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A Study of Parametric Excitation Applied
To A MEMS Tuning Fork Gyroscope

Yongsik Lee

Dr. Frank z. Feng, Dissertation Supervisor

ABSTRACT

The current MEMS (Micro-Electro-Mechanical System) gyroscopes which normally
use the electro static force to excite the comb drive are faced with the limitations such as
low precision, coupling problem, and poor robustness. They need an order of magnitude
improvement in their performance, stability, and robustness. Our main idea is that if the
comb drive can be driven to much larger vibrating amplitude than the current one so that
the signal at the comb drive can be easily measured, then, consequently, the precision of
the MEMS gyroscope shall be improved. We propose to use parametric forcing as
excitation.

However, since the two proof masses must be driven into motion in opposite
directions, this imposes restrictions on the external forcing. A feasibility study of the
parametric excitation using a two-pendulum model is presented. Governing equations are
derived by Lagrange equation, and the results are simulated using MATLAB program.
Two swing patterns, symmetric and anti-symmetric motion, are illustrated and
investigated with different initial conditions.

To predict the beam response with the parametric excitation, a novel approach is
xii



presented, which allows calculating the coefficients in the governing equation of a
cantilever beam using FEM (Finite Element Method). The results are compared with the
analytical result obtained by method of averaging.

An experimental study of a tuning fork beam is presented. For non-contact motion
analysis, an Eagle 3-D motion analysis digital camera system is employed. We discuss
the practical problems such as limited shaker power, which is caused by open-loop
excitation method. A governing equation including the damping effect by the lateral
vibration of the tines is presented, and its analytical solution is compared with the
experimental results. A good qualitative agreement is obtained. Moreover, a sensitivity
study of the parameters in the governing equation is also presented. To clarify the
softening nonlinearity of the tuning fork beam, the gravity effect is described for both

vertical and inverted pendulum cases.

Xiii



Chapter 1

Introduction

1.1 MEMS Gyroscopes

MEMS (Micro-Electro-Mechanical System) gyroscopes have many advantages such

as low cost, small size, and negligible weight compared to the conventional mechanical

gyroscopes. Furthermore, they have a wide range of applications including navigation

and guidance systems, automobiles, and consumer electronics, so that many researchers

have focused on them for the last decades. However, some drawbacks of the MEMS

gyroscopes, such as low precision due to very small vibrating amplitude, very narrow

bandwidth, and imperfection problem in fabrication are remaining challenges to be

solved.

Yazdi, Ayazi, and Najafi [1] have given a review of the research on micro-machined

vibratory gyroscopes. In general, gyroscopes can be classified into three categories based

on their performance: inertial grade, tactical grade, and rate grade [2,3]. Table 1.1

summarizes the requirements for each of these categories.

Table 1. 1 Performance Requirements for Different Classes of Gyroscopes

Parameter Rate Grade Tactical Grade Inertial Grade
Angle Random Walk (°/+/hr) >0.5 0.5-0.05 <0.001
Bias Drift (°/hr) 10-1000 0.1-10 <0.01
Scale Factor Accuracy (%) 0.1-1 0.01-0.1 <0.001
Full scale range(°/s) 50-1000 >500 >400
Max. Shock in 1ms (g’s) 10° 10°-10* 10°
Bandwidth (Hz) >70 ~100 ~100

1




For the past decade, much of the effort in developing micro-machined gyroscopes
has concentrated on rate grade devices, primarily because of their use in automobile
applications. This application requires a full scale range of at least 50 °/s and bias drift of
10-1000 °/hr in a bandwidth of 70 Hz. However, gyroscopes for the tactical grades or the
inertial grades require improved performance such as a full scale range of 500 °/s and a
bandwidth of 100 Hz. Bias drift for the inertial grades is even less than 0.01 °/hr.

In order to ensure the appropriateness of a gyroscope for a specific application, the
application’s performance requirements have to be fulfilled. This can be achieved in turn
by quantifying the parameters or characteristics describing the performance of each
particular inertial sensor through a series of lab tests. The most important among those
characteristics are resolution, bias, scale factor, and bandwidth. [4]

Resolution

In the absence of rotation, the output signal of a gyroscope is a random function

which is the sum of white noise and a slowly varying function. The white noise defines

the resolution of the sensor and is expressed in °/s/~/Hz or °/hr/+/Hz, which means

the standard deviation of equivalent rotation rate per square root of bandwidth of

detection. The so-called “angle random walk” in °/+hr may be used instead.

Bias

A sensor bias is always defined by two components: A deterministic component
called bias offset which refers to the offset of the measurement provided by the sensor
from the true input; and a stochastic component called bias drift which refers to the rate
at which the error in an inertial sensor accumulates with time. The bias offset is

deterministic and can be quantified by calibration while the bias drift is random in nature
2



and should be treated as a stochastic process. Bias drift is the short or long term drift of
the gyroscope and is usually expressed in °/s or °/hr.

Scale factor

The scale factor is the relationship between the output signal and the true physical
quantity being measured. It is defined as the amount of change in the output voltage per
unit change of rotation rate and is expressed in V /°/s. The scale factor is deterministic
in nature and can be quantified or determined through lab calibration.

Bandwidth

For analog signals, which can be mathematically viewed as a function of time,

bandwidth Af is the width, measured in hertz, of the frequency range in which the

signal’s Fourier transform is nonzero. As shown in Fig. 1.1, since this range of non-zero
amplitude may be very broad, this definition is often relaxed so that the bandwidth is
defined as the range of frequencies where the signal’s Fourier transform has a power

above a certain amplitude threshold, commonly half the maximum value (half power ~-

3dB, since 10log,,(1/2)~-3).

Peak
-3 dbB
P bandwidth N
Y I
f1 fe fa

Figure 1. 1 Bandwidth in analog signals



As a result of active research in the past few years, “rate grade” gyroscopes have
been developed successfully and applied in many commercial applications, such as
automobiles and some consumer electronics. However, there are also several other
applications that require improved performance, including inertial navigation systems,

guidance weapon systems, and some precise robotics.

1.2 Operation Principles of Vibratory Micro Gyroscope

Vibratory micro-gyroscopes are non-rotating devices and use the Coriolis
acceleration effect to detect inertial angular rotation. The Coriolis acceleration that arises
in rotation reference frames to sense angular rotation is one of the accelerations that are
used to describe motion in a rotating reference frame and accounts for radial motion. Its
effects are found in many phenomena where rotation is involved and can even account
for the air flow over the earth’s surface in the northern and southern hemispheres.

To understand the Coriolis effect, imagine a particle traveling in space with a
velocity vector V as illustrated in Fig. 1.2 (a). There is an observer who is sitting on the
x-axis of the xyz coordinate system. If the coordinate system starts to rotate around the z-
axis with an angular velocity, Q, the observer thinks that the particle is changing its
trajectory toward the x-axis with an acceleration equal to 2Q xV . Although no real force

has been applied on the particle, to an observer, attached to the rotating reference frame
an apparent force has resulted that is directly proportional to the rate of rotation. This

effect is the basic operating principle underlying all vibratory structure gyroscopes.



A 0 Input rotation rate

Coriolis acceleration
c > Q / Response
1 (sense mode)
\" %«

\ Tine vibration
— — _ (drive mode)
Ka=2Qx\V

N

Coriolis acceleration
X response

(a) The Coriolis effect (b) A tuning-fork gyroscope
Figure 1. 2 Operating principle of vibratory gyroscopes

Many researchers have designed vibratory micro gyroscopes which use Coriolis
acceleration in the past decade. The vibratory micro gyroscopes normally fall into three
categories: tuning fork micro gyroscope [5,6,7,8], vibrating prismatic beam gyroscope
[9], and vibrating shell or ring gyroscope[10]. In this dissertation, the scope is limited to
the tuning fork micro-gyroscope and we devote more space in the next section for better

understanding.

1.3 Tuning Fork Micro Gyroscopes

Tuning fork gyroscopes are a typical example of vibratory gyroscopes. As shown in
Fig. 1.2 (b), the tuning fork gyroscope consists of two tines that are connected to a
junction bar. In operation, the tines are differentially resonated to a fixed amplitude, and
when rotated, Coriolis force causes a differential sinusoidal force to develop on the
individual tines, orthogonal to the main vibration. This force is detected either as
differential bending of the tuning fork tines or as a torsional vibration of the tuning fork

stem. The actuation mechanisms used for driving the vibrating structure into resonance
5



are primarily electrostatic, electromagnetic, or piezoelectric. To sense the Coriolis force
in the sensing mode, capacitive, piezoresistive, or piezoelectric detection mechanisms can

be used.

i)
SLEpension + Suspension
Beam

Fﬂ

Figure 1. 3 A tuning fork gyroscope with comb drive for commercial application by Draper Lab

Baze

\ lexures

Proof mass Proof mass

Draper Lab [6] proposed the first silicon micro machined vibratory rate gyroscope in
1991. In 1994, they developed micro gyroscope to the level of commercial applications
[8]. As shown in Fig. 1.3, the two proof masses are driven into oscillations by the
interdigitated fingers. Corresponding to an externally imposed angular rotation along the
vertical axis, the Coriolis force on the two proof masses causes them to deflect in and out

of the plane. The Coriolis force which is given by
F =2mQxV
where M denotes the proof mass, V the velocity of the proof mass, and © the angular

velocity to be measured.



1.4 Research Motivation

The common factor of vibratory gyroscopes is that they require resonant frequency
tuning of the driving and sensing modes to achieve high sensitivity. A number of studies
have been performed to optimize those two frequencies. Xie and Fedder [11] designed a
CMOS(complementary metal oxide semiconductor)-MEMS lateral-axis gyroscope using
the out-of-plane actuation. They integrated a poly silicon heater inside the spring beams
and realized the resonant frequency matching between the drive and sense modes.

These tuning conditions depend on each micro gyroscope fabricated, even though
the micro gyroscopes are identically designed. Because of the small size of the structure
and the limitation of the fabrication, the imperfection is unavoidable. Because of
fabrication imperfections, significant errors can occur during the operation, which have to
be compensated by advanced control techniques. Fabrication imperfections can also
induce anisotropy, even though the imbalances in the gyroscope suspension are extremely
small. This results in mechanical interference between the modes and undesired mode
coupling are often much larger than the Coriolis motion. In order to reduce coupled
oscillation and drift, various devices have been reported employing independent
suspension beams for the drive and sense modes [12-16]. To increase the gyroscope’s
performance many researchers have studied various designs with different fabrication
methods.

On the other hand, for the tuning fork gyroscope to work, the proof mass must be
“energized,” that is, it must be driven into motion. Since the Coriolis force is proportional

to the velocity, better sensitivity can be achieved by increasing the “driven” velocity of



the proof masses. However, electrostatic force through the interdigitated finger structure
has a limitation to produce large velocity. Consequently, the current state of the micro
machined gyroscopes requires an order of magnitude improvement in performance,
stability, and robustness.

Our main idea is that if the comb drive can have bigger vibrating amplitude than
previous one so that the signal at the comb drive can be easily measured, then the
precision of MEMS gyroscopes can be much higher than the current one. We propose to
drive the proof masses into oscillation using external means. Since the two proof masses
must be driven into motion in opposite directions, this imposes restrictions on the
external forcing. We propose to use parametric forcing as excitation. Imagine that the

whole structure in Fig. 1.2 (b) which resides in a package is subjected to vibration along

the direction of Q. The direction of the forcing is perpendicular to the desired direction
of motion of the proof masses. Based on the well-known parametric instability
mechanism, the proof masses can be excited to vibrate in the desired direction
(perpendicular to the forcing direction) when the forcing frequency is near twice of the

natural frequency of the proof masses.

1.5 Literature Review

Inspired by the promising success of micro machined accelerometers in the same
era, extensive research efforts towards commercial micro machined gyroscopes led to
several innovative gyroscope topologies, fabrication and integration approaches, and
detection techniques. Although there were extensive efforts from the researchers, the

performance of the micro gyroscope is not enough to apply for some applications which
8



require high precision. Table 1.2 shows that there are some limitations with current

technology in micro gyroscope for typical high performance applications.

Table 1. 2 Resolution requirement of gyroscope for typical high performance application [17]

Application Resolution required Current capability of MEMS
PP (deg/hr) technology to provide this resolution
Inertial navigation 0.01-0.001 Impossible
TaCt'Cf"‘I weapon 0.1-1.0 Impossible
guidance
Heading and altitude 01-10 Challenging
reference

As mentioned prior, Greiff et al. [6] from Draper Lab reported the first micro

machined gyroscope in 1991, utilizing double gimbal single crystal silicon structure

suspended by torsional flexures. The resolution was 4°/s/+/Hz in a 60-Hz bandwidth.
Since the first demonstration of micro machined gyroscope by the Draper Laboratory, a
variety of micro-machined gyroscope designs fabricated in surface micromachining, bulk
micromachining, hybrid surface bulk micromachining technologies or alternative
fabrication technigques have been reported.

In 1993, Bernstein et al. [7] from Draper Lab reported an improved silicon-on-glass
tuning fork gyroscope. The glass substrate is aimed at low stray capacitance. This
gyroscope was electrostatically vibrated in its plane using a set of interdigitated comb

drives. They could get the amplitude of 10 um, and the performance was 1000 °/hr

resolution and 1.52 °/~/hr angle random walk in a 60 Hz bandwidth.
Weinberg et al. [8] from Draper Lab developed silicon-on-glass tuning fork
gyroscope in 1994 for commercial application. A perforated mass was used to minimize

damping. The in-plane motion of the structure is lightly damped by air, while out-of-
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plane motion is strongly damped due to squeeze film effects. Therefore, for out-of-plane
modes, Q rises rapidly when pressure is reduced, in contrast to the in-plane Q, which
shows a small increase when the pressure drops. They reported 470 °/hr resolution in a
60 Hz bandwidth.

Clark et al. [18] used the integrated surface micromachining process to develop an

integrated z axis gyroscope in 1996. In the paper, a resolution of 1°/s/+/Hz was
demonstrated. They employed single proof mass driven into resonance in plane, and
sensitive to Coriolis force in the in-plane orthogonal direction. Drive and sense modes
were electrostatically tuned to match, and the quadrature error due to structural
imperfections were compensated electro statically.

On the other hand, Juneau et al. [19] reported an xy dual axis gyroscope in 1997.
The xy dual axis gyroscope with 2 thick poly silicon rotor disc used torsional drive

mode excitation and two orthogonal torsional sense modes to achieve resolution of

0.24°/s/~+/Hz .
In 1997, Lutz et al. [20] reported z axis micro machined tuning fork gyroscope

design that utilizes electro magnetic drive and capacitive sensing for automotive

applications, with resolution of 0.4°/s/~/Hz . This device was fabricated using a
combination of bulk and surface micro machining processes. Through the use of
permanent magnet inside the sensor package, drive mode amplitudes in the order of 50
pum were achieved. Although such a large amplitude of oscillation can increase the output
signal level, it increases total power consumption and may cause fatigue problems over

long term operation.
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Voss et al. [21] reported an SOI (Silicon-on-Insulator) based bulk micro machined
tuning fork gyroscope with piezoelectric drive and piezo resistive detection in 1997.
Piezoelectric aluminum nitride was deposited on one of the tines as the actuator layer,
and the rotation induced shear stress in the step of the tuning fork was piezo resistively
detected.

In 1998, Kourepenis et al. [22] from Draper Lab reported 10um thick surface micro
machined poly silicon gyroscope. The resolution was improved to 10°/hr/+/Hz at 60
Hz bandwidth in 1998, with temperature compensation and better control techniques.

In 1999, Mochida et al. [23] developed DRIE based 50u thick bulk micro machined
single crystal silicon gyroscope with independent beams for drive and detection modes,
which aimed to minimize undesired coupling between the drive and sense modes.
Resolution of 0.07°/s/+/Hz was demonstrated at 10 Hz bandwidth.

