  and rad01.02 =θ . Recall that 1=γ  represents the case 

that the two pendulums are hung by the same length of massless rod. In Fig. 3.8, 

however, the lengths of the rods for two pendulums are no longer identical, so that the 

geometric symmetry is broken. The amplitudes of the two pendulums are never exactly 
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the same. Consequently, the displacement along the x-direction of the suspension mass 

cannot be zero. Still, we notice that there exist forcing parameters for which the 

pendulums swing in the opposite directions (phase angle is close to radπ ) and the 

amplitudes of the approximately “symmetric motions” are close to each other.  

 

 

 

Figure 3. 9 The responses when 21 mm = , 2195.0 ll = , 23.0,95.0 == pγ : (a) Amplitudes of angular 

displacement of pendulums; (b) Displacement along the x-direction of the suspension mass; (c) Phase 

difference between the two pendulums 

(a) 

(b) 

(c) 
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Figure 3. 10 The responses when 21 mm = , 2195.0 ll = , 15.0,95.0 == pγ : (a) Amplitudes of 

angular displacement of pendulums; (b) Displacement along the x-direction of the suspension mass; 

(c) Phase difference between the two pendulums 

 

Figure 3.10 is the case in which all the parameters are identical to those of Fig. 3.9 

except the forcing amplitude, 15.0=p , which is smaller than the one in the previous 

study. At this forcing amplitude, there exists a frequency interval where the pendulums 

are not excited. This frequency interval separates the two frequency regions where the 

pendulums undergo steady oscillations under parametric excitations. When forced by a 

(a) 

(b) 

(c) 
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frequency in the high frequency region, the pendulums oscillate in the opposite 

directions. In this case, pendulum motions are approximately “symmetric.” In addition, a 

forcing frequency in the low frequency region makes the pendulums oscillate in the same 

directions, anti-symmetric.  

As shown in Figs. 3.9 and 3.10, the displacement of the pendulum swing is much 

more complicated when they move in the same direction than when they swing in the 

opposite direction. In other words, there are small displacement differences when they 

swing in the opposite direction, but if they swing in the same direction, the displacement 

gap between the two pendulums is increased. 

3.4 Effect of Stiffness of the Coupling Support 

In the previous section, we noticed that the pendulum swing depends on the 

frequency rather than the initial condition. As shown in Figs. 3.9 and 3.10, the stiffness of 

the x direction allows coupling between the two pendulums and hence energy transfer 

occurs between them.  

However, when the x displacement of the support is constrained to be zero, there is 

no coupling between the two pendulums. In this case, shown in Figs. 3.11 and 3.12, the 

only thing that regulates the pendulum’s movement is initial condition. So if the initial 

condition is in the opposite direction, the swing reaches in the opposite direction at steady 

state and if the initial condition is in the same direction, then the swing is also in the same 

direction at steady state. 

Figure 3.11 was obtained from the frequency range in which the pendulums are 

supposed to swing in in-phase motion. Frequency ratio, 85.1/ 1 =ωω , and the initial 
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condition, rad05.01 =θ  and rad01.02 −=θ , were applied. However, x-direction 

movement was constrained completely. As shown in Fig. 3. 11, the two pendulums swing 

in out-of-phase motion unlike the previous simulation. 

 

Figure 3. 11 Response of the pendulum: 0=x , 95.0=γ , rad05.01 =θ , rad01.02 −=θ  

 

Figure 3. 12 Response of the pendulum: 0=x , 95.0=γ , rad05.01 =θ , rad01.02 =θ  
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Figure 3.12 shows another example of the initial condition dependence. At this time, 

it was obtained from the frequency range in which the pendulum supposed to swing in 

the opposite direction (out-of-phase) motion. Frequency ratio, 2/ 1 =ωω , and the initial 

condition, rad05.01 =θ  and rad01.02 =θ , were used. In the same way, x direction 

movement was constrained. We see that the two pendulums swing in the same direction 

as the initial direction in Fig. 3.12. 

This work is closely related to Ref. [41]. The main difference lies in the finite 

stiffness along the x-direction in our model. The coupling along the x-direction excludes 

the possibility that only one pendulum is excited at a time. However if we have very large 

stiffness, k, then the pendulums are decoupled completely and each pendulum follows the 

parametric excitation rule independently. 

3.5 Summary 

We studied the response of two coupled pendulums to show the feasibility of the 

external excitation for the micro gyroscope. We found that the system has two different 

swing patterns. The solution with the opposite direction allows excitation of the desired 

mode. This solution persists for structures with imperfection. This is advantageous for 

device fabrication since imperfection is unavoidable. 

Our numerical study has shown that parametric excitation can cause the two 

pendulums to oscillate in the opposite directions stably. This property can be used to 

design MEMS micro gyroscopes which use parametrical forcing as excitation. The design 

is shown to be robust to imperfections that are unavoidable in device fabrication. 
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Chapter 4  

Calculation of Coefficients Using Finite 

Element Method 

 

4.1 Introduction 

The advantage of the parametric excitation is that it can be externalized. The 

fabrication is thus simplified. However, there are no readily applicable tools to guide the 

design of these gyroscopes since the gyro structures are more complex than those 

structures whose responses to parametric excitations are known and since finite element 

analysis tools are not capable of studying parametric excitations. In this work, we adopt a 

novel approach to obtain a simplified model of the parametrically excited structure. 

Parameters in the simplified model are obtained using dynamic analysis capability of 

typical finite element programs and static nonlinear analysis capabilities. Nayfeh and Pai 

studied non-linear non-planar parametric responses of an inextensional beam in 1989 and 

they got analytical formula [46]. 

Consider a parametrically excited beam. If the forcing frequency is close to twice 

that of the first mode, the governing equation for the beam vibration can be written as 

0)1(2 32
00 =+−++ δδαωδζωδ

m
h

B
P

L

&&&                (4.1.1) 

where 0ω is the natural frequency of the beam, ζ  the damping coefficient, P  the 
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parametric excitation force, m  the modal mass, h  the nonlinear term, and LB  the 

static buckling limit. The coefficient α  is an important parameter that measures the 

effectiveness of the parametric excitation. The nonlinear coefficient h  measures the 

geometric nonlinearity in the system. 

The concept of a parametrically excited micro gyroscope is that by parametric 

excitation, i.e. )2cos( tfP ω= , sufficient motion is generated. For Equation (4.1.1), the 

steady state amplitude of δ  is determined by ζ , α , and h . The parameter ζ  is often 

known in terms of the Quality Factor, 
ζ2
1

=Q . However, there is no analytical method to 

calculate this parameter. It is often determined using empirical data. 

4.2 Critical Buckling Load Analysis 

The critical buckling load is the maximum load that a structure can support prior to 

structural instability or collapse. The collapse of the structure is reached when the 

displacements become relatively large for a small load increment. The critical bucking 

load is different depending on the boundary condition of the structure.  

As shown in Fig. 4.1, if we have a cantilever beam with one end fixed and the other 

end free, the bucking load when axial load applies on the free end is described as 

2

22

4 l
EInBL

π
=  n =1,2,3…                  (4.2.1) 

where E denotes the Young’s modulus, I is the moment of inertia, and l is the length of 

the beam [47]. 
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Figure 4. 1 Cantilever beam with lumped load 

However, if we have a cantilever beam supplied by vertical direction excitation, 

axial force will be induced by its own mass as shown in Fig. 4.2. We assume that lumped 

mass is distributed on each node and it produces axial force on the beam. Also, clamped-

free boundary condition is assumed. 

                  

Figure 4. 2 Cantilever beam with distributed load 

 The critical buckling load yields 

p(x)
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2

2837.7
l

EInBL =  n =1,2,3…                   (4.2.2) 

by the study of Timoshenko in 1961. 

We used Al(6061-T6) cantilever beam 10cm× 0.1cm× 0.1cm in size. Young’s 

modulus, E, was 69.637 GPa. For the finite element analysis, the beam was divided into 

10 elements as shown in Fig.4.2. We found that the critical buckling load of the beam 

was 454,546 dyn in theory and 452,872 dyn from ALGOR analysis [48]. The error 

between the theory and the simulation was only 0.37 %.  

Table 4. 1 Buckling load of the beam 

 Theory ( dyn ) Simulation ( dyn ) Error ( % ) 

First mode 454,546 452,872 0.37  

Second mode 1,818,184 - - 

Even though we can calculate the critical buckling load for the second mode by the 

theory, the first mode’s one is still assumed to be more important in the practical system. 

For that reason, ALGOR simulation may give only one bucking load. 

4.3 Effectiveness of Parametric Excitation 

ALGOR is one of the commercial programs to analyze dynamics of structures using 

finite element method (FEM). The natural frequency with load stiffening processor in the 

program is used when axial compressive or tensile loads will affect the response of a 

system. This analysis type is very similar to the natural frequency processor. However, it 

can handle a situation when a part is under compression or tension at the same time that 
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vibration is induced. For instance, a violin or guitar string’s tone is changed when the 

string is tightened or loosened even though nothing is done to the string to change its 

mass or length. This effect makes music possible and engineers call it load stiffening.  

Natural frequency is changed until the structure buckles. When a structure buckles 

under the compression the natural frequency becomes zero. Using this phenomenon, one 

can calculate the relationship between the natural frequency with and without axial load. 

From Eq. (4.1.1), we know the relationship between two natural frequencies with 

and without the axial load: 

)1(2
0

2

LB
Pαωω −=                          (4.3.1) 

where ω  denotes the natural frequency of the beam with axial force, and 0ω  is the 

natural frequency of the beam without axial force. P and LB  are the axial force acting 

on the beam and the critical buckling load of the beam respectively. Table 4.2 is the 

simulation results of the Natural frequency with load stiffening analysis. 

