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ABSTRACT 

Guyed towers have been widely employed in the telecommunication industry. 

However, in current building codes, there is still no comprehensive specification for 

their nonlinear response under severe loads, which includes large static loads, seismic 

loads and impulsive loads. This study thus intends to improve the understanding and 

analysis of guyed towers that undergo not only large deformation, but also large strain. 

Impulsive loads are potential threat to the safety of guyed towers besides wind load, 

earthquake, and ice storm. No methodology or related research has been conducted in 

this area so far. This research explores the area using an already developed P-I 

diagram method and nonlinear finite element modeling to provide an efficient and 

effective way for structural integrity evaluation for guyed towers.  

 The mechanical characteristics of basic components of guyed towers are 

investigated first. Geometric nonlinearity is of the main concern for the impact of 

large deflection. The modified Riks scheme has been applied in nonlinear static 

analysis and the Newmark beta method for dynamic analysis. To investigate the 

efficiency and effectiveness of linear analysis methods, several corresponding 

examples are studied. It is found that linear static analysis works only when the 

deformation is small. The equivalent inertia force method and the large additional 

stiffness method for guyed towers under seismic loads are compared and validated. 

Their results are very similar.  

 Because guyed towers with large defection also have large strain in some parts, 

material nonlinearity is introduced by improving the existing FEM codes for trusses 

and cables. Isotropic hardening is employed in nonlinear static analysis. Dynamic 
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hardening is used in dynamic analysis. Some specific examples have been conducted 

to verify the improvements. It is found that the improved methodology can well 

predict the performance of structures and tremendous difference exists between elastic 

analysis and inelastic analysis. Under seismic loading condition, inelasticity in 

material can help dissipate the inputted seismic energy and reduce the intensity of 

structural response. 

 The combined application of nonlinear finite elements and algorithm enables the 

nonlinear analysis for guyed towers. A 50 ft guyed tower with taut cables and a 100 m 

guyed tower with sagged cables were studied for their response under large static 

loads and seismic loads. The nonlinear static and dynamic response was accurately 

traced. It is found that equivalent static analysis works well when deflection is small. 

In sagged guyed tower, the structure is relatively soft at the beginning of static loading. 

With the increase of deflection, the structure is gradually stiffened. The consideration 

of inelasticity greatly improves the accuracy of analysis.  

 To evaluate the guyed tower’s safety under impulsive loads, relative P-I formulas 

have been derived based on existing transverse velocity profiles of rigid plastic beams 

under impulsive loads. Two failure modes (shear failure and bending failure) were 

differentiated. The impact of boundary condition and load types on the response is 

investigated. It is found under certain conditions only one failure mode is possible. 

But shear failure and bending failure can coexist under very severe impulsive loads. 

One specific example has been used to demonstrate the combined application of the 

P-I diagram method and FEM. Most guyed towers are expected to survive light or 

medium impulsive loads due to their high redundancy and small loading area. 
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Chapter 1 Introduction 

1.1 Background 

Towers are one of the most efficient structures. With a small amount of materials they 

can sustain considerable loads and behave favorably. They are ideal for most 

communication needs, including transmission, wireless internet, cellular, and antenna 

radio towers. Though satellite technology tends to supersede the communication 

towers, the economical and easily accessible characteristics still make many 

contractors prefer towers.  

 There are two common types of towers: self supporting and guyed towers. Self 

supporting towers (Fig 1.1) usually have rectangular cross sections. The major 

components are legs, braces and attached antennas. The bracing has various patterns 

as cross bracing, portal bracing, cranked K type bracing (TIA/EIA-222-G.5, 2006). 

Fig 1.1 illustrates a self supporting tower with K-type bracing. The disadvantage for 

self supporting towers is low height limit. Generally, the height can not exceed 300 ft 

(Madugula, 2002). For towers that exceed this height limit, guyed towers should be 

employed. 



 

Figure 1.1 A self supporting telecommunication tower. 

 Guyed tower (Fig 1.2) has been widely used in North America. The attached guys 

provide additional lateral support to the tower, which greatly increases the structure’s 

stability. The guy clusters are located at different heights along the mast and can form 

up to nine layers. The mast base can be pinned to the ground through bolts and steel 

plates. Unlike the self supporting towers, the cross section is triangular as shown in 

Fig 1.3. To anchor the guys, wide space around the mast is needed. Thus, guyed 

towers are most common in rural areas. In highly urbanized areas, self supporting 

towers are preferred due to space restriction.  

 2



 

Figure 1.2 A guyed tower with four guyed layers. 

 

Figure 1.3 Cross section of masts.  
 3
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1.2 Problem statement 

Various literatures and building codes, such as TIA/EIA-222-G.5 (TIA/EIA, 2006), 

CSA S37-94 (CSA, 1994), BS 8100 Part 4 (BSI, 1994), and European Standard EC3 

(CEN, 1997), have already explored the analysis and design of towers in detail. Some 

quick but efficient way to assess the towers’ response have been proposed and proved 

in the literatures (Galvez, 1995; Sackmann, 1996; Amiri, 1997; Wahba, 1999). But 

compared to the state-of-art analysis and design technique existing in buildings and 

bridges, the corresponding technique for towers is still lagging.  

 For static analysis of towers, it is relatively simple. But for dynamic response of 

guyed towers, it is very complicated and hard to be simplified. The cables can behave 

highly nonlinearly and be hard to predict by linear cable theories. The mast and 

cluster of cables also exhibit dynamic interaction, which further increases the 

complexity. The most efficient and recommended way by authority so far is to 

conduct real time history analysis, which is usually aided by Finite Element Analysis 

(FEA).  

 Commercial softwares such as ABAQUS, ANSYS, and ADINA can handle most 

cases with considerable accuracy. But the real deformation mechanism requires cable 

elements, which is usually simulated by tension-only rods or link elements in FEA 

softwares. This simulation technique has some problems because incompressible truss 

elements are not exactly the same as cable elements.  

 Besides, few researches have been done on towers’ performance under seismic 

excitation (Madugula, 2002). The existing code EIA 222-G addresses the importance 

of seismic analysis and proposed four equivalent static methods. But the discrepancy 

between equivalent static analysis and dynamic analysis can be considerable, 
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especially when large deformation causes geometric nonlinearity. Wahba (1999) and 

Hussam (2005) did modal analysis for dynamic response of guyed tower by ABAQUS. 

But this approach usually targets a specific case and needs familiarity with 

commercial FEA software. Nabil (1993) researched geometric nonlinearity of guyed 

towers and developed NSDAGT by including nonlinearity factors in modeling basic 

structural elements (trusses, cables and beams). But he simplified all the components 

in the mast as truss elements, which result in loss of accuracy. 

 Impulsive load on large scale tower structures is another design consideration that 

needs attention. Since an impulsive load has a very short duration and a high peak 

pressure, the structural response is very different from conventional dynamic response. 

However, there is very little literature on the impulsive response and failure 

mechanism of tower systems.  

 In a word, the understanding of guyed towers’ response under severe loads, 

especial nonlinear response, is still very limited.  

1.3 Objective  

The objectives of this research are to improve the understanding of static and dynamic 

responses of guyed tower systems under multi-hazard load conditions by using fully 

nonlinear finite element modeling and analysis. The considered load conditions 

include large static loads, uniform load, severe earthquakes, wind loads and impulsive 

loads. The influence of geometric and material nonlinearities on the response will be 

investigated. The impulsive response and damage mechanism for tower systems will 

be explored as well.   

To achieve the objectives of this dissertation, the following tasks were realized:  

1. Apply geometrically nonlinear analysis for pure truss, cable and beam 
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structures to prepare for the global analysis of guyed towers. 

2. Implement material nonlinearity in truss and cable elements to enable them 

for inelastic analysis. 

3. Perform geometrically nonlinear analysis of guyed towers. 

4. Perform nonlinear analysis of guyed towers with geometric and material 

nonlinearities. 

5. Develop P-I threshold curves for safety assessment of individual members of 

guyed towers. 

6. Conduct global stability analysis of guyed towers under impulsive loads. 

1.4 Scope 

The structural analysis and design of towers apparently include many aspects that can 

hardly be covered by any single reference, including this dissertation. The scope will 

cover the major concern of structural engineers when facing similar problems. It 

includes nonlinear static and dynamic finite element analysis of truss, cable and beam 

elements. All three nonlinear elements will be implemented in the analysis of guyed 

towers. Geometric nonlinearity as well as material nonlinearity will be included to 

develop more accurate models for analysis. Quasi static analysis is discussed and 

examined to check the efficiency and accuracy. Methods for simulating the impulsive 

response of tower members will also be developed for the overall evaluation of the 

structural safety.   
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Chapter 2 Background Review 

Nonlinearity in structural analysis comes from three common sources: geometric 

nonlinearity, material nonlinearity, and boundary condition nonlinearity. Since this 

research will focus on nonlinear behaviors of towers under severe loading, a series of 

reviews have been conducted. Research about geometric nonlinearity in the structural 

members (truss, cable and beam) will be presented first. General material nonlinearity 

will be introduced afterwards. The algorithms that implement static analysis and dynamic 

analysis will be briefly reviewed as well. Finally, the evaluation method for beams under 

impulsive loading will be introduced.  

2.1 Basic elements used in FEM: truss, cable and beam 

Literature (Bhatti, 2005; Madenci, 2006; Zienkiewicz et al, 2005) has explored the 

formulations of basic elements in FEM. But most of them only discussed about linear 

elements, which do not adjust element stiffness matrix according to deformation. Because 

in a large deformation scenario the influence of changing geometry is considerable and 

can not be neglected, the fully nonlinear elements developed by Pai (2007) are introduced 

herein.  

2.1.1 Fully nonlinear truss element 

From Fig. 2.1, it can be seen that the undeformed length of the truss element (Pai, 2007) 

is  
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If the initial strain caused by prestress in the bar is , then the variation of elastic 0B



energy is given by 
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where [ ]{ } { }φ11EAlBuk = , { } { }φ0EAlBQ = . 

The tangent stiffness matrix is  

[ ] [ ]{ }( )
{ }

{ } { }
{ }
{ }

{ }{ }
{ }2

11
2

11

11
11

u
BEAlBEAl

u
EAlB

u
B

EAl

u
ukk

T

∂
∂

+=

∂
∂

+
∂
∂

=

∂
∂

=

φφ

φφ

(

                   (2.6) 

The mass matrix is the same as that of the linear truss element:  
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2.1.2 Fully nonlinear cable element  

The static load is assumed to be applied before the dynamic loads in Fig. 2.2(a). P̂  is 

the position of  under static loads and  is the position under static and dynamic 

loads. If the displacement vector of  is 

0P P

P { }321 ,, xxx and the one of  is P̂

{ }321 ,, ααα , then 
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                  iii ux += α            3,2,1=i           (2.8) 

 

Figure 2.2 Deformed geometry of a cable element. 

It follows from Fig. 2.2(b) that the axial strain (Pai, 2007) is  
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where ( ) ( )
s∂

∂
=′ .  

The internal tension force is  

[ ] eeEAT 2
0 1~ υ−=                          (2.10) 

where initial strain caused by prestress in the bar is , 0e υ  is the poisson’s ratio,  is 

the original cross section area,  and 

0A

E  is the young’s modulus.  

The variation of elastic energy is  
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where  is the undeformed length of the jth element and  is the local physical 

coordinate. Assume 
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where  [ ]  { } [ ] [ ] { } sdDeeEAuk
l T∫ −=
0

2
0 1 φυ
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And the tangent stiffness matrix becomes  
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The mass matrix is the same as Eq. (2.7). 

2.1.3 Beam element with von karman nonlinearity  

The two well known beam theories are Euler-Bernouli and Timoshenko beam theories. 

The first one assumes the cross section remains plane and normal to the reference line 

after bending, which a rigidity higher than the actual one. Timosheko’s beam theory 

overcomes this problem by including the shear deformation in the modeling. This 

improvement produces reasonable results for thick beams. But for thin beams, shear 

locking appears also due to the introduction of shear deformation. It is because of the 

domination of shear deformation over the bending deformation. Because structural 

members of guyed towers are usually slender, shear deformation is negligible. Therefore, 

nonlinear Euler-Bernouli beam with von karman nonlinearity can be employed for the 

modeling and analysis of guyed towers. Besides the bending effect, torsion and stretch 

effect is considered as well in the beam element (Pai, 2007).  

 The strains in the element can be expressed as  

3211 ρρε yze −+=                       (2.13) 

112 ρε z−=                            (2.14) 

113 ρε y=                             (2.15) 
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2/2/ 22 wvue ′+′+′=                        (2.16) 

φρ ′=1                              (2.17) 

( )2
2 1 ww ′−′′−=ρ                         (2.18) 

( )2
3 1 vv ′−′′=ρ                           (2.19) 

{ } { } [ ]{ })(,,,,, iT dBwvwvuU =′′′′′′′′= φ                 (2.20) 

where ijε  is the tensorial engineering strain,  is the axial strain, e y and  are  

coordinates in the cross section, 

z

iρ  is the deformed curvatures with respect to the axes 

x , y and . ,  and  are the displacements on the cross section, and z u v w
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i wwvv ′−′ ,,,,,,, 1
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The variation is  
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For stress tensor, it is   

{ } { } [ ]{ }εεσ Q
G

G
E

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00
00

                   (2.23) 

The potential energy is  
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The product of stiffness matrix and displacement vector becomes  
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Thus, the tangent stiffness matrix is  

[ ] [ ] [ ] [ ][ ] [ ]( )[ ]dxBBk
il

TTi ∫ Γ+ΨΦΨ=)((                  (2.29) 

2.2 Material Nonlinearity  

Plasticity is fairly common in engineering practice. Once the material enters plastic range, 

material modulus decreases if it is strain softening or increases if strain hardening, which 

would finally change the global stiffness of a structure. Thus, the response is greatly 

affected by material nonlinearity if it has a potential to reach inelastic stage.  

 Material nonlinearities can be categorized as isotropic hardening, kinetic hardening. 

In elastic range, incremental stresses can be expressed as the product of an elastic 

constitutive matrix  and incremental strains [ ]C { }εd  as  

{ } [ ]{ }εσ dCd =                           (2.30) 

The general form of yield function (Bhatti, 2006) is  

{ } { }( ) 0,, =ασ pwF  

where is a scalar denoting the plastic work done, and pw { }α  is a vector denoting the 

translation of the yield surface. Once the deformation reaches the yield surface, it can 

have two possibilities: (a) loading continues on the yield surface (b) unload and retrieve 

back into the elastic range. If there is no hardening effect, the yield surface remains fixed 
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and never expand. With hardening effect, the yield surface or plane can expand according 

to the hardening rule. To determine the strain flow on the yield surface, the following 

flow rule is needed.  

{ } { }σλε
∂
∂

⋅=
Qd p                            (2.31) 

where λ  is a constant of proportionality that relates the plastic strains to the plastic 

potential, and  is the plastic potential function. If  is chosen to be equal to the 

yield function , the flow rule is associated. The total strain increment in a plastic state 

can be expressed by 

Q

F

Q

{ } { } { }pe ddd εεε +=                              (2.32) 

After manipulation (Bhatti, 2006), the constitutive stress-strain relation for plastic phase 

is  
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2.2.1 Isotropic hardening and dynamic hardening 

Isotropic hardening assumes that the yield stress for reversed loading is equal to previous 

yield stress (Bhatti, 2006). Thus, the elastic range for isotropic hardening (Fig 2.3 (a)) is 

increased in consecutive loading and unloading cycles. For the dynamic hardening (Fig 

2.3 (b)), the elastic range is fixed and the yield stress in opposite direction varies in 

loading and unloading.  
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                 (a)                                       (b) 

Figure 2.3 (a) Isotropic hardening, and (b) dynamic hardening. 

For an elastic state, the incensement of stress σd  is proportional to the change of 

strain εd .   

{ } { }εσ Edd =                            (2.34) 

For an inelastic state, the change of stress can be expressed in three ways: 

{ } { }eEdd εσ = ; { } { }pHdd εσ = ; { } { }εσ dEd t=  

where { }ed ε  is the elastic strain increment; 

σ  

ε  

σ  

b 
f a e 

ε  

c 
g 

dh



{ }pd ε  is plastic strain increment; 

{ } { } { }pe ddd εεε +=  is the total strain increment, 

      H  is the plastic modulus, 

      
HE

EHEt +
=  is the tangent modulus 

The yield stress state for isotropic hardening can be updated by 

{ } { } { }p
yy H εσσ +=                          (2.35) 

The state for dynamic hardening can be updated by 

y
pHF σεσ −−=                          (2.36) 

2.2.2 Algorithm implementing material nonlinearity  

Reddy (2004) introduced an algorithm that checks and adjusts the stress state every step. 