Park et al. [24] from Samsung demonstrated wafer level vacuum packaged 40u thick
bulk micro machined single crystal silicon sensor with mode decoupling in 2000, and
reported resolution of 0.013°/s/+/Hz .

Lee et al. [25] from Seoul National University reported hybrid surface bulk
micromachining process in 2000. The device with 40um thick single crystal silicon
demonstrated resolution of 9°/hr/+/Hz at 100 Hz bandwidth.

Geiger et al. [26] reported in 2002 gyroscope with excellent structural decoupling of
drive and sense modes, fabricated in the standard Bosch fabrication process featuring 10
um thick poly silicon structural layer. Resolution of 25 °/hr/v/Hz with 100 Hz

bandwidth was reported.
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Geen et al. [27] developed dual resonator z axis gyroscope in 2002, fabricated in the
IMEMS process with 4 um thick poly silicon structural layer. The device utilized two
identical proof masses driven into resonance in opposite directions to reject external
linear accelerations, and the differential output of the two Coriolis signals was detected.
On chip control and detection electronics provided self oscillation, phase control,

demodulation and temperature compensation. This first commercial integrated micro

machined gyroscope had measured noise floor of 0.05°/s/~/Hz at 100 Hz bandwidth.
In 2003, Xie and Fedder [28] demonstrated DRIE (deep reactive ion etching) CMOS

(complementary metal oxide semiconductor) MEMS lateral axis gyroscope with

measured noise floor of 0.02 °/s/+/Hz at 5 Hz, fabricated by post CMOS
micromachining that uses interconnect metal layers to mask the structural etch steps. The
device employs combination of 1.8u thin film structures for springs with out of plane
compliance and 60um bulk silicon structures defined by DRIE for the proof mass and
springs with out of plane stiffness, with on chip CMOS circuitry. Complete etch removal
of selective silicon regions provides electrical isolation of bulk silicon to obtain
individually controllable comb fingers. Excessive curling is eliminated in the device,

which was problematic in prior thin film CMOS MEMS gyroscopes.
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1.6 Overview

In this dissertation, we study the parametric excitation which can be used to drive
micro tuning fork gyroscope to increase the sensitivity. In Chapter 2, we briefly describe
the categories of the resonance oscillations and the general information of the parametric
excitation. Parametric excitation characteristics and nonlinearities are described as well
as the history of the related research.

Feasibility study is implemented using parametrically excited pendulum model in
Chapter 3. The governing equations of model are derived using Lagrange equation and
simulation is carried out using the Runge-Kutta integration method. Initial condition
dependence and imperfection problem are discussed also. The emphasis in on whether
the two masses swing in the opposite direction or not.

In Chapter 4, we introduce a novel approach to get two unknown coefficients of the
governing equation using ALGOR, a commercial program by which one can perform
various structure analyses, and finite element method (FEM). In addition to the
calculation of the coefficients, we obtain the analytical solutions using method of
averaging and compare with numerical results.

An experimental study of the response of the tuning fork beam to the parametric
excitation is presented in Chapter 5. A non-contact motion analysis system, Eagle 3-D
motion analysis camera system, is introduced. Using this method, it is shown that the
parametric excitation is a very effective way to increase the amplitude of the vibration,
which may increase the sensitivity of the tuning fork gyroscope.

Practical problems are discussed in Chapter 6. We discuss the limited shaker power,
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which led to open-loop control method for the shaker. An assumption is introduced, and
the analytical solution based on the assumption is presented. We also investigate the
sensitivities of the parameters in the governing equations. Moreover, gravity effect for the
pendulum is studied both the normal and the inverted pendulums to explain discrepancies
of nonlinear phenomenon shown in the experiments.

As a conclusion, in Chapter 7, we restate our contribution to the nonlinear and

sensor communities. Also, future work is addressed briefly.
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Chapter 2

Parametric Excitation

2.1 Introduction

In this chapter we briefly review the types of mechanical vibrations for a better
understanding of parametric excitation. We classify the vibrations into several classes
with respect to the relationship between the external forcing frequency and the natural
frequencies of the structure. In fact, the dynamical analysis of the most real structures is
based on multiple-degree-of-freedom models. Let us assume a general form of the

equations of motion of a non-linear N-DOF structure.

MX + CX + KX + F(X) = P,(t) + P, ()% (2.1.1)
where, M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and
F(X) is the nonlinear vector embedded in the structure. The right side of the equation
represents the external force acting on the structure. In Eq. (2.1.1), M, C, K, and Py(t) are

(NxN) matrixes. On the other hand, the displacement vector X(t), nonlinear term F(X),
and direct force vector I51(t) are all (Nx1) vectors. Furthermore, the applied force vector
|51(t) and matrix P(t) are periodic functions of time, f,cos«2it and f,cos<t respectively.

First of all, in Eq. (2.1.1), if we have zero values for P,(t) and P,(t), the vibration

is called free. For the case, all the terms in the equation include the displacement vector

X(t) or its derivatives, and the coefficients of the equation do not depend on time. Free
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vibrations in a real system gradually decay because of the energy dissipation, and the
system eventually comes to rest at an equilibrium position.

On the other hand, the vibration is called forced when one or more external periodic
forces are applied to the system. In this case, the equation of motion can be expressed by
a given periodic function of time. When the frequency of external periodic force is at
certain frequency, the system oscillates in maximum amplitude, which is referred to as
resonance. As shown in Fig. 2.1, the external resonance can be classified into three
classes; primary resonance, secondary resonance, and parametric resonance.

In many mechanical systems, we focus on the primary resonance for which the
frequency of the external force is close to one of the natural frequencies of the system.
When one designs structures and mechanical systems, this phenomenon is either
exploited or avoided. On the other hand, when a system has certain nonlinearities, the
system may oscillate at a frequency different from the primary resonances, which is
referred to as secondary resonance. It can be again divided into three categories
depending on the relationship among the natural frequencies of the system; sub-harmonic
resonance, super-harmonic resonance, and super-sub-harmonic resonance [29].

Another resonance besides primary and secondary resonances is parametric
resonance. It occurs either by an external force or a periodic variation of some parameters
of the system to which the motion of the system is sensitive. When the external force is
applied for the parametric resonance, while external forcing direction is the same as the
direction of oscillation in the primary and the secondary resonances, the forcing direction
should be orthogonal to the direction of oscillation. The parametric resonance can be

divided into two classes; fundamental parametric resonance and principal parametric
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resonance. There will be more detailed explanation about the parametric excitation in the

next section.

External Resonance I
— Primary: , = ®
e Secondary
Sub-harmonic: Ql = 36{),...
Super-harmonic: Ql =1/3w,...
Super-sub-harmonic: Ql totw,=w,,..
S— Parametric

Fundamental: Qz =

Principal: Q2 =2w

Figure 2. 1 The classes of external resonance

Internal Resonance
(Auto parametric resonance)

— o, =w,(1:1)

— w, =2w0,1:2)

— @, =3w,(1:3)

Figure 2. 2 The classes of internal resonance
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In addition to the external resonances, there exists another resonance called internal
resonance. It is often referred to as auto-parametric resonance because the system tends
to be resonant by some specific relationship among the natural frequencies of the system.
As shown in Fig. 2.2, when the natural frequencies have a simple integer ratio
relationship, the energy transfer occurs from the high-frequency mode to the low-

frequency mode [30].

2.2 Parametric Excitation

Nayfeh and Mook (1979) [29] and Butikov (2005) [42] gave detailed explanation
about parametric excitation. Parametric excitation is quite different from normal direct
force. All systems we are familiar with are modeled using equations in which the
homogeneous part did not contain functions of time. Even if an excitation is introduced
into the model, an external excitation is added to a system in a separate term. However,
there are many systems for which this type of equation is not applicable. Let us assume a

simple differential equation which contains time variable coefficients.

X+ p )X+ p,(t)x = f(t) (2.2.1)

In Eqg. (2.2.1), although the external excitation is set to zero, i.e., f(t) = O, the time

dependant terms in the equation can act as an excitation. Because this type of excitation

acts from within the parameters of the system, as we already mentioned in section 2.1, it

is usually referred to as parametric excitation. As shown in Eq. (2.2.1), parametric
excitation can coexist with external excitation.

Equation (2.2.1) is linear, even though its coefficients are not constant, and its
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general solution can be obtained by adding a particular solution of the complete equation
to the general solution of the homogeneous equation. If x (t) and Xx,(t) are two
independent solutions of the homogeneous equation, its general solution can be obtained
by the linear combination x(t) = C,x,(t) + C,X, (t) .

Consider a system modeled with a linear second-order differential equation of the
type of Eg. (2.2.1) but without external excitation and with functions p,(t) and p,(t),
which are periodic in time with period T. The study of equation of this type was
published by Floquet in 1883, and, hence, is usually referred to as Floquet theory.

X+ p (t)x+p,(t)x=0 (2.2.2)

By introducing the transformation
~ 1
x=Xexpl-— | pu(t)dt]

Equation (2.2.2) can be rewritten as
X+ p(t)X =0 (2.2.3)
where

1., 1.
p(t)=pz—zpf—§p1

For this transformation to be valid p,(t) is differentiable with respect to time.

This means that the free behavior of the damped system can be obtained from that of
an undamped system by multiplying the time history of the latter by an appropriate
decaying factor and slightly modifying the frequency by a change of the stiffness. It can
be also applied for linear systems with constant parameter. Equation (2.2.3) is usually

referred to as Hill’s equation, because it was first studied by Hill in 1886 in the
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determination of the perigee of lunar orbit. Vibrations in a system described by Hill’s
equation are called parametrically excited or simply parametric.

As we mentioned before, the responses from the parametrically excited systems are
different from both free vibrations, which occur when the coefficients in the
homogeneous differential equation of motion are constant, and forced vibrations, which
occur when an additional time dependent forcing term is added to the right side of the
equation of motion with constant coefficients. More detailed explanation about the
characteristics of the parametric excitation will be addressed in Section 2.5.

The most common resonances in parametrically excited systems are the principal
parametric resonance, which occurs when the excitation frequency is nearly equal to
twice the natural frequency. We study the principal parametric resonance in this
dissertation, in which we explore the governing equation using analytical and numerical

method and prove by experiments.

2.3 Mathieu Equation

A particular form of Hill’s equation is the Mathieu equation, for which

p(t) = o +2¢cos(2t) (2.2.4)

Substituting Eq. (2.2.4) into Eq. (2.2.3) leads to
X+[0+2&c0s(2t)]x=0. (2.2.5)
The Mathieu equation governs the response of many physical systems to a
sinusoidal parametric excitation. An example is a pendulum consisting of a uniform rod
pinned at a point on a platform that is made to oscillate sinusoidally in the vertical

direction as shown in Fig. 2.3.
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Figure 2. 3 Uniform rod pendulum oscillating as a result of giving the horizontal platform a

harmonic vertical excitation [29]

Even though the Mathieu equation is a linear differential equation, it cannot be
solved analytically in terms of standard functions. The reason is that one of the
coefficients isn’t constant but time-dependent. Fortunately, the coefficient is periodic in
time. This allows applying the Floquet theorem. It says that in a linear differential
equation there exists a set of fundamental solutions from which we can build all other
solutions. Therefore, the solution of Eq. (2.2.5) can be written by

X(t) = exp(r )g(t) ,
where y is called a characteristic exponent and ¢(t) = ¢(t+ ). When the real part of
one of the ys is positive definite, x is unstable, which is unbounded with time, while
when the real parts of all the s are zero or negative, X is stable, which is bounded with
time. The vanishing of the real parts of the ys separates stable from unstable motions.
The loci of the corresponding values of & and & are called transition curves. They
divide the ¢-5 plane into regions corresponding to unstable motions and stable motions

as shown in Fig. 2.4.
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There are a number of techniques for determining the characteristic exponents and
the transition curves separating stable from unstable motions. One method combines
Floguet theory with a numerical integration of Eq. (2.2.5). To determine the transition
curves by this technique, one divides the ¢-s plane into a grid and checks the solution
at each grid point, which is quite a costly procedure. A second method involves the use of

Hill’s infinite determinant. When ¢ is small but finite, one can use perturbation

methods such as the method of multiple scales and the method of averaging.

)

bl ragion; a8 — — - Solution period T exists

2 A o 1 2 3 4 5 6 7

solutions bounded

o] Unstable region: at

azeiid |past one solution unbounded Sohlon ponsioed-2ET sduty

Figure 2. 4 Stable and unstable regions in the parameter plane for the Mathieu equation [29]

2.4 Literature Review

The observation of the first parametric resonance phenomenon goes back to 1831 as
mentioned before. Faraday [31] observed that surface waves in a fluid in a vertically
oscillating cylinder have one-half the frequency of the excitation.

Stephenson (1908) [32] pointed out that a column under the influence of a periodic
load may be stable even though the steady value of the load is twice that of the Euler load.
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Beliaev (1924) [33] analyzed the response of a straight elastic hinged-hinged column to

an axial periodic load of the form p(t) = p, + p,cosQt. He obtained a Mathieu equation

for the dynamic response of the column and determined the principal parametric

resonance frequency of the column. The results show that a column can be made to

oscillate with the frequency %Q if it is close to one of the natural frequencies of the

lateral motion even though the axial load may be below the static buckling load of the
column.

Even though the history of the problem of parametric excitations is not too long,
there are a number of books devoted to the analysis and applications of this problem.
McLachlan (1947) [34] discussed the theory and applications of the Mathieu functions,
while Bondarenko (1936) [35] and Magnus and Winkler (1966) [36] discussed Hill’s
equation and its applications in engineering vibration problems. Bolotin (1964) [37]
discussed the influence of parametric resonances on the dynamic stability of elastic
systems and Shtokalo (1961) [38] discussed linear differential equations with variable
coefficients. Furthermore, a comprehensive review of the response of single and multi
degree freedom systems to parametric excitations was discussed by Nayfeh and Mook
[29] and Ibrahim [39].

M. Gurgoze [40] analyzed parametric vibrations of a restrained beam with an end
mass under a displacement excitation at the other end. Using a one-mode approximation,
he reduced the governing partial differential equation to a Mathieu equation containing
cubic nonlinearities. He obtained an approximate solution for the case of principal

parametric resonance.
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Although there have been some papers regarding parametric excitation problem,
only a few studies were performed to use parametric excitation to the practical system.
Vyas and Bajaj [41] proposed auto parametric vibration absorbers which use multiple
pendulums in 2001. The vibration of each pendulum can reduce the displacement of the

primary system mass.

2.5 Special Properties of the Parametric Excitation

There are several important differences that distinguish parametric resonance from
the ordinary resonance caused by external force acting directly on the system. Butikov
(2005) [42] described the special characteristics of the parametric excitation in his paper.

The growth of the amplitude of the vibrations during parametric excitation is
provided by the force that periodically changes the parameter. Parametric resonance is
possible when one of the following conditions for the frequency « (or for the period T)
of modulation is fulfilled;

o=20,/n, T=nTo/2 (n=1,23,..).

In other words, parametric resonance occurs when the parameter changes twice
during one period, once during one period, twice during three periods, and so on.
However, the maximum energy transfer to the vibrating system occurs when the
parameter is changed twice during one period of the natural frequency. In this dissertation,
we are interested in the case, in which parametric force has the frequency of twice the
natural frequency of the system.

Another important distinction between parametric excitation and forced vibration is

the dependence of the growth of energy on the energy already stored in the system. While
24



for forced excitation the increment of energy during one period is proportional to the
amplitude of vibrations, i.e., to the square root of the energy, at parametric resonance the
increment of energy is proportional to the energy stored in the system. Also, energy
losses caused by damping are also proportional to the energy already stored.