Table 4.2 shows that the first natural frequency is decreased while the axial force is 

increased. Moreover, the squared natural frequency term is a linear function of the axial 

load P so that it reaches down to zero when the axial load becomes the same as the 

critical buckling load. As shown in Fig. 4.3, the linear equation gives the coefficient, 

1=α . 
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Table 4. 2 Natural frequency with load stiffening for the 1st mode 

Load P (dyn) ω (rad/s) Load P (dyn) ω (rad/s) 

0 512.70 300000 298.31 

50000 483.68 400000 175.52 

100000 452.78 450000 40.92 

200000 383.47 452000 22.54 

  

 

Figure 4. 3 Relationship between natural frequency and axial force for the 1st mode of the beam  

with clamped-free boundary condition  

On the other hand, the simulation shows that the second mode frequency also has a 

linear relationship with axial load P. The results of the natural frequency with load 

stiffening analysis for the second mode are in Table 4.3.  Since only one critical 

buckling load is available through ALGOR program, we used theoretical buckling load 

here. The linear coefficient, 5643.0=α , was obtained for the second mode. 
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Table 4. 3 Natural frequency with load stiffening for the 2nd mode 

Load P (dyn) ω (rad/s) Load P (dyn) ω (rad/s) 

0 3176.17 2400000 1597.76 

50000 3151.61 2600000 1386.98 

100000 3126.84 2800000 1139.68 

1000000 2639.18 3000000 825.32 

2000000 1953.31 3200000 282.01 

2200000 1784.33 3220000 144.02 
 

 

Figure 4. 4 Relationship between natural frequency and axial force for the 2nd mode of the beam  

with clamped-free boundary condition  

4.4 Derivation of the Nonlinear Term 

The parameter h in Eq. (4.1.1) represents the nonlinear load-deflection relationship 

of the beam. Since the material is assumed to be linear elastic, the nonlinearity is a result 

of the geometric nonlinearity. This can be quantified by using the static nonlinear 

analysis tool of the finite element packages. 
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Figure 4. 5 Cantilever beam with parametric excitation 

We assumed distributed load )(xq  acting on the beam in the horizontal direction 

such as shown in Fig. 4.5. Let )(xw  denote the displacement of the beam at a certain 

location x. 

Table 4. 4 Displacement for several different horizontal forces using FEM 

Total horizontal force (dyn)  

10000 100000 200000 300000 400000 500000
1 0 0 0 0 0 0
2 0.0040 0.0396 0.0754 0.1060 0.1321 0.1545
3 0.0151 0.1475 0.2791 0.3894 0.4806 0.5567
4 0.0317 0.3090 0.5806 0.8028 0.9813 1.1260
5 0.0525 0.5111 0.9541 1.3081 1.5849 1.8031
6 0.0764 0.7427 1.3785 1.8762 2.2560 2.5480
7 0.1026 0.9948 1.8373 2.4854 2.9698 3.3345
8 0.1301 1.2599 2.3179 3.1199 3.7093 4.1454
9 0.1585 1.5326 2.8107 3.7685 4.4629 4.9694

10 0.1872 1.8086 3.3090 4.4235 5.2228 5.7992  
 N

od
al

 d
is

pl
ac

em
en

t 
 (

cm
) 

11 0.2160 2.0857 3.8092 5.0805 5.9847 6.6308

)(xw

)2cos( tfP ω=

)(xq
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The coefficient, 
m
h , can be obtained by using the relationship between the external 

force acting on the beam and the displacement of the beam.  

3δδ hkL +=                          (4.4.1) 

where L is the generalized force, and δ  is the generalized coordinate.  

For a discretized beam, the beam displacement can be expressed in terms of its 

mode shapes. 

∑
=

Φ=
n

i
ii xtxw

1
)()()( δ                        (4.4.2) 

where, iΦ  denotes the i th mode shape of the beam. We can use iδ  as a generalized 

coordinate. To obtain the nonlinear relationship between L and δ , we apply a uniform 

load to the beam in the direction shown in Fig. 4.5. Using the nonlinear static analysis 

tool in ALGOR, we obtain the nodal displacements corresponding to different total loads. 

These results are shown in Table 4.4. The boundary conditions at node #1 and #11 are 

clamped and free respectively.  

From these values, we obtain the displacements of the generalized coordinate 

∫ Φ=
l

ii dxxxw
0

)()(δ                       (4.4.3) 

and the corresponding generalized force 

∫ Φ=
l

ii dxxxqL
0

)()( .                     (4.4.4) 
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Table 4. 5 Displacement when lateral uniform load was applied 

First mode Second mode Total force 
(dyn) 

1L  1δ  2L  2δ  

1000 3.92 0.0055 -2.233 -0.0008 
10000 39.23 0.0552 -22.330 -0.0082 

100000 392.28 0.5336 -223.297 -0.0909 
200000 784.57 0.9793 -446.593 -0.2228 
300000 1176.85 1.3144 -669.890 -0.3946 
400000 1569.13 1.5582 -893.186 -0.5849 
500000 1961.41 1.7368 -1116.480 -0.7759 

In Figs. 4.6 and 4.7, the red stars represent the displacements when the beam is 

subjected to the corresponding lateral forces. The relationship between the forces and the 

displacements was found using SPSS program [49], a commercial program by which one 

can carry out a regression analysis. Finally, we can get the unknown coefficients in Eq. 

(4.4.1) as shown in table 4.6. 
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Figure 4. 6 Relationship between external load and displacement for the 1st mode 
of the cantilever beam 
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Figure 4. 7 Relationship between external load and displacement for the 2nd mode  

of the cantilever beam 

Since only the term 
m
h  is needed in Eq. (4.1.1), we recall that 2

0ω=
m
k . Therefore 

k
h

k
h

m
k

m
h 2

0ω==                       (4.4.5) 

In other words, the ratio of the two regression parameters is the nonlinear parameter 

we need to predict the beam response to the parametric forcing. The parameters are given 

in Table 4.6. 

Table 4. 6 Two regression parameters and nonlinear term 

coefficient 1st mode 2nd mode 

h 158 -704.48 

k 640 1839.38 

h/m 64892.69 -3863773.49 
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4.5 Boundary Condition Effect 

In Section 4.3 and 4.4, the boundary condition of the beam was Clamped-Free. That 

is, at x = 0, the beam has the boundary condition [50] 

Deflection = 0=w , Slope = 0=
∂
∂

x
w . 

Moreover, at x = l, the beam has the condition becomes 

Bending moment = 02

2

=
∂
∂

x
wEI , Shear force = 02

2

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

x
wEI

x
. 

Through the numerical simulation we found that the boundary condition is a crucial 

factor for the coefficient α . Figures 4.8 and 4.9 are the dimensionless frequency 

responses when the boundary condition of the beam is Clamped-Clamped and the 

dimensions are the same as those of the case simulated in Section 4.3 through 4.4. In this 

case, the boundary conditions are 

Deflection = 0=w , Slope = 0=
∂
∂

x
w  

at x = 0 and x = l. The ALGOR critical buckling load analysis gives the buckling load to 

be 392,752,000 dyn when the beam has a distributed axial load. 

As shown in the figures, while we have a linear relationship between the square of 

the natural frequency and the applying axial force with clamped-free boundary condition, 

the relationship between the two is nonlinear with clamped-clamped boundary condition. 

It is to say that a clamped-free boundary condition may allow the system to be simpler 

and more predictable than clamed-clamped one for the parametric excitation.  

We didn’t introduce the other boundary condition cases such as a clamped-pinned 
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and a clamped-slide because these boundary conditions are not suitable for the design of 

micro vibratory gyroscopes. 

 

Figure 4. 8 Relationship between natural frequency and axial force for the 1st mode of the beam  

with clamped-clamped boundary condition  

 

 

Figure 4. 9 Relationship between natural frequency and axial force for the 2nd mode of the beam  

with clamped-clamped boundary condition  
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4.6 Comparison of Averaging Method and Simulation 

In the study of dynamical systems, the method of averaging is used to study certain 

time-varying systems by analyzing easier, time-invariant systems which is obtained by 

averaging the original system. The idea of averaging as a computational technique has 

been formulated very clearly by Lagrange in 1788. Ferdinand Verhulst [51] describes the 

method of averaging effectively in his book. When we have a weakly nonlinear system 

with small parameter ε  

0),,(2 =++ txxfxx &&& εω ,                  (4.6.1) 

its averaged equations become as follows; 

            >Φ=< sin)( fr
ω
ε

&   >Φ=< cos)( fr
ω
εϕ& ,          (4.6.2) 

where ϕω +=Φ t , and < > denotes an average over one cycle of Φ . 

From the previous section, the coefficients of the beam equation have been obtained 

by regression analysis in SPSS program. The equation with a cubic nonlinearity would be  

0~)1(2 32
0

2
00 =+−++ δωδαωδωζδ h

B
P

L

&&&             (4.6.3) 

where, 
k
hh =

~  and taP ωω 2cos4 2= . 

For the averaging method, let us assume the following: 

d⋅= εζ , hh ⋅= ε~ , ta
B
P

L

ωεα 2cos4⋅= , σωεωω 2
0

2
0

2 ⋅=− , where 1<<ε . 

Equation (4.6.3) can be written as 

0}2)2cos4({ 32
00

2
0

2 =+++−++ δωδωδωσωεδωδ hdta &&&         (4.6.4) 
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From the equations (4.6.1) and (4.6.4), we have 

32
00

2
0 2)2cos4( δωδωδωσω hdtaf +++−= & .                      (4.6.5) 

Now, let’s assume Φ= cosrδ and substitute (4.6.5) into (4.6.2), we get 

)sin(2cos)2cos4(){( 0
2
0 Φ−+Φ+−=< rdrtar ωωωσω

ω
ε

& >ΦΦ+ sin}cos 332
0 rhω  

  >−ΦΦ−=< )sincos2cos4)(( 0
2
0 ωωωω

ω
ε rdtra                          (4.6.6) 

Recall that the integration over one period of oscillation becomes: 

∫ =
T

dttt
T 0

0cossin1 ωω   

2
1cos1sin1

0

2

0

2 == ∫∫
TT

dtt
T

dtt
T

ωω .                       (4.6.7) 

Equation (4.6.7) and the trigonometric formula lead to 

)}22sin()22{sin(
4
12cos2sin

2
12cossincos tttt ωωωω +Φ+−Φ=Φ=ΦΦ  

               )}24sin(2{sin
4
1 ϕωϕ ++= t , where ϕω +=Φ t . 

