NONLINEAR FINITE ELEMENT MODELING AND

CHARACTERIZATION OF GUYED TOWERS

UNDER SEVERE LOADING

A Dissertation
presented to
the Faculty of the Graduate School

University of Missouri-Columbia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

by
HAIJTAN SHI
Dr. Hani Salim, Dissertation Supervisor

Dr. P. Frank Pai, Co-Advisor

DECEMBER 2007



The undersigned, appointed by the dean of the Graduate School, have examined the
dissertation entitled

NONLINEAR FINITE ELEMENT MODELING AND
CHARACTERIZATION OF GUYED TOWERS

UNDER SEVERE LOADING
presented by Haijian Shi,

a candidate for the degree of doctor of philosophy

and hereby certify that, in their opinion, it is worthy of acceptance.

Hani Salim

Frank Pai

Sam Kiger

Glenn Washer

Sherif EI-Gizawy



ACKNOWLEDGEMENTS

First, I would like to thank my dissertation advisor, Dr. Hani Salim, for his invaluable
guidance, insightful advices, and continuous encouragement. It is his direction and
support that motivates me to overcome various challenges, improve and excel. He is
not only a remarkable advisor but also a good friend.

I would also like thank my co-advisor, Dr. Frank Pai, for his generous support
and patient correction of my dissertation. His amazing expertise in finite element
method provides essential help in this dissertation. My gratitude is extended to Dr.
Sam Kiger, Dr. Glenn Washer and Dr. Sherif EI-Gizawy for their suggestions and
serving on my committee.

I also greatly appreciate Dr. Guowei Ma for his initiative guidance during my
early PhD study. Many thanks go to Professor George Wagner for his timely
proofreading of the dissertation.

My parents, sister and my friend Jing Xiong deserve my most special thanks. I

am forever indebted to their love and support.

il



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
LIST OF FIGURES ....cuuoouiiiiinninsnisinsaissensssssisssssssssssssssssssssssssssssssssssssssssssssssssssssss vi
LIST OF TABLES .....cuoouiiiitininuicensessaicssissssssisssissssssssssssssssssssssssssssssssssssssssssssssess Xiv
ABSTRACT ..uuuiiiiiiinniicnnnicssicssssecssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss XV
CHAPTER 1  INtroduction......cceecceecseecseeisecssnecssnecssesssscsssesssesssesssassssessssssssssssasess 1
1.1 Background...........cooieeiiiiiiiiiee s 1

1.2 Problem statement............c.ooiiiiiiiiiiiiiiieee e 4

1.3 ODJECTIVE ..ottt ettt ettt e et e ee et e st e ebe e eaesabeesseessbeenseeenseens 5

1.4 S0P ettt e e e e e e e b e e e e nbaeeeennnees 6
CHAPTER 2 BacKkground ReEVIEW ........cuueereensrenssnecsaenssncsssesssnecsansssncsssesssssssassssaeses 7
2.1 Basic elements used in FEM: truss, cable and beam ............c.cooeoe..... 7

2.1.1  Fully nonlinear truss element.............ccceeceeeviienieenieenieeneennen. 7

2.1.2  Fully nonlinear cable element...........ccccceeveercrieenrieenieeenneen. 10

2.1.3  Beam element with von karman nonlinearity ...................... 12

2.2 Material NONnInNearity.......ccccveeevreeiieeeiieeciee e 17

2.2.1  Isotropic hardening and dynamic hardening........................ 19

2.2.2  Algorithm implementing material nonlinearity ................... 20

23 Algorithm for nonlinear static analysis........c..ccoceeveevienieneniieneenienes 21

24

2.5
2.6

2.3.1  Newton-Raphson method and Modified Newton-Raphson

MEtHO. ... 21
2.3.2  Modified Riks method (Crisfiled’s method)........................ 23
Algorithm for dynamic reSpOnSe ..........ceveevveeriierieeriienieenieeieeieens 25
2.4.1  Modal analysiS .....ccueeeeuieeeiiieeeiieeciie et 25
2.4.2  General integration methods...........ccoccveviieiieniiiinieciies 26
Evaluation of impulSive r€SponSse ........c.ceeeveeeeiieerciieeniie e e 29
SUMMATY ...ttt et sibee et eesebeeenaeeeens 33



CHAPTER 3

3.1
3.2

33
3.4
3.5
3.6

3.7
CHAPTER 4
4.1
4.2
4.3
4.4
CHAPTER 5
5.1
5.2
53
54
5.5
5.6

5.7
CHAPTER 6
6.1

Geometrically Nonlinear Characteristics of Trusses, Cables,

ANd BeAMIS...ccoiiuniiiiiiiniieiiiineiiciinttencsssnneecsssnnescsssssescssssssessssssssssssnns 34
Nonlinear static behaviors of trusses .........ccoceeeveeiieiiienieiiierieeees 34
Nonlinear dynamic behavior of truss..........ccceeveeeeiieiienciienieeieeens 38
3.2.1  Direct numerical integration analysis ..........cccccccvveerveeennenn. 38
3.2.2  Modal analysis ......ccceevieriiieniiieiieiie e 42
Nonlinear static behaviors of cables ..........ccoceeveiiiiiiiiniiiiiiee, 44
Nonlinear dynamic behaviors of cables..........ccccceevviiiiienieicieeninen. 48
Nonlinear static behaviors of beams..........cccccoveiiiiiiiniinciiiens 52
Nonlinear dynamic behaviors of beams...........ccccevvveveeneriieneincnnne 54
3.6.1  Direct numerical integration analysis ..........cccccccvveerveeennnn. 55
3.6.2  Modal ANalySis ....ccceeeiieniiieiieiieeieeee et 56
SUMMATY ..evieeeeiiiiee e e e e e ee e e e aaaeeessneaeeeennnne 59
Material Nonlinearity AnalysSiS......coocceeeveecsseecssneccssenccsnncssnnncssnenes 61
Isotropic hardening in truSS.........cecvveeerieeeiiieesie e e 61
Dynamic hardening in truss ..........cceeevieriieriienieeiiesie e 68
Material nonlinearity in cable ..........ccccceeeeiieiiiieiiiiece e, 73
SUMMATY ..ottt sibee et eesabeeenaneeens 77
Nonlinear Analysis for Guyed TOWerS......ccccceeerverecsrercssaressnercssnenes 78
Nonlinear static analysis of a 50 ft guyed tower..........ccccceeveerveennnn. 78
Linear static analysis of the 50 ft guyed tower ..........ccccevvvveeeveennee. 83
Nonlinear dynamic analysis of a 50 ft guyed tower ...........cccceeneee. 87
Nonlinear static analysis of a 100 m guyed tower ..........c.ccceeeneeennee. 94
Nonlinear dynamic analysis of a 100 m guyed tower.............c.cc...... 98

Geometric and material nonlinear static analysis of a 50 ft guyed

BOWET ..ttt ettt ettt ettt ettt et sat e et e st e beenanean 107
SUMMATY ..vveeieeiiiiee e e e ee e e e e e e sntaeeesenneeeeeas 110
Response under Impulsive Load.........coieevveeicvericsencssnncssnnncsnnns 111
Impulsive load estimation ...........ccccuveeeiieeeiieeeriie e 111

v



6.2 Impulsive response of members..........ccceevevieeriiieeniiieeeiieeeee e 116

6.3 Discrete rigid plastic beam model...........cccoooeeeviieniiiiiiniiieieee, 118

6.4 Response under simplified blast load ...........cccceeeviieeiiiiiiiieeiees 121

6.4.1  Response under rectangular loads...........ccccceeviieviieniennnn. 121

6.4.2  Response under triangular loads ...........ccceevevieniieenneennnnen. 130

6.5 Discrimination of failure mode...........ccoceevieviniiniininieniiienienes 142

6.5.1  Discrimination CIiteria ........ceereeriueerieeriieenieeieenieeseeenieene 142

6.5.2  Normalization of the discrimination equation ................... 143

6.5.3  Discrimination diagram ...........cccceeeevveerieeeniieeeniieeiee e 145

6.6 Global estimation of guyed tower under impulsive load................. 151

6.7 SUMMATY ..vieieiiiiiee e eee e et e e e sree e e s nraeeesennraeeeenns 156
CHAPTER 7 Conclusion and Future WorkK...........ciienveicssneicssnncssencssnencsnnns 158
7.1 SUMMATY ..veeiieiiiiee et ee e et e e e e e e e naaeeeseneaeeeenns 158

7.2 CONCIUSION ..oviiiiiieiiteieee ettt et st 159

7.3 FUture Work .......ooueoiiiiie e 159
RECIEICES cuueriueeriinricrsnricisnniiisnnicssnticsnncsssncsssecssssnsssssssssssesssssesssssesssssesssssssssssssssssses 161

Appendix A  Derivation of P-I Diagrams for Combined Failure Mode of

Simply Supported beams subject to Rectangular Impulsive Loads

Appendix B Derivation of P-I Diagrams for Combined Failure Mode of

Simply Supported beams subject to Triangular Impulsive Loads



Figure

Figure 1.1
Figure 1.2
Figure 1.3
Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure3.1

Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

LIST OF FIGURES

Page
A self supporting telecommunication tOWET ............cccueerueerieeriienieeieereeeeeenn 2
A guyed tower with four guyed layers.........cccocuveeeiiieriieeieeeeeee e 3
Cross SECtION OF MASTS...c..vertiiiiriiiiieie ettt s 3
Undeformed geometry of a truss element.............cceeeviieeiiieeciieecieeeee e 8
Deformed geometry of a truss element............ccceeeeeeiieniiiiieniieeiecieeee e 10
() Isotropic hardening...........ccueeeuiieriieeiiie e e e 19
(b) dynamic hardening ............cccveriieiiieriiieiiecie et 19
Modified Newton-Raphson method............cccecveeviiiiiniiiinieee e, 22
Crisfield’s Method.........cocooviiiiiiiiii e 23
Normalized P-T diagram...........ccceeeiiiiiiiieeiieeieeee e e 32
Effect of impulse Shape.........coovviiiiiiiiiiiiieiece e 32
(a) 3D view of the outlook of the dome............ccccvveeiiiiiiiiiniieeeeee, 35
(b) the vertical view of the dOme ...........ccceiiiiiiiiiiiiieeceeee e 35
Load defection curve of the top node ...........coeevveeciieeiiieeieeeeeee e, 36
Deformation procedures with the adjusted load ............ccoooveeiiieniiiiieninnen. 37
Undeformed geometry of the tOWeT ........cccvveeiiiieiiieeieeeee e 39
Tower deformation at instants: (a) t = 2 sec, (b) t= 3 sec, (c) t =5 sec,
(d)yt=6sec, () t=85eC, (£) t= 9 SEC .cuvriviiiieiieecieeeceee et 40

Time traces of deflection and ground seismic acceleration:

vi



(a) with no damping, (b) with 3% modal damping, (c) with no damping

by large lumped stiffness method, and (d) with 3% modal damping

by large lumped stiffness method ............ccooeieeiiiiniiiiiinii e, 41
Figure 3.7 First ten mode shapes of the self standing tOWer...........ccceevvieeeiieinciieenienns 44

Figure 3.8 Comparison of linear and nonlinear static deformations under different

PIESLIESS IEVELS ...ttt e 45
Figure 3.9 Deformation change w/o ice loading for €0=0.001 .........c..ccceriiniiiinnencnne 46
Figure 3.10 Mid sag under different prestress level.........cccoveiievciieiiiiiiiiicee e 47
Figure 3.11 Mid sag increase at different prestress level........coccooeviiiiniininiinincnnee, 48
Figure 3.12 Third mode of 0.01 prestressed cable .........cccoveeciieriiieeiiiieiecee e, 50
Figure 3.13 3D view of vibration Shapes ..........ccccceeviieiiieiiieiiieiiecieee e 50
Figure 3.14 Top view of vIbration Shapes..........cccveeeiiieiiiieeiiieeiiie e 50
Figure 3.15 Top views of deflection shapes at different instants.............cccoceeverveneennennn. 51
Figure 3.16 Time trace of defection of the middle point in the Z direction...................... 51
Figure 3.17 Time trace of defection of the middle point in the Y direction ..................... 51
Figure 3.18 Comparison of deformed geometry of the beam ...........ccccceevvveviiieiiieeninens 53
Figure 3.19 Comparison of load-deflection of the beam under increasing loads.............. 54
Figure 3.20 Deflection shapes at different time instants.............ccceeeeveeecieenciieenciee s 55
Figure 3.21 Time trace of the right tip .....cccoeeiiiiiiiiiiiieee e 55
Figure 3.22 Modal coordinates for all the participated modes..........cccceeevreecuieenciieenneenns 58
Figure 3.23 Time trace of deflection of base, middle point and tip ........c.ccccveeevverirenennne. 59
Figure 3.24 Deflection at different inStants...........c.cceccveeeeieeeciieniiieeie e 59



Figure 4.1 Elastic-to-plastic tranSition .........coceeverierierieeienienieeeeeeesieeie st 62

Figure 4.2 Flow chart for material nonlinearity iteration...........cccceeevveeecieeeeieeerieeenneenns 63
Figure 4.3 Geometry of the 3-Dar truss .......cccveeviiiiiieiiieieeee e 64
Figure 4.4 Inelastic snap-through of the 3-bar truss.........ccccceeeiiiiiciieciieeeee e, 65
Figure 4.5 A stress- strain model for isotropic hardening............ccccccevviveriiiiiieniennenne. 65
Figure 4.6 Comparison of load- deflection of elastic and inelastic 3-bar truss............... 66
Figure 4.7 Interesting instants for the inelastic 3-bar truss ..........cccceeveerieneniencenicnnene. 67

Figure 4.8 Comparison of load- deflection curves of elastic and inelastic 3-bar truss

with different plastic modulus ...........ccoeviieiiiiiiiiniee e 67
Figure 4.9 Comparison of tip deflection under strong earthquake...........cccceevvveenenns 69
Figure 4.10 Yielded members in the tOWET .........cceeuieiiieiiiieiieeieeie e 69
Figure 4.11 Yielded member numMbEr VEIrSUS tIME ........cccveeervieeiieeeiiieerreeeniieeesveeeaveeenns 70
Figure 4.12 Stress strain history in member #1.........cccccoeiiiiiiiiiiiniiiiieeeeeeee e 70
Figure 4.13 Stress strain history in member #13.........coooiiiiiiiiiiiiecie e 71
Figure 4.14 Stress strain history in member #21.........cccoooiiiiiiiiiiiiiiieeeie e 71
Figure 4.15 Stress strain history in member #30...........cccvvieiiiiiriiieiiieeeiee e 72
Figure 4.16 Stress strain history in member #40............oceeiiiiiiieniiienieiiiee e 72
Figure 4.17 Stress histories for the MemDbers ...........cccueeeriiiiiiieeiiie e 71
Figure 4.18 Strain histories for the members ............coccoeviiiiiiiiiiiiiie e 71

Figure 4.19 Deformation of 0.5% prestrained lean cable under self weight and
800 N/m uniform vertical 10ads ...........ccceevireiiiiniieiieieeeee e 75

Figure 4.20 Stress- strain history in element #1 .........c..cccvviiiiiiiiiiiieie e 75

viil



Figure 4.21 Stress- strain history in element #7.........ccooeeveriiniineienieeeeneeeeee e 76

Figure 4.22 Uniform vertical load versus middle sag..........ccceevvvieeiiieniiieeiieeeiee e 76
Figure 5.1 Geometry of the guyed tOWET ........ccceeriieiiieniieiieieeeee e 79
Figure 5.2 (a) Cross section of the mast, (b) top view of the applied force.................... 79
Figure 5.3 Deformation of the guyed tower under tip point load..............cceevvrrirennnnnne. 80
Figure 5.4 Load deflection CUIVE ........ccccuiiieiiiiieiiieciieceiee ettt e 81
Figure 5.5 Deformed geometry by ANSYS ..ot 82
Figure 5.6 Deformed geometry by SAP2000.........cccceeviiiieriiieiiieeeiee et 82
Figure 5.7 Comparison of load deflection Curves ...........cccoceeeviieviiiiieniieeiienieeeee, 83
Figure 5.8 Equivalent cross section of the guyed tOWer...........ccccvvevciieieiiiencieeeciieeries 84

Figure 5.9 Simplification scenarios (a) clamped support at the upper cluster, (b) simply
supported at clusters, and (c) spring supported at clusters...........c.cceeveeennenn. 86

Figure 5.10 Comparison of simplified load-deflection curves............ccoecuverieriienieennenne. 86
Figure 5.11 (a) EI Centro earthquake input in windward cable direction,

(b) EI Centro earthquake input in the direction perpendicular to windward

CADIE AITECHION ...ttt 88
Figure 5.12 Tower deformation at T=1 second (in X-direction)...........ccecueerurervernrrennnnne. 88
Figure 5.13 Tower deformation at T=1.5 second (in X-direction)..........ccceeeevveerveeerureenns 89
Figure 5.14 Tower deformation at T=2 second (in X-direction)..........cccccveerurervrenrrennnnnne. 89
Figure 5.15 Tower deformation at T=2.5 second (in X-direction)..........ccceeevveerveeeruveenns 90
Figure 5.16 Tower deformation at T=3 second (in X-direction)...........ccecveerurervrenrrennnnnne. 90
Figure 5.17 Tower deformation at T=3.5 second (in X-direction)..........ccceceecvveervreerveenns 91

X



Figure 5.18 Time trace of relative tip deflection (in X-direction)...........ccceeeerveerurennnennne. 91

Figure 5.19 Time trace of absolute tip deflection (in X-direction) .........ccccceevveererveernenns 92
Figure 5.20 Tower deformation at T=3 second (in Y-direction)..........cccecueerueerveenrrennnnne. 92
Figure 5.21 Tower deformation at T=3.5 second (in Y-direction)..........ccceceeevveerveeeruveens 93
Figure 5.22 Time trace of relative tip deflection (in Y-direction)...........ccceeverveerereennennne. 93
Figure 5.23 Time trace of absolute tip deflection (in Y-direction) .........cccceeevveercrieerneens 94
Figure 5.24 Detailed section of the guyed tOWer.........cccuvvviiiiiieiiiiniiiiee e 95

Figure 5.25 (a) Undeformed geometriy, and (b) deformed geometriy of a 100 m

BUYEA LOWET ..ottt ettt ettt et et e et e bt esbe et e eabeeseesnseensaeenseenne 96
Figure 5.26 Deformed and undeformed geometries of a 100 m guyed tower .................. 97
Figure 5.27 Load deflection curve of the tip......ccceeeveerieiiiieiiieiieie e 97
Figure 5.28 Response at t=3.0 SECONA........cceviiiriiieeiiieecieeeiie et eae e 98
Figure 5.29 Response at t=3.5 SECONA.......ccceeriieriiiiiierieeiieie ettt 99
Figure 5.30 Response at t=4.0 SECONA.........cevvieriiieiiiieecieecie e 99
Figure 5.31 Response at t=4.5 SECONd.......cceeriiriiiiiiieiieriieiieee et 100
Figure 5.32 Response at t=5 SECONA.......cccueieiiiiiiiieiiiecieecee e e 100
Figure 5.33 Response at t=5.5 SECONd........cceeviiriiiiiiieiieiieeiieee et 101
Figure 5.34 Response at t=0 SECONA........cceeeriiiiiiieiiiiecieece et 101
Figure 5.35 Response at t=6.5 SECONd........c.eeviiiiiieriieiiieiieeiieeie et 102
Figure 5.36 Response at t=7 SECONA........cceeeiiiiiiiiiiiiie et 102
Figure 5.37 Response at t=7.5 SECONd.......cceeriiriiiiriieiieiieeiieeie ettt 103
Figure 5.38 Response at t=8 SECONA........cceeeviiiiiiiiiiiiecieeeee e 103



Figure 5.39 Response at t=8.5 SECONA.........ccuiruiiriiriiriiiiiiierieeiertestee e 104

Figure 5.40 Response at t=9 SECON........cceeeviiiiiiieiiiie et 104
Figure 5.41 Response at t=9.5 SECONd.......ccceeviiriiiiiiieiierieeiiee ettt 105
Figure 5.42 Response at t=10 SECONA.........ceeviiiiiiiiiiiieeiieeee e 105
Figure 5.43 Time trace of relative tip deflection............eccveeviieriiiiieniierieeieeeeeeeee 106
Figure 5.44 Time trace of absolute tip deflection ...........cccceveiieriiiiiciiecieee e 106
Figure 5.45 Time trace of absolute tip deflection .............ccoeeieeiiieniiiiiiniieieceeeee, 107
Figure 5.46 Stress strain curve for 7th element............ccccveeviiieiiiiiiciieceeee e 108
Figure 5.47 Stress strain curve for 40th element...............ccooeciieiiiniieiiiniieeceee e, 108
Figure 5.48 Stress strain curve for 180th element...........c.cccoovveviiiiiiiiiniiee e, 109
Figure 5.49 Yielded member locations in the tOWer ...........ccceeeriieriienienciieieeieeee e 109
Figure 6.1 Pressure on the front SUIrface.........ccocveeeeiieeciieeiiie e 113
Figure 6.2 Pressure on the rear SUrface ...........oocueeviieriienieeiieiecieeee e 113

Figure 6.3 Pressure on the front and rear surface for 1 ton TNT

at 70 m stand-off diStance ........c.ceveevierieriiiiiieeen 114
Figure 6.4 Pressure on the front and rear surface for 1.5 ton TNT

at 50 m stand-off diStance ........c.ceveeviirieriiiiieeen 115
Figure 6.5 Pressure on the front and rear surface for 2 ton TNT

at 30 m stand-off diStance........c.cevervirieriiiiiieeen 115
Figure.6.6 Failure mode profiles: (a) Bending failure profile,

(b) Shear failure profile...........ccceeiieiieiiiiiiieieee e 117

Figure 6.7 Discrete rigid plastic beam model.............cccccveveviiieiiiiiiiiiieece e, 118

xi



Figure 6.8 Transverse velocity profiles: (a) shear hinge at support, (b) stationary
bending hinge in the center, (c) shear hinge at support and stationary bending
hinge in the center, (d) dynamic bending hinge zone in the center,

and (e) shear hinge at support and dynamic bending hinge zone

0 thE COMERT ....eutiiieiieiee ettt 120
Figure 6.9 Rectangular [0ads..........cooviieiiiiiiiiicieeeee et 121
Figure 6.10 Triangular 10ads .........cccooiieiieiiiiiieie ettt 121
Figure 6.11 Failure profiles and Criteria..........cccoecveeeiiiieriiiieciie e 123
Figure 6.12 P-I diagram for shear failure...........c.coceviiniininiiniiicceceeen 129
Figure 6.13 P-I diagram for bending...........ccccceeveiiiiiiieeiiieceeecee e 130
Figure 6.14 Failure modes for triangular pulse 1oad ...........ccccoveiieiiiniieniiiiiiieieeee 131
Figure 6.15 Comparison of failure modes with 0 <1 ......coccoiiiiiiiiniiiiiiiees 148
Figure 6.16 Comparison of failure modes with 1< 0 <44 .., 148
Figure 6.17 Comparison of failure modes with 4.4 <0 ....ccooceeiiiiiiiiiiiiiieee, 149
Figure 6.18 Failure modes for triangular pulse 1oad ...........ccccoveiieriiniiiiniiiiiiieieeee 149
Figure 6.19 Critical P-I curves for different boundary conditions with same o ............ 150
Figure 6.20 Critical P-I curves for different pulse shape .........cccoceviiiiiiiniininiinennns 150
Figure 6.21 Flow chart for global stability assessment............cccceeeeveerieniiieneeecieeniennnenn 151
Figure 6.22 Geometry of guyed tOWET .......cccueviiiiiiiiriinieiieeiereeeee et 152
Figure 6.23 P-I diagram and impulsive loads for poles. .........ccccevvveriiiiniiinieniniinceens 154
Figure 6.24 Impulsive 10ads for poles. .........coooiiiiiiiiiiiiiiieeeee e 154
Figure 6.25 P-I diagram and impulsive loads for lateral struts ...........ccccooeeveriencenennn. 155

xii



Figure 6.26 P-I diagram and impulsive loads for diagonal struts ..........cccccecervenernnennen.
Figure 6.27 Mast components (a) before the impulsive loading, and (b) after the

IMPUISIVE 10AdING...c.viiiiiiieiiiiiiiee e

xiil



Table

Table 2.1
Table 3.1
Table 6.1
Table 6.2
Table 6.3
Table A.1

Table B.1

LIST OF TABLES

Page
Three regions of the P-I diagram ............cccccoeviiiiiiiniiiiiiinieeeeeeee, 31
Modal participation fACtOTS ........eeevvieeriieeciie et e e 43
DiSCrimination CIIEETIA ......eeverurerueerieriierieeteete sttt sttt st 142
Critical P-I equation for rectangular impulsive load............cccceevvveeneennnen. 143
Critical P-I equation for triangular impulsive load...........cccccovevviiiiennnnnnen. 144
Normalized P-I equations for rectangular impulsive loads............c.cceueeenn. 186
Normalized P-I equations for triangular impulsive loads...........ccccecueennen. 230

X1V



ABSTRACT

Guyed towers have been widely employed in the telecommunication industry.
However, in current building codes, there is still no comprehensive specification for
their nonlinear response under severe loads, which includes large static loads, seismic
loads and impulsive loads. This study thus intends to improve the understanding and
analysis of guyed towers that undergo not only large deformation, but also large strain.
Impulsive loads are potential threat to the safety of guyed towers besides wind load,
earthquake, and ice storm. No methodology or related research has been conducted in
this area so far. This research explores the area using an already developed P-I
diagram method and nonlinear finite element modeling to provide an efficient and
effective way for structural integrity evaluation for guyed towers.