In the case of direct forced excitation energy losses restrict the growth of the
amplitude because these losses grow with the energy faster than does the investment in
energy arising from the work done by the external force. In the case of parametric
resonance, both the investment in energy caused by the modulation of a parameter and
the losses by damping are proportional to the energy stored, and so their ratio does not
depend on the amplitude. Therefore, parametric resonance is possible only when a
threshold is exceeded, that is, when the increment in energy during a period (caused by
the parameter variation) is larger than the amount of energy dissipated during the same
time. The critical (threshold) value of the modulation depth depends on damping.
However, if the threshold is exceeded, the losses of energy by damping in a linear system

cannot restrict the growth of the amplitude.

2.6 Nonlinearities

As mentioned earlier, parametrically excited linear, undamped systems have
solutions that grow indefinitely with time. In other words, if the system is truly linear, the
amplitude grows until the system is destroyed. Mandelstam and Papalexi (1934) [43] had
proved this phenomenon by a specially designed linear oscillating circuit whose

amplitude of oscillation grew until the insulation was destroyed by excessive voltage.
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However, most systems have some degree of nonlinearity which comes into play as
soon as the amplitude of the motion becomes appreciable, and it modifies the response.
For instance, as the amplitude grows, the nonlinearity limits the growth, resulting in a
limit cycle, as happened in the specially designed nonlinear oscillating circuit of
Mandelstam and Papalexi (1934). Thus although the linear theory is useful in determining
the initial growth or decay, it may be inadequate if the system possesses any nonlinearity.
Hence, nonlinearity identification of the system is a very important problem.

In theory, nonlinearity exists in a system whenever there are products of dependent
variables and their derivatives in the equations of motion, boundary conditions, and/or
constitutive laws, and whenever there are any sort of discontinuities or jumps in the
system. Evan-lwanowski (1976) [30], Nayfeh and Mook (1979) [29], and Moon (1987)
[44] explain the various types of nonlinearities in detail along with examples. Also,
Pramod Malatkar (2003) [45] has briefly explained a variety of nonlinearities in his
dissertation. Here are some nonlinearities that need to be considered when we design

mechanical systems.

Damping dissipation is essentially a nonlinear phenomenon. Linear viscous damping
is an idealization. Coulomb friction, aerodynamic drag, hysteretic damping, etc. are

examples of nonlinear damping.

Geometric nonlinearity exists in systems undergoing large deformations or
deflections. This nonlinearity arises from the potential energy of the system. In structures,

large deformations usually result in nonlinear strain- and curvature-displacement
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relations. This type of nonlinearity is present, for example, in the equation governing the
large-angle motion of a simple pendulum, in the nonlinear strain-displacement relations

due to mid-plane stretching in strings, and due to nonlinear curvature in cantilever beams.

Inertia nonlinearity derives from nonlinear terms containing velocities and/or
accelerations in the equations of motion. It should be noted that nonlinear damping,
which has similar terms, is different from nonlinear inertia. The kinetic energy of the
system is the source of inertia nonlinearities. Examples include centripetal and Coriolis
acceleration terms. It is also present in the equations describing the motion of an elastic
pendulum (a mass attached to a spring) and those describing the transverse motion of an

inextensional cantilever beam.

When the constitutive law relating the stresses and strains is nonlinear, we have the
so-called material nonlinearity. Rubber is the classic example. Also, for metals, the
nonlinear Ramberg-Osgood material model is used at elevated temperatures. The

nonlinearity between stress and strain described by Ramberg and Osgood is as follows.

o o
e=—+K@)
E (E)

where ¢ is strain, o is stress, E is Young’s modulus, and K and n are constants that
depend on the material being considered.

Nonlinearities can also appear in the boundary conditions. For example, a nonlinear
boundary condition exists in the case of a pinned-free rod attached to a nonlinear

torsional spring at the pinned end.
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Many other types of nonlinearities exist: like the ones in systems with impacts, with
backlash or play in their joints, etc. It is interesting to note that the majority of physical
systems belong to the class of weakly nonlinear (or quasi-linear) system. For certain
phenomena, these systems exhibit a behavior only slightly different from that of their
linear counterpart. In addition, they also exhibit phenomena which do not exist in the
linear domain. Therefore, for weakly nonlinear structures, the usual starting point is still
the identification of the linear natural frequencies and mode shapes. Then, in the analysis,
the dynamic response is usually described in terms of its linear natural frequencies and
mode shapes. The effect of the small nonlinearities is seen in the equations governing the

amplitude and phase of the structure response.
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Chapter 3
Feasibility Study of Parametric Excitation

Using Pendulum Model

3.1 Dynamic Configuration

Pendulum model is a good model to evaluate and simulate the dynamic responses of
a tuning fork beam because it is simpler than a beam structure but has a good qualitative
agreement with the beam dynamics.

For the tuning fork micro gyroscope to work, the two proof masses must be driven
into oscillations in the opposite directions. We use parametrically excited pendulums as a
model of a tuning fork micro gyroscope to explore the feasibility of exciting the
symmetric mode of two coupled oscillators.

Our schematic model is shown in Fig. 3.1. Consider two pendulums hanging from a

“suspension mass.” One particle having mass m; is connected to the massless rod
whose length is 1; and the other one is connected to I,. The external forcing along the
vertical direction, f(t), is on the suspension mass M . We define ¢,and 6, as an
angle of each pendulum and Xand Y as a displacement of the suspension mass along

the horizontal and vertical direction, respectively. The suspension mass M s

constrained along the horizontal direction and the vertical direction by the springs with

the total spring constant K, and k, for each direction as shown in Fig. 3.1.
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Figure 3. 1 Schematic model of gyroscope motion

The governing equations are derived by Lagrange equation that is

d oL, aL .
(-T2 i=1,2,3..,n. 3.1.1
dt(aqi) oq Q ( )

where ¢, = 0q, / ot is the generalized velocity, L is the difference between the kinetic
and potential energies, L=(T-V), and Q, represents all the non-conservative forces
corresponding to g; . For conservative systems, Q, = 0 and equation (3.1.1) becomes

4y L _9i=1,23..n (312)
dt oq," oq

Equations (3.1.1) and (3.1.2) represent one equation for each generalized coordinate.
There expressions allow the equation of motion of complicated systems to be derived
without using free-body diagrams and summing forces and moments.

We consider one part at a time for the calculation of kinetic energy and potential

energy. To begin with, let us consider the suspension mass M . The kinetic energy T,,

yields
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T, :%Mv2 =%M(>‘<2 +v?) (3.1.3)

In addition, the potential energy becomes

2 (3.1.4)

k 1 k k k k
Vy = Mgy+—-2Ly? + {2 X% + 22 (=x)?} = Mgy + L y? + =X x
m =Moy+—ry + o8 5 (X} =May+—y" 4=
The next part to be considered is a small particle having mass m, . In the same way

as the suspension mass, the Kkinetic energy for mass m, can be expressed as
1 .2
T =5 MY, (3.1.5)

Because the particle is on the suspension mass, we need to consider the horizontal and

vertical movement as well. We let V3 =V+WxF | where w=6k , and

F=1,siné,i —1,cosé,], we have

— . o

V= Xi +Y]+1,cos@,6i +1 sing0,]
= (X+1,c080,0)i +(y+1,sin6,6,)] (3.1.6)

Substituting (3.1.6) into (3.1.5) leads to
T,= %ml{(x +1,c086,0,)% + (I,sin 6,0, + y)*}
= %ml{x2 +y2 +1207 + 21,6, (cosO,x +sin6,y)} (3.1.7)

On the other hand, the potential energy for the pendulum yields

Vi, =mgy—mgl, cosé,. (3.1.8)

We get the equations for the other mass m, similarly

T = %mz{x2 +y? +1267 + 21,6, (cos@,x +sinb,y)} (3.1.9)

my
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V,,, =m,gy —m,gl, cos &, (3.1.10)
Combining equations (3.1.3), (3.1.7), and (3.1.9) leads to the total kinetic energy of
the system given by
T= % M X% + % M,y +m,1,8,(cosé,x +sind,y)
+m,l1,0,(cosé,x +sinb,y) +%(mllféf +m,1262) (3.1.11)

where M =M +m; +m, . Furthermore, the total potential energy V becomes

k k

V = M,gy — (m], cos 6, + m,l, cos 8,)g + 7y y® + 7Xx2. (3.1.12)
Lagrangian, L, from (3.1.1) becomes

1. ., 1., ., : S : S
L= EMtX +5Mty +m,l,6,(cosé,x +sind,y) +m,l,6,(cosd,x +sin6,y)

. : K

+ % (M6 + m,1267) — M, gy + (m,, cos &, + m,l, cosd,)g — ?y y? — k—zx x> (3.1.13)

From Egs. (3.1.1) and (3.1.13), and if we let 9, =x, 0q,=Y, 0;,=6,, q,=46,,the

governing equation for each variable can be obtained by simple algebraic steps.

For the case of ¢, =X,

%: M, X +m,l,0, cosé, + m,l,0, cosé, (3.1.14)

a(&) =M, X+ml, cos,6, —m| sinb,6" +m,l, cosd,d, —m,l,sin6,6, (3.1.15)

% — kX (3.1.16)
X

Substituting Egs. (3.1.15) and (3.1.16) into Eq. (3.1.1) leads to the equation for x variable

such as
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M % + m], cos 8,8, — m], sin 6,87 + m,l, cos 6,6, — m,l,sin 6,67 + kx =Q,  (3.1.17)

Next consider the case of g, =.

oL

- M,y +m,l,6,sin8, +m,l,6,siné, (3.1.18)
d oL y oo i L )

E(E) =M, y+ml sing,6, +m]l cosd b +m,l,sinb,0, +m,l, coss,b, (3.1.19)
oL

v =-M.g -k,y (3.1.20)

Substituting Eqgs. (3.1.19) through (3.1.20) into Eq. (3.1.1), we obtain the equation for y
variable

M, ¥ + ml, sin 66, + ml, cos 6,67 + m,l, sin 6,6, + myl, cosA,6; + Mg +k,y =Q, (3.1.21)

Ifwelet g,=6,

oL S 2 4

PY3 =m,l, (cosé,x+sinb,y)+m,|l 6, (3.1.22)
1

d, oL . e A 5 o 2}

p (5) =myl, cos@ X+ ml sing,§—ml sing,6,x+m]l cosd,6,y+ml 6 (3.1.23)

1

oL A - :

4 -myl, sin@,6,x+m,l, cos@,6,y —m,gl, sin g, (3.1.24)
1

Substituting the equation (3.1.23) through (3.1.24) into (3.1.1) leads to
m,l, cos@,X+myl,sin 6,y + m 126, + mgl,sin6, =Q, (3.1.25)
In the same way we obtain the equation for &, variable such as
m,l, oS B,% + M, sin 6, + m,1>6, + m,gl, sin 6, =Q, (3.1.26)
We assume that the suspension mass is driven into sinusoidal oscillations along the

y-direction. Thus we let
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y = acos mt

(3.1.27)

Substituting (3.1.27) into (3.1.17), (3.1.21), (3.1.25), and (3.1.26) leads to the equations

of motion for the three remaining degrees-of-freedom. Moreover, if we assume

generalized forces acting on the system in the form of viscous damping, we obtain

M X + ml cos 6,6, — m, sin 8,62 + m,l, cos 6,0,

— m,l, sin 6,67 + ¢, x + kx =0
m,l, cos ;% + m 126, + m,], sin f,a cos wt + ¢,6, + mgl, sin 6, = 0
|2

myl, cos 6,% + mI26, + myl, sin ,a cos at + C,0, + mgl,sin g, = 0

From the equations, each damping term can be described as

¢, =20 Mo, ¢, =27 mlllza)l’ C, = 2§m2I22w2

where ¢ denotes damping ratioand ,, - |k w, = #’ w, = \/IE.
" Mt 1 2

3.2 Dimensionless Equations

(3.1.28)

(3.1.29)

(3.1.30)

(3.1.31)

The equations obtained in the previous section can be written in dimensionless

. . 1 .
forms by letting |, be a characteristic length and — be a characteristic time,

@,

- t
x=LX and t=—,
@y

thus, the derivatives become % = @?1LX", 6, = 0?0, 6, = ©?6,

D)

23 - 2
d’x and 49”:d

where, X" =-— —
dt? dt 2

respectively.

Substituting (3.2.1) and (3.2.2) into (3.1.27) through (3.1.29) leads to
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(3.2.2)



~ ~ ~ k ~
M, @’L,X" + mw/l, cos 6,6+ m,a]l, cos 6,8, + 2{M, M—a)lllx'

t (3.2.3)
— m,?l, sin 6,6, — m,wll, sin 6,8,% + kL,X =0
m,@?12 cos O,X" + m,w126,+ 2¢m,w?120, + m,) sin 6, (acos -t +g) =0 (3.2.4)
@,
m,a?L1, cos 6,%" + m,w2120,+ 2¢m | 2a,0,0) + m,, sin 6,(acos T + g) = (3.2.5)
Q.

1
Simplifying (3.2.3) through (3.2.5), we obtain the final equations in dimensionless

form such as

X" + o cos 0,0,"+ By cos 0,0, +2¢ & XX — o sin 6,0,
o, (3.2.6)

- 2
— Py sin 0,07 + w—xzi =0
1
cos O, X" + 51"+ 2§§1'+ sin 6,(pcos o, t +1) =0 (3.2.7)
1 2
=cos 6,x" +0”+ 2;—9 + —= sme(pcoswt +1) = (3.2.8)
e

m m a
where, g=—1, g=_2, —i 9, 9, _ =2,
M, P M, LT T, \/ g

3.3 Results of Simulation

3.3.1 Dependence on Initial Condition

In this section we explore the dynamic responses of a symmetric structure. The

dimensionless parameters used are the following:
a=£=009, y=1, 175 < o/ w < 2.15, 0.06< p<0.25
where, o and g denote ratio of each pendulum mass to the base mass respectively, »

is the length ratio between the two pendulums, @/ @, is the ratio of the excitation
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frequency to the natural frequency of the pendulum, and p is the ratio of y direction

acceleration to the gravity force g.
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Figure 3. 2 Response of the pendulum when m, =m,and |, =1,

(* : swing in the same direction, o0 : swing in the opposite direction, x : decaying)

As shown in Fig. 3.2, the parametric resonance occurs when the forcing frequency is
near twice the natural frequency of the pendulum. There exist three types of pendulum
responses depending on the forcing frequency and amplitude. In the figure, ‘0’ marks
represent the pendulum motions swinging in the opposite directions. The “*’ marks
denote the pendulum motions which are swinging in the same direction, and the ‘x’
marks represent the pendulum motions which decay after some transient. We refer to the
motion when the two pendulums move in the opposite direction with the same amplitude
as symmetric or out-of-phase motion. On the other hand, we refer to the swing motion
when the two pendulums swing in the same direction as anti-symmetric or in-phase

motion. The border of the two types of swing motions experiences long transient time to
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reach the steady state.
The parametric resonance occurs when the amplitude of dimensionless excitation p

is greater than 0.07. When it is smaller than 0.07, the response dies out after some

transient time.
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Figure 3. 3 Anti-Symmetric (in phase) motion (w/w®, = 1.85)

00 910 920 930 940 950 960 970 980 990 1000
Dimensionless time( w, t)

Figure 3. 4 Symmetric (out of phase) motion (v /w, = 2)
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Figures 3.3 and 3.4 show that the two types of pendulum motions in more detail.
The two figures are obtained by applying the same forcing amplitude, p=0.15, and the
same initial conditions, 6, = -0.05rad, 6, =001rad. From the figures, it is clear that

the steady-state pendulum response is dictated by the frequency ratio rather than by initial
condition. This observation summarizes the outcomes of several simulations we have

conducted.