Equation (4.6.6) becomes 

)2sin( 0
2
0 ωωϕω

ω
ε rdrar −−=&                  (4.6.7) 

Since 20
0

2
0

2
0 2

εσωεωσωεωω ⋅Ο++=+=  and ε  is small, high order terms of ε  

may be disregarded. Therefore equation (4.6.7) can be written as 

rdar 2
0)2sin( ωϕ

ω
ε

−−=&                                 (4.6.8) 

 



 62

In the same way, substitute (4.6.5) into (4.6.2) and we get 

)sin(2cos)2cos4(){( 0
2
0 Φ−+Φ+−=< rdrtar ωωωσω

ω
εϕ& >ΦΦ+ cos}cos332

0 rhω  

     >+Φ−−=< )
8
3cos2cos4

2
( 32

0
22

0

2
0 rhtrar ωωωσω

ω
ε .                 (4.6.9) 

Recall the trigonometric formula again, which says 

)}22cos()22{cos(
4
12cos2cos

2
12coscoscos tttt ωωωω +Φ+−Φ=Φ=ΦΦ  

 )}24cos(2{cos
4
1 ϕωϕ ++= t , where ϕω +=Φ t . 

Equation (4.6.9) yields 

rrhar 2
0

2 )
8
32cos

2
( ωϕσ

ω
εϕ +−−=&                           (4.6.10) 

For the fixed points, equations (4.6.8) and (4.6.10) should satisfy the condition, 

0=r&  and 0=ϕ& . The equations yield 

02sin =−− da ϕ                          (4.6.11) 

0
8
32cos

2
2 =+−− rha ϕσ                      4.6.12) 

From Eqs. (4.6.11) and (4.6.12), we get 

2
222

28
3

⎥⎦
⎤

⎢⎣
⎡ −+=

σrhda                         (4.6.13) 

The solution of Eq. (4.6.13) yields 

 hdar
8
3

2
222
⎥⎦
⎤

⎢⎣
⎡ −±=
σ                   (4.6.14) 

Note that the nonlinear coefficient h  is in the denominator. That is, the response 

amplitude is indeterminate if h  is not known. This is why it is essential to determine the 
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nonlinear term in predicting parametric responses of the beam. As shown in Fig. 4.10, the 

response of the equation has two branches. It is well-known that the top branch is stable 

and the bottom branch is unstable 

 
Figure 4. 10 Results of averaging method of the beam 

Now let’s discuss the critical parametric forcing amplitude a  for the equation. 

Setting the part inside the square root to zero, we get 

022 =− da , 

which gives the critical forcing amplitude da = . As shown in Fig. 4.11, when 

applied force crosses the threshold of the system, the system has nontrivial solutions as 

well as trivial one. In other words, when da ≥ , the parametric excitation is possible. In 

Fig. 4.11, the lower pitch fork, -r, represents the response which has the same amplitude 

as r but the phase angle differs by radπ . 
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Figure 4. 11 pitchfork bifurcation at da =  

 

Figure 4. 12 Displacement of the beam : Simulation result using Runge Kutta method 

Figure 4.12 is the numerical simulation results of Eq. (4.6.1) obtained by Runge-

Kutta method, which is widely used in numerical integration of ordinary differential 

equations by using a trial step at the midpoint of an interval to cancel out lower order 

error terms. The second order formula, known as RK2, is 

),(1 nn yxfhk =  

)
2
1,

2
1( 12 kyhxfhk nn ++=  

r 

a  d
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)( 3
21 hOkyy nn ++=+  

and the fourth-order formula is  
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From Eq. (4.6.1), if we let δ=1x , δ&=2x , we get two equations such that 

21 xx =&  

3
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2
01

2
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~)1(2 xhx
B
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L

ωαωωζ −−−−=& . 

As shown in the figure, the response of the beam shows a hardening nonlinearity; 

the response becomes much bigger when the excitation frequency is greater than twice of 

the natural frequency of the beam. With the increase of the forcing frequency, the 

response drops down to zero at certain point. Now the trivial solution is also stable. We 

can see that parametrically excited solution remains stable by selecting steady-state at a 

lower frequency as initial condition.  

Figures 4.10 and 4.11 show that the results from the analytical method and the 

numerical simulation are in good agreement. Recall that numerical simulation can only 

locate stable steady-state. 
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4.7 Summary 

In this chapter, we used the finite element method to obtain parameters which are 

crucial in designing parametrically excited gyroscopes. Effectiveness of the parametric 

excitation obtained using the critical buckling load analysis and the natural frequency 

with load stiffening analysis in commercial ALGOR program. Moreover, the nonlinearity 

of the system was obtained by using FEM and simple dynamics between applying force 

and displacement. The equation obtained by this method was simulated analytically and 

numerically.  

We used parametrically excited cantilever beam as an example. However, since the 

simplified model is based on calculations using finite element methods, our approach can 

be applied to gyro design with more complex structures.  
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Chapter 5 

Experiments with a Tuning Fork Beam  

 

In this chapter, we investigated the feasibility of the new operational method using a 

fork type aluminum beam. 3D Motion analysis camera system was employed to capture 

the motion of the beam in real time. We describe in detail the usage of a 3D motion 

analysis system to characterize nonlinear dynamics of the beam. We begin with a detailed 

description of the experimental set-up and the data acquisition devices. Then the 

experimental procedure is presented and discussed. In the result, frequency response 

curves are obtained for several different parametric excitation amplitudes.  

5.1 Experimental Setup 

             

Figure 5. 1 Experimental model: (a) tuning fork type beam (b) reflection marks on the model 

As shown in Fig. 5.1, a fork shaped aluminum beam was used to investigate the 

parametric excitation effect. The dimension of each tine is 10in ×  15/16in ×  1/8in and 

15/16 inch

10 inch

1/2 inch

4 inch 

1/8 inch

(b)(a) 
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two tines are connected to the base beam, whose dimension is 4in ×  15/16in ×  1/2in. 

The tuning fork beam was built in a whole structure using a general machine tool. The 

reason we used a relatively large size of beam for the experiment is to magnify the 

parametric force effect. 

Because the 3D motion analysis system uses reflection signal from the retro 

reflective marker adhered to the model, twenty-five 4mm diameter retro-reflective 

markers were adhered to the beam and were distributed equally through whole beam. As 

shown in Fig. 5.1, the end markers, #1 and #25, were put close to the tip of the tines of 

the beam.   

5.2 Natural Frequencies and Mode Shapes 

The natural frequency of the structure can be calculated by the formula which is 

derived from the cantilever beam whose boundary condition is clamped-free. The 

formula is given by; 

AEIbnn ρω /2=  

Where nω  denotes the nth natural frequency, nb  is the nth coefficient at the 

specific boundary conditions, E is Young’s modulus, I is the moment of inertia, ρ  is the 

mass density, and A is the area of the beam. 

Table 5. 1 Material property of Aluminum 6061-T651 [52] 

Mass Density (kg/m3 ) 2,700 

Modulus of Elasticity (N/m2) 68,947,000,000 

Poisson's Ratio 0.33 

Thermal expansion coefficient (1/ oC) 0.00002358 

Shear Modulus (N/m2) 26,000,000,000 
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Aluminum 6061-T651 is used for the experiment. The material properties of the 

tuning fork beam are shown in Table 5.1. 

First of all, finite element modeling and analysis of the tuning fork beam was 

performed to obtain its Natural frequencies. The 3D model was built in line drawing, and 

the model was then meshed and the boundary conditions specified in ALGOR. Through 

the finite element analysis in ALGOR, natural frequencies and mode shapes of the tuning 

fork were obtained as shown in Fig. 5.2.  

             

40.0962 Hz            40.0964 Hz            248.375 Hz            248.42 Hz 

Figure 5. 2 Natural frequencies and mode shapes 

The tuning fork beam is clamped on a shaker head with a metal bolt. Furthermore, 

two metal washers were used between the tuning fork beam and the shaker head to obtain 

a point fixed boundary condition. The bottom area of the beam applied a fixed boundary 

condition except vertical movement. Table 5.2 gives a comparison of natural frequencies 

between the results from finite element analysis and theoretical calculation to predict its 

parametric resonance. The natural frequency of the beam yields 40.16 Hz by the theory. 

In other words, if we assume the structure has the same boundary condition as the 

clamped-free beam, the resonance occurs when the parametric excitation frequency is 

around 80.32 Hz by the theory. 
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Table 5. 2 Comparison of natural frequencies 

 Theory (Hz) FEM (Hz) Difference (%) 
1st mode 40.1591 40.0962 0.156 

 - 40.0964 - 
2nd mode 251.6729 248.375 1.31 

 - 248.42 - 

5.3 Experiment Method 

5.3.1  The 3D Motion Analysis System 

The 3 D Motion Analysis System is a non contacting vibration measurement device 

[53]. It consists of several high-resolution CMOS (complementary metal-oxide-

semiconductor) digital cameras, the Eagle Hub, and EVaRT software. In our experiment, 

3 digital cameras were used. Figure 5.3 shows an experimental set up using Eagle-500 

digital real-time motion analysis system.  

 

(a) 
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Figure 5. 3 Experimental set up using EAGLE-500 digital real-time motion analysis system: 

 (a) actual experimental set up (b) schematic set up of experiment  

This system uses triangulation techniques. A calibration is performed using an L-

frame with four markers and a T-wand with three markers. After the calibration, the 

camera system automatically computes and records the instant 3D coordinates of the 

center of each retro-reflective marker that is seen by at least two cameras using the Eagle 

real-time softeware EVaRT 4.1. The recording time length is effectively infinite and up 

to 600 markers can be simultaneously traced. Since the 3D coordinates of each marker 

are checked and calibrated when more than two cameras see the marker, the measurement 

accuracy is very high. For instance, when the measurement volume is 2×2×2 m3, the 

measurement error is less than 1.0 mm. Because this system has many benefits such as 

high measurement capability, easy operation, and simple set up, it becomes a new 

standard for motion capture. 

(b) 
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5.3.2  Eagle Digital Camera 

The Eagle digital cameras can capture images of a structure when the visible red 

LED strobes light up the retro-reflective markers which are put on the structure already. 