If the force equilibrium is resumed in the following iteration, then the solution converges 

at that step and can move forward. For one dimensional problem, the adjustment to 

achieve force equilibrium is obtained by imposing an additional deformation to the 

inelastic element by  

it

i
i AE

FL
u

Δ
=Δ                         (2.37) 

where  is the additional displacement adjustment iuΔ

       is the length of the element iL

       is the cross section area of the element iA

The other elements remain unaffected if they are not yielded.  
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Bhatti (2006) used the Newton-Raphson approach to achieve the equilibrium. 

Basically, it runs iteration until the internal forces and external forces have been balanced. 

The other steps are essentially same as the Reddy’s approach. 

2.3 Algorithm for nonlinear static analysis 

After the global stiffness matrix has been obtained, the solution of the nonlinear 

equations is not easy because the stiffness of each element can be affected by its 

displacement. Thus, some algorithms are needed to achieve the solutions. The most 

commonly used methods are: Newton-Raphson’s method, the modified Newton-Raphson 

method, Riks’ method and the modified Riks method (Crisfiled’s method). Detailed 

explanation can be found in literatures (Davis and Thomson, 2000; Bathe, 1996).  

[ ]{ } { }FUK =                             (2.38) 

where  is global stiffness matrix, [ ]K { }U  is the displacement vector, and { }F  is 

global force vector.  

2.3.1 Newton-Raphson method and Modified Newton-Raphson method 

The scheme is illustrated in Fig 2.4. Assume the imbalance force at the beginning of 1−i  

step is  

{ }( ) [ ]{ } { }FUKUR ii −= −− 11                         (2.39) 

If the imbalance force at the beginning of th step i { }( )iUR  is expanded to a low-order 

Taylor series, then   
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Where  is the displacement vector in th step, { }iU i

  is the displacement vector in { } 1−iU 1−i th step , 

 the tangent stiffness matrix is [ ] { }( ) [ ] { }
{ } j

i

k
i

ik

ijUT U
UKK i 1

1

1 −

−

∂
∂

=− . 

 Set { }( ) 0=iUR , then { } [ ] { }( ) [ ]{ } { }( )FUKKU i
UT i −−= −−

−

11

1δ .  Update 

 and repeat the above steps until the convergence criteria (the ratio 

of the magnitude of displacement increment vector to the previous displacement vector) 

is met.  

{ } UU i = { } { }Ui δ+−1

 

Figure 2.4 Modified Newton-Raphson method.  

 Since the tangent stiffness matrix is updated in each iteration, it may need large 

computational effort. Modified Newton-Raphson method either keep  fixed or only [ TK ]
 22



updating it at preselected steps (Reddy, 2004).  

2.3.2 Modified Riks method (Crisfield’s method)  
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]

The drawback of the Newton-Raphson method is that it can not capture some special 

phenomena like snap through of trusses. It is because that the tangent stiffness matrix 

 becomes singular at some special points, which makes the solution of Eq. (2.40) 

inaccessible. To overcome this problem, Riks suggested a procedure that traces the 

intersection of the normal to tangent line with the equilibrium path as shown in Fig 2.5. 

Similarly, Crisfiled’s method uses an arc (or circular plane in multi-dimension) instead of 

a perpendicular line (or perpendicular plane in multi-dimension) for solution searching. 

The increment of load factor becomes an unknown that needs be solved during the 

iteration.  

[ TK

F  

1Fδ  

2Fδ  

U  

Figure 2.5 Crisfield’s method. 

2Uδ  1Uδ  



Assume{ } { }FF ˆλ= , where λ  is a load parameter and { }F̂  is a preselected load 

vector,  

{ }( ) { }( ) { } { } { } { }
i

U
i

U
iiii

iiii

RU
U
RURUR 1,1,

11
1111,, δλ

λ
δλλ

λλ −−−−

∂
∂

+
∂
∂

+= −−          (2.41) 

Set { }( ) 0, =iiUR λ ,  

[ ]{ } { } { } [ ] { } { } { } ii
UT

i
U

FUKFUK iiii 11,
1

,
ˆˆ}0{ 1111 δλδλ

λλ
++−= −−−−

−            (2.42) 

where  is the first increment of displacement vector and  is the first 

increment of load parameter. If  is specified, 

{ }iU 1δ i
1δλ

i
1δλ { }iU 1δ  can be solved. Update the 

displacement vector and load parameter by { } { } { }ii UU 11 δ+iU 1= − and . 

Obviously, the first guess usually will not be the exact solution. Therefore, following 

iterations are needed. With updated 

ii
1

1 δλλ += −i
1λ

{ }i
1U  and , Eq. (2.42) turns into i

1λ

[ ]{ } { } { } [ ] { } { } { } ii
UT

i
U

FUKFUK iiii 22,1,
ˆˆ}0{

1111
δλδλ

λλ
++−=              (2.43) 

By setting the following incremental searching path perpendicular to the normal of the 

first incremental path,  

{ } { } { } { } iiii FFUU 2121
ˆˆ}0{ δλδλδδ +=                      (2.44) 

Solving Eq. (2.43) and Eq. (2.44) for { }iU 2δ  and  yields i
2δλ

{ } [ ] { }( ) [ ]{ } { } { } { }( )ii
UUT

i FFUKKU iiii 21,

1
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The above steps are repeated until convergence. The converged displacement vector 
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and the converged load parameter are { } { } { } { } { } L++++= − iiiii UUUUU 321
1 δδδ  and 

L++++= − iiiii
321

1 δλδλδλλλ . 

Some limits should be set to avoid divergence, such as maximum and minimum step 

leng

2.4 Algorithm for dynamic response  

There are two approaches for the analysis of dynamic response of complex structures. 

2.4.1 Modal analysis 

Modal analysis is not only computationally efficient but also of high accuracy in a linear 

th and a maximum iteration number. Details can be found in Pai (2007) and Reddy 

(2004).  

The first one is an indirect method by modal analysis, which uses the superposition 

principle to combine the response of modal vibrations of basic modes. The second one is 

numerical integration methods, which is conducted by numerous time steps. The solution 

of next step is always based on previous converged solution. The accuracy is usually 

affected by the selection of proper time increases.   

system. It is widely applied in vibration analysis. Extensive research already has been 

done on Single Degree Of Freedom (SDOF), Multiple Degree Of Freedom (MDOF) 

systems, and continuous systems, such as strings, bars, beams, membranes, plates and 

shells. If structural members or structures are simplified into SDOF or MDOF by 

equivalent mass and stiffness matrix, the modal analysis can be implemented by rigorous 

solution or numerical solution (Biggs, 1964).  For structural members, the real time 



response of structures or a structural element can also be assumed to be the product of the 

primary response spectrums and the modal participation factors. The response spectrum 

can be solved with the consideration of boundary conditions. After the decomposition of 

response functions, each modal coordinate function can be extracted by solving 

independent equations (Inman, 2001). As for the damping ratio, observations indicate that 

typical structures have between 5 and 10 percent of critical damping (Biggs, 1964).  
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2.4.2 General integration methods  

Mode shapes do not have fixed magnitude. So they are in fact not affected by the global 

displacement vector. But this is only true for linear or elastic systems. In nonlinear 

systems, the stiffness and damping changes with the deformation of the system. So in 

reality, there are no fixed mode shapes for nonlinear systems. Or in other words, the 

mode shapes vary with the magnitude of deformation. General integration methods 

account for the change of system properties by the integration using small time steps. 

Thus, they are the only way to solve the nonlinear dynamic problems. The commonly 

used methods are the constant average acceleration method (or Euler-Gauss procedure) 

and Newmark Beta methods. Since the first one is just a special case of the second 

method, only Newmark Beta methods will be reviewed here. The basic integration 

formulas (Reddy, 2004) for the velocity and displacement of the i th step are expressed 

as  

{ } { } ( ) { } { }iiii UdtUdtUU &&&&&& γγ +−+=
−− 11 1                 (2.47a) 

{ } { } { } { } { }i&&21iiii UdtUdtUdtUU &&& 211

2
1 ββ +⎟

⎠
⎞

⎜
⎝
⎛ −++=

−−−       (2.47b) 
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where ,  and  are the displacement vector, veloci

e the expansion of displacem

{ }iU

acceleration vector of 

{ }iU& { }iU&&

th step. 

ty vector and 

i

Assum ent vector, velocity vector and acceleration 

vector to be 

{ } { } { } 11 −− Δ+= iii UUU                      (2.48a) 

{ } { } { } 11 −−
Δ+=

iii UUU &&&                       (2.48b) 

{ } { } { } 11 −−
Δ+=

iii UUU &&&&&&                       (2.48c) 

Substituting Eq. (2.48a)-(2.48c) into the global differential equation,  

[ ]{ } [ ]{ } [ ]{ } { }FUKUCUM =++ &&&                    (2.49) 

Eq. (2.49) can be further transformed into  

[ ] { } [ ] { } [ ] { } { } [ ]{ } [ ]{ } [ ]{ }( )111111 −−−−−−
++−=Δ+Δ+Δ iiiiii UKUCUMFUKUCUM &&&&&&     (2.50) 

Substituting Eq. (2.48a) and Eq. (2.48b) into Eq.(2.47a) and Eq. (2.47b) yields 
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Substituting Eq.(2.51 a) and Eq. (2.51 b) into Eq. (2.50) yields 

[ ] { } { }FUK i ~~ 1 =Δ −                              (2. 52) 

where  
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The solution of Eq. (2.52) gives the first estimation of { } 1
1
−Δ iU . Since the tangent 

stiffness and damping matrix are computed at the beginning of each time step, it may be 

not right for the whole time step. So Newton-Raphson’s iteration is again used to obtain 

the exact solution ( Pai, 2007). The algorithm is as follows: 

Assume  

{ } { } { } 1
1

1
1

1 −−− +Δ=Δ iii UUU δ                         (2.53a) 

{ } { } { } 1
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1

1 −−−
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iii UUU &&& δ                         (2.53b) 
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1 −−−
+Δ=Δ

iii UUU &&&&&& δ                         (2.53c) 

Where ,  and { } 1
1
−iUδ { } 1

1
−iU&δ { } 1

1
−iU&&δ  are the incremental of displacement, velocity and 

acceleration of the  step. Since the solution of Eq. (2.47a) and Eq. (2.47b) gives  1−i
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It can be derived therefore that  

{ } { } 11 −−
= ii U

dt
U δ

β
αδ &                         (2.55a) 

{ } { } 1
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= ii U

dt
U δ

β
δ &&                        (2.55b) 
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Substituting Eqs. (2.53a) - (2.53c), Eq. (2.55a) and Eq. (2.55b) into Eq. (2.50) yields 
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Once Eq.(2.56) is solved, { } 1−iU&δ  and { } 1−iU&&δ  can be obtained by Eq.(2.55a) and 

Eq.(2.55b). The iterations should be terminated when the convergence criteria is met. The 

displacement, velocity and acceleration vectors will be updated until the desired time 

limit is achieved. The Newmark method is unconditionally stable when 
2
1

≥α  and 

2

2
1

4
1

⎟
⎠
⎞

⎜
⎝
⎛ +≥ αβ (Bathe and Wilson, 1976). 

 2.5 Evaluation of impulsive response  

Since under an impulsive loading, the members of a tower will behave like beams. The 

Pressure-impulse (P-I) method is introduced to evaluate the response and damage of 

members of a tower.  

 Pressure-impulse (P-I) diagram is used to evaluate the critical status of beams in 

bending failure because it has a straightforward expression form. This method was first 

used to assess the damage extent of structural elements and buildings in the World War II 
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(Smith and Hetherington, 1995). Stanford Research Institute used P-I diagram to evaluate 

the effects of blast on aircraft structures in 1951 (Abrahamson and Lindberg, 1976). The 

critical load curves for simple rigid-plastic systems were calculated using the P-I diagram 

method (Mortion, 1954). Velocity and acceleration were used as the coordinates, which 

are equivalent to the peak load and impulse system, to derive the curves for different 

structures (Kornhauser, 1954). It was identified that the peak load is very important for 

impulsive load cases (Coombs and Thornhill, 1967). Researchers of the Lovelace 

Foundation (1966) studied the influence of the impulse and the peak load on animal 

injuries. The closed-form formulas were brought up for rigid-plastic system (Abrahamson 

and Lindberg, 1976). P-I diagram method is also used for the assessment of injuries of 

animal and human subjected to a detonation (Smith and Hetherington, 1995). The 

least-square method was used to constitute universal formulas to fit the critical P-I 

diagram curves (Li and Meng, 2002). So P-I diagram is a powerful tool to evaluate the 

response of structural members under blast loads. 

It has been widely admitted that the P-I diagram has three regions including an 

impulsive-controlled region, a peak pressure-controlled region, and a peak pressure and 

impulse combination-controlled region (Abrahamson and Lindberg, 1976; Smith and 

Hetherington, 1995; Li and Meng, 2002). The division of the three regions is shown in 

Table 2.1. Though there is small difference regarding the specific number of the dividing 

standard, they are similar because they are all based on the comparison with the natural 

period of a structure or structural members. The category of P-I diagram is illustrated as 

part �, �and � in Fig. 2.6. 

 



Table 2.1 Three regions of the P-I diagram 

 Abrahamson 1971 Smith 1995 

Impulse-controlled 0.05dt T≤  0.4 dtω>  

Peak pressure and impulse 

combination-controlled 

 

0.05 1.25dT t T≤ 404.0 ≤≤ dt 

 

≤ ω  

Peak pressure controlled 1.25dt T≥ 40 dt ω<  

Note: is the natural period, T ω is the natural vibration frequency, and is the blast 

load duration.  

dt

There are three representative load types: (1) rectangular load with step rise, constant 

value, and step down, (2) triangular load with step rise and linear depreciation, (3) 

exponential load with step rise and exponential depreciation. For the same structural 

element the rectangular load gives the lower bound of the threshold curve, while the 

exponential load results in the upper bound. For the triangular load the corresponding 

curve is between the two boundary curves (Fig. 2.7). The maximum difference between 

the lower bound and the upper bound can be up to 40% (Abrahamson and Lindberg, 

1976). 

The advantage of the P-I diagram is the simplification of judgment to the safety of 

structural members or structures. Based on the P-I diagram, a certain load with the peak 

pressure and impulse above the critical curve will result in damage of the structures, vice 

versa, the structure is safe if the peak pressure and impulse combination locates below the 

curve.  

Steel beams are indeed a kind of elasto-plastic structures. Since the elastic part of 
 31



material strength only absorbs very limited shock energy, the beam can be simplified as a 

rigid-plastic structure, which greatly simplify theoretical solution. 

       

  Fig. 2.6 Normalized P-I diagram.           Fig. 2.7 Effect of impulse shape. 

  Some studies have conducted on theoretical modeling of rigid-plastic beams 

under blast loads, which can be roughly divided into two categories. The first category is 

based on single-degree-of-freedom (SDOF) model. The beam is simplified as a single 

mass and stiffness as a spring (Biggs, 1964; Smith and Hetherington, 1995). The 

maximum displacement is selected as a critical factor, which decides the safety of the 

beam. The equivalence of the mass, stiffness, and load has been discussed in details for 

structural members with different boundary conditions (Naval Facilities Engineering 

Command Design Manual 2.08, 1986). The SDOF model treats the beam as a whole and 

neglects the influence of shear force, which subsequently leads to the ignorance of shear 

failure. However, shear failure usually occurs when the ratio of span to height of the 

beams is very small or the detonation is very close to the structures.  

 The second category overcomes the deficiency by considering the impact of shear 
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force in the model. Based on experimental phenomena and mathematical derivation, five 

possible deformation profiles of beams under impact loads have been developed (Jones, 

1989). The impact is simplified as an ideal impulse that is applied to the beam with no 

time duration. The model was further improved by considering the response of beam 

during impulse load duration and the standardized expression of critical deformation was 

put forward (Li and Jones, 1995). However, most results are expressed in an implicit 

form which caused inconvenience for the application in a specific computation. The 

difference between shear failure and bending failure is neglected as well. 

2.6 Summary 

In this chapter, the main theoretical background of nonlinear truss, cable and beam 

elements has been reviewed. With the application of Jaumann strains, these elements are 

proper for large deformation analysis. The inelasticity of material properties was 

introduced to improve the analysis accuracy. Two hardening models: isotropic hardening 

and dynamic hardening were reviewed and formulated. The change of stiffness during the 

nonlinear static analysis needs a special iterative algorithm for solution. Therefore, 

several algorithms including Newton Raphon’s method, and Modified Riks method have 

been discussed. The corresponding solution methods for dynamic analysis are also 

explored using indirect method by modal analysis and the Newmark Beta method for 

direct numerical integration of nonlinear problems. The impulsive load is one of special 

dynamic loadings because of its high peak pressure and short duration. The pressure 

impulse method is introduced to provide a quick but efficient approach for individual 

member safety analysis. 



Chapter 3 Geometrically Nonlinear Characteristics of  

Trusses, Cables and Beams 

Truss, cable and beam elements are the basic components of guyed towers. They can 

be easily assembled in the field, which is an advantage in construction. Trusses can 

sustain large loads with relatively light weight. Cables are like one-directional trusses 

and they can only sustain tension. Beams can sustain bending moments and torsional 

loads in addition to shear and axial forces. They may have complicated static and 

dynamic behavior when fully geometric nonlinearity is involved.  