1 1 1 1 1 |
0 500 1000 1500 2000 2500 3000 3500 4000

1 1 1 1
3950 3940 3950 39600 3570 3980 3990 4000
Dimensionless time (w, t]

1 |
3900 3910 3520

Figure 3. 5 Anti-symmetric motion with symmetric IC (4, = -6, = 0.05rad, w/ w, = 1.85)

Most interestingly, we have used symmetric initial conditions to start the simulation
which evolves into asymmetric steady-state. This is shown in Fig. 3.5, which is obtained
for the forcing frequency ratio w/w, =1.85 with the symmetric initial condition
6, =—6, =0.05rad . The response becomes anti-symmetric (in- phase) motion after a
long transient. A similar case with anti-symmetric initial conditions 6, = 6, = 0.05 rad

IS seen to evolve into symmetric motions after a long transient in Fig. 3.6.
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Figure 3. 7 The responses when m, =M, and |l = |2 : (&) Amplitudes of angular displacement of

pendulums; (b) Displacement along the x-direction of the suspension mass; (c) Phase difference

between the two pendulums
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Figure 3.7(a) shows the amplitudes of the angular displacements of the two

pendulums when they reach the steady state. The parameters used are as follows; p=0.15,
initial conditions are 4 =-0.05radand &, = 001rad. The displacement along the x-

direction of the suspension mass is shown in Fig. 3.7 (b). The phase angle difference
between the two pendulums is shown in Fig. 3.7 (c). The curves for the amplitudes of the
two pendulums exactly overlap in Fig. 3.7 (a). The displacement along the x-direction of
the suspension mass is zero when the pendulum motions have a phase difference of

7 rad . That is, the suspension mass does not move in the x-direction when the motion is

symmetric. The phase difference is zero when the motion is anti-symmetric. In this case,

large displacement occurs in x-direction.

3.3.2 Effects of Imperfection

The study in Section 3.3 demonstrates the feasibility of using parametric excitation
to generate symmetric oscillations of two identical pendulums. Our interest is to use
similar parametric excitations in micro gyroscopes. One important aspect of micro
gyroscope fabrication is the dimensional inaccuracy of the fabricated parts. The
dimensional inaccuracy breaks the symmetry of the mechanical structure. In order to
understand whether the above findings are still valid in the presence of imperfections of
the mechanical structure, we study the response of the two pendulums whose lengths are
slightly different. The dimensionless parameters used are the following:

a=£=0.09, y=0.95, 1.75<w/w, <215, 0.06< p<0.25
Because of the length difference, each pendulum shows different magnitude of

swing angle. However, the swing patterns are the same as the previous simulation in
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which the two pendulums have the same mass and the same length. The two different
swing patterns, symmetric motion and anti-symmetric motion, are clearly noticed. In the
same way, ‘*’ symbols in Fig. 3.8 represent the anti-symmetric motion and ‘0’ symbols

represent the symmetric motion.
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Figure 3. 8 Response of the pendulum when m, =m,and 0.951, =1,

(* : swing in the same direction, o0 : swing in the opposite direction, x : decaying)

Figure 3.9 was obtained with the parameters, y=0.95, p=0.23, and the initial
condition, 4 = —-0.05rad and ¢, = 0.01rad. Recall that y =1 represents the case

that the two pendulums are hung by the same length of massless rod. In Fig. 3.8,
however, the lengths of the rods for two pendulums are no longer identical, so that the

geometric symmetry is broken. The amplitudes of the two pendulums are never exactly
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the same. Consequently, the displacement along the x-direction of the suspension mass

cannot be zero. Still, we notice that there exist forcing parameters for which the

pendulums swing in the opposite directions (phase angle is close to zrad) and the

amplitudes of the approximately “symmetric motions” are close to each other.
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Figure 3. 9 The responses when m, =m,,0.95], =1,,» =0.95, p = 0.23 : (a) Amplitudes of angular

displacement of pendulums; (b) Displacement along the x-direction of the suspension mass; (c) Phase

difference between the two pendulums
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Figure 3. 10 The responseswhen m, =m,, 0.951, =1,,y =0.95, p =0.15: (a) Amplitudes of
angular displacement of pendulums; (b) Displacement along the x-direction of the suspension mass;

(c) Phase difference between the two pendulums

Figure 3.10 is the case in which all the parameters are identical to those of Fig. 3.9

except the forcing amplitude, p=0.15, which is smaller than the one in the previous

study. At this forcing amplitude, there exists a frequency interval where the pendulums
are not excited. This frequency interval separates the two frequency regions where the

pendulums undergo steady oscillations under parametric excitations. When forced by a
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frequency in the high frequency region, the pendulums oscillate in the opposite
directions. In this case, pendulum motions are approximately “symmetric.” In addition, a
forcing frequency in the low frequency region makes the pendulums oscillate in the same
directions, anti-symmetric.

As shown in Figs. 3.9 and 3.10, the displacement of the pendulum swing is much
more complicated when they move in the same direction than when they swing in the
opposite direction. In other words, there are small displacement differences when they
swing in the opposite direction, but if they swing in the same direction, the displacement

gap between the two pendulums is increased.

3.4 Effect of Stiffness of the Coupling Support

In the previous section, we noticed that the pendulum swing depends on the
frequency rather than the initial condition. As shown in Figs. 3.9 and 3.10, the stiffness of
the x direction allows coupling between the two pendulums and hence energy transfer
occurs between them.

However, when the x displacement of the support is constrained to be zero, there is
no coupling between the two pendulums. In this case, shown in Figs. 3.11 and 3.12, the
only thing that regulates the pendulum’s movement is initial condition. So if the initial
condition is in the opposite direction, the swing reaches in the opposite direction at steady
state and if the initial condition is in the same direction, then the swing is also in the same
direction at steady state.

Figure 3.11 was obtained from the frequency range in which the pendulums are

supposed to swing in in-phase motion. Frequency ratio, w/w, =1.85, and the initial
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condition, ¢, =0.05rad and 6, = —0.01rad , were applied. However, Xx-direction

movement was constrained completely. As shown in Fig. 3. 11, the two pendulums swing

in out-of-phase motion unlike the previous simulation.
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Figure 3. 11 Response of the pendulum: x=0, »=0.95, ¢ =0.05rad, 6, = —0.01rad
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Figure 3. 12 Response of the pendulum: x=0, y =0.95,0, =0.05rad, &, = 0.01rad
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Figure 3.12 shows another example of the initial condition dependence. At this time,
it was obtained from the frequency range in which the pendulum supposed to swing in

the opposite direction (out-of-phase) motion. Frequency ratio, w/w, =2, and the initial
condition, 4, =0.05rad and 6, = 0.01rad, were used. In the same way, x direction

movement was constrained. We see that the two pendulums swing in the same direction
as the initial direction in Fig. 3.12.

This work is closely related to Ref. [41]. The main difference lies in the finite
stiffness along the x-direction in our model. The coupling along the x-direction excludes
the possibility that only one pendulum is excited at a time. However if we have very large
stiffness, k, then the pendulums are decoupled completely and each pendulum follows the

parametric excitation rule independently.

3.5 Summary

We studied the response of two coupled pendulums to show the feasibility of the
external excitation for the micro gyroscope. We found that the system has two different
swing patterns. The solution with the opposite direction allows excitation of the desired
mode. This solution persists for structures with imperfection. This is advantageous for
device fabrication since imperfection is unavoidable.

Our numerical study has shown that parametric excitation can cause the two
pendulums to oscillate in the opposite directions stably. This property can be used to
design MEMS micro gyroscopes which use parametrical forcing as excitation. The design

is shown to be robust to imperfections that are unavoidable in device fabrication.
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Chapter 4
Calculation of Coefficients Using Finite

Element Method

4.1 Introduction

The advantage of the parametric excitation is that it can be externalized. The
fabrication is thus simplified. However, there are no readily applicable tools to guide the
design of these gyroscopes since the gyro structures are more complex than those
structures whose responses to parametric excitations are known and since finite element
analysis tools are not capable of studying parametric excitations. In this work, we adopt a
novel approach to obtain a simplified model of the parametrically excited structure.
Parameters in the simplified model are obtained using dynamic analysis capability of
typical finite element programs and static nonlinear analysis capabilities. Nayfeh and Pai
studied non-linear non-planar parametric responses of an inextensional beam in 1989 and
they got analytical formula [46].

Consider a parametrically excited beam. If the forcing frequency is close to twice

that of the first mode, the governing equation for the beam vibration can be written as

5‘+2a)055+a)§(1—a83)5+%53=0 (4.1.1)
L

where @, is the natural frequency of the beam, ¢ the damping coefficient, P the
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parametric excitation force, m the modal mass, h the nonlinear term, and B, the

static buckling limit. The coefficient o is an important parameter that measures the
effectiveness of the parametric excitation. The nonlinear coefficient h measures the
geometric nonlinearity in the system.

The concept of a parametrically excited micro gyroscope is that by parametric

excitation, i.e. P = f cos(2mt), sufficient motion is generated. For Equation (4.1.1), the

steady state amplitude of ¢ is determined by ¢, «,and h. The parameter ¢ is often

known in terms of the Quality Factor, Q:i. However, there is no analytical method to
2

calculate this parameter. It is often determined using empirical data.

4.2 Critical Buckling Load Analysis

The critical buckling load is the maximum load that a structure can support prior to
structural instability or collapse. The collapse of the structure is reached when the
displacements become relatively large for a small load increment. The critical bucking
load is different depending on the boundary condition of the structure.

As shown in Fig. 4.1, if we have a cantilever beam with one end fixed and the other

end free, the bucking load when axial load applies on the free end is described as

_ 7’Eln?

B,=—73— n=123... 4.2.1
BT (4.2.1)

where E denotes the Young’s modulus, | is the moment of inertia, and | is the length of

the beam [47].
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Figure 4. 1 Cantilever beam with lumped load
However, if we have a cantilever beam supplied by vertical direction excitation,
axial force will be induced by its own mass as shown in Fig. 4.2. We assume that lumped
mass is distributed on each node and it produces axial force on the beam. Also, clamped-

free boundary condition is assumed.
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Figure 4. 2 Cantilever beam with distributed load

The critical buckling load yields
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_ 7.837EIn’

B, |2 =1,2,3... (4.2.2)

by the study of Timoshenko in 1961.

We used AI(6061-T6) cantilever beam 10cmx0.1lcmx0.1cm in size. Young’s
modulus, E, was 69.637 GPa. For the finite element analysis, the beam was divided into
10 elements as shown in Fig.4.2. We found that the critical buckling load of the beam
was 454,546 dyn in theory and 452,872 dyn from ALGOR analysis [48]. The error

between the theory and the simulation was only 0.37 %.

Table 4. 1 Buckling load of the beam

Theory (dyn) Simulation (dyn) | Error (%)

First mode 454 546 452,872 0.37

Second mode 1,818,184 - -

Even though we can calculate the critical buckling load for the second mode by the
theory, the first mode’s one is still assumed to be more important in the practical system.

For that reason, ALGOR simulation may give only one bucking load.

4.3 Effectiveness of Parametric Excitation

ALGOR is one of the commercial programs to analyze dynamics of structures using
finite element method (FEM). The natural frequency with load stiffening processor in the
program is used when axial compressive or tensile loads will affect the response of a
system. This analysis type is very similar to the natural frequency processor. However, it

can handle a situation when a part is under compression or tension at the same time that
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vibration is induced. For instance, a violin or guitar string’s tone is changed when the
string is tightened or loosened even though nothing is done to the string to change its
mass or length. This effect makes music possible and engineers call it load stiffening.
Natural frequency is changed until the structure buckles. When a structure buckles
under the compression the natural frequency becomes zero. Using this phenomenon, one
can calculate the relationship between the natural frequency with and without axial load.
From Eq. (4.1.1), we know the relationship between two natural frequencies with

and without the axial load:

o =wg(1-aBi) (4.3.1)

L

where @ denotes the natural frequency of the beam with axial force, and w, is the

natural frequency of the beam without axial force. P and B, are the axial force acting

on the beam and the critical buckling load of the beam respectively. Table 4.2 is the
simulation results of the Natural frequency with load stiffening analysis.

Table 4.2 shows that the first natural frequency is decreased while the axial force is
increased. Moreover, the squared natural frequency term is a linear function of the axial
load P so that it reaches down to zero when the axial load becomes the same as the
critical buckling load. As shown in Fig. 4.3, the linear equation gives the coefficient,

a=1.
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Table 4. 2 Natural frequency with load stiffening for the 1 mode

Load P (dyn) o (rad/s) Load P (dyn) o (rad/s)
0 512.70 300000 298.31
50000 483.68 400000 175.52
100000 452.78 450000 40.92
200000 383.47 452000 22.54
1.2
o’ ]
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Figure 4. 3 Relationship between natural frequency and axial force for the 1 mode of the beam

with clamped-free boundary condition
On the other hand, the simulation shows that the second mode frequency also has a
linear relationship with axial load P. The results of the natural frequency with load
stiffening analysis for the second mode are in Table 4.3. Since only one critical
buckling load is available through ALGOR program, we used theoretical buckling load

here. The linear coefficient, « =0.5643, was obtained for the second mode.
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Table 4. 3 Natural frequency with load stiffening for the 2" mode

Load P (dyn) o (rad/s) Load P (dyn) o (rad/s)
0 3176.17 2400000 1597.76
50000 3151.61 2600000 1386.98
100000 3126.84 2800000 1139.68
1000000 2639.18 3000000 825.32
2000000 1953.31 3200000 282.01
2200000 1784.33 3220000 144.02
, 1.2
2 y = -0.5648x + 1
P11 R2 =1
0.8 1
0.6 1
0.4 1
0.2
] P
0 . . . . . . Y _
0 0.5 1 15 o B.

Figure 4. 4 Relationship between natural frequency and axial force for the 2" mode of the beam

with clamped-free boundary condition

4.4 Derivation of the Nonlinear Term

The parameter h in Eq. (4.1.1) represents the nonlinear load-deflection relationship
of the beam. Since the material is assumed to be linear elastic, the nonlinearity is a result
of the geometric nonlinearity. This can be quantified by using the static nonlinear

analysis tool of the finite element packages.
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Figure 4. 5 Cantilever beam with parametric excitation

We assumed distributed load q(x) acting on the beam in the horizontal direction

such as shown in Fig. 4.5. Let w(x) denote the displacement of the beam at a certain

location x.

Table 4. 4 Displacement for several different horizontal forces using FEM

Total horizontal force (dyn)
10000 | 100000 | 200000 | 300000 [ 400000 [ 500000
1 0 0 0 0 0 0
2 0.0040 | 0.0396 | 0.0754| 0.1060 0.1321| 0.1545
a 3 0.0151| 0.1475| 0.2791| 0.3894 0.4806 | 0.5567
= 4 0.0317 | 0.3090 | 0.5806 | 0.8028 0.9813 | 1.1260
5 5 0.0525| 0.5111| 0.9541| 1.3081 1.5849 [ 1.8031
% 6 0.0764 | 0.7427 | 1.3785| 1.8762 2.2560 | 2.5480
.T;i 7 0.1026 | 0.9948 | 1.8373| 2.4854 2.9698 | 3.3345
c:; 8 0.1301| 1.2599 | 2.3179| 3.1199 3.7093 | 4.1454
§ 9 0.1585| 1.5326 | 2.8107| 3.7685 4.4629 | 4.9694
10 0.1872 | 1.8086 | 3.3090 | 4.4235 52228 | 5.7992
11 0.2160 | 2.0857 | 3.8092 | 5.0805 59847 | 6.6308
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The coefficient, h , can be obtained by using the relationship between the external

m

force acting on the beam and the displacement of the beam.

L=kd& +hs?® (4.4.1)

where L is the generalized force, and ¢ is the generalized coordinate.

For a discretized beam, the beam displacement can be expressed in terms of its

mode shapes.
w(x) = Zn:c?i () D, (x) (4.4.2)

where, @, denotes the i th mode shape of the beam. We can use o; as a generalized

coordinate. To obtain the nonlinear relationship between L and &, we apply a uniform
load to the beam in the direction shown in Fig. 4.5. Using the nonlinear static analysis
tool in ALGOR, we obtain the nodal displacements corresponding to different total loads.
These results are shown in Table 4.4. The boundary conditions at node #1 and #11 are
clamped and free respectively.