Each camera can capture up to 500 frames per second with a 1280×1024 full resolution, 

1000 frames per second with a 1280 × 512 resolution, 2000 frames per second with a 

1280 × 256 resolution. In addition, their processing rate reaches up to 600 million pixels 

per second. Signals from an Eagle digital camera go directly to the tracking computer via 

an Ethernet connection. This streamlined system of motion capture from camera to 

computer allows less hardware and less potential problems. Moreover, the Field 

Programmable Gate Array (FPGA) built into the Eagle is upgradeable via the Internet. 

The features of Eagle cameras are listed below [54]: 

• The frame rates are selectable from 1 to 2000 Hz. 

• Two suitcases allow bringing up to 8 cameras. 

• Built-in zoom provides more visual options. 

• For low optical distortion, the camera uses a high quality 35mm lens.  

• Visible red, near red, or infrared ringlights are available. 

• Through the LED display panel on camera, one can notice the status of the 

cameras.  

• The light output and electronic shutter can be controlled by the software.  

Camera placement is one of the most important aspects of setting up the motion 

analysis system. If we place the cameras in good positions, the results will be accurate 
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and the editing time will be greatly reduced. There are several things to be considered, 

when deciding the number of cameras to be used. 

First, there should be sufficient number of cameras to insure that at least two 

cameras can capture all markers at all times. Generally, when the motion of the subject 

becomes less restrained and the capture volume is increased, the number of cameras must 

be increased. 

Second, when more cameras are used, each camera should view only a portion of the 

capture volume to achieve higher accuracy. One should prevent too many cameras 

capture the same marker. The only requirement is that all 4 markers on the calibration 

square should be visible in at least half of the cameras used. If too many cameras see the 

same marker such as 5 or 6, the accuracy of tracking is not increased and the computation 

time is increased. 

Third, to ensure the highest possible spatial resolution, camera views should not 

include areas outside the capture volume. 

5.3.3 Eagle Hub 

The Eagle hub consists of multi-port Ethernet switch (100Mbps) and provides power 

for the cameras. For all signals and power between the camera and the Eagle hub, a single 

Ethernet Cat 5 cable is used. 

5.3.4  EVaRT 

The EVa real-time software (EVaRT) provides the user with a simple and powerful 

interface. Under a single software environment, the user can set up, calibrate, capture 

motion in real-time, capture motion for post processing, and edit and save data in a 
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chosen format. 

5.3.5  Ling Dynamics LDS V408 Shaker 

The beam is excited using a Ling Dynamics LDS V408 shaker, which has a 

maximum output force of 196 N and a frequency range of 5 to 9000 Hz, to supply the 

oscillatory boundary condition at the base of the beam. We assumed the shaker-head 

motion is same as the base of the beam because the beam is securely attached on the 

shaker-head. The motion was monitored by means of an accelerometer mounted to the 

base of the beam. 

5.4 Experiment Procedure 

Because the nonlinear vibration may depend on the initial conditions, if the tests are 

carried out by continuously varying parameters, either the excitation frequency or 

amplitude, we may mistake nonlinear transient vibration as a steady-state response. 

Therefore, for the steady-state response, we need to change only one parameter value at a 

time. 

In our experiments, we stop each test before changing the parameter (frequency or 

amplitude) for the next test. Each test starts with zero initial conditions, and hence the 

tests are direction independent. Once we get the steady state, we disturb the vibration and 

then check other possible steady state solutions. By this way, we simulate vibrations 

starting with different initial conditions and hopefully will not miss possible multiple 

solutions.  

At the beginning, we use a sweeping method, which uses the continuously varying 

frequency, to find out the parametric resonance range. Once we notice a rough range 
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where parametric resonance occurs, we carry out the experiment with the excitation 

frequency change while the excitation amplitude is held constant. The procedure is 

repeated with the different forcing frequencies. For every parameter changing, the 

transient motion dies out and so the steady state is reached before the response is 

captured. In general, a steady state will be attained in half to one minute after the 

excitation reaches the specified amplitude. Normally, it takes longer time for the response 

to reach a steady state for tests with parameters around where the multiple solutions exist. 

For example, it takes longer time to reach a steady state at the boundary frequency where 

the parametric resonance starts. 

Theoretically, the step size of increase or decrease of the parameter depends on the 

closeness of the excitation frequency to the bifurcation frequencies. When it is close to 

the resonant frequency, the increase step needs to be small because various nonlinear 

phenomena exist in a small frequency range. In our experiments, we increase the 

excitation frequency by 0.05Hz when it is close to the resonant frequency in order to 

observe possible important phenomena. Actually, the appropriate increase or decrease 

step size practically depends on experience. The total number of excitation frequency 

increments and the number of excitation amplitude increments depend on the frequency 

range we want to investigate and also the capacity of our experimental apparatus. 

5.5 Excitation Force Amplitude Scale 

We used the excitation force in dB unit. Normally, we use dB units to express the 

ratio of the power between the output and the input. The relationship among dB, power, 

and voltage is as follows.  
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Where, PO and PI denotes the output and input electric power, respectively, and VO 

and VI are the output and input voltage. For the open loop, the LDS DSC4 controller 

provides 1.5 V rms at 0 dB compression.  

We carried out the experiments for which the amplitudes of excitations are 0 dB, -

1.5 dB, -3.0 dB, -4.5 dB, and -6.0 dB. The ratio of the output voltage to the input voltage 

can be expressed as shown in Table 5.3 by the formula (5.5.1). Note that the output 

voltage becomes a half the input voltage when we used -6.0 dB level. 

Table 5. 3 The ration of the output voltage to the input voltage 

dB Ratio(out/in) dB Ratio(out/in) 

0 1 -4.5 0.5957 

-1.5 0.8414 -6 0.5012 

-3 0.7079 -9 0.3548 
 

5.6 Experimental Results 

5.6.1  Parametric Resonance Phenomenon 

Using a frequency sweeping method, we could find the region where the resonance 

phenomenon occurs. We took several frequencies with step 0.05 Hz from the region, and 

the steady state response was obtained for each case. Figure 5.5 shows the vertical 

displacements from node #13 (where the beam is connected to the shaker) and its 

FFT(Fast Fourier Transformation). Furthermore, the time trace of the lateral 

displacements from node #1 (the tip of the tine) and its FFT are illustrated in Fig. 5.6. For 
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both cases, 400 reflective data within 1 second were collected and recorded using 3D 

motion analysis system. For the experiment, -3.0 dB excitation force amplitude and 80.40 

Hz frequency were used.  
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Figure 5. 4 Response at node #13 in vertical direction when Ω =80.40 Hz and a =-3 dB 
(a) time trace  (b) FFT 
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Figure 5. 5 Response at node #13 in horizontal direction when Ω =80.40 Hz and a =-3 dB 
(a) time trace  (b) FFT 
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As shown in Figs. 5.4 and 5.5, the frequency of the lateral movement at the tines of 

the tuning fork beam is about half that of the longitudinal parametric force. The 

frequency of the vertical direction excitation at node #13 was 80.47 Hz, while the 

frequency of the lateral movement at node #1 was 40.23 Hz.  

5.6.2  Swing in Symmetric Motion 

Figure 5.6 shows the vibration pattern of two tines of the beam. The response time 

traces at two nodes, #1 which is the tip of the left tine and #25 which is the tip of the right 

tine, are presented in one figure to compare the vibrating direction of two tines. The solid 

line is the time trace at node #1 and dotted line is the time trace at node #25.  

As shown in the figure, the two tines vibrate in opposite direction. The response is 

very stable with the same displacements. This result has a good agreement with our 

previous simulation with two pendulums in which two pendulums swing in opposite 

horizontal direction when the pendulums are excited in vertical direction [55].  

 

Figure 5. 6 Time trace of the response at node #1 and # 25 when Ω =80.40 Hz and a =-3 dB 
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Figure 5. 7 Response curves at node #1 and # 25 when a = 0 dB 

On the other hand, the steady state response of the beam with excitation force -0.0 

dB is shown in Fig. 5.7. As mentioned earlier, node #1 and #25 are in the different tines 

but with the same level. They have the same amplitude with a few mm range difference. 

It seems to have some errors due to the marker’s level or the camera system resolution. 

In Fig. 5.8, the pictures captured by digital camera show the swing patterns of the 

tuning fork beam with parametric excitation more clearly.  

   

Figure 5. 8 The swing patterns captured by a digital camera when the parametric force a = 0 dB 
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5.6.3  Softening Nonlinearity 

An interesting phenomenon with the response curve shown in the figure is that the 

left side of the curve is steeper than the other side. When the frequency is increased from 

80 Hz, the displacement of the beam remains zero until the frequency reaches 80.20 Hz. 

Once the frequency becomes 80.20 - 80.25 Hz, there is a big jump to the big 

displacement. The response then gradually increase up to the frequency of 80.35 Hz, and 

decreases slowly all the way to 80.70 Hz. The whole resonance region is so narrow that it 

is less than 0.5 Hz width. In other words, it is very sensitive to the frequency change of 

the parametric excitation. We also experienced a long transient phenomenon at the 

boundary frequency, 80.20 Hz, of the parametric resonance. It seems to have two 

different steady state solutions, trivial and non-trivial.  

In this experiment, we could get high amplitude of displacement of the beam with 

parametric excitation. As shown in Fig. 5.9, when the shaker displacement is 1 mm, the 

amplitude of the beam reaches up to 48 mm at the resonance. If we recall that the main 

focus on this experiment is to check the feasibility of parametric excitation for the tuning 

fork micro gyroscope as an operating method, the parametric response may be a good 

method for the tuning fork micro gyroscope.  