The mechanical characteristics of basic components of guyed towers are
investigated first. Geometric nonlinearity is of the main concern for the impact of
large deflection. The modified Riks scheme has been applied in nonlinear static
analysis and the Newmark beta method for dynamic analysis. To investigate the
efficiency and effectiveness of linear analysis methods, several corresponding
examples are studied. It is found that linear static analysis works only when the
deformation is small. The equivalent inertia force method and the large additional
stiffness method for guyed towers under seismic loads are compared and validated.
Their results are very similar.

Because guyed towers with large defection also have large strain in some parts,
material nonlinearity is introduced by improving the existing FEM codes for trusses

and cables. Isotropic hardening is employed in nonlinear static analysis. Dynamic

XV



hardening is used in dynamic analysis. Some specific examples have been conducted
to verify the improvements. It is found that the improved methodology can well
predict the performance of structures and tremendous difference exists between elastic
analysis and inelastic analysis. Under seismic loading condition, inelasticity in
material can help dissipate the inputted seismic energy and reduce the intensity of
structural response.

The combined application of nonlinear finite elements and algorithm enables the
nonlinear analysis for guyed towers. A 50 ft guyed tower with taut cables and a 100 m
guyed tower with sagged cables were studied for their response under large static
loads and seismic loads. The nonlinear static and dynamic response was accurately
traced. It is found that equivalent static analysis works well when deflection is small.
In sagged guyed tower, the structure is relatively soft at the beginning of static loading.
With the increase of deflection, the structure is gradually stiffened. The consideration
of inelasticity greatly improves the accuracy of analysis.

To evaluate the guyed tower’s safety under impulsive loads, relative P-I formulas
have been derived based on existing transverse velocity profiles of rigid plastic beams
under impulsive loads. Two failure modes (shear failure and bending failure) were
differentiated. The impact of boundary condition and load types on the response is
investigated. It is found under certain conditions only one failure mode is possible.
But shear failure and bending failure can coexist under very severe impulsive loads.
One specific example has been used to demonstrate the combined application of the
P-I diagram method and FEM. Most guyed towers are expected to survive light or

medium impulsive loads due to their high redundancy and small loading area.
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Chapter 1 Introduction

1.1 Background

Towers are one of the most efficient structures. With a small amount of materials they
can sustain considerable loads and behave favorably. They are ideal for most
communication needs, including transmission, wireless internet, cellular, and antenna
radio towers. Though satellite technology tends to supersede the communication
towers, the economical and easily accessible characteristics still make many
contractors prefer towers.

There are two common types of towers: self supporting and guyed towers. Self
supporting towers (Fig 1.1) usually have rectangular cross sections. The major
components are legs, braces and attached antennas. The bracing has various patterns
as cross bracing, portal bracing, cranked K type bracing (TIA/EIA-222-G.5, 2006).
Fig 1.1 illustrates a self supporting tower with K-type bracing. The disadvantage for
self supporting towers is low height limit. Generally, the height can not exceed 300 ft
(Madugula, 2002). For towers that exceed this height limit, guyed towers should be

employed.



Figure 1.1 A self supporting telecommunication tower.

Guyed tower (Fig 1.2) has been widely used in North America. The attached guys
provide additional lateral support to the tower, which greatly increases the structure’s
stability. The guy clusters are located at different heights along the mast and can form
up to nine layers. The mast base can be pinned to the ground through bolts and steel
plates. Unlike the self supporting towers, the cross section is triangular as shown in
Fig 1.3. To anchor the guys, wide space around the mast is needed. Thus, guyed
towers are most common in rural areas. In highly urbanized areas, self supporting

towers are preferred due to space restriction.
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1.2 Problem statement

Various literatures and building codes, such as TIA/EIA-222-G.5 (TIA/EIA, 2006),
CSA S37-94 (CSA, 1994), BS 8100 Part 4 (BSI, 1994), and European Standard EC3
(CEN, 1997), have already explored the analysis and design of towers in detail. Some
quick but efficient way to assess the towers’ response have been proposed and proved
in the literatures (Galvez, 1995; Sackmann, 1996; Amiri, 1997; Wahba, 1999). But
compared to the state-of-art analysis and design technique existing in buildings and
bridges, the corresponding technique for towers is still lagging.

For static analysis of towers, it is relatively simple. But for dynamic response of
guyed towers, it is very complicated and hard to be simplified. The cables can behave
highly nonlinearly and be hard to predict by linear cable theories. The mast and
cluster of cables also exhibit dynamic interaction, which further increases the
complexity. The most efficient and recommended way by authority so far is to
conduct real time history analysis, which is usually aided by Finite Element Analysis
(FEA).

Commercial softwares such as ABAQUS, ANSYS, and ADINA can handle most
cases with considerable accuracy. But the real deformation mechanism requires cable
elements, which is usually simulated by tension-only rods or link elements in FEA
softwares. This simulation technique has some problems because incompressible truss
elements are not exactly the same as cable elements.

Besides, few researches have been done on towers’ performance under seismic
excitation (Madugula, 2002). The existing code EIA 222-G addresses the importance
of seismic analysis and proposed four equivalent static methods. But the discrepancy

between equivalent static analysis and dynamic analysis can be considerable,



especially when large deformation causes geometric nonlinearity. Wahba (1999) and
Hussam (2005) did modal analysis for dynamic response of guyed tower by ABAQUS.
But this approach usually targets a specific case and needs familiarity with
commercial FEA software. Nabil (1993) researched geometric nonlinearity of guyed
towers and developed NSDAGT by including nonlinearity factors in modeling basic
structural elements (trusses, cables and beams). But he simplified all the components
in the mast as truss elements, which result in loss of accuracy.

Impulsive load on large scale tower structures is another design consideration that
needs attention. Since an impulsive load has a very short duration and a high peak
pressure, the structural response is very different from conventional dynamic response.
However, there is very little literature on the impulsive response and failure
mechanism of tower systems.

In a word, the understanding of guyed towers’ response under severe loads,

especial nonlinear response, is still very limited.

1.3 Objective

The objectives of this research are to improve the understanding of static and dynamic
responses of guyed tower systems under multi-hazard load conditions by using fully
nonlinear finite element modeling and analysis. The considered load conditions
include large static loads, uniform load, severe earthquakes, wind loads and impulsive
loads. The influence of geometric and material nonlinearities on the response will be
investigated. The impulsive response and damage mechanism for tower systems will
be explored as well.

To achieve the objectives of this dissertation, the following tasks were realized:

1. Apply geometrically nonlinear analysis for pure truss, cable and beam

5



structures to prepare for the global analysis of guyed towers.

2. Implement material nonlinearity in truss and cable elements to enable them
for inelastic analysis.

3. Perform geometrically nonlinear analysis of guyed towers.

4. Perform nonlinear analysis of guyed towers with geometric and material
nonlinearities.

5. Develop P-I threshold curves for safety assessment of individual members of
guyed towers.

6. Conduct global stability analysis of guyed towers under impulsive loads.

1.4 Scope

The structural analysis and design of towers apparently include many aspects that can
hardly be covered by any single reference, including this dissertation. The scope will
cover the major concern of structural engineers when facing similar problems. It
includes nonlinear static and dynamic finite element analysis of truss, cable and beam
elements. All three nonlinear elements will be implemented in the analysis of guyed
towers. Geometric nonlinearity as well as material nonlinearity will be included to
develop more accurate models for analysis. Quasi static analysis is discussed and
examined to check the efficiency and accuracy. Methods for simulating the impulsive
response of tower members will also be developed for the overall evaluation of the

structural safety.



Chapter 2 Background Review

Nonlinearity in structural analysis comes from three common sources: geometric
nonlinearity, material nonlinearity, and boundary condition nonlinearity. Since this
research will focus on nonlinear behaviors of towers under severe loading, a series of
reviews have been conducted. Research about geometric nonlinearity in the structural
members (truss, cable and beam) will be presented first. General material nonlinearity
will be introduced afterwards. The algorithms that implement static analysis and dynamic
analysis will be briefly reviewed as well. Finally, the evaluation method for beams under

impulsive loading will be introduced.

2.1 Basic elements used in FEM: truss, cable and beam

Literature (Bhatti, 2005; Madenci, 2006; Zienkiewicz et al, 2005) has explored the
formulations of basic elements in FEM. But most of them only discussed about linear
elements, which do not adjust element stiffness matrix according to deformation. Because
in a large deformation scenario the influence of changing geometry is considerable and
can not be neglected, the fully nonlinear elements developed by Pai (2007) are introduced

herein.
2.1.1 Fully nonlinear truss element

From Fig. 2.1, it can be seen that the undeformed length of the truss element (Pai, 2007)

1s



l=\/(xz_x1)2+(y2_y1)2+(22_21)2 (2.1)

Where (x,, »,, z)and(x,, y,, z,)are position coordinates of points £, and P,.

Figure 2.1 Undeformed geometry of a truss element.
Assume the position vectors of points £, and P, after deformation is
R, =(x1 Jrul)i+(y1 +v, )j+(z1 +w1)k (2.2a)
R, :(x2 +u2)i+(y2 +v, )j+(z2 +W2)k (2.2b)
The Jaumann strain B,, along the deformed axis is

:|R2—R1|—l
11 l

_ \/(uz_ul X, _x1)2 +(V2_V1 T, _y1)2 +(W2 - W +ZZ_ZI)2 —1
[

(2.3)

Thus, the variation of B, is

éBn = {5141,5"1,&"1,&12,5"2,5‘4’2}{

= {ou}" {g}

If the initial strain caused by prestress in the bar is B,, then the variation of elastic

0B, 0B, 0B, 0B, 0B, 0B, |
ou, " 0v, Ow, Ou, 0v, ow, (2.4)



energy is given by
Ol = Z j j B, OB, dAds

= Z -{o})

where [kl{u}=E4iB, {¢}, {0} = EAIB,4}.

The tangent stiffness matrix is

ofu}
OB olp)
= FAIlp}\—- + EAIB,, ——=
{¢}a{u}+ 11 a{u}
= EAI{¢}{¢} + EAIB), —— o 23
oluf’
The mass matrix is the same as that of the linear truss element:
2 0 01 0 O]
020010
[ ]:p_Al 0 02001
61 00 2 00
01 00 20
001 0 0 2

2.1.2 Fully nonlinear cable element

(2.5)

(2.6)

(2.7)

The static load is assumed to be applied before the dynamic loads in Fig. 2.2(a). P is

the position of P, under static loads and P is the position under static and dynamic

loads. If the displacement vector of P is {x,x,,x,} and the one of P s

{al , Oy, Ol }, then



X, =a, +u, i=123 (2.8)

] M4
T (x1+xids,
¥2+xids,
(1+e)ds T+T'ds
T g
(a) (b)

Figure 2.2 Deformed geometry of a cable element.

It follows from Fig. 2.2(b) that the axial strain (Pai, 2007) is

, 2 , 2 , 2
\/(xl dsj +(x2 dsj +(x3 dsj —ds

B ds (2.9)

' 1\ 2 ' N\ 2 ' N2
= (al +ul) +(a2 +u2j +(6¥3 +u3j -1

where ( )’ = @
The internal tension force is

T = EA)l-vel e (2.10)

where initial strain caused by prestress in the bar ise,, v is the poisson’s ratio, 4, is

the original cross section area, and E is the young’s modulus.

The variation of elastic energy is

10



ol = i J.Ol EA,[1 - ve] eSeds
1

! !

a, +u P
;5[051 +u, j+
l+e

! !

a, +u P
#5[(12 +u, )+
l+e

= if; EA, [1 - ue]2 e

l+e

! !

! 1 !/ !

O (! a, +u 'oa, tu "o, tu '
ZZI EA,[1-vel e =" du, + 22 Su, +—2—du, |ds

T 0 l+e l+e l+e

' ' ' ' ' T

< [ 2 ! ! "o, +u, o, tu, o, +u
:Zj EAO[I—ue] eV, ,du, , i, I L % 2 % 3 0 g

T o0 l+e l+e l+e

in which, {@41',&,2',5”3’}T - dé[[N ] {u)

S

)=

{ul[j]’ ugj] , u3[_j], Z/ll[jJrl] , u£j+1] ’ u£j+1] }T

-2 0 o £ 0 o
l, /,
VM= 0 1-= 0o o 2 o
l, I
0 0 1-2 o s
L Zj Z/_

where [, is the undeformed length of the jth element and s is the local physical

coordinate. Assume {¢} =

i

Thus,

oIl

z [ {ou)" E4J1-vel DT {p)ds

= 2t [k lfu}

where  [klfu}= [ E4,[1 - vel’e[D] {plds

And the tangent stiffness matrix becomes
11

!

oo a vl aen| el o d)
l+e = l+e = l+e o | ds

M5(a3, + u; j}ds

(2.11)



i ollk]-tu))
[k]: olu)

= j; EA{[l ~dve+30%¢* |28 [DT (g} + [1 - vel e[ D] M}ds 2.12)

ofu}
- [ 24 sue 207 T ol 0]+ - o] 2510

The mass matrix is the same as Eq. (2.7).

2.1.3 Beam element with von karman nonlinearity

The two well known beam theories are Euler-Bernouli and Timoshenko beam theories.
The first one assumes the cross section remains plane and normal to the reference line
after bending, which a rigidity higher than the actual one. Timosheko’s beam theory
overcomes this problem by including the shear deformation in the modeling. This
improvement produces reasonable results for thick beams. But for thin beams, shear
locking appears also due to the introduction of shear deformation. It is because of the
domination of shear deformation over the bending deformation. Because structural
members of guyed towers are usually slender, shear deformation is negligible. Therefore,
nonlinear Euler-Bernouli beam with von karman nonlinearity can be employed for the
modeling and analysis of guyed towers. Besides the bending effect, torsion and stretch
effect is considered as well in the beam element (Pai, 2007).

The strains in the element can be expressed as

En=etzp, —yp; (2.13)
€1 =720 (2.14)
&3 =P (2.15)

12



e=u'+v?/2+w?/2 (2.16)

p =9 (2.17)

py =—w(l—w?) (2.18)

ps =v"(1-v"?) (2.19)
W=t w. g v w =[Blad®} (2.20)

where ¢, is the tensorial engineering strain, e is the axial strain, yand z are
coordinates in the cross section, p, is the deformed curvatures with respect to the axes
x, yand z .u, v and w are the displacements on the cross section, and
{d([)}:{ul,vl,w1,¢1,—w1’,v1',...,u v,,w,.4,,~w.,v'} . The strain vector then be

n " n’ n’’n

expressed as

e
€ 0 -Yy P
le}=1e,t=|0 =z 0 0 {7 t=[z]w} (2.21)
P>
€13 y
Ps
The variation is
oe
0 z -y
)
{oe}=|0 =z 0 0 (2.22)
0 op;
y 0
op;
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Oe

ou,

1 0 z -y %5{/_/

o R S (2.22)
0y 0 0|5, %Y, '

J
op;

ou, "’

I
N
=
g

where [¥]=

1 v w 0 0 0
10 0 0 1 0 0
o0 2w 0 0 —(1-w?)
10 =2V 0 0 1-v"? 0
For stress tensor, it is
E 0 0
lol=10 G ol =[0)e} (2.23)

0 0 G

The potential energy is

14



5 - z [ 16} lohiaas
-X[] fov [V )2l aas

—Z [[[ {ouy 197 (2] [0] 2 (2.24)
- X[ o} 8] T 27 e
i{&l()} £ {d”}

Assume {d(i)}: {67}-1- {Ad(i)} and {U}={U}+{AU}, then
)=t} +[¥lav) (2.25)

{w)={¥}+[o] (2.26)

o,
=— AU,

Where [@]U U
k

Applying Taylor expansion and neglect high order terms,

[k = j [B) [w] [0} }ax

_ j([g [#] [o)}+ (B [F] [0 ¥ }au )+ [BY [ [@]F }ix
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_ _ o . _ o’y _
o] [olrt=10, o =AU D = "_® AU b=
oT 01}~ .07} 20 0.7, | - Yo |
. oy
Because the nonzero terms in  ———2— are
oU,0U
azlyl — 1 . 62l/jl —
oU,0U,  0U,0U,
2 2
a l//3 — 2W” : 6 l//3 — 2W';
ou,oU, oU,o0U,
2 2
M = _2v”; & — _2vl
oU,oU, oU,0U
The nonzero terms in ['] are
I, =1{1,0,0,-2v"[® '} = Ede - 2EL,v"p,
Ty, = {1,0,2w", 0@} = Ede+ 2EL,,w"p,
Iy = {0’050’_2"'}[@]{‘//} =—2El;V'p;
Iy = {0,0,?.W',O}[q)]{w} =2El,w'p,
Thus,
o’y _
=——29o
)| e-o.5.
K 0 0 0 0 0
0 EAe-2EIlV'p, 0 0 —2EIv'p, 0
10 0 EAe+2El,,w"p, 0 0 2EL, W p,
1o 0 0 0 0 0
0 0 0 0 0 0
10 0 0 0 0 0

The product of stiffness matrix and displacement vector becomes

16

(2.27)



~ ([87 [T [@]w]+ [ fav® Jax (2.28)

Thus, the tangent stiffness matrix is

ko]= I[B]T (] [@]w]+ [r][Blax (2.29)

2.2 Material Nonlinearity

Plasticity is fairly common in engineering practice. Once the material enters plastic range,
material modulus decreases if it is strain softening or increases if strain hardening, which
would finally change the global stiffness of a structure. Thus, the response is greatly
affected by material nonlinearity if it has a potential to reach inelastic stage.
Material nonlinearities can be categorized as isotropic hardening, kinetic hardening.
In elastic range, incremental stresses can be expressed as the product of an elastic
constitutive matrix [C] and incremental strains lde} as
ldo}=[Clde} (2.30)
The general form of yield function (Bhatti, 2006) is
Fliohw,fa))=0
where w”is a scalar denoting the plastic work done, and {a} is a vector denoting the
translation of the yield surface. Once the deformation reaches the yield surface, it can

have two possibilities: (a) loading continues on the yield surface (b) unload and retrieve

back into the elastic range. If there is no hardening effect, the yield surface remains fixed
17



and never expand. With hardening effect, the yield surface or plane can expand according
to the hardening rule. To determine the strain flow on the yield surface, the following

flow rule is needed.

{dgp}z;t-a—Q 2.31)

olo}

where A is a constant of proportionality that relates the plastic strains to the plastic
potential, and Q 1is the plastic potential function. If Q 1is chosen to be equal to the
yield function F, the flow rule is associated. The total strain increment in a plastic state
can be expressed by

{de)={ds* |+ {ds" (2.32)
After manipulation (Bhatti, 2006), the constitutive stress-strain relation for plastic phase
is

{do}=(c]-|c, [fae} (2.33)

olo oo} ow’ olo} % oo}’
1 0 0 0 0 O]

01 00 0 O

001(1)00
{000 = 0 0

[Z]= 5
000010
2
00000l
L 2]

18



2.2.1 Isotropic hardening and dynamic hardening

Isotropic hardening assumes that the yield stress for reversed loading is equal to previous
yield stress (Bhatti, 2006). Thus, the elastic range for isotropic hardening (Fig 2.3 (a)) is
increased in consecutive loading and unloading cycles. For the dynamic hardening (Fig
2.3 (b)), the elastic range is fixed and the yield stress in opposite direction varies in

loading and unloading.

(a) (b)
Figure 2.3 (a) Isotropic hardening, and (b) dynamic hardening.
For an elastic state, the incensement of stress do is proportional to the change of
strainde .
d{o}=Ed{s} (2.34)
For an inelastic state, the change of stress can be expressed in three ways:
dio}=Edle'}; dlo}=Hdle"}; dio}=E,dl)

where d {ee} is the elastic strain increment;

19




d {8” } is plastic strain increment;
diel=d {ge }+ d {g” } is the total strain increment,

H 1is the plastic modulus,

__EH is the tangent modulus
E+H

The yield stress state for isotropic hardening can be updated by
6.1=1o, |+ Hlg"| (2.35)
The state for dynamic hardening can be updated by

F=|o-He'|-o (2.36)

y
2.2.2 Algorithm implementing material nonlinearity

Reddy (2004) introduced an algorithm that checks and adjusts the stress state every step.
If the force equilibrium is resumed in the following iteration, then the solution converges
at that step and can move forward. For one dimensional problem, the adjustment to
achieve force equilibrium is obtained by imposing an additional deformation to the

inelastic element by

Au, == (2.37)

where Au, 1is the additional displacement adjustment
L, is the length of the element
A; 1s the cross section area of the element

The other elements remain unaffected if they are not yielded.
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Bhatti (2006) used the Newton-Raphson approach to achieve the equilibrium.
Basically, it runs iteration until the internal forces and external forces have been balanced.

The other steps are essentially same as the Reddy’s approach.

2.3 Algorithm for nonlinear static analysis

After the global stiffness matrix has been obtained, the solution of the nonlinear
equations is not easy because the stiffness of each element can be affected by its
displacement. Thus, some algorithms are needed to achieve the solutions. The most
commonly used methods are: Newton-Raphson’s method, the modified Newton-Raphson
method, Riks’ method and the modified Riks method (Crisfiled’s method). Detailed
explanation can be found in literatures (Davis and Thomson, 2000; Bathe, 1996).
[kJut={F} (2.38)
where [K] is global stiffness matrix, {U} is the displacement vector, and {F} is

global force vector.
2.3.1 Newton-Raphson method and Modified Newton-Raphson method

The scheme is illustrated in Fig 2.4. Assume the imbalance force at the beginning of i —1
step is

Rw))=[&Yuy " -{F} (2.39)
If the imbalance force at the beginning of ith step R({U }l) is expanded to a low-order

Taylor series, then
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R({U ¥ )= R({U J )+ % wy s} (2.40)

- R{u} )+ [k, ] oSl

Where {U }i is the displacement vector in i th step,

{U}™" is the displacement vector in i —1th step ,

the tangent stiffness matrix is ([K T 1 - )ij = %
st (vy)=o . men ow}=—{K, ], ) () -ir) L Updae

U} ={U}™ +6{U} and repeat the above steps until the convergence criteria (the ratio

of the magnitude of displacement increment vector to the previous displacement vector)

1s met.

Figure 2.4 Modified Newton-Raphson method.

Since the tangent stiffness matrix is updated in each iteration, it may need large

computational effort. Modified Newton-Raphson method either keep [K T] fixed or only

22



updating it at preselected steps (Reddy, 2004).
2.3.2 Modified Riks method (Crisfield’s method)

The drawback of the Newton-Raphson method is that it can not capture some special
phenomena like snap through of trusses. It is because that the tangent stiffness matrix

[KT] becomes singular at some special points, which makes the solution of Eq. (2.40)

inaccessible. To overcome this problem, Riks suggested a procedure that traces the
intersection of the normal to tangent line with the equilibrium path as shown in Fig 2.5.
Similarly, Crisfiled’s method uses an arc (or circular plane in multi-dimension) instead of
a perpendicular line (or perpendicular plane in multi-dimension) for solution searching.
The increment of load factor becomes an unknown that needs be solved during the

iteration.

SF,
SF,

v

sU, U,

Figure 2.5 Crisfield’s method.
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A

Assume {F} = A{F }, where A is a load parameter and {ﬁ } is a preselected load

vector,

R({U},, ﬂ,)z R({U}"‘l, ,1"“)+% w0 2o S (2.41)
Set R({UY.2)=0.
(0 =KW oy =2 P ] S0+ DR 2.42)

where S{U} is the first increment of displacement vector and S& is the first
increment of load parameter. If 84 is specified, S{U}, can be solved. Update the
displacement vector and load parameter by {U} ={U}" +5{U} and A =2+
Obviously, the first guess usually will not be the exact solution. Therefore, following

iterations are needed. With updated {U }i and A, Eq. (2.42) turns into

(0} = (KUY, ~ A IE ]y, S10Y + o2, (2.43)

By setting the following incremental searching path perpendicular to the normal of the

first incremental path,
10} = S{U Y SU Y, +{F Joa | o (2.44)

Solving Eq. (2.43) and Eq. (2.44) for S{U}, and 6%, yields

sl ], ) (K0, -4 {F)
({ - }5/1; {ﬁ}_ U, ([KT 1 WA )1 {F}j

The above steps are repeated until convergence. The converged displacement vector
24

WA )_1 ([K ]{U}{{U}",/ﬁ -4 {F }+ {F}&z) (2.45)

S, = (2.46)



and the converged load parameter are {U} ={U}" +s{U} +5{U}, + U}, +--- and
A =2+ A + A, + 00, ++--.
Some limits should be set to avoid divergence, such as maximum and minimum step

length and a maximum iteration number. Details can be found in Pai (2007) and Reddy

(2004).