From these values, we obtain the displacements of the generalized coordinate
@:ﬂmmqumx (4.4.3)
and the corresponding generalized force

L = [[a) @, (x)dx. (4.4.4)
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Table 4. 5 Displacement when lateral uniform load was applied

Total force First mode Second mode

(dyn) L, ) L 5,
1000 3.92 0.0055 2233 -0.0008
10000 30.23 0.0552 92330 0.0082
100000 392.28 05336 | 923297 0.0909
200000 784.57 0.9793 | _446.503 -0.2228
300000 1176.85 13144 |  _569.890 03945
400000 1569.13 15582 | 893186 05849
500000 1961.41 1.7368 | _1116.480 -0.7759

In Figs. 4.6 and 4.7, the red stars represent the displacements when the beam is
subjected to the corresponding lateral forces. The relationship between the forces and the
displacements was found using SPSS program [49], a commercial program by which one

can carry out a regression analysis. Finally, we can get the unknown coefficients in Eq.

(4.4.1) as shown in table 4.6.
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Figure 4. 6 Relationship between external load and displacement for the 1% mode
of the cantilever beam
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Figure 4. 7 Relationship between external load and displacement for the 2™ mode

of the cantilever beam

Since only the term n is needed in Eq. (4.1.1), we recall that £=a)§. Therefore
m m

x|z

h k , h

—=——=wf — 4.4.5

- 0 (4.4.5)
In other words, the ratio of the two regression parameters is the nonlinear parameter

we need to predict the beam response to the parametric forcing. The parameters are given

in Table 4.6.

Table 4. 6 Two regression parameters and nonlinear term

coefficient 1% mode 2" mode
h 158 -704.48
k 640 1839.38
h/m 64892.69 -3863773.49
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4.5 Boundary Condition Effect

In Section 4.3 and 4.4, the boundary condition of the beam was Clamped-Free. That

is, at x = 0, the beam has the boundary condition [50]
Deflection = w=0, Slope = ;_iz(v =0.

Moreover, at x = |, the beam has the condition becomes

2 2
Bending moment = El 8_\/2v =0, Shear force = 9 El a_vzv =0.
OX OX OX

Through the numerical simulation we found that the boundary condition is a crucial
factor for the coefficient « . Figures 4.8 and 4.9 are the dimensionless frequency
responses when the boundary condition of the beam is Clamped-Clamped and the
dimensions are the same as those of the case simulated in Section 4.3 through 4.4. In this

case, the boundary conditions are
Deflection= w=0, Slope = éﬂ =0
X

atx =0and x = |. The ALGOR critical buckling load analysis gives the buckling load to
be 392,752,000 dyn when the beam has a distributed axial load.

As shown in the figures, while we have a linear relationship between the square of
the natural frequency and the applying axial force with clamped-free boundary condition,
the relationship between the two is nonlinear with clamped-clamped boundary condition.
It is to say that a clamped-free boundary condition may allow the system to be simpler
and more predictable than clamed-clamped one for the parametric excitation.

We didn’t introduce the other boundary condition cases such as a clamped-pinned
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and a clamped-slide because these boundary conditions are not suitable for the design of

micro vibratory gyroscopes.

1.2
»* ] y =-1487.8x>-279.11x% - 0.5296x + 1.0008
R? =1
1

0.6 1

0.2 A

0 P
0 001 002 003 004 005 006 B

Figure 4. 8 Relationship between natural frequency and axial force for the 1° mode of the beam

with clamped-clamped boundary condition

»° 1 y = 4143.2x"* - 573.59x® - 51.049x? - 0.4438x + 1.0012
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Figure 4. 9 Relationship between natural frequency and axial force for the 2" mode of the beam

with clamped-clamped boundary condition
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4.6 Comparison of Averaging Method and Simulation

In the study of dynamical systems, the method of averaging is used to study certain
time-varying systems by analyzing easier, time-invariant systems which is obtained by
averaging the original system. The idea of averaging as a computational technique has
been formulated very clearly by Lagrange in 1788. Ferdinand Verhulst [51] describes the
method of averaging effectively in his book. When we have a weakly nonlinear system

with small parameter &
X+w*x+¢ef(x,x1t)=0, (4.6.1)

its averaged equations become as follows;
. EN g o , &
r=<(=)fsin®d> rp=<(—)fcosd>, (4.6.2)
® @

where ®=wt+ ¢, and <> denotes an average over one cycle of @.

From the previous section, the coefficients of the beam equation have been obtained

by regression analysis in SPSS program. The equation with a cubic nonlinearity would be

5+2§a)05+a)02(1—aBi)5+a)ozﬁé'3=O (4.6.3)

L

where, HZE and P =4aw?cos2wt.

For the averaging method, let us assume the following:

~ _ P _
{=e-d, h=¢-h, O!B—=€'4aCOSZCOt, o’ - =¢- .o, where g<<1.
L

Equation (4.6.3) can be written as

S+ 05+ e{~af(c+4acos2wt) 5 +2d w, 6 + i h 5% =0 (4.6.4)
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From the equations (4.6.1) and (4.6.4), we have
f =—wf(c+4acos2mt)d+2d @, 6 +wih s°. (4.6.5)

Now, let’s assume ¢ = r cos® and substitute (4.6.5) into (4.6.2), we get

=< (ﬁ){—wj(o-+430032wt)rcosd>+2d @, (—orsin®) + w? h r?cos® d}sin ® >
w

=< (ﬁ)(_4w0 arcos2wtcos®sin® -dr o, w) > (4.6.6)
w
Recall that the integration over one period of oscillation becomes:

lf sin wtcos wtdt =0
T Jo

lITsinZa)tdt :ichos2 otdt =1 (4.6.7)
Th Th 2
Equation (4.6.7) and the trigonometric formula lead to

cosdsindcos2wt = %sin 20 cos2mt = %{sin(ZCD —2wt) +sin(2® + 2wt)}

= %{sin 2p+sin(4wt+2¢)}, whered =t + .
Equation (4.6.6) becomes

i = (~wfarsin2p-dr a, o) (4.6.7)
w

£ 0,0
Since a)=\/co§ +ga)§a =, + 20 +0-£% and & is small, high order terms of ¢
may be disregarded. Therefore equation (4.6.7) can be written as

¢ = (-asin2p—d)wlr (4.6.8)
w
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In the same way, substitute (4.6.5) into (4.6.2) and we get
rp =< (S} (o +4acos2wt)rcos® +2d a, (~wrsin @) +w? b r® cos® d}cosd >
9

2
=< i(—&or—4a)§§r0032a)tcosz@+ia)§ﬁr3) >, (4.6.9)
w 2 8
Recall the trigonometric formula again, which says

cosd cosd cos2mt = %cos 20 cos2mt = %{cos(ZCD —2wt) +cos(20 + 2wt)}

= %{c032¢+c05(4a)t +2¢)}, where® = ot +¢.
Equation (4.6.9) yields

r¢:£(—i—30052¢+§ﬁr2)a)§r (4.6.10)
o 2 8

For the fixed points, equations (4.6.8) and (4.6.10) should satisfy the condition,
r=0 and ¢ =0. The equations yield

—asin2p—d =0 (4.6.11)
—%—50032¢+%ﬁr2 =0 4.6.12)

From Eqgs. (4.6.11) and (4.6.12), we get

2
a2 :d2+{%ﬁr2—%} (4.6.13)
The solution of Eq. (4.6.13) yields
rzz[;—i az—dz}/ZH (4.6.14)

Note that the nonlinear coefficient h is in the denominator. That is, the response

amplitude is indeterminate if h is not known. This is why it is essential to determine the
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nonlinear term in predicting parametric responses of the beam. As shown in Fig. 4.10, the
response of the equation has two branches. It is well-known that the top branch is stable

and the bottom branch is unstable

4.5
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Figure 4. 10 Results of averaging method of the beam
Now let’s discuss the critical parametric forcing amplitude a for the equation.
Setting the part inside the square root to zero, we get
a’-d?’=0,
which gives the critical forcing amplitude & =d . As shown in Fig. 4.11, when

applied force crosses the threshold of the system, the system has nontrivial solutions as

well as trivial one. In other words, when & >d , the parametric excitation is possible. In

Fig. 4.11, the lower pitch fork, -r, represents the response which has the same amplitude

as r but the phase angle differsby 7z rad .
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Figure 4. 11 pitchfork bifurcationat a =d
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Figure 4. 12 Displacement of the beam : Simulation result using Runge Kutta method
Figure 4.12 is the numerical simulation results of Eq. (4.6.1) obtained by Runge-
Kutta method, which is widely used in numerical integration of ordinary differential
equations by using a trial step at the midpoint of an interval to cancel out lower order

error terms. The second order formula, known as RK2, is

klzh f (Xn'yn)

1 1
k,=hf(x_ +=h,y. +=k
2 =NT0G+2 0y, +2K)
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yn+1 = yn + k2 + O(h3)

and the fourth-order formula is

kl:h f (anyn)

1 1
k, =hf —h, —k
=Nt 450y, +5K)

1 1
k.=hf —h, =k
k,=hf(x,+hy,+k;)
1 1 1 1
Yo =VYn +gk1+§k2 +§k3+gk4+0(h5)

From Eq. (4.6.1), ifwe letx, =5, X, =&, we get two equations such that

X, =X,

X, ==2C @y X, —a)g(l—aBi)xl—a)g ﬁxla.
L

As shown in the figure, the response of the beam shows a hardening nonlinearity;
the response becomes much bigger when the excitation frequency is greater than twice of
the natural frequency of the beam. With the increase of the forcing frequency, the
response drops down to zero at certain point. Now the trivial solution is also stable. We
can see that parametrically excited solution remains stable by selecting steady-state at a
lower frequency as initial condition.

Figures 4.10 and 4.11 show that the results from the analytical method and the
numerical simulation are in good agreement. Recall that numerical simulation can only

locate stable steady-state.
65



4.7 Summary

In this chapter, we used the finite element method to obtain parameters which are
crucial in designing parametrically excited gyroscopes. Effectiveness of the parametric
excitation obtained using the critical buckling load analysis and the natural frequency
with load stiffening analysis in commercial ALGOR program. Moreover, the nonlinearity
of the system was obtained by using FEM and simple dynamics between applying force
and displacement. The equation obtained by this method was simulated analytically and
numerically.

We used parametrically excited cantilever beam as an example. However, since the
simplified model is based on calculations using finite element methods, our approach can

be applied to gyro design with more complex structures.
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Chapter 5

Experiments with a Tuning Fork Beam

In this chapter, we investigated the feasibility of the new operational method using a
fork type aluminum beam. 3D Motion analysis camera system was employed to capture
the motion of the beam in real time. We describe in detail the usage of a 3D motion
analysis system to characterize nonlinear dynamics of the beam. We begin with a detailed
description of the experimental set-up and the data acquisition devices. Then the
experimental procedure is presented and discussed. In the result, frequency response

curves are obtained for several different parametric excitation amplitudes.

5.1 Experimental Setup
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Figure 5. 1 Experimental model: (a) tuning fork type beam (b) reflection marks on the model

As shown in Fig. 5.1, a fork shaped aluminum beam was used to investigate the

parametric excitation effect. The dimension of each tine is 10in x 15/16in x 1/8in and
67



two tines are connected to the base beam, whose dimension is 4in x 15/16in x 1/2in.
The tuning fork beam was built in a whole structure using a general machine tool. The
reason we used a relatively large size of beam for the experiment is to magnify the
parametric force effect.

Because the 3D motion analysis system uses reflection signal from the retro
reflective marker adhered to the model, twenty-five 4mm diameter retro-reflective
markers were adhered to the beam and were distributed equally through whole beam. As
shown in Fig. 5.1, the end markers, #1 and #25, were put close to the tip of the tines of

the beam.

5.2 Natural Frequencies and Mode Shapes

The natural frequency of the structure can be calculated by the formula which is
derived from the cantilever beam whose boundary condition is clamped-free. The

formula is given by;
w, =bZ\JEl /| pA
Where o, denotes the n™ natural frequency, b, is the n™ coefficient at the

specific boundary conditions, E is Young’s modulus, | is the moment of inertia, p is the

mass density, and A is the area of the beam.

Table 5. 1 Material property of Aluminum 6061-T651 [52]

Mass Density (kg/m®) 2,700
Modulus of Elasticity (N/m?) 68,947,000,000
Poisson's Ratio 0.33
Thermal expansion coefficient (1/ °C) 0.00002358
Shear Modulus (N/m?) 26,000,000,000
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Aluminum 6061-T651 is used for the experiment. The material properties of the
tuning fork beam are shown in Table 5.1.

First of all, finite element modeling and analysis of the tuning fork beam was
performed to obtain its Natural frequencies. The 3D model was built in line drawing, and
the model was then meshed and the boundary conditions specified in ALGOR. Through
the finite element analysis in ALGOR, natural frequencies and mode shapes of the tuning

fork were obtained as shown in Fig. 5.2.

|

40.0962 Hz 40.0964 Hz 248.375 Hz 248.42 Hz

Figure 5. 2 Natural frequencies and mode shapes

The tuning fork beam is clamped on a shaker head with a metal bolt. Furthermore,
two metal washers were used between the tuning fork beam and the shaker head to obtain
a point fixed boundary condition. The bottom area of the beam applied a fixed boundary
condition except vertical movement. Table 5.2 gives a comparison of natural frequencies
between the results from finite element analysis and theoretical calculation to predict its
parametric resonance. The natural frequency of the beam yields 40.16 Hz by the theory.
In other words, if we assume the structure has the same boundary condition as the
clamped-free beam, the resonance occurs when the parametric excitation frequency is
around 80.32 Hz by the theory.
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Table 5. 2 Comparison of natural frequencies

Theory (Hz) FEM (Hz) Difference (%)
1% mode 40.1591 40.0962 0.156
- 40.0964 -
2" mode 251.6729 248.375 1.31
- 248.42 -

5.3 Experiment Method

5.3.1 The 3D Motion Analysis System

The 3 D Motion Analysis System is a non contacting vibration measurement device
[53]. It consists of several high-resolution CMOS (complementary metal-oxide-
semiconductor) digital cameras, the Eagle Hub, and EVaRT software. In our experiment,
3 digital cameras were used. Figure 5.3 shows an experimental set up using Eagle-500

digital real-time motion analysis system.
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Figure 5. 3 Experimental set up using EAGLE-500 digital real-time motion analysis system:

(a) actual experimental set up (b) schematic set up of experiment

This system uses triangulation techniques. A calibration is performed using an L-
frame with four markers and a T-wand with three markers. After the calibration, the
camera system automatically computes and records the instant 3D coordinates of the
center of each retro-reflective marker that is seen by at least two cameras using the Eagle
real-time softeware EVaRT 4.1. The recording time length is effectively infinite and up
to 600 markers can be simultaneously traced. Since the 3D coordinates of each marker
are checked and calibrated when more than two cameras see the marker, the measurement
accuracy is very high. For instance, when the measurement volume is 2x2x2 m?, the
measurement error is less than 1.0 mm. Because this system has many benefits such as
high measurement capability, easy operation, and simple set up, it becomes a new

standard for motion capture.

71



5.3.2 Eagle Digital Camera

The Eagle digital cameras can capture images of a structure when the visible red
LED strobes light up the retro-reflective markers which are put on the structure already.
Each camera can capture up to 500 frames per second with a 1280x1024 full resolution,
1000 frames per second with a 1280 x 512 resolution, 2000 frames per second with a
1280 x 256 resolution. In addition, their processing rate reaches up to 600 million pixels
per second. Signals from an Eagle digital camera go directly to the tracking computer via
an Ethernet connection. This streamlined system of motion capture from camera to
computer allows less hardware and less potential problems. Moreover, the Field
Programmable Gate Array (FPGA) built into the Eagle is upgradeable via the Internet.