 This chapter will focus on the nonlinear behavior of truss, cable and beam 

elements of a full tower. Various scenarios, which are related to global analysis of a 

guyed tower, are considered to verify the capability of the developed finite element 

models. Linear analysis is employed for some parts to provide an alternative 

perspective. 

3.1 Nonlinear static behaviors of trusses 

Snap-through and snap-back are the common phenomena in highly flexible truss 

structures. Both of them usually result in very large deformation in the truss structures. 

To trace the deformation procedure, the modified Riks method is employed. Jaumann 

strains are used in the modeling because they are more accurate than Green- Lagrange 

strains for geometrically nonlinear problems (Pai, 2007).  

 An aluminum truss dome is used to demonstrate these phenomena. Young’s 

modulus is psi. The geometry of the dome is shown in Figs. 3.1(a) and 

3.1(b). The most outside ring is on a circle having a radius equal to 60m. The second 

ring’s radius is 30m and the third one 15m. The cross section area is 0.3333 square 

6102.10 ×
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inch. The supports are on the ground and are fixed. The load is applied on the top 

center.  

-60
-40

-20
0

20
40

60 -60
-40

-20
0

20
40

60
-10

-5

0

5

10

Y (m)
X (m)

Z 
(m

)

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

 

(a)                                   (b) 

Figure 3.1 (a) 3D view of the outlook of the dome, and (b) top view of the dome. 

 The load-deflection curve for the top node is shown in Fig. 3.2. It can be seen that 

when the tip load is below 2000 lb, as many as six types of deformation exist. When 

the tip deflection is between 1 m and 2 m, the tip resistance can be one of the three 

values. All the exact solutions are no longer uniquely decided by the external force or 

geometric shape. They also depend on the deformation and applied force history.  

 Different equilibrium states are shown in Fig. 3.3. It can be seen the deformation 

procedure is more complicated than normal star dome, which has only one snap-back 

(Geers, 1999). The buckling expanded gradually from the most inner ring to outer 

rings. The first snap-back happened when the smaller dome buckled. The continual 

sagging of the small ring caused the second ring to buckle. The most outside ring 

finally buckles when F= 6171.25 lb.  
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Figure 3.2 Load defection curve of the top node. 
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Figure 3.3 Deformation procedures with the adjusted load. 
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3.2 Nonlinear dynamic behaviors of trusses 

Because geometric nonlinearities causes bifurcation and multiple solutions, dynamic 

deformation of a nonlinear structure is path dependent. Hence, step by step integration 

is necessary in order to obtain the time history of deformation of structures. To 

demonstrate the nonlinear effect, one self-standing tower (Fig. 3.4) is selected for the 

analysis. Both real time history analysis and modal analysis based on linear truss 

element are conducted.  

3.2.1 Direct numerical integration analysis 

The tower is composed of aluminum alloy pipes. The trusses at leg location have an 

outer radius of 0.03m and an inner radius of 0.028m. The braces have smaller cross 

sections with outer radius of 0.02m and inner radius of 0.01m. Young’s modulus is 

 and mass density is . Poisson ratio is 0.29 and no prestress is 

applied. The tower has four floors and each floor’s height is 8m. The base cross 

section is . The four base points are fixed on the ground. The tower is 

assumed to sustain EI Centro earthquake in the X direction only.  

pa10107× 3/2800 mkg

222 m×

 Because the absolute displacement vector  consists of the relative deflection 

 and the rigid body motion , we have  

U

u sy

syuU +=                            (3.1) 

Because the tower is only subjected to a base excitation, the governing equation is 

given by 

                                             (3.2) 0=⋅+⋅+⋅ UUU KCM &&&

However, because the rigid-body motion does not induce any elastic energy or 
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damping, we have 

 39

sMKCM yuuu &&&&&                     (3.3) ⋅ + ⋅ + ⋅ = − ⋅

So the structure response is caused by the inertia force sM y&&⋅− . 

 The deformations at different time instants are shown in Fig. 3.5. The dash lines 

represent the undeformed geometry of the tower. The solid lines represent the 

deformed geometry. The whole deflection history of a node at the tip of the tower is 

compared with the acceleration history of the ground motion in Fig. 3.6 (a). The 

increased intensity of acceleration does not induce large deformation immediately 

because of the time delay caused by wave propagation. It I s found that the maximum 

deflection of the tip is 0.1281m. Since the damping is neglected here, the oscillation 

does not die out with the elapse of time. Usually, the modal damping coefficient in 

civil structure would not excess 5 percent (Biggs, 1964). If the modal damping ratio is 

0.03, the deflection would be significantly reduced as shown in Fig. 3.6(b). The 

maximum deflection becomes 0.0525m. 
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Figure 3.4 Undeformed geometry of the tower. 



     

                  (a)                     (b)                    (c) 

      

            (d)                    (e)                      (f) 

Figure 3.5 Tower deformation at different instants: (a) t = 2 sec, (b) t= 3 sec,  

(c) t = 5 sec, (d) t= 6 sec, (e) t = 8 sec, (f) t= 9 sec. 

        

 40



0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
ut

pu
t D

O
Fs

 d
is

pl
ac

em
en

t

Time (sec)

Seismic acceleration time history
Tip deflection time history

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
ut

pu
t D

O
Fs

 d
is

pl
ac

em
en

t

Time (sec)

Seismic acceleration time history

Tip deflection time history

 

(a)                                         (b) 

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
ut

pu
t D

O
Fs

 d
is

pl
ac

em
en

t

Time (sec)

seismic acceleration time history

tip deflection time history

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

O
ut

pu
t D

O
Fs

 d
is

pl
ac

em
en

t

Time (sec)

Seismic acceleration time history

Tip deflection time history

 

            (c)                                           (d) 

Figure 3.6 Time traces of deflection and ground seismic acceleration: (a) with no 

damping, (b) with 3% modal damping, (c) with no damping by large lumped stiffness 

method, and (d) with 3% modal damping by large lumped stiffness method. 

An alternative approach to simulate the ground shaking is by adding large 

lumped stiffness to the base of the tower. Varying force will be applied to the lumped 

springs to simulate the ground motion. In this way, a displacement controlled problem 

can be translated to a force controlled problem, which is easier to be solved. The 

advantage of this approach is that it can simulate the process of wave propagation in 

the tower, especially very tall towers. Unlike the inertia force method, the seismic 
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load will be transferred to the top of the tower gradually instead of immediately. The 

maximum tip deflection for no damping case is 0.1371m, which is slightly higher than 

the previous result. The maximum tip deflection for 3% modal damping is 0.0591m. 

The difference is actually negligible for a 32m high tower. 

3.2.2 Modal Analysis 

For the purpose of comparison of the usual engineering approach, the tower’s 

response is assumed to be linear and SRSS (Square Root of the Sum of the Squares) is 

employed for the estimation of the deformation of the tower. The response spectrum 

of a linear elastic SDOF system is obtained from the literature (Chopra, 2000). The 

first ten mode shapes are shown in Fig. 3.7. The third and sixth modes are torsion 

modes. The eighth and ninth modes have severe deformations on the top section of 

the tower. All the other modes are bending modes. In the first ten modes considered, 

the 2nd mode is along the y direction. Though it is included in the following 

calculation, it is found that it contributed very little and almost can be neglected 

because its modal participation factor is  of the 1st mode’s. The modal 

participation factor (Biggs, 1964) can be calculated as  

3106.4 −e

∑

∑

⋅

⋅
=Γ r

rnr

r

rnr

n

M

M

1

2

1

φ

φ
                      (3.4) 

where  is the mass of the rth degree of freedom, rM

rnφ  is the modal shape component for the rth mass in the nth mode. 

The product of the modal participation factor, the specific response from the 

response spectrum, and the characteristic shape coordinate gives the estimation of the 

maximum deflection. The maximum tip deflection is 0.0563m, which is almost half of 
 42



the result by real time analysis. Although the analysis is done quickly in this way, the 

accuracy is not good.  

Table 3.1 Modal participation factors 

Mode Frequency (hz) Participation factor 

1 2.4916 -461.36 

2 2.5562 -0.21237 

3 6.5988 -11.35 

4 9.0422 -1091.4 

5 10.18 -0.45755 

6 14.487 -33.617 

7 17.216 1100 

8 18.337 79.498 

9 19.725 -16.732 

10 19.777 9.658 

 

 

             

       Mode 1                  Mode 2                    Mode 3 
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         Mode 4                  Mode 5                 Mode 6 

      

    Mode 7            Mode 8            Mode 9            Mode 10 

Figure 3.7 First ten mode shapes of the self standing tower. 

3.3 Nonlinear static behaviors of cables 

Cables are very flexible and behave nonlinearly under static loads. Irvine (1981) has 

developed analytical methods to analyze the response of cable. In this section, 

nonlinear FEM is applied to investigate the influence of geometric nonlinearities on 
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cables. A cable spacing from 600m high to the ground and 800m out under self weight, 

pretension and ice loading is modeled and the results are compared. The reason to 

consider ice loading is because it has a significant effect during an ice storm. The 

radial ice thickness has been reported as high as 8-9 in (Madugula, 2002). Modulus of 

elasticity for steel cables with a radius greater than  is  

(TIA/EIA-222-G.5). 

mm67 GPa159

Cables having the same geometric shape but different prestress levels can have 

very different sagging after installation. The discrepancy between linear and nonlinear 

model also varies with the prestress level (Fig. 3.8). The linear model can well predict 

the deformation of cable when the prestress level is higher than e0=0.1. But when the 

prestress level is as low as 0.001, the linear method can hardly work because the 

pretension in the cable is comparable to the self weight of the cable (Pai, 2007).  
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Figure 3.8 Comparison of linear and nonlinear static deformations under different 
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prestress levels. 

Ice loading increases the mid sagging especially for long cables. The mid-point 

sag for the described cable under 0.001 prestress level is as large as 9.7602m and will 

be increased to 10.1261m under ice loading. The change of geometric shape under 

different static loads can be seen in Fig 3.9. With higher prestress level, the sag under 

self weight and ice loading decrease as shown in Fig. 3.9. When the prestress level is 

between 0.07 and 0.15 as specified in TIA/EIA-222-G.5 (2006), the maximum sag is 

less than 5.1054m under self weight and 5.5498m under the combination of self 

weight and ice loading. But no matter how high the prestress level is, the sag of long 

cables is inevitable.  
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Figure 3.9 Deformation change w/o ice loading for e0=0.001.  
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Figure 3.10 Mid sag under different prestress level. 

The influence of ice loading varies with different prestress levels (Fig. 3.11). 

When prestress level increases from 0.001, the increase of mid sag due to ice loading 

increases as well. The maximum increase (0.4571m) appears at 0.05 prestress level, 

after which the sag increase will gradually diminish. The minimum sag increase is 

0.2952m for 0.15 prestress level. Compared to the length of the cable, such sag 

increase is almost negligible.   
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Figure 3.11 Mid sag increase at different prestress level. 

3.4 Nonlinear dynamic behaviors of cables 

Dynamic behaviors of cables are hard to predict with linear analysis. Since wind load 

is very common and sometimes critical to cables of guyed towers, a simplified model 

for a cable subject to varying wind loads is built and analyzed.  

 For wind loads on towers, there are several methods to evaluate them as 

introduced in the literature (Madugula, 2002). The second-order auto-regressive 

process is recommended for a time-varying structural analysis. However, the 

minimum time interval from this approach is 0.1s, which exceeds the accuracy limit 

of a nonlinear dynamic analysis. To simplify the analysis, the wind velocity is 

assumed to be the superimposition of constant velocity plus a sinusoidal velocity as 

proposed by Nabil (1993). By further referring to CSA (2001), the wind load hereby 
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applied is assumed as  

tWWW rc ωsin⋅+=                        (3.5) 

Where ( )rdc ACPW ⋅=   

      = wind pressure, minimum is 300  P Pa

       for guys 2.1=dC

      = face area of guys rA

      = the magnitude of random wind load rW

      ω = vibration frequency 

 Apparently, the vibration frequency has great impact on response of the cable. If 

it is close to the natural frequency of the cable, resonance can occur if there is no 

damping and the oscillation would be greatly amplified.  

 To explore the dynamic response of cables, one specific case is analyzed. The 

wind load is applied after the post- tension of the cable. So the wind load would be 

added to a sagged curve. The wind direction is assumed to be perpendicular to the 

plane of the cable. The wind pressure is assumed to be 300Pa. The diameter of the 

cable is 2 in. The prestress level is 0.01. The vibration frequency is taken to be the 

third modal frequency of the cable, which is 0.1435 Hz. The geometric prestressed 

shape under self weight is computed for the initial stiffness consideration. The first 

mode is shown as the red dotted line Fig 3.12. The 3D view of vibration shapes is 

shown in Fig 3.13. If viewed from the top, the vibration shapes clearly reveal the third 

mode. 
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Figure 3.12 Third mode of 0.01 prestressed cable.     
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Figure 3.13 3D view of vibration shapes.  Figure 3.14 Top view of vibration shapes. 

 Fig. 3.15 reveals part of the vibration procedures. The time traces of the 

mid-points in Z and Y direction can be seen in Fig. 3.16 and Fig. 3.17. The vibration 

in the Y direction is more intensive than in the Z direction because the input wind load 

is in the Y direction. 
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Figure 3.15 Top views of deflection shapes at different instants. 
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Figure 3.16 Time trace of defection of the middle point in the Z direction. 
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Figure 3.17 Time trace of defection of the middle point in the Y direction. 

3.5 Nonlinear static behaviors of beams 

To demonstrate the nonlinear behaviors of beam elements, a detailed example is 

examined. If an aluminum beam is clamped on the left end and imposed a constant 

end moment at the right side. The dimension of cross section (0.03m by 0.03m) is 

very small compared to the span (0.6m).  

 The linear solution for the deflection can be derived fromthe curvature and 

boundary conditions. From the linear beam theory,  

( )
EI
Mxy =′′                           (3.6) 

( ) ( ) 000 =′= yy  and M  is constant. Hence 

( )
2

2x
EI
Mxy =                         (3.7) 

 The nonlinear solution can be obtained by the application of beam elements with 
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von karman nonlinearity. Suppose the end moment is 
L
EI

10
2π , the deformed geometry 

of the beam is as shown in Fig 3.18. From the comparison, it can be seen that the 

linear beam theory neglects the influence of axial stretch, which make the beam stiffer. 

And the difference of the tip deflection of the beam is significant.  
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Figure 3.18 Comparison of deformed geometry of the beam.  

Fig 3.19 further illustrates the influence of geometric nonlinearity. When the end 

moment is small, there is no difference between the linear case and the nonlinear one. 

With the increasing magnitude of external load, the nonlinear beam first becomes 

softer and then becomes stiffer when the load further increases. Thus geometric 

nonlinearity can not be neglected when the deflection is significant.  
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Figure 3.19 Comparison of load-deflection of the beam under increasing loads. 

3.6 Nonlinear dynamic behaviors of beams 

To capture the dynamic behavior of beams, two approaches are usually applied. The 

first one is the direct numerical integration and the second one is modal analysis. The 

following will conduct both analyses to gain a better understanding about the 

difference of these methodologies.  

A meter long Aluminum (6061-T6) cantilevered beam is clamped at the left end 

and free on the right end. The depth of the beam is 2mm and the width is 3cm. The 

base is excited with a sinusoidal displacement with amplitude of 2mm and a 

frequency of 10.2753 Hz, which is exactly the second modal frequency.  The base 

shaking velocity is 0.0206 m/s. The modal damping ratio is assumed to be 0.01. The 

dynamic response of the beam will be analyzed using the direct numerical integration 

and the modal analysis method.  
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3.6.1 Direct numerical integration analysis 

The deflection shapes at different time instants are shown in Fig 3.20. It clearly 

reveals that the second mode dominates the response. The right tip deflection history 

is as shown in Fig 3.21.   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Longitudinal coordinates x(m) 

D
ef

le
ct

io
n 

(m
)

 

Figure 3.20 Deflection shapes at different time instants. 
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Figure 3.21 Time trace of the right tip. 
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It is also found that the velocity of base shaking greatly affect the response.  

3.6.2 Modal analysis 

The governing equation for the Euler-Bernouli beam (Pai, 2007) is  

0=++ xxxxttt EIwcwmw                      (3.8) 

where is the mass per unit length;  is the transverse displacement;  is the 

damping coefficient; 

m w c

E  is Young’s modulus; I  is the moments of inertia;  is the 

time and 

t

x  is the spatial coordinator along the beam. Because the highest order of 

special derivatives of  is four, four corresponding boundary conditions are needed, 

which are 

w

( )tbw tx Ω== sin,0 , 0,0 == txxw , 0, == tLxxxEIw , and 0=,0= txxxxEIw for a 

clamped-free beam. Two initial conditions are set as 00, ==txw  and 0=0, =txtw .  