2.4 Algorithm for dynamic response

There are two approaches for the analysis of dynamic response of complex structures.
The first one is an indirect method by modal analysis, which uses the superposition
principle to combine the response of modal vibrations of basic modes. The second one is
numerical integration methods, which is conducted by numerous time steps. The solution
of next step is always based on previous converged solution. The accuracy is usually

affected by the selection of proper time increases.
2.4.1 Modal analysis

Modal analysis is not only computationally efficient but also of high accuracy in a linear
system. It is widely applied in vibration analysis. Extensive research already has been
done on Single Degree Of Freedom (SDOF), Multiple Degree Of Freedom (MDOF)
systems, and continuous systems, such as strings, bars, beams, membranes, plates and
shells. If structural members or structures are simplified into SDOF or MDOF by
equivalent mass and stiffness matrix, the modal analysis can be implemented by rigorous

solution or numerical solution (Biggs, 1964). For structural members, the real time
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response of structures or a structural element can also be assumed to be the product of the
primary response spectrums and the modal participation factors. The response spectrum
can be solved with the consideration of boundary conditions. After the decomposition of
response functions, each modal coordinate function can be extracted by solving
independent equations (Inman, 2001). As for the damping ratio, observations indicate that

typical structures have between 5 and 10 percent of critical damping (Biggs, 1964).
2.4.2 General integration methods

Mode shapes do not have fixed magnitude. So they are in fact not affected by the global
displacement vector. But this is only true for linear or elastic systems. In nonlinear
systems, the stiffness and damping changes with the deformation of the system. So in
reality, there are no fixed mode shapes for nonlinear systems. Or in other words, the
mode shapes vary with the magnitude of deformation. General integration methods
account for the change of system properties by the integration using small time steps.
Thus, they are the only way to solve the nonlinear dynamic problems. The commonly
used methods are the constant average acceleration method (or Euler-Gauss procedure)
and Newmark Beta methods. Since the first one is just a special case of the second
method, only Newmark Beta methods will be reviewed here. The basic integration
formulas (Reddy, 2004) for the velocity and displacement of the ith step are expressed

as

o =0} +(=p)acdo|™ + e} (2.47a)
wy =\ +afuf” + G - ,Bjdtz 01" + par{} (2.47b)
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where {U}, {U }i and {U }i are the displacement vector, velocity vector and

acceleration vector of i th step.

Assume the expansion of displacement vector, velocity vector and acceleration

vector to be

=
"

oy s}

=
Il

{U }H + A{U }H

oY =y +aby

Substituting Eq. (2.48a)-(2.48c¢) into the global differential equation,

ot el (&Kot = {F)

Eq. (2.49) can be further transformed into

P} WOy + KoY = (- (M) o) + ko)

Substituting Eq. (2.48a) and Eq. (2.48b) into Eq.(2.47a) and Eq. (2.47b) yields

Ao = (1 —é]dt{l'f' ) +éA{U}” —%{U}“

A = Loy - Ly - Ly

B pdt’ pdt

Substituting Eq.(2.51 a) and Eq. (2.51 b) into Eq. (2.50) yields

[Khiuy = {F)

where

~ 1 a
Fl= [k v+ L]
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(2.48b)

(2.48¢)

(2.49)

(2.50)

(2.51a)

(2.51b)

(2. 52)



Pl tr1- Dot +Lcdo} o o] S ot o
‘ [C((%—ljdt{ﬁ}i_l +%{U}Hj
The solution of Eq. (2.52) gives the first estimation of A{U }i_l. Since the tangent

stiffness and damping matrix are computed at the beginning of each time step, it may be
not right for the whole time step. So Newton-Raphson’s iteration is again used to obtain

the exact solution ( Pai, 2007). The algorithm is as follows:

Assume
AU =AUl + Ul (2.53a)
AUl =Alof ! + s} (2.53b)
AT = Ao 4 s (2.53¢)

i-1 -

Where o {U }i_l , O {U }1 and o {U }i_l are the incremental of displacement, velocity and

acceleration of the i—1 step. Since the solution of Eq. (2.47a) and Eq. (2.47b) gives

oY - (1_%}”{0}“ +(1 _%J{U}H e foy-wy) sk

ol = (1 - LJ{U}"“ - ﬁ o+ (wy -wy) (2.54b)

fdt’

- \i-1 (04 i-1

s{u} :@5{U} (2.55a)
e i1 1 i-1

siuf = i s{U} (2.55b)



Substituting Egs. (2.53a) - (2.53c¢), Eq. (2.55a) and Eq. (2.55b) into Eq. (2.50) yields

MY ek} sy = e} (Mo} + o) sy

[ e

Kby =7} (2.56)

Where

[K ] /3 " % C
Fl={F)- Yo} +[Clo ) +[KYoy)- M) + e} + [Kay )
Once Eq.(2.56) is solved, & {U }H and & {U }H can be obtained by Eq.(2.55a) and

Eq.(2.55b). The iterations should be terminated when the convergence criteria is met. The

displacement, velocity and acceleration vectors will be updated until the desired time

limit is achieved. The Newmark method is unconditionally stable when o 2% and

2
p> %(0{ + %) (Bathe and Wilson, 1976).

2.5 Evaluation of impulsive response

Since under an impulsive loading, the members of a tower will behave like beams. The
Pressure-impulse (P-I) method is introduced to evaluate the response and damage of
members of a tower.

Pressure-impulse (P-I) diagram is used to evaluate the critical status of beams in
bending failure because it has a straightforward expression form. This method was first

used to assess the damage extent of structural elements and buildings in the World War II
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(Smith and Hetherington, 1995). Stanford Research Institute used P-I diagram to evaluate
the effects of blast on aircraft structures in 1951 (Abrahamson and Lindberg, 1976). The
critical load curves for simple rigid-plastic systems were calculated using the P-I diagram
method (Mortion, 1954). Velocity and acceleration were used as the coordinates, which
are equivalent to the peak load and impulse system, to derive the curves for different
structures (Kornhauser, 1954). It was identified that the peak load is very important for
impulsive load cases (Coombs and Thornhill, 1967). Researchers of the Lovelace
Foundation (1966) studied the influence of the impulse and the peak load on animal
injuries. The closed-form formulas were brought up for rigid-plastic system (Abrahamson
and Lindberg, 1976). P-I diagram method is also used for the assessment of injuries of
animal and human subjected to a detonation (Smith and Hetherington, 1995). The
least-square method was used to constitute universal formulas to fit the critical P-I
diagram curves (Li and Meng, 2002). So P-I diagram is a powerful tool to evaluate the
response of structural members under blast loads.

It has been widely admitted that the P-I diagram has three regions including an
impulsive-controlled region, a peak pressure-controlled region, and a peak pressure and
impulse combination-controlled region (Abrahamson and Lindberg, 1976; Smith and
Hetherington, 1995; Li and Meng, 2002). The division of the three regions is shown in
Table 2.1. Though there is small difference regarding the specific number of the dividing
standard, they are similar because they are all based on the comparison with the natural
period of a structure or structural members. The category of P-I diagram is illustrated as

part [], [Jand ] in Fig. 2.6.
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Table 2.1 Three regions of the P-I diagram

Abrahamson 1971 Smith 1995
Impulse-controlled t, <0.05T 0.4> at,
Peak pressure and impulse
combination-controlled 0.05T <t, <1.25T 0.4<at, <40
Peak pressure controlled t, 21.25T 40 < ot

Note: T'is the natural period, @is the natural vibration frequency, and ¢,is the blast

load duration.

There are three representative load types: (1) rectangular load with step rise, constant
value, and step down, (2) triangular load with step rise and linear depreciation, (3)
exponential load with step rise and exponential depreciation. For the same structural
element the rectangular load gives the lower bound of the threshold curve, while the
exponential load results in the upper bound. For the triangular load the corresponding
curve is between the two boundary curves (Fig. 2.7). The maximum difference between
the lower bound and the upper bound can be up to 40% (Abrahamson and Lindberg,
1976).

The advantage of the P-I diagram is the simplification of judgment to the safety of
structural members or structures. Based on the P-I diagram, a certain load with the peak
pressure and impulse above the critical curve will result in damage of the structures, vice
versa, the structure is safe if the peak pressure and impulse combination locates below the
curve.

Steel beams are indeed a kind of elasto-plastic structures. Since the elastic part of
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material strength only absorbs very limited shock energy, the beam can be simplified as a

rigid-plastic structure, which greatly simplify theoretical solution.
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Fig. 2.6 Normalized P-I diagram. Fig. 2.7 Effect of impulse shape.

Some studies have conducted on theoretical modeling of rigid-plastic beams
under blast loads, which can be roughly divided into two categories. The first category is
based on single-degree-of-freedom (SDOF) model. The beam is simplified as a single
mass and stiffness as a spring (Biggs, 1964; Smith and Hetherington, 1995). The
maximum displacement is selected as a critical factor, which decides the safety of the
beam. The equivalence of the mass, stiffness, and load has been discussed in details for
structural members with different boundary conditions (Naval Facilities Engineering
Command Design Manual 2.08, 1986). The SDOF model treats the beam as a whole and
neglects the influence of shear force, which subsequently leads to the ignorance of shear
failure. However, shear failure usually occurs when the ratio of span to height of the
beams is very small or the detonation is very close to the structures.

The second category overcomes the deficiency by considering the impact of shear
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force in the model. Based on experimental phenomena and mathematical derivation, five
possible deformation profiles of beams under impact loads have been developed (Jones,
1989). The impact is simplified as an ideal impulse that is applied to the beam with no
time duration. The model was further improved by considering the response of beam
during impulse load duration and the standardized expression of critical deformation was
put forward (Li and Jones, 1995). However, most results are expressed in an implicit
form which caused inconvenience for the application in a specific computation. The

difference between shear failure and bending failure is neglected as well.

2.6 Summary

In this chapter, the main theoretical background of nonlinear truss, cable and beam
elements has been reviewed. With the application of Jaumann strains, these elements are
proper for large deformation analysis. The inelasticity of material properties was
introduced to improve the analysis accuracy. Two hardening models: isotropic hardening
and dynamic hardening were reviewed and formulated. The change of stiffness during the
nonlinear static analysis needs a special iterative algorithm for solution. Therefore,
several algorithms including Newton Raphon’s method, and Modified Riks method have
been discussed. The corresponding solution methods for dynamic analysis are also
explored using indirect method by modal analysis and the Newmark Beta method for
direct numerical integration of nonlinear problems. The impulsive load is one of special
dynamic loadings because of its high peak pressure and short duration. The pressure
impulse method is introduced to provide a quick but efficient approach for individual

member safety analysis.
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Chapter 3 Geometrically Nonlinear Characteristics of

Trusses, Cables and Beams

Truss, cable and beam elements are the basic components of guyed towers. They can
be easily assembled in the field, which is an advantage in construction. Trusses can
sustain large loads with relatively light weight. Cables are like one-directional trusses
and they can only sustain tension. Beams can sustain bending moments and torsional
loads in addition to shear and axial forces. They may have complicated static and
dynamic behavior when fully geometric nonlinearity is involved.

This chapter will focus on the nonlinear behavior of truss, cable and beam
elements of a full tower. Various scenarios, which are related to global analysis of a
guyed tower, are considered to verify the capability of the developed finite element
models. Linear analysis is employed for some parts to provide an alternative

perspective.

3.1 Nonlinear static behaviors of trusses

Snap-through and snap-back are the common phenomena in highly flexible truss
structures. Both of them usually result in very large deformation in the truss structures.
To trace the deformation procedure, the modified Riks method is employed. Jaumann
strains are used in the modeling because they are more accurate than Green- Lagrange
strains for geometrically nonlinear problems (Pai, 2007).

An aluminum truss dome is used to demonstrate these phenomena. Young’s
modulus is 10.2x10°psi. The geometry of the dome is shown in Figs. 3.1(a) and
3.1(b). The most outside ring is on a circle having a radius equal to 60m. The second

ring’s radius is 30m and the third one 15m. The cross section area is 0.3333 square
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inch. The supports are on the ground and are fixed. The load is applied on the top

center.
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Figure 3.1 (a) 3D view of the outlook of the dome, and (b) top view of the dome.

The load-deflection curve for the top node is shown in Fig. 3.2. It can be seen that
when the tip load is below 2000 Ib, as many as six types of deformation exist. When
the tip deflection is between 1 m and 2 m, the tip resistance can be one of the three
values. All the exact solutions are no longer uniquely decided by the external force or
geometric shape. They also depend on the deformation and applied force history.

Different equilibrium states are shown in Fig. 3.3. It can be seen the deformation
procedure is more complicated than normal star dome, which has only one snap-back
(Geers, 1999). The buckling expanded gradually from the most inner ring to outer
rings. The first snap-back happened when the smaller dome buckled. The continual

sagging of the small ring caused the second ring to buckle. The most outside ring

finally buckles when F= 6171.25 Ib.
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Figure 3.2 Load defection curve of the top node.

a. load=80.4716 Ib b. load=1285.9045 Ib
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-861.0898 Ib

f. load=

e. load=206.2633

766.3564

h. load

-31.5241

g. load

j. load=6171.2496 Ib

i. 10ad=2690.8394 Ib

|. load=-5406.4659 Ib

k. load=805.9703 Ib

Figure 3.3 Deformation procedures with the adjusted load.
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3.2 Nonlinear dynamic behaviors of trusses

Because geometric nonlinearities causes bifurcation and multiple solutions, dynamic
deformation of a nonlinear structure is path dependent. Hence, step by step integration
is necessary in order to obtain the time history of deformation of structures. To
demonstrate the nonlinear effect, one self-standing tower (Fig. 3.4) is selected for the
analysis. Both real time history analysis and modal analysis based on linear truss

element are conducted.
3.2.1 Direct numerical integration analysis

The tower is composed of aluminum alloy pipes. The trusses at leg location have an
outer radius of 0.03m and an inner radius of 0.028m. The braces have smaller cross

sections with outer radius of 0.02m and inner radius of 0.0lm. Young’s modulus is
7x10" pa and mass density is 2800kg /m’. Poisson ratio is 0.29 and no prestress is
applied. The tower has four floors and each floor’s height is 8m. The base cross
section is 2x2m”. The four base points are fixed on the ground. The tower is
assumed to sustain EI Centro earthquake in the X direction only.
Because the absolute displacement vector U consists of the relative deflection
u and the rigid body motion y_, we have
U=u+y, (3.1)
Because the tower is only subjected to a base excitation, the governing equation is
given by
M-U+C-U+K-U=0 (3.2)

However, because the rigid-body motion does not induce any elastic energy or
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damping, we have
M-i+C-u+K-u=-M-y, (3.3)
So the structure response is caused by the inertia force —M -y _ .

The deformations at different time instants are shown in Fig. 3.5. The dash lines
represent the undeformed geometry of the tower. The solid lines represent the
deformed geometry. The whole deflection history of a node at the tip of the tower is
compared with the acceleration history of the ground motion in Fig. 3.6 (a). The
increased intensity of acceleration does not induce large deformation immediately
because of the time delay caused by wave propagation. It I s found that the maximum
deflection of the tip is 0.128 m. Since the damping is neglected here, the oscillation
does not die out with the elapse of time. Usually, the modal damping coefficient in
civil structure would not excess 5 percent (Biggs, 1964). If the modal damping ratio is
0.03, the deflection would be significantly reduced as shown in Fig. 3.6(b). The
maximum deflection becomes 0.0525m.
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Figure 3.4 Undeformed geometry of the tower.
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Figure 3.5 Tower deformation at different instants: (a) t =2 sec, (b) t=3 sec,

(c)t=5sec, (d) t= 6 sec, (e) t = 8 sec, (f) t=9 sec.
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Figure 3.6 Time traces of deflection and ground seismic acceleration: (a) with no
damping, (b) with 3% modal damping, (c) with no damping by large lumped stiffness

method, and (d) with 3% modal damping by large lumped stiffness method.

An alternative approach to simulate the ground shaking is by adding large
lumped stiffness to the base of the tower. Varying force will be applied to the lumped
springs to simulate the ground motion. In this way, a displacement controlled problem
can be translated to a force controlled problem, which is easier to be solved. The
advantage of this approach is that it can simulate the process of wave propagation in

the tower, especially very tall towers. Unlike the inertia force method, the seismic
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load will be transferred to the top of the tower gradually instead of immediately. The
maximum tip deflection for no damping case is 0.1371m, which is slightly higher than
the previous result. The maximum tip deflection for 3% modal damping is 0.0591m.

The difference is actually negligible for a 32m high tower.
3.2.2 Modal Analysis

For the purpose of comparison of the usual engineering approach, the tower’s
response is assumed to be linear and SRSS (Square Root of the Sum of the Squares) is
employed for the estimation of the deformation of the tower. The response spectrum
of a linear elastic SDOF system is obtained from the literature (Chopra, 2000). The
first ten mode shapes are shown in Fig. 3.7. The third and sixth modes are torsion
modes. The eighth and ninth modes have severe deformations on the top section of
the tower. All the other modes are bending modes. In the first ten modes considered,
the 2nd mode is along the y direction. Though it is included in the following
calculation, it is found that it contributed very little and almost can be neglected
because its modal participation factor is 4.6e10” of the 1st mode’s. The modal

participation factor (Biggs, 1964) can be calculated as

r

XM, -4,

1—* — 1
YM, -4,
1

n

(3.4)

where M, isthe mass of the rth degree of freedom,
@, 1s the modal shape component for the rth mass in the nth mode.

The product of the modal participation factor, the specific response from the
response spectrum, and the characteristic shape coordinate gives the estimation of the

maximum deflection. The maximum tip deflection is 0.0563m, which is almost half of

42



the result by real time analysis. Although the analysis is done quickly in this way, the

accuracy is not good.

Table 3.1 Modal participation factors

Mode Frequency (hz) Participation factor
1 2.4916 -461.36
2 2.5562 -0.21237
3 6.5988 -11.35
4 9.0422 -1091.4
5 10.18 -0.45755
6 14.487 -33.617
7 17.216 1100
8 18.337 79.498
9 19.725 -16.732
10 19.777 9.658

Mode 1

Mode 2
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Mode 7 Mode 8 Mode 9 Mode 10

Figure 3.7 First ten mode shapes of the self standing tower.

3.3 Nonlinear static behaviors of cables

Cables are very flexible and behave nonlinearly under static loads. Irvine (1981) has
developed analytical methods to analyze the response of cable. In this section,

nonlinear FEM is applied to investigate the influence of geometric nonlinearities on
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cables. A cable spacing from 600m high to the ground and 800m out under self weight,
pretension and ice loading is modeled and the results are compared. The reason to
consider ice loading is because it has a significant effect during an ice storm. The
radial ice thickness has been reported as high as 8-9 in (Madugula, 2002). Modulus of

elasticity for steel cables with a radius greater than 67mm is 159GPa

(TIA/EIA-222-G.5).

Cables having the same geometric shape but different prestress levels can have
very different sagging after installation. The discrepancy between linear and nonlinear
model also varies with the prestress level (Fig. 3.8). The linear model can well predict
the deformation of cable when the prestress level is higher than e0=0.1. But when the
prestress level is as low as 0.001, the linear method can hardly work because the
pretension in the cable is comparable to the self weight of the cable (Pai, 2007).
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Figure 3.8 Comparison of linear and nonlinear static deformations under different
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prestress levels.

Ice loading increases the mid sagging especially for long cables. The mid-point
sag for the described cable under 0.001 prestress level is as large as 9.7602m and will
be increased to 10.1261m under ice loading. The change of geometric shape under
different static loads can be seen in Fig 3.9. With higher prestress level, the sag under
self weight and ice loading decrease as shown in Fig. 3.9. When the prestress level is
between 0.07 and 0.15 as specified in TIA/EIA-222-G.5 (2006), the maximum sag is
less than 5.1054m under self weight and 5.5498m under the combination of self
weight and ice loading. But no matter how high the prestress level is, the sag of long

cables is inevitable.
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Figure 3.9 Deformation change w/o ice loading for e0=0.001.
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Figure 3.10 Mid sag under different prestress level.

The influence of ice loading varies with different prestress levels (Fig. 3.11).
When prestress level increases from 0.001, the increase of mid sag due to ice loading
increases as well. The maximum increase (0.4571m) appears at 0.05 prestress level,
after which the sag increase will gradually diminish. The minimum sag increase is
0.2952m for 0.15 prestress level. Compared to the length of the cable, such sag

increase is almost negligible.

47



0.46

0.44-

042+

© I °

w w w o

IS o ®© ~
T T T T

Mid sag increase due to ice loading (m)

o

w

N
T

0.3

L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Prestress level

Figure 3.11 Mid sag increase at different prestress level.

3.4 Nonlinear dynamic behaviors of cables

Dynamic behaviors of cables are hard to predict with linear analysis. Since wind load

is very common and sometimes critical to cables of guyed towers, a simplified model

for a cable subject to varying wind loads is built and analyzed.

For wind loads on towers, there are several methods to evaluate them as
introduced in the literature (Madugula, 2002). The second-order auto-regressive
process is recommended for a time-varying structural analysis. However, the
minimum time interval from this approach is 0.1s, which exceeds the accuracy limit
of a nonlinear dynamic analysis. To simplify the analysis, the wind velocity is
assumed to be the superimposition of constant velocity plus a sinusoidal velocity as

proposed by Nabil (1993). By further referring to CSA (2001), the wind load hereby
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applied is assumed as
W=W,+W, -sinwt (3.5)
Where W, =P(C,-A,)
P = wind pressure, minimum is 300 Pa
C, =1.2 for guys
A = face area of guys
W = the magnitude of random wind load

@ = vibration frequency

Apparently, the vibration frequency has great impact on response of the cable. If
it is close to the natural frequency of the cable, resonance can occur if there is no
damping and the oscillation would be greatly amplified.

To explore the dynamic response of cables, one specific case is analyzed. The
wind load is applied after the post- tension of the cable. So the wind load would be
added to a sagged curve. The wind direction is assumed to be perpendicular to the
plane of the cable. The wind pressure is assumed to be 300Pa. The diameter of the
cable is 2 in. The prestress level is 0.01. The vibration frequency is taken to be the
third modal frequency of the cable, which is 0.1435 Hz. The geometric prestressed
shape under self weight is computed for the initial stiffness consideration. The first
mode is shown as the red dotted line Fig 3.12. The 3D view of vibration shapes is
shown in Fig 3.13. If viewed from the top, the vibration shapes clearly reveal the third

mode.

49



600

500

400

300

Z direction (m)

200

100

\ \ \ \ \
gOO 700 600 500 400 300 200 100 0
X direction (m)

Figure 3.12 Third mode of 0.01 prestressed cable.

Figure 3.13 3D view of vibration shapes. Figure 3.14 Top view of vibration shapes.

Fig. 3.15 reveals part of the vibration procedures. The time traces of the
mid-points in Z and Y direction can be seen in Fig. 3.16 and Fig. 3.17. The vibration

in the Y direction is more intensive than in the Z direction because the input wind load

is in the Y direction.
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Figure 3.17 Time trace of defection of the middle point in the Y direction.

3.5 Nonlinear static behaviors of beams

To demonstrate the nonlinear behaviors of beam elements, a detailed example is
examined. If an aluminum beam is clamped on the left end and imposed a constant
end moment at the right side. The dimension of cross section (0.03m by 0.03m) is
very small compared to the span (0.6m).

The linear solution for the deflection can be derived fromthe curvature and

boundary conditions. From the linear beam theory,

y'(x)= % (3.6)

y(0)=»"(0)=0 and M is constant. Hence

M x°
X)=—— 3.7
W)= (3.7)
The nonlinear solution can be obtained by the application of beam elements with
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von karman nonlinearity. Suppose the end moment is %%’ the deformed geometry

of the beam is as shown in Fig 3.18. From the comparison, it can be seen that the
linear beam theory neglects the influence of axial stretch, which make the beam stiffer.

And the difference of the tip deflection of the beam is significant.
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Figure 3.18 Comparison of deformed geometry of the beam.

Fig 3.19 further illustrates the influence of geometric nonlinearity. When the end
moment is small, there is no difference between the linear case and the nonlinear one.
With the increasing magnitude of external load, the nonlinear beam first becomes
softer and then becomes stiffer when the load further increases. Thus geometric

nonlinearity can not be neglected when the deflection is significant.
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Figure 3.19 Comparison of load-deflection of the beam under increasing loads.

3.6 Nonlinear dynamic behaviors of beams

To capture the dynamic behavior of beams, two approaches are usually applied. The
first one is the direct numerical integration and the second one is modal analysis. The
following will conduct both analyses to gain a better understanding about the
difference of these methodologies.

A meter long Aluminum (6061-T6) cantilevered beam is clamped at the left end
and free on the right end. The depth of the beam is 2mm and the width is 3cm. The
base is excited with a sinusoidal displacement with amplitude of 2mm and a
frequency of 10.2753 Hz, which is exactly the second modal frequency. The base
shaking velocity is 0.0206 m/s. The modal damping ratio is assumed to be 0.01. The
dynamic response of the beam will be analyzed using the direct numerical integration

and the modal analysis method.
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3.6.1 Direct numerical integration analysis

The deflection shapes at different time instants are shown in Fig 3.20. It clearly

reveals that the second mode dominates the response. The right tip deflection history

is as shown in Fig 3.21.
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Figure 3.20 Deflection shapes at different time instants.
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Figure 3.21 Time trace of the right tip.
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It is also found that the velocity of base shaking greatly affect the response.
3.6.2 Modal analysis

The governing equation for the Euler-Bernouli beam (Pai, 2007) is

mw, +cw, + Elw___ =0 (3.8)

where m is the mass per unit length; w is the transverse displacement; ¢ is the
damping coefficient; £ is Young’s modulus; / is the moments of inertia; ¢ is the
time and x is the spatial coordinator along the beam. Because the highest order of

special derivatives of w is four, four corresponding boundary conditions are needed,

which are w| _,,= bsin(Qz), w =0for a

=0, Elw

XX

=0, and Elw

XXX

x| x=0,t x=L,t x=0.,¢

clamped-free beam. Two initial conditions are set as w

rim0= 0 and w, im0 = 0.