The features of Eagle cameras are listed below [54]:

The frame rates are selectable from 1 to 2000 Hz.

e Two suitcases allow bringing up to 8 cameras.

e Built-in zoom provides more visual options.

« For low optical distortion, the camera uses a high quality 35mm lens.

o Visible red, near red, or infrared ringlights are available.

« Through the LED display panel on camera, one can notice the status of the

cameras.

The light output and electronic shutter can be controlled by the software.

Camera placement is one of the most important aspects of setting up the motion

analysis system. If we place the cameras in good positions, the results will be accurate

72



and the editing time will be greatly reduced. There are several things to be considered,

when deciding the number of cameras to be used.

First, there should be sufficient number of cameras to insure that at least two
cameras can capture all markers at all times. Generally, when the motion of the subject
becomes less restrained and the capture volume is increased, the number of cameras must

be increased.

Second, when more cameras are used, each camera should view only a portion of the
capture volume to achieve higher accuracy. One should prevent too many cameras
capture the same marker. The only requirement is that all 4 markers on the calibration
square should be visible in at least half of the cameras used. If too many cameras see the
same marker such as 5 or 6, the accuracy of tracking is not increased and the computation

time is increased.

Third, to ensure the highest possible spatial resolution, camera views should not

include areas outside the capture volume.

5.3.3Eagle Hub

The Eagle hub consists of multi-port Ethernet switch (100Mbps) and provides power
for the cameras. For all signals and power between the camera and the Eagle hub, a single

Ethernet Cat 5 cable is used.

5.3.4 EVaRT

The EVa real-time software (EVaRT) provides the user with a simple and powerful
interface. Under a single software environment, the user can set up, calibrate, capture
motion in real-time, capture motion for post processing, and edit and save data in a
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chosen format.
5.3.5 Ling Dynamics LDS V408 Shaker

The beam is excited using a Ling Dynamics LDS V408 shaker, which has a
maximum output force of 196 N and a frequency range of 5 to 9000 Hz, to supply the
oscillatory boundary condition at the base of the beam. We assumed the shaker-head
motion is same as the base of the beam because the beam is securely attached on the
shaker-head. The motion was monitored by means of an accelerometer mounted to the

base of the beam.

5.4 Experiment Procedure

Because the nonlinear vibration may depend on the initial conditions, if the tests are
carried out by continuously varying parameters, either the excitation frequency or
amplitude, we may mistake nonlinear transient vibration as a steady-state response.
Therefore, for the steady-state response, we need to change only one parameter value at a

time.

In our experiments, we stop each test before changing the parameter (frequency or
amplitude) for the next test. Each test starts with zero initial conditions, and hence the
tests are direction independent. Once we get the steady state, we disturb the vibration and
then check other possible steady state solutions. By this way, we simulate vibrations
starting with different initial conditions and hopefully will not miss possible multiple

solutions.

At the beginning, we use a sweeping method, which uses the continuously varying

frequency, to find out the parametric resonance range. Once we notice a rough range
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where parametric resonance occurs, we carry out the experiment with the excitation
frequency change while the excitation amplitude is held constant. The procedure is
repeated with the different forcing frequencies. For every parameter changing, the
transient motion dies out and so the steady state is reached before the response is
captured. In general, a steady state will be attained in half to one minute after the
excitation reaches the specified amplitude. Normally, it takes longer time for the response
to reach a steady state for tests with parameters around where the multiple solutions exist.
For example, it takes longer time to reach a steady state at the boundary frequency where

the parametric resonance starts.

Theoretically, the step size of increase or decrease of the parameter depends on the
closeness of the excitation frequency to the bifurcation frequencies. When it is close to
the resonant frequency, the increase step needs to be small because various nonlinear
phenomena exist in a small frequency range. In our experiments, we increase the
excitation frequency by 0.05Hz when it is close to the resonant frequency in order to
observe possible important phenomena. Actually, the appropriate increase or decrease
step size practically depends on experience. The total number of excitation frequency
increments and the number of excitation amplitude increments depend on the frequency

range we want to investigate and also the capacity of our experimental apparatus.

5.5 Excitation Force Amplitude Scale

We used the excitation force in dB unit. Normally, we use dB units to express the
ratio of the power between the output and the input. The relationship among dB, power,

and voltage is as follows.
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dB =10 log,, I;—‘I’ =10log,, x_,oz =20 log,, \\//—‘I) (5.5.1)

Where, Po and P, denotes the output and input electric power, respectively, and Vo

and V, are the output and input voltage. For the open loop, the LDS DSC4 controller
provides 1.5V rms at 0 dB compression.

We carried out the experiments for which the amplitudes of excitations are 0 dB, -

1.5dB, -3.0 dB, -4.5 dB, and -6.0 dB. The ratio of the output voltage to the input voltage

can be expressed as shown in Table 5.3 by the formula (5.5.1). Note that the output

voltage becomes a half the input voltage when we used -6.0 dB level.

Table 5. 3 The ration of the output voltage to the input voltage

dB Ratio(out/in) dB Ratio(out/in)
0 1 -4.5 0.5957
-15 0.8414 -6 0.5012
-3 0.7079 -9 0.3548

5.6 Experimental Results

5.6.1 Parametric Resonance Phenomenon

Using a frequency sweeping method, we could find the region where the resonance
phenomenon occurs. We took several frequencies with step 0.05 Hz from the region, and
the steady state response was obtained for each case. Figure 5.5 shows the vertical
displacements from node #13 (where the beam is connected to the shaker) and its
FFT(Fast Fourier Transformation). Furthermore, the time trace of the lateral

displacements from node #1 (the tip of the tine) and its FFT are illustrated in Fig. 5.6. For
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both cases, 400 reflective data within 1 second were collected and recorded using 3D
motion analysis system. For the experiment, -3.0 dB excitation force amplitude and 80.40

Hz frequency were used.
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Figure 5. 4 Response at node #13 in vertical direction when €2=80.40 Hz and a =-3 dB
(a) timetrace (b) FFT
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As shown in Figs. 5.4 and 5.5, the frequency of the lateral movement at the tines of
the tuning fork beam is about half that of the longitudinal parametric force. The
frequency of the vertical direction excitation at node #13 was 80.47 Hz, while the

frequency of the lateral movement at node #1 was 40.23 Hz.
5.6.2 Swing in Symmetric Motion

Figure 5.6 shows the vibration pattern of two tines of the beam. The response time
traces at two nodes, #1 which is the tip of the left tine and #25 which is the tip of the right
tine, are presented in one figure to compare the vibrating direction of two tines. The solid

line is the time trace at node #1 and dotted line is the time trace at node #25.

As shown in the figure, the two tines vibrate in opposite direction. The response is
very stable with the same displacements. This result has a good agreement with our
previous simulation with two pendulums in which two pendulums swing in opposite

horizontal direction when the pendulums are excited in vertical direction [55].
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Figure 5. 6 Time trace of the response at node #1 and # 25 when €2 =80.40 Hz and a =-3 dB
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Figure 5. 7 Response curves at node #1 and # 25 when a=0 dB

On the other hand, the steady state response of the beam with excitation force -0.0
dB is shown in Fig. 5.7. As mentioned earlier, node #1 and #25 are in the different tines
but with the same level. They have the same amplitude with a few mm range difference.

It seems to have some errors due to the marker’s level or the camera system resolution.

In Fig. 5.8, the pictures captured by digital camera show the swing patterns of the

tuning fork beam with parametric excitation more clearly.

Figure 5. 8 The swing patterns captured by a digital camera when the parametric force a =0 dB
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5.6.3 Softening Nonlinearity

An interesting phenomenon with the response curve shown in the figure is that the
left side of the curve is steeper than the other side. When the frequency is increased from
80 Hz, the displacement of the beam remains zero until the frequency reaches 80.20 Hz.
Once the frequency becomes 80.20 - 80.25 Hz, there is a big jump to the big
displacement. The response then gradually increase up to the frequency of 80.35 Hz, and
decreases slowly all the way to 80.70 Hz. The whole resonance region is so narrow that it
is less than 0.5 Hz width. In other words, it is very sensitive to the frequency change of
the parametric excitation. We also experienced a long transient phenomenon at the
boundary frequency, 80.20 Hz, of the parametric resonance. It seems to have two
different steady state solutions, trivial and non-trivial.

In this experiment, we could get high amplitude of displacement of the beam with
parametric excitation. As shown in Fig. 5.9, when the shaker displacement is 1 mm, the
amplitude of the beam reaches up to 48 mm at the resonance. If we recall that the main
focus on this experiment is to check the feasibility of parametric excitation for the tuning
fork micro gyroscope as an operating method, the parametric response may be a good

method for the tuning fork micro gyroscope.

Large displacement

Figure 5. 9 Experimental capture showing large displacement when 1 mm excitation is applied
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Figure 5. 10 Response of the beam with different excitation amplitude at node #1

Figure 5.10 shows the lateral displacement at the tip of the tines with different
parametric forces: -0 dB, -1.5 dB,-3.0 dB, -4.5 dB, and -6.0 dB. As shown in the figure,
the response curves are tilting to the left side more clearly when the forcing amplitude
increases. In other words, when the forcing amplitude is -6.0 dB, the response curve is
near symmetric; however, when the forcing amplitude is 0 dB, it is clearly asymmetric

with bending to the left side.

This phenomenon is pretty interesting. Nayfeh and Pai showed the response curve of
a clamped-free single cantilever beam is bent to the right for the first mode since the non-
linear geometric terms dominate the response [56]. In this experiment we used a tuning
fork type beam which has two tines and a connecting rectangular beam. The experimental
results show that the response curve is bent to the left and it seems to be softening effect.

We will discuss this phenomenon in the next chapter.
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5.6.4 Damping Effect to the Base Beam
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Figure 5. 11 Displacement of the base of the beam with different force amplitudes

Figure 5.11 shows the vertical displacements at node #13, where the beam is
connected to the shaker. For the measurement, an accelerometer was attached to the base
of the beam. Its sensitivity was 8.85 mV/g or 0.902 mV/m/s.

Recall that the fundamental kinematic properties of a particle moving in one
dimension are displacement, velocity, and acceleration. For the harmonic motion, these
are given by

Displacement : x(t) = Asin(wt + ¢)
Velocity : X(t) = @ Acos(awt + @) (5.6.1)
Acceleration : X(t) = —w’Asin(wt + ¢)

As shown in equation (5.6.1), displacement, velocity, and acceleration have close

relationship by a factor of w and «? respectively. Therefore, using these relationships, we
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can easily calculate the displacement from the corresponding acceleration.

In Fig. 5.11, we see the excitation of the base beam is not perfectly consistent. As
shown in the figure, the amplitude of the base beam decreased while the tines vibrate
laterally. Furthermore, the change of the amplitude of the base beam becomes big when
relatively large force amplitude is applied. For this reason, we would say that the lateral
vibration of the beam induces the shaker head to decrease the amplitude. In other words,
it acts like a simple absorber so that the shaker head amplitude decreases. We will discuss

this phenomenon in more details in Chapter 6.
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Chapter 6

Practical Problems

In Chapter 5, we implemented the experiment for the tuning fork beam with
parametric excitation. The result showed that the parametric force may be a very effective
way when we apply it to a tuning fork gyroscope because it can induce larger response
than electro static force or direct excitation. To apply to a real gyroscope, however, more
detailed study is necessary.

In this chapter, limited shaker power and the effect of gravity will be studied. We
solve the governing equation in an analytical way and compare the solution with the
experimental results as well. Moreover, we discuss the effect of gravity to explain the
softening nonlinear phenomenon shown in the experiment. Since the research for the
cantilever beam including previous work done by other researchers and our own work

has some discrepancies in the nonlinear tendency, more detailed explanation is necessary.
6.1 Limited Shaker Power

Non-ideal energy source is well known problem in mechanical systems. Evan-
Iwanowski [30] gave a good explanation for the problem. A normal assumption used in
analysis of many mechanical systems is that the energy source is unlimited. It allows the
analysis to be greatly simplified since the coupling effect of system and energy source are
ignored. In this section, we discuss the relationship between the lateral response of the
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beam and the amplitude of excitation. We will study the beam equation, which was
obtained in Chapter 4, with variable amplitude of excitation to see the effect. Recall Eq.

(4.6.1), which generally describes beam vibrations.

5'+2§a)05+a)02(1—a8i)5+a)5553=0 (6.1.1)

L

where o represents the efficiency of parametric excitation, h denotes nonlinearity of
the system, P is the parametric force applied to the system, and B is the critical buckling

load. As shown in chapter 4, the averaged equations for Eq. (6.1.1) are as follows.

i =< (—asin2p—d)alr (6.1.2)
w
. &, O _ 3= 5
ro=—(——-acos2¢+—hr)w,r (6.1.3)
o 2 8

It is worthy to recall the parameters which have been used for the calculation;

- _ P -
h:E:g.h, C=¢-d, aB—:g~4aC082a)t, o’ —wf =¢-o}c,Where g<<1,
L

also, h and k are the coefficients obtained in Chapter 4, representing nonlinearity of the

system. We obtained the steady state solution for Egs. (6.1.2) and (6.1.3) given by
rzz{gi,/ﬁz—dz}/zﬁ (6.1.4)

Solution of Eq. (6.1.4) totally depends on parameter h, that is, it is hardening when h
> 0 and is softening when h <0 since h is closely related to cubic nonlinearity of
the system. They show different nonlinearity, however, the common factor of both cases
is that the steady state response is a monotonic function of the frequency detuning

parameter o . Figure 6.1 shows the response curve obtained by averaging method when
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h = -0.25. It is gradually increasing without dropping when the excitation frequency is
decreased. It is obvious the damping term d does not limit the amplitude of response in

parametric system as long as the applied parametric force overcomes the threshold.
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Figure 6. 1 Results of averaging method of the beam : @ = 0.05, d=0.01, h=-0.25

However, in the practical system, our experimental result shows the steady state
response has finite amplitude as shown in Fig. 5.11. Furthermore, in the figure, we notice
that the response curves show more nonlinearity, showing asymmetric response curve,
when the bigger amplitude of excitation is applied. In other words, the response curve
seems to be a symmetric semicircle when -6.0 dB amplitude of excitation is applied,
while the response curve bends to the left with 0 dB amplitude of excitation.

This might be caused by the uneven excitation force amplitude. When a shaker is
operated without closed-loop control, the shaker head displacement amplitude cannot be
maintained at a constant. When the power to the shaker is held fixed, the forcing

amplitude on the shaker head can be approximated as constant. Since the lateral vibration
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of the beam has damping effect on the shaker head, the shaker head displacement
amplitude is affected by the beam vibration. Similar phenomenon was reported by
Anderson and Nayfeh in 1996 [57]. They obtained asymmetric curves experimentally and
attributed the phenomenon to arbitrary quadratic damping. The results showed good
agreement.

Recall the equations again from Chapter 4.