 

Figure 5. 9 Experimental capture showing large displacement when 1 mm excitation is applied 

Large displacement



82 

0

5

10

15

20

25

30

35

40

45

50

79.8 80 80.2 80.4 80.6 80.8 81

Frequency (Hz)

Di
sp

la
ce

me
nt

 (
mm

)
-0.0 dB

-1.5 dB

-3.0 dB

-4.5 dB

-6.0 dB

d

 
Figure 5. 10 Response of the beam with different excitation amplitude at node #1 

Figure 5.10 shows the lateral displacement at the tip of the tines with different 

parametric forces: -0 dB, -1.5 dB,-3.0 dB, -4.5 dB, and -6.0 dB. As shown in the figure, 

the response curves are tilting to the left side more clearly when the forcing amplitude 

increases. In other words, when the forcing amplitude is -6.0 dB, the response curve is 

near symmetric; however, when the forcing amplitude is 0 dB, it is clearly asymmetric 

with bending to the left side.  

This phenomenon is pretty interesting. Nayfeh and Pai showed the response curve of 

a clamped-free single cantilever beam is bent to the right for the first mode since the non-

linear geometric terms dominate the response [56]. In this experiment we used a tuning 

fork type beam which has two tines and a connecting rectangular beam. The experimental 

results show that the response curve is bent to the left and it seems to be softening effect. 

We will discuss this phenomenon in the next chapter. 
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5.6.4  Damping Effect to the Base Beam 

0

0.2

0.4

0.6

0.8

1

1.2

79.9 80 80.1 80.2 80.3 80.4 80.5 80.6 80.7 80.8 80.9

Frequency (Hz)

D
i
s
p
l
a
c
e
m
e
n
t
 
(
m
m
)

-0.0 dB
-1.5 dB
-3.0 dB
-4.5 dB
-6.0 dB

 

Figure 5. 11 Displacement of the base of the beam with different force amplitudes 

Figure 5.11 shows the vertical displacements at node #13, where the beam is 

connected to the shaker. For the measurement, an accelerometer was attached to the base 

of the beam. Its sensitivity was 8.85 mV/g or 0.902 mV/m/s2.  

Recall that the fundamental kinematic properties of a particle moving in one 

dimension are displacement, velocity, and acceleration. For the harmonic motion, these 

are given by 

)sin()(:
)cos()(:

)sin()(:

2 φωω
φωω

φω

+−=
+=

+=

tAtxonAccelerati
tAtxVelocity

tAtxntDisplaceme

&&

&                   (5.6.1) 

As shown in equation (5.6.1), displacement, velocity, and acceleration have close 

relationship by a factor of ω and ω2 respectively. Therefore, using these relationships, we 
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can easily calculate the displacement from the corresponding acceleration. 

In Fig. 5.11, we see the excitation of the base beam is not perfectly consistent. As 

shown in the figure, the amplitude of the base beam decreased while the tines vibrate 

laterally. Furthermore, the change of the amplitude of the base beam becomes big when 

relatively large force amplitude is applied. For this reason, we would say that the lateral 

vibration of the beam induces the shaker head to decrease the amplitude. In other words, 

it acts like a simple absorber so that the shaker head amplitude decreases. We will discuss 

this phenomenon in more details in Chapter 6.
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Chapter 6 
Practical Problems 

 

 

 

In Chapter 5, we implemented the experiment for the tuning fork beam with 

parametric excitation. The result showed that the parametric force may be a very effective 

way when we apply it to a tuning fork gyroscope because it can induce larger response 

than electro static force or direct excitation. To apply to a real gyroscope, however, more 

detailed study is necessary.  

In this chapter, limited shaker power and the effect of gravity will be studied. We 

solve the governing equation in an analytical way and compare the solution with the 

experimental results as well. Moreover, we discuss the effect of gravity to explain the 

softening nonlinear phenomenon shown in the experiment. Since the research for the 

cantilever beam including previous work done by other researchers and our own work 

has some discrepancies in the nonlinear tendency, more detailed explanation is necessary. 

6.1 Limited Shaker Power 

Non-ideal energy source is well known problem in mechanical systems. Evan-

Iwanowski [30] gave a good explanation for the problem. A normal assumption used in 

analysis of many mechanical systems is that the energy source is unlimited. It allows the 

analysis to be greatly simplified since the coupling effect of system and energy source are 

ignored. In this section, we discuss the relationship between the lateral response of the 
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beam and the amplitude of excitation. We will study the beam equation, which was 

obtained in Chapter 4, with variable amplitude of excitation to see the effect. Recall Eq. 

(4.6.1), which generally describes beam vibrations. 

0~)1(2 32
0

2
00 =+−++ δωδαωδωζδ h

B
P

L

&&&                      (6.1.1) 

where α  represents the efficiency of parametric excitation, h~  denotes nonlinearity of 

the system, P is the parametric force applied to the system, and BL is the critical buckling 

load. As shown in chapter 4, the averaged equations for Eq. (6.1.1) are as follows. 
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It is worthy to recall the parameters which have been used for the calculation;  

h
k
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2
0
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also, h and k are the coefficients obtained in Chapter 4, representing nonlinearity of the 

system. We obtained the steady state solution for Eqs. (6.1.2) and (6.1.3) given by 

 hdar
8
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2
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⎥⎦
⎤

⎢⎣
⎡ −±=
σ                         (6.1.4) 

Solution of Eq. (6.1.4) totally depends on parameter h , that is, it is hardening when h  

> 0 and is softening when  h  < 0 since  h  is closely related to cubic nonlinearity of 

the system. They show different nonlinearity, however, the common factor of both cases 

is that the steady state response is a monotonic function of the frequency detuning 

parameter σ . Figure 6.1 shows the response curve obtained by averaging method when 
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h = -0.25. It is gradually increasing without dropping when the excitation frequency is 

decreased. It is obvious the damping term d does not limit the amplitude of response in 

parametric system as long as the applied parametric force overcomes the threshold.  
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Figure 6. 1 Results of averaging method of the beam : a = 0.05, d= 0.01, h = -0.25 

However, in the practical system, our experimental result shows the steady state 

response has finite amplitude as shown in Fig. 5.11. Furthermore, in the figure, we notice 

that the response curves show more nonlinearity, showing asymmetric response curve, 

when the bigger amplitude of excitation is applied. In other words, the response curve 

seems to be a symmetric semicircle when -6.0 dB amplitude of excitation is applied, 

while the response curve bends to the left with 0 dB amplitude of excitation.  

This might be caused by the uneven excitation force amplitude. When a shaker is 

operated without closed-loop control, the shaker head displacement amplitude cannot be 

maintained at a constant. When the power to the shaker is held fixed, the forcing 

amplitude on the shaker head can be approximated as constant. Since the lateral vibration 
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of the beam has damping effect on the shaker head, the shaker head displacement 

amplitude is affected by the beam vibration. Similar phenomenon was reported by 

Anderson and Nayfeh in 1996 [57]. They obtained asymmetric curves experimentally and 

attributed the phenomenon to arbitrary quadratic damping. The results showed good 

agreement. 

Recall the equations again from Chapter 4. 

02sin =−− da ϕ                          (6.1.5) 

0
8
32cos

2
2 =+−− rha ϕσ                      (6.1.6) 

As shown in Chapter 4, the above two equations can be solved for the beam 

response r and the phase ϕ . In particular, the amplitude is determined by the following 

equation: 
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If we assume that the lateral vibration at the parametric resonance reduces the base 

beam excitation, the force input into the beam is also reduced at certain amount. We let c 

be the coefficient which determines the base movement. 
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Substituting (6.1.8) into (6.1.7) leads to 
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6.1.1 Dependence on parameter c 

Now let us explore the effects of the parameters included in the equation. Figure 6.2 

shows that the response of the beam depends on parameter c. In this case, we used 

arbitrary parameters, f  = 0.02, d = 0.01, and h  = -0.35. When c = 0.001, the response 

curve shows the unstable branch, which is illustrated in red dotted line, as well as the 

stable one. When parameter c is increased, the response curve is getting close to the 

symmetric semicircle. Moreover, the parameter c is much more sensitive to the change 

when it has a small value. In other words, the change of the response curve is much 

bigger when it is increased from 0.001 to 0.005 than when it is increased from 0.01 to 

0.02 as shown in Fig. 6.2. 
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Figure 6. 2 Dependence of the beam response on parameter c : f =0.02 d=0.01 h =-0.35 

B
ea

m
 r

es
po

ns
e,

  
r 



 90

6.1.2  Dependence on parameter h  

Parameter h  is a nonlinear term as mentioned earlier. Therefore, parameter h  has 

also close relationship with the system as shown in Fig.6.3 and Fig.6.4. If h >0, as 

shown in Fig.6.3, the response curve bends more to the right side showing more 

hardening nonlinearity as h  is increased. On the other hand, when h <0, the response 

curve bends to the left side, which means the system shows more softening nonlinearity, 

as h  is decreased as illustrated in Fig. 6.4. However, both cases show that the amplitude 

of the response keeps the same regardless of the change of h .  

We notice that the tendency of the response is more sensitive with a small c. As 

shown in Fig. 6.3, the change of the response is not too big when h  increased by 1.6 

with c = 0.02; however, it is considerably big when h  changed by 1 with c = 0.005 in 

Fig. 6.4. 
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Figure 6. 3 Dependence of the beam response on parameter h  ( when h >0 ) : 

 f  = 0.02, d = 0.01, c = 0.02 
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Figure 6. 4 Dependence of the beam response on parameter h  ( when h <0 ) :  

f  = 0.02, d = 0.01, c = 0.005 

6.1.3 Dependence on parameter d 
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Figure 6. 5 Dependence of the beam response on parameter d : f =0.02 c =0.005 h =-0.35 
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Parameter d plays an important role in the system. As we know, the parametric 

excitation must exceed the threshold of the system. In other words, the parametric 

resonance occurs when the following condition is met: 

0)
4

(
16
9)

8
3( 22

2
22 >−+−− fdhch σσ .             (6.1.3) 

As shown in Fig. 6.5, parameter d is one of the main factors to affect the amplitude 

of the response. Unlike other parameters, parameter d affects not only the amplitude 

response but also the bandwidth of the resonance. Even though the fixed force amplitude 

is applied as shown in Fig. 6.5, the width of the frequency range where the beam 

response is not zero changes by parameter d. However, it does not affect the tendency of 

the response curve, hardening or softening. We assumed only linear damping in this 

simulation. 