Assume w=W +bsin(Q¢) , the boundary conditions are changed into

W o,=0; W, 0,=0; EIW,|, =0 and EIW_| _,,=0. And the initial
conditions are changed to W wiz0=0 and W, i0= -bQ).

Assume the solution can be expressed as the product of a spatial function and a
time function as w(x,¢)= X(x)-T(¢)+bsin(Q¢), the governing equation can be
transformed into

mX (x)T, () +cX (x)T,(¢)+ ELX . (x)T(t) = mbQ? sin(Qt) — chQ cos(Qt ) = mbQ sin(Qt)
(3.9

To solve Eq. (3.9), first the homogeneous equation needs to be solved.

1,0 1) B X0
T(t) m T(t) m X(x)

=0 (3.10)

This equation can be separated into two equations as
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LE), cTl)__

R SRR R i

The solution of the first one (Inman, 2001) is

X(x)= [cosh B, x —cos B,x — &, (sinh 3, x —sin 3, x)| (3.11)

1
A mL
where S L= 1.87510407,4.69409113, 7.85475744, 10.99554073, 14.13716839, for

- inh B L —si L
20 17z for n>5,and Gn:sm p,L=sinp, :
coshf L+cosf, L

n=1...5,

L
Because of the orthogonality of the mode shapes, IO X(x ynX(x)dx = [1]. Apply

the integration at both sides of the governing equation to obtain
J;L X )mX (x)T, (¢)+ eX ()T, () + ELX . (x)T(¢))dx = I()L X(x)(me2 sin(Qt ))dx
T,(t)+2¢wT (t)+ 0’ T(t) = LL X(x dx - mbQ? sin(Qt) = F, sin(Q¢)

The initial conditions are changed into 7(0)=0 and 7,(0)= IOL X(x Wx - (- bmQ)

The solution is

T(t)= de " sin(w,t + §)+ 4, sin(Qt — ¢, ) (3.12)
o’ — Q) +(2¢0Q -

A= \/wdz(T(0)+ 4, sin g, )2 + (Tt (0)"' g“a)(T(O)+ 4, sin ¢0)_QA0 cos g, )2
o,

= tan™ ,(T(0)+ 4,sing, ) ®, = o 11_42

T.(0)+ ¢o(T(0)+ 4, sin g, ) — QA, cos, ’

The modal participation in the vibration can be seen in Fig 3.22. The second
mode composes the major part and increases its weight with the time. The first mode

also has a constant contribution in the response. All other modes actually have nearly
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no contribution to the response. Time traces of specific points on the beam are plotted
in Fig 3.23. Except at the constrained base, the amplitude of vibration amplifies
gradually. The fully excited deflection is clearly revealed in Fig 3.24, which has the
characteristic of the second mode shape. Compared with the nonlinear analysis, the
linear analysis requires much less computational effort. But it can not discover the
effect of base shaking velocity. For increased shaking amplitude, the linear analysis

will simply amplify the response by the increased factor, which is actually not true.

x10°

4l second mode

first mode

other modes

AN AL LA LA 4\ /
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modal coordinates nl( )
o N
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o
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>
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0 0.5 1 1.5 2 2.5

time (sec)

Figure 3.22 Modal coordinates for all the participated modes.
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Figure 3.23 Time trace of deflection of base, middle point and tip.
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Figure 3.24 Deflection at different instants.

3.7 Summary

This chapter investigates the influences of geometrical nonlinearity on truss, cable and

beam elements. Various examples were used to demonstrate the influence.
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It can be seen that the nonlinear truss element can be used to track the post
buckling response of truss domes. The comparison of linear modal analysis and direct
numerical integration for truss towers subject to the EI Centro earthquake excitation
showed that the results of direct numerical integration almost double the results from
linear modal analysis. It is also found that two different dynamic simulation
approaches (direct application of inertia force and large additional spring stiffness)
actually produce similar results.

The static analysis of cables under self weight and ice loading with different
prestress levels confirms that linear analysis can only predict the sag of heavily
prestressed cables. The influence of ice loading on cables is almost negligible. Using
the Newmark Beta iterative algorithm, the nonlinear response of cables in the wind
can be well predicted. When the wind frequency matches with a modal frequency, the
cable will vibrate with the specific mode shape.

For beam elements, nonlinear static analysis deviates from linear analysis when
deflection is high. The modal analysis of beam vibration agrees with direct numerical
integration to some extent. But in modal analysis the vibration amplitude keep

increasing with time, which is inconsistent with the nonlinear analysis result.
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Chapter 4 Material Nonlinearity Analysis

Material nonlinearity has significant effect on structural response. Without
consideration of inelasticity, the material will stay infinitely elastic, which does not
represent actual material behavior. Thus, in order to better simulate the real response,
isotropic and dynamic hardening are implemented in the analysis. For cycling loads,
dynamic hardening is more appropriate than isotropic hardening, because the latter
will keep hardening until it eventually responds elastically. Based on the algorithm by
other researchers (Bhatti, 2006; Reddy, 2004), the following procedure will be

implemented to analyze the inelastic response.

4.1 Isotropic hardening in truss

First, the stress and strain of each step will be computed. If it is in the elastic range,
the original procedure can be adopted without any modification. But once the material
enters the inelastic range, the element tangent stiffness must be adjusted with the
changed material modulus. If truss elements are under consideration, the governing
equation is

[k Jiu} = oulig} (4.1)
where o is the stress in the element. The tangent stiffness matrix is modified in the

same manner as

1 a0}
=5

= a—"15‘Al{¢5}+a,41M

ou} ou}

(4.2)
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v

Figure 4.1 Elastic-to-plastic transition.

Because the stress is a function of strain, it can be expressed as

oc=0,+ERs+E (1-R) (4.3)
where o, is stress for previous step, £ is Young’s modulus, R 1is a factor that can
be determined from Fig.4.1, & is the current strain, and E, is tangent modulus . It is

found that R=1 for elastic state and R=0 for plastic state. Hence, we have

o€
+E (1- R)M @)

oo _ER o¢

ou} ou}
= (ER+E,(1- R))ig)

The status of each element (elastic or yielded) should be updated during iterations as
well. The detailed procedure is given in Fig 4.2.
To illustrate the influence of inelasticity, a three-bar truss is analyzed. The

material is Aluminum Alloy 6061 T6. Young’s modulus is £ =10.6x10° psi and the
plastic modulus is assumed to be one tenth of the elastic modulus E, =1.06x10° psi.
The yield stress Y is 40x10° psi. The geometry is shown in Fig 4.3. For the

detailed geometrically nonlinear analysis readers are referred to chapter 4 of Pai
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(2007).
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distribution etc

Figure 4.2 Flow chart for material nonlinearity iteration.

Once material nonlinearity is included in the analysis, it is found that resistance
of the truss has significantly dropped. There are two turning points in the curve, each
of them indicate the beginning of hardening. After the first turning point, the slope of
the load deflection curve is greatly decreased. This is because the modulus of material
has been dropped from elastic E to inelastic Et. The second turning point marks the

beginning of isotropic hardening in tension. Without the set of ductility of the material,
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the curve can go up forever. The snap-through phenomena still exists (Fig 4.4).
Theoretical solution for a inelastic load deflection curve is derived as follows.
Assume the vertical deflection is x and the unreformed length of each truss member is

L, the strain in each truss member can be obtained as

(h—x) +1?
L

E =

When the strain is greater than ok where Y is the initial yielding stress, it entered

E-H

the inelastic hardening zone. The tangent stiffness has been changed to Et = TR
+

where H is the plastic modulus. If the strain stopped increasing, that means it began
the unloading. The modulus is resumed to be E . After the opposite strain reaches the
amplified yield strain, it will begin another round of hardening.

The stress strain curve is shown in Fig 4.5. The Geometric and Material
Nonlinear Analysis (GMNA) result is exactly the same as the theoretical results. The
loading zone can be categorized as elastic and plastic parts. But the unloading is

always elastic. The load capacity comparison is shown in Fig 4.6.

P X
0.5 L

Figure 4.3 Geometry of the 3-bar truss.
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Figure 4.4 Inelastic snap-through of the 3-bar truss.
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Figure 4.5 A stress- strain model for isotropic hardening.
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Figure 4.6 Comparison of load- deflection of elastic and inelastic 3-bar truss.

The interesting instants during the deformation process are captured in Fig 4.7. It
can be seen that the 3-bar truss yielded in compression after very small deflection,
which caused the first abrupt change of the slope of the load-deflection curve. Then
the structure reaches its maximum resistance during continuous hardening. When the
3-bar turns to be horizontal, the resistance is decreased to zero. After that, the external
force is changed from pression to tension in order to keep tracing the snap-through
phenomena. After the tension reach the maximum, the external force is gradually
changed from tension to pression and the resistance is again increased. Once the stress
level in the 3-bar truss reaches the tension yield point, the load-deflection curve has
its second turning points, where the slope is changed abruptly.

The influence of plastic modus in the resistance is discussed in Fig 4.8. With the
increase of plastic modulus, the load capacity of the 3-bar truss is greater and greater.

But as long as the isotropic hardening effect exists, the difference remains.
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Figure 4.7 Interesting instants for the inelastic 3-bar truss.

Elastic

Inelastic (H=0.9E)
Inelastic (H=0.7E)
Inelastic (H=0.5E)

Inelastic (H=0.3E)
Inelastic (H=0.1E)

Force (Ib)

|
0 0.2 0.4 0.6 0.8 1
Deflection (ft)

Figure 4.8 Comparison of load- deflection curves of elastic and inelastic 3-bar truss

with different plastic modulus.
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4.2 Dynamic hardening in truss

If the tower shown in Fig 3.4 is under 5 times EI Centro earthquake in the X direction
and dynamic hardening is considered for the material, the response of the tower is
found to be smaller than that of the totally elastic model (Fig 4.9). The reason is that
under no modal damping circumstance, material yielding becomes the seismic energy
dissipation mechanism.

The first four leg elements enter plastic zone before 4.5 seconds. After that,
elements 13, 14, 17, 18, 21, 22, 23, 24 have plastic deformation one by one. Under the
maximum deflection, 12 elements including elements 29, 30, 31, 32 are in the plastic
zone at the same time as shown in Fig 4.10 and 4.11.

The corresponding stress strain history in elements 1, 13, 21, 30, 40 are shown in
Figs. 4.12-4.16. It is found that the strain in the lateral members, such as element 13
and 21, has a larger range than the leg elements, such as elements 1 and 30. The stress
in other elements always remains in elastic range.

The time history for the stress and strain in elements 1, 13, 21, 30, 40 as shown
in Fig 4.17 and 4.18, again reveals that the lateral members maintain higher stress
level than the leg parts. And all strains of these members drifts between the limits of
ductility, which is 0.15 (Boresi and Schmidt, 2003). This indicates no fracture in the

members.
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Figure 4.9 Comparison of tip deflection under strong earthquake.
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Figure 4.10 Yielded members in the tower.
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Figure 4.11 The number of yielded members versus time.

5

+

Time (Sec)

10

15

o
T

Figure 4.12 Stress strain history in the member #1.
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Figure 4.13 Stress strain history in member #13.
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Figure 4.14 Stress strain history in member #21.
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Figure 4.15 Stress strain history in member #30.
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Figure 4.16 Stress strain history in member #40.
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Figure 4.18 Strain histories for selected members.

4.3 Material nonlinearity in cables

Following the derivation in Section 4.1, the material nonlinearity in the cable can

result in the following change in the formulation of the FEM cable element.
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[kJu} = [ 4,[1 - vel* o[D {plas

(4.5)
= 4,[1-ve] o[D] {p}
Referring to Eq. (4.3), it can be found that
oo oe oe
——=FER——+FE (l1-R)—
a{u} 8{u} t( )8{u} (4.6)

= (ER + E,(1- R))g}" [D]
Thus, the tangent stiffness can be modified as

] a0k}
==

0

oo 2 1T , ) Oe T
~ S [1—veP[D] {g} + 4, (- 20+ 20 e)@ o[D] {p)

4 A fl-vePolD] %z
= (ER +E,(1- R)}\g} [D)4,[1 - ve[ [D] (g}t
+ 4,(- 20+ 20%)p) [De[DT i)
+ 4,1 - ve o[ DI [y]DY
= [(ER + E,(1- R)A,[1 - ve] + 4, (- 20 + 202} [ DT p}io} D}
+ 4,[1-vel o[ D] [y]DY

The tensile strength for the cables is 1520 MPa and their Young’s modulus is
159GPa (ASTM, 2007). The ductility limit is 4%. The prestrain level is set to be
0.005. When the uniform load is increased gradually, the deflection is increased as
shown in Fig 4.22. The yielded members are labeled in Fig 4.19 from 1 to 13. The
number sequence also indicates their yield consequence.

The stress strain curve in element 1 and 7 is shown in Fig 4.20 and 4.21. It is seen

that element 1 is the first to yield and have the longest hardening history.

74



50

/Deformed geometry

100
E / Initial geometry
N
150+
2001
250 ‘ : ‘
0 50 100 150
X (m)

Figure 4.19 Deformation of a 0.5% prestrained lean cable under self weight and

800 N/m uniform vertical load.
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Figure 4.20 Stress-strain history in element #1.
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Figure 4.21 Stress-strain history in element #7.
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Figure 4.22 Uniform vertical load versus middle sag.

As for dynamic hardening model for cables, the methodology is the same as the

one for truss elements. But the usual material like steel has very high modulus and
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yield strength, which makes it physically almost impossible to yield and harden

during dynamic response. Therefore, detailed discussion is neglected here.

4.4 Summary

Two inelastic models (isotropic hardening for static case and dynamic hardening for
dynamic case) have been applied in the analysis along with geometric nonlinearity. It
is found that inelasticity under static loading can greatly reduce the resistance capacity
of truss structures. The transition from elastic state to plastic state will result in a
turning point in the load deflection curve. The finite element analysis results agree
well with theoretical results. In dynamic analysis, inelasticity helps dissipate the
seismic energy transmitted into the truss tower. With the increased intensity, different
members come into plasticity in turn. The tip deflection is thus suppressed in the
inelastic model. For a cable under static loads, yielding will start from the top

elements and expands towards the root.
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Chapter 5 Nonlinear Analysis of Guyed Towers

When all the nonlinear elements are implemented with proper algorithms, the nonlinear
response of guyed towers under large static loads and severe earthquakes can be predicted
accurately. This chapter will focus on the applications of nonlinear finite element
methods in the analysis of guyed towers. Two basic towers are chosen as representative
of guyed towers. The first one is a tower with taut cables, which is appropriate for guyed
towers with relatively low heights. The second one is for towers with sagged cables,
which is usually the case for high towers. For each type of tower, both static and dynamic
analyses are conducted through detailed examples. Simplified linear static analysis for
towers with taut cables is also performed to compare with the nonlinear results. Material

nonlinearity is further implemented in the analysis to improve accuracy of analysis.

5.1 Nonlinear static analysis of a 50 ft guyed tower

The mast arm is composed of steel pipes with Young’s modulus 29 x10° psi. The outside
rim diameter of the pipe is 1.25 inch and the inside diameter is 1.04 inch. The lateral and
oblique struts between the poles are made of round steel bars with a radius of 7/16 inch.
The steel cables have two layers, which are anchored separately. The radius of the lower-
layer cables is 5/32 inch and the upper-layer cables is 3/16 inch. The initial prestress for

the lower-layer cables is 900 Ibs and the upper-layer cables is 100 Ibs.
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Figure 5.1 Geometry of the guyed tower.
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Figure 5.2 (a) Cross section of the mast, and (b) top view of the applied force.

The concentrated load is applied on the tip of the mast. To trace the nonlinear
response, the load is increased gradually at small increments. Once a converged solution

for the current load step is achieved after iterations, the load level will be updated and
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new solution loop will be started. The loop will continue until desired criteria such as
maximum displacement on a specific part or the maximum load has been reached.

The final deformation shape is shown in Fig 5.3. The tip deflects as much as 83.75
inch under a concentrated load 6,584 lbs. But the lateral drift for the upper cable cluster
connection point is much smaller than the tip deflection. There is almost no deflection for
the lower cable cluster connection point. So the deformation mechanisms for the tip
unrestrained mast is like a cantilever beam under tip point load. But the whole mast
behaves more like a multiple supported beam under tip load.

The load-deflection curve in Fig 5.4 clearly shows that the tower is softened after the
first 10 inch deflection. When the deflection reaches 45 inch, the structure turns to be
stiffer with the increase of deflection. But the global stiffness is still less than the original
elastic stiffness because the slope of load-deflection curve is smaller than the beginning

slope of the curve.
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-400

Figure 5.3 Deformation of the guyed tower under tip point load.
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Figure 5.4 Load deflection curve.

The same model is also analyzed by ANSYS and SAP2000 for comparison. Link 8 is
used for modeling of struts. Link 10 (tension-only) is applied for the modeling of cables.
The pole is simulated by beam 4. The large static analysis option is turned on to capture
the large deformation. The final deformed geometry is shown in Fig. 5.5, which is very
similar to Fig. 5.4. Under 6000 1b external tip loads the maximum deflection is 97.362
inch. The load-deflection curve is compared in Fig. 5.7. Though the analysis is nonlinear,
the results are still linear because the deflection is proportional to loads.

In the analysis of SAP2000, nonlinear and large deformation option in analysis is
also chosen. The deflection shape under 6000Ib external tip loads by SAP2000 is shown
in Fig. 5.6. The deflection shape is more flexible than in Fig. 5.6, which indicates that the
tower responds stiffer in SAP2000 than in ANSYS. This is verified in Fig. 5.7, because
the slope of load-deflection curve by SAP2000 is greater than by ANSYS. The results by

SAP2000 well match results by geometrical nonlinear analysis when deflection is small.
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Figure 5.5 Deformed geometry by ANSYS.

Figure 5.6 Deformed geometry by SAP2000.
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Figure 5.7 Comparison of load deflection curves.

From the comparison, it can be seen that large deflection analysis of guyed tower by
different softwares usually gives different results. Though the analysis is based on
nonlinear algorithm, the results are still linear. The nonlinear property can only be traced

by proposed methodology.

5.2 Linear static analysis of the 50 ft guyed tower

The pole is treated as a beam with a constant cross-section as shown in Fig. 5.8. The

equivalent bending stiffness is

83



NG

2
I= %(0.6254 —0.5204* )x3 + 7(0.625> - 0.52047 ) [? x 16.75J x2

5 5

2 2
+ 7(0.625% - 0.5204 ) [Tx16.75J +7x0.2188” x[?xl6.75j

2
+7x0.2188° x([O.S —%JXMJSJ x 2

=60.2599 in*

Three different scenarios have been used to simplify the analysis. Because the height
and span of the cables are not large, they are actually taut under 10% prestress. The
lateral deflection is very small compared to the tip deflection. So the first simplification

(Fig. 5.9) is only to simulate the top fraction of the tower as a clamped beam. The tip

L 3
deflection is —

Figure 5.8 Equivalent cross section of the guyed tower.

Although the lateral deflection of the second cluster point is negligible, the rotation
at this point greatly affects the tip deflection. Thus, the second simplification (Fig. 5.9)
releases the restraint at the guy cluster points. Using the force method (Kassimali, 2005)

to solve the indeterminate beams, two support reaction forces are assumed and the
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deflections at these two supports must comply with the constraint conditions

FL’ F,L’ FL’

A =2 (L, —3L )22 (L, —3L, )+ ——(L, —3L)=0
=1y -30) =T (1, =30 (1 -3
_FI—LIZ(L -3L )—FzL22 (L, -3L )+£22(L ~3L)=0
2 6EI 1 2 2 2 6E] 2

where L, is the distance from the tip to the upper cluster point; L, is the distance from

the tip to the lower cluster point; and L is the height of the tower. The tip defection is

2 2 2
:ﬂ(L1 -3L)- il (L, -3L)+ FL] (L-3L)

o 6EI

A

If the lateral stiffness of the guy cluster is considered, the equations become

ELIZ F2L12 FL12 E
=0 31)- L —3L)+ (L, -3L)=—1
T YA A
L P VS W Y PR SRS Lt
o 6EI T T SRR Y ./ S K,

where the equivalent lateral stiffness of the upper taut guy cluster (Madugula,2002) is

EA
K, = ZTI'COSZ 0, -cos” B,

1

where /, is the chord length of the cables;

4, 1s the cross section of the cables;

6. is the vertical angle between the chord line and horizontal reference;

B, 1s the horizontal angle between the cable and the direction of mast displacement.
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Figure 5.9 Simplification scenarios (a) clamped support at the upper cluster, (b) simply
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Figure 5.10 Comparison of simplified load-deflection curves.
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The results from the three simplified methods are compared in Fig 5.10. It is clear
that with the release of constrains, the equivalent beam becomes softer and more close to
the real response. The spring supported beam matches with the response very well in the
linear range. After that, none of the simplified methods can provide valuable estimation

for the large deformation of the mast.

5.3 Nonlinear dynamic analysis of a 50 ft guyed tower

When the tower is subjected to the EI Centro earthquake in X-direction as shown in Fig
5.11 (a), the response is irregular. Figs. 5.12-5.17 represent the response of the guyed
tower at different time steps. It is clear that when the ground shaking just begins, the
structure almost has no deformation as shown in Fig 5.12. As the intensity of ground
motion increases, the mast begins to defect and the cables start to swing.

The time history of the relative tip deflection (compared with the ground motion) is
as shown in Fig 5.18. The maximum deflection is around 20 inches at 5 seconds, when
the ground acceleration is not the most intensive. The absolute tip deflection history is
shown in Fig 5.19, of which the maximum is close to 16 inches.

When the shaking direction is changed to Y-direction, the tower response at 3
second and 3.5 second is as shown in Figs 5.20 and 5.21. The relative and absolute tip
deflection is plotted in Figs 5.22 and 5.23. From the comparison, it is seen that the
response pattern under the different direction is very similar. The difference only lies in

the specific value of tip deflection.
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Figure 5.11 (a) EI Centro earthquake input in the windward cable direction, (b) EI

Centro earthquake input in the direction perpendicular to windward cable direction.
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Figure 5.12 Tower deformation at t=1 second (in X-direction).
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Figure 5.15 Tower deformation at t=2.5 second (in X-direction).
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Figure 5.16 Tower deformation at t=3 second (in X-direction).
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Figure 5.17 Tower deformation at t=3.5 second (in X-direction).
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Figure 5.18 Time trace of relative tip deflection (in X-direction).
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Figure 5.19 Time trace of absolute tip deflection (in X-direction).
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Figure 5.20 Tower deformation at t=3 second (in Y-direction).
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Figure 5.21 Tower deformation at t=3.5 second (in Y-direction).
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Figure 5.22 Time trace of relative tip deflection (in Y-direction).
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Figure 5.23 Time trace of absolute tip deflection (in Y-direction).

5.4 Nonlinear static analysis of a 100 m guyed tower

With the increase of height of the tower, the cables are inevitably sagged due to the self-
weight. To explore the nonlinearity that was introduced by the sag of the cables, a 100 m

high guyed tower is simulated. The poles and struts in the mast arm are composed of steel

bars. Corresponding Young’s modulus is 199 x10° Pa. The steel pipes that constitute the
poles have an outside rim diameter of 10cm and an inside rim diameter of 4cm. The plane
section of the mast is an equilateral triangle similar to Fig 5.2(b). The side length of the
triangle is 20cm. The prestress forces in all the three layers of cables are 100 N. All
struts’ and cables’ diameters are assumed to be 4cm. The section detail can be seen in Fig

5.24.
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Figure 5.24 Detailed section of the guyed tower.

After the entire load steps, the deformed geometry of the tower is shown in Figs 5.25
and 5.26. The load deflection curve for the tip of pole is as shown in Fig 5.27. At the
beginning, the lateral force just tightens up the slacken cables. After that, load deflection
curve’s slope climb sharply because of the lateral support from the stressed

cables.
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Figure 5.25 (a) The undeformed geometry, and (b) the deformed geometry of a 100 m

guyed tower.

96



Force N

Figure 5.26 Deformed and undeformed geometres of a 100 m guyed tower.
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Figure 5.27 Load deflection curve of the tip.
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5.5 Nonlinear dynamic analysis of a 100 m guyed tower

If the same tower is subjected to the EI Centro earthquake in X-direction, as shown in Fig
5.11(a), the responses at different instants are shown captured in Figs 5.28-5.42. With the
passing of time, the tower is agitated by the ground motion gradually. In the first two
seconds, there is little deformation (Figs 5.43 and 5.44). Significant deflection in the mast
appears after 3 seconds. The entire computation is very intensive because all the elements
used here are nonlinear. It took more than 24 hours for a single round computation. Due
to this reason, the time trace for the tip deflection is terminated around 10 seconds, which
already used 6,000 iterations.