—asin2¢p-d =0 (6.1.5)
o _ 3-,
—E—ac032¢)+§hr =0 (6.1.6)

As shown in Chapter 4, the above two equations can be solved for the beam

response r and the phase ¢. In particular, the amplitude is determined by the following
equation:

2
azzd%{iﬁrz—i} (6.1.7)
8 2

If we assume that the lateral vibration at the parametric resonance reduces the base
beam excitation, the force input into the beam is also reduced at certain amount. We let c
be the coefficient which determines the base movement.

a’=f2-cr? (6.1.8)

Substituting (6.1.8) into (6.1.7) leads to

2

S Cho—or+ T +d?—F2 =0
64 8 4
2
BHa—ci\/(gﬁo—c)z—gﬁz(O_+d2— 72)
2 _8 8 16 4
9
32
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_ 2 3 3 9 (6.1.9)

6.1.1 Dependence on parameter c

Now let us explore the effects of the parameters included in the equation. Figure 6.2

shows that the response of the beam depends on parameter c. In this case, we used
arbitrary parameters, f =0.02,d=0.01,and h =-0.35. When ¢ = 0.001, the response

curve shows the unstable branch, which is illustrated in red dotted line, as well as the
stable one. When parameter c is increased, the response curve is getting close to the
symmetric semicircle. Moreover, the parameter ¢ is much more sensitive to the change
when it has a small value. In other words, the change of the response curve is much
bigger when it is increased from 0.001 to 0.005 than when it is increased from 0.01 to

0.02 as shown in Fig. 6.2.
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Figure 6. 2 Dependence of the beam response on parameter ¢ : f =0.02 d=0.01 h =-0.35
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6.1.2 Dependence on parameter h

Parameter h is a nonlinear term as mentioned earlier. Therefore, parameter h has

also close relationship with the system as shown in Fig.6.3 and Fig.6.4. If h>0, as

shown in Fig.6.3, the response curve bends more to the right side showing more

hardening nonlinearity as h is increased. On the other hand, when h <0, the response

curve bends to the left side, which means the system shows more softening nonlinearity,
as h isdecreased as illustrated in Fig. 6.4. However, both cases show that the amplitude

of the response keeps the same regardless of the change of h .

We notice that the tendency of the response is more sensitive with a small c. As
shown in Fig. 6.3, the change of the response is not too big when h increased by 1.6

with ¢ = 0.02; however, it is considerably big when h changed by 1 with ¢ = 0.005 in

Fig. 6.4.
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Parameter d plays an important role in the system. As we know, the parametric
excitation must exceed the threshold of the system. In other words, the parametric

resonance occurs when the following condition is met:

2
9 HZ(O'_

= +d?-f2)>0. 6.1.3
16 4 ) (6.1.3)

3_
(§ ho-c)’ -

As shown in Fig. 6.5, parameter d is one of the main factors to affect the amplitude

of the response. Unlike other parameters, parameter d affects not only the amplitude
response but also the bandwidth of the resonance. Even though the fixed force amplitude
is applied as shown in Fig. 6.5, the width of the frequency range where the beam
response is not zero changes by parameter d. However, it does not affect the tendency of
the response curve, hardening or softening. We assumed only linear damping in this

simulation.
6.1.4 Comparison between experiment and theory

By now, we explored the parameter dependence of the system and noticed that there
are many parameters to affect the system directly or indirectly. We discussed the
dependence of the system on the parameters in qualitative aspect; however, still
remaining challenge is how we can quantify the parameters to apply to real systems.
Figures 6.6 through 6.10 show the comparison between our experimental results and the
theory. For the analytical result, we used arbitrary parameters which can fit the response
the best to the experiment. The symbols (*) used in the figures represent the results from
the experiments, while the curves in solid line show the results from our theory.

We found that the results are in good agreement qualitatively. In Table 6.1, the ratio
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of @ to h means the ratio of the actual force amplitude to the applied force before
being reduced by parameter c. Furthermore, the ratio of the force amplitudes used in
simulations is kept the same as in the experiment. In other words, the force amplitude for
the simulation in Fig. 6.6 is half the force amplitude used in Fig. 6.10. Also, the force
amplitude applied for the experiment in Fig. 6.6 is half the force amplitude used in Fig. 6.

10.

Table 6.1 parameters used in experiment and the analytical result

Experiment Theory
Force amplitude f c d h a/h
-6.0 dB 0.0040 | 0.0012 0.0038 -0.1500 0.9500 | Fig.6.6
-4.5dB 0.0048 | 0.0015 0.0045 -0.1500 0.9375 | Fig.6.7
-3.0dB 0.0056 | 0.0014 0.0052 -0.1500 0.9286 | Fig.6.8
-1.5dB 0.0068 | 0.0013 0.0063 -0.1500 0.9265 | Fig.6.9
0.0dB 0.0080 | 0.0011 0.0074 -0.1500 0.9250 | Fig. 6.10
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6.2 Gravity Effect

In this section, we discuss nonlinear phenomenon of the first mode response of the
cantilever beam, which has boundary condition clamped and free. Many researchers
already explored this field and they have made a great progress to reveal the
nonlinearities of the cantilever beam.

J. Dugundji and V. Mukhopadhyay [58] carried out an experiment under parametric
excitation using a 24 in x 3 in x 0.02 in Aluminum 6061-T6 and got slightly hardening
nonlinear effect in 1973.

Furthermore, A. H. Nayfeh and P. F. Pai [55] studied an inextensional beam with
parametric excitation in 1989. They explored using the perturbation method and
numerical simulations and noticed that the effective nonlinearity of the first mode is of
the hardening type because of the geometric nonlinearity, so one should have to include
the geometric nonlinearity for the right result.

Recently, P. F. Pai et al. [59] carried out an experiment using 496.8 mmx52.07
mmx0.4699 mm vertically cantilevered titanium alloy beam. They noticed that the first
mode response of the beam showed a softening effect, which means the response is
dominated by cubic nonlinearity. They concluded this phenomenon was caused by the
initial condition in which the beam was slightly tilted to the left in 2007.

On the other hand, in our research, the first mode response in the experiment showed
a softening nonlinearity. According to prior research and our experiment, the nonlinear
effect for the first mode of the beam was not consistent. For that reason, we devote this

section to explore this phenomenon in more detail.
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6.2.1 Downward Pendulum

We assume that there is a pendulum with a spring hanging downward as shown in

Fig. 6.11. The particle of mass m is connected to a massless rod of length | and suspended

from a platform. The torsional spring has nonlinear characteristics, k, =k, +h&”.

Figure 6. 11 Pendulum with spring

The kinetic energy T and the potential energy V of the pendulum become
T:%m(lé)z, V:%(k0+h6’2)¢92—mglcose. (6.2.1)

where g denotes the gravity.
Recall the Lagrange Equation

d oL oL .
—(—)——=0. :1, 2,3...,”. 622
o (aqi) X Q i (6.2.2)

where ¢, = dq, / ot is the generalized velocity, L is the difference between the kinetic
and potential energies, to be L=(T-V), and Q, represents all the non-conservative forces
corresponding to g;. In Eq. (6.2.2), the equation with different number of i represents

one equation for each generalized coordinate. Lagrangian L becomes
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L=T-V = %m(lé)z—%(k0+h02)02+mglc050 (6.2.3)

Substituting equation (6.2.3) into (6.2.2) leads to
ml?0+k,0+2h6° +mglsind=Q (6.2.4)

Assuming free oscillation and using Taylor series for the sine function,
sinfd=0—-—+—-——+..., (6.2.5)
equation (6.2.4) can be rewritten by

. k g 2h g, 3
0+(—% +3)0 + (— — =)0 =Q. 6.2.6
(mI2 I) (mlz 6I) Q ( )
In Eq. (6.2.4), the linear natural frequency of the pendulum will be o= ,|—>+

Moreover, there is cubic nonlinearity, (ri—:‘z—%)e% which determines the bending

direction of the response curve whether softening or hardening. If we consider damping

term, and equation (6.2.6) can be rewritten as

0+ 0?0 + 2lw,0 + h#® =4aw® cos 2at 0 (6.2.7)
where @, = %+% h= ri_lhz_% and Q=4aw’cos2wtd. (6.2.8)

For the method of averaging, we let the parameters as follows;

C=¢-d, ﬁ:‘g’h, a=¢-a, o'-w =¢-wfc,where g<<1.

;
After several steps of algebraic calculation, we have the averaged equations such as

i =Z (-asin2p—d)wlr (6.2.9)
w
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r¢=£(—£—§c082(o+iﬁl’2)a)§r (6.2.10)
® 2 8

And the steady state response at the fixed point becomes

r2=[o-i Ez—dz}/‘o’ﬁ (6.2.11)
2 8

This solution has the same format as solution (4.6.14). As shown in (6.2.8), gravity
increases the linearized natural frequency but has a softening effect. The nonlinear
phenomenon is decided by the sign of cubic nonlinearity in the cantilever beam; that is

2h g

HZT__I>O : Hardening

”;h 6 (6.2.12)
ﬁ=—2—g<0 : Softening

ml© 6l

6.2.2Inverted Pendulum

On the other hand, let us consider the pendulum standing on the ground in upward as
shown in Fig. 6.12. We assume that the particle of mass m is connected to a massless rod
of length | and standing on the ground. The rod is stabilized by a torsional spring, which

has nonlinear characteristics, k, =k,+h&”. In the same manner, we can derive the

governing equation for the inverted pendulum. The equation is similar to Eq. (6.2.4)
except the sign of sin&. We have

kO

g+
(mlz

2h
—%)9+(W+%)93 0. (6.2.13)
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Figure 6. 12 Inverted pendulum with spring
As shown in Egs. (6.2.6) and (6.2.13), the differences between two cases are the

signs in the linear natural frequency and nonlinearity. The linear natural frequency of the

inverted pendulum will be o= %—% while that of the downward pendulum is
W= %+% . Furthermore, the nonlinearity of the inverted pendulum is (nz]—:]z+%)6?3,

while that of the downward pendulum is (ni_lhz_%)es'

In the same way as the downward pendulum case, we can derive averaged equation
and the final form is exactly the same as that of the inverted pendulum case except the

parameter denomination:

k _ oh
a)ozzm—i)z—lg and h:W+%. (6.2.14)

On the contrary, for the inverted pendulum case, gravity reduces the linearized natural
frequency but has a hardening nonlinear effect. The effects are opposite for a downward

pendulum case.
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6.3 Summary

In this chapter, we explored more practical issues related to parametric excitations.
Non-ideal energy source due to the limited shaker power was studied. We found that the
lateral vibration of the tines affects the base beam and reduces its amplitude by certain
amount. We assumed the relationship between the forces, original and reduced, to be

a’=f?-cr? and got a good qualitative agreement between the theory and the

experiment except for some discrepancies in the frequency range which is larger than the
parametric resonance frequency.

For the nonlinear phenomenon, we compared the previous work done by other
researchers with our own work and noticed that there still exist some discrepancies too.
The gravity effect using pendulum was given, and the relationship between the gravity
and the other parameters was described to explain the nonlinear phenomenon. We noticed
that, normally, a downward pendulum shows softening nonlinearity, and an inverted
pendulum does hardening nonlinearity. However, by the dominating factor in the

governing equations, the opposite phenomenon is also possible.
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Chapter 7
Conclusions and Recommendation

for Future Work

In this dissertation, we studied the characteristics of a parametric excitation and the
feasibility of applying it to the MEMS gyroscope through experiments as well as the
analytical calculation. We found that the parametric excitation has several advantages
when it is applied to the MEMS gyroscope.

First of all, it can generate larger responses compared to electro static force or a
direct excitation. It may be a valuable work for the MEMS gyroscope industry because it
is experiencing the limitation of the accuracy due to small vibrating amplitude in drive
mode.

Secondary, it may be feasible to apply to the MEMS gyroscopes because two tines
of the tuning fork beam vibrate in opposite direction. It may have two different vibration
patterns, in phase and out of phase. According to the experiment, the opposite direction
vibration, we call it out of phase or symmetric motion, is dominating the vibration
pattern so that one can get the pattern easily. Moreover, the out of phase vibration is
robust to the imperfection which is unavoidable in MEMS fabrication process.

Next, a coupling problem is another main issue in MEMS gyroscopes. In the
conventional MEMS gyroscopes, the frequency of the drive mode and the sense mode

should be in close match for high accuracy. However, even small imperfection may cause
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a coupling problem between the drive and the sense modes, and it finally prevents high
precision of the gyroscope. For the parametric excitation we use the drive frequency
away from the sense frequency and it may reduce the coupling problem.

Consequently, the parametric excitation can be applied to the MEMS tuning fork
gyroscope design. We expect this method can reduce the fabricate costs and increase the
precision of the MEMS tuning fork gyroscope.

However, we found that there are some practical problems to be solved before
applying to the real system. Non-ideal energy source is one of the main issues to be
solved, and the characteristics of the parameters need to be studied in more detail to
guarantee the reliability of the gyroscope. Another issue to be studied is that the nonlinear
phenomenon which is different from the result of the single cantilever beam case. We
gave a brief explanation for the reason, but it still needs more detailed relationship among
the parameters. For the future work, more research should be performed in this field to

reveal the hidden secrets in the tuning fork beam.
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APPENDIX
Parametrically excited pendulum

by prescribed force amplitude

A.l1 Equation of motion

In Chapter 6, we compared the experimental results with the theory including
limited shaker power effect. The assumption that the limited shaker power induces a
damping effect by the parametric resonance of the tines of the tuning fork beam is in
good qualitative agreement with the experiment results. However, we noticed that there
still exist some discrepancies between the theory and the experiment regarding the base
movement. As shown in (b) figures from Figs. 6.6 to 6.10, there are some discrepancies
between the theory and the experiment when the excitation frequency becomes higher
than 80.40 Hz, the frequency inducing the parametric resonance. In this section, we
discuss the relationship between the base excitation amplitude and the forcing amplitude

using simplified pendulum model.

3

I

\ AN

\ \

\ 4
\

\

\

\
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m/2 I

Figure A. 1 Simplified pendulum model
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The illustration in Fig. A.1 shows the simplified pendulum model. Since we are
interested in the relationship between the pendulum swing in horizontal direction and the
corresponding displacement of the base mass in vertical direction, we assume the two
pendulums are hung by the same rods, and they have the same masses for simplification.
In addition, the two pendulums are assumed to swing in the opposite direction which is
180 degree out-of-phase. In other words, each pendulum swing motion can be expressed
by a simple substitution for angle € with — & . This assumption is needed because
assuming that the x-direction movement is fully constrained, shown in Fig.1, makes the
two pendulums decoupled.

By the same methods in Chapater 3, we can derive the kinetic Energy T and the

potential energy V.
T =%|\/|y2 +%m[y2 + (10)* + 2yl sin 66] (A.1.1)

V. = Mgy + mg(y +1—1cos ) (A.1.2)

From Lagrange equation, we get the governing equations regarding y and & varibles

(m:nMj(¥j+sin99+c05992+E(Tyj+k(Tyj=Qy (A.13)
sine(lij+é+69+%sm9=0 (A.1.4)

where C denotes the damping coefficient.

If we assume Y = (TyJ , m+M =14+ p, and Igz @, =1, we get the simplified
m
dimensionless equations as follows:
(1+ p)Y +sin 00 +cos 0 6> +TY +kY zéy (A.1.5)
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sin¥ + 0 +C0+sinf =0 (A.1.6)
where ﬁy represents the sinusoidal parametric excitation force. For simplification, we

let sin@ ~6@ and cos@ =1 for the combined terms with derivatives and

3
sinf = 6 — " for the remained sine term. We get the simplified equations of motion as

follows:
(1+p)Y +0 0 +6” +TY +kY =Q, (A.1.7)
v . o’
6N+9+69+9—z:0 (A.1.8)

A.2 Steady state response

In this section, we discuss the steady state response using harmonic balance method.
The method has a long history, to interpret the behavior of many engineering applications.
The standard harmonic balance method for approximating periodic solutions of a
nonlinear ordinary differential equation involves the following steps:

First, select a trial solution which is a truncated Fourier series, either with terms

a, cos(nwt) alone, n up to N, or with both sine and cosine terms, as appropriate.