 Assume ( )tbWw Ω+= sin , the boundary conditions are changed into 

0,0 == txW ; 0,0 == txxW ; 0, == tLxxxEIW  and 0,0 == txxxxEIW . And the initial 

conditions are changed to 00, ==txW  and Ω−== bW txt 0, .  

 Assume the solution can be expressed as the product of a spatial function and a 

time function as ( ) ( ) ( ) ( )tbtTxXtxw Ω+⋅= sin, , the governing equation can be 

transformed into  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tmbtcbtmbtTxEIXtTxcXtTxmX xxxxttt ΩΩ≅ΩΩ−ΩΩ=++ sincossin 22

(3.9) 

To solve Eq. (3.9), first the homogeneous equation needs to be solved.  

( )
( )

( )
( )

( )
( )

0=++
xX

xX
m
EI

tT
tT

m
c

tT
tT xxxxttt                   (3.10) 

This equation can be separated into two equations as  
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∴
( )

( )
2ω=

xX
xX

m
EI xxxx  and ( )

( )
( )
( )

2ω−=+
tT
tT

m
c

tT
tT ttt  

The solution of the first one (Inman, 2001) is  

( ) ([ ]xxxx
mL

xX nnnnn ββσββ sinsinhcoscosh1
−−−= )           (3.11) 

where =Lnβ  1.87510407, 4.69409113, 7.85475744, 10.99554073, 14.13716839, for 

, 51K=n π
2

2 1−n  for , and 5>n
LL
LL

nn

nn
n ββ

ββ
σ

coscosh
sinsinh

+
−

= .  

 Because of the orthogonality of the mode shapes, . Apply 

the integration at both sides of the governing equation to obtain  

( ) ( ) [ ]IXX =∫ dxxmx
L

0

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )dxtmbxdxtTxEIXtTxcXtTxmXx
L

xxxxttt

L
ΩΩ=++ ∫∫ sin2

00
XX  

( ) ( ) ( ) ( ) ( ) ( )tFtmbdxxtTtTtT
L

ttt Ω=ΩΩ⋅=++ ∫ sinsin2 0
2

0

2 Xωζω  

The initial conditions are changed into ( ) 00 =T  and  ( ) ( ) ( )Ω−⋅= ∫ bmdxxT
L

t 0
0 X

The solution is  

( ) ( ) ( )00 sinsin φφωζω −Ω++= − tAtAetT d
t               (3.12) 

where 
( ) ( )2222

0
0
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The modal participation in the vibration can be seen in Fig 3.22. The second 

mode composes the major part and increases its weight with the time. The first mode 

also has a constant contribution in the response. All other modes actually have nearly 
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no contribution to the response. Time traces of specific points on the beam are plotted 

in Fig 3.23. Except at the constrained base, the amplitude of vibration amplifies 

gradually. The fully excited deflection is clearly revealed in Fig 3.24, which has the 

characteristic of the second mode shape. Compared with the nonlinear analysis, the 

linear analysis requires much less computational effort. But it can not discover the 

effect of base shaking velocity. For increased shaking amplitude, the linear analysis 

will simply amplify the response by the increased factor, which is actually not true.   
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Figure 3.22 Modal coordinates for all the participated modes. 
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Figure 3.23 Time trace of deflection of base, middle point and tip.  
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Figure 3.24 Deflection at different instants. 

3.7 Summary 

This chapter investigates the influences of geometrical nonlinearity on truss, cable and 

beam elements. Various examples were used to demonstrate the influence.  
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 60

 It can be seen that the nonlinear truss element can be used to track the post 

buckling response of truss domes. The comparison of linear modal analysis and direct 

numerical integration for truss towers subject to the EI Centro earthquake excitation 

showed that the results of direct numerical integration almost double the results from 

linear modal analysis. It is also found that two different dynamic simulation 

approaches (direct application of inertia force and large additional spring stiffness) 

actually produce similar results.  

 The static analysis of cables under self weight and ice loading with different 

prestress levels confirms that linear analysis can only predict the sag of heavily 

prestressed cables. The influence of ice loading on cables is almost negligible. Using 

the Newmark Beta iterative algorithm, the nonlinear response of cables in the wind 

can be well predicted. When the wind frequency matches with a modal frequency, the 

cable will vibrate with the specific mode shape.  

 For beam elements, nonlinear static analysis deviates from linear analysis when 

deflection is high. The modal analysis of beam vibration agrees with direct numerical 

integration to some extent. But in modal analysis the vibration amplitude keep 

increasing with time, which is inconsistent with the nonlinear analysis result.  



Chapter 4 Material Nonlinearity Analysis 

Material nonlinearity has significant effect on structural response. Without 

consideration of inelasticity, the material will stay infinitely elastic, which does not 

represent actual material behavior. Thus, in order to better simulate the real response, 

isotropic and dynamic hardening are implemented in the analysis. For cycling loads, 

dynamic hardening is more appropriate than isotropic hardening, because the latter 

will keep hardening until it eventually responds elastically. Based on the algorithm by 

other researchers (Bhatti, 2006; Reddy, 2004), the following procedure will be 

implemented to analyze the inelastic response.  

4.1 Isotropic hardening in truss 

First, the stress and strain of each step will be computed. If it is in the elastic range, 

the original procedure can be adopted without any modification. But once the material 

enters the inelastic range, the element tangent stiffness must be adjusted with the 

changed material modulus. If truss elements are under consideration, the governing 

equation is 

[ ]{ } { }φσAluk =                           (4.1) 

where σ  is the stress in the element. The tangent stiffness matrix is modified in the 

same manner as 

[ ] [ ]{ }( )
{ }

{ } { } { }
{ }u

AlEAl
u

u
ukk

∂
∂

+
∂
∂

=

∂
∂

=

φσφσ

(

                    (4.2) 
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Figure 4.1 Elastic-to-plastic transition.  

Because the stress is a function of strain, it can be expressed as  

( )εεσσ REER t −++= 10                  (4.3) 

where 0σ  is stress for previous step, E  is Young’s modulus,  R  is a factor that can 

be determined from Fig.4.1, ε  is the current strain, and  is tangent modulus . It is 

found that R=1 for elastic state and R=0 for plastic state. Hence, we have 

tE

{ } { } ( ) { }
( )( ){φ}

εεσ

REER
u

RE
u

ER
u

t

t

−+=
∂
∂

−+
∂
∂

=
∂
∂

1

1
                (4.4) 

The status of each element (elastic or yielded) should be updated during iterations as 

well. The detailed procedure is given in Fig 4.2. 

To illustrate the influence of inelasticity, a three-bar truss is analyzed. The 

material is Aluminum Alloy 6061 T6. Young’s modulus is  psi and the 

plastic modulus is assumed to be one tenth of the elastic modulus psi. 

The yield stress 

6106.10 ×=E

.1=tE 61006×

Y  is  psi. The geometry is shown in Fig 4.3. For the 

detailed geometrically nonlinear analysis readers are referred to chapter 4 of Pai 

31040×

newσ

oldσ  

ε  
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Figure 4.2 Flow chart for material nonlinearity iteration. 
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Once material nonlinearity is included in the analysis, it is found that resistance 

of the truss has significantly dropped. There are two turning points in the curve, each 

of them indicate the beginning of hardening. After the first turning point, the slope of 

the load deflection curve is greatly decreased. This is because the modulus of material 

has been dropped from elastic E to inelastic Et. The second turning point marks the 

beginning of isotropic hardening in tension. Without the set of ductility of the material, 



the curve can go up forever. The snap-through phenomena still exists (Fig 4.4).  

Theoretical solution for a inelastic load deflection curve is derived as follows. 

Assume the vertical deflection is x and the unreformed length of each truss member is 

L, the strain in each truss member can be obtained as  

( )
L

lxh 22 +−
=ε  

When the strain is greater than 
E
Y , where Y is the initial yielding stress, it entered 

the inelastic hardening zone. The tangent stiffness has been changed to 
HE
HEEt

+
⋅

= , 

where H  is the plastic modulus. If the strain stopped increasing, that means it began 

the unloading. The modulus is resumed to be E . After the opposite strain reaches the 

amplified yield strain, it will begin another round of hardening. 

 The stress strain curve is shown in Fig 4.5. The Geometric and Material 

Nonlinear Analysis (GMNA) result is exactly the same as the theoretical results. The 

loading zone can be categorized as elastic and plastic parts. But the unloading is 

always elastic. The load capacity comparison is shown in Fig 4.6. 
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Figure 4.3 Geometry of the 3-bar truss. 
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Figure 4.4 Inelastic snap-through of the 3-bar truss. 
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Figure 4.5 A stress- strain model for isotropic hardening.  
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Figure 4.6 Comparison of load- deflection of elastic and inelastic 3-bar truss.  

 The interesting instants during the deformation process are captured in Fig 4.7. It 

can be seen that the 3-bar truss yielded in compression after very small deflection, 

which caused the first abrupt change of the slope of the load-deflection curve. Then 

the structure reaches its maximum resistance during continuous hardening. When the 

3-bar turns to be horizontal, the resistance is decreased to zero. After that, the external 

force is changed from pression to tension in order to keep tracing the snap-through 

phenomena. After the tension reach the maximum, the external force is gradually 

changed from tension to pression and the resistance is again increased. Once the stress 

level in the 3-bar truss reaches the tension yield point, the load-deflection curve has 

its second turning points, where the slope is changed abruptly.   

The influence of plastic modus in the resistance is discussed in Fig 4.8. With the 

increase of plastic modulus, the load capacity of the 3-bar truss is greater and greater. 

But as long as the isotropic hardening effect exists, the difference remains.  
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Figure 4.7 Interesting instants for the inelastic 3-bar truss.  
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Figure 4.8 Comparison of load- deflection curves of elastic and inelastic 3-bar truss 

with different plastic modulus. 
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4.2 Dynamic hardening in truss 

If the tower shown in Fig 3.4 is under 5 times EI Centro earthquake in the X direction 

and dynamic hardening is considered for the material, the response of the tower is 

found to be smaller than that of the totally elastic model (Fig 4.9). The reason is that 

under no modal damping circumstance, material yielding becomes the seismic energy 

dissipation mechanism.  

The first four leg elements enter plastic zone before 4.5 seconds. After that, 

elements 13, 14, 17, 18, 21, 22, 23, 24 have plastic deformation one by one. Under the 

maximum deflection, 12 elements including elements 29, 30, 31, 32 are in the plastic 

zone at the same time as shown in Fig 4.10 and 4.11.    

The corresponding stress strain history in elements 1, 13, 21, 30, 40 are shown in 

Figs. 4.12-4.16. It is found that the strain in the lateral members, such as element 13 

and 21, has a larger range than the leg elements, such as elements 1 and 30. The stress 

in other elements always remains in elastic range.    

The time history for the stress and strain in elements 1, 13, 21, 30, 40 as shown 

in Fig 4.17 and 4.18, again reveals that the lateral members maintain higher stress 

level than the leg parts. And all strains of these members drifts between the limits of 

ductility, which is 0.15 (Boresi and Schmidt, 2003). This indicates no fracture in the 

members.  
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Figure 4.9 Comparison of tip deflection under strong earthquake. 
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Figure 4.10 Yielded members in the tower. 
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Figure 4.11 The number of yielded members versus time. 
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Figure 4.12 Stress strain history in the member #1. 
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Figure 4.13 Stress strain history in member #13. 
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Figure 4.14 Stress strain history in member #21. 
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Figure 4.15 Stress strain history in member #30. 
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Figure 4.16 Stress strain history in member #40. 
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Figure 4.17 Stress histories for selected members. 
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Figure 4.18 Strain histories for selected members. 

4.3 Material nonlinearity in cables 
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Following the derivation in Section 4.1, the material nonlinearity in the cable can 

result in the following change in the formulation of the FEM cable element.   
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Referring to Eq. (4.3), it can be found that 
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Thus, the tangent stiffness can be modified as  
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 The tensile strength for the cables is 1520 MPa and their Young’s modulus is 

159GPa (ASTM, 2007). The ductility limit is 4%. The prestrain level is set to be 

0.005. When the uniform load is increased gradually, the deflection is increased as 

shown in Fig 4.22. The yielded members are labeled in Fig 4.19 from 1 to 13. The 

number sequence also indicates their yield consequence.  

 The stress strain curve in element 1 and 7 is shown in Fig 4.20 and 4.21. It is seen 

that element 1 is the first to yield and have the longest hardening history.  
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Figure 4.19 Deformation of a 0.5% prestrained lean cable under self weight and  

800 N/m uniform vertical load. 
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Figure 4.20 Stress-strain history in element #1. 
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Figure 4.21 Stress-strain history in element #7. 
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Figure 4.22 Uniform vertical load versus middle sag. 

 As for dynamic hardening model for cables, the methodology is the same as the 

one for truss elements. But the usual material like steel has very high modulus and 
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yield strength, which makes it physically almost impossible to yield and harden 

during dynamic response. Therefore, detailed discussion is neglected here. 

4.4 Summary 

Two inelastic models (isotropic hardening for static case and dynamic hardening for 

dynamic case) have been applied in the analysis along with geometric nonlinearity. It 

is found that inelasticity under static loading can greatly reduce the resistance capacity 

of truss structures. The transition from elastic state to plastic state will result in a 

turning point in the load deflection curve. The finite element analysis results agree 

well with theoretical results. In dynamic analysis, inelasticity helps dissipate the 

seismic energy transmitted into the truss tower. With the increased intensity, different 

members come into plasticity in turn. The tip deflection is thus suppressed in the 

inelastic model. For a cable under static loads, yielding will start from the top 

elements and expands towards the root.  

 



Chapter 5 Nonlinear Analysis of Guyed Towers 

When all the nonlinear elements are implemented with proper algorithms, the nonlinear 

response of guyed towers under large static loads and severe earthquakes can be predicted 

accurately. This chapter will focus on the applications of nonlinear finite element 

methods in the analysis of guyed towers. Two basic towers are chosen as representative 

of guyed towers. The first one is a tower with taut cables, which is appropriate for guyed 

towers with relatively low heights. The second one is for towers with sagged cables, 

which is usually the case for high towers. For each type of tower, both static and dynamic 

analyses are conducted through detailed examples. Simplified linear static analysis for 

towers with taut cables is also performed to compare with the nonlinear results. Material 

nonlinearity is further implemented in the analysis to improve accuracy of analysis.  

 5.1 Nonlinear static analysis of a 50 ft guyed tower  

The mast arm is composed of steel pipes with Young’s modulus psi. The outside 

rim diameter of the pipe is 1.25 inch and the inside diameter is 1.04 inch. The lateral and 

oblique struts between the poles are made of round steel bars with a radius of 7/16 inch. 

The steel cables have two layers, which are anchored separately.  The radius of the lower-

layer cables is 5/32 inch and the upper-layer cables is 3/16 inch. The initial prestress for 

the lower-layer cables is 900 lbs and the upper-layer cables is 100 lbs.  

61029×
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Figure 5.1 Geometry of the guyed tower. 

 79

               

(a)                                                                       (b) 

Figure 5.2 (a) Cross section of the mast, and (b) top view of the applied force. 

      The concentrated load is applied on the tip of the mast. To trace the nonlinear 

response, the load is increased gradually at small increments. Once a converged solution 

for the current load step is achieved after iterations, the load level will be updated and 



new solution loop will be started.  The loop will continue until desired criteria such as 

maximum displacement on a specific part or the maximum load has been reached.  

 The final deformation shape is shown in Fig 5.3.  The tip deflects as much as 83.75 

inch under a concentrated load 6,584 lbs. But the lateral drift for the upper cable cluster 

connection point is much smaller than the tip deflection. There is almost no deflection for 

the lower cable cluster connection point. So the deformation mechanisms for the tip 

unrestrained mast is like a cantilever beam under tip point load. But the whole mast 

behaves more like a multiple supported beam under tip load.  

 The load-deflection curve in Fig 5.4 clearly shows that the tower is softened after the 

first 10 inch deflection. When the deflection reaches 45 inch, the structure turns to be 

stiffer with the increase of deflection. But the global stiffness is still less than the original 

elastic stiffness because the slope of load-deflection curve is smaller than the beginning 

slope of the curve.  
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Figure 5.3 Deformation of the guyed tower under tip point load. 
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Figure 5.4 Load deflection curve. 

 The same model is also analyzed by ANSYS and SAP2000 for comparison. Link 8 is 

used for modeling of struts. Link 10 (tension-only) is applied for the modeling of cables. 

The pole is simulated by beam 4. The large static analysis option is turned on to capture 

the large deformation. The final deformed geometry is shown in Fig. 5.5, which is very 

similar to Fig. 5.4. Under 6000 lb external tip loads the maximum deflection is 97.362 

inch. The load-deflection curve is compared in Fig. 5.7.  Though the analysis is nonlinear, 

the results are still linear because the deflection is proportional to loads.    