100
90
80
70
60
50
40
30
20
10

0
i
40

Figure 5.28 Response at t=3.0 second.
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Figure 5.29 Response at t=3.5 second.
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Figure 5.30 Response at t=4.0 second.
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Figure 5.31 Response at t=4.5 second.
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Figure 5.32 Response at t=5 second.
100



100

80

Figure 5.33 Response at t=5.5 second.
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Figure 5.34 Response at t=6 second.
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Figure 5.35 Response at t=6.5 second.
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Figure 5.36 Response at t=7 second.
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Figure 5.37 Response at t=7.5 second.
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Figure 5.38 Response at t=8 second.
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Figure 5.39 Response at t=8.5 second.
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Figure 5.40 Response at t=9 second.
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5.6 Geometric and Material Nonlinear static analysis of a 50 ft

guyed tower

If the tower in Fig 5.1 is composed of truss and cable elements, the structure is stiffened
as shown in Fig 5.45. When isotropic hardening effect is included in the simulation, the
stiffness of the structure is decreased because some members yield with the increase of
load. Truss member as element 7 is yielded with compression. The stress strain curve is
shown in Fig 5.46. The stress-strain curves of truss elements 40 and 180 are shown in
Figs 5.47 and 5.48. The upper two layers of cables are also yielded. The locations of

yielded members are shown in Fig 5.49.
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o
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Figure 5.45 Comparison of load-deflection curves.
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Figure 5.46 Stress strain curve of 7" element.
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Figure 5.47 Stress strain curve of 40™ element.
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Figure 5.49 Yielded member locations in the tower.
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5.7 Summary

With proper elements and algorithms, the nonlinear static and dynamic responses were
accurately traced. Consideration of material nonlinearity along with geometric
nonlinearity further closed the gap between analysis and reality.

The comparison of taut guyed towers under static loads shows that their results are
similar when deflection is small. The release of constraints in rotation and deflection on
the supports for the equivalent beam method can greatly improve the analysis accuracy.
The different transited angle of seismic wave can result in different amplitudes of
vibration. But the response pattern is similar.

For high guyed towers, computation becomes more intensive due to the size of
stiffness matrix. It is found that at the beginning of deflection, the structure is relatively
soft because the cables do not provide lateral support. With the increase of deflection, the
cables are gradually tightened up and can restrain the mast by tension force, which make
the whole structure stiffer. In the dynamic analysis, the wave propagation in the mast is
clear.

Under small deflection, the elastic model and the inelastic model predict the same
results. But under large deformation, in which some of components become yielded, the

results are very different. The inelastic structures appear softer than the elastic ones.
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Chapter 6 Response under Impulsive Load

Towers are open space structures that generally do not intercept shock front waves
passing through them. So impulse load on any member of a tower is usually much
lower than close space structures’. However, for large scale guyed towers, the leg
member’s size is much larger than normal guyed towers. If the impulsive load is
intensive enough, certain damage can be caused. So there is a need for large towers to
be evaluated for their possible damage or failure mechanism under impulsive load in
order to prevent it.

This chapter will first discuss the proper evaluation methods for impulsive loads
on individual members in the guyed towers. The P-I diagram method is then applied
and developed for the further safety evaluation of members of towers. Global stability

will be explored finally to accomplish the global safety evaluation.

6.1 Impulsive load estimation

There are three types of blast wave structure interaction (Smith and Hetherington,
1994). The first one is for a large structure and large scale blast wave, which is usually
intrigued by nuclear weapons. The blast wave will reach and reflect on the front
surface of the structure. At the same time, it will diffract around the sides and the rear
face of a building. Finally, it will engulf and crush the structure. The duration can
usually be counted by seconds. The major part of interaction is diffraction. The
second type of interaction is for small size structure and large blast wave. The shock
wave will squash and damage the structure as well. But the main impulsive effect is

the drag effect. The third one is for a large structure under small size blast wave. The
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size of the structure causes the delay of the applied impulsive load. So the actual
loading is sequential.

When the tower is under consideration, the size of the tower can be large
compared to the blast wave. But since the members are actual loading units, which are
obviously small, the main impulsive effect on the tower members is drag effect.

Researchers (Brode, 1955; Henrych, 1979; TM5-1300, 1991; Bangash, 1999)
have proposed various empirical estimations for impulsive loads. One of the

evaluation methods (Bangash, 1999) is applied in this section. The overpressure P,

N

can be expressed as

w w2
P, = 6784-F+93(Fj (6.1)

where W = total charge weight in TNT (tonne)
R = stand-off distance to the detonation in meters

The reflected pressure is

P +4P
P, =2P, - TF, +4P, (6.2)
TF, + P,

The ambient atmospheric pressure is P, =1 bar . The reflected pulse time is

38
.= (6.3)

where § = the smaller of half width and height of object

/6P 7P
U = % -a,, speed of shock front wave

a, =340 m/s speed of sound in air at ambient pressure

The shock pulse duration
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w3
9.04 r when P, <2 bar
T, = 0 (6.4)

1

3

14.35W— when P, > 2 bar

N

The drag coefficient for the rear face varies from -0.25 to -0.5. The drag

coefficient for the front face varies from 0.8 to 1.6.
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Figure 6.1 Pressure on the front surface.
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Figure 6.2 Pressure on the rear surface.
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To illustrate the impulsive load on the members of tower, three loading cases
(Figs. 6.3- 6.5) are considered. The member is assumed to be 0.1 m wide and 0.4 m
high in the cross section. It can be seen with the increase of load intensity, the
duration of drag phase is shortened. The reflected pressure is dropped while the
instant pressure on the front face increased. The dramatic change happens on the rear
surface. For lower but longer impulsive load, the drag effect by aerodynamics
overcomes the instant pressure so that the net effect is to pull the member toward the
blast wave direction. When the load gets increased, the net effect is close to zero
because the magnitude of drag force is almost the same as instant pressure. With the
further increased load, the instant pressure dominates and the pressure on the rear
surface will push back the deflected member toward the source to the shock front

wave.
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Figure 6.3 Pressure on the front and rear surface for 1 ton TNT at 70 m stand-off

distance.
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6.2 Impulsive response of members

In this section, the characteristic of bending failure and shear failure is discussed.
With the adoption of damage criteria for shear failure and bending failure of beams
(Krauthammer, 2004), the critical standard for the discrimination of both failure types
are determined. A closed form of theoretical solutions for simply supported and fully
clamped beams are then presented. P-I diagrams are subsequently used to assist the
discrimination of failure. Comparisons of the threshold of shear failure and bending
failure are conducted after the simplification of critical discriminants. The difference
between the results of the two theoretical models is further discussed.

Under explosion loads most beams in the buildings fail due to insufficient
bending capacity. The failure zone usually locates at the center of the beams due to
excessive bending deformation (Fig 6.6 (a)). Such response is usually analyzed using
a SDOF model. The beam will be simplified as a single mass vibrating under the
stimulation of impulse loads (Biggs, 1964; Smith and Hetherington, 1995). The
maximum displacement is selected as the fatal factor, which determines the safety of
beams. The P-I diagram is applied to present critical status of beams in bending
failure because of its straightforward expression form (Abrahamson and Lindberg,
1976; Smith and Hetherington, 1995; Li and Meng, 2002).

A SDOF model represents the beam as a whole and neglects the influence of
shear force, which subsequently leads to the ignorance of shear failure. However,
shear failure usually happens when the ratio of span to height of the beams is very
small or when the detonation is very close to the structures. Compared with bending
failure shear failure is sometimes brittle failure and may cause severe collapse of
structures. The failure zone usually is at the sides of the beams because the maximum
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shear force exists at both sides (Fig. 6.6 (b)).

Based on experimental observations and mathematical derivation, Jones (1989)
developed five possible deformation profiles of beams under impact loads (Fig. 3.3).
The impact is simplified as an ideal impulse that is applied to the beam with no time
duration. Li and Jones (1995) improved the study by considering the response of
beam during impulse load duration and put forward the standardized expression of
critical deformation. Ma et a/ (2006) further studied the response and developed P-I
diagram equations for rigid-plastic beams under rectangular blast loadings. However,
most results are expressed in an implicit form and can’t be used directly in a specific
computation.

In this study, the shear force of beams is considered in another theoretical model
(Fig. 6.7). The performance of beams under impulse loads and self weight is

considered separately. Explicit criteria of failure are derived for each situation.

———— i — —

(a)

i =

(b)
Figure 6.6 Failure mode profiles: (a) bending failure profile, and (b) shear failure

profile.
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6.3 Discrete rigid plastic beam model

In this model (Fig. 6.7) the beam was treated as many strongly linked differential
elementsso that the shear effect between the small masses can be considered. The

governing equation for the dominant shear effect is

9 =—p+my (6.5)
ox

where Q is the shear force, x is the abscissa on the beam, pis the external
uniform pressure, m is the mass per unit length, yis the transverse displacement of

the beam, and y is the acceleration of the unit mass.

y

p
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Figure 6.7 Discrete rigid-plastic beam model.

Integrate the acceleration with time and consider the initial displacement and
velocity, then the final deformation of the beam can be derived. For this research, a
rigid-plastic simply supported beam is selected as the object. According to Jones
(1989), the transverse velocity profile of the beam change significantly with different

values of the dimensionless shear-bending ratio

_ oL
L= M, (6.6)

where (), is the shearing resistance and M|, is the bending resistance of the beams.

Fig. 6.8 shows the five possible transverse velocity profiles (Jones, 1989; Li and
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Jones, 1995). y, 1is the transverse velocity at the center, p  is the transverse
velocity at the support, L is a half of the beam length and &, is the length of

dynamic bending zone. The deformation is induced by the impulse loads and is
terminated when the beam’s kinetic energy is totally consumed by the shear hinges or
bending hinges. Fig. 6.8 (a) shows the response of a beam with strong bending
moment capacity and relatively weak shearing strength. When it is loaded with a
shock wave pressure, shear hinges emerge at both sides. The beam maintains the
consistent deformation tendency until it reaches the ultimate shear deformation. Fig.
6.8 (b) describes the deformation of a beam with relative weak bending resistance.
Before the shear sliding commences, there is already a plastic hinge in the center
which keeps stationary throughout the whole procedure. Fig. 6.8 (c) depicts a beam
whose bending and shearing resistance is between the ones in Fig. 6.8 (a) and Fig. 6.8
(b). Under impulse loads, such kind of beam not only has shear slides at the support
but also has bending deformation at the central part. After the short duration of the
load the shear slide will stop first and then bending will be terminated subsequently. A
beam with weaker bending resistance is analyzed as shown in Fig. 6.8 (d). Bending
hinges compose a small zone at the center of the beam. The two plastic hinge at the
edge of the zone moves toward the center as the beam deforms. As the two hinges
converge at the center the following deformation is similar to the deformation
depicted in Fig. 6.8 (b). Fig. 6.8 (e) represents the most complicated case, which is a
beam with moderate bending and shearing strength. It begins with both shearing
hinges at both sides and a bending hinge zone in the center. The shear slide will
terminate first and then the two bending hinges will converge together. Finally the

beam will stop rotation around the stationary plastic hinge at the center and reach the

119



maximum displacement.
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Figure 6.8 Transverse velocity profiles: (a) shear hinge at support, (b) stationary

bending hinge in the center, (c) shear hinge at support and stationary bending hinge in
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the center, (d) dynamic bending hinge zone in the center, and (e) shear hinge at

support and dynamic bending hinge zone in the center.

6.4 Response under simplified blast load

There are three kinds of classic simplified loads: rectangular load, triangular load and
exponential load. In this chapter, the performance of a beam under the former two
kinds of loading will be discussed.

Rectangular load has a longer duration than the other load. It can represent the
shock wave loads which usually endure a comparative long time. The peak pressure
of triangular load drops quickly, which is the characteristic of conventional explosions.

Compared with rectangular load, triangular load is more proper to simulate the real

blast loads.
¢ f
p, b
t, ! t, t
Figure 6.9 Rectangular loads. Figure 6.10 Triangular loads.

6.4.1 Response under rectangular loads

The pressure of the load is
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Po 1=1,
0 t>0

\\
Il
—

(6.7)

Li and Jones (1995) presented transverse velocity profiles for different pairs of
pressure and ©. The maximum deformation and the duration of motion are derived in
implicit form. However, the effect of impulse on the deformation hasn’t been
mentioned, which remains as a flaw. According to the velocity profiles proposed by Li
and Jones (1995), corresponding derivation is conducted and the results are improved
by including the influence of impulse in the critical equations. The final critical P-I
equation is as shown in Fig. 6.11 and TableA.1 (Appendix A).

2M,

LZ

0

When v<1 and p, < ——, there will be no
L

v or vzl and p,<

motion at all due to the rigid plasticity of the beam. It means that the pressure is too

small to induce deformation.

2M .
Mode I. When v <1 and p,>=—"v , shear failure

LZ

The beam deforms as shown in Fig. 6.8 (a). There are two phases throughout the
deformation as shown in Mode I of Appendix A. At the end of first phase, which is the
impulse load phase, the beam reaches maximum velocity. In the subsequent phase, the
acceleration value becomes negative which means the velocity decreases untill the

beam reach the maximum displacement.

polL

0

When ¢ =

t, ,the beam’s final transverse displacement is

7 2mQ,  2m

where L is half the length of the beam, and @, is the shear strength of the beam. It
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is interesting to notice that the time to reach the maximum deformation can also be
derived by law of conservation of momentum because the kinetic energy is totally

depleted by shear hinges.
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Figure 6.11 Failure profiles and criteria.

Krauthammer (2004) presented the damage criteria for shear failure induced by
impact loads as shown in Table 6.1 (page 143). Moreover, Collins et al. (2003)
derived the relationship between the average strain and the displacement along a
given fracture zone as

d=Le (6.9)
where d 1is the displacement, L is the fracture length and e is the average strain.
According to the strain displacement equations (Boresi, 1985), the shear strain is
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_ 0y,

_ 6.10
V= (6.10)

where y, is the vertical deformation and x is the abscissa on the beam (Fig. 6.7).

If the size of shear hinge is assumed to be of similar size of the height of the cross
section of the beam, integration of the average shear strain is equal to the

displacement, i.e.

h
Y=l y,dx =hy, (6.11)

Applying Eq. (6.11) as a shear damage criteria, critical pressure and impulse for

a shear failure can be found.

2mh
mhy, , L _ L (6.12)

I P O

where /£ 1s the height of beam, y, is the average maximum shear strain.

Since the shear-bending ratio v doesn’t appear in Eq. (6.12), it can be
concluded that when shearing strength is weak enough or bending moment capacity is
strong enough the critical impulse and pressure is entirely determined by the shearing

strength. The increase of bending reinforcement has no influence on the result.

2

2M
Mode II. When 1<v<15 and p, > i % (40 —3), shear and bending failure

The beam deforms as depicted in Fig. 6.8 (c) and goes through three phases
(Mode II of Appendix A). The first one is the load phase, at the end of which both the
shear slide motion and the bending motion reach the maximum velocity. The next

phase is terminated when the shear slide stops at

2
=Pote L (6.13)
* 2(4v-3)M,

when the shear slide displacement is
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2,272
Polal” P

=— 04" 6.14
Y 4M m(40-3) 2m ‘ (6.14)

In the third phase, the excessive dynamic energy keeps the beam bending.

However, the bending will finally stop at

ot - L7
gp=Lo 2 (6.15)
: 2M,
The maximum deformation is located in the center.
6v—5)pt2 L
_( % )pOd _&tz (6.16)

Yr = 4M0m(4u—3) 2m

The value of v obviously affects the final deformation. Using the same method

as in the derivation of Mode I, the critical equations for shear failure in terms of the
peak pressure and the impulse can be obtained.

2mhy, +L Lv

I’ Py :Q0(4U_3)

(6.17a)

The critical equations for bending failure in terms of the peak pressure and the

impulse can be obtained as well.

2
2mLp 1 _ L -(6v-5) (6.17b)
I’ p, 2M,(40-3)

where [ is the ratio of centerline deflection to span, which is prevalent criteria for

bending failure.

2M

2M
Mode III. When 1<0<1.5 and L2° < p,y < L2°(4u—3)

oM,

oM
or 1.5<v and I < py <——°

L2

, bending failure

Before the shear hinges emerge, the rotation of stationary bending hinge in the

center absorbs all the impact energy as shown in Fig. 6.8 (b). Two phases exist during
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the whole deformation process (Mode III of Appendix B). The first phase is the
impulse load phase and the second phase is the free load phase.

In the second phase, the rotation will stop at

o, L
t/_:po d = (6.18)
2M
The final deformation is
3pitil* 3
y, =2Poas 2Py (6.19)

EMym  4m

The critical equation for bending failure in terms of the peak pressure and the
impulse is

2
dmlfp 1 _ L (6.20)

31°  p, 2M,

According to the energy conservation principle the final cease time also can be

calculated because only the bending plastic hinge can dissipate the impact energy.

2

&M
Mode IV. Whenl.5<v and p, > 3L ®p? , shear and bending failure

There are four phases before the deformation finally ceases (Mode IV of
Appendix A). The shear hinges and bending hinges both appear at the very beginning
as illustrated in Fig. 6.8 (e). In the first phase both the shear slide and bending
deformation reach the maximum velocity. In the second phase, the shear slide ceases

at

3L p, -t
T (62D)
0

when the maximum shear slide distance is

_pti 3ml
2m  16M  mv’

y, = (6.22)
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The bending hinge zone keeps invariable when the shear hinges slide. The length

of the hinge zone is

& = L (6.23)

The hinge zone will reduce to a point when v =1.5, which corresponds to Mode
II. After the shear slide ceases, the third phase commence and the bending hinges

begin to move toward the center with velocity

fo M (6.24)
Poly (L - f)
The shift of bending hinges is terminated at
2
T (6.25)
oM,

At the end of the third phase, the transverse velocity profile changes into Fig. 6.8
(b).In the fourth phase, the beam rotates around the plastic bending hinge and reaches

the maximum displacement when

t,L’
[, =Plaz (6.26)
2M
The maximum displacement is
2712,2
_ 2ol Do (627)

Yr= IMym  2m ¢
The following equation for shear failure can be derived from Egs. (6.22) in terms

of the peak pressure and impulse as

2mhy, N 1 3L

I’ Py ) 4Q.v

(6.28a)

For bending failure, the critical equation derived from Eq. (6.27) is
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2
amlfp, 1 _2L (6.28b)
1 P, 3M,

8M,

307

oM
Mode V. When 1.5<v and L<p, <

I v’, bending failure

No shear slide appears and there is a bending zone in the center of the beam (Fig.
6.8 (d)). There exist three phases including the impulse loads phase, the shift of
bending hinges phase and the motion-cease phase (Mode V of Appendix A). The

length of the hinge zone in the first phase can be calculated by

g —1— %Mo (6.29)
Py

In the second phase, the zone decreases to a hinge point with the velocity

~3M,

_ 6.30
Poly (L_f) ( )

éj =
The hinges points coalesce in the center at

t, L
g = Lola™ (6.31)
6M,

In the third phase, the beam deforms as depicted in Fig. 6.8 (b). When

t, L
t = Pola (6.32)
2M,

the displacement is

2712,2
poLlty py >
= oy 6.33
Yr 3AMm 2m ¢ (6.33)

The following equation for bending failure can be derived from Eq. (6.32) in
terms of the peak pressure and the impulse

2mhy, 1 _ 20
I’ p, 3M,

(6.34)
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The results are summarized in Fig. 6.11 and Table A.1 (Appendix A). The number in
Fig 6.11 represents the discrimination equations in TableA.1 (Appendix A). The
failure mode varies from shear failure to bending failure as the two parameters o

and p, change. When o <1, shear failure is the predominant failure mode. But when

&M ) . . : .
1.5<v and p, < 3L20 v’ , bending failure is the only failure mode. Other failure

modes need discrimination separately because both shear and bending failure are
possible. Generally speaking, the beam is more vulnerable to bending failure as the
value of v is higher. When o is fixed, high peak pressure leads to the occurrence
of shear failure. For shear failure, the decrease of v results in the lower critical
values of pressure and impulse, which indicates the beam becomes more vulnerable
(Fig. 6.12). However, for bending failure, the decrease of v leads to the decrease of

the critical value of pressure and impulse (Fig. 6.13).

Impulse |
2 ! ! ! !

18} i i i .
14} (iE TR VA A A

1F

0.8

0.6

0.4

0.2

Pressure p

Figure 6.12 P-I diagram for shear failure.
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Figure 6.13 P-I diagram for bending failure.
6.4.2 Response under triangular loads

The pressure of the load is defined by

t
P-1-— t<t
0( zdj ‘ (6.35)
0 t>0

f

Li and Jones (1995) have developed implicit results for simply supported beams
under triangular loads. However, when the discrimination is conducted with critical
pressure and impulse, it is found that more partition needs to be made to discriminate
the failure. Through derivation the final critical P-I equation is as shown in Table B.1
(Appendix B). The performance of the beam is similar to those under rectangular load,
though there are more categories. For details of each mode please refer to the

corresponding part in Appendix B.
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Figure 6.14 Failure modes for triangular pulse load.

M v
LZ

4
Mode I. When v <1 and

< p,, shear failure

Shear slide occurs at both supports (Fig. 6.8 (a)). There are two phases including
the loading phase and the post-loading phase. The beam reaches its maximum
transverse velocity at the end of the loading phase and decelerates in the subsequent

post-loading phase. In the post-loading phase, the deformation will cease at

L
i, =22y, (6.36)
20,

when the transverse displacement of the beam becomes

p0(3poL_4Q0)t2 (6.37)

ST amp,

The following equation for shear failure can be derived from Eq. (6.35) in terms
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of the peak pressure and the impulse

1.6mh;/V+ 4 L
I’ 3pe O

(6.38)

where % is the height of beam, y, is the average maximum shear strain, / is the

impulse which equals % pot, for triangular load.

M aM
LZOU <p, < L20 v, shear failure

2
Mode II. When o <1and
The transverse velocity profile is the same as that for Mode 1. But there is only

one phase of the motion. The shear slide will cease in the loading phase because the

blast pressure is relatively weak compared to the shear strength of the beam.