6.1.4  Comparison between experiment and theory 

By now, we explored the parameter dependence of the system and noticed that there 

are many parameters to affect the system directly or indirectly. We discussed the 

dependence of the system on the parameters in qualitative aspect; however, still 

remaining challenge is how we can quantify the parameters to apply to real systems. 

Figures 6.6 through 6.10 show the comparison between our experimental results and the 

theory. For the analytical result, we used arbitrary parameters which can fit the response 

the best to the experiment. The symbols (*) used in the figures represent the results from 

the experiments, while the curves in solid line show the results from our theory. 

We found that the results are in good agreement qualitatively. In Table 6.1, the ratio 
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of a  to h  means the ratio of the actual force amplitude to the applied force before 

being reduced by parameter c. Furthermore, the ratio of the force amplitudes used in 

simulations is kept the same as in the experiment. In other words, the force amplitude for 

the simulation in Fig. 6.6 is half the force amplitude used in Fig. 6.10. Also, the force 

amplitude applied for the experiment in Fig. 6.6 is half the force amplitude used in Fig. 6. 

10. 

Table 6.1 parameters used in experiment and the analytical result 

Experiment Theory 

Force amplitude f  c d h  ha  

 

-6.0 dB 0.0040 0.0012 0.0038 -0.1500 0.9500 Fig. 6.6 

-4.5 dB 0.0048 0.0015 0.0045 -0.1500 0.9375 Fig. 6.7 

-3.0 dB 0.0056 0.0014 0.0052 -0.1500 0.9286 Fig. 6.8 

-1.5 dB 0.0068 0.0013 0.0063 -0.1500 0.9265 Fig. 6.9 

0.0 dB 0.0080 0.0011 0.0074 -0.1500 0.9250 Fig. 6.10
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Figure 6. 6 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  

when experimental force -6.0 dB and f =0.0040 
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Figure 6. 7 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  

when experimental force -4.5 dB and f =0.0048



 96

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(w2-w0
2)/w0

2

D
im

en
si

on
le

ss
 d

is
p.

Theory
Experiment(a) 

 

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(w2-w0
2)/w0

2

D
im

en
si

on
le

ss
 d

is
p.

Theory
Experiment(b) 

 
Figure 6. 8 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  

when experimental force -3.0 dB and f =0.0056
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Figure 6. 9 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  

when experimental force -1.5 dB and f =0.0068
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Figure 6. 10 Lateral vibration at the tip of the tine (a) and corresponding base excitation (b)  

when experimental force 0 dB and f =0.0080 
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6.2 Gravity Effect 

In this section, we discuss nonlinear phenomenon of the first mode response of the 

cantilever beam, which has boundary condition clamped and free. Many researchers 

already explored this field and they have made a great progress to reveal the 

nonlinearities of the cantilever beam.  

J. Dugundji and V. Mukhopadhyay [58] carried out an experiment under parametric 

excitation using a 24 in × 3 in × 0.02 in Aluminum 6061-T6 and got slightly hardening 

nonlinear effect in 1973.  

Furthermore, A. H. Nayfeh and P. F. Pai [55] studied an inextensional beam with 

parametric excitation in 1989. They explored using the perturbation method and 

numerical simulations and noticed that the effective nonlinearity of the first mode is of 

the hardening type because of the geometric nonlinearity, so one should have to include 

the geometric nonlinearity for the right result.  

Recently, P. F. Pai et al. [59] carried out an experiment using 496.8 mm×52.07 

mm×0.4699 mm vertically cantilevered titanium alloy beam. They noticed that the first 

mode response of the beam showed a softening effect, which means the response is 

dominated by cubic nonlinearity. They concluded this phenomenon was caused by the 

initial condition in which the beam was slightly tilted to the left in 2007.  

On the other hand, in our research, the first mode response in the experiment showed 

a softening nonlinearity. According to prior research and our experiment, the nonlinear 

effect for the first mode of the beam was not consistent. For that reason, we devote this 

section to explore this phenomenon in more detail.  
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6.2.1 Downward Pendulum 

We assume that there is a pendulum with a spring hanging downward as shown in 

Fig. 6.11. The particle of mass m is connected to a massless rod of length l and suspended 

from a platform. The torsional spring has nonlinear characteristics, 2
0 θhkkt += .  

tk

θ

 

Figure 6. 11 Pendulum with spring 

The kinetic energy T and the potential energy V of the pendulum become  

2)(
2
1 θ&lmT = , θθθ cos)(

2
1 22

0 lgmhkV −+= .                (6.2.1) 

where g denotes the gravity. 

Recall the Lagrange Equation  
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where tqq ii ∂∂= /&  is the generalized velocity, L is the difference between the kinetic 

and potential energies, to be L=(T-V), and iQ  represents all the non-conservative forces 

corresponding to iq . In Eq. (6.2.2), the equation with different number of i represents 

one equation for each generalized coordinate. Lagrangian L becomes 
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Substituting equation (6.2.3) into (6.2.2) leads to 
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Assuming free oscillation and using Taylor series for the sine function, 
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equation (6.2.4) can be rewritten by 
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In Eq. (6.2.4), the linear natural frequency of the pendulum will be 
l
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Moreover, there is cubic nonlinearity, 3
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− , which determines the bending 

direction of the response curve whether softening or hardening. If we consider damping 

term, and equation (6.2.6) can be rewritten as 
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For the method of averaging, we let the parameters as follows; 

d⋅= εζ , 
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After several steps of algebraic calculation, we have the averaged equations such as 

rdar 2
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ω
ε

−−=&                                (6.2.9) 
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And the steady state response at the fixed point becomes 
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This solution has the same format as solution (4.6.14). As shown in (6.2.8), gravity 

increases the linearized natural frequency but has a softening effect. The nonlinear 

phenomenon is decided by the sign of cubic nonlinearity in the cantilever beam; that is 
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                     (6.2.12) 

6.2.2 Inverted Pendulum 

On the other hand, let us consider the pendulum standing on the ground in upward as 

shown in Fig. 6.12. We assume that the particle of mass m is connected to a massless rod 

of length l and standing on the ground. The rod is stabilized by a torsional spring, which 

has nonlinear characteristics, 2
0 θhkkt += . In the same manner, we can derive the 

governing equation for the inverted pendulum. The equation is similar to Eq. (6.2.4) 

except the sign of θsin . We have 

0)
6

2()( 3
22

0 =++−+ θθθ
l

g
ml

h
l
g

lm
k&& .                      (6.2.13) 
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Figure 6. 12 Inverted pendulum with spring 

As shown in Eqs. (6.2.6) and (6.2.13), the differences between two cases are the 

signs in the linear natural frequency and nonlinearity. The linear natural frequency of the 

inverted pendulum will be 
l
g

ml
k

−= 2
0ω , while that of the downward pendulum is 

l
g

ml
k

+= 2
0ω . Furthermore, the nonlinearity of the inverted pendulum is 3

2 )
6

2( θ
l
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+ , 

while that of the downward pendulum is 3
2 )

6
2( θ

l
g

ml
h
− . 

In the same way as the downward pendulum case, we can derive averaged equation 

and the final form is exactly the same as that of the inverted pendulum case except the 

parameter denomination: 
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ml
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−= 2
02

0ω  and 
l

g
ml

hh
6

2
2 += .                  (6.2.14) 

On the contrary, for the inverted pendulum case, gravity reduces the linearized natural 

frequency but has a hardening nonlinear effect. The effects are opposite for a downward 

pendulum case.  
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6.3 Summary 

In this chapter, we explored more practical issues related to parametric excitations. 

Non-ideal energy source due to the limited shaker power was studied. We found that the 

lateral vibration of the tines affects the base beam and reduces its amplitude by certain 

amount. We assumed the relationship between the forces, original and reduced, to be 

222 crfa −=  and got a good qualitative agreement between the theory and the 

experiment except for some discrepancies in the frequency range which is larger than the 

parametric resonance frequency.  

For the nonlinear phenomenon, we compared the previous work done by other 

researchers with our own work and noticed that there still exist some discrepancies too. 

The gravity effect using pendulum was given, and the relationship between the gravity 

and the other parameters was described to explain the nonlinear phenomenon. We noticed 

that, normally, a downward pendulum shows softening nonlinearity, and an inverted 

pendulum does hardening nonlinearity. However, by the dominating factor in the 

governing equations, the opposite phenomenon is also possible. 
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Chapter 7 

Conclusions and Recommendation 

for Future Work 
 

 

In this dissertation, we studied the characteristics of a parametric excitation and the 

feasibility of applying it to the MEMS gyroscope through experiments as well as the 

analytical calculation.  We found that the parametric excitation has several advantages 

when it is applied to the MEMS gyroscope.  

First of all, it can generate larger responses compared to electro static force or a 

direct excitation. It may be a valuable work for the MEMS gyroscope industry because it 

is experiencing the limitation of the accuracy due to small vibrating amplitude in drive 

mode.  

Secondary, it may be feasible to apply to the MEMS gyroscopes because two tines 

of the tuning fork beam vibrate in opposite direction. It may have two different vibration 

patterns, in phase and out of phase. According to the experiment, the opposite direction 

vibration, we call it out of phase or symmetric motion, is dominating the vibration 

pattern so that one can get the pattern easily. Moreover, the out of phase vibration is 

robust to the imperfection which is unavoidable in MEMS fabrication process. 

Next, a coupling problem is another main issue in MEMS gyroscopes. In the 

conventional MEMS gyroscopes, the frequency of the drive mode and the sense mode 

should be in close match for high accuracy. However, even small imperfection may cause 
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a coupling problem between the drive and the sense modes, and it finally prevents high 

precision of the gyroscope. For the parametric excitation we use the drive frequency 

away from the sense frequency and it may reduce the coupling problem.  

Consequently, the parametric excitation can be applied to the MEMS tuning fork 

gyroscope design. We expect this method can reduce the fabricate costs and increase the 

precision of the MEMS tuning fork gyroscope. 