 In the analysis of SAP2000, nonlinear and large deformation option in analysis is 

also chosen. The deflection shape under 6000lb external tip loads by SAP2000 is shown 

in Fig. 5.6. The deflection shape is more flexible than in Fig. 5.6, which indicates that the 

tower responds stiffer in SAP2000 than in ANSYS. This is verified in Fig. 5.7, because 

the slope of load-deflection curve by SAP2000 is greater than by ANSYS. The results by 

SAP2000 well match results by geometrical nonlinear analysis when deflection is small.  
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Figure 5.5 Deformed geometry by ANSYS. 

 

 

Figure 5.6 Deformed geometry by SAP2000. 
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Figure 5.7 Comparison of load deflection curves.   

 From the comparison, it can be seen that large deflection analysis of guyed tower by 

different softwares usually gives different results. Though the analysis is based on 

nonlinear algorithm, the results are still linear. The nonlinear property can only be traced 

by proposed methodology.  

5.2 Linear static analysis of the 50 ft guyed tower 

The pole is treated as a beam with a constant cross-section as shown in Fig. 5.8. The 

equivalent bending stiffness is  
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 Three different scenarios have been used to simplify the analysis. Because the height 

and span of the cables are not large, they are actually taut under 10% prestress. The 

lateral deflection is very small compared to the tip deflection. So the first simplification 

(Fig. 5.9) is only to simulate the top fraction of the tower as a clamped beam. The tip 

deflection is 
EI

FL
3

3
1 .  

 

Figure 5.8 Equivalent cross section of the guyed tower. 

 Although the lateral deflection of the second cluster point is negligible, the rotation 

at this point greatly affects the tip deflection. Thus, the second simplification (Fig. 5.9) 

releases the restraint at the guy cluster points. Using the force method (Kassimali, 2005) 

to solve the indeterminate beams, two support reaction forces are assumed and the 
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deflections at these two supports must comply with the constraint conditions.  
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where  is the distance from the tip to the upper cluster point;  is the distance from 

the tip to the lower cluster point; and  is the height of the tower. The tip defection is  
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If the lateral stiffness of the guy cluster is considered, the equations become 
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where the equivalent lateral stiffness of the upper taut guy cluster (Madugula,2002) is  

∑ ⋅⋅= ii
i

i
j l

EA
K βθ 22 coscos  

where  is the chord length of the cables; il

  is the cross section of the cables;   iA

iθ  is the vertical angle between the chord line and horizontal reference;  

iβ  is the horizontal angle between the cable and the direction of mast displacement.  
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(a)                                        (b)                                              (c) 

Figure 5.9 Simplification scenarios (a) clamped support at the upper cluster, (b) simply 

supported at clusters, and (c) spring supported at clusters.  
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Figure 5.10 Comparison of simplified load-deflection curves. 
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 The results from the three simplified methods are compared in Fig 5.10. It is clear 

that with the release of constrains, the equivalent beam becomes softer and more close to 

the real response. The spring supported beam matches with the response very well in the 

linear range. After that, none of the simplified methods can provide valuable estimation 

for the large deformation of the mast.   

5.3 Nonlinear dynamic analysis of a 50 ft guyed tower 

When the tower is subjected to the EI Centro earthquake in X-direction as shown in Fig 

5.11 (a), the response is irregular. Figs. 5.12-5.17 represent the response of the guyed 

tower at different time steps. It is clear that when the ground shaking just begins, the 

structure almost has no deformation as shown in Fig 5.12.  As the intensity of ground 

motion increases, the mast begins to defect and the cables start to swing.  

 The time history of the relative tip deflection (compared with the ground motion) is 

as shown in Fig 5.18. The maximum deflection is around 20 inches at 5 seconds, when 

the ground acceleration is not the most intensive. The absolute tip deflection history is 

shown in Fig 5.19, of which the maximum is close to 16 inches.  

When the shaking direction is changed to Y-direction, the tower response at 3 

second and 3.5 second is as shown in Figs 5.20 and 5.21. The relative and absolute tip 

deflection is plotted in Figs 5.22 and 5.23. From the comparison, it is seen that the 

response pattern under the different direction is very similar. The difference only lies in 

the specific value of tip deflection.  
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 Figure 5.11 (a) EI Centro earthquake input in the windward cable direction, (b) EI 

Centro earthquake input in the direction perpendicular to windward cable direction. 
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Figure 5.12 Tower deformation at t=1 second (in X-direction). 
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Figure 5.13 Tower deformation at t=1.5 second (in X-direction). 
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Figure 5.14 Tower deformation at t=2 second (in X-direction). 
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Figure 5.15 Tower deformation at t=2.5 second (in X-direction). 
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Figure 5.16 Tower deformation at t=3 second (in X-direction). 
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Figure 5.17 Tower deformation at t=3.5 second (in X-direction). 
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Figure 5.18 Time trace of relative tip deflection (in X-direction). 
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Figure 5.19 Time trace of absolute tip deflection (in X-direction). 
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Figure 5.20 Tower deformation at t=3 second (in Y-direction). 
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Figure 5.21 Tower deformation at t=3.5 second (in Y-direction). 
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Figure 5.22 Time trace of relative tip deflection (in Y-direction). 
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Figure 5.23 Time trace of absolute tip deflection (in Y-direction). 

5.4 Nonlinear static analysis of a 100 m guyed tower 

With the increase of height of the tower, the cables are inevitably sagged due to the self-

weight. To explore the nonlinearity that was introduced by the sag of the cables, a 100 m 

high guyed tower is simulated. The poles and struts in the mast arm are composed of steel 

bars.  Corresponding Young’s modulus is Pa. The steel pipes that constitute the 

poles have an outside rim diameter of 10cm and an inside rim diameter of 4cm. The plane 

section of the mast is an equilateral triangle similar to Fig 5.2(b). The side length of the 

triangle is 20cm. The prestress forces in all the three layers of cables are 100 N.  All 

struts’ and cables’ diameters are assumed to be 4cm. The section detail can be seen in Fig 

5.24.  

910199×
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Figure 5.24 Detailed section of the guyed tower. 

 After the entire load steps, the deformed geometry of the tower is shown in Figs 5.25 

and 5.26. The load deflection curve for the tip of pole is as shown in Fig 5.27. At the 

beginning, the lateral force just tightens up the slacken cables. After that, load deflection 

curve’s slope climb sharply because of the lateral support from the stressed 

cables.
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(b) 

Figure 5.25 (a) The undeformed geometry, and (b) the deformed geometry of a 100 m 

guyed tower.  
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Figure 5.26  Deformed and undeformed geometres of a 100 m guyed tower. 
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Figure 5.27 Load deflection curve of the tip. 



5.5 Nonlinear dynamic analysis of a 100 m guyed tower 

If the same tower is subjected to the EI Centro earthquake in X-direction, as shown in Fig 

5.11(a), the responses at different instants are shown captured in Figs 5.28-5.42.  With the 

passing of time, the tower is agitated by the ground motion gradually. In the first two 

seconds, there is little deformation (Figs 5.43 and 5.44). Significant deflection in the mast 

appears after 3 seconds. The entire computation is very intensive because all the elements 

used here are nonlinear. It took more than 24 hours for a single round computation. Due 

to this reason, the time trace for the tip deflection is terminated around 10 seconds, which 

already used 6,000 iterations.  
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Figure 5.28 Response at t=3.0 second. 
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Figure 5.29 Response at t=3.5 second. 
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Figure 5.30 Response at t=4.0 second. 
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Figure 5.31 Response at t=4.5 second. 
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Figure 5.32 Response at t=5 second. 
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Figure 5.33 Response at t=5.5 second. 
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Figure 5.34 Response at t=6 second. 
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Figure 5.35 Response at t=6.5 second. 
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Figure 5.36 Response at t=7 second. 
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Figure 5.37 Response at t=7.5 second. 
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Figure 5.38 Response at t=8 second. 
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Figure 5.39 Response at t=8.5 second. 
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Figure 5.40 Response at t=9 second. 
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Figure 5.41 Response at t=9.5 second. 
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Figure 5.42 Response at t=10 second. 
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Figure 5.43 Time trace of the relative tip deflection. 
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Figure 5.44 Time trace of the absolute tip deflection. 
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5.6 Geometric and Material Nonlinear static analysis of a 50 ft 

guyed tower  

If the tower in Fig 5.1 is composed of truss and cable elements, the structure is stiffened 

as shown in Fig 5.45. When isotropic hardening effect is included in the simulation, the 

stiffness of the structure is decreased because some members yield with the increase of 

load. Truss member as element 7 is yielded with compression. The stress strain curve is 

shown in Fig 5.46. The stress-strain curves of truss elements 40 and 180 are shown in 

Figs 5.47 and 5.48. The upper two layers of cables are also yielded. The locations of 

yielded members are shown in Fig 5.49.  
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Figure 5.45 Comparison of load-deflection curves. 
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Figure 5.46 Stress strain curve of 7th element.  
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Figure 5.47 Stress strain curve of 40th element. 
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Figure 5.48 Stress-strain curve for 180th element. 
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Figure 5.49 Yielded member locations in the tower. 
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 110

5.7 Summary 

With proper elements and algorithms, the nonlinear static and dynamic responses were 

accurately traced. Consideration of material nonlinearity along with geometric 

nonlinearity further closed the gap between analysis and reality.  

The comparison of taut guyed towers under static loads shows that their results are 

similar when deflection is small. The release of constraints in rotation and deflection on 

the supports for the equivalent beam method can greatly improve the analysis accuracy.  

The different transited angle of seismic wave can result in different amplitudes of 

vibration. But the response pattern is similar.  

For high guyed towers, computation becomes more intensive due to the size of 

stiffness matrix.  It is found that at the beginning of deflection, the structure is relatively 

soft because the cables do not provide lateral support. With the increase of deflection, the 

cables are gradually tightened up and can restrain the mast by tension force, which make 

the whole structure stiffer. In the dynamic analysis, the wave propagation in the mast is 

clear.  

Under small deflection, the elastic model and the inelastic model predict the same 

results. But under large deformation, in which some of components become yielded, the 

results are very different. The inelastic structures appear softer than the elastic ones.   
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Chapter 6 Response under Impulsive Load 

Towers are open space structures that generally do not intercept shock front waves 

passing through them. So impulse load on any member of a tower is usually much 

lower than close space structures’. However, for large scale guyed towers, the leg 

member’s size is much larger than normal guyed towers. If the impulsive load is 

intensive enough, certain damage can be caused. So there is a need for large towers to 

be evaluated for their possible damage or failure mechanism under impulsive load in 

order to prevent it.  

 This chapter will first discuss the proper evaluation methods for impulsive loads 

on individual members in the guyed towers. The P-I diagram method is then applied 

and developed for the further safety evaluation of members of towers. Global stability 

will be explored finally to accomplish the global safety evaluation.  

6.1 Impulsive load estimation 

There are three types of blast wave structure interaction (Smith and Hetherington, 

1994). The first one is for a large structure and large scale blast wave, which is usually 

intrigued by nuclear weapons. The blast wave will reach and reflect on the front 

surface of the structure. At the same time, it will diffract around the sides and the rear 

face of a building. Finally, it will engulf and crush the structure. The duration can 

usually be counted by seconds. The major part of interaction is diffraction. The 

second type of interaction is for small size structure and large blast wave. The shock 

wave will squash and damage the structure as well. But the main impulsive effect is 

the drag effect. The third one is for a large structure under small size blast wave. The 



size of the structure causes the delay of the applied impulsive load. So the actual 

loading is sequential.   

 When the tower is under consideration, the size of the tower can be large 

compared to the blast wave. But since the members are actual loading units, which are 

obviously small, the main impulsive effect on the tower members is drag effect.  

 Researchers (Brode, 1955; Henrych, 1979; TM5-1300, 1991; Bangash, 1999) 

have proposed various empirical estimations for impulsive loads. One of the 

evaluation methods (Bangash, 1999) is applied in this section. The overpressure  

can be expressed as  

soP
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WPso                      (6.1) 

where = total charge weight in TNT (tonne) W

      R = stand-off distance to the detonation in meters  

 The reflected pressure is  
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The ambient atmospheric pressure is barPo 1≈ . The reflected pulse time is  

U
STC

3
=                             (6.3) 

where = the smaller of half width and height of object S
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, speed of shock front wave 

       speed of sound in air at ambient pressure smao /340≈

The shock pulse duration  
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The drag coefficient for the rear face varies from -0.25 to -0.5. The drag 

coefficient for the front face varies from 0.8 to 1.6.  

 

Figure 6.1 Pressure on the front surface.  
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Figure 6.2 Pressure on the rear surface. 
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To illustrate the impulsive load on the members of tower, three loading cases 

(Figs. 6.3- 6.5) are considered. The member is assumed to be 0.1 m wide and 0.4 m 

high in the cross section. It can be seen with the increase of load intensity, the 

duration of drag phase is shortened. The reflected pressure is dropped while the 

instant pressure on the front face increased. The dramatic change happens on the rear 

surface. For lower but longer impulsive load, the drag effect by aerodynamics 

overcomes the instant pressure so that the net effect is to pull the member toward the 

blast wave direction. When the load gets increased, the net effect is close to zero 

because the magnitude of drag force is almost the same as instant pressure. With the 

further increased load, the instant pressure dominates and the pressure on the rear 

surface will push back the deflected member toward the source to the shock front 

wave. 
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Figure 6.3 Pressure on the front and rear surface for 1 ton TNT at 70 m stand-off 

distance.  
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Figure 6.4 Pressure on the front and rear surface for 1.5 ton TNT at 50 m stand-off 

distance. 
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Figure 6.5 Pressure on the front and rear surface for 2 ton TNT at 30 m stand-off 

distance. 
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6.2 Impulsive response of members  

In this section, the characteristic of bending failure and shear failure is discussed. 

With the adoption of damage criteria for shear failure and bending failure of beams 

(Krauthammer, 2004), the critical standard for the discrimination of both failure types 

are determined. A closed form of theoretical solutions for simply supported and fully 

clamped beams are then presented. P-I diagrams are subsequently used to assist the 

discrimination of failure. Comparisons of the threshold of shear failure and bending 

failure are conducted after the simplification of critical discriminants. The difference 

between the results of the two theoretical models is further discussed. 

Under explosion loads most beams in the buildings fail due to insufficient 

bending capacity. The failure zone usually locates at the center of the beams due to 

excessive bending deformation (Fig 6.6 (a)). Such response is usually analyzed using 

a SDOF model. The beam will be simplified as a single mass vibrating under the 

stimulation of impulse loads (Biggs, 1964; Smith and Hetherington, 1995). The 

maximum displacement is selected as the fatal factor, which determines the safety of 

beams. The P-I diagram is applied to present critical status of beams in bending 

failure because of its straightforward expression form (Abrahamson and Lindberg, 

1976; Smith and Hetherington, 1995; Li and Meng, 2002).  

A SDOF model represents the beam as a whole and neglects the influence of 

shear force, which subsequently leads to the ignorance of shear failure. However, 

shear failure usually happens when the ratio of span to height of the beams is very 

small or when the detonation is very close to the structures. Compared with bending 

failure shear failure is sometimes brittle failure and may cause severe collapse of 

structures. The failure zone usually is at the sides of the beams because the maximum 



shear force exists at both sides (Fig. 6.6 (b)). 

Based on experimental observations and mathematical derivation, Jones (1989) 

developed five possible deformation profiles of beams under impact loads (Fig. 3.3). 

The impact is simplified as an ideal impulse that is applied to the beam with no time 

duration. Li and Jones (1995) improved the study by considering the response of 

beam during impulse load duration and put forward the standardized expression of 

critical deformation. Ma et al (2006) further studied the response and developed P-I 

diagram equations for rigid-plastic beams under rectangular blast loadings. However, 

most results are expressed in an implicit form and can’t be used directly in a specific 

computation. 

In this study, the shear force of beams is considered in another theoretical model 

(Fig. 6.7). The performance of beams under impulse loads and self weight is 

considered separately. Explicit criteria of failure are derived for each situation.  

     

(a)  

   

(b)  

Figure 6.6 Failure mode profiles: (a) bending failure profile, and (b) shear failure 

profile. 
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6.3 Discrete rigid plastic beam model 

In this model (Fig. 6.7) the beam was treated as many strongly linked differential 

elementsso that the shear effect between the small masses can be considered. The 

governing equation for the dominant shear effect is  

ymp
x
Q

&&+−=
∂
∂                         (6.5) 

where  is the shear force, Q x  is the abscissa on the beam, p is the external 

uniform pressure,  is the mass per unit length, m y is the transverse displacement of 

the beam, and  is the acceleration of the unit mass. y&&

x

y

p

 

Figure 6.7 Discrete rigid-plastic beam model. 