£, =(1- SOOL )2t, (6.39)

The final shear sliding displacement is

2pt2 ’
y, = Pola [y o (6.40)
3m poL

The following equation for shear failure can be derived from Eq. (6.40) in terms

of the peak pressure and the impulse

1
0.3mp,hy, )’
( e ij L (6.41)
I PoL
4M,

Mode III. When 1<v<1.5and (4v-3)< p,, shear and bending failure

LZ
There are shear slide and bending deformation simultaneously as shown in Fig.
6.8 (c). Three phases exist before the beam deformation ceases. In the first phase

(loading phase) both shear slide and bending deformation reach the maximum

velocity.
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In the second phase (post-loading phase), the shear slide stops at

ity L
g = Lola = (6.42)
440 -3)M,
and the shear sliding displacement is
2t2L2
y, =Pl Lo (6.43)

16M m(40-3) 6m
In the third phase (post-loading phase), the beam continue bending till the central

part reaches the maximum displacement at

b, L
(= Poly & (6.45)
4M
when the bending displacement is
6v—5)p;t; L’
V= bo=S)putil” _ po o (6.46)

C16M m(40-3) 6m
The following equation for shear failure can be derived from Eq. (6.43) in terms of
the peak pressure and the impulse

0.8mhy, 2 Lv
—+ =
I’ 3p,  20,(4v-3)

(6.47a)

The equation for bending failure can be derived from Eq. (6.46) in terms of the peak

pressure and the impulse

mLf 2 _ (6v—5)L*
I*  3p, 4M,(40-3)

(6.47b)

2M

aM
Mode IV. When 1<0<1.25 and — < p, <——"(4v0-3),
L

2M 4M
or 1.25<v<1.5 and L2°(4u—3)<p0< L2°(4u—3), shear and

bending failure

The performance of the beam is similar to that of Mode III and the motion has
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three phases. But the shear slide will cease during the loading phases because of the
decrease of intensity of blast pressure. In the first phase (loading phase), the shear

slide will cease at

H4v-3)M t,

t.=2¢, —
‘ poL2

s

(6.48)

and the shear slide is

p— 2 3 . 2
ys — 2[(6 81))]\160 +f’ pO] td (649)
3L mp;

In the subsequent phase (loading phase), the beam is still under the pulse load
and keeps accelerating until the commencement of the third phase. The third phase

ends at

tv:po'td'Lz

6.50
=B (650

while the final central displacement as

ta

= 96L6M—2[256(41) ~3) M} —384(4v—3) M. p, > +192(4v—3)M; poL*
0Py

Yr
—56M ,poL° +9L% p;]
(6.51)

The following equation for shear failure can be derived from Eq. (6.49) in terms

of the peak pressure and the impulse

1
(0.3mpzoh7v jz LW-3)0, (6.52 a)
I poLv

For bending failure, the critical equation is

12mLp | 28 _ 91’ .\ 96(4v-3)M, 192(4v-3)'M; .\ 128(40-3)’ M
I’ p, 2M, poL’ poL’ poL’

(6.52b)
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oM,

LZ

Mode V. When 1<v<1.25and

4M .
(40-3)< p, <T° , shear and bending

failure
There are only two phases during the motion process, both of which are in the loading
phase (Fig. 6.8 (c)). Because the pressure is relatively small, the shear slide will cease
in the first phase. The first phase ends when the shear slide cease at

4o -3)M t,

t, =2t,— 6.53
K d pOLZ ( )
and the shear slide is
26-svm, + L2 p, [ -2
V= e E— (6.54)
‘ 3L mp;
The second phase stops at
2M
t, = (1— ‘;j-ztd (6.55)
' PoL
when the final central displacement is
2t§ 2 3 3 2 2 2
L= 8|l-15+54v-T720" +32 —-1213-120+8 L
Vi 3L6mp§[( 0=720% +320 13— 123120+ 80" i p, (6.56)

+6(20-3)M,piL* +L°p;]
The following equation for shear failure can be derived from Eq. (6.54) in terms of

the peak pressure and the impulse

1
03mphy, i (40-3)0, _, (6.57a)
I’ poLv

For bending failure, the critical equation is

81°  p, ol poL poL’

3mLB 1 6(20-3)M, 12(80° ~120+3M; N 8(320° —720° + 540~ 15)M ]

[B]
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(6.57b)

2M, oM,

Mode VI.  When 1<v<1.25and <P < (40 -3)
2M aM
or 1.25<v<1.5 and ?0 <p, < 70 , bending

failure
Only one phase exists during the whole motion process. The bending motion ceases

during the loading phase (Fig. 6.8 (c)) at

2M
t, 2(1— gj-Zrd (6.58)
‘ polL

The final maximum displacement exists at the mid-span of the beam

3
9
_(po Lo .
YVy= Tmp? 1y (6.59)

0

The following equation for bending failure can be derived from Eq. (6.59) in terms of

the peak pressure and the impulse

1
mpolf:  2My (6.60)
41° pol’

4M 2M
Mode VII.  When 1.25<0 <15 and —%< p, <——%(4v-3)
L L

M, _6M,

or 1.5<v and IE < Po e

, bending failure

Two phases exists in this mode while there is only bending deformation motion of the

beam (Fig. 6.8 (c)). The first phase is the loading phase which terminates at ¢,. The

second phase (post-loading phase) stops at

po-t, L’
t; =W (6.61)
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and the final maximum displacement exists in the central portion of the beam

3potil’ _ by >
= N 6.62
Vs 32Mm  4m ! (6.62)

The following equation for bending failure can be derived from Eq. (6.62) in terms of
the peak pressure and the impulse

mLp +L_ 3
> p, 8M,

(6.63)

16M
Mode VIII. When 1.5<vand p, > 0

v’ shear and bending failure
3L

There is not only shear slide at the support but also bending hinge zone at the
mid-span of the beam (Fig. 6.8 (d)). The motion can be divided into four phases. The

first phase is the loading phase. The length of the bending hinge zone is

& = L (6.64)

The shear slide motion will cease in the second phase (post-loading phase) at

3p, -t
L oMt (665)
0

and the shear slide displacement is

_pdl, 3L

6.66
6m  64M mv’ (6.60)

Vs =

In the third phase (post-loading phase), the positions of bending hinges begin to
travels from x=¢&, to the mid-span after the shear slide ceases. The traveling
velocity is

£ OM,

= 6.67
Doty (L_ég) ( )

In the fourth phase (post-loading phase), the bending hinges coalesce at the mid-span
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at

t, L’
¢, = Lola™ (6.68)
12M
Then, the beam continues bending motion till
t, L’
;= Polat (6.69)
' 4M,
while the final central displacement is
2L212
e (6.70)

Yr= 12M,m  6m *
The following equation for shear failure can be derived from Eq. (6.66) in terms of

the peak pressure and the impulse

0.8mhy, N 2 3L

= 6.71a
I’ 3p, 80,0 ( )
For bending failure, the critical equation is
2
smbp 1 _ L (6.71 b)

21 p, 2M,

&M
Mode IX. When 1.5<v S\/g and TOUZ <Py s , shear and bending

failure
The deformation process is similar to Mode VIII and can be divided into four phases.
The difference exists in the time for the process of shear slides and bending hinges’

traveling. In the first phase (loading phase), the shear slide motion will cease at

2
t =21, -(1 - 83M °'L)2 ] (6.72)
Po

and the shear slide displacement is
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3
_262(3p, L2 —8M0*) 673
81mL’ p;

N

The bending hinges begin to coalesce to the center of the beam in the second phase
(loading phase) until the end of the pulse load. In the third phase (post-loading phase),

the coalescence is continued until the hinge zone merges into a point.

L't
¢ = L= la (6.74)
12M,
and the corresponding displacement is
Py 2 p0L2 1
=—t;)| ——= 6.75
Y om d(leo 3} (679
In the last phase (post-loading phase), the bending motion stops at
oty L
() = Pola % (6.76)
' 4M
The final displacement is
(_ M, + poL2 ) 2
Vi = “Doly (6.77)

12M jm

The following equation for shear failure can be derived from Eq. (6.73) in terms of

the peak pressure and the impulse

1
8.1mp20hj/vj3 I L (6.78a)
I PoL

For bending failure, the critical equation is

2
’"Lzﬂ ==L (6.78b)
> 3p, 3M,

12M 7 . .
Mode X. When 1.5<vand I < p, < 3L20 v’, bending failure

The transverse velocity profile is shown as Fig. 6.8(¢). There is three phase in the
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deformation process. No shear slide happens and the length of bending hinge zone is

g —1— %Mo (6.79)
Po

The bending hinge zone decreases to the central point at

ok
t, = Pola™ (6.80)
12M

The final displacement is

27r2,2
oLty  p >
R e A 6.81
Vs 12Mn 6m * (681)

The corresponding equations for bending failure in terms of the peak pressure and the
impulse is

2
’"Lzﬂ 2=t (6.82)
> 3p, 3M,

8M 12M
Mode XI. When 1.5<v< \/g and Sp*<p, < 0, shear and bending

A

failure
The deformation process is similar to Mode IX regarding to the timing of stopping
shear deformation. The second phase (loading phase) begins with the coalescing of

bending hinges and end with the loading phase.

t =2t |1 (6.83)
1 d ( pOLzJ

and the corresponding displacement of the middle point is

22 (po I —6M, J' (12M , + p,I*)
3mL’ p;

Vo = (6.84)

The third phase (loading phase) terminates at the end of pulse loads. In the last phase

(post-loading phase), the bending motion stops at
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2
;oo Pl L (6.85)
/ 4M,

The final displacement is

(69120 —3456M; p,L* +576 M p>L* —56M ,p}L° +9piL*) £ 636
v, = 42 (6.
/ 96L°M ymp;

The following equation for shear failure can be derived from Eq. (6.73) in terms of

the peak pressure and the impulse

1
8.1mpzoh7/vj3 40 _ g (6.87a)
I poL

For bending failure, the critical equation derived from Eq. (6.86) is

288M 7  144M?  24M 2
’”Lf— 8% SR it et 7 _3L (6.87b)
1 poL PoL poL 3p0 8Mo

oM, &M, ,
3 <p, < 5L
L 3L

Mode XII. When 1.5<v< \/g and

oM 12M .
Or \ESU and L20 <p, < e ¢, shear and bending

failure
There are three phase for the whole deformation procedure. During the first loading
phase, the bending deformation initiates together with the traveling of bending hinges.

The traveling hinges coalesce at the center of the beam at

t, =2t, -[1 - 6M‘;J (6.88)
PoL

In the second loading phase, the beam continues bending till the end of impulse load.

The bending deformation ends in the third phase (post-loading phase) at

_DPoly L

t
4 4M,

(6.89)

141



The final deformation at mid-span is

(69120 —3456M; p,L> +576M p2L* —56M , piL° +9piL) 2 (690)
Y 96L°M ,mp, ! '

The corresponding critical P-I diagram equation for bending failure is

mLB 18M; 9M; 3M, A 30
I*  pil®  pil' 2pll’ 48p, 128M,

(6.91)

6.5 Discrimination of failure mode

It can be seen that during impulsive loading both shear failure and bending failure are
likely to happen. To take pertinent measures to protect buildings it is vital to

discriminate the failure modes, which is presented next.

6.5.1 Discrimination criteria

Krauthammer (2004) concluded the discrimination standard as shown in Table 6.1. It
applies the ratio of centerline deflection to span as the criteria for bending failure, and
average shear strain as the criteria for shear failure.

Table 6.1 Discrimination criteria

TYPE OF CRITERIA LIGHT | MODERATE | SEVERE
FAILURE DAMAGE DAMAGE | DAMAGE
Global Ratios of Centerline
Bending/ Deflection to Span, 4% 8% 15%
Membrane D/L
Response
Average Shear Strain
Shear across Section, y, 1% 2% 3%
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6.5.2 Normalization of the discrimination equation

If simplification is introduced as

S B |
\/ 2mQ, \/4mMOU
L L
) 5

NONES

(6.92)

(6.93)

Then for rectangular load the discrimination equations transform into simple form.

Table 6.2 Critical P-I equation for rectangular impulsive load

Mode Shear failure Bending failure
2mhy, 1 L
I rp, O N/A
2mhy, 1 _  Lv 2mLp | 1 _ I’ -(3v-5)
II I’ p, 20,(20-3) I p, 4M,(2v-3)
AmLp 1 _ I
111 N/A 317 p, 4M,
2mhy, 1 _ 3L 2mLp 1 _ r
Iv I’ Py 20V I’ P, 3M,
2mLp 1 _ L
Vi N/A & P 3M,
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Table 6.3 Critical P-I equation for triangular impulsive load

Bending failure

Mode Shear failure
I Lomhy, 4 _ L N/A
I 3pe O
1
0'3mp0h7\/ 3_+_ QO _1
IT 2 oL N/A
ITI 0.8mh7/V+ 2 _ Lv mL,B_I_ 2 (61)—5)L2
rr3p, 20,(4v-3) > 3p, 4M,(4v-3)
12mLp | 28
I’ Po
v 0.3mm.h ! (40-3) _or +96(4u—3)M0
( - ’nIsz 7/\/] + U_L QO 2M0 ngZ
Pob 192(4v -3 M 128(40-3) M}
=1 - p3L4 + p4L6
0 0
3mLB 1
v 81° Do
1 2 2
03mphy, ), (40=3)0, _ 6(20;32)M0 1280 —13zzj+3)Mo
[2 L pOL pOL
PoLb
. L 8620’ =720 + 540 15)M;
poL’
1
mpOLﬂ 3+2M0 _1
VI N/A 4> pOLz
mLB 1 _ 3L
VII N/A I p, 8M,
0.8mhy, =2 _ 3L 3mLp 1 _ L
VIII > 3p, 80w 20 p, 2M,
1 2
8.1mpyhy, §+4QoU —3 ml;ﬂ+32 = 3L
IX IE oL 1 Py 3M,
X mLp 2 _ r
N/A I’ 3p, 3M,
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X1 1 288M 3 144M?2  24M
8.1mp0h7/V 3 40,0 m[;ﬂ_ 1 60 t— 40 T 20 + !
12 + L = 3 1 pOL pOL pOL 3p0
Po ) 32
8M,
XII mLp 18M; +9M§ 3M, L
N/A I* poL®  piL* 2piL* 48p,
_ 3
128M

6.5.3 Discrimination diagram

The P-I diagram method has the advantage to evaluate conveniently the structural
safety against impact load (Ma, Shi and Shu, 2006). To demonstrate the usage of P-I

diagram, a beam with length of 4 m and height of 0.4 m 1is calculated. Normalized

P-I diagrams are plotted in Figs. 6.15-6.17.

A. Rectangular impulsive load
The failure mode varies from shear failure to bending failure as the two parameters v

and p, change. For simply supported beams, when v <1, shear failure is the

3L20 v® , bending failure is

predominant failure mode. But when 1.5<v and p, <

the only failure mode. Other failure modes need discrimination separately because
both shear and bending failure are possible. Generally speaking, the beam is more
vulnerable to bending failure as the value of o is higher. When o is fixed, high
peak pressure leads to the occurrence of shear failure. For shear failure, the decrease
of v results in the lower critical values of pressure and impulse, which indicates the
beam becomes more vulnerable. However, for bending failure, the decrease of v

leads to the decrease of the critical value of pressure and impulse. For fully clamped
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beams similar rules exist in the change tendency of critical P-I diagram with the

change of v . When 0<2, there is only shear failure. when 3<ov and

Do < 3L20 v, bending failure is the only failure mode.

When o <1, both simply supported beam and fully clamped beam has the same
critical discriminant for shear failure because when shear hinge emerge at both sides
the difference between boundary condition disappears. When o >1, a fully clamped
beam has a stricter requirement for the prevention of shear failure compared with
simply supported beams. When o > 2, beams with both boundary conditions can fail
due to extreme bending effect. Simply supported beams can bear less impact loads

than fully clamped beams.

B. Triangular impulsive load
It is found when v <1 (v<2 for fully clamped beams) shear failure is the only
failure type (Fig. 6.15). Both shear failure and bending failure become possible when
I1fv<44 ( 2<v<88 for fully clamped beams). Four different failure
combinations are denoted as A, B, C, and D in Fig. 6.16. In region A, both failures
may occur. In region B, no shear failure may happen and no bending failure in region
C. The beam keeps safe in region D. When v>4.4 (v>8.8 for fully clamped
beams), the failure combination changes into three regions A, B, C. In region C, there
is no failure. In region B, only bending failure exist. In region A, shear failure
accompanies the bending failure.

As v increases, shear failure tendency descends. However, bending failure
becomes more possible due to the downward drift of the threshold (Fig. 6.18). When
v<1, shear failure is the dominant failure type. But when 4.4<ov and
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8M
Po < 3L20 v’ , the bending failure precedes the shear failure.

For beams with the same parameter v, the boundary condition influences the
failure type as well (Fig. 6.19). Fully clamped beams are more vulnerable to shear
failure compared with simply supported beams. However their bending resistances are
more likely to sustain the bending than simply supported ones, which is consistent to
previous research (Ma, Shi and Shu, 2006).

It can be easily seen from Fig 6.20 that a P-1 diagram for triangular loading
merges with the ones for rectangular loading at impulse-controlled part and
peak-pressure controlled part. This demonstrates that when an ideal impulse is
imposed to the beam, the response will be decided by the impulse and will no longer
be affected by loading shape. The same phenomena happen at the quasi-static part
when the loading duration is much longer than the natural vibration period of the

beam. But at Peak pressure and impulse combination-controlled area, the difference is

significant and can not be neglected.
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Figure 6.15 Comparison of failure modes with v <1.
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Figure 6.18 Failure modes for triangular pulse load.
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Figure 6.20 Critical P-I curves for different pulse shape.
Note:

S.F.C.T means Shear Failure critical Curve under Triangular loading,
S.F.C.R means Shear Failure critical Curve under Rectangular loading,
B.F.C.T means Bending Failure critical Curve under Triangular loading,

B.F.C.R means Bending Failure critical Curve under Rectangular loading.

6.6 Global estimation of guyed tower under impulsive load

The proposed methodology is to use the derived P-I diagram to evaluate the
performance of individual members. If one member fails, the corresponding stiffness
contribution will be eliminated. The global stiffness matrix will then be reevaluated
by the eigenvalues of the structure. If it is negative, the structure becomes unstable.

The procedure is shown in the flow chart of Fig. 6.21.
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Create geometry of the guyed tower

A

Evaluate the impulsive load on each
individual member by empirical
formulas

v

Assess the safety of each individual
member using P-I diagram methods

v

Evaluate the global stability of the
guyed tower by eigenvalues

Figure 6.21 Flow chart for global stability assessment.

In a rigid plastic rectangular beams, the shear stress is

1,1
O—bh—h
= 12 4 _ 30 (6.94)
12
If Tresca yield criterion is admitted, the maximum shear stress is
T= la (6.95)
2° '
Thus,
0, = %bh (6.96)
M, = %bhz (6.97)
O,L 2L . : :
So v= A = ETR which means the index o in some extent reflects the factored
0

ratio of beam’s length to depth.
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To determine the stability of a structure, the eigenvalues check is used as described by
Pai (2007). Because
[K§aD} = {ar} (6.98)
Where [K] is the global stiffness matrix; {AD} is the displacement vector; {AF} is
the force vector. If {AF}= A{AD},
(& ]-2l1DiaD} = {o} (6.99)

Where A is eigenvector; [/] is an unit vector. If A, <0, the variation of energy is
AW =

That means the structure will release energy during deformation, which actually
is impossible. So if any eigenvalue becomes less than zero, the structure becomes
unstable.

To demonstrate the application, one specific example is provided in this section.
The height of the mast is 150m and has four layers of cables that are connected at 30,
60, 100, 140 meters (Fig 6.22). The mast of the tower is an equilateral triangle of 1m
length. The cross section of the pole is assumed to 0.05x0.05m and the strut is
0.02%0.05m (Fig 6.27 (a)). The radius of the cables is 3.16cm. The material is
AISI-3140 steel with a yield stress of 620 MPa. The charge is 1 tonne TNT with

standoff of 100m.
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Figure 6.22 Geometry of guyed tower.

Because the members in the tower are slim, the failure associated is bending
failure. Shear failure is another possible failure mode, which requires much higher
peak pressure. The critical P-I diagrams for each type of components are as shown in
Figs 6.23-6.26. For pole elements and lateral struts, the external impulsive loads are
less than the critical loads. This indicates they are safe for such loads. But for
diagonal struts, their loads exceed the strength. All of the loads are in the zone of
failure mode 7.

The impulsive load blows off all diagonal slim struts in the mast as shown in
Fig6.27 (b). But all lateral strut and pole elements have survived, which maintains the
guyed tower’s integrity and stability. By using eigenvector analysis, it is found that
the minimum eigenvalue of the tower is greater than zero, which indicates that the

structure is still stable and won’t collapse under specified impulsive loading.
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Figure 6.23 P-I diagram and impulsive loads for poles.
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Figure 6.24 Impulsive loads for poles.
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Figure 6.25 P-I diagram and impulsive loads for lateral struts.
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Figure 6.26 P-I diagram and impulsive loads for diagonal struts.
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Figure 6.27 Mast components (a) before the impulsive loading, and (b) after the

impulsive loading.

6.7 Summary

The proposed methodology is effective in the individual load assessment, safety
evaluation and global safety evaluation. Certain empirical formula can easily predict
the intensity of impulsive load on big guyed towers. The developed P-1 formulas can
efficiently facilitate engineers in the assessment of survivability of truss and beam
members under impulsive load. Different boundary conditions (simply supported or
clamped) and impulsive load type (rectangular or triangular) will lead to different P-I
thresholds. Critical curves for rectangular and triangular loads merge together in
impulse-controlled and peak pressure-controlled regions. The global stability of a

guyed tower can be determined by the eigenvalues of the structure. Due to the
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inherent redundancy in guyed towers, they are expected to survive most types of light

or medium impulsive loads.
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Chapter 7 Conclusion and Future Work

7.1 Summary

In this dissertation we have extensively explored the nonlinear responses of guyed
towers under large static loads and seismic loads. Two types of nonlinearities are
included in the modeling: geometrical nonlinearity and material nonlinearity.
Nonlinear characteristics of trusses, cables and beams are studied using various
demonstrating examples. Material nonlinearity is added into the formulation of truss
and cable elements to enable simulating of cases that not only have large deformation
but also have large strain. Two types of guyed towers (short guyed tower with taut
cables and high guyed tower with sagged cables) are analyzed with the
implementation of truss, cable and beam elements. Both static and dynamic
simulations are conducted. Material nonlinearity is finally included in the large static
deformation.

The response and global stability of guyed towers under impulsive loads was
evaluated in chapter 6. The impulsive load on specific members is assessed by
empirical formulas. Two failure types, shear failure and bending failure, are realized
next. With five possible transverse velocity profiles, response of rigid plastic beam is
formulated for rectangular and triangular impulsive loads. The influence of boundary
conditions was discussed as well. Five failure modes for rectangular loads and twelve
modes for triangular loads were differentiated. A specific example of a guyed tower
under impulsive load was conducted to demonstrate the comprehensive application of

the P-I diagram method with nonlinear finite element analysis.
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7.2 Conclusion

The application of nonlinear finite element and algorithms can successively trace
static and dynamic response of guyed towers. Consideration of geometric nonlinearity
is sufficient for large deformation with small strain. The dynamic analysis for a high
guyed tower can be time consuming because of the large size of degrees of freedom.

Linear analysis may be proper and efficient for guyed towers that have small
static deformation. Beyond some critical points, linear analysis is no longer accurate
and nonlinear analysis is needed. For truss towers under seismic loads, linear modal
analysis usually underestimates the corresponding vibration intensity, but it requires
much less computation effort.

Consideration of material nonlinearity is very necessary for large deformation
with large strain. An isotropic hardening model is proper for static cases and dynamic
hardening can represent material constitution under dynamic loads. It is seen that
inelasticity make structures behave softer than elastic ones. The inelasticity also helps
in the dissipation of seismic response of truss towers, which is beneficial to structural
safety as long as the strain remains below ductility limits.

The proposed methodology for global safety assessment for a guyed tower is
effective. The developed P-I formulas are convenient to check the safety of individual
member. It is also found that shear failure is a relatively rare phenomenon for mast
members because they are usually slim. But some struts can have bending failure and

form a potential failure mechanism.

7.3 Future work

Following tasks should be accomplished in the future to improve analysis.
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1.

Implementation of material nonlinearity in beam elements. Because the strain in
beam element includes axial strain and bending strain, the combination of these
results should be considered.

Parameter study of various indices for guyed towers, such as height, cable number
and prestress level. Further study can include optimization to assist structural
design.

If the impulsive loads are evaluated by FEM software like LS-DYNA, the
impulsive loads on each member would be more accurate and the global safety

evaluation would be more close to reality.
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Appendix A
Derivation of P-1 Diagrams for Combined Failure Mode of

Simply Supported Beams subject to Rectangular Loads

2M
Mode I. When v <1 and p, >—%v

LZ

(1) t<t,
The governing equation for the dominant shear effect is

0 ..
82 p,my (A1)

Integrate with respect to x and consider the initial condition Q = -Q, whenx =1L,

_Qo =—Py- L+mYL
Thus,

"R P

poriaiai. (A.2)

g
Integrate Eq. (A.2) with respect to x and consider the initial condition y =0 whent =0,

g= Q¢ Poy (A3)
mL m

To initiate the motion @ >0, so

. 2M
p,L>Q,, i€, p, >?°u

Integrate Eq. (A.3) with respect to x and consider the initial condition y =0 whent =0,
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L
mL 2 m 2

At the end of loading, the velocity and displacement of the beam is

. —Q
t+t

y= mL
Qi Pots
mL 2 m 2

(2 t, <t<t,
Aftert, the load is removed, Eq. (A.1) turns into

o)

i
OX y
Integrate Eq. (A.7) with respect to x
- Qo =myL
oo - QO
Y=L

Due to continuity condition, i.e., Eq. (A.5) and Eq. (A.6),

y=_—Q°(t—td) ( Qot +mt) ~Qoy, Po

mL mL mL m

y:

mL 2 mL 2mL
QO 2 pO tdz +&td t
2mL 2m
The deformation will cease at
L
tf = Po td
Qo

The final maximum deformation of the beam is
167

_Qo (t_t ) +[ Qot n mt j(t—td)‘f‘(pOL_QO)tj

(A4)

(A.5)

(A.6)

(A7)

(A.8)



y, = po(poL_Qo)tz

2m ‘
o A9
_ Lpots — Potq
2mQ, 2m
If the average shear strain damage criteria is applied, then
hy = Mﬁ (A.10)

7/v - ZmQO d

Set the impulse quantity | = p, -t,, the critical P-1 diagram equation for shear failure is

derived as
amhy, (1 _L (A.11)
I Po Qo
2M,
Mode I1. When 1<v <15 and p, > E (40 -3)

From the transverse velocity profiles, it can

V=9, +(7, —ys)(l—fj 0<xsL (A.12)
(1) t<t,

0 .. . .. X

6_3 = _pO + mys + m(ym - ys {1_Ej (A13)

Integrate with respect to x and consider the initial condition
Q=-Q,at x=L
Q=0at x=0 (A.14)

Eq. (A.13) can be turned into
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. X2

) N x?
=—pPX+my xX+m(y, —
Q pO ys (ym ys{ ZLJ

since ﬂ:Q ,M=M at x=0and M =0at x=L

Integration of Eq. (A.15) gives

x> X N GRS
M :_p0?+mys?+m(ym —ys)(7—6—|_]+ M,

§ L
~Q, =—poL+my,L+m(y, —ys)g

2 2

Lo L
0=—py =+ My, —+m(§, = ¥.)=+M,

Solve the above Eqg. (A.16) and Eq. (A.17)

_ Po _6Mo +2Qo

Y m ml mL

y:&+6MO_4QO
m ml®» mL

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

Integrate Eq. (A.18) and Eq. (A.19) with respect to time and consider the initial condition

as

Yo=Y, =0and y, =y, =0att=0

. Po
=—1- t+
I m mL? mL m  mL?
M 4 2M
yszﬁu6 Ot Q[P 2(3-4u)t
m mL mL m mL

GMO 2Q0t=|:&+2M0(20—3)}t

(A.20)

(A.21)

. : L . 2M o
To initiate the shear slide motion it requires p, > —20(40 —3), otherwise it will keep
L

still. Integrate Eq. (A.20) and Eq. (A.21) with respect to t
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P t’ 6M0t2+2Q0t2

~ ol DOMol L A22

Y m?2 mk22 mL?2 ( )
2 2 2

y Pl M t® 40, ¢ A23)

+ —_
m?2 mL22 mL?2

Substitute Eq. (A.22) and Eq. (A.23) into Eq. (A.12)

y:&t+6M20t—4Qot+ 6Q0t—12M20t (l_ij (A24)
m mL mL mL mL L

Integrate Eq. (A.24) with respect to time t

2 2 2 2 2
y:&t_+6M20t__4QOt_+ 6Q0t__12|v|20t_(1_1} (A.25)
m?2 mL° 2 mL 2 mL 2 mL 2 L

) t, <t<t,

Eq. (A.1) turns into

oQ .. . . X
—=m m — 1-— A.26
Pl (Vi ys)( LJ (A.26)

Integrate with respect to x and consider the initial condition Q =0 at x =0 and

M=M,at x=0

2
Q=mysx+m(ym—ys)(x——j

X2 x> X3
M=my, ——+m(y, —§.) - |+ M
ys 2 (ym ys{z GLJ 0

since Q=-Q, at x=Land M =0at x=L

§ N
—Qo=mysL+m(ym—ys)E

2 2

(A.27)
0=my, = +m(¥, — ¥, )=+ M,
2 mo 703
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Solve the Eq. (A.27)

2Q
= M, -0 A.28
Y mL2 mL (A.28)

s:6M20_4Q0 (A.29)
mL mL

Integrate Eq. (A.28) and Eq. (A.29) with respect to time t and consider the initial

conditionasat t =t

ymz&t _6 Ot 2Q0t

m® m2*° mL

. Py 6M0 4QO
=—1 — 1 1
Vo= me T e T L

Po ta 6M0t§+2Qoﬁ

I m?2 mk?2 mL?2

&ﬁ 6M, t§  4Q t;

The final solution is

:i(_ M, +ont+&td
m

™ mL L
2 (3Mm, P,
== —2Q, ft+-ot
° mL( L on m °
M,
yo =2 Py, Py
mL 2m

1 (3M, po Po .2
- = 2 Poy g Poy
s mL( L QO) m 2m °

It is evident that the transverse shear slide ceases at the supports when @, =0
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when

_6pty v-1
" m 4v-3

(A.30)

Sincev >1, y, >0. Thus the beam has kinetic energy which should be dissipated in the

next phase of motion.