However, we found that there are some practical problems to be solved before 

applying to the real system. Non-ideal energy source is one of the main issues to be 

solved, and the characteristics of the parameters need to be studied in more detail to 

guarantee the reliability of the gyroscope. Another issue to be studied is that the nonlinear 

phenomenon which is different from the result of the single cantilever beam case. We 

gave a brief explanation for the reason, but it still needs more detailed relationship among 

the parameters. For the future work, more research should be performed in this field to 

reveal the hidden secrets in the tuning fork beam.  
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APPENDIX 
Parametrically excited pendulum 

by prescribed force amplitude 

A.1 Equation of motion 

In Chapter 6, we compared the experimental results with the theory including 

limited shaker power effect. The assumption that the limited shaker power induces a 

damping effect by the parametric resonance of the tines of the tuning fork beam is in 

good qualitative agreement with the experiment results. However, we noticed that there 

still exist some discrepancies between the theory and the experiment regarding the base 

movement. As shown in (b) figures from Figs. 6.6 to 6.10, there are some discrepancies 

between the theory and the experiment when the excitation frequency becomes higher 

than 80.40 Hz, the frequency inducing the parametric resonance. In this section, we 

discuss the relationship between the base excitation amplitude and the forcing amplitude 

using simplified pendulum model.  

θθ

k

2/m2/m

ll

 

Figure A. 1 Simplified pendulum model 
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The illustration in Fig. A.1 shows the simplified pendulum model. Since we are 

interested in the relationship between the pendulum swing in horizontal direction and the 

corresponding displacement of the base mass in vertical direction, we assume the two 

pendulums are hung by the same rods, and they have the same masses for simplification. 

In addition, the two pendulums are assumed to swing in the opposite direction which is 

180 degree out-of-phase. In other words, each pendulum swing motion can be expressed 

by a simple substitution for angle θ  with θ− . This assumption is needed because 

assuming that the x-direction movement is fully constrained, shown in Fig.1, makes the 

two pendulums decoupled.  

By the same methods in Chapater 3, we can derive the kinetic Energy T and the 

potential energy V.  

]sin2)([
2
1

2
1 222 θθθ &&&&& lylymyMT +++=                             (A.1.1) 

)cos( θllymgMgyV −++=                                (A.1.2) 

From Lagrange equation, we get the governing equations regarding y and θ  varibles 
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where c~  denotes the damping coefficient. 

If we assume ⎟
⎠
⎞

⎜
⎝
⎛=

l
yY , ρ+=

+ 1
m

Mm , and 12 == θωl
g , we get the simplified 

dimensionless equations as follows: 

yQkYYcY ~~cossin)1( 2 =+++++ &&&&&& θθθθρ                          (A.1.5) 
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0sin~sin =+++ θθθθ &&&&& cY                                        (A.1.6) 

where yQ~  represents the sinusoidal parametric excitation force. For simplification, we 

let θθ ≈sin  and 1cos ≈θ  for the combined terms with derivatives and 

6
sin

3θθθ −≈  for the remained sine term. We get the simplified equations of motion as 

follows: 

yQkYYcY ~~)1( 2 =+++++ &&&&&& θθθρ                                 (A.1.7) 

0
6

~
3

=−+++
θθθθθ &&&&& cY                                         (A.1.8) 

A.2 Steady state response 

In this section, we discuss the steady state response using harmonic balance method. 

The method has a long history, to interpret the behavior of many engineering applications. 

The standard harmonic balance method for approximating periodic solutions of a 

nonlinear ordinary differential equation involves the following steps: 

First, select a trial solution which is a truncated Fourier series, either with terms 

)cos( tnan ω  alone, n up to N, or with both sine and cosine terms, as appropriate. 

Substitute this solution into the equation, and ignore any higher harmonics generated by 

the nonlinear terms. 

Second, set equal to zero the coefficients of the retained harmonics, thus obtaining a 

set of coupled nonlinear equations for the frequency ω  and the amplitude na  in the 

trial solution. Solve these equations. 
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Since we are interested in the amplitude of the base motion and the pendulum 

motion, we let the trial solutions for the base excitation and the pendulum motion as 

follows: 

tAY ω
ω

2cos
4 2=  and tdtc ωωθ sincos += ,                           (A.2.1) 

where, A is the acceleration amplitude of Y direction and ω2  is the parametrically 

excited force frequency. The force considering phase lag can be expressed by 

tbtaQy ωω 2sin2cos~
+= . Thus, the derivatives of Eq. (A.2.1) become 

)2/(2sin ωωtAY −=& , tAY ω2cos−=&&  

tdtc ωωωωθ cossin +−=& , tdtc ωωωωθ sincos 22 −−=&&                 (A.2.2) 

The coefficient of tω2cos  after substituting Eqs. (A.2.1) and (A.2.2) into Eq. (A.1.7) 

leads to 

)4/(4444 2424222 ωωωρωω dcAAAka +−−−=                    (A.2.3) 

Moreover, the coefficient of tω2sin  in Eq. (A.1.7) after the same procedure becomes 

)4/(8~2 24 ωωω cdcAb −−=                                       (A.2.4) 

For the θ  equation, we get the simplified form by substituting Eqs. (A.2.1) and 

(A.2.2) into Eq. (A.1.8). After the calculation, we disregard the high frequency terms 

such as tω3sin  and tω3cos , then the coefficient of tωcos  yields 

0)4824331224(
24
1 223 =+−−−− ωζω dccdcAcc                   (A.2.5) 

and the coefficient of tωsin  becomes 

0)4824331224(
24
1 232 =−−−−+ ωζω cdddcAdd                  (A.2.6) 

Recall that the coefficients c and d represent the response of the pendulum. We use 
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algebraic techniques to get the coefficients. First, we use Eq.(A.2.5)× φcosr  + 

Eq.(A.2.6)× φsinr , and it gives us 

0)2cos4)1(8(
8
1 222 =++−+− φω Arr                             (A.2.7) 

Next, we perform Eq.(A.2.5)× φsinr  - Eq.(A.2.6)× φcosr , and we get 

0)sincos2(2 =− φφωζ Ar                                       (A.2.8) 

Solving Eqs. (A.2.7) and (A.2.8), we get 

A
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4
882cos

22 −+
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ωφ                                            (A.2.9) 

A
ωζφ 42sin =                                                  (A.2.10) 

If we raise Eqs. (A.2.9) and (A.2.10) to the second power and sum up together, we have 

)}42(1{4)1(
16

22422
4

2 ζωωω +−++++−+= rrA                   (A.2.11) 

Equation (A.2.11) gives the relationship between the amplitude of the base motion and 

the amplitude of the pendulum. 

On the other hand, let us bring the force equation (A.2.3) and (A.2.4) and apply 

some algebraic techniques. We raise Eqs. (A.2.3) and (A.2.4) to the second power, let 

φcosrc =  and φsinrd = , and substitute Eqs. (A.2.9) and (A.2.10), we get 

+++++−=+ }})1(4~{4)1(8{[
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1 2222222
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22 ωρωωρ
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ckkAba  

)}}]1~(8)12({4)}1(8{{2 222222242 −−−+−−−+−+ ρζρωωρωωωω crrkr  

(A.2.12) 

Equation (A.2.12) gives the relationship between the forcing amplitude 22 ba +  
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and the base acceleration amplitude A. Therefore, if we subtract Eq. (A.2.12) from the 

square of the y-direction acceleration, we get the second power of the differences 

between the applied force and the real acceleration response as the different frequencies. 

On the other hand, if we assume the pendulums rest in the original location without 

swinging, 0=r , equation (A.2.12) becomes 

)16/(}])1(4~{4)1(8[ 4222222222 ωωρωωρ ++++−=+ ckkAba       (A.2.13) 
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Figure A. 2 the response of the pendulum with a large pendulum mass:  

ρ =1, ζ =0.05, c~ =0.1, k =0.01, force amplitude =0.40 and 0.41 
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Figure A. 3 the base acceleration amplitude when pendulums are swinging with a large pendulum 

mass: ρ =1, ζ =0.05, c~ =0.1, k =0.01, force amplitude =0.40  
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Figure A. 4 the base acceleration amplitude when pendulums are swinging with a large pendulum 

mass: ρ =1, ζ =0.05, c~ =0.1, k =0.01, force amplitude =0.41  

Figure A.2 shows the responses of the pendulums with two different force 

amplitudes, and their corresponding base acceleration amplitudes are illustrated in Figs. 

A.3 and A.4. Both the cases, large pendulum masses are used, 1=ρ , which means the 

total pendulum mass is the same as the base mass. As illustrated in Fig. A.3, when the 

force amplitude is 0.40, we see the amplitude of the base response is reduced during the 

pendulums swing. However, when the force amplitude is 0.41, as shown in Fig. A.4, we 

see the amplitude of the base excitation is not reduced in all the frequency range even 

though the pendulums are swinging.  
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Figure A. 5 the response of the pendulum with a small pendulum mass:  

ρ =9, ζ =0.05, c~ =0.1, k =0.01, force amplitude =2.5 
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Figure A. 6 the base acceleration amplitude when pendulums are swinging with a small pendulum 

mass: ρ =9, ζ =0.05, c~ =0.1, k =0.01, force amplitude =2.5 

Figs. A.5 and A.6 show the simulation results with small pendulum masses, 9=ρ , 

which means the base mass is greater than the total pendulum mass by 9 times. In this 

case, the pendulum response shows softening nonlinearity as shown in Fig. A.5. The 

corresponding amplitude of the base acceleration is illustrated in Fig. A.6. As shown in 

the figure, the amplitude of the base acceleration becomes even larger while the 

pendulums are swinging. We obtained the same result from the numerical simulation by 

MATLAB program. 
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Figure A. 7 the MATLAB simulation results from the original equations used in Chapter 3;  

(a) pendulum displacement (b) base acceleration: 09.0== βα , 05.0=ζ , 25.0=A  
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Figure 7 is the MATLAB simulation results for which we used the original 

pendulum equations used in Chapter 3. For the simulation, a large mass ratio was used; 

each pendulum has the mass 1/10 of the base mass. In addition, the amplitude of the force 

used for the simulation was 0.25. Since the equations for Mathematica is simplified, it is 

not the same as original MATLAB program used in Chapter 3 so that it is hard to find 

exact matching parameters; however, the results show qualitatively good agreement.  