 Integrate the acceleration with time and consider the initial displacement and 

velocity, then the final deformation of the beam can be derived. For this research, a 

rigid-plastic simply supported beam is selected as the object. According to Jones 

(1989), the transverse velocity profile of the beam change significantly with different 

values of the dimensionless shear-bending ratio 

0

0

2M
LQ

=υ                             (6.6) 

where  is the shearing resistance and  is the bending resistance of the beams. 0Q 0M

 Fig. 6.8 shows the five possible transverse velocity profiles (Jones, 1989; Li and 
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Jones, 1995).  is the transverse velocity at the center,  is the transverse 

velocity at the support,  is a half of the beam length and 

my& sy&

0L ξ  is the length of 

dynamic bending zone. The deformation is induced by the impulse loads and is 

terminated when the beam’s kinetic energy is totally consumed by the shear hinges or 

bending hinges. Fig. 6.8 (a) shows the response of a beam with strong bending 

moment capacity and relatively weak shearing strength. When it is loaded with a 

shock wave pressure, shear hinges emerge at both sides. The beam maintains the 

consistent deformation tendency until it reaches the ultimate shear deformation. Fig. 

6.8 (b) describes the deformation of a beam with relative weak bending resistance. 

Before the shear sliding commences, there is already a plastic hinge in the center 

which keeps stationary throughout the whole procedure. Fig. 6.8 (c) depicts a beam 

whose bending and shearing resistance is between the ones in Fig. 6.8 (a) and Fig. 6.8 

(b). Under impulse loads, such kind of beam not only has shear slides at the support 

but also has bending deformation at the central part. After the short duration of the 

load the shear slide will stop first and then bending will be terminated subsequently. A 

beam with weaker bending resistance is analyzed as shown in Fig. 6.8 (d). Bending 

hinges compose a small zone at the center of the beam. The two plastic hinge at the 

edge of the zone moves toward the center as the beam deforms. As the two hinges 

converge at the center the following deformation is similar to the deformation 

depicted in Fig. 6.8 (b). Fig. 6.8 (e) represents the most complicated case, which is a 

beam with moderate bending and shearing strength. It begins with both shearing 

hinges at both sides and a bending hinge zone in the center. The shear slide will 

terminate first and then the two bending hinges will converge together. Finally the 

beam will stop rotation around the stationary plastic hinge at the center and reach the 
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maximum displacement. 
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Figure 6.8 Transverse velocity profiles: (a) shear hinge at support, (b) stationary 

bending hinge in the center, (c) shear hinge at support and stationary bending hinge in 
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the center, (d) dynamic bending hinge zone in the center, and (e) shear hinge at 

support and dynamic bending hinge zone in the center. 

6.4 Response under simplified blast load  

There are three kinds of classic simplified loads: rectangular load, triangular load and 

exponential load. In this chapter, the performance of a beam under the former two 

kinds of loading will be discussed. 

Rectangular load has a longer duration than the other load. It can represent the 

shock wave loads which usually endure a comparative long time. The peak pressure 

of triangular load drops quickly, which is the characteristic of conventional explosions. 

Compared with rectangular load, triangular load is more proper to simulate the real 

blast loads.  

p
0
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f

t t

f

t d

0p

 

Figure 6.9 Rectangular loads.              Figure 6.10 Triangular loads. 

6.4.1 Response under rectangular loads 

The pressure of the load is  
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 Li and Jones (1995) presented transverse velocity profiles for different pairs of 

pressure and υ . The maximum deformation and the duration of motion are derived in 

implicit form. However, the effect of impulse on the deformation hasn’t been 

mentioned, which remains as a flaw. According to the velocity profiles proposed by Li 

and Jones (1995), corresponding derivation is conducted and the results are improved 

by including the influence of impulse in the critical equations. The final critical P-I 

equation is as shown in Fig. 6.11 and TableA.1 (Appendix A).  

When 1≤υ  and υ2
0

0
2

L
M

p ≤   or  1≥υ  and 2
0

0
2

L
M

p ≤ , there will be no 

motion at all due to the rigid plasticity of the beam. It means that the pressure is too 

small to induce deformation.  

Mode I. When 1≤υ  and υ2
0

0
2

L
M

p ≥  , shear failure 

The beam deforms as shown in Fig. 6.8 (a). There are two phases throughout the 

deformation as shown in Mode I of Appendix A. At the end of first phase, which is the 

impulse load phase, the beam reaches maximum velocity. In the subsequent phase, the 

acceleration value becomes negative which means the velocity decreases untill the 

beam reach the maximum displacement. 

When dtQ
Lp

t
0

0=  , the beam’s final transverse displacement is 

m
tp

mQ
tLp

y dd
f 22

2
0

0

22
0 −=                     (6.8) 

where  is half the length of the beam, and  is the shear strength of the beam. It L 0Q
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is interesting to notice that the time to reach the maximum deformation can also be 

derived by law of conservation of momentum because the kinetic energy is totally 

depleted by shear hinges.  

 

Figure 6.11 Failure profiles and criteria. 

Krauthammer (2004) presented the damage criteria for shear failure induced by 

impact loads as shown in Table 6.1 (page 143).  Moreover, Collins et al. (2003) 

derived the relationship between the average strain and the displacement along a 

given fracture zone as 

Led =                             (6.9) 

where  is the displacement,  is the fracture length and  is the average strain. 

According to the strain displacement equations (Boresi, 1985), the shear strain is  

d L e

 123



x
y f

v ∂

∂
=γ                           (6.10) 

where  is the vertical deformation and fy x  is the abscissa on the beam (Fig. 6.7). 

If the size of shear hinge is assumed to be of similar size of the height of the cross 

section of the beam, integration of the average shear strain is equal to the 

displacement, i.e.  

                      (6.11) v

h

vf hdxy γγ == ∫0
Applying Eq. (6.11) as a shear damage criteria, critical pressure and impulse for 

a shear failure can be found.  

00
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mh v =+

γ
                     (6.12)            

where is the height of beam, h vγ  is the average maximum shear strain.  

Since the shear-bending ratio υ  doesn’t appear in Eq. (6.12), it can be 

concluded that when shearing strength is weak enough or bending moment capacity is 

strong enough the critical impulse and pressure is entirely determined by the shearing 

strength. The increase of bending reinforcement has no influence on the result. 

Mode II. When 5.11 ≤≤υ  and ( )34 −υ , shear and bending failure 
2

2
0

0 > L
M

p

The beam deforms as depicted in Fig. 6.8 (c) and goes through three phases 

(Mode II of Appendix A). The first one is the load phase, at the end of which both the 

shear slide motion and the bending motion reach the maximum velocity.  The next 

phase is terminated when the shear slide stops at  
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when the shear slide displacement is  
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In the third phase, the excessive dynamic energy keeps the beam bending. 

However, the bending will finally stop at  

0

2
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2M
Ltp

t d
f

⋅⋅
=                         (6.15) 

The maximum deformation is located in the center. 
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The value of υ  obviously affects the final deformation. Using the same method 

as in the derivation of Mode I, the critical equations for shear failure in terms of the 

peak pressure and the impulse can be obtained. 

( )34
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υγ

Q
L

pI
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The critical equations for bending failure in terms of the peak pressure and the 

impulse can be obtained as well. 
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where β  is the ratio of centerline deflection to span, which is prevalent criteria for 

bending failure. 

Mode III. When 5.11 ≤≤υ  and ( )34
22

2
0

02
0 −≤≤ υ

L
M

p
L
M

 

or  υ≤5.1     and 2
0

02
0 62

L
M

p
L
M

≤≤  ,         bending failure               

Before the shear hinges emerge, the rotation of stationary bending hinge in the 

center absorbs all the impact energy as shown in Fig. 6.8 (b). Two phases exist during 
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the whole deformation process (Mode III of Appendix B). The first phase is the 

impulse load phase and the second phase is the free load phase.  

In the second phase, the rotation will stop at  

0

2
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2M
Ltp

t d
f

⋅⋅
=                           (6.18) 

The final deformation is  
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d
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m
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y −=                       (6.19) 

The critical equation for bending failure in terms of the peak pressure and the 

impulse is 

0
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1
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4
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pI
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β                       (6.20) 

According to the energy conservation principle the final cease time also can be 

calculated because only the bending plastic hinge can dissipate the impact energy. 

Mode IV. When υ≤5.1  and 2
2
0

0 3
8

υ
L
M

p >  , shear and bending failure 

There are four phases before the deformation finally ceases (Mode IV of 

Appendix A). The shear hinges and bending hinges both appear at the very beginning 

as illustrated in Fig. 6.8 (e). In the first phase both the shear slide and bending 

deformation reach the maximum velocity. In the second phase, the shear slide ceases 

at  

2
0

0
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8
3
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s
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=                            (6.21) 

when the maximum shear slide distance is  

2
0

222
0

2
0

16
3

2 υmM
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m
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The bending hinge zone keeps invariable when the shear hinges slide. The length 

of the hinge zone is  

 127
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32
0

−                            (6.23) =

The hinge zone will reduce to a point when 5.1=υ , which corresponds to Mode 

II. After the shear slide ceases, the third phase commence and the bending hinges 

begin to move toward the center with velocity 

( )ξξ
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−
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Ltp
M

d0

03&                          (6.24) 

The shift of bending hinges is terminated at  

0

2
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1 6M
Ltp

t d=                            (6.25) 

At the end of the third phase, the transverse velocity profile changes into Fig. 6.8 

(b).In the fourth phase, the beam rotates around the plastic bending hinge and reaches 

the maximum displacement when  

0

2
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2M
Ltp

t d
f =                          (6.26) 

     The maximum displacement is 
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y −=                      (6.27) 

The following equation for shear failure can be derived from Eqs. (6.22) in terms 

of the peak pressure and impulse as 

υ
γ
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L
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mh v =+                     (6.28a) 

For bending failure, the critical equation derived from Eq. (6.27) is  
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=+
β                      (6.28b) 

Mode V. When υ≤5.1  and 2
2
0

02
0

3
86

υ
L
M

p
L
M

≤≤ , bending failure 

No shear slide appears and there is a bending zone in the center of the beam (Fig. 

6.8 (d)).  There exist three phases including the impulse loads phase, the shift of 

bending hinges phase and the motion-cease phase (Mode V of Appendix A). The 

length of the hinge zone in the first phase can be calculated by  

0

0
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6
p
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L −=ξ                         (6.29) 

In the second phase, the zone decreases to a hinge point with the velocity  

( )ξξ
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03&                         (6.30) 

The hinges points coalesce in the center at  

0

2
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1 6M
Ltp

t d=                             (6.31) 

In the third phase, the beam deforms as depicted in Fig. 6.8 (b). When  

0

2
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2M
Ltp

t d
f =                            (6.32) 

the displacement is 
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The following equation for bending failure can be derived from Eq. (6.32) in 

terms of the peak pressure and the impulse 
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The results are summarized in Fig. 6.11 and Table A.1 (Appendix A). The number in 

Fig 6.11 represents the discrimination equations in TableA.1 (Appendix A). The 

failure mode varies from shear failure to bending failure as the two parameters υ  

and  change. When 0p 1≤υ , shear failure is the predominant failure mode. But when 

υ≤5.1  and 2
2
0 υ0 3

8
L
M

p ≤  , bending failure is the only failure mode. Other failure 

modes need discrimination separately because both shear and bending failure are 

possible. Generally speaking, the beam is more vulnerable to bending failure as the 

value of υ  is higher. When υ  is fixed, high peak pressure leads to the occurrence 

of shear failure. For shear failure, the decrease of υ  results in the lower critical 

values of pressure and impulse, which indicates the beam becomes more vulnerable 

(Fig. 6.12). However, for bending failure, the decrease of υ  leads to the decrease of 

the critical value of pressure and impulse (Fig. 6.13).  

   

Figure 6.12 P-I diagram for shear failure. 
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Figure 6.13 P-I diagram for bending failure. 

6.4.2 Response under triangular loads 

The pressure of the load is defined by 

⎪
⎩

⎪
⎨

⎧

>

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅

=

00
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tt
t
tP

f d
d                      (6.35) 

Li and Jones (1995) have developed implicit results for simply supported beams 

under triangular loads. However, when the discrimination is conducted with critical 

pressure and impulse, it is found that more partition needs to be made to discriminate 

the failure. Through derivation the final critical P-I equation is as shown in Table B.1 

(Appendix B). The performance of the beam is similar to those under rectangular load, 

though there are more categories. For details of each mode please refer to the 

corresponding part in Appendix B. 
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Figure 6.14 Failure modes for triangular pulse load. 

Mode I. When 1≤υ  and 02
04

p
L
M

≤
υ

, shear failure 

Shear slide occurs at both supports (Fig. 6.8 (a)). There are two phases including 

the loading phase and the post-loading phase. The beam reaches its maximum 

transverse velocity at the end of the loading phase and decelerates in the subsequent 

post-loading phase. In the post-loading phase, the deformation will cease at  

df t
Q

Lp
t

0

0

2
=                           (6.36) 

when the transverse displacement of the beam becomes  

( ) 2
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000
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QLpp
y

−
=                       (6.37) 

The following equation for shear failure can be derived from Eq. (6.35) in terms 
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of the peak pressure and the impulse  

00
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46.1
Q
L

pI
mh v =+

γ
                      (6.38) 

where  is the height of beam, h vγ  is the average maximum shear strain, I  is the 

impulse which equals dtp02
1  for triangular load.  

Mode II.  When 1≤υ and υ
υ

2
0

02
0 42

L
M

p
L
M

≤≤ , shear failure 

The transverse velocity profile is the same as that for Mode I. But there is only 

one phase of the motion. The shear slide will cease in the loading phase because the 

blast pressure is relatively weak compared to the shear strength of the beam.  
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Q
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0−=                          (6.39) 

The final shear sliding displacement is 
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The following equation for shear failure can be derived from Eq. (6.40) in terms 

of the peak pressure and the impulse  

1
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hmp vγ                     (6.41) 

Mode III. When 5.11 ≤≤υ and ( ) 02
0 34

4
p

L
M

<−υ , shear and bending failure 

There are shear slide and bending deformation simultaneously as shown in Fig. 

6.8 (c). Three phases exist before the beam deformation ceases. In the first phase 

(loading phase) both shear slide and bending deformation reach the maximum 

velocity.  
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In the second phase (post-loading phase), the shear slide stops at 
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and the shear sliding displacement is 
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In the third phase (post-loading phase), the beam continue bending till the central 

part reaches the maximum displacement at 
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when the bending displacement is  
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The following equation for shear failure can be derived from Eq. (6.43) in terms of 

the peak pressure and the impulse 
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The equation for bending failure can be derived from Eq. (6.46) in terms of the peak 

pressure and the impulse 
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Mode IV. When 25.11 ≤≤υ  and ( )34 −υ ,    
24

2
0

02
0 <<

L
M

p
L
M

or 5.125.1 ≤≤υ  and ( ) ( 34
4

34
2

2
0

02
0 −<<− υυ

L
M

p
L
M ) , shear and 

bending failure 

The performance of the beam is similar to that of Mode III and the motion has 
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three phases. But the shear slide will cease during the loading phases because of the 

decrease of intensity of blast pressure. In the first phase (loading phase), the shear 

slide will cease at  

( )
2

0

0344
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tt d
ds
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and the shear slide is  
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In the subsequent phase (loading phase), the beam is still under the pulse load 

and keeps accelerating until the commencement of the third phase. The third phase 

ends at 

0

2
0

4M
Ltp

t d
f

⋅⋅
=                            (6.50) 

while the final central displacement as  
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The following equation for shear failure can be derived from Eq. (6.49) in terms 

of the peak pressure and the impulse 
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For bending failure, the critical equation is  
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Mode V.   When 25.11 ≤≤υ and ( ) 2
0
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34
2

L
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p
L
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<<−υ  , shear and bending 

failure 

There are only two phases during the motion process, both of which are in the loading 

phase (Fig. 6.8 (c)). Because the pressure is relatively small, the shear slide will cease 

in the first phase. The first phase ends when the shear slide cease at   
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and the shear slide is 
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The second phase stops at 
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when the final central displacement is  
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The following equation for shear failure can be derived from Eq. (6.54) in terms of 

the peak pressure and the impulse 
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For bending failure, the critical equation is  
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(6.57b)            

Mode VI.    When 25.11 ≤≤υ and ( )34
22
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               or 5.125.1 ≤≤υ  and 2
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<< ,        bending 

failure                      
 

Only one phase exists during the whole motion process. The bending motion ceases 

during the loading phase (Fig. 6.8 (c)) at  
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The final maximum displacement exists at the mid-span of the beam 
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The following equation for bending failure can be derived from Eq. (6.59) in terms of 

the peak pressure and the impulse 
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Mode VII.   When 5.125.1 ≤≤υ  and ( )34
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or υ≤5.1  and  2
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<< ,           bending failure 

Two phases exists in this mode while there is only bending deformation motion of the 

beam (Fig. 6.8 (c)). The first phase is the loading phase which terminates at . The 

second phase (post-loading phase) stops at  
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⋅⋅
=                          (6.61) 
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and the final maximum displacement exists in the central portion of the beam 
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                     (6.62) 

The following equation for bending failure can be derived from Eq. (6.62) in terms of 

the peak pressure and the impulse 
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Mode VIII. When υ≤5.1 and 2
2

0
0 3

16
υ

L
M

p > , shear and bending failure 

There is not only shear slide at the support but also bending hinge zone at the 

mid-span of the beam (Fig. 6.8 (d)). The motion can be divided into four phases. The 

first phase is the loading phase. The length of the bending hinge zone is 

L
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The shear slide motion will cease in the second phase (post-loading phase) at  
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and the shear slide displacement is  
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In the third phase (post-loading phase), the positions of bending hinges begin to 

travels from 0ξ=x  to the mid-span after the shear slide ceases. The traveling 

velocity is  

( )ξξ
−

−
=
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06&                        (6.67) 

In the fourth phase (post-loading phase), the bending hinges coalesce at the mid-span 
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at 
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Then, the beam continues bending motion till  
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while the final central displacement is  
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The following equation for shear failure can be derived from Eq. (6.66) in terms of 

the peak pressure and the impulse 
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For bending failure, the critical equation is  
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Mode IX. When 
2
95.1 ≤≤υ and 2
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≤≤υ , shear and bending 

failure 

The deformation process is similar to Mode VIII and can be divided into four phases. 