Substitute this solution into the equation, and ignore any higher harmonics generated by
the nonlinear terms.
Second, set equal to zero the coefficients of the retained harmonics, thus obtaining a

set of coupled nonlinear equations for the frequency @ and the amplitude a, in the

n

trial solution. Solve these equations.
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Since we are interested in the amplitude of the base motion and the pendulum
motion, we let the trial solutions for the base excitation and the pendulum motion as

follows:

Y = cos2wt and @ = ccos wt + d sin wt, (A2.1)

4

where, A is the acceleration amplitude of Y direction and 2@ is the parametrically

excited force frequency. The force considering phase lag can be expressed by

~

Q, = acos 2wt + bsin 2et . Thus, the derivatives of Eq. (A.2.1) become

Y = —Asin 20t /2w), Y = —Acos 2ot

0 = —Cwsin ot + dwcos wt, § = —cw’ cos wt — dw?* sin wt (A.2.2)
The coefficient of cos 2wt after substituting Eqs. (A.2.1) and (A.2.2) into Eq. (A.1.7)
leads to

a= Ak —4A0’ - 4Apw’ — 4c’w" + 4d°w" /(40°) (A.2.3)
Moreover, the coefficient of sin 2wt in Eq. (A.1.7) after the same procedure becomes

b = 2ACw - 8cdw’ /(40*) (A.2.4)

For the & equation, we get the simplified form by substituting Eqgs. (A.2.1) and

(A.2.2) into Eq. (A.1.8). After the calculation, we disregard the high frequency terms

such as sin 3wt and cos 3wt , then the coefficient of cos ot yields

i (24c —12Ac - 3¢’ — 3cd’® — 24cw’ + 48dwl) = 0 (A.2.5)
and the coefficient of sin wt becomes

2—14 (24d + 12Ad - 3c¢’d — 3d® - 24dw” — 48cwl) = 0 (A.2.6)

Recall that the coefficients ¢ and d represent the response of the pendulum. We use
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algebraic techniques to get the coefficients. First, we use Eq.(A.2.5)x rcos¢ +
Eq.(A.2.6)xr sin ¢, and it gives us
- % r’(r’ + 8(-1+ @) + 4Acos 2¢) = 0 (A.2.7)

Next, we perform Eq.(A.2.5)xrsin¢ - Eq.(A.2.6)xr cos ¢, and we get
r’Qew¢ — Acos ¢sin @) = 0 (A.2.8)

Solving Egs. (A.2.7) and (A.2.8), we get

r’ + 8»° — 8
cos2p = —°2 ~° A29
¢ 4A (A-2.9)
sin 2¢ = % (A.2.10)

If we raise Egs. (A.2.9) and (A.2.10) to the second power and sum up together, we have
r
A = et 1+ o)+ 4+ o'+’ (-2 +47)) (A.2.11)

Equation (A.2.11) gives the relationship between the amplitude of the base motion and
the amplitude of the pendulum.

On the other hand, let us bring the force equation (A.2.3) and (A.2.4) and apply
some algebraic techniques. We raise Eqgs. (A.2.3) and (A.2.4) to the second power, let

c=rcos¢ and d = rsin ¢, and substitute Egs. (A.2.9) and (A.2.10), we get

1

4
@

a’+b’ = v [A*{k*> — 8k(1 + p)&° + 4w’ {C + 4(1 + p) @’} } +
2r’w* kir’ + (o — 1)} + 40> {r’Qe* — p —1) — 8(* + pw’ —C¢ — p —1)}}]
(A.2.12)
Equation (A.2.12) gives the relationship between the forcing amplitude \/m
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and the base acceleration amplitude A. Therefore, if we subtract Eq. (A.2.12) from the
square of the y-direction acceleration, we get the second power of the differences
between the applied force and the real acceleration response as the different frequencies.
On the other hand, if we assume the pendulums rest in the original location without
swinging,r = 0, equation (A.2.12) becomes

a’> + b’ = A[k2 = 8k(1 + p)@” + 40’ (€ + 4(1 + p)* @’} /(160") (A.2.13)

IN
~

0.3

0.2

Pendulum response, r

F=0.40

0.1 /\
0

0.9 02 095 1 106 1

o/ o,
Figure A. 2 the response of the pendulum with a large pendulum mass:

p =1, £ =005 €=0.1, k=0.01, force amplitude =0.40 and 0.41

SN )
1 1.00

Figure A. 3 the base acceleration amplitude when pendulums are swinging with a large pendulum
mass: p =1, ¢ =0.05, € =0.1, k=0.01, force amplitude =0.40
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Figure A. 4 the base acceleration amplitude when pendulums are swinging with a large pendulum
mass: p =1, ¢ =0.05, € =0.1, k=0.01, force amplitude =0.41

Figure A.2 shows the responses of the pendulums with two different force
amplitudes, and their corresponding base acceleration amplitudes are illustrated in Figs.

A.3 and A.4. Both the cases, large pendulum masses are used, p =1, which means the

total pendulum mass is the same as the base mass. As illustrated in Fig. A.3, when the
force amplitude is 0.40, we see the amplitude of the base response is reduced during the
pendulums swing. However, when the force amplitude is 0.41, as shown in Fig. A.4, we
see the amplitude of the base excitation is not reduced in all the frequency range even

though the pendulums are swinging.
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o
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O.% O.§8 1 1.62 w/ @,
Figure A. 5 the response of the pendulum with a small pendulum mass:
p =9, ¢ =005 C=0.1, k=0.01, force amplitude =2.5
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Figure A. 6 the base acceleration amplitude when pendulums are swinging with a small pendulum
mass: p =9, ¢ =0.05, € =0.1, k=0.01, force amplitude =2.5

Figs. A.5 and A.6 show the simulation results with small pendulum masses, p =9,

which means the base mass is greater than the total pendulum mass by 9 times. In this
case, the pendulum response shows softening nonlinearity as shown in Fig. A.5. The
corresponding amplitude of the base acceleration is illustrated in Fig. A.6. As shown in
the figure, the amplitude of the base acceleration becomes even larger while the
pendulums are swinging. We obtained the same result from the numerical simulation by

MATLAB program.

0.45

(b)

0.4r

0.35-

Pendulum displacement, r
Base acceleration, r

0.3

025 I I I
1.06 0.94 0.96 0.98 1 1.02 1.04 1.06

w/w0

Figure A. 7 the MATLAB simulation results from the original equations used in Chapter 3;
(a) pendulum displacement (b) base acceleration: @ = f = 0.09, ¢ = 0.05, A= 0.25
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Figure 7 is the MATLAB simulation results for which we used the original
pendulum equations used in Chapter 3. For the simulation, a large mass ratio was used;
each pendulum has the mass 1/10 of the base mass. In addition, the amplitude of the force
used for the simulation was 0.25. Since the equations for Mathematica is simplified, it is
not the same as original MATLAB program used in Chapter 3 so that it is hard to find
exact matching parameters; however, the results show qualitatively good agreement.

This result is not exactly same as our experiment because our experiment carried out
for a tuning fork beam instead of the pendulum model. As shown in Figs. A.2 through A.4,
the pendulum response shows hardening nonlinearity with a large pendulum mass, while
our experiment with tuning fork beam shows softening nonlinearity as shown in Chapters
5 and 6. However, at least, we noticed that the damping effect on the base excitation from
the pendulum or the tines of the tuning fork beam is not always consistent. This is little
new phenomenon from well known non-linear vibration absorbers; Vyas and Bajaj [41]
studied auto-parametric vibration absorbers using multiple pendulums and got a
conclusion that the pendulums can reduce the base vibration in all the range in which the
pendulums swing. However, our work shows that there exists certain range in which the
amplitude of the base acceleration gets increased. Furthermore, with a small pendulum
mass, the base acceleration gets increased in all the frequency range in which the
pendulums are still swinging. In other words, the absorber may not reduce the amplitude
of vibration properly; the situation may be worse. Because of this reason, both the cases,
a tuning fork beam and a pendulum, should be studied more in the future to apply to real

system such as gyroscopes or absorbers.
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A.3. Programs used in the simulation

A.3.1 Mathematica program for the analytic solution

k=.; c=;

y=A Cos[2 w t]/(4w"2); th=C Cos[w t]+ D Sin[w t];

sinth=th-th"3/6; costh=1; thd=D[th,t]; thdd=D[thd,t];

yd=D[y,t]; ydd=D[yd,t];

yeq=TrigReduce[(1+rho)ydd+c yd+k y+(th thdd+costh thd*2)-a Cos[2 w t]-b Sin[2 w t]]
eql=Coefficient[yeq,Cos[2 t W]]

eq2=Coefficient[yeq,Sin[2 t w]]

theq=TrigReduce[thdd+ydd th+sinth+2zeta thd]
eq3=Coefficient[theq,Cos[t W]]

eq4=Coefficient[theq,Sin[t w]]

eqq3=Simplify[eq3*C+eqd*D/.{C—r Cos[phi],D— r Sin[phi]}]
eqq4=Simplify[eq3*D-eq4*C/.{C— r Cos[phi],D— r Sin[phi]}]
templ=eqq3/.{Cos[2phi] —xc}

temp2=eqq4/. {Cos[phi] Sin[phi] —xs/2}

s02=Solve[temp2==0,xs][[1,1]]

sol=Solve[temp1==0,xc][[1,1]]
Eq=Expand[A"2(xs"2+xc"2-1)/.{s01,502}]

A2=Simplify[A"2+Eq];(* A2 *)

eqa=TrigReduce[a+eql/. {C—r Cos[phi],D—r Sin[phi]}]/.{Cos[2phi] —xc}
eqb=TrigReduce[b+eq2/.{C—r1 Cos[phi],D—r Sin[phi]}]/.{Sin[2phi] —xs}
amp2=Simplify[Simplify[Expand[eqa"2+eqb”2]/. {xc"2—1-xs"2}]/.{s01,502} ]
ampA20=Simplify[amp2/.r—0]
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tem=ampA20/.A"2—aa2

sol=Solve[tem= =forceamp”2,aa2]

BaseAmpO=forceamp*Sqrt[ A*2/ampA20]

ampr=Simplify[amp2/. {A"2—A2}]

Eqr2=ampr-forceamp”2/. {1"2—12,1"4—12"2}

sl=Solve[Eqr2==0,r2];

ampr1=Sqrt[r2/.s1[[1]]];

ampr2=Sqrt[r2/.sl[[2]]];
gl=Plot[amprl/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.40},{w,0.98,1.02}];
g2=Plot[ampr2/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.40},{w,0.98,1.02}];
g21=Plot[amprl/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.41},{w,0.98,1.02}];
g22=Plot[ampr2/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.41},{w,0.98,1.02}];

Show[gl,g2,821,222, Axes—False,Frame—True];

0.4
0.3

0.2

0.1 ﬂ
0

098 0.9 0.95 1 1.006 1.01

A22=A2/.{1"2—12 1"4—12"2}
BaseAmp1=Sqrt[A22/sI[[1]]];
BaseAmp2=Sqrt[A22/.s1[[2]]];
gr1=Plot[BaseAmpl/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.40},{w,0.98,1.02}];
gr2=Plot[BaseAmp2/. {rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.40},{w,0.98,1.02}];

gr3=Plot[BaseAmp0/. {rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.40},{w,0.98,1.02}];
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gr21=Plot[BaseAmp1/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.41},{w,0.98,1.02} ];
gr22=Plot[BaseAmp2/. {rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.41},{w,0.98,1.02} |;
gr23=Plot[BaseAmp0/.{rho—1,zeta—0.05,c—0.1,k—0.01,forceamp—0.41},{w,0.98,1.02} ];

Show[grl,gr2,er3,Axes—False,Frame—True];

0.215

0.2125

0.2

0.2075

0.26
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0.2
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Show[gr21,gr22,eg123,Axes—False,Frame—True];
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gl=Plot[amprl/.{rho—9,zeta—0.05,c—0.1,k—0.01,forceamp—2.5},{w,0.95,1.05}];
g2=Plot[ampr2/.{rho—9,zeta—0.05,c—0.1,k—0.01,forceamp—2.5},{w,0.95,1.05} ];

Show[gl,g2,Axes—False,Frame—True];
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gr1=Plot[BaseAmp1/.{rho—9,zeta—0.05,c—0.1,k—0.01,forceamp—2.5},{w,0.95,1.05}];
gr2=Plot[BaseAmp2/.{rho—9,zeta—0.05,c—0.1,k—0.01,forceamp—2.5},{w,0.95,1.05}];
gr3=Plot[BaseAmp0/. {rho—9,zeta—0.05,c—0.1,k—0.01,forceamp—2.5},{w,0.95,1.05}];

Show[grl,gr2,gr3,Axes—False,Frame—True];
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A.3.2 MATLAB programs for the numerical solution
A.3.2.1 Main program
clear all
close all

global alpa beta gamma jeta A wr w12 wlx wly; % w12=w2/wl, wilx=wx/wl, wly=wy/wl

alpa=0.09; beta=0.09; gamma=1; jeta=0.05;
A=0.25;

wl2=1; wilx=10; wly=0.2;
t=0;

fn=20;
for n=1:fn
wr=1-0.05+0.005*(n-1)
Mwr(n)=wr;
y=[0 0 0 0 001 0 -0.01 O0];% initial condition
tfinal=4000;
totaltsteps=tfinal*10;
tstep=tfinal/totaltsteps;
for i=1:totaltsteps;
tspan=[(i-1)*tstep i*tstep];
[t, sol]=ode45('nondimenoriginalsub’, tspan,y);
y=sol(length(sol),:);
T(@)=t(length(t));
Y(i,:)=y;
effi=39000;
if i>effi
ydisp(i-efti)=y(3)*4*wr"2;
theta(i-effi)=y(5);

end

end
maxy(n)=max(ydisp);
miny(n)=min(ydisp);
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yptp(n)=(maxy(n)-miny(n))/2;
maxtheta(n)=max(theta);
mintheta(n)=min(theta);
thetaptp(n)=(maxtheta(n)-mintheta(n))/2;
figure(n)
subplot(4,1,1);
plot(T,Y(:,1)); xlabel('Time(sec)') ; ylabel('displacement(x)");
subplot(4,1,2);
plot(T,Y(:,2)); xlabel("Time(sec)') ; ylabel("x-prime');
subplot(4,1,3);
plot(T,Y(:,3)); xlabel('Time(sec)') ; ylabel('displacement(y)');
subplot(4,1,4);
plot(T,Y(:,4)); xlabel('Time(sec)') ; ylabel('y-prime');

figure(n+20)

subplot(4,1,1);

plot(T,Y(:,5)); xlabel('Time(sec)') ; ylabel('displacement(thetal)');
subplot(4,1,2);

plot(T,Y(:,6)); xlabel('Time(sec)') ; ylabel('th1-prime');
subplot(4,1,3);

plot(T,Y(:,7)); xlabel('Time(sec)') ; ylabel('displacement(theta2)');
subplot(4,1,4);

plot(T,Y(:,8)); xlabel('Time(sec)') ; ylabel('th2-prime");

end

figure(100)

plot(Mwr,yptp)
figure(101)

plot(Mwr,thetaptp)

A.3.2.1 Sub program

function sol=nondimenoriginalsub(t,y)

global alpa beta gamma jeta A wr w12 wilx wly

121



M=[1 0 alpa*cos(y(5)) beta*gamma*cos(y(7));
0 1 alpa*sin(y(5)) beta*gamma*sin(y(7));
cos(y(5)) sin(y(5)) 1 0;
cos(y(7)) sin(y(7)) 0  gamma J;
C=[2*jeta*wlx 0 -alpa*sin(y(5))*y(6) -beta*gamma*sin(y(7))*y(8);
0 2*eta*wly  alpa*cos(y(5))*y(6) beta*gamma*cos(y(7))*y(8);
0 0 2*jeta 0 ;
0 O 0 2*jeta*gamma*wl2];
K={wIx"2%y(1); wly”2*y(3); sin(y(5)) ; sin(y(7)) J;
Q=[0;-A*cos(2*wr*t);0;0];
Coord=y(2);y(4);y(6);y(8)];
Dd=-inv(M)*C*Coord-inv(M)*K+inv(M)*Q;
s1=y(2); s2=Dd(1); s3=y(4); s4=Dd(2); s5=y(6); s6=Dd(3); s7=y(8); s8=Dd(4);

sol=[s1;s2;s3;s4;55;56;57;s8];
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