This result is not exactly same as our experiment because our experiment carried out 

for a tuning fork beam instead of the pendulum model. As shown in Figs. A.2 through A.4, 

the pendulum response shows hardening nonlinearity with a large pendulum mass, while 

our experiment with tuning fork beam shows softening nonlinearity as shown in Chapters 

5 and 6. However, at least, we noticed that the damping effect on the base excitation from 

the pendulum or the tines of the tuning fork beam is not always consistent. This is little 

new phenomenon from well known non-linear vibration absorbers; Vyas and Bajaj [41] 

studied auto-parametric vibration absorbers using multiple pendulums and got a 

conclusion that the pendulums can reduce the base vibration in all the range in which the 

pendulums swing. However, our work shows that there exists certain range in which the 

amplitude of the base acceleration gets increased. Furthermore, with a small pendulum 

mass, the base acceleration gets increased in all the frequency range in which the 

pendulums are still swinging. In other words, the absorber may not reduce the amplitude 

of vibration properly; the situation may be worse. Because of this reason, both the cases, 

a tuning fork beam and a pendulum, should be studied more in the future to apply to real 

system such as gyroscopes or absorbers.  
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A.3. Programs used in the simulation 

A.3.1 Mathematica program for the analytic solution 
 

k=.; c=.; 

y=A Cos[2 w t]/(4w^2); th=C Cos[w t]+ D Sin[w t]; 

sinth=th-th^3/6; costh=1; thd=D[th,t]; thdd=D[thd,t]; 

yd=D[y,t]; ydd=D[yd,t]; 

yeq=TrigReduce[(1+rho)ydd+c yd+k y+(th thdd+costh thd^2)-a Cos[2 w t]-b Sin[2 w t]] 

eq1=Coefficient[yeq,Cos[2 t w]] 

eq2=Coefficient[yeq,Sin[2 t w]] 

theq=TrigReduce[thdd+ydd th+sinth+2zeta thd] 

eq3=Coefficient[theq,Cos[t w]] 

eq4=Coefficient[theq,Sin[t w]] 

eqq3=Simplify[eq3*C+eq4*D/.{C→r Cos[phi],D→ r Sin[phi]}] 

eqq4=Simplify[eq3*D-eq4*C/.{C→ r Cos[phi],D→ r Sin[phi]}] 

temp1=eqq3/.{Cos[2phi] →xc} 

temp2=eqq4/.{Cos[phi] Sin[phi] →xs/2} 

so2=Solve[temp2= =0,xs][[1,1]] 

so1=Solve[temp1= =0,xc][[1,1]] 

Eq=Expand[A^2(xs^2+xc^2-1)/.{so1,so2}] 

A2=Simplify[A^2+Eq];(* A^2 *) 

eqa=TrigReduce[a+eq1/.{C→r Cos[phi],D→r Sin[phi]}]/.{Cos[2phi] →xc} 

eqb=TrigReduce[b+eq2/.{C→r Cos[phi],D→r Sin[phi]}]/.{Sin[2phi] →xs} 

amp2=Simplify[Simplify[Expand[eqa^2+eqb^2]/.{xc^2→1-xs^2}]/.{so1,so2}] 

ampA20=Simplify[amp2/.r→0] 
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tem=ampA20/.A^2→aa2 

sol=Solve[tem= =forceamp^2,aa2] 

BaseAmp0=forceamp*Sqrt[A^2/ampA20] 

ampr=Simplify[amp2/.{A^2→A2}] 

Eqr2=ampr-forceamp^2/.{r^2→r2,r^4→r2^2} 

sl=Solve[Eqr2= =0,r2]; 

ampr1=Sqrt[r2/.sl[[1]]]; 

ampr2=Sqrt[r2/.sl[[2]]]; 

g1=Plot[ampr1/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.40},{w,0.98,1.02}]; 

g2=Plot[ampr2/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.40},{w,0.98,1.02}]; 

g21=Plot[ampr1/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.41},{w,0.98,1.02}]; 

g22=Plot[ampr2/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.41},{w,0.98,1.02}]; 

Show[g1,g2,g21,g22,Axes→False,Frame→True]; 
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A22=A2/.{r^2→r2,r^4→r2^2} 

BaseAmp1=Sqrt[A22/.sl[[1]]]; 

BaseAmp2=Sqrt[A22/.sl[[2]]]; 

gr1=Plot[BaseAmp1/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.40},{w,0.98,1.02}]; 

gr2=Plot[BaseAmp2/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.40},{w,0.98,1.02}]; 

gr3=Plot[BaseAmp0/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.40},{w,0.98,1.02}]; 
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gr21=Plot[BaseAmp1/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.41},{w,0.98,1.02}]; 

gr22=Plot[BaseAmp2/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.41},{w,0.98,1.02}]; 

gr23=Plot[BaseAmp0/.{rho→1,zeta→0.05,c→0.1,k→0.01,forceamp→0.41},{w,0.98,1.02}]; 

Show[gr1,gr2,gr3,Axes→False,Frame→True]; 
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 Show[gr21,gr22,gr23,Axes→False,Frame→True]; 
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g1=Plot[ampr1/.{rho→9,zeta→0.05,c→0.1,k→0.01,forceamp→2.5},{w,0.95,1.05}]; 

g2=Plot[ampr2/.{rho→9,zeta→0.05,c→0.1,k→0.01,forceamp→2.5},{w,0.95,1.05}]; 

Show[g1,g2,Axes→False,Frame→True]; 
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gr1=Plot[BaseAmp1/.{rho→9,zeta→0.05,c→0.1,k→0.01,forceamp→2.5},{w,0.95,1.05}]; 

gr2=Plot[BaseAmp2/.{rho→9,zeta→0.05,c→0.1,k→0.01,forceamp→2.5},{w,0.95,1.05}]; 

gr3=Plot[BaseAmp0/.{rho→9,zeta→0.05,c→0.1,k→0.01,forceamp→2.5},{w,0.95,1.05}]; 

Show[gr1,gr2,gr3,Axes→False,Frame→True]; 
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A.3.2 MATLAB programs for the numerical solution 
A.3.2.1 Main program 

clear all 
close all 

global alpa beta gamma jeta A wr w12 w1x w1y; % w12=w2/w1, w1x=wx/w1, w1y=wy/w1  

 

alpa=0.09; beta=0.09; gamma=1; jeta=0.05; 
A=0.25; 

 

w12=1; w1x=10; w1y=0.2; 

t=0; 
 

fn=20; 

for n=1:fn 

    wr=1-0.05+0.005*(n-1) 
Mwr(n)=wr; 

    y=[0  0  0  0   0.01  0  -0.01  0]; % initial condition 

tfinal=4000; 

    totaltsteps=tfinal*10; 
    tstep=tfinal/totaltsteps; 

    for i=1:totaltsteps; 

        tspan=[(i-1)*tstep i*tstep]; 

        [t, sol]=ode45('nondimenoriginalsub', tspan,y); 
        y=sol(length(sol),:); 

        T(i)=t(length(t)); 

        Y(i,:)=y; 

        effi=39000; 
        if i>effi 

            ydisp(i-effi)=y(3)*4*wr^2; 

            theta(i-effi)=y(5); 

        end 
       

    end 

       maxy(n)=max(ydisp); 

       miny(n)=min(ydisp); 
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       yptp(n)=(maxy(n)-miny(n))/2; 

       maxtheta(n)=max(theta); 

       mintheta(n)=min(theta); 
       thetaptp(n)=(maxtheta(n)-mintheta(n))/2; 

figure(n) 

subplot(4,1,1); 

plot(T,Y(:,1)); xlabel('Time(sec)') ; ylabel('displacement(x)'); 
subplot(4,1,2); 

plot(T,Y(:,2)); xlabel('Time(sec)') ; ylabel('x-prime'); 

subplot(4,1,3); 

plot(T,Y(:,3)); xlabel('Time(sec)') ; ylabel('displacement(y)'); 
subplot(4,1,4); 

plot(T,Y(:,4)); xlabel('Time(sec)') ; ylabel('y-prime'); 

 

figure(n+20) 
subplot(4,1,1); 

plot(T,Y(:,5)); xlabel('Time(sec)') ; ylabel('displacement(theta1)'); 

subplot(4,1,2); 

plot(T,Y(:,6)); xlabel('Time(sec)') ; ylabel('th1-prime'); 
subplot(4,1,3); 

plot(T,Y(:,7)); xlabel('Time(sec)') ; ylabel('displacement(theta2)'); 

subplot(4,1,4); 

plot(T,Y(:,8)); xlabel('Time(sec)') ; ylabel('th2-prime'); 
end 

 

figure(100) 

plot(Mwr,yptp) 
figure(101) 

plot(Mwr,thetaptp) 
 

A.3.2.1 Sub program 
 

function sol=nondimenoriginalsub(t,y) 

global alpa beta gamma jeta A wr w12 w1x w1y 
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M=[ 1  0   alpa*cos(y(5))  beta*gamma*cos(y(7)) ; 

    0   1  alpa*sin(y(5))  beta*gamma*sin(y(7)); 

    cos(y(5))  sin(y(5))  1   0; 

    cos(y(7))  sin(y(7))  0   gamma ]; 

C=[2*jeta*w1x   0   -alpa*sin(y(5))*y(6)   -beta*gamma*sin(y(7))*y(8); 

    0   2*jeta*w1y   alpa*cos(y(5))*y(6)    beta*gamma*cos(y(7))*y(8); 

    0   0    2*jeta  0 ; 

    0   0     0   2*jeta*gamma*w12]; 

K=[w1x^2*y(1); w1y^2*y(3); sin(y(5)) ; sin(y(7)) ]; 

Q=[0;-A*cos(2*wr*t);0;0]; 

Coord=[y(2);y(4);y(6);y(8)]; 

Dd=-inv(M)*C*Coord-inv(M)*K+inv(M)*Q; 

s1=y(2); s2=Dd(1); s3=y(4); s4=Dd(2); s5=y(6); s6=Dd(3); s7=y(8); s8=Dd(4); 

sol=[s1;s2;s3;s4;s5;s6;s7;s8]; 
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