The difference exists in the time for the process of shear slides and bending hinges’ 

traveling. In the first phase (loading phase), the shear slide motion will cease at  
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and the shear slide displacement is  
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The bending hinges begin to coalesce to the center of the beam in the second phase 

(loading phase) until the end of the pulse load. In the third phase (post-loading phase), 

the coalescence is continued until the hinge zone merges into a point.  
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and the corresponding displacement is 
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In the last phase (post-loading phase), the bending motion stops at   
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The final displacement is  

( ) 2
0

0

2
00

12
2

df tp
mM

LpM
y ⋅

+−
=                   (6.77) 

The following equation for shear failure can be derived from Eq. (6.73) in terms of 

the peak pressure and the impulse 
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For bending failure, the critical equation is  
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Mode X.  When υ≤5.1 and 2
2
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p
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≤≤ , bending failure 

The transverse velocity profile is shown as Fig. 6.8(e). There is three phase in the 
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deformation process. No shear slide happens and the length of bending hinge zone is  
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The bending hinge zone decreases to the central point at  
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The final displacement is  
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The corresponding equations for bending failure in terms of the peak pressure and the 

impulse is 
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Mode XI. When 
2
95.1 ≤≤υ and 2
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≤≤υ , shear and bending 

failure 

The deformation process is similar to Mode IX regarding to the timing of stopping 

shear deformation. The second phase (loading phase) begins with the coalescing of 

bending hinges and end with the loading phase.  
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and the corresponding displacement of the middle point is  
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The third phase (loading phase) terminates at the end of pulse loads. In the last phase 

(post-loading phase), the bending motion stops at   
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The final displacement is  
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The following equation for shear failure can be derived from Eq. (6.73) in terms of 

the peak pressure and the impulse 
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For bending failure, the critical equation derived from Eq. (6.86) is  
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There are three phase for the whole deformation procedure. During the first loading 

phase, the bending deformation initiates together with the traveling of bending hinges. 

The traveling hinges coalesce at the center of the beam at  
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In the second loading phase, the beam continues bending till the end of impulse load. 

The bending deformation ends in the third phase (post-loading phase) at  

0
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⋅⋅
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The final deformation at mid-span is  
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The corresponding critical P-I diagram equation for bending failure is  

0

2

0
22

0

0
43

0

2
0

64
0

3
0

2 128
3

48
7

2
3918

M
L

pLp
M

Lp
M

Lp
M

I
mL

=+−+−
β             (6.91) 

6.5 Discrimination of failure mode 

It can be seen that during impulsive loading both shear failure and bending failure are 

likely to happen. To take pertinent measures to protect buildings it is vital to 

discriminate the failure modes, which is presented next. 

6.5.1 Discrimination criteria 

Krauthammer (2004) concluded the discrimination standard as shown in Table 6.1. It 

applies the ratio of centerline deflection to span as the criteria for bending failure, and 

average shear strain as the criteria for shear failure. 

  Table 6.1 Discrimination criteria  

TYPE OF 

FAILURE 

CRITERIA LIGHT 

DAMAGE 

MODERATE 

DAMAGE 

SEVERE 

DAMAGE 

Global 

Bending/ 

Membrane 

Response 

Ratios of Centerline 

Deflection to Span, 

D/L 

 

4% 

 

8% 

 

15% 

 

Shear 

Average Shear Strain 

across Section, vγ  

 

1% 

 

2% 

 

3% 
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6.5.2 Normalization of the discrimination equation 

If simplification is introduced as  
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Then for rectangular load the discrimination equations transform into simple form. 

Table 6.2 Critical P-I equation for rectangular impulsive load 

Mode Shear failure Bending failure 
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Table 6.3 Critical P-I equation for triangular impulsive load 

Mode Shear failure Bending failure 
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6.5.3 Discrimination diagram 

The P-I diagram method has the advantage to evaluate conveniently the structural 

safety against impact load (Ma, Shi and Shu, 2006). To demonstrate the usage of P-I 

diagram, a beam with length of  and height of  is calculated. Normalized 

P-I diagrams are plotted in Figs. 6.15-6.17.  

m4 m4.0

A. Rectangular impulsive load 

The failure mode varies from shear failure to bending failure as the two parameters υ  

and  change. For simply supported beams, when 0p 1≤υ , shear failure is the 

predominant failure mode. But when υ≤5.1  and 2
2
0

0 3
8

υ
L
M

p ≤  , bending failure is 

the only failure mode. Other failure modes need discrimination separately because 

both shear and bending failure are possible. Generally speaking, the beam is more 

vulnerable to bending failure as the value of υ  is higher. When υ  is fixed, high 

peak pressure leads to the occurrence of shear failure. For shear failure, the decrease 

of υ  results in the lower critical values of pressure and impulse, which indicates the 

beam becomes more vulnerable. However, for bending failure, the decrease of  υ  

leads to the decrease of the critical value of pressure and impulse. For fully clamped 



beams similar rules exist in the change tendency of critical P-I diagram with the 

change of υ . When 2≤υ , there is only shear failure. when υ≤3  and 

2
2
0

0 3
4

υ
L
M

p ≤  , bending failure is the only failure mode.  

 When 1≤υ , both simply supported beam and fully clamped beam has the same 

critical discriminant for shear failure because when shear hinge emerge at both sides 

the difference between boundary condition disappears. When 1≥υ , a fully clamped 

beam has a stricter requirement for the prevention of shear failure compared with 

simply supported beams. When 2≥υ , beams with both boundary conditions can fail 

due to extreme bending effect. Simply supported beams can bear less impact loads 

than fully clamped beams. 

 

B. Triangular impulsive load 

It is found when 1≤υ  ( 2≤υ  for fully clamped beams) shear failure is the only 

failure type (Fig. 6.15). Both shear failure and bending failure become possible when 

4.41 ≤≤υ ( 8.8≤2 ≤υ  for fully clamped beams). Four different failure 

combinations are denoted as A, B, C, and D in Fig. 6.16. In region A, both failures 

may occur. In region B, no shear failure may happen and no bending failure in region 

C. The beam keeps safe in region D. When 4.4≥υ  ( 8.8≥υ  for fully clamped 

beams), the failure combination changes into three regions A, B, C. In region C, there 

is no failure. In region B, only bending failure exist. In region A, shear failure 

accompanies the bending failure.   

 As υ  increases, shear failure tendency descends. However, bending failure 

becomes more possible due to the downward drift of the threshold (Fig. 6.18). When 

1≤υ , shear failure is the dominant failure type. But when υ≤4.4  and 
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2
2
0

0 3
8

υ
L
M

p ≤ , the bending failure precedes the shear failure.  

 For beams with the same parameter υ , the boundary condition influences the 

failure type as well (Fig. 6.19). Fully clamped beams are more vulnerable to shear 

failure compared with simply supported beams. However their bending resistances are 

more likely to sustain the bending than simply supported ones, which is consistent to 

previous research (Ma, Shi and Shu, 2006). 

 It can be easily seen from Fig 6.20 that a P-I diagram for triangular loading 

merges with the ones for rectangular loading at impulse-controlled part and 

peak-pressure controlled part. This demonstrates that when an ideal impulse is 

imposed to the beam, the response will be decided by the impulse and will no longer 

be affected by loading shape. The same phenomena happen at the quasi-static part 

when the loading duration is much longer than the natural vibration period of the 

beam. But at Peak pressure and impulse combination-controlled area, the difference is 

significant and can not be neglected.  
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Figure 6.15 Comparison of failure modes with 1≤υ . 
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Figure 6.16 Comparison of failure modes with 4.41 ≤≤υ . 
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Figure 6.17 Comparison of failure modes with υ≤4.4 . 
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Figure 6.18 Failure modes for triangular pulse load. 
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Figure 6.19 Critical P-I curves for different boundary conditions with same υ . 
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Figure 6.20 Critical P-I curves for different pulse shape.  

Note:  S.F.C.T means Shear Failure critical Curve under Triangular loading, 

       S.F.C.R means Shear Failure critical Curve under Rectangular loading, 

        B.F.C.T means Bending Failure critical Curve under Triangular loading, 

         B.F.C.R means Bending Failure critical Curve under Rectangular loading. 

6.6 Global estimation of guyed tower under impulsive load 

The proposed methodology is to use the derived P-I diagram to evaluate the 

performance of individual members. If one member fails, the corresponding stiffness 

contribution will be eliminated. The global stiffness matrix will then be reevaluated 

by the eigenvalues of the structure. If it is negative, the structure becomes unstable. 

The procedure is shown in the flow chart of Fig. 6.21. 

 150



Evaluate the impulsive load on each 
individual member by empirical 
formulas

Assess the safety of each individual 
member using P-I diagram methods 
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guyed tower by eigenvalues 

Create geometry of the guyed tower 

 

Figure 6.21 Flow chart for global stability assessment. 

In a rigid plastic rectangular beams, the shear stress is  
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If Tresca yield criterion is admitted, the maximum shear stress is 

02
1στ =                            (6.95) 
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2 0

0 ==υ , which means the index υ  in some extent reflects the factored 

ratio of beam’s length to depth. 
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To determine the stability of a structure, the eigenvalues check is used as described by 

Pai (2007). Because  

[ ]{ } { }FDK Δ=Δ                         (6.98) 

Where  is the global stiffness matrix; [ ]K { }DΔ  is the displacement vector;  is 

the force vector. If 

{ FΔ }

}{ } { DF Δ=Δ λ , 

[ ] [ ]( ){ } { }0=Δ− DIK λ                      (6.99) 

Where λ  is eigenvector; [  is an unit vector. If ]I 0<iλ , the variation of energy is  

{ }{ } { } { } 0
2
1

2
1

<ΔΔ=ΔΔ=Δ DDDFW T
iλ  

That means the structure will release energy during deformation, which actually 

is impossible. So if any eigenvalue becomes less than zero, the structure becomes 

unstable.  

To demonstrate the application, one specific example is provided in this section. 

The height of the mast is 150m and has four layers of cables that are connected at 30, 

60, 100, 140 meters (Fig 6.22). The mast of the tower is an equilateral triangle of 1m 

length. The cross section of the pole is assumed to 0.05×0.05m and the strut is 

0.02×0.05m (Fig 6.27 (a)). The radius of the cables is 3.16cm. The material is 

AISI-3140 steel with a yield stress of 620 MPa. The charge is 1 tonne TNT with 

standoff of 100m.  
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Figure 6.22 Geometry of guyed tower. 

Because the members in the tower are slim, the failure associated is bending 

failure. Shear failure is another possible failure mode, which requires much higher 

peak pressure. The critical P-I diagrams for each type of components are as shown in 

Figs 6.23-6.26. For pole elements and lateral struts, the external impulsive loads are 

less than the critical loads. This indicates they are safe for such loads. But for 

diagonal struts, their loads exceed the strength. All of the loads are in the zone of 

failure mode 7.  

The impulsive load blows off all diagonal slim struts in the mast as shown in 

Fig6.27 (b). But all lateral strut and pole elements have survived, which maintains the 

guyed tower’s integrity and stability. By using eigenvector analysis, it is found that 

the minimum eigenvalue of the tower is greater than zero, which indicates that the 

structure is still stable and won’t collapse under specified impulsive loading.  
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Figure 6.23 P-I diagram and impulsive loads for poles. 
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Figure 6.24 Impulsive loads for poles. 
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Figure 6.25 P-I diagram and impulsive loads for lateral struts. 
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Figure 6.26 P-I diagram and impulsive loads for diagonal struts. 
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Failed members
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              (a)                          (b) 

Figure 6.27 Mast components (a) before the impulsive loading, and (b) after the 

impulsive loading. 

6.7 Summary 

The proposed methodology is effective in the individual load assessment, safety 

evaluation and global safety evaluation. Certain empirical formula can easily predict 

the intensity of impulsive load on big guyed towers. The developed P-I formulas can 

efficiently facilitate engineers in the assessment of survivability of truss and beam 

members under impulsive load. Different boundary conditions (simply supported or 

clamped) and impulsive load type (rectangular or triangular) will lead to different P-I 

thresholds. Critical curves for rectangular and triangular loads merge together in 

impulse-controlled and peak pressure-controlled regions. The global stability of a 

guyed tower can be determined by the eigenvalues of the structure. Due to the 
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inherent redundancy in guyed towers, they are expected to survive most types of light 

or medium impulsive loads.  
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 Chapter 7 Conclusion and Future Work  

7.1 Summary 

In this dissertation we have extensively explored the nonlinear responses of guyed 

towers under large static loads and seismic loads. Two types of nonlinearities are 

included in the modeling: geometrical nonlinearity and material nonlinearity. 

Nonlinear characteristics of trusses, cables and beams are studied using various 

demonstrating examples. Material nonlinearity is added into the formulation of truss 

and cable elements to enable simulating of cases that not only have large deformation 

but also have large strain. Two types of guyed towers (short guyed tower with taut 

cables and high guyed tower with sagged cables) are analyzed with the 

implementation of truss, cable and beam elements. Both static and dynamic 

simulations are conducted. Material nonlinearity is finally included in the large static 

deformation.  

The response and global stability of guyed towers under impulsive loads was 

evaluated in chapter 6. The impulsive load on specific members is assessed by 

empirical formulas. Two failure types, shear failure and bending failure, are realized 

next. With five possible transverse velocity profiles, response of rigid plastic beam is 

formulated for rectangular and triangular impulsive loads. The influence of boundary 

conditions was discussed as well. Five failure modes for rectangular loads and twelve 

modes for triangular loads were differentiated. A specific example of a guyed tower 

under impulsive load was conducted to demonstrate the comprehensive application of 

the P-I diagram method with nonlinear finite element analysis.  
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7.2 Conclusion  

The application of nonlinear finite element and algorithms can successively trace 

static and dynamic response of guyed towers. Consideration of geometric nonlinearity 

is sufficient for large deformation with small strain. The dynamic analysis for a high 

guyed tower can be time consuming because of the large size of degrees of freedom.  

Linear analysis may be proper and efficient for guyed towers that have small 

static deformation. Beyond some critical points, linear analysis is no longer accurate 

and nonlinear analysis is needed. For truss towers under seismic loads, linear modal 

analysis usually underestimates the corresponding vibration intensity, but it requires 

much less computation effort.  

Consideration of material nonlinearity is very necessary for large deformation 

with large strain. An isotropic hardening model is proper for static cases and dynamic 

hardening can represent material constitution under dynamic loads. It is seen that 

inelasticity make structures behave softer than elastic ones. The inelasticity also helps 

in the dissipation of seismic response of truss towers, which is beneficial to structural 

safety as long as the strain remains below ductility limits.   

The proposed methodology for global safety assessment for a guyed tower is 

effective. The developed P-I formulas are convenient to check the safety of individual 

member. It is also found that shear failure is a relatively rare phenomenon for mast 

members because they are usually slim. But some struts can have bending failure and 

form a potential failure mechanism.  

7.3 Future work 

Following tasks should be accomplished in the future to improve analysis.  
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1. Implementation of material nonlinearity in beam elements. Because the strain in 

beam element includes axial strain and bending strain, the combination of these 

results should be considered. 

2. Parameter study of various indices for guyed towers, such as height, cable number 

and prestress level. Further study can include optimization to assist structural 

design. 