So at the end
_[0v-9)pitiL® p, .,
" 4Mm(4v-3)* 2m
S 3 SR
* 4M,m(40-3) 2m°
(3) t, <t<t,
@zmym(l_lj
OX L
+Q=0atx=0
. x2
o= x-2)
-.-ﬂ:Q and M =M, at x=0
OX
x2 X3
M=my |—————|+M
ym[ 2 BLJ 0
‘M=0at x=L
N 3M,
Vi mL>
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(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)



When ensuring the continuity condition at t =t

~_ _3M,_ 3p,
=——D0t4 0t
In =T om
242 2

Yo, :_%021:2_,_3&% . _&tg_,_L
2mL 2m 2m ¢ 8M,m(3-4v)

So the motion finally ceased at

t = Po 'td 'L2
f 2M,

The final transverse displacement is

(6v-5)pdtsL® Py .
Yi = M —5 L
;m(dv-3) 2m

Apply the failure criteria, the critical P-1 diagram equation for shear failure is

2mhy, 1 Lo

& Po =Qo(4U_3)

The critical P-1 diagram equation for bending failure is

amLg 1 L?-(6v-5)
4+ 7
12 p, 2M,(40-3)

2M, 2M,

Mode 1I.  When 1<v<15 and=5% < py <=5 (40-3)
6M
or 15<v and LZOSpos L20

There will be no transverse shear slide at the support.
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(1) t<t,

oQ N X
—=—p,+my_|1-——
x Po ym[ L]

Integrate with respect to x and consider the initial condition Q=0 at x =0

XZ
=—p,X+Mmy_| X——
Q=—poXx+ ym[ ZLJ

since aa—M:Q, M=M,atx=0and M =0at x=L.
X

X2 x?2 X3
M=-p,—+mj | ————|+M
pO 2 ym[ 2 6L] 0
Solve Eq. (A.45)

_3p,  3M,
™ 2m  mL?

Integrate Eq. (A.46) with time t

ym =|:3ﬂ_3|v|0:|t

2m  mL?

Integrate Eq. (A.47) with time t

@) t, <t<t,
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(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)



Integrate with respect to x and consider the initial condition Q=0 at x=0and M =M,

at x=0
Q= mym(x _;_3 (A.51)
M = mym[x—;—gj +M, (A.52)
since M =0at x=L
0=my, L?er M,
Solve the above equations
Jo = - (A53)

Integrate with respect to time and consider the initial conditionas at t =t

3M, . 3p,
= t+—>t A.54
ym mL2 om d ( )
3M, ., 3p, 3P, >

=02 "0, -0t A.55
I = oL 2m ¢ 4m (A-59)

o : : P, -ty - L

It is evident that the bending ceases at the supports when y, =0 t, = oM

0
3pit’l*> 3

.= pO d _ pO ts (A56)

- 8M,m  4m

The critical P-1 diagram equation for bending failure is

2
anp 1L (as)
3l P, 2M,
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Mode IV.  Whenl5<v and p, >83|v|—°u2

LZ

There is shear slide at the support.
(1) t<t,

The transverse velocity field is like

L-x (A.58)

When 0<x<¢&,,Q=0and M =M,

.. Q
©oX

When &, <x<L

oQ L-—x

o = P m, - ) (A59)
_ ~ _m(x—go)((—ZL+x+§o)ym+(—x+§0)ys) A60
Q=-py(x-&) A 2) (A.60)
since Q=0 at x=¢&,.
M =i[3p (L+x=2&)L-&)-my, (2L + 2Lx - x> —6L¢&, +3£7)
6(L-&) ’ v °T (A6

—my, (L2 + Lx + x? —3LE, —3x&, +327 )]
since M =0at x=L.

Since Q=-Q, at x=L and M =M, at x =&, solve the equations,
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m m(l-_fo)2 m(L_Sgo)
y, =10 oM, - = 1Q (A.63)
m m(L_go) m(L—§0)
oo _ Po
< Y m
2v0-3
&= L
So %
2
yS:&_‘lQ_OU:&_BM_O'; (A.64)
m 3mL m 3mL
3L—2Lv+2xv)
Q=—( K ) Qo (A.65)
_ _ 2,2 2 _ 2
v = 20(L=x)2Lxo(e 4U)+4X31) +12(27-180+ 4v )]M0 (A66)
27L
To initiate the shear slide motion it requires p, > 8?:\/|T2002 , otherwise it will keep still.
Yim = Poy (A.67)
m
_ P2
Vo = ot (A.68)
2m
. p, 8M v
_| Fo _ t A.69
s [m 3mL? (A9
p, 8M, v’ |t?
—| Mo _ A A.70
s [m 3mL? )2 (A70)
at the end of this phase
g, =Poy, (A71)
m
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v _Zp_r;tg (A.72)

. p, 8M v?

e} "
p, 8M v t?

s :(FO_ L ]% o

)ty <t<t,

When 0 < x <&,
+Q=0and M =M,

.'.@:mymZO = ym =0
OX

When &, <x<L

@:mys_mys L X :mysx_éo
OX L—% L-

since Q=0 at x=¢,

-
Q= my, Z(L—é:o) (A75)

since Q=-Q, at x=1L

-2
- -2Q, (A.76)
m(l-—égo)
since M =0at x=L
2 2 _ 2
M = —my, (L — x) X XL —3be, —3xe, +3¢ (A77)
6(L-¢&,)

since M =M, at x=¢,
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20-3

&, = 5 L ,which means that the plastic hinges region hasn’t changed.
19
Thus,
= ZM, (A.78)
Ys = 3mL? '
Yo =221, (AT9)
pO pO 2
=—t,t———t A.80
Y m 4t oy ( )
. Pty 8Mw?
= - . A.81
s m 3mL? (A81)
AML*t*  potyt  potd
=-— - A.82
Ys 3mL? m 2m (A82)
o L*p, -t
So the motion will cease at t, = SL P, -4 when
M,v
Vo =21, (A83)
2 _ a2 . 2
v :_(8|\/|OU 3L pg) Pots (A84)
8M ,mo
y, =0
2 21 242
ys=—de+ 3P Lty (A.85)

2m  16M mo?

@)t <t<t,
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At the end of last phasey,, =0 the beam has a kinetic energy that must be dissipated as

plastic work. In this phase the position of bending hinges begin to travels from x =&, to

the mid span tillt,.

When 0<x<¢&
. Po
=—t
ym m d
Po Po .2
=—1t,t———t
Y m e o
When £ <x<L
= . =20t .
y ym L—f m d L_é:
. Po L-x .
=29t . .
R
& [ Hf}
=p.t, - Ax =&)L=
Q pod (L—:f)z (X é:) 2
L X
pota(x 5)2(——5]
2 6 3
M=M,+ 5
(L-¢)
Since M =0at x=1L
. -3M
5:—0
potd(l—_f)

Solve the above differential equation with the initial condition t, =

20-3
20

L

§=6 =
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8M

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)



L— \/6tM, Pyt

é: =
Poly

2
So&=0, tl=pgtTd" when

0

Ym =

pot ;L ~ Po Po o _ Po 2 po'—2 1
6M,m 2m ° 2m 3M,

@)t <t<t,

The transverse velocity field is

since M=0at x=L

-3M, Poty
= -t
Vi mL? oz ot m

—3M, (t-t,)° Pty Po o Pl
- t—t 1
Y mL? 2 T m t-t)+ 2m °( 3M,

solve y,, =0

Poly L*

t, =
2M,

which predicts the mid-span displacement
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(A.93)

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)

(A.99)

(A.100)

(A.101)



pZ L2t2 p
“aMm 2m® (A.102)
0

f

Apply the failure criteria, the critical P-1 diagram equation for shear failure is

2mhy, 1 3L

— = A.103
| p, 4Qu ( )
The critical P-1 diagram equation for bending failure is
2
ap,L_2b (A.104)
I p, 3M,
Mode V. When 1.5 <v and 6M2° <p, < 8M2° v
L 3L
There will be no transverse shear slide at the support.
(1) t<t,
The transverse velocity field is like
Vo 0<x<é,
y = - A.l
y ym L-x 50 <x<L ( 05)
L-%
Sowhen 0<x<¢&,, Q=0and M =M,.
0Q .
s—===p,+my_ =0
X Po + MYy,
Ly =
m
When &, <x<L
o0Q L—x
>~ _p+p —2 A.106
PR (A.106)



since Q=0 at x=¢&,.

M = (t 2 [3po(L+x 28, L - &) po (2L + 2Lx— x? 6L, +322)|

H[L2+LX+XZ_3(L+X)§O+3§§]
since M =0 at x=L.

Since M =M, at x=¢,, solve the equations

6M,

e =L
° Po

(A.107)

Thus if 6M2° < p,, the bending part is a district. Otherwise it will be confined to only one
L
bending hinge.

M+(L—x)po—@(L—x)2 o, |-Po (A.108)

Q=" 12 M,

Y0 (LX) p,. [P (A.109)

2
M = 6poMo (L—X)—(L_X) Po \/E
2 2 36 M,

at the end of this phase

Y =—t (A.110)
m

y = Poy (A.111)

" 2m

) t, <t<t,
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In this phase the position of bending hinges begin to travels from x = &, to the mid span

till t,.
When 0<x<¢&
- Po
=2t
ym m d
pO pO 2
=0t t——2t
Y m T o
When £ <x<L

Since M =0at x=L

~3M,

fz potd(l-_f)

Solve the above differential equation with the initial condition t =t

6M

§=¢&=L- :

Po

£= L_\/6tMopotd
Polq

(A.112)

(A.113)

(A.114)

(A.115)

(A.116)

(A.117)

(A.118)

(A.119)



2
So £=0, tlngtTdL when

0
- Po
=0t
ym m d

_ PotiL® P2 _ Po ol Pl
" 6M,m 2m ¢ 2m ‘| 3M,

(3)t, <t<t,

The transverse velocity field is

since M =0at x=L

j = -3M,
m mLZ
-3M, Poly
=70 (t-t,)+
ym mL2 ( 1) m
— —_ 2 ’
m: 3|\/I20 (t-t,) L Pols (t—t,)+Po2 Pl
mL 2 m 2m 3|V|0
solve y, =0
t = PotyL*
IV

which predicts the mid-span displacement
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(A.120)

(A.121)

(A.122)

(A.123)

(A.124)

(A.125)

(A.126)



p§L2t§ Po .2
=———t A.127
Y+ 3M,m  2m d ( )

Apply the failure criteria, the critical P-1 diagram equation for bending failure is

2
atp 12t g (A.128)
I P 3M,

The results can be summarized in Table A.1 using the normalization criteria (EQs. (6.92)

and (6.93)).

Table A.1 Normalized P-1 equations for rectangular impulsive loads

Failure
Type Mode Shear failure Bending failure
hy, 1
_—V+—:1
I i2 P N/A
Simply h7v+i: v |j_ﬁ+i:M
11 i’ p, 4v-3 i’ p, 4v-3
Supported 2 Lp 1
111 N/A 37 T, Y
Beams h 1 3 L 1 O4
o, L_3 Y1
v i p, 4v i’ p, 3
b, 1 _4
V N/A iZ p, 3
hy. 1
_—V+—:l
I i2 ' p, N/A
hy, 1 v LB 1  u(3v-5)
11 R C ) I TG )
Fully i p, 2(20-3) iZp, 2(2v-3)
2Lp. 1 v
Clamped 111 N/A 307 p, 2
Beams hy, 1 _3 L, 1_ 2
v i’ p, 2v i P
Lp 1 _2v
V N/A i2 po 3
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Appendix B
Derivation of P-I Diagram for Combined Failure Mode of

Simply Supported Beams subject to Triangular Loads

4M
Mode I. When v <1and ——" < Do

L2

() t<y,
o0 t ..
= ——pll-— |+ B.1
o po( tJ my (B.1)
Solve Eq. (B.1),
j} :—_ QO +&(1_LJ (B2)
mL m t,

Integrate Eq. (B.2) with respect to time t,

=, P, 1
y= t+ [t 2t,,j (B.3)

mL m

If p,L < Q,, then the motion will not even begin. Integrate Eq. (B.3) with respect to

time t,

. 2 2 3
mL 2 m\2 6t

At the end of loading, the velocity and displacement of the beam is

=9, P (B.5)




_ 2 2
=l Pl (B.6)

mL 2 m 3
(2) 1, <t<t,
. =0 -0, Dy -0, Dy
=—(t—1,)+ t,+—t, |= t+-—t B.7
Y mL( d) mL ¢ 2m“ mL 2m ¢ B.7)
-0, (t_td )2 -0, Do (poL_3Q0) 2
= + t, +——t t—t,)+———=¢ B.§
Y mL 2 mL “ m ( d) 6mL ¢ (B-8)
If p,L =220Q,, the deformation will cease at
L
i, =Ly, (B.9)
20,
The final maximum deformation of the beam is
3p,L—4

YT amg,
Setting the impulse quantity / =% P, -t, the critical P-I diagram equation for shear

failure is derived as

=L (B.11a)

which is equivalent to

0 0
oM AM
Mode IL. When v <1and ——2C < p <220,
L2 0 L2

(1) t<t,
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@:—po(l—%j+mj} (B.12)

Solve Eq. (B.12),

y=—o Pofy L (B.13)
mL m t,
Integrate Eq. (B.13) with respect to time t,
_ 2
y‘=—Q°t+& (- (B.14)
mL m 2t,
If p,L <Q,, then the motion will not even begin.
_ 2 2 3
mL 2 m\2 6t

At the end of loading, the velocity and displacement of the beam is

. =0, Py
= t,+—t B.16
Y L 4 o ( )
-0, t; t;
Ol Pl (B.17)
mL 2 m 3
2M 4M
It Q,<p,LL20,,1e., TOU <p, < LZO v, then the motion will stop in this phase,
9,
P= =, (B.13)
then the maximum displacement is
22 0 )
y, =Pl X (B.19)
3m poL
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Setting the impulse quantity / = % P, -t,, the critical P-I diagram equation for shear

failure is derived as

1
Sl LN R (B.20)
8I° oL

4M
Mode ITI. When 1 <v <1.5and —2 (40 -3)< p,

LZ

There is shear slide at the support.

y=y's+(y'm—y's)(l—%] 0<x<L (B.21)
(1) t<t,
o0 t .. . X
—=—pol1-—|+my, +mly - 1-— B.22
ax po[ tdj ys (ym ys{ LJ ( )

Integrate with respect to x and consider the initial condition O = -0, at x = L and

O=0atx=0
t . .. . x?
O=-p,|1-— x+mysx+m(ym—ys xX—— (B.23)
t, 2L
sinceaaﬂ:Q,M:Moatx:OandM:Oatx:L
X
t)x? x? xr X
M=-p|l—-——|—+my —+mly -y ) ——"—|+M B.24
po( tdjz i, (3., y.s)[z o |t Mo (B.24)
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L

t .. .. .
-0, = —po(l - t—jL +mj L+m(3, -, )5
"2 i i (B.25)
t |L L L
O=—py|1-——|—+my, —+mly, -y, )—+M
po( tdjz i+, = 3) 5+ My
Solve the above equations
t
Po [l_tj 6M, 20
.. d 0 0
_ _ + B.26
o m mL>  mL (B-26)
t
b °£1_zJ 6M, 40
. d 0 0
_ + — B.27
Ys m ml*  mL (B.27)
Integrate with respect to time and consider the initial conditionas y, =y, =0 and
Vo=y,=0att=0
: oM 2
y’m:ﬂt—t ——2t+ Qoz
m 2t, mL mL
) (B.28)
2M
Pl I, 2 (20-3)
m 2t, mL
: oM 4
)‘;Y — & t_t_ +_20 &t
Coom 2t, mL mL
, (B.29)
2M
LY PR D (3-4v)
m 2t, mL
_ Pt ) 6M,f 20, 7
" om\2 6t,) mLl>2 mL 2
, \ (B.30)
M
Lol Mo (g —-3)2
m\2 6t,) mL

1
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T ml\2 6t,) ml* 2 mL2
s A% (B.31)
Y R NS
m\2 6t,) mL

2M D
To initiate the shear slide motion it requires p, > —20(40 — 3) , otherwise it will keep
L

still. At the end of this phase, the velocity and displacement will be

pO td 2IMO
=—+—F 2U—3t B.32
m 2 L2 ( )d ( )

. Pot;, 2M,
—£0ld 20 (3 _4p) B.33
= (o), (B.33)
potj Mo 2
— Lo’ 20-3) B.34
v, =20 -3), (B.34)
2 M
yo=Lol L 0 3_ap)2 (B.35)
m 3 mL

. AM : . :
So if IE % (40 -3)< p, the shear slide will cease in the next phase.
(2)t, <t<t,

oQ .. . X
—==mj, + -y 1-= B.36
o m(3, ys)( Lj (B.36)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
X2
Q= mj x+m(3, - 3,) x—— (B.37)
2L
x2 xz x3
M=mp —+m(yp -y | ——"—|+M B.38
ys 2 (ym yb 2 6L 0 ( )



since =-Q,at x=L and M =0 at x=L

. . .\L
_QO =mysL+m(ym _ys)E

2 2

. L ..

Solve the above equations

- oM, 20,
m 2
M”;L mL (B.39)
=—2(2v-3
mlL? ( )
. oM, ~ 40,
s 2
’;ALI mL (B.40)
=——2(3-4v
ml? ( )
Integrate with respect to time and consider the initial condition as at # =¢,
Doty  2M,
== 44+ 2 (20-3) B.41
" m 2 mLz( )d ( )
. Pty  2M,
=22 44 J(3—-4p) B.42
s m 2 I’I’lLZ ( )d ( )
Dy tj M, 2
=<4 20-3) B.43
v, =t 20-3), (B.43)
Dy tj M, 2
===_< 4 3—4u)t B.44
yo= b3l (B.44)
The result is
2M t, 2M
b= (20-3)e—t, )+ 2o 1 220 (2 - 3),
mL m 2 mL B.45
2M t (B-45)
=220 (-3 + Lol
mL m 2
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Pola  2Mos_ gy,

y, = M, C(3-do)t—t,)+ L+ =
’2’"]@ m 2 mL (B.46)
Mo 3_gp) 4 Lol
© ml? m
M, p 2M Do Lo
= =3, | 22 2 o ) 20 2o
M,(20-3) , pt
= OmL2 t* + 60md (3t-1¢,)
(B.47)
M p 2M, Do Lo
R B L 07 AL RE R
M, (3-4v t
OI(an )t2+p6°m" (Bt—t,),
(B.48)
It is evident that the transverse shear slide ceases at the supports when @, =0
/= po'tar'l’2 (B.49)
Y 4(4v-3)M '
(B.50)

_3potd v—1
I =T a0-3

Sincev >1, y_ > 0. Thus the beam has kinetic energy which should be dissipated in the
next phase of motion. So at the end

2
16M0m(4u 3) 6m

pot L Py .2
y = — Loy (B.52)
16M m(40-3)  6m *

@)1, <t<t,
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v O0=0atx=0
. x?
=my |x——
0 ym( 7L
'.'aﬁzQandM=Moatx:O
ox
xr X
M=my | ——— |+M
M=0atx=L
. __3M0
Im mL*

When ensuring the continuity condition at # = ¢,

_3M0( —l‘b)—|—3p0td ) v-1

o it

m mlL? m 4v-3
:_3M0t+3p_0td
mL* dm

Ym =

oml’ m  4v-3 7 16M ym(4v—3)?
__3]\4012 +p0(9t_2td)td _ potal’
2mI? 12m 32(40 —3)M ym

So the motion finally ceased at

_ Dol L

t
d 4M,

The final transverse displacement is

195

My (g py3P0le 071 (4, (100 -9)petsl’ _ py 2

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)



V- (6v=5)pgtal’ _ py -
7 16Mym(4v-3) 6m ¢

The critical P-I diagram equation for shear failure is derived as

mhy, 2 Lv
=+ =
I*  3p, 20,(4v0-3)

The critical P-1 diagram equation for bending failure is derived as

mLp 2 _ (6v—5)L?
I 3p, 4M,(40-3)

4AM 2M
Mode IV. When 1< v <1.25and — < p, <=—=(4v-3)
L L

or 1.25<v<1.5and M, (4v-3)< p, <%(4U—3)

LZ

The shear slide will cease in the first phase.

() t<t, <1,

0 t .. . . X
L _ —po[l—t—]+mys +m(j, —ys)(l——j

Ox 4

2 [p, L2 —2(40 - 3)M, |

196

(B.60)

(B.61a)

(B.61b)

(B.62)

(B.63)



_ 2
Im 3mpgL°

[(~1728+ 60480 — 691207 +25600° )M +(— 540+ 11520 - 5760° JI2M 2 p,

+(=36+240)L' M p2 + L° p; ]
2

= ZtgLé [32(41) —3)(50-6)M; —36(4v—3)d4v—5)’M_ p, +12(20 -3)L*M ,p¢ + L° p; ]
mp,

-2 o sot, 2] 250300, + )

- 3mpgL°

_ Ztaz! [(6 ~ 8U)M0 + L2p0]3
- 3mp L°

s

(2)t, <t<t,

9 _ =L emy, [1-F
P po(l th+mym[l Lj (B.64)

Integrate with respect to x and consider the initial condition Q =0 at x =0

O=-p, [1 — ti}c +my, (x - %} (B.65)

since aaﬂ:Q,M:M0 atx=0and M =0at x=L
x

t x2 x2 x3
M=-p|l-—|—+mj | ————|+M B.66

Solve Eq. (B.66) and integrate with respect to time

t
3]70(1_]
. t,) 3M,
- — B.67
Y 2m mL? ( )
N2 p, + M ¢, — 2L tp t
V== (20 p, oty =2Lpt4) (B.68)

dml’t,
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-1 3173,3 2002 723
=——[32(40-3) M t, +48(40-3) M, p,Lt
12L6mp§td[ ( ) ola ( ) 0Pl t, (B.69)

+6M,p2Ltt, (36> + 1262 —16ut2 )+ piL° (367 —9rt, +41) )]

Ym

At the end of this phase, the velocity and displacement is

7 aM,
=L py -5 B.70
12
¥y = _[16(40—3) M3 —24(40—3) M2 py L* +3M p2L* (160~ 15)+ p2L° ]
6L mp;
(B.71)
4M
So if —2>< p, < LZO (40 —3), the motion will cease in the next phase.
@)1, <t<t,
oQ .. X
—=my,|1-— B.72
o ym[ Lj (B.72)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
x2
=my | x—— B.73
0 ym( 2L] (B.73)
xr X
M=my | ——— |+ M B.74
ym( 2 6LJ 0 ( )

since M =0 at x=1L

Solve the above equation
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po=— B.75
S (B.75)
Integrate with respect to time and consider the initial condition as at # =¢,
. 3 2
3 = ——(pot, 1> —4M 1) (B.76)

dmL

= [p21% (9t =7t )+32(40 =3) M 3t> — 48(4v -3) M2 p, [*t>
12L6mp§[p0 a’( d) ( ) ola ( ) oPol 1y (B.77)

—6M,p2L* (37 +1262 16012 )

ym

It is evident that the bending ceases at the supports when @, =0

_ Pyl L

t
4 4M,

(B.78)

tj 3. 4 24 .3 2 22714
=———[256{4v-3) M, —3844v-3) M p,L" +192(4v-3)M ; p; L
Yy 96L6M0mp§ [ ( ) 0 ( ) 0Po ( ) 0 Po (B.79)

- 56M0p3L6 + 9L8p3]

Apply the failure criteria, the critical P-I diagram equation for shear failure is derived as

1
dmpahy, |1 (0=3)0, (B.80a)
81° poLv

For bending failure, the critical P-I diagram equation is derived as

12mLp | 28 _ 9L? . 96(4v-3)M, 192(40-3)'M; . 128(40-3)’ M

I’ p, 2M, poL’ poL* poL’
(B.80b)
2M 4M
Mode V. When 1<v <1.25and =2 (40 -3)< p, <—°
L L

The whole deformation will cease in the first phase.
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(1) 1<, <t,

Ox 4 L
440 -3)M t
=2 <
l t p0L2 L
g, = 2O [ 1l 3)u,]
mp,L
2t2 2 2
[ p— 6[(6 suIM, + L p, | -[280 =30, + L2p, |
3mpyL

@)1, <11, <1,

o0 t .. X
o pl1-— |+ 1-=
ax po[ td] mym( Lj

Integrate with respect to x and consider the initial condition Q =0 at x =0

t x’
—po|ll——x+my, | x——

. M
smceéa—=Q,M=M0atx:OandM:Oatsz
x
t\x’ x X’
M=-p|l-——|—+my,| ——— |+ M
B A e A

t
3pel 1——
0( td]_3M0

2m mL*

B =

3(L2¢2 p, +4tM b, —2Ltp )
4mL’t,

Vi
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(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)

(B.88)



-1 34703,3 2002 723
=——[32(40-3) Mjt, +48(40-3) M p,Lt
12L6mp§td[ ( ) ola ( ) oPolt, (B.89)

+6M,p2Lt, (36> + 1262 —16vt2 )+ piL° (367 -9t + 4t

Ym

So the motion will cease at

2M
1 :(l—poLg]-th <t, (B.90)

the final displacement is

2t5 2 3 3 2 2 2
= 8|l—15+54v—-72v" +32v —123-12v+8v L
3L6mp§ [ ( )MO ( )M()p() (B.91)

+6(20-3)M,piL* +L°p;]

Yy

The critical P-I diagram equation for shear failure is derived as

1
Smpohy, |, B0=30, (B.92a)
81 poLv

The critical P-I diagram equation for bending failure is derived as

3mLp 1 6(20-3)M, 12(80> ~120+3)M; N 8(320° — 7207 + 540 —15)M;

B
8I°  p, oL’ oL poL’ [B]

(B.92b)

2M

LZ

0 (40-3)

2

2M
Mode VI. When 1 <v <1.25and 7 L<p, <

4M,
12

2M
or 1.25<v and L20 < p, <

There will be no shear slide in the first phase and the whole motion will cease in one

phase.
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y‘:y‘m(l—ij 0<x<L (B.93)

(1) 1<, <1,

99 __ po(l —tij ; my(l —%j (B.94)

ox 4

Integrate with respect to x and consider the initial condition Q =0 at x =0

t x’
=—p|l——|x+mpy | x—— B.95
0 po[ td) ym( 2LJ (B.95)
since aaﬂ:Q, M=M,atx=0and M =0at x=1L
X
t\x? xt X
M=-p|l-——|—+mpy | ——— |+ M B.96
pO[ th 2 ym[z 6LJ 0 ( )
t
3}%[1—]
. td 3M0
= - B.97
m 2m mL? ( )
3 2 IM
y, = Lol |22, (B.98)
2m 2t, mL
3 2 3 3M 2
<) LA i 2o.f_ (B.99)
2m\ 2 6t,) mL 2

at the end of this phase,

(B.100)
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_3p0[t2 £ J_3M0 £

" 2m ?_a ml> 2

i 3M,
2m Po I?