3. If the impulsive loads are evaluated by FEM software like LS-DYNA, the 

impulsive loads on each member would be more accurate and the global safety 

evaluation would be more close to reality.  
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Appendix A 

Derivation of P-I Diagrams for Combined Failure Mode of 

Simply Supported Beams subject to Rectangular Loads 

Mode I. When 1≤υ  and υ2
0

0 L
2

p >
M

 

 (1)  dtt ≤

The governing equation for the dominant shear effect is  

ymp
x
Q

&&+−=
∂
∂

0                                                     (A.1)                         

Integrate with respect to x and consider the initial condition 0QQ −=  when , Lx =

LymLpQ &&+⋅−=− 00  

Thus,  

m
p

mL
Q

y 00 +
−

=&&                                                      (A.2) 

Integrate Eq. (A.2) with respect to x and consider the initial condition  when0=y& 0=t , 

t
m
p

t
mL
Q

y 00 +
−

=&                                                     (A.3)                         

To initiate the motion 0>ω& , so 

00 QLp > , i.e., υ2
0

0
2
L
M

p >  

Integrate Eq. (A.3) with respect to x and consider the initial condition  when0=y 0=t , 
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22

2
0

2
0 t

m
pt

mL
Q

y +
−

=                                                   (A.4) 

At the end of loading, the velocity and displacement of the beam is  

dd t
m
p

t
mL
Q

y 00 +
−

=&                                                   (A.5) 
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2
0

2
0 dd t

m
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Q

y +
−

=                                                   (A.6) 

(2)  fd ttt ≤≤

After the load is removed, Eq. (A.1) turns into dt

ym
x
Q

&&=
∂
∂                                                            (A.7) 

Integrate Eq. (A.7) with respect to x  

LymQ &&=− 0  
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=&&  

Due to continuity condition, i.e., Eq. (A.5) and Eq. (A.6),  
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The deformation will cease at  

df t
Q

Lp
t

0

0=                                                              (A.8) 

The final maximum deformation of the beam is 
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If the average shear strain damage criteria is applied, then  

( ) 2

0

000

2 dv t
mQ

QLpp
h

−
=γ                                                  (A.10) 

Set the impulse quantity dtpI ⋅= 0 , the critical P-I diagram equation for shear failure is 

derived as  

00
2
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Q
L

pI
mh v =+

γ
                                             (A.11) 

Mode II. When 5.11 ≤≤υ  and ( )34
2

2
0

0 −> υ
L
M

p  

From the transverse velocity profiles, it can  
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⎠
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xyyyy sms 1&&&&  Lx ≤≤0                                    (A.12) 
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L
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Integrate with respect to x and consider the initial condition  

0QQ −=  at Lx =  

0=Q  at 0=x                                                    (A.14) 

Eq. (A.13) can be turned into 
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since Q
x
M

=
∂
∂  ,  at 0MM = 0=x  and 0=M  at Lx =                                                     

Integration of Eq. (A.15) gives  
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Solve the above Eq. (A.16) and Eq. (A.17) 
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Integrate Eq. (A.18) and Eq. (A.19) with respect to time and consider the initial condition 

as  

0== sm yy &&  and  at 0== sm yy 0=t  
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 To initiate the shear slide motion it requires ( 34
2

2
0

0 −> υ
L
M

p ) , otherwise it will keep 

still.  Integrate Eq. (A.20) and Eq. (A.21) with respect to t 
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Substitute Eq. (A.22) and Eq. (A.23) into Eq. (A.12) 
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Integrate Eq. (A.24) with respect to time t 
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(2)  sd ttt ≤≤

Eq. (A.1) turns into 
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Integrate with respect to x and consider the initial condition 0=Q  at  and                                         
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Solve the Eq. (A.27) 
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Integrate Eq. (A.28) and Eq. (A.29) with respect to time t and consider the initial 
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It is evident that the transverse shear slide ceases at the supports when 0=sω&   
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Since 1>υ , . Thus the beam has kinetic energy which should be dissipated in the 

next phase of motion. 
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So at the end 
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Q 0=M  at  Lx =
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When ensuring the continuity condition at stt =  
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So the motion finally ceased at  

0

2
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Ltp

t d
f

⋅⋅
=                                                    (A.39) 

The final transverse displacement is 
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Apply the failure criteria, the critical P-I diagram equation for shear failure is  

( )34
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υ
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The critical P-I diagram equation for bending failure is 
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Mode III. When 5.11 ≤≤υ  and ( )34
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                              or     υ≤5.1    and 2
0
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L
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p
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≤≤  

There will be no transverse shear slide at the support. 
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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Solve Eq. (A.45) 
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Integrate Eq. (A.46) with time t 
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Integrate Eq. (A.47) with time t 
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  
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Solve the above equations 
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Integrate with respect to time and consider the initial condition as at  dtt =
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It is evident that the bending ceases at the supports when 0=my&  
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The critical P-I diagram equation for bending failure is 

0

2

0
2 2

1
3

4
M
L

pI
mL

=+
β                                            (A.57) 

 175



Mode IV. When υ≤5.1  and 2
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There is shear slide at the support. 
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The transverse velocity field is like 
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since  at 0=Q 0ξ=x . 
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since  at . 0=M Lx =

Since  at  and  0QQ −= Lx = 0MM =  at 0ξ=x , solve the equations, 
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To initiate the shear slide motion it requires 2
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p > , otherwise it will keep still. 
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at the end of this phase  
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(3)  1ttts ≤≤
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At the end of last phase  the beam has a kinetic energy that must be dissipated as 

plastic work. In this phase the position of bending hinges begin to travels from 

0≠my&

0ξ=x  to 

the mid span till . 1t
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( )ξξ
−

−
=

Ltp
M

d0

03&                                                    (A.91) 

Solve the above differential equation with the initial condition 2
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The transverse velocity field is  
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solve  0=my&
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which predicts the mid-span displacement 
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Apply the failure criteria, the critical P-I diagram equation for shear failure is  

υ
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The critical P-I diagram equation for bending failure is  
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Mode V. When υ≤5.1  and 2
2
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There will be no transverse shear slide at the support. 
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Since  at 0MM = 0ξ=x , solve the equations 

∴
0

0
0

6
p
M

L −=ξ                                                  (A.107) 

Thus if 02
06 p
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≤ , the bending part is a district. Otherwise it will be confined to only one 

bending hinge. 
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at the end of this phase  
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In this phase the position of bending hinges begin to travels from 0ξ=x  to the mid span 

till . 1t
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Solve the above differential equation with the initial condition dtt = ,  
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(3)  fttt ≤≤1

The transverse velocity field is  
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which predicts the mid-span displacement 
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Apply the failure criteria, the critical P-I diagram equation for bending failure is  
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The results can be summarized in Table A.1 using the normalization criteria (Eqs. (6.92) 

and (6.93)). 

Table A.1 Normalized P-I equations for rectangular impulsive loads 
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Type 

 
Mode 
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Appendix B  

Derivation of P-I Diagram for Combined Failure Mode of 

Simply Supported Beams subject to Triangular Loads 

Mode I. When 1≤υ and 02
0 p

L
≤

4M υ
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If , then the motion will not even  begin. Integrate Eq. (B.3) with respect to 
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At the end of loading, the velocity and displacement of the beam is  
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If , the deformation will cease at  00 2QLp ≥
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The final maximum deformation of the beam is 
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Setting the impulse quantity dtpI ⋅= 02
1  the critical P-I diagram equation for shear 

failure is derived as 
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At the end of loading, the velocity and displacement of the beam is  
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Setting the impulse quantity dtpI ⋅= 02
1 , the critical P-I diagram equation for shear 

failure is derived as 
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There is shear slide at the support. 
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Integrate with respect to x and consider the initial condition 0QQ −=  at  and 
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Solve the above equations 
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Integrate with respect to time and consider the initial condition as  and 
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 To initiate the shear slide motion it requires ( 34
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  
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since  at  and 0QQ −= Lx = 0=M  at Lx =  
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Solve the above equations 

( )32
2

26

2
0

0
2
0

−=

+−=

υ
mL
M

mL
Q

mL
M

ym&&

                                                  (B.39) 

( )υ43
2

46

2
0

0
2
0

−=

−=

mL
M

mL
Q

mL
M

ys&&

                                                 (B.40) 

Integrate with respect to time and consider the initial condition as at  dtt =
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It is evident that the transverse shear slide ceases at the supports when 0=sω&   
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Since 1>υ , . Thus the beam has kinetic energy which should be dissipated in the 

next phase of motion. So at the end 
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(3)  fs ttt ≤≤
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When ensuring the continuity condition at stt =  
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So the motion finally ceased at  
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2
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The final transverse displacement is 
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The critical P-I diagram equation for shear failure is derived as 
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The critical P-I diagram equation for bending failure is derived as 
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Mode IV. When 25.11 ≤≤υ and ( )34
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The shear slide will cease in the first phase. 
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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Solve Eq. (B.66) and integrate with respect to time     

            2
0

0 3
2

13

mL
M

m
t
tp

y d
m −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=&&                                                    (B.67) 

            
( )

d

dd
m tmL

ttpLttMptL
y 2

0
2

00
22

4
243 −+

−=&                                (B.68) 

 197



( ) ( )

( ) ( ]493161236

34483432[
12

1

32363
0

22242
00

32
0

2
0

233
0

3
2
0

6

ddddd

dd
d

m

ttttLpttttLpM

tLpMtM
tmpL

y

+−+−++

−+−
−

=

υ

υυ

)
      (B.69) 

At the end of this phase, the velocity and displacement is  
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So if ( 34
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  

at  0=x
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Solve the above equation 

 198



2
03

mL
M

ym −=&&                                                       (B.75) 

Integrate with respect to time and consider the initial condition as at  dtt =

( )tMLtp
mL

y dm 0
2

02 4
4

3
−=&                                           (B.76) 

( ) ( ) ( )

( )]161236

3448343279[
12

1

22242
00

22
0

2
0

223
0

363
02

0
6

dd

ddddm

tttLpM

tLpMtMtttLp
mpL

y

υ

υυ

−+−

−−−+−=
    (B.77) 

It is evident that the bending ceases at the supports when 0=mω&  
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Apply the failure criteria, the critical P-I diagram equation for shear failure is derived as 
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For bending failure, the critical P-I diagram equation is derived as 
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Mode V. When 25.11 ≤≤υ and ( ) 2
0
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0 4
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L
M

p
L
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<<−υ   

The whole deformation will cease in the first phase. 
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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So the motion will cease at  
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the final displacement is 
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The critical P-I diagram equation for shear failure is derived as 
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The critical P-I diagram equation for bending failure is derived as 
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Mode VI. When 25.11 ≤≤υ and ( )34
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There will be no shear slide in the first phase and the whole motion will cease in one 

phase. 
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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at the end of this phase, 
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Since then  and , the whole deformation will cease in this first phase. 0<my& 0<my
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So the final displacement is 
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The critical P-I diagram equation for bending failure is derived as 
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Mode VII. When 5.125.1 ≤≤υ and ( )34
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There will be no shear slide in the first phase. 

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
xyy m 1&&     Lx ≤≤0                                            (B.105) 

(1)  dtt ≤

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

∂
∂

L
xym

t
tp

x
Q

m
d

110 &&                                      (B.106) 

Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  

at  0=x
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Solve the above equations 
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Integrate with respect to time and consider the initial condition as at  dtt =
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It is evident that the bending ceases at the supports when 0=my&   
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The critical P-I diagram equation for bending failure is derived as 
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Mode VIII. When υ≤5.1 and 2
2
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L
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p >  

There is not only shear slide at the support but also bending hinge area in the middle of 

the beam. 

(1)  dtt ≤

The transverse velocity field is like 
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Since  at 0=Q 0ξ=x . 
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since  at . 0=M Lx =

Since  at  and  0QQ −= Lx = 0MM =  at 0ξ=x , solve the equations 
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To initiate the shear slide motion it requires 2
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at the end of this phase  
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since  at 0MM = 0ξ=x  
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=  , which means that the plastic hinges region hasn’t changed. 
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So the motion will cease at 2
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(3)  1ttts ≤≤

Since at the end of last phase 0≠my& , the beam has a kinetic energy that must be 

dissipated as plastic work.. In this phase the position of bending hinges begin to travels 

from 0ξ=x  to the mid span till . 1t

When ξ≤≤ x0  
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The transverse velocity field is  
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solve  0=my&
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which predicts the mid-span displacement 
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Apply the failure criteria, the critical P-I diagram equation for shear failure is derived as 
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The critical P-I diagram equation for bending failure is derived as 
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The shear slide will stop in the first phase. 
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According to assumption that ds tt ≤≤0  

When the shear slides stops, 
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(2)  ds ttt ≤≤ 1

The district of the bending hinges tends to coalesce at the center of the beam. 
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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Solve with the ICs by the former phase, at the end of this phase 
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  
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Integrate with respect to time and consider the initial condition as at  dtt =
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It is evident that the bending ceases at the supports when 0=my&   
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Thus ,  the critical P-I diagram equation for shear failure is derived as 

3
4

8
81

0

0
3
1

2
0 =+⎟

⎠
⎞

⎜
⎝
⎛

Lp
Q

I
hmp v υγ                                 (B.200a) 

The critical P-I diagram equation for bending failure is derived as 
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Mode IX.  When υ≤
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The shear slide will stop in the first phase. 
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According to assumption that ds tt ≤≤0  

When the shear slides stops, 
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(2)  ds ttt ≤≤

The district of the bending hinges tends to shrink to the center of the beam. 
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since ξ=x , 0=Q  
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since ξ=x ,  0MM =
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The initial condition is L
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∴ the coalesce  will be continued in the next phase. 
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The transverse velocity field is like 
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Use the initial conditions as 
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At the end of this phase  
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  
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Solve the above equations 
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Integrate with respect to time and consider the initial condition at  dtt =

It is evident that the bending ceases at the supports when 0=my&   
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Thus, the critical P-I diagram equation for shear failure is derived as 
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The critical P-I diagram equation for bending failure is derived as 
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Mode X. When υ≤5.1 and 2
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Velocity field is same as mode VI. There will be no transverse shear slide at the support. 
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since ξ=x , 0=Q  
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Use the ICs as 
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(2)  1tttd ≤≤

In this phase the position of bending hinges begin to travels from 1ξ=x  to the mid span 

till . When 1t ξ≤≤ x0  

dm t
m

p
y

2
0=&                                                        (B.246) 

200

62 ddm t
m

p
tt

m
p

y −=                                               (B.247) 

When Lx ≤≤ξ  

ξξ −
−

⋅=
−
−

⋅=
L

xLt
m

p
L

xLyy dm 2
0&&                                       (B.248) 

 223



Q
( )

ξ
ξ

&&& ⋅
−
−

⋅= 2
0

2 L
xLt

m
p

y d  

( )
( ) ⎥⎦

⎤
⎢⎣
⎡ +

−⋅−⋅
−

⋅=
22 2

0 ξξ
ξ
ξ xLx

L
tp

Q d
&

                                 (B.249) 

( )

( )2

2
0

0 2
362

ξ

ξξξ

−

⎟
⎠
⎞

⎜
⎝
⎛ −−−

+=
L

xLxtp
MM

d
&

                                (B.250) 
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Solve the above differential equation with the initial condition dtt = ,  
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(3)  fttt ≤≤1

The transverse velocity field is  
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solve  0=my&
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which predicts the mid-span displacement 
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Applying the failure criteria, the critical P-I diagram equation for bending failure is 

derived as 
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Mode XI. When υ≤5.1 and 2
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Velocity field is same as mode VI. There will be no transverse shear slide at the support. 
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since ξ=x , 0=Q  
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since ,  Lx = 0=M
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Use the ICs as 
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at the end of this phase  
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(3)  dttt ≤≤1
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Integrate with respect to x and consider the initial condition 0=Q  at  0=x
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Solve with the ICs by the former phase, at the end of this phase 
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Integrate with respect to x and consider the initial condition 0=Q  at  and 0=x 0MM =  

at  0=x

⎟⎟
⎠

⎞
⎜⎜
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Since  at  0=M Lx =



0

2

3
0 MLym m += &&  

Solve the above equations 

2
03

mL
M

ym −=&&                                                       (B.285) 

Integrate with respect to time and consider the initial condition as at  dtt =

dm t
m
p

t
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M

y
4
33 0

2
0 +−=&                                                (B.286) 
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It is evident that the bending ceases at the supports when 0=my&   
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Thus, the critical P-I diagram equation for bending failure is derived as  

0
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Using the normalization criteria (Eqs. (6.92) and (6.93)), the results can be summarized 

in Table B.1. 
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Table B.1 Normalized P-I equations for triangular loads 

Mode Shear failure parameter  Bending failure parameters 

( ) ( )( )ep1 ( )ep2 ϕ  1k  

 230

ϕ 1λ  υ1f  2k  2λ  υ2f  

I 1 1 
3
4  

1 N/A 
 

N/A N/A 
 

N/A 

II 
ep

16
3  

3
1  

1 1 N/A 
 

N/A N/A 
 

N/A 

III ( )
( ) 

1 
 

1 
2
1

3
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( ) 342 −υ
υ

2
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2  342
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−

−υ υ
υ
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34 −
υ

 1 3 1 14 (1) 
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( )  1 υ
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υ 32

2  
2
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−  
2
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(2) 

VI N/A N/A N/A N/A 
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8
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3
1  1

υ
 1 
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4
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2
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8
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1 1 

2
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3
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υ8
3

 
4
3 υ
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3
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1 υ
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3
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3
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1 υ
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3
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3
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4
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6
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(3) 
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4
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6
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