Since then y, <0 andy, <0, the whole deformation will cease in this first phase.

(B.101)

2M
t, :(1— g]~2td (B.102)
poL
So the final displacement is
3
0
[Po - 7?)
Y=t (B.103)
mp,

The critical P-I diagram equation for bending failure is derived as

1
(’W’Ofﬂy b Moy (B.104)
41 poL
AM 2M
Mode VIL. When 1.25<v <1.5and —% < p, <=—"(4v0-3)
L L
There will be no shear slide in the first phase.
L. x
yzym(l—zj 0<x<L (B.105)
(1) t<t,
oQ t .. X
—=-p|1-—|+my, | 1-— B.106

Integrate with respect to x and consider the initial condition Q =0 at x =0
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t x’
O=-p (1——Jx+mj}m(x——] (B.107)
o, 2L

Since a@£=Q,M=M0 at x=0and M =0 at x=L

X
t)x? .. x’ x’
M:_pO l_t_ 7+mym 7_6_L +M0 (B108)
d
. 3p t IM
5y zz_n;)(l_t_ - mLZO (B.109)
d
3 3IM
i :{%(l_i _ J}O]t (B.110)
m 4 m
2 3 2
_3py [t M, ©° (B.111)
" om \ 2 6t,) ml> 2
Q) 1, <t<t,
aa_f:mym(l_%j (B.112)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
x2
=my |x—— B.113
0 ym[ 2LJ ( )
xr X
M=my | ———|+M B.114
mym(z 6LJ 0 ( )

Since M =0 at x=L

204



Solve the above equations

Ym =7 mL*

Integrate with respect to time and consider the initial condition as at # =¢,

) 3IM, 3p,
=450y
m mL* am ¢
M, , 3p, Dy 2
=— 2P+, - 20
I o 4m ¢ 4m ¢

It is evident that the bending ceases at the supports when y, =0

¢t = Doty L
! 4M,

L py
Y= s o 4 b
© 32Mym 4m

The critical P-I diagram equation for bending failure is derived as

mLp 1 _ 3L
1> p, 8M,

16M
Mode VIIL. When 1.5<vand p, > 372002

(B.115)

(B.116)

(B.117)

(B.118)

(B.119)

(B.120)

There is not only shear slide at the support but also bending hinge area in the middle of

the beam.
(1) ¢t<t,

The transverse velocity field is like
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Vo 0<x<¢,
L—x (B.121)

L-g,

y=

v+ (0, =)
Sowhen 0<x<¢,,0=0and M =M,

00 t .
= p | 1-— |+mj =0
ax po[ tdj mym

L= ﬂ(1 - ij (B.122)

When &, <x<L

%:—po[l—é}mys +m(5, —y)LL__;‘0 (B.123)
_ IR _m(x—fo)((—2L+x+§0)j}m +(_x+§0).j}s)
0= po[l td](x &) L) (B.124)

Since 0=0 at x=¢,.

L—x t .. 2 2 2
M =m[?)po[l—ZJ(L+x—2§0)(L—§0)—mym(2L +2Lx—x* —6LE, +3£2)

—my, (L2 +Lx+x* =3L&, —3x&, +3§02)]

(B.125)
since M =0 at x=1L.
Since Q=-0, at x=L and M =M, at x =&, solve the equations
M 2
¥, =20 - L) oM, ~+ 2l (B.126)
m 1y m(L_fo) m(L_fo)
M 4
jooPofio L], M 40, (B.127)
m 1y m(L_ego) m(L_éo)
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e j}m = &(I_LJ
m t,

P, :&(I—LJ—L‘Q—OU:&[I—LJ— 8M002

3mL  m t,

3L-2Lv+2xv)
Q=_( 9L2 al ) QO

M =

~20(L - x)2Lx0(9 - 40)+ 4x0> + I (27 - 180 + 40° )

271}

0
312

2
=0 1
m 2t,

24 PR
Ym =5 T
m\ 2 6t

To initiate the shear slide motion it requires p, >

s

_&(zz 7 ]_SMOUZ

T ml\ 2 6t,) 3ml

t2
m 2

at the end of this phase

. Do
= Loy
Im 2m ¢
Dy 2
=0y
m 3m ¢

207

(B.128)

(B.129)

(B.130)

(B.131)

v’ , otherwise it will keep still.

(B.132)

(B.133)

(B.134)

(B.135)

(B.136)

(B.137)



) p, 8M,’
ys= == 02 td
2m  3mL
b= &_4M002 .2
Y\ 3m 3ml? )
(2)t, <t<t,
When 0<x <&,
wQ=0and M =M,
'.a—szym:O = y,=0
ox
When &, <x<L
@zmy.q_x—fo
Ox L-¢&,
since Q=0 at x =¢,
- (X—§0)2
Q=my, -~
2(L_§0)
since Q=-0Q, at x =L
PR}
) m(L_fo)

since M =0 at x=1L

x*+ Lx+ L7 —=3LE, —3x&, +3&;

M =-mp (L -x)

6(L - é: 0 )
since M =M, at x=¢&,
2v0-3 . . . ,
& = 5 L , which means that the plastic hinges region hasn’t changed.
v
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(B.138)

(B.139)

(B.140)

(B.141)

(B.142)

(B.143)



Thus,

So the motion will cease at ¢, = -~ when
16M v
Po
=20y
m 2m d

(— 16M ,0* +9L% p, ) Dots

Yn = 96M ;mo”

y, =0

i 3l
6m  64M mv’

Vs =

(3) ¢, <t<t,

Since at the end of last phase y, # 0, the beam has a kinetic energy that must be

(B.144)

(B.145)

(B.146)

(B.147)

(B.148)

(B.149)

(B.150)

(B.151)

(B.152)

dissipated as plastic work.. In this phase the position of bending hinges begin to travels

from x =&, to the mid span till¢, .

When 0 <x <&
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When £<x<L

. - —t . . >
TN
Dola S { X+ f}
= . X — . L —
L x
putable-ef( 5-2-%
2 6 3
M=M,+ 5
2AL-¢)
Since M =0 at x=1L
: -6M
F=r—-0
Dola (L _5)
. . . . o o 3L p, -t,
Solve the above differential equation with the initial condition ¢, = ———*
16M v
20-3
=&, = L
S=6 =
E-L- V12tM , pot,
Dola
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(B.153)

(B.154)

(B.155)

(B.156)

(B.157)

(B.158)

(B.159)

(B.160)



t L r
y = Potal” o 12 = Lozl Py (B.161)
24M ym  6m om "\ 4M,

(4) 1, <t<t,

The transverse velocity field is

y-=y-m-(1—%j 0<x<L (B.162)
2
Q=mym[x—;—L] (B.163)
x2 X3
M=M +mp | -2 B.164
since M =0atx=1L
. _3M0
= B.165
Yn = ( )
-3M t
N @156
—-3M, (t—1¢,) t r
—— Gl +p°"(t—t1)+ﬁt§(—p° —lj (B.167)
mL 2 2m om "~ 4M,
solve y, =0
o
g, = Loz (B.168)
‘ 4aM,
which predicts the mid-span displacement
pol’t; p
Loz la  Fo g2 B.169
Ir = 12M jm  6m ¢ ( )

Apply the failure criteria, the critical P-I diagram equation for shear failure is derived as

211



mhy, N 2 3L

= B.170a
I 3p, 8Q,v ( )
The critical P-I diagram equation for bending failure is derived as
2
3mLf Lot (B.170b)
21 Do 2M,
M 12M, 16M
Mode VIIIL. When 1.5 < us\Eand 8—2002 < p, S—5-<—=0°
2 3L L 3L
The shear slide will stop in the first phase.
() t<t, <t,
2 M 2
vy =Pl |8 v (B.171)
m 2t, 3mL
M 2
1, =01, | 123 (B.172)
3p,L
According to assumption that 0 <¢ <¢,
When the shear slides stops,
My’ 128M v*
Jo =t f" 4g - 128M 0" [k (B.173)
OmL poL
212 (8M 0> —3p, L7 | (16M 0> +3p, L)
m = T (B.174)
81mL’ p,
2 2 2 )
_ 262 (3p, L7 -8M ) B.175)

Vs 81mL’p}
2)¢t, <t <t,

The district of the bending hinges tends to coalesce at the center of the beam.
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When 0<x<¢&,O0=0and M =M,

When £, <x<L

Q_ (. t L) L-x ) L-x
po p{# %)+A{ltdjL_§+1%@ 2%](L—§Y§

since x=¢&, 0=0
since x=L, M =0

sincex=¢&, M =M,

pO(L_ég)z(t_td)+6M0td
f(L—&)pole-21,)

E=

- 8M ,v*
The initial condition is &, _2073 ) t,=2t,-|1- 002 :
2v ‘ 3p,L

Py
(2t, 1)

\/12t2A40(2td——tﬁd
§=L-

213

(B.176)

(B.177)

(B.178)

(B.179)

(B.180)

(B.181)

(B.182)

(B.183)



6M
When ¢, =21, -|1-—— |, £=0
A PoL

. 8M0
307

12M
v < p, < L2° and 1.5303\/2:483595,

at the end of this phase

_ 12]\40(1701‘2 — 6M0 )td
B mp0L4

m

22 (p, I —6M, J (12M , + p,L*)
3mL’ p;

Ym =

(3) 1, <t<t,

Integrate with respect to x and consider the initial condition Q =0 at x =0

t x’
=—poll-——x+my,| x——
Q po( tJ ym( 2LJ

Since aaﬂ:Q,MzM0 atx=0and M =0atx=L
x

Solve with the ICs by the former phase, at the end of this phase
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(B.184)

(B.185)

(B.186)

(B.187)

(B.188)

(B.189)



Bp,L> —12M, ),

o= pp— (B.190)
V- 432M —216L2M6§ p£6+ 227L4M0 po +L°p; e (B.191)
mL’ p,
(4)t,<t<t,
68—2 = mp, (1—%) (B.192)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
x2
=my -— B.193
0 mym(x 2LJ ( )
xr X
M=my | ——Z—|+M B.194
mym[z 6LJ 0 ( )

Since M =0 at x=L

Solve the above equations

3IM
" (B.195)
mL
Integrate with respect to time and consider the initial condition as at # = ¢,
) 3IM, 3p,
=— t+——t B.196
I mL? 4m ( )
3M 3 T2Mt;  36M,
Yo = (2 =422 )+ 220 (9 7t )t 4 4 0t (B.197)
2mL 12m pomL”  p,mL

It is evident that the bending ceases at the supports when y, =0
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;= Po -ty L
4 4M,

(6912M¢ —3456M; p, 1> +576M 2 pi Lt —56M  piL° +9piLY)
& 96L°M ,mp;

Thus, the critical P-I diagram equation for shear failure is derived as

1
81mp02h7/v P 400 _ 3
81 poL

The critical P-I diagram equation for bending failure is derived as

mLpB  288M; . 144M7  24M, 7 3L

+
I? Pl polt pil’ 3p, 8M,

12M oM
Mode IX. When \/gﬁ vand 2 < p, < 3L20 v

The shear slide will stop in the first phase.

(1) <1, <t,

) 8M°
B ys :& t__ - Ol; t
m 2t, 3mL

M, v’
St =21, -[l—i 02)2 J
Po

According to assumption that 0 <¢ <¢,

When the shear slides stops,

M? 128M v°
., :Ljd 48_8—20
OmL poL

216

(B.198)

12 (B.199)

(B.200a)

(B.200b)

(B.201)

(B.202)

(B.203)



262 (8M 0> = 3p, L7 | (16M 0> +3p, L)

= B.204
Vo SImL p? ( )
262(3p, 1> —8M 0° )
v, = Hel Rl ) (B.205)
8ImL’ p;
Q) t, <t<t,
The district of the bending hinges tends to shrink to the center of the beam.
When 0<x<¢&,Q0=0and M =M,
5 = ﬂ[1 _ LJ (B.206)
m z,
When &, <x<L
L—x
V=D (B.207)
L-¢,
TR .
m L _ 5 m L _ é:)Z
(B.208)

0__ (i_t _t)L-x ) L-x
e ) R (o e (R P

since x=¢&, 0=0
0=0(¢) (B.210)

since x=L, M =0
M = M[#] (B211)

sincex=¢&, M =M,
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- _ PO(L_EE)Z(t_td)+6M0td

& (B.212)
t(L - f)Po(t -2z, )
o L — 8M v*
The initial condition is &, = 20731 at t,=2t,|1- OUZ :
2v 3p,L
\/lzﬂMO (2t, —t),
Py
=L- B.213
¢ 1(2t, —t) ( )
oM
When ¢, =2, -|1-—= |, £ =0
PoL
&M 12M
-#uzslyos and 1.5303@:.43@34
.. the coalesce will be continued in the next phase.
at the end of this phase
- oM
= 0 (B.214)
(L - é)potd
/12M
E=L- 6 (B.215)
Py
y =Lo, (B.216)
2m
Vo =20 (B217)
3m
(3)t, <t<t
The transverse velocity field is like
) = - B.218
4 .)>n1 Lox 50 <x<L ( )
L=,



Sowhen 0<x<¢&, O=0and M =M,

When &, <x<L

since x=&, 0=0

since x=L, M =0

sincex=¢&, M =M,

a—Q:mym =0

Oox

_2Ux-x*é- 2LEEHEE

¢ AL-¢y

Poly

M =M[¢]

6M,

éj:_(L_é:)pOtd

219

(B.219)

(B.220)

(B.221)

(B.222)

(B.223)

(B.224)



12M,

Use the initial conditions as &, = L — atr=t¢,,
Po
J12M tp t
g N oPola (B.225)
Py
So the coalesce will cease at
L't
= ]f;Md (B.226)
0
At the end of this phase
y = %td (B.227)
p p Lt 1
=200 = B.228
Y o d(leo 3} (8.228)
(4) 1, <t<t,
2—8 = mp, (1 - %j (B.229)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
xz
=my -— B.230
e s-Z) 50
x2 X3
M=my | ———|+M B.231

Since M =0 at x=L

220



Solve the above equations

Ym =7 mL?

Integrate with respect to time and consider the initial condition at # =¢,

It is evident that the bending ceases at the supports when y, =0

p :po'td'L2
T aM,
—2M, + p, L’
yf:( ° - )'potazl
12M jm

Thus, the critical P-1 diagram equation for shear failure is derived as

3

1
8lmp,hy, |3 N 40,0
81° poL

The critical P-I diagram equation for bending failure is derived as

mLp 2 _ L
I’ 3p, 3M,

12M 8M
Mode X. When 1.5 <vand 0 <p, <—20°
r )

(B.232)

(B.233)

(B.234)

(B.235a)

(B.235b)

Velocity field is same as mode VI. There will be no transverse shear slide at the support.

() t<t,

The transverse velocity field is like

221

(B.236)



Sowhen 0<x<¢&,, O=0and M =M,

‘xQQ:—p{}—fJ+nwm=0

ox 4

When &, <x<L

. L—x
V=Vn .L—fo (B.237)
. —Xx . L—x
V=Ing L @—§Y§
s (B.238)
Do t L—x Do t L—x
=—|1-— +—=|t—— &
m( t,) L=¢& m( 2tdj (L—f)2
Q__ (-t _t ) Lex ) Lox
P po(l td]+p0(l L L_§+p{t 21},] (L—f)zé: (B.239)
since x=¢&, Q=0
0=0(¢) (B.240)
since x=L, M =0
M = M[g] (B.241)

sincex=¢&, M =M,
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(B.242)

Use the ICsas &, =L —

FoL- _ (B.243)

At the end of this phase

Vo, =—1, (B.244)

y, =2 (B.245)
)1, <t<t

In this phase the position of bending hinges begin to travels from x = &, to the mid span

till 7,. When 0 <x <&

Vm =1, (B.246)
2m
y =Ly Loy (B.247)
2m 6m
When £<x<L
=g, X Loy LTX (B.248)
L-¢ 2m° L-¢&
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T ey e
_ Pty g £, _x+ég
Q_ 2 (L—§)2 (X é:) |:L 2 j|
Po dé:( é)z(s_z_ij
M=M,+ 5
2(L~¢)
Since M =0 at x=L
. -6M,
g_potd(L_ég)

Solve the above differential equation with the initial condition ¢ =¢,,

12M
Do

V12tM pot,

Poly

§=¢=L~-

y pot L _Po Lo p2 Py 2 p0L2 _1
" 24M m 6m 6m

B) 1, <r<t,

The transverse velocity field is

(B.249)

(B.250)

(B.251)

(B.252)

(B.253)

(B.254)



L Q=my, (x = x—zj (B.255)

2L
x> X
M=M,+my | ——— B.256
1] ym( 2 6LJ ( )
since M =0atx=1L
. _3M0
= B.257
Ym =3 ( )
-3M t
By = (e =1, )+ Lo (B.258)
m 2m
—-3M, (t-1,) t L
gy = Mo =0 Pila oy, P PO (B.259)
mL 2 2m 6m "\ 4M
solve y, =0
t,L’
g, =Lz (B.260)
4M,
which predicts the mid-span displacement
2L2t2
= Dozl Pop (B.261)

YT oM m 6m

Applying the failure criteria, the critical P-I diagram equation for bending failure is

derived as

L2 (B.262)

12M,

oM
Mode XI. When 1.5 <vand —*< p, <—
L

L2

Velocity field is same as mode VI. There will be no transverse shear slide at the support.
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(1) 1<t <t,
The transverse velocity field is like

ym OSXSQZO
=y, Lex (B.263)
" L-¢,

Sowhen 0<x<¢&,, O=0and M =M,

a—Q:—pO[l—tL]+mj}m =0

ox 4

When &, <x<L

. L-x
s (B.264)
R I .
m L — m . 2
- (t-2) (B.265)

_ P t) L=x pof, ') L-x ;
_m(l tdj L—§+m(t 2tdj (L—f)2§

—-X t* L—x
Loty e

since x=¢&, Q=0

0=0(¢) (B.267)



since x=L, M =0

sincex=¢, M =M,

oM
Use the ICsas &, = L — O atr=0,

at the end of this phase

_12M, (poI? —6M, ),

m

262 (p, 17 = 6M, J (12M , + p,L*)

mp,L*

Vi =
(3)t, <t<t,

oQ

0 =_po(

3mL’ p;

¥ o_ 1—
ox po(

Integrate with respect to x and consider the initial condition Q =0 at x =0

1-=

d

t .
; Jx + mym(

227

2
X——

2L

)

t .. [ xj
+my, | 1——
th L

(B.268)

(B.269)

(B.270)

(B.271)

(B.272)

(B.273)

(B.274)

(B.275)



Since aaﬂ:Q,MzM0 atx=0and M =0atx=L

X
t)x’ x* X
M=-p)|1-——|—+mp | ——— |+ M B.276
po( td] 5 ym[z 6L] 0 ( )
M
L=l ) My (B.277)
2m t mL
3 3IM
g =220 - |22 (B.278)
2m 2t, ) mL
3 2 3 3M 2
Vo _ 2P0, r_r __20t_ (B.279)
2m \ 2 6t, ) mL> 2

Solve with the ICs by the former phase, at the end of this phase

Bp,L* —12M, ),

m= g (B.280)
. 432M; - 216L2A4/6(Z>L06; ,227L4M0 pe+Lp; £ (B.281)
0
4)t,<t<t,
aa_f — i, (1 _%) (B.282)

Integrate with respect to x and consider the initial condition Q=0 at x=0 and M =M

at x=0
x2
=my |x—— B.283
0 ym[ 2L] ( )
xt X
M=my | ———|+M B.284
mym( 5 6L} 0 ( )

Since M =0 at x=L
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L
Ozmj}m?+M0

Solve the above equations

. 3M,
=— B.285
Vo e ( )
Integrate with respect to time and consider the initial condition as at # =¢,
) 3IM, 3p,
=— t+ t B.286
I mL* 4m ( )
3M 3 T2Mjt;  36M,
Ym =~ 02 (tz _413)"' By (9t_7td)'td t— ’ 6d N 04 tj (B.287)
2mL 12m pomL’  p,mL
It is evident that the bending ceases at the supports when y, =0
b, L
g =Lota 2 (B.288)
‘ 4M
(6912M ¢ —3456M; p,L* +576M: p>L* —56M, piL* +9pL*) ,
Yy= 5 > -t (B.289)
96L°M ,mp;
Thus, the critical P-I diagram equation for bending failure is derived as
18M; 9M, 3M :
mLp _18M, M, I 3L (B.290)

— —+ =
I pil®  polt 2pil* 48p, 128M,
Using the normalization criteria (Egs. (6.92) and (6.93)), the results can be summarized

in Table B.1.
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Table B.1 Normalized P-I equations for triangular loads

Mode Shear failure parameter Bending failure parameters
? (pe) 4 k, fl(U) ¢2(pe) A k, fz(U)
I 1 1 4 1 N/A N/A N/A N/A
3
II 3 1 1 1 N/A N/A N/A N/A
167 3
111 1 1 v 1 1 2 (6v-5)v
2 3 |-y o 3| 2040-3)
v 3 1 (4v-3) 1 3 1 14 (1)
Epe g 0
3 1 (40-3) 1 2 1 1 ()
v 167 3 v 32 2 2
VI N/A N/A N/A N/A 1 1 1 1
g 3 v
VII N/A N/A N/A N/A 1 1 1 3v
4 2 8
VIII 1 1 2 3 1 1 v
2 3 Sv 4
IX 81 1 3 1 1 1 v
167 3 4v 4 3 3
X N/A N/A N/A N/A 1 1 1 v
4 3 3
XI 81 1 4v 3 1 1 7 3)
167 3 4 6
XII N/A N/A N/A N/A 1 1 7 3)
4 6
A
[¢1 (Pg) aJ + ];—1 = f,(v) for shear failure
le e
PR
(% (p§ ) ﬂ] + f?—z = f,(v) for bending failure
le e

(3

v, 24(4v0-3) 24(40-3)’ s 8(4v - 3)’

2
p.v

3,.2
p.v

43
p.v
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) 3(20-3) 380> -120+3) L3207 =720 +540-15

2pJv 2pv’ 2plv’
18 18 6

4. 3 32 2
p.L p.L p.v

3)
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